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AbstratWe introdue a semanti haraterization of narrowing, the ompu-tational engine of many funtional logi languages. We use a funtionaldomain for giving a denotation to the narrowing spae assoiated to agiven initial expression under an arbitrary narrowing strategy. Suh asemanti desription highlights (and favours) the operational notion ofevaluation instead of the more usual model-theoreti notion of interpre-tation as the basis for the semanti desription. The motivation is toobtain an abstrat semantis whih enodes information about the realoperational framework used by a given (narrowing-based) funtional logilanguage. Our aim is to provide a semanti foundation for the develop-ment of a general, suitable, and aurate framework for the analysis offuntional logi programs.Keywords: domain theory, funtional logi languages, narrowing, pro-gram analysis, semantis.1 IntrodutionThe ability of reasoning about program properties is essential in software design,implementations, and program manipulation. Program analysis is the task ofproduing (usually approximated) information about a program. The analysis offuntional logi programs is one of the most hallenging problems in delarativeprogramming. Many works have already addressed the analysis of ertain run-time properties of programs, e.g., mode inferening [DW89, Han94b, HZ94,Lin88℄, demandedness patterns [MKMWH93, Zar97℄, equational unsatis�ability[AFM95, AFRV93, AFV96, BE�93℄, detetion of parallelism [HKL92, SR92℄and a number of other properties whih are also relevant for parallel exeution�Institut f�ur Informatik, Christian-Albrehts-Universit�at Kiel, Olshausenstr. 40, D-24098Kiel, Germany, mh�informatik.uni-kiel.de. Partially supported by the German ResearhCounil (DFG) under grant Ha 2457/1-1.yDSIC, UPV, Camino de Vera s/n, E-46071 Valenia, Spain, sluas�dsi.upv.es. Par-tially supported by EEC-HCM grant ERBCHRXCT940624, Spanish CICYT grant TIC 98-0445-C03-01, and Ai�on Integrada hispano{alemana HA1997-0073.1



[KMH92℄. Nevertheless, most of these approahes have been done in a rather adho setting, gearing the analysis towards the appliation on hand. Up to now,there is no general approah for formulating and analyzing arbitrary propertiesof funtional logi programs with respet to an arbitrary operational framework.Moreover, no attempt to formally onnet (or use) properties from the pure logior funtional world in an integrated, funtional logi setting has been made. Inthis paper we address these problems.The key of our approah is domain theory [So82, So81, So70℄ sine it pro-vides a juntion between semantis (spaes of points = denotations of omputa-tional proesses) and logis (latties of properties of proesses) [Abr91, Rey75,So81, Vi89℄. The omputational proess we are interested in is evaluation.In a programming language, the notion of evaluation emphasizes the idea thatthere exists a distinguished set of syntati elements (the values) whih havea prede�ned mathematial interpretation [Gun92, Pit97℄. The other syntatielements take meaning from the program de�nitions and the operational frame-work for the program's exeution. In this way, the evaluation proess (undera given operational framework), maps general input expressions (having an apriori unknown meaning) to values. This point of view favours the operationalnotion of evaluation instead of the more usual model-theoreti notion of inter-pretation as the basis for the semanti desription.Sine funtional logi languages with a omplete operational semantis arebased on narrowing, we enter our attention on it. The idea of using narrow-ing as an evaluation mehanism for integrated languages omes from Reddy[Red85℄: narrowing is the operational priniple whih omputes the non-groundvalue (ngv) of an input expression. Given a domain D, a ngv is a mapping fromvaluations (on D) to values (in D). In moving valuations from being parame-ters of semanti funtions (as usual in many approahes, e.g., [GHLR99, MR92℄)to be omponents of a semanti domain, we understand narrowing as an eval-uation mehanism whih inorporates the instantiation of variables as a partof suh evaluation mehanism. Sine ngv's are funtional values, we use thedomain-theoreti notion of approximable mapping [So82, So81℄ to give them aomputable representation. We argue that this is a good starting point for ex-pressing and managing observable properties of funtional logi programs (alongthe lines of [Abr91, Smy83, Vi89℄). Moreover, it reveals that, within an inte-grated framework, there exist semanti onnetions between purely funtionaland logi properties of programs. Termination and groundness are examplesof suh related properties. On the other hand, thanks to inluding operationalinformation into the semanti desription, we are able to derive interesting op-timizations for program exeution.Setion 2 gives some preliminary de�nitions. Setion 3 introdues the mainguidelines of our semanti approah with a simple appliation to the semantidesription of rewriting omputations and rewriting strategies. Setion 4 dis-usses the desription of narrowing as an evaluation mehanism and introduesapproximable mappings. Setion 5 formalizes the desription of narrowing om-putations and narrowing strategies by using approximable mappings. Setion 62



disusses how muh operational information an be obtained bak from our se-manti desriptions of narrowing and rewriting. Setion 7 disusses a semanti-based analysis framework for funtional logi languages. Setion 8 ontains ouronlusions.2 PreliminariesIn this setion, we give some preliminary de�nitions. For further details, werefer the reader to [DP90, GTWW77, Klo92, SLG94℄. Given sets A;B, BA (orA ! B) is the set of mappings from A to B and P(A) denotes the set of allsubsets of A. A preorder on a set A is a reexive and transitive relation on A.An order v on a set A is an anti-symmetri preorder on A. Given an orderedset (A;v), a hain is a (possibly in�nite) sequene a1; : : : ; an; : : : of elementsai 2 A, i � 1 suh that, for all i � 1, ai v ai+1. An element ? of an ordered set(A;v) is alled a least element (or a minimum) if ? v a for all a 2 A. If suhan element exists, then (A;v;?) is alled a pointed ordered set. Given S � A,an element a 2 A is an upper bound of S if x v a for all x 2 S. In this ase wealso say that S is a onsistent set. An upper bound of S is a least upper bound(or lub, written FS) if, for all upper bounds b of S, we have FS v b. A setS � A is downward (upward) losed if whenever a 2 S and b v a (a v b), wehave that b 2 S. If S = fx; yg, we write x t y instead of FS. A non-empty setS � A is direted if, for all a; b 2 S, there is an upper bound  2 S of fa; bg.An ideal is a downward losed, direted set and Id(A) is the set of ideals of anordered set A. For eah a 2 A, the set a# = fb 2 A j b v ag is an ideal: theprinipal ideal generated by a. A pointed ordered set (A;v;?) is a ompletepartial order (po) if every direted set S � A has a lub FS 2 A. An elementa 2 A of a po is alled ompat (or �nite) if, whenever S � A is a direted setand a v FS, then there is x 2 S suh that a v x. The set of ompat elementsof a po A is denoted as K(A). A po A is algebrai if for eah a 2 A, the setapprox(a) = fx 2 K(A) j x v ag is direted and a = F approx(a). An algebraipo D is a domain if, whenever the set fx; yg � K(D) is onsistent, then x t yexists in D.Given sets A;B;C;D suh that B � C, mappings f : A ! B and g :C ! D are omposed as usual to yield a mapping g Æ f : A ! D. Givenordered sets (A;vA), (B;vB), a mapping f : A! B is monotone if 8a; b 2 A,a vA b ) f(a) vB f(b); f : A ! A is idempotent if 8a 2 A; f(f(a)) = f(a);it is dereasing if 8a 2 A; f(a) vA a. If (A;vA), (B;vB) are po's, we saythat f : A ! B is ontinuous if, for all direted set S, f(FS) = F f(S); theset of ontinuous (strit) mappings from A to B is denoted by [A ! B℄ (resp.[A!? B℄).By V we denote a ountable set of variables; � denotes a signature, i.e., aset of funtion symbols ff; g; : : :g, eah with a �xed arity given by a funtionar : � ! IN. We assume � \ V = ?. We denote by T (�; V ) the set of (�nite)terms built from symbols in the signature � and variables in V . A k-tuplet1; : : : ; tk of terms is denoted as t, where k will be lari�ed from the ontext.3



Given a term t, Var(t) is the set of variable symbols in t. Sometimes, we onsidera fresh onstant ? and �? = � [ f?g. Terms from T (�?; V ) are ordered bythe usual approximation ordering whih is the least ordering v satisfying ? v tfor all t and f(t) v f(s) if t v s, i.e., ti v si for all 1 � i � ar(f).Terms are viewed as labeled trees in the usual way. Positions p; q; : : : arerepresented by hains of positive natural numbers used to address subterms oft. By �, we denote the empty hain. The set of positions of a term t is denotedby Pos(t). A linear term is a term having no multiple ourrenes of the samevariable. The subterm of t at position p is denoted by tjp. The set of positions ofnon-variable symbols in t is Pos�(t), and PosV (t) is the set of variable positions.We denote by t[s℄p the term t with the subterm at the position p replaed by s.A substitution is a mapping � : V ! T (�; V ) whih homomorphially ex-tends to a mapping � : T (�; V ) ! T (�; V ). We denote by " the \identity"substitution: "(x) = x for all x 2 V . The set Dom(�) = fx 2 V j �(x) 6= xgis alled the domain of � and Rng(�) = [x2Dom(�)Var(�(x)) its range. �jUdenotes the restrition of a substitution � to a subset of variables U � V . Asubstitution � is idempotent if (and only if) Dom(�) \ Rng(�) = ?. We write� � �0 if there is � suh that �0 = � Æ �. A uni�er of two terms t1; t2 is asubstitution � with �(t1) = �(t2). A most general uni�er (mgu) of t1; t2 is auni�er � with � � �0 for all other uni�ers �0 of t1; t2.A rewrite rule (labeled �) is an ordered pair (l; r), written � : l ! r (orjust l ! r), with l; r 2 T (�; V ), l 62 V and Var(r) � Var(l). l and r arealled left-hand side (lhs) and right-hand side (rhs) of the rule, respetively. Aterm rewriting system (TRS) is a pair R = (�; R) where R is a set of rewriterules. A TRS (�; R) is left-linear, if for all l ! r 2 R, l is a linear term.Given R = (�; R), we onsider � as the disjoint union � = C ℄ F of symbols 2 C, alled onstrutors and symbols f 2 F , alled de�ned funtions, whereF = ff j f(l) ! r 2 Rg and C = �� F . A onstrutor-based TRS (CB-TRS)is a TRS with l1; : : : ; ln 2 T (C; V ) for all rules f(l1; : : : ; ln)! r.For a given TRS R = (�; R), a term t rewrites to a term s (at positionp), written t [p;�℄! R s (or just t p!R s, t !R s, or t ! s) if tjp = �(l) ands = t[�(r)℄p , for some rule � : l ! r 2 R, position p 2 Pos(t) and substitution�. A term t is in normal form if there is no term s with t!R s. A TRS R (orthe rewrite relation!R) is alled onuent if for all terms t; t1; t2 with t!�R t1and t !�R t2, there exists a term t3 with t1 !�R t3 and t2 !�R t3. A term tnarrows to a term s, written t ;[p;�;�℄ s (or just t ;� s), if p 2 Pos�(t) andthere is a substitution1 � : Var(t) ! T (�; V � Var(t)) suh that �(t) [p;�℄! R s.A narrowing derivation t ;�� s is suh that either t = s and � = "jVar(t) ort ;�0 t1 ;�1 � � � tn�1 ;�n�1 s and � = (�n�1 Æ � � � Æ �1 Æ �0)jVar(t) (i.e.,we onsider only the substitution of goal variables). As usual, we onsiderdi�erent new variables in eah elementary narrowing step (i.e., the rules arealways `renamed appart').1This substitution is usually a uni�er for tjp and the left-hand side of the applied rulerestrited to the variables in t. Note that we do not impose the use of most general uni�ersfor de�ning the narrowing steps. 4



3 The semanti approahFollowing [Red85℄, a funtional logi program is funtional in syntax and logiin semantis. A (�rst-order) program P = (R; t) onsists of a TRS R (whihestablishes the distintion between onstrutor and de�ned symbols of the pro-gram), and an initial expression t to be fully evaluated. We make t expliitsine the di�erenes between the purely funtional and funtional logi stylesarise in the di�erent status of the variables ourring in the initial expression:in funtional programming, those variables are not allowed (or they are onsid-ered as onstants and annot be instantiated). Funtional logi languages dealwith expressions having logi variables and narrowing provides for the neessaryinstantiations.We take the following perspetive: from the programmer's point of view, theobserved semantis of the program atually depends on the urrent operationalframework. In this setting, the notion of evaluation, rather than that of inter-pretation, beomes prinipal. Sine only onstrutors are ompletely free fromeither rewriting or narrowing omputations, we assume that only onstrutorsymbols express ompletely de�ned information. Alternatively, one ould saythat only onstrutor symbols are de�nitively observable during a omputation.We haraterize the information whih is urrently ouhed by a term s(whih is supposed to be in an intermediate stage towards the full evaluationof the initial expression t) by means of a monotone, idempotent and dereasingmapping (j j) from syntati objets to values (remind that values are expetedto be espeial syntati objets). We all (j j) an observation mapping. Mono-toniity of (j j) ensures that re�nements (w.r.t. v) of the syntati informationorrespond to re�nements of the observed semanti information. Idempotenyensures that eah observation is de�nitive. Dereasingness ensures that thesemanti information is part of the syntati information2. The adequay of agiven mapping (j j) for observing omputations performed by a given operationalmehanism should be ensured by showing that (j j) is a homomorphism betweenthe relation among syntati objets indued by the operational mehanismand the approximation ordering on values. This means that the operationalmehanism re�nes the meaning of an expression as the omputation ontinues.3.1 Rewriting as an evaluation mehanismThe syntati objets are terms t 2 T (�?; V ) and the values are taken from(T 1(C?);v;?), the domain of in�nite, ground onstrutor (partial) terms. For-mally, (T 1(C?);v;?) is obtained from T (C?), whih is not even a po, as (iso-morphi to) its ideal ompletion (Id (T (C?));�; f?g) (see [DP90, SLG94℄). Ingeneral, given a poset P , the mapping [ � ℄ : P ! Id(P ) that assoiates the prin-ipal ideal p# to eah p 2 P is an embedding of P into the po Id(P ), i.e., for allp; q 2 P , p v q if and only if [p℄ � [q℄. Sine [ � ℄ is injetive, we an understandId(P ) as a ompletion of P whih atually `inludes' P . (T 1(C?; V );v;?) is2Stritness of (j j) is a onsequene of dereasingness.5



the domain (T 1(C? [ V );v;?), where ar(x) = 0 for all x 2 V .For funtional omputations, we use (j j)F : T (�?; V )! T (C?; V ) given by(jxj)F = x (j?j)F = ?(j(t)j)F = ((jtj)F ) if  2 C (jf(t)j)F = ? if f 2 FClearly, (j j)F is an observation mapping. The adequay of this mapping forobserving rewriting omputations is stated in the following proposition whihestablishes that rewriting inreases the urrent information of terms as given by(j j)F .Proposition 3.1 (Redution inreases information) Let R be a TRS andt; s 2 T (�?; V ). If t!� s, then (jtj)F v (jsj)F .Proof. By indution on the length n of the derivation t !� s. The asen = 0 is immediate. Otherwise, let t ! t0 !� s. To prove that t ! t0 implies(jtj)F v (jt0j)F , we proeed by indution on the length of the redex positionp 2 Pos(t) of the �rst rewrite step. If p = �, then t = �(l) = f(t) for some rulel ! r and de�ned symbol f 2 F (beause l = f(l)). Hene, (jtj)F = ? v (jt0j)F .If p 6= �, we have p = i � p0. Then, t = f(t), ti ! t0i, and tj = t0j for all1 � j � ar(f), i 6= j. If f 2 F , then (jtj)F = ? v (jt0j)F . If f 2 C, then(jtj)F = ((jtj)F ) and, sine t v t0, t0 = (t0). Therefore, by I.H., (jtij)F v (jt0ij)Fand (jtj j)F = (jt0j j)F for all 1 � j � ar(f), i 6= j. Hene, by de�nition of v,(jtj)F v (jt0j)F . By (the �rst) I.H., (jt0j)F v (jsj)F . Thus, the onlusion follows.2The funtion Rew : T (�?; V )! P(T (C?; V )) provides a representationRew(t) =f(jsj)F j t!� sg of the rewriting spae of a given term t.Proposition 3.2 Let R be a onuent TRS. For all t 2 T (�?; V ), (Rew(t);v)is a direted set.Proof. Note that Rew(t) 6= ? beause (jtj)F 2 Rew(t). If (jt0j)F ; (jt00j)F 2Rew(t), then t !� t0 and t !� t00. By onuene, there exists a term s suhthat t0 !� s and t00 !� s. Hene, t !� s, and (jsj)F 2 Rew(t). By Proposition3.1, (jt0j)F v (jsj)F and (jt00j)F v (jsj)F , i.e., Rew(t) is direted. 2The semanti funtionCRew1 : T (�?; V )! T 1(C?; V )gives the meaning of a term under evaluation by rewriting (for onuent TRSs):CRew1(t) =GRew(t)or even CRew1(t) = Rew(t)#6



in an equivalent expression whih takes advantage of the orrespondene be-tween `in�nite terms' and ideals of �nite terms (note that Rew(t)# is an ideal).Thus, CRew1(t) is the most de�ned (possibly in�nite) value whih an be ob-tained (or approximated) by issuing rewritings from t. Note that we follow theonvention of pursuing the total evaluation (in�nite normalization) of the termand that CRew1 is well de�ned for onuent TRS's; otherwise, we annot en-sure that Rew(t) is a direted set and the lub may not exist. We also note thatthe use of in�nite terms in the odomain of CRew1 is neessary for dealingwith non-terminating programs.3.2 Rewriting strategiesFor a rewriting strategy F (i.e., a mapping from terms to terms satisfying F(t) =t whenever t is a normal form and t ! F(t) otherwise [Klo92℄), we de�neRewF(t) = f(jFn (t)j)F j n � 0g.Proposition 3.3 Let R be a TRS and F be a rewriting strategy for R. For allt 2 T (�?; V ), RewF(t) is a hain.3Proof. Immediate by Proposition 3.1. 2Thus, we de�ne CRew1F : T (�?; V )! T 1(C?; V )by CRew1F (t) =GRewF(t)Clearly, for all strategies F, CRew1F v CRew1 (i.e., CRew1F (t) v CRew1(t)8t). Thus, CRew1 provides a semanti referene for rewriting strategies. Strate-gies that satisfy CRew1F = CRew1 an be thought of as orret strategies.They orrespond to in�nitary normalizing strategies|if we restrit our atten-tion to omputing (in�nite) values rather than arbitrary (in�nite) normal forms.It is possible to provide an e�etive notion of in�nitary normalizing strategy byusing Middeldorp's theory of root-needed omputations [Mid97℄ and their de-idable approximations [Lu98℄.Remark 3.4 We obtain a ground semantis for the de�ned symbols f 2 F asfollows: f(Æ) = CRew1(f(Æ)) for all Æ 2 T (C?)ar(f). Similarly, it is possibleto desribe a ground semantis under a given strategy F by using CRew1F .4 Narrowing as an evaluation mehanismThrough its omputed value CRew1(t), a ground term t denotes a value [[t℄℄Din some domain D by just giving an interpretation for eah onstrutor symbol as a ontinuous funtion D 2 [Dar() ! D℄: [[t℄℄D = [[CRew1(t)℄℄D. However,3Formally, RewF(t) is de�ned as a set but for the purpose of this proposition we identifyit with a sequene. 7



our main interest are terms with variables. In this ase, the most reasonablehoie is to interpret a term as denoting a funtion. This de�nition is the naturalone: a term with variables t denotes a ontinuous funtion tD 2 [DVar(t) ! D℄whih yields the value of t under eah possible valuation � 2 DVar(t) of itsvariables on a domain D. This is alled a non-ground value (ngv) in [Red85℄and a derived operator in [GTW78, GTWW77℄. It is also essentially the sameas in other algebrai approahes to semantis of TRS's and reursive programshemes suh as [Bou85, Cou90, Gue81, Niv75℄.Given domains D and E, the set [D ! E℄ ([D !? E℄) of (strit) ontinuousfuntions from D to E (pointwise) ordered by f v g i� 8x 2 D; f(x) v g(x),is a domain [Gun92, SLG94℄. Given a set W � V of variables, for proving that[DW ! D℄ is a domain whenever D is, we note thatW? =W ℄f?g supplied bythe least ordering v suh that ? v x and x v x for all x 2 W is a domain (theat domain of assoiated to the set W ). The set DW of arbitrary valuationsfrom W to D is isomorphi to the domain [W? !? D℄ of ontinuous, stritmappings fromW? to D. Thus, we an view DW as this domain. In partiular,if we take T 1(C?) as the domain D of values, then T 1(C?)W is a domainwhose least element is the mapping �x 2W:? (denoted ?WValuat ). By abuse, wesay that the domain of a valuation � 2 DW isDom(�) = fx 2 W j �(x) 6= ?g :Therefore, if D is a domain, [DV ! D℄ also is and, in partiular, [T 1(C?)V !T 1(C?)℄ is a domain. We write ?Valuat instead of ?VValuat . Given a term t,[T 1(C?)Var(t) ! T 1(C?)℄ is also a domain whose least element is denoted?Var(t)Valuat .4.1 Observation of narrowing omputationsOur syntati objets, now, are substitution/term pairs h�; ti: Given a termt 2 T (�?; V ) a narrowing derivationt = t0 ;�0 t1 ;�1 � � � ;�n�2 tn�1 ;�n�1 tn = sis represented ash�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniwhere �0 = "jVar(t) and �i+1 = (�i Æ �i)jVar(t) for 0 � i < n. We also eventuallywrite h"jVar(t); ti;� h�; si instead, where � = �n.Note that, sine we restrit our attention to instantiations of variables inVar(t), we have that �i : Var(t) ! T (�; V ) and Dom(�i) � Var(t) for i � 0.Moreover, Dom(�i) � Dom(�j ) and �i � �j whenever i � j.Remark 4.1 Sine we use idempotent substitutions for performing the elemen-tary narrowing steps, we have that Dom(�i) \ Rng(�i) = ? for i � 0.8



In order to observe the narrowing omputations, we ould na��vely extend (j j)Fto deal with substitution/term pairs: (jh�; sij)F = h(j�j)F ; (jsj)F i where (j�j)Fis a substitution given by (j�j)F (x) = (j�(x)j)F for all x 2 V . Unfortunately,the semanti progress of a narrowing evaluation might not be aptured by theomputational ordering v (extended to pairs by (&; Æ) v (& 0; Æ0) i� 8x 2 V:&(x) v& 0(x) and Æ v Æ0) and suh an extension of (j j)F .Example 4.2 Consider the TRS:0+x ! x 0 � x ! trues(x)+y ! s(x+y) s(x) � s(y) ! x � yand the narrowing step h"; [x,x+y℄i; hfx 7!0g; [0,y℄i(where [�,�℄ denotes a 2-element list). We have(jh"; [x,x+y℄ij)F = h"; [x,?℄iand (jhfx 7!0g; [0,y℄ij)F = hfx 7!0g; [0,y℄i:Therefore, we do not get the desired inreasing omputation, beause " 6v fx 7!0gand [x,?℄ 6v [0,y℄.The problem is that narrowing introdues a new omputational mehanism forinreasing the information assoiated to a given term, i.e., instantiation of logivariables. Thus, we introdue the observation mapping (j j)FL : T (�?; V ) !T (C?) whih interprets uninstantiated variables as least de�ned elements:(jxj)FL = ? (j?j)FL = ?(j(t)j)FL = ((jtj)FL) if  2 C (jf(t)j)FL = ? if f 2 FNote that (jtj)FL = ?Valuat((jtj)F ) and (j�j)FL = ?Valuat Æ (j�j)F .Example 4.3 (Continuing Example 4.2) Now,(jh"; [x,x+y℄ij)FL = h?Valuat ; [?,?℄iv hfx 7!0g; [0,?℄i= (jhfx 7!0g; [0,y℄ij)FLi.e., in this ase, (j j)FL satis�es the desired property.After introduing some results, we prove that narrowing omputations are om-patible with the new observation mapping.Lemma 4.4 Let t; s 2 T (�?; V ). If (jtj)F v (jsj)F , then (jtj)FL v (jsj)FL.Proof. Sine (jtj)FL = ?Valuat((jtj)F ) and (jsj)FL = ?Valuat((jsj)F ), the on-lusion follows by monotoniity of ?Valuat . 29



Lemma 4.5 Let t be a �nite term and � be a substitution. Then (jtj)FL v(j�(t)j)FL.Proof. By strutural indution. If t is a variable, then (jtj)FL = ? v (j�(t)j)FL.If t is a onstant, t = �(t) and the onlusion follows. Let t = f(t). If f 2 F ,then (jtj)FL = ? and the onlusion follows. If f =  2 C, then �((t)) = (�(t)).By I.H., (jtij)FL v (j�(ti)j)FL for all i, 1 � i � ar(). Therefore, by de�nition ofv, (j(t)j)FL = ((jtj)FL) v ((j�(t)j)FL) = (j(�(t))j)FL = (j�((t))j)FL. 2Lemma 4.6 Let �; �0 be substitutions. If � � �0, then (j�j)FL v (j�0j)FL.Proof. If � � �0, there is � suh that �0 = � Æ�. Thus, for all x 2 V , �0(x) =�(�(x)). By Lemma 4.5, for all terms t, (j�(t)j)FL v (j�(�(t))j)FL = (j�0(t)j)FL,i.e., (j�j)FL v (j�0j)FL. 2The following proposition establishes that narrowing inreases the urrent in-formation of substitution/term pairs as given by (j j)FL.Proposition 4.7 Let R be a TRS. If h�; ti ;� h�0; t0i, then (jh�; tij)FL v(jh�0; t0ij)FL.Proof. We proeed by indution on the length n of the narrowing derivation.If n = 0, it is immediate. If n > 0, let h�; ti ; h� Æ �; si ;� h�0; t0i where� is the substitution used for issuing the narrowing step. By the indutionhypothesis, (jh� Æ �; sij)FL v (jh�0; t0ij)FL, i.e., (j� Æ �j)FL v (j�0j)FL and (jsj)FL v(jt0j)FL. Sine � � � Æ�, by Lemma 4.6, we have that (j�j)FL v (j� Æ �j)FL; hene(j�j)FL v (j�0j)FL. To prove that (jtj)FL v (jsj)FL, we note that, by Lemma 4.5,(jtj)FL v (j�(t)j)FL. Now, sine �(t) ! s, by Proposition 3.1 and Lemma 4.4,(j�(t)j)FL v (jsj)FL. 24.2 Approximable mappingsIn the following, we are onerned with the representation of funtional val-ues. In this setting, we use the orresponding standard Sott's onstrution ofapproximable mappings [So81, SLG94℄.A preusl is a struture P = (P;v;t;?) where v is a preorder, ? is adistinguished minimal element, and t is a partial binary operation on P suhthat, for all p; q 2 P , p t q is de�ned if and only if fp; qg is onsistent in P andthen p t q is a (distinguished) lub of p and q [SLG94℄. Approximable mappingsallow us to represent arbitrary ontinuous mappings between domains on therepresentations of those domains (their ompat elements) as relations betweenapproximations of a given argument and approximations of its value at thatargument [SLG94℄.De�nition 4.8 [SLG94℄ Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be preusl's.A relation f � P � P 0 is an approximable mapping from P to P 0 if1. ? f ?0. 10



2. p f p0 and p f q0 imply p f (p0 t q0).3. p f p0, p v q, and q0 v0 p0 imply q f q0.The ideal ompletion (Id(P );�; f?g) of a preusl P is a domain (see [SLG94℄).If P = (P;v;t;?) is a usl4 (i.e., v is atually an ordering), then the mapping[ � ℄ : P ! Id(P ) that assoiates the prinipal ideal fpg# to eah p 2 P isinjetive.An approximable mapping f de�nes a ontinuous funtion f : Id(P ) !Id(P 0) given by [SLG94℄f(I) = fp0 2 P 0 j 9p 2 I:p f p0g= Sp2Ifp0 2 P 0 j p f p0gNote that, for all p 2 I , fp0 2 P 0 j p f p0g is an ideal (it is not empty beausewe always have ? f ?0, and thus p f ?0 by following the third ondition ofDe�nition 4.8; it is direted due to the seond ondition of De�nition 4.8; �nally,it is downward losed beause of, whenever we have p f p0 and q0 v0 p0, we alsohave p f q0, third ondition again).Proposition 4.9 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be preusl's, andf; f 0 � P �P 0 be approximable mappings from P to P 0. If f � f 0, then f v f 0.Proof. Immediate. 2In the following, we are mainly involved with elements of Id(P ) whih orre-spond to elements p 2 P via [ � ℄: in our ontext, P is either T (C?) or T (C?)Vand elements in P orrespond to �nite objets (�nite values, or valuations map-ping variables to �nite values, respetively) of Id(P ). Thus, we an roughlyonsider elements of P as the �nite or ompat elements of Id(P ) (via [ � ℄).Proposition 4.10 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be preusl's, andf � P � P 0 be an approximable mapping from P to P 0. If p 2 P , then f([p℄) =fp0 2 P 0 j p f p0g.Proof. We note that Sq2[p℄fp0 2 P 0 j q f p0g � fp0 2 P 0 j p f p0g: indeed,sine for all q 2 [p℄, we have that q v p, and by using De�nition 4.8 (thirdpoint), whenever q f p0, we also have p f p0. Thus, sine it is obvious thatfp0 2 P 0 j p f p0g � Sq2[p℄fp0 2 P 0 j q f p0g, we writef([p℄) = Sq2[p℄fp0 2 P 0 j q f p0g= fp0 2 P 0 j p f p0g 24onditional upper semilattie with least element, abbreviated usl [SLG94℄.11



Proposition 4.11 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be preusl's, p 2P and f � P � P 0 be an approximable mapping from P to P 0. If [p0℄ = f([p℄)for some p0 2 P 0, then for all q 2 [p℄, whenever q f q0 for some q0 2 P 0, we havethat q0 v0 p0.Proof. Immediate. 2The following proposition establishes that, if f sets a onnetion between �niteelements of domains Id(P ) and Id(P 0), then f itself already onnets thoseelements.Proposition 4.12 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be preusl's, p 2P and f � P � P 0 be an approximable mapping from P to P 0. If [p0℄ = f([p℄)for some p0 2 P 0, then p f p0.Proof. By de�nition of f , [p0℄ = fq0 2 P 0 j 9q 2 [p℄:q f q0g. In partiular,sine p0 2 [p0℄, there must be q 2 [p℄ suh that q f p0. Sine q v p, by De�nition4.8 (third ondition), the onlusion follows. 2Proposition 4.13 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be preusl's andI be a set of indies. Let f� � P � P 0 be approximable mappings for all � 2 I.If f = [�2If� is an approximable mapping, then f = F�2I f�.Proof. For all I 2 Id(P ), we have:(F�2I f�)(I) = S�2I f�(I)= S�2Ifp0 2 P 0 j 9p 2 I: p f� p0g= fp0 2 P 0 j 9p 2 P: p f p0g= f(I) 2Proposition 4.14 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be preusl's andI be a set of indies. Let f� � P � P 0 be approximable mappings for all � 2 Isuh that ff� j � 2 Ig is bounded. Let f = F�2I f� and p 2 P . If [p0℄ = f([p℄)for some p0 2 P 0, then there exists � 2 I suh that [p0℄ = f�([p℄).Proof. Note that f([p℄) = (F�2I f�)([p℄) = S�2I f�([p℄). Sine [p0℄ =S�2I f�([p℄), it follows that p0 2 S�2Ifq0 2 P 0 j 9q 2 [p℄:q f� q0g, i.e., thereexists � 2 I suh that p0 2 fq0 2 P 0 j 9q 2 [p℄:q f� q0g = f�([p℄). If q0 v p0,then, by De�nition 4.8, we have that, being q 2 [p℄ suh that q f� p0, we alsohave q f� q0. Thus, q0 2 f�([p℄), i.e., [p0℄ � f�([p℄). On the other hand, if[p0℄ 6� f�([p℄), it is not possible that [p0℄ = f([p℄). Hene, the onlusion follows.2
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5 The narrowing spae as an approximable map-pingAnalogously to the onstrution Rew(t), we an build a semanti desriptionNarr(t) of the narrowing evaluation of t. Nevertheless, sineNarr(t) is intendedto be a representation of a ngv, i.e., a funtional value, we are going to use theapproximable mappings introdued in the previous setion.It is easy to see that (T (C?);v;t;?), where v is the usual approximationordering, is a preusl (in fat a usl). Similarly, given a set W � V of variables,(T (C?)W ;v;t;?WValuat), wherev is the pointwise extension of the orderingv onT (C?) to valuations � 2 T (C?)W , is also a usl. Given a term t, NDeriv(t) is theset of narrowing derivations issued from t. We assoiate a relation NarrA(t) �T (C?)Var(t) � T (C?) to a given narrowing derivation A 2 NDeriv(t).De�nition 5.1 Given a term t 2 T (�?; V ) and a narrowing derivationA : h"jVar(t); ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniwe de�ne NarrA(t) = [0�i�nNarrAi (t) where:NarrAi (t) = fh&; Æi 2 T (C?)Var(t) � T (C?) j9� 2 T (C?)V :(j� Æ �ij)FL v & ^ Æ v (j�(ti)j)FLgwhere we assume that Dom(�) \ Dom(�i) = ? for 0 � i � n.Notie that symbol v in De�nition 5.1 is overloaded sine it is used to ompare(partial) values in T (C?) and valuations (in T (C?)Var(t)) of variables in Var(t).Remark 5.2 Note that, under our assumptions for the narrowing of terms (seeRemark 4.1) ondition Dom(�)\Dom(�i) = ? of De�nition 5.1 is a natural oneand does not atually restrit anything: sine �i is idempotent and �i(ti) = ti,variables in Dom(�i) are not useful for either instantiating ti or variables inRng(�i).Example 5.3 Consider the TRS R in Example 4.2 and term t = x+y. For thenarrowing derivations:A1 : hfx 7! x; y 7! yg; x+yi ; hfx 7! 0; y 7! y'g; y'iand A2 : hfx 7! x; y 7! yg; x+yi ; hfx 7! s(x'); y 7! y'g; s(x'+y')i; hfx 7! s(0); y 7! y''g; s(y'')iwe show (part of) their semanti desriptions NarrA1 and NarrA2:NarrA10 (t) = fh&;?i j & 2 T 1(C?)fx;yggNarrA11 (t) = fhfx 7! 0; y 7! ?g;?i;hfx 7! 0; y 7! 0g;?i; hfx 7! 0; y 7! 0g; 0i;hfx 7! 0; y 7! s(?)g;?i; hfx 7! 0; y 7! s(?)g; s(?)i;: : :g 13



NarrA20 (t) = fh&;?i j & 2 T 1(C?)fx;yggNarrA21 (t) = fhfx 7! s(?); y 7! ?g;?i; hfx 7! s(?); y 7! ?g; s(?)i;hfx 7! s(0); y 7! ?g;?i; hfx 7! s(0); y 7! ?g; s(?)i;hfx 7! s(?); y 7! 0g;?i; hfx 7! s(?); y 7! 0g; s(?)i;hfx 7! s(0); y 7! 0g;?i; hfx 7! s(0); y 7! 0g; s(?)i;: : :gNarrA22 (t) = fhfx 7! s(0); y 7! ?g;?i; hfx 7! s(0); y 7! ?g; s(?)i;hfx 7! s(0); y 7! 0g;?i; hfx 7! s(0); y 7! 0g; s(?)i;hfx 7! s(0); y 7! 0g; s(0)i;hfx 7! s(0); y 7! s(?)g;?i; hfx 7! s(0); y 7! s(?)g; s(?)i;hfx 7! s(0); y 7! s(?)g; s(s(?))i;hfx 7! s(0); y 7! s(0)g;?i; hfx 7! s(0); y 7! s(0)g; s(?)i;hfx 7! s(0); y 7! s(0)g; s(s(?))i;hfx 7! s(0); y 7! s(0)g; s(s(0))i; : : :gWe an prove that NarrA(t) is an approximable mapping for every narrowingderivation A 2 NDeriv (t). In order to ahieve this, we need some lemmata.Lemma 5.4 Let � 2 T (C?)V and � be a substitution. Then, (j� Æ �j)FL =� Æ (j�j)F .Proof. (j� Æ �j)FL = ?Valuat Æ (j� Æ �j)F = ?Valuat Æ (j�j)F Æ (j�j)F = ?Valuat Æ� Æ (j�j)F = � Æ (j�j)F . 2Lemma 5.5 Let t 2 T (�?; V ). If � 2 T (C?)V , then (j�(t)j)FL = �((jtj)F ).Proof. By using Lemma 5.4, we have (j�(t)j)FL = (j�j)FL(t) = (j� Æ "j)FL(t) =� Æ (j"j)F (t) = �((jtj)F ). 2Proposition 5.6 Let �; �0; & 2 T (C?)V and � be a substitution suh that Dom(�)\Dom(�) = ?. If f� Æ �; �0 Æ �g is bounded by &, then f�; �0g is bounded and(� t �0) Æ � v &.Proof. First we prove that f�; �0g is bounded, i.e., that for all x 2 V ,f�(x); �0(x)g is bounded. For eah x 2 V , we onsider two ases:1. x 62 Dom(�), i.e., �(x) = x: By hypothesis, we have �(�(x)) = �(x) v&(x) and �0(�(x)) = �0(x) v &(x).2. x 2 Dom(�): Then, by hypothesis, x 62 Dom(�), i.e., �(x) = ?. Thus,�(x) v �0(x).Thus, sine T (C?)V is a usl, � t �0 does exist. Now we have (� t �0) Æ � =(� Æ �) t (�0 Æ �) v & . 2Example 5.7 Without imposing that Dom(�) \ Dom(�) = ?, Proposition 5.6ould be false. For instane, let �(x) = a, &(x) = a, �(x) = a, and �0(x) = b fora given variable x and arbitrary onstants a and b. Then, �(�(x)) = �0(�(x)) =&(x) = a, i.e., f� Æ �; �0 Æ �g is bounded by &, but f�(x); �0(x)g = fa; bg is notbounded. 14



Lemma 5.8 Let t be a �nite term and �; �0 be substitutions suh that � v �0.Then, (j�(t)j)FL v (j�0(t)j)FL.Proof. Sine � v �0, �(t) v �0(t) for all terms t. The onlusion follows bymonotoniity of (j j)FL. 2Proposition 5.9 Let R be a TRS, t be a term, and A be a narrowing derivationstarting from t. Then, NarrA(t) is an approximable mapping.Proof. LetA : h"jVar(t); ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniWe abbreviate NarrA(t) by m. Then, we hek the onditions of De�nition 4.8.We silently use Lemma 5.4 to simplify the expressions.1. Note that, for all derivations A starting from t,NarrA0 (t) = fh&; Æi j 9� 2 T (C?)V :(j� Æ "jVar(t)j)FL v &^Æ v (j�(t)j)FLg � m:We have that (j� Æ "jVar(t)j)FL = �Æ(j"jVar(t)j)F = �Æ"jVar(t) = �jVar(t). Inpartiular, by hoosing � = ?Valuat , & = ?Var(t)Valuat (note thatDom(?Valuat ) =?), and Æ = ?, we obtain �jVar(t) = (?Valuat)jVar(t) v ?Var(t)Valuat , andÆ = ? v (j?Valuat (t)j)FL, i.e., ?Var(t)Valuat m ?.2. Let & m Æ and & m Æ0. By de�nition of m, there are �i; �j 2 T (C?)V suhthat �i Æ (j�ij)F v & and �j Æ (j�j j)F v & for some 0 � i < j � n. Sinei < j, there exists an idempotent substitution � : Var(ti)! T (�; V ) suhthat �j = �Æ�i (here the assumption about the usual variable renaming ofrules of the TRS when applying narrowing steps is important, see [Pal90℄).Therefore, we have that �i Æ(j�ij)F v & and �j Æ(j�j j)F = �j Æ(j� Æ �ij)F v & .Let us show that �i Æ (j�j j)F v & . Let x 2 Var(t) be suh that x 62Dom((j�j j)F ). Sine Dom((j�i j)F ) � Dom((j�j j)F ), it follows that x 62Dom((j�i j)F ); thus, �i((j�j(x)j)F ) = �i(x) = �i((j�i(x)j)F ) v &(x). Ifx 2 Dom((j�j j)F ), then, by using the fat that �j = � Æ �i, we distinguishtwo ases:(a) If Var((j�i(x)j)F ) \ Dom(�) = ?, then (j�i(x)j)F = (j�j(x)j)F ; hene,�i((j�j(x)j)F ) v &(x).(b) If Var((j�i(x)j)F ) \ Dom(�) 6= ?, then (j�j(x)j)F = �((j�i(x)j)F ) anontain variables whih are already present in (j�i(x)j)F (i.e., variablesy with y 62 Dom(�)) for whih ondition �i Æ (j�ij)F v & ensures thedesired result. For the other variables, we an assume, w.l.o.g., that�i does not essentially modify anything (i.e., we an assume thatRng(�) \ Dom(�i) = ?). Hene, the ondition ?Valuat Æ (j�j j)F v &(an easy onsequene of �j Æ (j�j j)F v &) ensures the desired result.15



Thus, sine �i Æ (j�j j)F v & and �j Æ (j�j j)F v & , by Proposition 5.6 (notethat Dom((j�j j)F ) \ Dom(�j) = ?), f�i; �jg is bounded by � = �i t �jand � Æ (j�j j)F v & . By de�nition of m, we also have Æ v (j�i(ti)j)FL andÆ0 v (j�j(tj)j)FL. By Proposition 4.7, (jtij)FL v (jtj j)FL. By using the fatthat both �i Æ (j�ij)F and �i Æ (j�j j)F are bounded by & , we onlude that(j�i(ti)j)FL v (j�i(tj)j)FL. By Lemma 5.8, we obtainÆ v (j�i(ti)j)FL v (j�i(tj)j)FL v (j�(tj)j)FLBy Lemma 5.8 again, Æ0 v (j�j(tj)j)FL v (j�(tj )j)FLThus, fÆ; Æ0g is bounded, and Æ t Æ0 v (j�(tj )j)FL. Sine � Æ (j�j j)F v & , byde�nition of m, we have & m (Æ t Æ0).3. Let & m Æ, & v & 0, and Æ0 v Æ. Thus, there is � 2 T (C?)V and �i, 0 � i � nsuh that � Æ (j�ij)F v & and Æ v (j�(ti)j)FL. Sine � Æ (j�ij)F v & v & 0 andÆ0 v Æ v (j�(ti)j)FL, & 0 m Æ0 holds by de�nition of m. 2De�nition 5.10 Given a term t 2 T (�?; V ), we de�ne the relation Narr(t) �T (C?)Var(t) � T (C?) to be Narr(t) = SA2NDeriv(t)NarrA(t).Unfortunately, these semanti de�nitions are not onsistent w.r.t. rewriting.Example 5.11 Consider the TRS:f(f(x)) ! a ! band A : h"jfxg; ti = hfx 7! xg; f(x)i ; hfx 7! f(x')g; ai. If m = NarrA(t),then fx 7! ag m a (we take � = ?Valuat , � = fx 7! f(x')g in De�nition 5.1;hene, (j� Æ �j)FL = ?Var(t)Valuat v fx 7! ag = &). Thus, NarrA(t)(fx 7! ag) = a.However, fx 7! ag(t) = f(a) 6!� a.The problem here is that (j j)FL identi�es (as ?) parts of the bindings �(x)of a omputed substitution � whih an be semantially re�ned by instanti-ation (of the variables in �(x)) and other whih annot be further re�ned byinstantiation (the operation-rooted subterms in �(x)). If we deal with left-linearCB-TRS's and hoose (idempotent) mgu's as uni�ers for the narrowing proess,the substitutions whih we deal with are linear onstrutor substitutions, i.e.,for all narrowing derivations h"jVar(t); ti;� h�; si and all x 2 Var(t), �(x) is aonstrutor term and ff�(x) j x 2 Dom(�)gg is a linear multiset of terms (i.e.,no variable appears twie within them). Hene, the substitutions omputed bynarrowing have no partial information apart from the variable ourrenes. Inthis ase, (j�j)F = �, (j�j)FL = ?Valuat Æ (j�j)F = ?Valuat Æ �, and we have thefollowing result. 16



Proposition 5.12 Let � be a linear onstrutor substitution and �; & 2 T (C?)Vbe suh that Dom(&)\Rng(�) = ?. If � Æ� v &, then there exists �0 2 T (C?)Vsuh that � v �0 and �0 Æ � = &.Proof. Let x 2 V . Sine �Æ� v & , we have that �(�(x)) v &(x). We onsidertwo ases:1. If �(x) 6= x (i.e., x 2 Dom(�)), then we distinguish, again, two ases:(a) If Var(�(x)) = ?, then, sine � is a onstrutor substitution, wehave that �(x) 2 T (C). Hene, �(�(x)) = �(x) v &(x) whih, infat, means that �(x) = &(x). Thus, for all �0 2 T (C?)V , �0(�(x)) =�(x) = &(x).(b) If Var(�(x)) 6= ?, then there exists a ontext C[ ℄ suh that �(�(x)) =C[�(y1); : : : ; �(yn)℄ v C[Æ1; : : : ; Æn℄ = &(x) where C[ ℄ is just �(x)where variable ourrenes have been replaed by 2; this is orretbeause � is a onstrutor substitution (and hene �(x) is a on-strutor term without ?'s) and � is linear (thus there are n di�erentvariables y1; : : : ; yn in Var(�(x)) whose bindings �(y1); : : : ; �(yn) anbe independently established). Thus, we let �0(yi) = Æi for 1 � i � n;we an safely do this beause of ondition Dom(&)\Rng(�) = ? en-sures that no further ollisions would arise between these assignmentsfor �0 and those given in ase 2 below.2. If �(x) = x (i.e., x 62 Dom(�)), then we an just let �0(x) = &(x). 2Note that linearity of � is neessary for ensuring this result.Example 5.13 Let � = fu 7! f(x,y); v 7! f(x,z)g, � = ?Valuat , and & =fu 7! f(?,?); v 7! f(,?)g. Clearly, � Æ � = fu 7! f(?,?); v 7! f(?,?)g v&. However, there is no �0 suh that �0 Æ � = & beause it would be neessarythat, simultaneously, �0(x) = ? and �0(x) = .Moreover, the ondition Dom(&) \ Rng(�) = ? is also neessary for ensuringthe result5.Example 5.14 Let � = fx 7! s(y); y 7! y; z 7! zg, � = ?Valuat , and & =fx 7! s(a); y 7! b; z 7! bg. Note that Dom(&) \ Rng(�) = fyg. Clearly,� Æ � = fx 7! s(?); y 7! ?; z 7! ?g v &. However, there is no �0 suh that�0 Æ � = & beause it would be neessary that, simultaneously, �0(y) = a and�0(y) = b.Thus, we obtain a simpler, more readable expression for the approximable map-ping whih is assoiated to a given left-linear, CB-TRS by noting thatNarrAi (t) = fh&; Æi j 9� 2 T (C?)V :(j� Æ �ij)FL v & ^ Æ v (j�(ti)j)FLg= fh&; Æi j 9� 2 T (C?)V :� Æ �i = & ^ Æ v (j�(ti)j)FLg5Example 5.14 was suggested by a referee.17



This is easily proved orret when onsidering the speial properties of (partial)omputed substitutions �i within a narrowing derivation, speially the fat thatthe hypotheses for applying Proposition 5.12 are easily ful�lled.The union of approximable mappings (onsidered as binary relations) neednot to be an approximable mapping. Nevertheless, we have the following result.Proposition 5.15 Let R be a left-linear, onuent CB-TRS and t be a term.Then, Narr(t) is an approximable mapping.Proof. We abbreviate Narr(t) by m. Then, we hek the onditions ofDe�nition 4.8. Again, we use Lemma 5.4 to simplify the expressions.1. Sine h"jVar(t); ti;� h"jVar(t); ti, we have that?Valuat Æ "jVar(t) = ?Var(t)Valuat v?Var(t)Valuat , and ? v (j?Var(t)Valuat (t)j)FL, i.e., ?Var(t)Valuat m ?.2. Let & m Æ and & m Æ0. By de�nition of m, there are narrowing derivationsh"jVar(t); ti;� h�1; s1i, h"jVar(t); ti;� h�2; s2i and �1; �2 2 T (C?)V suhthat �1 Æ (j�1j)F v & and �2 Æ (j�2j)F v & . By Proposition 5.12, thereexist �1; �2 2 T (C?)V suh that �1 v �1, �2 v �2, and & = �1 Æ (j�1j)F ,& = �2 Æ (j�2j)F . We also have Æ v (j�1(s1)j)FL and Æ0 v (j�2(s2)j)FL.By Hullot's Theorem6 [Hul80℄, �1(t)!� s1 and �2(t)!� s2. By stability,we have that �1(�1(t)) !� �1(s1) and �2(�2(t)) !� �2(s2). Sine R isleft-linear and onstrutor-based, �1 and �2 are onstrutor substitutions.Therefore, (j�1j)F = �1, and (j�2j)F = �2, and hene & = �1 Æ �1 and & =�2 Æ�2. Thus, &(t)!� �1(s1) and &(t)!� �2(s2). By onuene, there is aterm s suh that �1(s1)!� s and �2(s2)!� s, hene &(t)!� s. By Propo-sition 3.1 and Lemma 4.4, (j�1(s1)j)FL; (j�2(s2)j)FL v (jsj)FL. By Hullot'sTheorem7 [Hul80℄, there is � � & suh that h"jVar(t); ti ;� h�; s0i ands0 � s, i.e., there exists a substitution � suh that & = �Æ� and s = �(s0).By hypothesis and by Lemma 5.8, Æ v (j�1(s1)j)FL v (j�1(s1)j)FL andÆ0 v (j�2(s2)j)FL v (j�2(s2)j)FL. Sine (j�1(s1)j)FL; (j�2(s2)j)FL v (jsj)FL, itfollows that fÆ; Æ0g is bounded by (jsj)FL, i.e., fÆ; Æ0g is onsistent. SineT (C?) is a usl, Æ t Æ0 is the lub of Æ and Æ0. Hene, sine (j� Æ �j)FL =(j& j)FL = & v & , and Æ t Æ0 v (jsj)FL = (j�(s0)j)FL, by De�nition 5.10,& m (Æ t Æ0).3. We need to prove that, if & m Æ, & v & 0, and Æ0 v Æ, then then & 0 m Æ0.Sine & m Æ, there is a narrowing derivation h"jVar(t); ti ;� h�; si and asubstitution � 2 T (C?)V suh that � Æ (j�j)F v & and Æ v (j�(s)j)FL. If& v & 0, then � Æ (j�j)F v & 0. On the other hand, Æ0 v Æ v (j�(s)j)FL. Hene,by de�nition of m, & 0 m Æ0.6In priniple, Hullot's Theorem is valid for narrowing with mgu's. However, Padawitz hasshown [Pad88, Prop. 8.2.2℄ that this theorem also holds for narrowing with arbitrary uni�ers.7This appliation of Hullot's Theorem generally yields a narrowing derivation where onlymgu's are used; however, our result is valid for those speializations of narrowing that ad-mit a similar ompleteness result (e.g., narrowing with arbitrary uni�ers [Pad88℄ or needednarrowing [AEH00℄). 18



2We have the following ompositionality result: the semantis of the whole nar-rowing proess an be thought of as the lub of the semantis of eah narrowingderivation.Proposition 5.16 Let R be a left-linear, onuent CB-TRS and t be a term.Then Narr(t) = FA2NDeriv(t)NarrA(t).Proof. Proposition 5.15, Proposition 5.9, and Proposition 4.13. 2Thus, we de�ne the semanti funtionCNarr1 : T (�?; V )! [T 1(C?)V ! T 1(C?)℄as follows: CNarr1(t) = Narr(t)i.e., CNarr1(t) is the ontinuous mapping assoiated to the approximable map-ping Narr(t) whih represents the narrowing derivations starting from t. Thissemantis is onsistent w.r.t. rewriting.Theorem 5.17 LetR be a left-linear, onuent CB-TRS. For all t 2 T (�?; V ),& 2 T (C?)V , CNarr1(t) & = CRew1(&(t)).Proof. By using Proposition 4.10 (and aording to Proposition 5.15), wean write: CNarr1(t) [& ℄ = fÆ j & Narr(t) Æg= SA2NDeriv(t)fÆ j & NarrA(t) ÆgFor eah narrowing derivationA : h"jVar(t); ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tnisuh that & = �Æ�i for some 1 � i � n and Æ v (j�(ti)j)FL, by Hullot's Theorem,we have �i(t) !� ti. By stability &(t) !� �(ti). Thus, sine � 2 T (C?)V , wehave that (j�(ti)j)FL = (j�(ti)j)F 2 Rew(&(t)) and, in fat, CNarr1(t) [& ℄ �Rew(&(t))#. In order to prove that Rew(&(t))# � CNarr1(t) [& ℄, let us onsiderÆ 2 Rew(&(t))#. Then there exists (jsj)F 2 Rew(&(t)) suh that Æ v (jsj)F .Hene, &(t)!� s and there is a narrowing derivation h"jVar(t); ti;� h�; s0i with& = � Æ� for some � 2 T (C?)V and s = �(s0). Therefore, sine &(t); s 2 T (�?),we have that (jsj)F = (jsj)FL = (j�(s0)j)FL = �(s0). Thus, & Narr(t) �(s0) and,sine Narr(t) is an approximable mapping and Æ v (jsj)FL = �(s0), we have& Narr(t) Æ, i.e., Rew(&(t))# � CNarr1(t) [& ℄. 2
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5.1 Narrowing strategiesA narrowing strategy N is a restrition on the set of possible narrowing steps.Given a narrowing strategyN and a term t, we an onsider the setNDerivN (t) �NDeriv(t) of derivations whih start from t and onform to N . By Propo-sition 5.9, eah A 2 NDerivN (t) de�nes an approximable mapping NarrA(t)whih is obviously ontained in Narr(t). By Proposition 4.9 (when we on-sider left-linear, onuent CB-TRSs), NarrA(t) v Narr(t) = CNarr1(t).Therefore, fNarrA(t) j A 2 NDerivN (t)g is bounded by CNarr1(t). Sine[T 1(C?)V ! T 1(C?)℄ is a domain, it is onsistently omplete, i.e., the lub ofevery bounded subset atually exists (Theorem 3.1.10 in [SLG94℄). Thus, forleft-linear, onuent CB-TRSs, we �xCNarr1N (t) =GfNarrA(t) j A 2 NDerivN (t)gto be the meaning of t when it is evaluated under the narrowing strategy N .Clearly, for all narrowing strategies N , CNarr1N v CNarr1. Thus, CNarr1provides a semanti referene for narrowing strategies. Strategies that satisfyCNarr1N = CNarr1 an be thought of as orret strategies. Note that, being aontinuous mapping, CNarr1N (t) also has an assoiated approximable mapping(see [SLG94℄).Remark 5.18 Narrowing is able to yield the graph of a funtion f by omput-ing CNarr1(f(x)), where x1; : : : ; xar(f) are di�erent variables. This gives aninteresting perspetive of narrowing as an operational mehanism whih om-putes denotations of funtions as a whole, rather than only values of partiularfuntion alls. A similar observation an be made for narrowing strategies.In order to highlight similarities in the semanti desription of narrowing andrewriting, let us ompare the mathematial treatment of Rew(t) and Narr(t):Rewriting Narrowing� Rew(t) is a set of partial onstru-tor terms Æ 2 T (C?; V ). � Narr(t) is a set of pairs h&; Æi,where & is a valuation on T (C?) andÆ 2 T (C?).� Rew(t) is a direted set. � Narr(t) is an approximable map-ping.� The limit CRew1(t) of Rew(t)within the domain T 1(C?; V ) is a(possibly in�nite) value. � The `limit' of Narr(t) is a on-tinuous mapping CNarr1(t) fromvaluations to (in�nite) onstrutorterms, i.e, a non-ground value.
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6 Computational interpretation of the semantidesriptionsThe aim of our semanti desriptions is to provide a lear omputational inter-pretation of the semanti information. After the abstration proess that everysemanti desription involves (in our ase, by using observation mappings), weask ourselves: what kind of operational information an be obtained from thesemanti desription? This is essential for de�ning aurate analyses by usingthe semanti desription. In this setion we speially investigate the orre-spondene between the semanti desription of the omputational proesses ofrewriting and narrowing when they sueed in founding values.Proposition 6.1 Let R be a onuent TRS, t 2 T (�?; V ), and Æ 2 T (C; V ).Then, Æ = CRew1(t) if and only if t!� Æ.Proof. If t !� Æ, then (jÆj)F = Æ 2 Rew(t). Sine Æ is maximal and,by Proposition 3.2, Rew(t) is direted, it follows that Æ = CRew1(t). Theopposite statement follows a similar reasoning. 2Proposition 6.2 Let R be a TRS, t 2 T (�?; V ), F be a rewriting strategy,and Æ 2 T (C; V ). Then, Æ = CRew1F (t) if and only if t!�F Æ.Proof. Similar to Proposition 6.1. 2Conerning narrowing omputations, we have the following result.Proposition 6.3 Let R be a left-linear, onuent CB-TRS. Let t be a term,& 2 T (C?)Var(t), m = CNarr1(t), and Æ = m(&).1. For every narrowing derivation h"jVar(t); ti ;� h�; si suh that � Æ � = &for some � 2 T (C?)V , we have (j�(s)j)FL v Æ.2. If Æ 2 T (C?), there exists a narrowing derivation h"jVar(t); ti ;� h�; siand � 2 T (C?)V suh that � Æ � = & and Æ = (j�(s)j)FL.3. If Æ 2 T (C), then there exists a narrowing derivation h"jVar(t); ti;� h�; siand � 2 T (C?)V suh that s 2 T (C; V ), � Æ � = &, and Æ = �(s).Proof.1. If A : h"jVar(t); ti;� h�; si is suh that �Æ� = & , by de�nition of NarrA(t)we have & NarrA(t) (j�(s)j)FL, i.e., & Narr(t) (j�(s)j)FL. By Proposition4.11, the onlusion follows.2. By Proposition 4.12, we have that & Narr(t) Æ. Thus, by de�nition ofNarr(t), there is a narrowing derivation A : h"jVar(t); ti ;� h�; si suhthat & NarrA(t) Æ. Hene, there exists � 2 T (C?)V suh that � Æ � = &and Æ v (j�(s)j)FL. Using (1), we onlude Æ = (j�(s)j)FL.21



3. By using (2), we onlude that there exists a narrowing derivation h"jVar(t); ti;�h�; si and � 2 T (C?)V suh that � Æ � = & and Æ = (j�(s)j)FL. Assumethat s 62 T (C; V ). Then, there exists a de�ned symbol f 2 F in s. Then,? ours in Æ = (j�(s)j)FL thus ontraditing the fat that Æ 2 T (C). 2Proposition 6.3(1) expresses that, given a (�nite) valuation & , we an use anynarrowing derivation starting from a term t that omputes a substitution moregeneral than & to approximate the value Æ that, aording to the semanti inter-pretation of t as a non-ground value, orresponds to & . Proposition 6.3(2) and(3) say that every �nite (partial) value whih orresponds to a �nite valuationan be exatly reovered by (observing) a narrowing derivation.We are able to re�ne the omputational information ouhed by the narrow-ing semantis by introduing a small modi�ation on it.De�nition 6.4 Given a term t 2 T (�?; V ), and a narrowing derivationA : h"jVar(t); ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniwe let BNarrA(t) = [0�i�nBNarrAi (t) where:BNarrAi (t) = fh&; Æi 2 T (C?)V � T (C?) j (j�ij)FL v & ^ Æ v (jtij)FLgProposition 6.5 Let R be a TRS, t be a term and A be a narrowing derivationstarting from t. Then BNarrA(t) is an approximable mapping.Proof. LetA : h"jVar(t); ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniWe abbreviate BNarrA(t) by m. Then, we hek the onditions of De�nition4.8.1. Note that, for all derivations A starting from t,BNarrA0 = fh&; Æi j (j"jVar(t)j)FL v & ^ Æ v (jtj)FLg � m:We have that (j"jVar(t)j)FL = ?Var(t)Valuat and we obtain?Var(t)Valuat v ?Var(t)Valuat = & ,and Æ = ? v (jtj)FL, i.e., ?Var(t)Valuat m ?.2. Let & m Æ and & m Æ0. By de�nition of m, there are �i; �j , suh that(j�ij)FL v & , Æ v (jtij)FL, (j�j j)FL v & , and Æ0 v (jtj j)FL for some 0 � i �j � n. By Proposition 4.7 (jtij)FL v (jtj j)FL, i.e., fÆ; Æ0g is bounded by(jtj j)FL. Thus, Æ t Æ0 v (jtj j)FL and, by de�nition of m, & m (Æ t Æ0).3. Let & m Æ, & v & 0, and Æ0 v Æ. Thus, there is �i, 0 � i � n suh that(j�ij)FL v & and Æ v (jtij)FL. Sine (j�ij)FL v & v & 0 and Æ0 v Æ v (jtij)FL,by de�nition of m, we also have that & 0 m Æ0.22



2Sine eah BNarrAi (t) is a speial ase ofNarrAi (t), in whih only � = ?Valuat isallowed, we have that BNarrA(t) � NarrA(t). Therefore, by Propositions 5.9and 6.5, and using Proposition 4.9, we have that, for all terms t, BNarrA(t) vNarrA(t). Whenever we onsider left-linear, onuent CB-TRSs, Proposition5.15 and Proposition 4.9 ensure that fBNarrA(t) j A 2 NDeriv(t)g is boundedby CNarr1(t). Thus, for left-linear, onuent CB-TRSs, we �xBNarr1(t) =GfBNarrA(t) j A 2 NDeriv(t)gas the basi desription of narrowing omputations. Clearly, BNarr1(t) vCNarr1(t).Example 6.6 Consider the TRS R in Example 4.2 and term t = x+y. For thenarrowing derivations:A1 : hfx 7! x; y 7! yg; x+yi ; hfx 7! 0; y 7! y'g; y'iand A2 : hfx 7! x; y 7! yg; x+yi ; hfx 7! s(x'); y 7! y'g; s(x'+y')i; hfx 7! s(0); y 7! y''g; s(y'')iwe show (part of) their semanti desriptions BNarrA1 and BNarrA2 (thereader an ompare suh semanti desriptions and those given by NarrA1 andNarrA2 in Example 5.3):BNarrA10 (t) = fh&;?i j & 2 T 1(C?)fx;yggBNarrA11 (t) = fhfx 7! 0; y 7! ?g;?i;hfx 7! 0; y 7! 0g;?i;hfx 7! 0; y 7! s(?)g;?i;: : :gBNarrA20 (t) = fh&;?i j & 2 T 1(C?)fx;yggBNarrA21 (t) = fhfx 7! s(?); y 7! ?g;?i; hfx 7! s(?); y 7! ?g; s(?)i;hfx 7! s(0); y 7! ?g;?i; hfx 7! s(0); y 7! ?g; s(?)i;hfx 7! s(?); y 7! 0g;?i; hfx 7! s(?); y 7! 0g; s(?)i;hfx 7! s(0); y 7! 0g;?i; hfx 7! s(0); y 7! 0g; s(?)i;: : :gBNarrA22 (t) = fhfx 7! s(0); y 7! ?g;?i; hfx 7! s(0); y 7! ?g; s(?)i;hfx 7! s(0); y 7! 0g;?i; hfx 7! s(0); y 7! 0g; s(?)i;hfx 7! s(0); y 7! s(?)g;?i; hfx 7! s(0); y 7! s(?)g; s(?)i;hfx 7! s(0); y 7! s(0)g;?i; hfx 7! s(0); y 7! s(0)g; s(?)i;: : :gThe basi desription BNarr1(t) is loser to the omputational mehanism ofnarrowing. The following propositions formalize this laim.23



Proposition 6.7 Let R be a left-linear, onuent CB-TRS, t be a term, & 2T (C?)V , m = BNarr1(t), and Æ = m(&).1. For every narrowing derivation h"jVar(t); ti;� h�; si suh that (j�j)FL v &,it is (jsj)FL v Æ.2. If Æ 2 T (C?), there exists a narrowing derivation h"jVar(t); ti ;� h�; sisuh that � Æ � = & and Æ = (jsj)FL for some � 2 T (C?)V .Proof.1. If A : h"jVar(t); ti ;� h�; si is suh that (j�j)FL v & , then, by de�nitionof BNarrA(t), we have that & BNarrA(t) (jsj)FL. Therefore, (jsj)FL vBNarrA(t) & v m(&) = Æ.2. By Proposition 4.14, there is a narrowing derivation A : h"jVar(t); ti ;�h�; si suh that Æ = BNarrA(t) & . By Proposition 4.12, & BNarrA(t) Æ.Sine (j�j)FL v & , by using (1), we onlude (jsj)FL v Æ. By de�nition ofBNarrA(t), Æ v (jsj)FL and the onlusion follows. 2Proposition 6.8 Let R be a left-linear, onuent CB-TRS, t be a term, andm = BNarr1(t). If h"; ti;� h�; Æi and Æ 2 T (C), then m((j�j)FL) = Æ.Proof. Let Æ0 = m((j�j)FL). By Proposition 6.7(1), (jÆj)FL v Æ0. SineÆ 2 T (C), (jÆj)FL = Æ; moreover, sine Æ is maximal, Æ 6< Æ0. Hene, Æ = Æ0 =m((j�j)FL). 2The basi desription BNarr1(t) is loser to narrowing as an operational meh-anism. However, CNarr1(t) atually provides a more omplete semanti de-sription as stressed by the following example.Example 6.9 Consider the TRS R in Example 4.2 and term t = x+y. Aord-ing to Example 6.6, we have thatBNarr1(x+y) fx 7! 0; y 7! 0g = ?However, aording to Example 5.3, we have thatCNarr1(x+y) fx 7! 0; y 7! 0g = 0Moreover, Example 6.9 shows that, di�erent to CNarr1 (see Theorem 5.17),BNarr1 is not omplete w.r.t. the rewriting semantis.
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7 Towards a semantis-based analysis frameworkIn the previous setions we have developed a semanti haraterization of theevaluation of expressions under narrowing or arbitrary narrowing strategies asthe omputation of funtional values. To demonstrate the usefulness of thissemantis for the analysis of funtional logi programs, we provide in this setionan algebrai perspetive of the analysis of funtional logi programs where thefuntional onstrution is also essential. We also sketh a possible appliation:the ombined analysis of termination and groundness properties of funtionallogi programs.Domain theory provides a framework for formulating properties of programsand disussing about them [Abr91, So81℄: A property � of a program P whosedenotation [[P ℄℄ is taken from a domain D (i.e., [[P ℄℄ 2 D) an be identi�ed witha prediate � : D ! 2, where 2 is the two point domain 2 = f?;>g orderedby ? v > (where ? an be thought of as false and > as true). A program Psatis�es � if �([[P ℄℄) = > (alternatively, if [[P ℄℄ 2 ��1(>)). As usual in domaintheory, we require ontinuity of � for ahieving omputability (or observability,see [Smy83, Vi89℄). The set [D ! 2℄ of observable properties is (isomorphito) the family of open sets of the Sott's topology assoiated to D [Abr91℄. Atopology is a pair (X; �) where X is a set and � � P(X) is a family of subsetsof X (alled the open sets) suh that [SLG94℄: X;? 2 � ; if U; V 2 � , thenU \ V 2 � ; and if Ui 2 � for i 2 I , then Si2I Ui 2 � . The Sott's topologyassoiated to a domain D is given by the set of upward losed subsets U � Dsuh that, whenever A � D is direted and FA 2 U , then 9x 2 A:x 2 U[SLG94℄.Note that, when onsidering the Sott's topology (D; �D) of a domain D,the open set D denotes a trivial property whih every program satis�es; ?, theleast element of lattie �D , denotes the `impossible' property, whih no programsatis�es.7.1 Analysis of funtional logi programsA program analysis onsists in the de�nition of a ontinuous funtion � : D !A between topologi spaes (D; �D) and (A; �A) whih expresses onrete andabstrat properties, respetively. By the topologial de�nition of ontinuity,eah open set V 2 �A maps to an open set U 2 �D via ��1, i.e., ��1 : �A ! �Dis a mapping from abstrat properties (open sets of �A) to onrete properties(open sets of �D). It is easy to see that (D; f��1(V ) j V 2 �Ag) is a subtopologyof D (i.e., f��1(V ) j V 2 �Ag � �D). Therefore, eah analysis distinguishes asubset of properties of D whih is itself a topology. Note that �A plays therole of an abstrat domain in the usual, lattie-based, abstrat interpretationapproahes. For instane, the Sott's topology of 2 is given by �2 = f?; f>g;2g.Suh a topology permits to express only one non-trivial property, namely, theone whih orresponds to the open set f>g.In funtional logi languages, the semanti domain under observation is[DV ! D℄ where D = T 1(C?). Observable properties of funtional logi pro-25



grams are open sets of its Sott's topology. Approximations to suh propertiesan be obtained by abstrating [DV ! D℄ into a suitable abstrat domain (seebelow).Every ontinuous funtion f : D ! E maps observable properties of theodomain E into observable properties of D (by f�1 : �E ! �D). In partiular,elements of [DV ! D℄, i.e., denotations of funtional logi programs, map prop-erties of D (we all them `funtional' properties) into properties of DV (`logi'properties). This provides an additional, interesting analyti perspetive: Byrephrasing Dybjer [Dyb91℄, we an omputationally interpret this orrespon-dene as establishing the extent that a `logi property' (onerning valuations)needs to be ensured to guarantee a property of its funtional part (omputedvalue). There is a simple way to obtain an abstration of the logi part DV of[DV ! D℄ from an abstration of its funtional part D.De�nition 7.1 Let D;V;A be sets. Let �F : D ! A be a mapping. Then,�L : DV ! AV given by �L(�) = �F Æ �, for all � 2 DV , is alled the logiabstration indued by �F .If �F : D ! A is strit (surjetive, ontinuous), then �L is strit (surjetive,ontinuous). Whenever �F is a ontinuous mapping from a domain D to 2, �Fexpresses, in fat, a single observable property ��1(f>g) of D. We an thoughtof �F as a funtional property. Thus, De�nition 7.1 assoiates an abstration�L of DV to a given property identi�ed by �F . Thus, eah funtional propertyindues a related set of logi properties whih is a subtopology of �DV . In Setion7.3 we show that groundness (a logi property), is indued by the funtionalproperty of termination.7.2 Approximation of funtionsAbstrations �D : D ! A and �E : E ! B (A and B being algebrai latties),indue safety and liveness abstrations �SD!E ; �LD!E : (D ! E) ! (A ! B),of ontinuous mappings by [Abr90℄�SD!E(f)(d) = tf(�E Æ f)(d0) j �D(d0) v dg; and�LD!E(f)(d) = uf(�E Æ f)(d0) j �D(d0) w dgwhere the following orretness result holds:Theorem 7.2 (The semi-homomorphism property [Abr90℄) Let f : D !E, fS = �SD!E(f), and fL = �LD!E(f). Then, fL Æ �D v �E Æ f v fS Æ �D.Consider an abstration �E : E ! 2 whih an be thought of as a propertyof elements of the odomain E of f : D ! E. For analyti purposes, theorretness ondition fS Æ �D w �E Æ f ensures that, for all x 2 D, wheneverthe abstrat omputation fS(�D(x)) yields ?, the onrete omputation f(x)does not satisfy the property �E , i.e., �E(f(x)) = ?. On the other hand, theorretness ondition fLÆ�D v �E Æf ensures that, whenever fL(�D(x)) yields>, the onrete omputation f(x) atually satis�es �E , i.e., �E(f(x)) = >. Weuse this omputational interpretation later.26



7.3 Termination analysis and groundness analysisThe funtional struture of the semanti domain of ngv's reveals onnetionsbetween apparently disonneted analyses. Consider ht : T 1(C?) ! 2 de�nedby ht(Æ) = � > if Æ 2 T (C)? otherwiseand let hg : T 1(C?)V ! 2V be the logi abstration indued by ht. Note thatboth ht and hg are strit and ontinuous. Abstrations ht and hg express theobservable properties of (suessful) termination and groundness, respetively:Reall that the only nontrivial open set of the the Sott's topology of 2 is f>g.By ontinuity of ht, h�1t (f>g) is the (open) set of �nite, totally de�ned valueswhih atually orresponds to terminating suessful evaluations.Remark 7.3 ht and Myroft's abstration:halt(d) = � > if d 6= ?? if d = ?for termination analysis [My80℄ are similar. However, halt expresses termina-tion only if C ontains only onstant symbols. It is easy to see that, in this ase,ht = halt.On the other hand, eah open set of 2V is (isomorphi to) an upward losedolletion of sets of variables ordered by inlusion. In this ase, h�1g (U) for agiven open set U is a set of substitutions whose bindings for variables belong-ing to X 2 U are ground. This formally relates groundness and termination:groundness is the `logi' property whih orresponds to the `funtional' prop-erty of termination. In fat, 2V is a well-known abstrat domain for groundnessanalysis in logi programming [JS87℄.If C has onstrutors with positive arity, then h�1t (f>g) is the set of onstrutor-rooted values (they orrespond to terms having a onstrutor-rooted head-normal form). In this ase, h�1g (U) for a given open set U is a set of substi-tutions whose bindings for variables belonging to X 2 U has been instantiatedwith some onstrutor-rooted term.7.4 Using semanti information for improving the evalu-ationGroundness information an be used to improve the narrowing evaluation of aterm t = C[t1; : : : ; tn℄: if we know that every suessful evaluation of ti groundsthe variables of tj , for some 1 � i; j � n, i 6= j, then it is sensible to evaluatet by �rst narrowing ti (up to a value) and next evaluating t0j (i.e., tj afterinstantiating its variables using the bindings reated by the evaluation of ti) byrewriting beause, after evaluating ti, we know that t0j is ground and we do notneed to provide ode for uni�ation, instantiation of other variables, et.27



Example 7.4 Consider the following TRS:0+x ! x if(true ,x,y) ! xs(x)+y ! s(x+y) if(false,x,y) ! yeven(0) ! true even(s(s(x))) ! even(x)even(s(0)) ! falseFor an initial (onditional) expression \if even(x) then x+x else s(x+x)"(we use the more familiar notation if then else for if expressions), it is learthat x beomes ground after every suessful narrowing evaluation of the ondi-tion even(x). Thus, we an evaluate x+x by rewriting instead of narrowing.Additionally, we need to ensure that the evaluation of ti is safe under the ontextC (i.e., that failing evaluations of ti do not prevent the evaluation of t). Eventu-ally, we should also ensure that the omplete evaluation of t0j is safe. Stritnessinformation an be helpful here: if the (normalizing) narrowing strategy is notable to obtain any value, this means that the whole expression does not havea value. However, we should only use non-ontextual stritness analyses (likeMyroft's [My80℄ is). In this way, we ensure that the strit harater of anargument is not altered after a possible instantiation of its surrounding ontext.In order to ensure that every suessful narrowing derivation grounds a givenvariable x 2 Var(t), we use the safety abstration mS 2 2V ! 2 of m =BNarr1(t) (based on ht and hg).Example 7.5 (Continuing Example 7.4) For t = even(x), we have:BNarr1(t) = f fx 7! ?g 7! ?; fx 7! 0g 7! true;fx 7! s(?)g 7! ?; fx 7! s(0)g 7! false;fx 7! s(s(?))g 7! ?; fx 7! s(s(0))g 7! true;: : :gIn general, if we an prove that, for all abstrat substitutions �# 2 2V with�#(x) = ?, it is mS(�#) = ?, then we an ensure that x is grounded in everysuessful derivation from t. To see this point, onsider a suessful derivationh"; ti ;� h�; Æi suh that Æ 2 T (C) and �(x) 62 T (C), i.e., x is not grounded.By Proposition 6.8, m((j�j)FL) = Æ. By de�nition of mS , mS(hg((j�j)FL)) = >.Sine (j�(x)j)FL 62 T (C), we have hg((j�j)FL)(x) = ht((j�(x)j)FL) = ?, thusontraditing (a partiularization of) our initial assumption, mS(hg((j�j)FL)) =?.Example 7.6 (Continuing Example 7.5) For t = even(x), we have mS =ffx 7! ?g 7! ?; fx 7! >g 7! >g. Thus, x is grounded in every suessfulderivation of even(x).The previous onsiderations show that the semanti dependeny expressed bythe ngv's has the orresponding translation for the analysis questions. However,the detailed development of suh a program analysis framework is outside thesope of this paper and a topi for future work.28



8 Related work and onluding remarksThe idea of giving denotational desriptions of di�erent operational frameworksis not new. For instane, [Bak76℄ assigns di�erent �xpoint semantis for a pro-gram under either all-by-name or all-by-value strategies. This shows that, insome sense, the semanti desriptions also (silently) assume some underlyingoperational approah (usually, all-by-name like).In [Red85℄, the notion of ngv as the semanti objet that a narrowing ompu-tation should ompute was already introdued. It was also noted that narrowingonly omputes a representation of the objet, not the objet itself. However, itwas not learly explained how this onnetion an be done.In [MR92℄, domains are used to give semantis to the funtional logi lan-guage BABEL. However, the style of the presentation is model theoreti: allsymbols take meaning from a given interpretation and the onnetion betweenthe delarative and operational semantis (lazy narrowing) are given by meansof the usual ompleteness/orretness results. The semanti domain is di�erentfrom ours beause of valuations are just a parameter of the semanti funtionsrather than as a omponent of the domain. Thus, the Herbrand domain T 1(C?)is the semanti domain in [MR92℄. A similar remark an be made for [JPP91℄.The semanti approah in [GHLR99℄ is muh more general than [MR92℄(overing non-deterministi omputations), but the style of the presentation ismodel theoreti, too. The basi semanti domain is also di�erent from ours: nofuntional domain for denotations is used and, in fat, bounded ompleteness,whih is essential in our setting to deal with the funtional onstrution andwith narrowing strategies, is not required in [GHLR99℄.In [Zar97℄, a denotational desription of a partiular narrowing strategy (theneeded narrowing strategy [AEH00℄) is given. The semantis is niely appliedto demandedness analysis but nothing has been said about how to use suh asemanti desription for more general analysis problems. This question is im-portant sine the notion of demandedness pattern is essential for the de�nitionof the semantis itself.We have presented a domain-theoreti approah for desribing the semantisof integrated funtional logi languages based on narrowing. Our semantis isparameterized by the narrowing strategy whih is used by the language. Thesemantis is not `model-theoreti' in the sense that we let within the opera-tional mehanism (the narrowing strategy) to establish the `real' meaning ofthe funtions de�ned by the program rules. In this way, we are able to inludemore operational information into the semanti desription. As far as we know,previous works have not expliitly onsidered arbitrary strategies for parame-terizing the semantis of either funtional or funtional logi languages, thatis, the operational-oriented denotational desription formalized in this work isnovel in the literature of the area.Another interesting point of our work is its appliability to the analysis offuntional logi programs. Sine we use a funtional domain (the domain of non-ground-values), we are able to assoiate a denotation to a term with variables.29



Thus, narrowing is reformulated as an evaluation mehanism whih omputesthe denotation of the input expression. This was already suggested by Reddy[Red85℄ but it is only formally established in this paper by using approximablemappings. Thanks to this perspetive, we an use the standard frameworksfor program analysis based on the denotational desription of programs. Inother words, the approximation of the domain of non-ground values provides thebasis for the analysis of funtional logi programs. Our desription also revealsunexplored onnetions between purely funtional and logi properties. Theseonnetions suggest that, within the funtional logi setting, we have asertaineda kind of `duality' between purely funtional and purely logi properties. As faras we know, this had not been established before.Future work inludes a more detailed study about how to use this semantisto develop pratial methods for the analysis of funtional logi programs. Forinstane, we an use an abstrat narrowing alulus (see, for example, [AFRV93,AFM95, Vid96℄) to diretly build (orret) abstrat versions of the semantifuntions via abstrat approximable mappings. We an also adapt the Dybjer'salulus of inverse images [Dyb91℄ for relating funtional and logi properties.Another interesting task is to extend this semantis to more general lasses ofprograms and omputation models for delarative languages [Han97℄.We have presented an algebrai framework to express analysis of funtionallogi programs. Our intention is to use the existing (abstrat interpretationbased) analyses for pure funtional and logi programming in our integratedframework. The expliit semanti onnetions between the basi paradigmsallow us to ombine those analyses by using the existing tools to ombine ab-strat domains [GR95℄. Partiularly interesting, as a subjet of future work,is the possibility of giving a logi interpretation to these domain ombinations[GS97, GS98℄.Referenes[Abr90℄ S. Abramsky. Abstrat Interpretation, Logial Relations, and Kan Ex-tensions. Journal of Logi and Computation 1(1):5-40, 1990.[Abr91℄ S. Abramsky. Domain Theory in Logi Form. Annals of Pure andApplied Logi 51:1-77, 1991.[AEH00℄ S. Antoy, R. Ehahed and M. Hanus. A needed narrowing strategy.Journal of the ACM, 47(4):776-822, 2000.[AFM95℄ M. Alpuente, M. Falashi, and F. Manzo. Analyses of Unsatis�abilityfor Equational Logi Programming. Journal of Logi Programming,22(3):221-252, 1995.[AFRV93℄ M. Alpuente, M. Falashi, M.J. Ramis, and G. Vidal. Optimiza-tion of Equational Logi Programs Using Abstrat Narrowing. In M.Bruynooghe and J. Penjam, editors, Pro. 5th International Sympo-sium on Programming Language Implementation and Logi Program-ming, PLILP'93, LNCS 714:391-409, Springer-Verlag, Berlin, 1993.30
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