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Mi
hael Hanus� Salvador Lu
asy Aart MiddeldorpzAbstra
tThe 
on
ept of de�nitional tree by Antoy serves tointrodu
e 
ontrol information into the bare set ofrules of a 
onstru
tor-based term rewriting system(TRS). TRSs whose rules 
an be arranged into a de�n-itional tree are 
alled indu
tively sequential. By rely-ing on the existen
e of su
h a de�nitional tree, an op-timal rewriting strategy, the outermost-needed strategyis de�ned. Optimality was proved w.r.t. the Huetand L�evy's theory of neededness. In this paper, weprove that strongly sequential and indu
tively sequen-tial 
onstru
tor-based TRSs 
oin
ide. We also showthat outermost-needed rewriting only redu
es stronglyneeded redexes.Keywords: de�nitional trees, neededness, strong se-quentiality, term rewriting, de
larative programming.1 Introdu
tionFor orthogonal TRSs, the best normalizing strategywhi
h avoid unne
essary redu
tions is needed rewrit-ing [7℄. Needed rewriting only 
onsiders needed re-dexes, i.e., redexes whi
h are 
ontra
ted (themselves orsome residual) in every normalizing derivation. Unfor-tunately, it is unde
idable whether a redex is needed.Strongly sequential redexes approximate needed re-dexes. However, redu
tion of strong redexes is 
ostlyto implement [10℄, and some e�orts have been done tosimplify the (strongly) needed redu
tion pro
ess.De�nitional trees [1℄ allow us to de�ne optimalstrategies both in rewriting [1℄ and narrowing [3℄. Ade�nitional tree 
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Example 1.1 Consider the following rules:first(0,x)! [℄first(s(x),y::z) ! y::first(x,z)We give a graphi
 representation of the de�nitional treefor the fun
tion first (Figure 1). The �rst bran
h isdone on the �rst argument (x1) with alternative pat-terns 0 and s(x), where a further bran
h on x2 (withonly one alternative) is ne
essary for the latter pattern.first(x1; x2)���	 ���Rfirst(0; x2)? first(s(x); x2)?[℄ first(s(x); y :: z)?y :: first(x; z)Figure 1: De�nitional tree for the fun
tion firstA fun
tion f , de�ned by rules of a TRS R is indu
tivelysequential if there exists a de�nitional tree P 
ontain-ing all rules de�ning f . R is indu
tively sequential ifall de�ned symbols are indu
tively sequential.Re
ently, de�nitional trees and indu
tively sequen-tial TRS be
ame important for de
larative program-ming languages sin
e they model lazy fun
tional lan-guages with pattern mat
hing and are an adequatebasis to implement optimal evaluation strategies forfun
tional logi
 languages [2℄. Moreover, they 
an beeasily extended to more general 
lasses of TRSs [4℄.The relevan
e of indu
tively sequential TRSs for de-
larative programming languages raised the questionabout their relationship to the 
lassi
al 
on
ept ofstrong sequentiality. In [3℄, the question was raisedwhether the 
lasses of strongly sequential and indu
t-ively sequential 
onstru
tor-based TRSs are the same.In this paper we formally show that the two 
lasses
oin
ide. Furthermore, we generalize the notion ofa de�nitional tree to deal also with non-
onstru
tor-based TRSs. This allows us to 
ompare de�nitionaltrees to other stru
tures used to implement strong se-quentiality, like index trees and forward-bran
hing in-dex trees [6, 11℄, and the mat
hing dags of Huet andL�evy [7℄.A de�nitional tree determines a rewriting strategy,namely the outermost-needed strategy. We prove that1



this strategy is an index redu
tion strategy, i.e., it onlysele
ts strong indi
es for redu
tion. Sin
e we 
an usethe properties of strong indi
es in 
onstru
tor-basedTRSs, our proof is easier than the one in [1℄.In Se
tion 2, we review the te
hni
al 
on
epts usedin the remainder of the paper. In Se
tion 3, we intro-du
e de�nitional trees. Se
tion 4 explores the relationbetween strongly sequential and indu
tively sequentialTRSs. Se
tion 5 
ompares to other approa
hes.2 PreliminariesThis se
tion introdu
es our main notations (see [5, 8℄for full de�nitions). Given a partial order � on a setA and a 2 A, a"= fb 2 A j a � bg is the upward setasso
iated with a. a k b means a 6� b and b 6� a.V denotes a set of variables and � denotes a setof fun
tion symbols ff; g; : : :g, ea
h with a �xed aritygiven by a fun
tion ar : � ! IN. We denote the setof terms by T (�; V ). A k-tuple t1; : : : ; tk of terms isdenoted by ~t, where k will be 
lari�ed by the 
ontext.The set of variables appearing in a term t is denotedby Var(t).Terms are viewed as labeled trees in the usual way.O

urren
es u; v; : : : are represented by 
hains of pos-itive natural numbers used to address subterms of t.O

urren
es are ordered by the standard pre�x order-ing: u � v i� 9v0 su
h that v = u:v0. The emptyo

urren
e is denoted by �. O(t) denotes the set ofo

urren
es of t. The subterm at o

urren
e u of t isdenoted by tju. The term t with the subterm at theo

urren
e u repla
ed with s is denoted by t[s℄u. Thesymbol labeling the root of t is denoted by root(t).A rewrite rule is an ordered pair (l; r), written l !r, with l; r 2 T (�; V ), l 62 V and Var(r) � Var(l).Given a rule l ! r, l is 
alled the left-hand side (lhs)of the rule and r the right-hand side (rhs). A TRS isa pair R = (�; R) where R is a set of rewrite rules.A left-linear TRS is a TRS where every lhs is a linearterm. An orthogonal TRS is a left-linear TRS withoutoverlapping rules, i.e., given a rule l ! r, there is nonon-variable o

urren
e u 2 O(l) su
h that lju uni�eswith a lhs l0 of a rule l0 ! r0 in the TRS (where l ! rand l0 ! r0 are di�erent in 
ase of u = �).A term t rewrites to a term s, written t !R s, iftju = �(l) and s = t[�(r)℄u, for some rule l ! r, u 2O(t) and substitution �. OR(t) = fu 2 O(t) j 9l ! r 2R and � with tju = �(l)g is the set of redex o

urren
esin t.Given a TRS, we split the signature into the disjointunion � = C ℄F of symbols 
 2 C, 
alled 
onstru
tors,having no asso
iated rule and symbols f 2 F , 
alledde�ned fun
tions or operations, whi
h are de�ned by

some rule f(~l) ! r 2 R. Ea
h rule f(~Æ) ! r ina 
onstru
tor-based TRS or 
onstru
tor system (CS )must satisfy f 2 F and ~Æ 2 T (C; V )ar(f).3 De�nitional treesWe generalize the notion of (partial) de�nitional tree(pdt) by using its \de
larative" de�nition (see [2℄). Torepresent unknown parts of a term t we use the symbol
. Terms in T (� [ f
g; V ) are 
alled 
-terms. Todis
uss about unknown portions of expressions, we usethe ordering � on 
-terms given by: 
 � t for allt 2 T (�[f
g; V ), x � x for all x 2 V , and f(~t) � f(~s)if ti � si for 1 � i � ar(f). In this way, t � s means\t is less or equally de�ned than s". O
(t) = fu 2O(t) j tju = 
g is the set of o

urren
es of 
 in t.A de�nitional tree of a �nite set of (in
omparable)
-terms S � T (�[ f
g) with pattern � 2 T (�[ f
g)is a non-empty, ordered set P of 
-terms having thefollowing properties:� There is a minimum element whi
h is the patternof the pdt: min(P) = � (minimum property).� The maximal elements are the elements of S:maximal(P) = S (leaves property).� If �0 2 P , �0 6= �, there is a unique �00 2 P ,�00 < �0, su
h that there is no �000 2 T (� [ f
g)with �00 < �000 < �0 (parent property).� Given �0 2 PnS, there is an o

urren
e u 2O
(�0) (
alled the indu
tive o

urren
e), andsymbols1 f1; : : : ; fn 2 � with fi 6= fj for i 6= j,su
h that, for all �1; : : : ; �n whi
h are immediatelybelow �0, �i = �0[fi(e
)℄u for all 1 � i � n (indu
-tion property).These properties entail S � P � � ". Given a TRSR = (F ℄ C; R), a redex s
heme of R is a lhs of arule l ! r where all variables are repla
ed by 
. LetL
(R) be the set of redex s
hemes of R. Sin
e wedeal with orthogonal TRSs, we assume that a bije
t-ive fun
tion � : L
(R) ! R asso
iates the rule whi
h
orresponds to ea
h redex s
heme. A preredex of a re-dex s
heme l is an 
-term � su
h that � � l. LetL<
(R) = f� j 9l 2 L
(R) with � < lg. For f 2 F ,let Lf
(R) = fl 2 L
(R) j root(l) = fg. f is 
alled in-du
tively sequential if there exists a de�nitional tree Pfwhi
h is a pdt of Lf
(R) with pattern f(e
). R is 
alledindu
tively sequential if all de�ned symbols f 2 F areindu
tively sequential. An indu
tively sequential TRS1In the original de�nition of de�nitional trees, only 
on-stru
tor symbols are allowed.2




an be viewed as a set of de�nitional trees, ea
h de�n-ing a fun
tion symbol. By using a representation fun
-tion pdt, we 
an represent a pdt P of a set S � L
(R)with pattern � as a term pdt(P) as follows:pdt(P) = rule(�(�)) if P = f�g = S.pdt(P) = bran
h(�; u; pdt(P1); : : : ; pdt(Pn)) if P isnot a singleton, where � = min(P), u is the in-du
tive o

urren
e of �, f1; : : : ; fn 2 �, fi 6= fj ifi 6= j, and, for all i, 1 � i � n, Pi is a pdt withpattern �i = �[fi(e
)℄u of the set Si = S \ �i".Example 3.1 Consider the program of Example 1.1.Then (we use 
's instead of variables),bran
h(first(
;
); 1;rule(first(0,y)! [℄);bran
h(first(s(
),
); 2;rule(first(s(x),y::z)! y::first(x,z))))is a de�nitional tree for the fun
tion first (Figure 1).4 Strong sequentiality and in-du
tively sequential TRSsRegarding normalization strategies, the main result ofHuet and L�evy [7, 9℄ is the following: redu
tion ofneeded redexes is normalizing for orthogonal TRSs. Ingeneral, the o

urren
es of su
h needed redexes are un-de
idable, but Huet and L�evy de�ne a 
omputable ap-proximation, the (strong) indi
es. To obtain su
h anapproximation, they use 
-terms.To 
al
ulate indi
es a fun
tion ! is used. It is de�nedby means of a redu
tion relation!
 [9℄: C[t℄!
 C[
℄if t 6= 
 and there exists l 2 L
(R) su
h that t " l,i.e., there exists an 
-term s su
h that t � s and l �s. The relation !
 is 
on
uent and terminating (see[7, 9℄). Let !(t) be the !
-normal form of t. Insteadof the usual de�nition of index, based on the notionof sequential predi
ate, we use an equivalent, simpler
hara
terization (see [7, 9℄).De�nition 4.1 Let t 2 T (�[f
g; V ) and u 2 O
(t).Let � be a fresh 
onstant symbol, and t0 = t[�℄u. Thenu is an index of t i� !(t0)ju = � (sometimes we write� 2 !(t0) for short). The set of indi
es of t is denotedby I(t).Proposition 4.2 ([9℄) If u:v 2 I(t[s℄u), then u 2I(t[
℄u) and v 2 I(s).Proposition 4.3 ([9℄) If u 2 I(t) and t � t0, thenu 2 I(t0[
℄u).

An 
-normal form is an 
-term t su
h that OR(t) = ?and O
(t) 6= ?. Strongly sequential TRSs are de�nedas follows.De�nition 4.4 ([8℄) An orthogonal TRS is stronglysequential if every 
-normal form has an index.When 
onsidering CSs, things are simpler.Proposition 4.5 ([9℄) An orthogonal CS R isstrongly sequential i� 8� 2 L<
(R)nf
g; I(�) 6= ?.We use the following property of indi
es in CSs.Proposition 4.6 ([9℄) Let R be an orthogonal CS.Let u 2 I(t) and s su
h that root(s) 2 F and v 2 I(s).Then u:v 2 I(t[s℄u).A strategy whi
h always redu
es redexes pointed byindi
es is 
alled index redu
tion.Theorem 4.7 ([7℄) Index redu
tion is normalizingfor orthogonal, strongly sequential TRSs.4.1 Indu
tive sequentiality of stronglysequential TRSsLet t 2 T (� [ f
g). t"< is the set of terms whi
h aregreater than t: t"<= fs 2 T (� [ f
g) j t < sg. Givenu 2 O(t), t#u< is the set of terms whi
h are smallerthan t and whose subterm at o

urren
e u is not 
:t#u<= fs 2 T (� [ f
g) j s < t ^ u 2 O(s) ^ sju 6= 
g.Given a set of terms S � L
(R) and an o

urren
eu 2 O(s) for all s 2 S, we de�ne the equivalen
e rela-tion �u by s �u s0 i� root(sju) = root(s0ju), i.e., theterms have the same symbol rooting the subterm atthe o

urren
e u.In the remainder of the paper, given 
-terms �and l 2 � " and an o

urren
e u 2 O(�), we de�ne�(l; �; u) = �"< \ l#u<. The fun
tion nodes builds apdt for a given fun
tion de�nition:nodes(S; �; u) =if S = flg and �(l; �; u) = ? thenrule(�(l))else let �0 = min([l2S�(l; �; u))u0 2 I(�0)fS1; : : : ; Sng = S=�u0in bran
h(�0; u0; nodes(S1; �0; u0); : : : ;nodes(Sn; �0; u0))Lemma 4.8 Let � 2 T (�[f
g), u 2 O
(�) and S ��", su
h that, 9f 2 �:8l 2 S, root(lju) = f and thereexists l 2 S with l#u< 6= ?. Let �S = [l2S�(l; �; u).Then, min(�S) = �[f(e
)℄u.3



Proof. Let �0 = �[f(e
)℄u. Clearly, �0 2 � "<and it is minimal in � "<. Let l 2 S be su
h thatl#u< 6= ?. Clearly, �(l; �; u) 6= ? be
ause, sin
e l 2 �",l#u< 6= ?, and lju 6= 
, we have that �0 2 l#u<. There-fore, �0 is minimal in �(l; �; u). Let �00 2 �(l; �; u).Sin
e root(lju) = f and root(�00ju) 6= 
, it must bethat root(�00ju) = f . Thus �0 � �00. Sin
e �00 is ar-bitrary, it follows that �(l; �; u) has a minimum ele-ment min(�(l; �; u)) = �0. Sin
e this holds for everyl 2 S with l #u< 6= ? and the elements l 2 S withl#u<= ? do not introdu
e new elements in �S , we ob-tain min(�S) = �0. 2The height h of a �nite ordered set is the number ofelements n of the largest stri
t 
hain a = a1 < a2 <� � � < an = b going from a minimal element a to amaximal element b. We de�ne h = 0 if the set is empty.Then, we 
an prove the following result.Theorem 4.9 Let R be an orthogonal, strongly se-quential TRS. Then, for all de�ned symbols f ,nodes(Lf
(R);
; �) is a de�nitional tree for f .Proof. We 
onsider a generi
 
all nodes(S; �; u)under the restri
tions � 2 T (� [ f
g), u 2 O
(�),and S � �" \ L
(R) non-empty and su
h that 9f 2�;8l 2 S, root(lju) = f . First, we prove that nodesbuilds a pdt for S with pattern �[f(e
)℄u. Given l 2 S,let hl denote the height of �(l; �; u). We pro
eed byindu
tion on the height hS = maxl2S(hl) of �S =[l2S�(l; �; u).hS = 0: Note that hS = 0 implies that, for all l 2 S,hl = 0, i.e., �(l; �; u) = ? for all l 2 S. Moreover, or-thogonality implies that S = flg. Otherwise, sin
e forall (distin
t) l; l0 2 S, we have root(lju) = root(l0ju) =f , it holds that �[f(e
)℄u � l and �[f(e
)℄u � l0. Or-thogonality implies that �[f(e
)℄u < l. This means that�(l; �; u) 6= ?, a 
ontradi
tion. Therefore, we are inthe if part of nodes and the 
on
lusion is immediate.hS > 0: Sin
e hS > 0 implies that there is l 2 S withhl > 0, this means that �(l; �; u) 6= ? for this l. Hen
e,we are in the else part of nodes. By de�nition of�(l; �; u), we have l#u< 6= ?. Then, by Lemma 4.8, �0 inthe algorithm is 
orre
tly de�ned as �0 = min(�S) =�[f(~
)℄u. Sin
e �0 < l and l 2 L
(R), by orthogon-ality, �0 is an 
-normal form. By strong sequentiality,there exists u0 2 I(�0). Strong sequentiality ensuresthat, for ea
h l 2 S, lju0 6= 
, i.e., root(lju0 ) = gl 2 �.Otherwise, u0 is not an index, sin
e �0[�℄u0 
an be re-�ned to a redex of l, and hen
e � 62 !(�0[�℄u0) = 
.Sin
e � < �0, the height h0l of �(l; �0; u0) is less thanhl, for ea
h l 2 S. Thus, we apply the I.H.: ea
hPi = nodes(Si; �0; u0), 1 � i � n, is a pdt for Siwith pattern �00i = �0[gi(e
)℄u0 , where gi is the 
ommon

f(
; 
)?f(g(
; 
); 
)?f(g(h(
); 
); 
)?f(g(h(
); a); 
)?
f(
; 
)?f(g(
; 
); 
)?f(g(
; a); 
)?f(g(h(
); a); 
)?Figure 2: Two pdts for fsymbol at o

urren
e u0 of ea
h l 2 Si. Thus, P =bran
h(�0; u0; nodes(S1; �0; u0); : : : ; nodes(Sn; �0; u0))immediately satis�es theminimum and leaves property.By minimality of ea
h �00i in Pi, and by the de�nitionof P , it satis�es the parent and indu
tion propertiestoo.Now we apply nodes to the arguments Lf
(R);
; �in the hypothesis and we obtain the desired result. 2The previous de�nition of nodes was 
loser to ourde�nition of a pdt as a kind of ordered set whi
h sim-pli�ed the proofs. However, using the previous results,we 
an give a more readable version of the algorithm.Remember that �(�) asso
iates with � 2 L
(R) therule l ! r su
h that � is a redex s
heme of l.nodes(S; �; u) =if S = f�g then rule(�(�))else let f = root(lju) for some l 2 S�0 = �[f(e
)℄uu0 2 I(�0)fS1; : : : ; Sng = S=�u0in bran
h(�0; u0; nodes(S1; �0; u0); : : : ;nodes(Sn; �0; u0))4.2 Strong sequentiality of indu
tivelysequential TRSsProposition 4.10 Let Pf be a pdt for the fun
tion fof a CS. Then every indu
tive o

urren
e u in a bran
hnode bran
h(�; u; eP) of Pf satis�es u 2 I(�).Proof. Let Pf = bran
h(�; u; eP). Note that u 2O
(�). By 
ontradi
tion: Sin
e we 
onsider CSs, ifu 62 I(�), then �[�℄u " l for some redex s
heme l inmaximal([P2ePP). Sin
e � < l, this means that thepattern �0 of P , the pdt in eP whi
h 
ontains l, veri�esroot(�0ju) = 
, 
ontradi
ting the de�nition of a pdt,sin
e it must be that root(�0ju) 2 �. 2This result does not hold for arbitrary pdts.4



Example 4.11 Consider the orthogonal TRSf(g(h(x); a); y)! x 
! ag(x; b)! g(h(x); a)Partial de�nitional trees for f are drawn in Figure 2.The indu
tive o

urren
e 1:1 is not an index in thepattern f(g(
;
);
) of the �rst pdt. By using nodes,we obtain the se
ond de�nitional tree for whi
h everyindu
tive o

urren
e is an index.Theorem 4.12 Let R = (�; R) be an indu
tively se-quential CS. Then, R is strongly sequential.Proof. From Proposition 4.5, we prove by 
on-tradi
tion that every proper pre�x 
 < p < l of aredex s
heme l has an index. Assume I(p) = ?.Let 
 < �1 < � � � < �n < l be the 
hain of pat-terns in the bran
h nodes of a pdt for the fun
tionf = root(p) whi
h 
ontains l. It is not possible tohave a �j , 1 � j � n su
h that p � �j . Otherwise,by Proposition 4.10 and Proposition 4.2, p also hasan index. Thus, �i k p for some i, 1 � i � n. Letus 
onsider the maximal � 2 f�1; : : : ; �ng su
h that� � p and � � �i. � exists, be
ause �1 = f(e
), and
 < f(e
) � p < l. Let u be the indu
tive o

urren
efor the bran
h node with pattern �. By Proposition4.10, u 2 I(�). We have pju = 
. Otherwise, sin
ep < l and root(lju) = root(pju), there is �0 > � su
hthat �0 � p and �0 � �i, thus 
ontradi
ting the max-imality of �. By Proposition 4.3, u 2 I(p). 2This theorem does not hold for general strongly se-quential TRSs, as the following example shows.Example 4.13 Consider the following TRS whi
h isnot strongly sequential (from [7℄):f(g(a; x); f(b; y))! x g(d; d)! df(g(x; a); f(
; y))! xf and g admit de�nitional trees, and nodes 
an buildthem, be
ause every redex s
heme has some index.Theorems 4.9 and 4.12 entail our main result.Theorem 4.14 An orthogonal CS is strongly sequen-tial i� it is indu
tively sequential.4.3 Outermost-needed redu
tionA de�nitional tree determines a rewriting strategy,namely the outermost-needed rewriting strategy2:De�nition 4.15 ([1℄) The (partial) fun
tion ' takesarguments t = f(~t), f 2 F and a pdt P su
h thatmin(P) � t, and yields a redex o

urren
e u 2 OR(t):2This is a slightly di�erent de�nition be
ause we do not allowfor exempt nodes as in [1℄. However, it is equivalent.

'(t;P) =8>>>>>><>>>>>>: � if P = rule(�)'(t;Pi) if P = bran
h(�; u;P1; : : : ;Pn)and min(Pi) � t for some iu:'(tju;Pg) if P = bran
h(�; u;P1; : : : ;Pn), (�)root(tju) = g 2 F , andPg is a de�nitional tree for g:Note that, dealing with CSs, the se
ond and third
ases are disjoint. This is be
ause if root(tju) =g 2 F , then sin
e � � min(Pi) for all subpdt Pi ofP = bran
h(�; u;P1; : : : ;Pn), it is not possible to havemin(Pi) � t sin
e root(min(Pi)ju) 2 C. We show that' is equivalent to index redu
tion.Theorem 4.16 Let R be an indu
tively sequential CSand u = '(t;P). Then u is an index of t[
℄u.Proof. Indu
tion on the number of visited de�n-itional trees. In the 
ase base (n = 1), u is � andthe 
on
lusion easily follows. Otherwise (n > 1), theo

urren
e u 
an be split up into u = v:w, where vis an o

urren
e of the pdt P and w has been usedto redu
e tjv and, be
ause R is a CS, root(tjv) 2 F ,with v the indu
tive o

urren
e for some pattern ina bran
h node of P . By Proposition 4.10, v 2 I(�).Sin
e � � t, by Proposition 4.3, v 2 I(t[
℄v). Then,by I.H., w 2 I(tjv [
℄w) and the 
on
lusion follows byProposition 4.6. 2Theorem 4.9 suggests that de�nitional trees 
an beused with general strongly sequential TRSs. Theoutermost-needed strategy, as given in De�nition 4.15
annot be used to su

essfully evaluate a term in gen-eral (i.e., non-
onstru
tor-based) TRSs. For instan
e,
onsider the TRS in Example 4.11, t = f(g(x; b); y)and let Pf be a pdt for the fun
tion f if we try to 
om-pute '(t;Pf ). Then '(t;Pf ) = '(t;P1) are unde�ned,i.e., the strategy 
annot pro
eed. This 
an be solvedby 
hanging (�) in De�nition 4.15 as follows:'(t;P) = u0:v if P = bran
h(�; u;P1; : : : ;Pn),root(�j ju) 6= root(tju) = f 0 2 F , for all j, 1 � j � n;�0 = �[f 0(e
)℄u, and u0 2 O(�0), � < u0 � u isthe minimal o

urren
e su
h that �0ju0 is 
ompatiblewith some redex s
heme, Pg is a de�nitional tree forg = root(�0 ju0), and '(tju0 ;Pg) = v.This works well when 
onsidering CSs (it is equivalentto De�nition 4.15). However, this does not ensure that' is index redu
tion when 
onsidering general TRSs.This 
an be 
lari�ed by 
omparing the strategy withthe standard Huet and L�evy pro
edure, as dis
ussed inthe following se
tion.5



5 De�nitional trees and mat
h-ing dagsTo implement normalizing strategies without look-ahead, the mat
hing dags (dire
ted a
y
li
 graphs)of Huet and L�evy 
an be used with any strongly se-quential TRS. Simpler stru
tures are the index treesof Strandh [11℄ whi
h have been proved equivalent tomat
hing dags by Durand [6℄. An index tree is a �-nite state automaton whi
h has, in addition to theusual transfer fun
tion, also a failure fun
tion. Theset of �nal states is L
(R). Non-�nal states are in-dex points, pairs h�; ui, where � 2 L<
(R), and u isan index of � and both satisfy some spe
ial 
ondi-tions (see [6℄). The initial state is h
; �i. The trans-fer fun
tion, written Æ(s; f), yields a new state of theautomaton, given a state s and a fun
tion symbolf : Æ(h�; ui; f) = h�[f(e
)℄u; vi (or just Æ(h�; ui; f) =�[f(e
)℄u if �[f(e
)℄u 2 L
(R)). The failure fun
tion,�, is �(s) = s0 i� s0 is an immediate failure point ofs. Failure points are states of the automaton whi
hare expe
ted to deal with a failing partial mat
hing,by resuming the mat
hing of a subterm of the 
ur-rently inspe
ted term. In the most general de�nitionof an index tree, some states may not be rea
hable fromthe initial state h
; �i via transfer transitions (using Æ)only. Thus, only the failure fun
tion 
an provide a

essto these nodes of the tree. Orthogonal TRSs whi
h 
anbe given su
h an index tree are 
alled bounded TRSs.Durand proves that the 
lass of bounded TRSs andstrongly sequential TRSs 
oin
ide. The proof is givenby showing that there is an immediate 
orresponden
ebetween the mat
hing dag of Huet and L�evy and theindex trees of Strandh.Strandh de�nes the forward-bran
hing index trees,for whi
h all states of the index tree 
an be rea
hedvia the transfer fun
tion Æ from the initial state.We provide a simple 
onne
tion between indextrees and de�nitional trees: transitions Æ(h�; ui; f1) =h�[f1(e
)℄u; v1i; : : : ; Æ(h�; ui; fn) = h�[fn(e
)℄u; vni 
anbe written as bran
h(�; u;P1; : : : ;Pn), where the pat-tern of ea
h Pi is �i = �[fi(e
)℄u. Ea
h initial trans-ition Æ(h
; �i; f) = hf(e
); ui 
an be seen as the startingpoint of the pdt for the fun
tion f . When 
onsideringforward-bran
hing index trees, the 
orresponden
e iseven 
loser. However, pdts are not equivalent to theprevious stru
tures. For instan
e, 
onsider the boundedTRS (from [6℄)f(g(x; a); a)! a g(b; b)! af(g(a; x); b)! aand the pdts in Figure 3.The patterns and indu
tive o

urren
es of these pdtsare taken by following the index tree for the TRS, as

f(
; 
)���	 ���Rf(
; a)? f(
; b)?f(g(
; 
); a)? f(g(
; 
); b)?f(g(
; a); a)? f(g(a; 
); b)?
g(
; 
)?g(b; 
)?g(b; b)?g(
; 
)?g(
; b)?g(b; b)?Figure 3: pdts for f and g

given in [6℄. Of 
ourse, if we do not do this, we 
annotensure that the 
omposition of the o

urren
es 
on-sidered for the partial mat
hings (whi
h are indi
es ofthe 
orresponding preredexes) is an index. This meansthat, even if we use nodes, that always sele
ts (arbit-rary) indi
es for indu
tive o

urren
es, we 
annot en-sure index redu
tion. But we have more involved situ-ations. For instan
e, if we redu
e t = f(g(�1; �2); a),where �1; �2 are redexes, it is not diÆ
ult to see that '(modi�ed) redu
es the redex �1 whi
h is not a neededredex. This is be
ause, when we fail in mat
hingf(g(
; a); a) (we underline the last 
onsidered o

ur-ren
e, 1:2) against our term, we try to redu
e g(�1; �2)and we must jump to a pdt for g, in order to 
ontinuethe mat
hing. If we have the �rst pdt (re
all that, inour strategy, only one pdt is available), then we 
hooseto redu
e �1. However, �1 is not needed in the whole
ontext, sin
e f(g(�; 
); a) !
 
. With an index tree,the failure fun
tion sele
ts the other pdt for g, whi
hproperly 
ontinues the mat
hing tasks by looking atthe o

urren
e 2 of g(�1; �2). This is 
onsistent withthe situation before the jump.The modi�
ation of ' would work if we 
onsider for-ward bran
hing TRSs (be
ause they do not have su
hadditional nodes) and we use pdts having the same pat-tern and indu
tive o

urren
es as the 
orrespondingforward-bran
hing index tree. The previous TRS is notforward-bran
hing. However, even with su
h modi�
a-tions, we loose eÆ
ien
y, be
ause, having a very simplede�nition of the failure fun
tion (we always jump tothe root node of a new pdt), we would read more thanon
e some symbols. Therefore, it seems that there isno advantage in using pdts with general TRSs.6
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