Preliminary version. Final version in Information Processing Letters (Elsevier), Vol. 67, No. 1, pp. 1-8, 1998

Strongly sequential and inductively sequential term rewriting systems

Michael Hanus*

Abstract

The concept of definitional tree by Antoy serves to
introduce control information into the bare set of
rules of a constructor-based term rewriting system
(TRS). TRSs whose rules can be arranged into a defin-
itional tree are called inductively sequential. By rely-
ing on the existence of such a definitional tree, an op-
timal rewriting strategy, the outermost-needed strategy
is defined. Optimality was proved w.r.t. the Huet
and Lévy’s theory of neededness. In this paper, we
prove that strongly sequential and inductively sequen-
tial constructor-based TRSs coincide. We also show
that outermost-needed rewriting only reduces strongly
needed redexes.

Keywords: definitional trees, neededness, strong se-
quentiality, term rewriting, declarative programming,.

1 Introduction

For orthogonal TRSs, the best normalizing strategy
which avoid unnecessary reductions is needed rewrit-
ing [7]. Needed rewriting only considers needed re-
dexes, i.e., redexes which are contracted (themselves or
some residual) in every normalizing derivation. Unfor-
tunately, it is undecidable whether a redex is needed.
Strongly sequential redexes approximate needed re-
dexes. However, reduction of strong redexes is costly
to implement [10], and some efforts have been done to
simplify the (strongly) needed reduction process.
Definitional trees [1] allow us to define optimal
strategies both in rewriting [1] and narrowing [3]. A
definitional tree consists of branches on the values of
particular arguments and the rules of the TRS.

*Informatik II, RWTH Aachen, D-52056 Aachen, Germany,
hanus@informatik.rwth-aachen.de. Work partially supported
by DFG (under grant Ha 2457/1-1) and Accién Integrada.

TDSIC, U.P. de Valencia, Camino de la Vera s/n, Apdo.
22012, E-46071 Valencia, Spain, slucas@dsic.upv.es. Work
partially supported by EEC-HCM grant ERBCHRXCT940624,
Bancaixa (Bancaja-Europa grant), Accién Integrada (HA1997-
0073) and CICYT (under grant TIC 95-0433-C03-03).

HInstitute of Information Sciences and
Electronics, University of Tsukuba, Tsukuba 305-8573, Japan,
ami@score.is.tsukuba.ac. jp.

Salvador Lucas’

Aart Middeldorpt

Example 1.1 Consider the following rules:

first(0,x)— []
first(s(x),y::z) — y::first(x,z)

We give a graphic representation of the definitional tree
for the function first (Figure 1). The first branch is
done on the first argument (x;) with alternative pat-
terns 0 and s(x), where a further branch on x, (with

only one alternative) is necessary for the lattergattern.
first(xy,x2)

first(0,x;) first(s(x),xs)

|

),
[0 first(s(x),y:z)

'

y:: first(x,z)

Figure 1: Definitional tree for the function first
A function f, defined by rules of a TRS R is inductively
sequential if there exists a definitional tree P contain-
ing all rules defining f. R is inductively sequential if
all defined symbols are inductively sequential.

Recently, definitional trees and inductively sequen-
tial TRS became important for declarative program-
ming languages since they model lazy functional lan-
guages with pattern matching and are an adequate
basis to implement optimal evaluation strategies for
functional logic languages [2]. Moreover, they can be
easily extended to more general classes of TRSs [4].

The relevance of inductively sequential TRSs for de-
clarative programming languages raised the question
about their relationship to the classical concept of
strong sequentiality. In [3], the question was raised
whether the classes of strongly sequential and induct-
ively sequential constructor-based TRSs are the same.
In this paper we formally show that the two classes
coincide. Furthermore, we generalize the notion of
a definitional tree to deal also with non-constructor-
based TRSs. This allows us to compare definitional
trees to other structures used to implement strong se-
quentiality, like indez trees and forward-branching in-
dex trees [6, 11], and the matching dags of Huet and
Lévy [7].

A definitional tree determines a rewriting strategy,
namely the outermost-needed strategy. We prove that

this strategy is an index reduction strategy, i.e., it only
selects strong indices for reduction. Since we can use
the properties of strong indices in constructor-based
TRSs, our proof is easier than the one in [1].

In Section 2, we review the technical concepts used
in the remainder of the paper. In Section 3, we intro-
duce definitional trees. Section 4 explores the relation
between strongly sequential and inductively sequential
TRSs. Section 5 compares to other approaches.

2 Preliminaries

This section introduces our main notations (see [5, 8]
for full definitions). Given a partial order < on a set
Aand a € A, at={b € A | a < b} is the upward set
associated with a. a || b means a £ b and b £ a.

V' denotes a set of wvariables and ¥ denotes a set
of function symbols {f,g, ...}, each with a fixed arity
given by a function ar : ¥ — IN. We denote the set
of terms by T(X,V). A k-tuple ty,...,t; of terms is
denoted by t, where k will be clarified by the context.
The set of variables appearing in a term ¢ is denoted

by Var(t).
Terms are viewed as labeled trees in the usual way.
Occurrences u,v, . .. are represented by chains of pos-

itive natural numbers used to address subterms of ¢.
Occurrences are ordered by the standard prefix order-
ing: u < v iff ' such that v = u.v’. The empty
occurrence is denoted by e. O(t) denotes the set of
occurrences of ¢. The subterm at occurrence u of ¢ is
denoted by t|,. The term ¢ with the subterm at the
occurrence u replaced with s is denoted by ¢[s],. The
symbol labeling the root of ¢ is denoted by root(t).

A rewrite rule is an ordered pair (I,r), written | —
r, with [,r € T(X,V), 1 ¢ V and Var(r) C Var(l).
Given a rule | — r, [is called the left-hand side (lhs)
of the rule and r the right-hand side (rhs). A TRS is
a pair R = (X, R) where R is a set of rewrite rules.
A left-linear TRS is a TRS where every lhs is a linear
term. An orthogonal TRS is a left-linear TRS without
overlapping rules, i.e., given a rule | — r, there is no
non-variable occurrence v € O(l) such that I|,, unifies
with a lhs I’ of arule I’ — ' in the TRS (where | — r
and I' — r' are different in case of u = ¢).

A term t rewrites to a term s, written ¢ —x s, if
t|, = o(l) and s = t[o(r)],, for some rule | — r, u €
O(t) and substitution 0. Or(t) ={u € O(t) | —r €
R and o with t|, = o(l)} is the set of redex occurrences
in ¢.

Given a TRS, we split the signature into the disjoint
union ¥ = C W F of symbols ¢ € C, called constructors,
having no associated rule and symbols f € F, called
defined functions or operations, which are defined by

some rule f(I) - r € R. Each rule f(§) — r in
a constructor-based TRS or constructor system (CS)
must satisfy f € F and § € T(C,V)* ().

3 Definitional trees

We generalize the notion of (partial) definitional tree
(pdt) by using its “declarative” definition (see [2]). To
represent unknown parts of a term ¢ we use the symbol
Q. Terms in T(X U {Q},V) are called Q-terms. To
discuss about unknown portions of expressions, we use
the ordering < on Q-terms given by: © < ¢ for all
te T(XU{Q},V),z<zforallz € V,and f(f) < f(3)
if t; < s;for 1 <i < ar(f). In this way, t < s means
“t is less or equally defined than s”. Oq(t) = {u €
O(t) | tlu = Q} is the set of occurrences of 2 in ¢.

A definitional tree of a finite set of (incomparable)
O-terms S C T(XU{Q}) with pattern m € T(XU{N})
is a non-empty, ordered set P of Q-terms having the
following properties:

e There is a minimum element which is the pattern
of the pdt: min(P) = 7 (minimum property).

e The maximal elements are the elements of S:
maximal (P) = S (leaves property).

o If ' € P, ©’ # m, there is a unique 7" € P,
7' < 7', such that there is no 7' € T(X U {Q})
with 7' < 7" < ' (parent property).

e Given ©' € P\S, there is an occurrence u €
Oq(w') (called the inductive occurrence), and
symbols' fi,..., fn € T with fi # f; for i # j,
such that, for all 7y, ..., m, which are immediately

below 7', m; = 7'[f;(Q)], for all 1 <i <n (induc-
tion property).

These properties entail S C P C w1. Given a TRS
R = (FWC,R), a redex scheme of R is a lhs of a
rule [— r where all variables are replaced by Q. Let
La(R) be the set of redex schemes of R. Since we
deal with orthogonal TRSs, we assume that a biject-
ive function p : Lq(R) — R associates the rule which
corresponds to each redex scheme. A preredez of a re-
dex scheme [is an Q-term 7 such that 7 < [. Let
LS(R) = {r | 3l € Lo(R) with # < [}. For f € F,
let Lé(R) ={l € La(R) | root(l) = f}. f is called in-
ductively sequential if there exists a definitional tree Py
which is a pdt of L, (R) with pattern f(€2). R is called
inductively sequential if all defined symbols f € F are
inductively sequential. An inductively sequential TRS

'In the original definition of definitional trees, only con-
structor symbols are allowed.

can be viewed as a set of definitional trees, each defin-
ing a function symbol. By using a representation func-
tion pdt, we can represent a pdt P of a set S C Lq(R)
with pattern 7 as a term pdt(P) as follows:

pdt(P) = rule(p(n)) f P={r}=S.

pdt(P) = branch(m,u, pdt(P1),...,pdt(Py,)) if P is
not a singleton, where # = min(P), u is the in-
ductive occurrence of m, fi,...,fn € X, fi # f; if
i # j, and, for all i, 1 < i < n, P; is a pdt with
pattern m; = 7[f;(2)],, of the set S; = SNt

Example 3.1 Consider the program of Example 1.1.
Then (we use Qs instead of variables),

branch(first (Q,Q), 1,
rule(first (0,y) — [1),
branch(first (s (2),0),2,
rule(first(s(x),y::z) — y::first(x,z))))

is a definitional tree for the function first (Figure 1).

4 Strong sequentiality and in-
ductively sequential TRSs

Regarding normalization strategies, the main result of
Huet and Lévy [7, 9] is the following: reduction of
needed redexes is normalizing for orthogonal TRSs. In
general, the occurrences of such needed redexes are un-
decidable, but Huet and Lévy define a computable ap-
proximation, the (strong) indices. To obtain such an
approximation, they use {)-terms.

To calculate indices a function w is used. It is defined
by means of a reduction relation —q [9]: C[t] —q C[Q]
if + # Q and there exists I € Lo(R) such that ¢t 11,
i.e., there exists an Q-term s such that ¢ < s and [<
s. The relation —q is confluent and terminating (see
[7, 9]). Let w(t) be the —g-normal form of ¢. Instead
of the usual definition of index, based on the notion
of sequential predicate, we use an equivalent, simpler
characterization (see [7, 9]).

Definition 4.1 Lett € T(ZU{Q},V) and u € Oq(t).
Let o be a fresh constant symbol, and t' = t[e],. Then
u is an index of t iff w(t')|, = e (sometimes we write
e € w(t') for short). The set of indices of t is denoted
by Z(t).

Proposition 4.2 ([9]) If u.v € Z(t[s].), then u €
Z(t[)y) and v € Z(s).

Proposition 4.3 ([9]) If u € Z(t) and t < t', then
u € Z(t'[Qy)-

An Q-normal form is an Q-term ¢ such that Og (t) = @
and Ogq(t) # @. Strongly sequential TRSs are defined
as follows.

Definition 4.4 ([8]) An orthogonal TRS is strongly
sequential if every Q-normal form has an indez.

When considering CSs, things are simpler.

Proposition 4.5 ([9]) An orthogonal CS R s
strongly sequential iff Vr € LS(R)\{Q},Z(7) # @.

We use the following property of indices in CSs.

Proposition 4.6 ([9]) Let R be an orthogonal CS.
Let u € Z(t) and s such that root(s) € F and v € Z(s).
Then u.v € Z(t[s]y)-

A strategy which always reduces redexes pointed by
indices is called index reduction.

Theorem 4.7 ([7]) Index reduction is normalizing
for orthogonal, strongly sequential TRSs.

4.1 Inductive sequentiality of strongly

sequential TRSs

Let t € T(2U{Q}). t1< is the set of terms which are
greater than ¢: t1<= {s € T(X U {Q}) | t < s}. Given
u € O(t), tl% is the set of terms which are smaller
than t and whose subterm at occurrence u is not :
Hi={seT(EU{Q}) | s<tAuecO(s)As|l, #Q}.

Given a set of terms S C Lo(R) and an occurrence
u € O(s) for all s € S, we define the equivalence rela-
tion =, by s =, s iff root(s|,) = root(s'|y), ie., the
terms have the same symbol rooting the subterm at
the occurrence u.

In the remainder of the paper, given Q-terms =
and [€ 71 and an occurrence u € O(w), we define
I(l,7,u) = 71< N 1}%. The function nodes builds a
pdt for a given function definition:

nodes(S,m,u) =
if S ={l} and II(/,7,u) = & then

rule(p(1))
else let 7' = min(UjesII(l, m,u))
u e I(m

!
)
{51,...,8,} =8/=w
in branch(n',u',nodes(Sy,n',u'),...,
nodes(Sy, 7, u"))

Lemma 4.8 Letm € T(EU{Q}), u € Oq(r) and S C
71, such that, 3f € XVl € S, root(l|,) = f and there
exists | € S with [|%# @&. Let g = UiesTI(l, 7, u).

Then, min(Ilg) = 7[f()]w-

PROOF. Let ' = 7[f(Q)],. Clearly, 7' € m41<
and it is minimal in 71<. Let [€ S be such that
l%# @. Clearly, II(I,7,u) # & because, since [€ 77,
I\“# @, and I, # Q, we have that 7' € [[%. There-
fore, ' is minimal in TI(l,7,u). Let «” € TI(l, 7, u).
Since root(l],) = f and root(n"|,) # Q, it must be
that root(r"|,) = f. Thus ' < #". Since 7" is ar-
bitrary, it follows that TI(l,7,u) has a minimum ele-
ment min(II(l,7,u)) = #'. Since this holds for every
I € S with [|]%# @ and the elements [€ S with
llY= @ do not introduce new elements in IIg, we ob-
tain min(Ilg) = 7'. m|

The height h of a finite ordered set is the number of
elements n of the largest strict chain @ = a; < az <

- < ap, = b going from a minimal element a to a
maximal element b. We define h = 0 if the set is empty.
Then, we can prove the following result.

Theorem 4.9 Let R be an orthogonal, strongly se-
quential TRS. Then, for all defined symbols f,
nodes(Lé(R),Q,e) is a definitional tree for f.

PrOOF. We consider a generic call nodes(S,,u)
under the restrictions 7 € T(X U {Q}), u € Oq(w),
and S C 71 N Lo(R) non-empty and such that 3f €
Y.Vl € S, root(l],) = f. First, we prove that nodes
builds a pdt for S with pattern 7[f()],. Givenl € S,
let h; denote the height of TI(l,7,u). We proceed by
induction on the height hs = mazics(hy) of g =
UlESH(la T, U).

hgs = 0: Note that hg = 0 implies that, for alll € S,
hi =0, ie., II(l,m,u) = @ for all | € S. Moreover, or-
thogonality implies that S = {l}. Otherwise, since for
all (distinct) 1,1' € S, we have root(l|,) = root(l'|,) =
f, it holds that 7[f(Q)], < ! and 7[f(Q)], < I'. Or-
thogonality implies that 7[f(Q)], < I. This means that
II(l, 7,u) # &, a contradiction. Therefore, we are in
the if part of nodes and the conclusion is immediate.

hs > 0: Since hg > 0 implies that thereis ! € S with
h; > 0, this means that II(l, 7,u) # & for this {. Hence,
we are in the else part of nodes. By definition of
II(l, m,u), we have [J2# &. Then, by Lemma 4.8, 7’ in
the algorithm is correctly defined as #’ = min(Ilg) =
7[f(Q)]u. Since 7' < 1 and [€ Lg(R), by orthogon-
ality, 7’ is an Q-normal form. By strong sequentiality,
there exists u' € Z(n'). Strong sequentiality ensures
that, for each Il € S, l|v # Q, i.e., root(l|) = g1 € B.
Otherwise, u' is not an index, since 7'[e],s can be re-
fined to a redex of I, and hence o ¢ w(n'[e],/) = .
Since m < ', the height h; of II(l,#',u') is less than
hy, for each [€ S. Thus, we apply the I.H.: each
P; = nodes(S;,7",u'), 1 < i < n, is a pdt for S;
with pattern 7} = 7’ [9:(Q)], where g; is the common

ﬂ%m ﬂ%m
f(g(2,9),0) f@%%m
t(g(h(0),2),9) f(g(Q,2),Q)

Figure 2: Two pdts for £

symbol at occurrence u' of each [€ S;. Thus, P =
branch(n',u',nodes(S1,7’,u’),...,nodes(Sy, 7', u’))
immediately satisfies the minimum and leaves property.
By minimality of each 7} in P;, and by the definition
of P, it satisfies the parent and induction properties
too.

Now we apply nodes to the arguments Lé (R),Q, e
in the hypothesis and we obtain the desired result. O

The previous definition of nodes was closer to our
definition of a pdt as a kind of ordered set which sim-
plified the proofs. However, using the previous results,
we can give a more readable version of the algorithm.
Remember that p(7) associates with 7 € Lg(R) the
rule [— r such that 7 is a redex scheme of I.

nodes(S,m,u) =
if S ={r} then rule(p(n))
else let f =root(l|,) for some [€ S

' = [f()]
u' € I(n')
{Sla"'asn} = S/Eu’
in branch(n',u',nodes(Sy,n',u'),...

))
nodes(Sy, 7', u’))

4.2 Strong sequentiality of inductively

sequential TRSs

Proposition 4.10 Let Py be a pdt for the function f
of a CS. Then every inductive occurrence u in a branch
node branch(m,u,P) of Py satisfies u € I(m).

ProoF. Let Py = branch(w,u,P). Note that u €
Oq (7). By contradiction: Since we consider CSs, if
u ¢ I(m), then w[e], 1 [for some redex scheme [in
mazimal (U, _5P). Since 7 < [, this means that the

pattern ©' of P, the pdt in P which contains 1, verifies
root(n'|y) = 0, contradicting the definition of a pdt,
since it must be that root(r'|,) € Z. O

This result does not hold for arbitrary pdts.

Example 4.11 Consider the orthogonal TRS
£(g(h(x),a),y) > x c—a
g(x,b) — g(h(x), a)

Partial definitional trees for £ are drawn in Figure 2.
The inductive occurrence 1.1 is not an index in the

pattern f(g(Q,Q),Q) of the first pdt. By using nodes,

we obtain the second definitional tree for which every
inductive occurrence is an indez.

Theorem 4.12 Let R = (X, R) be an inductively se-
quential CS. Then, R is strongly sequential.

PRrOOF. From Proposition 4.5, we prove by con-
tradiction that every proper prefix 2 < p < [of a
redex scheme [has an index. Assume Z(p) = &.
Let < m < - < m, < [be the chain of pat-
terns in the branch nodes of a pdt for the function
f = root(p) which contains I. It is not possible to
have a 7mj, 1 < j < n such that p < 7. Otherwise,
by Proposition 4.10 and Proposition 4.2, p also has
an index. Thus, 7; || p for some 4, 1 < i < n. Let
us consider the maximal = € {m,...,m,} such that
7w < pand 7 < ;. 7 exists, because m; = f(ﬁ), and
Q < f(Q) < p < I Let u be the inductive occurrence
for the branch node with pattern w. By Proposition
4.10, u € Z(m). We have p|, = Q. Otherwise, since
p < 1 and root(l|,) = root(p|,), there is #' > 7 such
that 7' < p and 7' < m;, thus contradicting the max-
imality of 7. By Proposition 4.3, u € Z(p). |

This theorem does not hold for general strongly se-
quential TRSs, as the following example shows.

Example 4.13 Consider the following TRS which is
not strongly sequential (from [7]):
£(g(a,x),£(b,y) > x g(d,d) - d
£(g(x,a), £(c,¥)) - x
f and g admit definitional trees, and nodes can build
them, because every redex scheme has some index.

Theorems 4.9 and 4.12 entail our main result.

Theorem 4.14 An orthogonal CS is strongly sequen-
tial iff it is inductively sequential.

4.3 Owutermost-needed reduction

A definitional tree determines a rewriting strategy,
namely the outermost-needed rewriting strategy?:

Definition 4.15 ([1]) The (partial) function ¢ takes
arguments t = f(t), f € F and a pdt P such that
min(P) < t, and yields a redex occurrence u € Or(t):

2This is a slightly different definition because we do not allow
for ezempt nodes as in [1]. However, it is equivalent.

p(t,P) =
€ if P =rule(a)

o(t, P;) if P = branch(m,u,Py,...,Py)
and min(P;) <t for some i
u.p(t|ly,Pg) if P =branch(m,u,P1,...,Ppn), ()

root(tly) =g € F, and
Py is a definitional tree for g.

Note that, dealing with CSs, the second and third
cases are disjoint. This is because if root(t|,) =
g € F, then since 7 < min(P;) for all subpdt P; of
P = branch(m,u, P1,...,Pyn), it is not possible to have
min(P;) <t since root(min(P;)|,) € C. We show that
© is equivalent to index reduction.

Theorem 4.16 Let R be an inductively sequential CS
and u = @(t,P). Then u is an index of t[Q],.

PrOOF. Induction on the number of visited defin-
itional trees. In the case base (n = 1), u is € and
the conclusion easily follows. Otherwise (n > 1), the
occurrence u can be split up into v = v.w, where v
is an occurrence of the pdt P and w has been used
to reduce t|, and, because R is a CS, root(t|,) € F,
with v the inductive occurrence for some pattern in
a branch node of P. By Proposition 4.10, v € Z(7).
Since m < t, by Proposition 4.3, v € Z(¢[Q],). Then,
by LH., w € Z(t|,[Q]w) and the conclusion follows by
Proposition 4.6. O

Theorem 4.9 suggests that definitional trees can be
used with general strongly sequential TRSs. The
outermost-needed strategy, as given in Definition 4.15
cannot be used to successfully evaluate a term in gen-
eral (i.e., non-constructor-based) TRSs. For instance,
consider the TRS in Example 4.11, ¢t = £(g(x,b),y)
and let Py be a pdt for the function £ if we try to com-
pute ¢(t,Pr). Then (¢, Ps) = p(t,P1) are undefined,
i.e., the strategy cannot proceed. This can be solved
by changing () in Definition 4.15 as follows:

e(t,P) = w'w if P = branch(m,u,Pi,...,Ppn),
root(mjly) # root(tly) = f' € F,forall j, 1 <j <m;
7 = wlf'(Q))u, and v € O'), € < u' < u is
the minimal occurrence such that 7’|, is compatible
with some redex scheme, P, is a definitional tree for
g =root(r'|y), and @(t|y, Py) = v.

This works well when considering CSs (it is equivalent
to Definition 4.15). However, this does not ensure that
¢ is index reduction when considering general TRSs.
This can be clarified by comparing the strategy with
the standard Huet and Lévy procedure, as discussed in
the following section.

5 Definitional trees and match-
ing dags

To implement normalizing strategies without look-
ahead, the matching dags (directed acyclic graphs)
of Huet and Lévy can be used with any strongly se-
quential TRS. Simpler structures are the index trees
of Strandh [11] which have been proved equivalent to
matching dags by Durand [6]. An index tree is a fi-
nite state automaton which has, in addition to the
usual transfer function, also a failure function. The
set of final states is Lo(R). Non-final states are in-
dex points, pairs (m,u), where 7 € LS(R), and u is
an index of 7 and both satisfy some special condi-
tions (see [6]). The initial state is (Q2,€). The trans-
fer function, written d(s, f), yields a new state of the
automaton, given a state s and a function symbol

£ 0((m,u), £) = (wlF(D]usv) (or just d((m,u), f) =
[f ()] if 7[f(Q)]y € La(R)). The failure function,
¢, is ¢(s) = ' iff §' is an immediate failure point of
s. Failure points are states of the automaton which
are expected to deal with a failing partial matching,
by resuming the matching of a subterm of the cur-
rently inspected term. In the most general definition
of an index tree, some states may not be reachable from
the initial state (2, €) via transfer transitions (using 9)
only. Thus, only the failure function can provide access
to these nodes of the tree. Orthogonal TRSs which can
be given such an index tree are called bounded TRSs.
Durand proves that the class of bounded TRSs and
strongly sequential TRSs coincide. The proof is given
by showing that there is an immediate correspondence
between the matching dag of Huet and Lévy and the
index trees of Strandh.

Strandh defines the forward-branching index trees,
for which all states of the index tree can be reached
via the transfer function ¢ from the initial state.

We provide a simple connection between index
trees and definitional trees: transitions 6({m,u), f1) =
(Tl fL(D]usv1)s .., 0((myu), fro) = (T[fu(Q)]u, vn) can
be written as branch(mw,u, Py, ..., Py), where the pat-
tern of each P; is m; = W[fz(ﬁ)]u Each initial trans-
ition ({2, €), f) = (f(€2),) can be seen as the starting
point of the pdt for the function f. When considering
forward-branching index trees, the correspondence is
even closer. However, pdts are not equivalent to the
previous structures. For instance, consider the bounded
TRS (from [6])

f(g(x,a),a) > a
f(g(a,x),b) > a
and the pdts in Figure 3.

The patterns and inductive occurrences of these pdts

are taken by following the index tree for the TRS, as

g(b,b) = a

£(2,92) g(%ﬂ)
/\ g(b,9)
t@7a) £@b) |
g(b,b)
f(g(ng),a) f(g(glﬂ),b) !
f(g(Qva)aa) f(g(aaQ)vb) g(Q,Q)

Figure 3: pdts for £ and g

given in [6]. Of course, if we do not do this, we cannot
ensure that the composition of the occurrences con-
sidered for the partial matchings (which are indices of
the corresponding preredexes) is an index. This means
that, even if we use nodes, that always selects (arbit-
rary) indices for inductive occurrences, we cannot en-
sure index reduction. But we have more involved situ-
ations. For instance, if we reduce t = £(g(A1, A»), a),
where Ay, Ay are redexes, it is not difficult to see that ¢
(modified) reduces the redex A; which is not a needed
redex. This is because, when we fail in matching
f(g(Q,a),a) (we underline the last considered occur-
rence, 1.2) against our term, we try to reduce g(A1, Ay)
and we must jump to a pdt for g, in order to continue
the matching. If we have the first pdt (recall that, in
our strategy, only one pdt is available), then we choose
to reduce A;. However, A; is not needed in the whole
context, since f(g(e,Q),a) —q Q. With an index tree,
the failure function selects the other pdt for g, which
properly continues the matching tasks by looking at
the occurrence 2 of g(As,A,). This is consistent with
the situation before the jump.

The modification of ¢ would work if we consider for-
ward branching TRSs (because they do not have such
additional nodes) and we use pdts having the same pat-
tern and inductive occurrences as the corresponding
forward-branching index tree. The previous TRS is not
forward-branching. However, even with such modifica-
tions, we loose efficiency, because, having a very simple
definition of the failure function (we always jump to
the root node of a new pdt), we would read more than
once some symbols. Therefore, it seems that there is
no advantage in using pdts with general TRSs.

References

[1]
2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

S. Antoy. Definitional Trees. In Proc. of ALP’92,
LNCS 632:143-157, Springer-Verlag, 1992.

S. Antoy. Needed Narrowing in Prolog (Extended
Abstract). In Proc. of PLILP’96, LNCS 1140:473-
474, Springer-Verlag, 1996.

S. Antoy, R. Echahed and M. Hanus. A needed nar-
rowing strategy. In Proc of POPL’94, pages 268-279.
ACM Press, 1994.

S. Antoy, R. Echahed, and M. Hanus. Parallel eval-
uation strategies for functional logic languages. In
Proc. of ICLP’97, pages 138-152. The MIT Press,
1997.

N. Dershowitz and J.P. Jouannaud. Rewrite Sys-
tems. In Handbook of Theoretical Computer Science,
volume B: Formal Models and Semantics, pages 243-
320. Elsevier and The MIT Press, 1990.

I. Durand. Bounded, Strongly Sequential and For-
ward Branching Term Rewriting Systems. Journal
of Symbolic Computation, 18:319-352, 1994.

G. Huet and J.J. Lévy. Computations in orthogonal
term rewriting systems, I and II. In Computational
logic: essays in honour of J. Alan Robinson, pages
396-443. The MIT Press, 1991.

J.W. Klop. Term Rewriting Systems. In Handbook of
Logic in Computer Science, volume 2, pages 1-116.
Oxford University Press, 1992.

J.W. Klop and A. Middeldorp. Sequentiality in Or-
thogonal Term Rewriting Systems. Journal of Sym-
bolic Computation 12:161-195, 1991.

M.J. O’Donnell. Equational Logic as a Programming
Language. The MIT Press, 1985.

R. Strandh. Classes of Equational Programs that
Compile into Efficient Machine Code. In Proc. of
RTA’89, LNCS 355:449-461, Springer-Verlag, 1989.

