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Abstract

Functional and logic programming are the most important declarative programming
paradigms, and interest in combining them has grown over the last decade. However,
integrated functional logic languages are currently not widely used. This is due to the
fact that the operational principles are not well understood and many different evalu-
ation strategies have been proposed which resulted in many different functional logic
languages. To overcome this situation, we propose the functional logic language Curry
which is intended to become a standard language in this area. It includes important
ideas of existing functional logic languages and recent developments, and combines the
most important features of functional and logic languages. Thus, Curry can be the basis
to combine the currently separated research efforts of the functional and logic program-
ming communities and to boost declarative programming in general. Moreover, since
functions provide for more efficient evaluation strategies and are a declarative replace-
ment of some impure features of Prolog (in particular, pruning operators), Curry can
be also used as a declarative successor of Prolog.

1 Motivation

During the last decade, many proposals have been made to combine the most important declar-
ative programming paradigms (see [15] for a survey). Functional logic languages offer features
from functional programming (reduction of nested expressions, higher-order functions) and logic
programming (logical variables, partial data structures, search for solutions). Compared to pure
functional languages, functional logic languages have more expressive power due to the use of log-
ical variables and built-in search mechanisms. Compared to pure logic languages, functional logic
languages have more efficient evaluation mechanisms due to the (deterministic!) reduction of func-
tional expressions (see [8, 13, 17] for discussions about the efficiency improvements of functional
logic languages in comparison to Prolog). Thus, impure features of Prolog to restrict the search
space, like the cut operator, can be avoided in functional logic languages. However, there is no
obvious way to combine the search facilities of logic programming with efficient evaluation princi-
ples of functional programming. Functional approaches (i.e., (lazy) lists of successes [39]) require a
directed data flow and do not allow partially instantiated data structures. Approaches which allow
an arbitrary data flow have a tradeoff between completeness and efficiency (see discussion below
on residuation and narrowing). As a consequence, quite different methods to integrate functional
and logic languages have been proposed in the past. The most promising operational principles are
residuation and narrowing.
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Residuation is based on the idea to delay function calls until they are ready for deterministic
evaluation. The residuation principle is used, for instance, in the languages Escher [22, 23], Le Fun
[2], Life [1], NUE-Prolog [32], and Oz [38]. Since the residuation principle evaluates function calls
by deterministic reduction steps, nondeterministic search must be explicitly encoded by predicates
[1, 2, 32] or disjunctions [37]. The residuation principle is a reasonable integration of the functional
and the logic paradigm since it combines the deterministic reduction of functions with partial data
structures (logical variables). Moreover, it allows concurrent computation with synchronization on
logical variables. However, it has also two disadvantages. Firstly, it is incomplete, i.e., it is unable to
compute solutions if arguments of functions are not sufficiently instantiated during the computation.
Secondly, it is not clear whether this strategy is better than Prolog’s resolution strategy since there
are examples where residuation has an infinite search space whereas the equivalent (flattened)
Prolog program has a finite search space [16].

Functional logic languages with a complete operational semantics, e.g., ALF [12], Babel [28],
K-Leaf [9], LPG [6], SLOG [8], are mainly based on narrowing, a combination of the reduction
principle of functional languages with unification for parameter passing. Narrowing provides com-
pleteness in the sense of functional programming (normal forms are computed if they exist) as
well as logic programming (solutions are computed if they exist). However, in order to compete
with Prolog’s resolution strategy, sophisticated narrowing strategies are required. Innermost or
eager narrowing is equivalent to Prolog’s left-to-right strategy if function calls are flattened into
predicates. However, nested functional expressions allow the application of deterministic reduction
steps between nondeterministic narrowing steps. Since such normalizing narrowing strategies can
largely reduce the search space in comparison to pure logic programs, they form the basis of lan-
guages like ALF [12], LPG [6], or SLOG [8]. Since many modern functional languages are based on
lazy evaluation, most recent work has concentrated on lazy narrowing strategies [7, 9, 26, 28, 36].
Similarly to lazy evaluation in functional languages, lazy narrowing evaluates an inner term only
when its value is demanded to narrow an outer term. Thus, lazy narrowing avoids unnecessary
computations of inner subterms and supports typical functional programming techniques like in-
finite data structures. In contrast to functional languages, a naive version of lazy narrowing may
evaluate the same argument several times and may run into infinite loops (in contrast to eager
narrowing!) due to the nondeterministic choice of a function’s rewrite rules. Therefore, several
methods have been proposed aiming at evaluating arguments commonly demanded by all rules
before the nondeterministic choice [5, 11, 24, 27]. Among these different lazy narrowing strategies,
there is one, called needed narrowing [5], which is optimal w.r.t. the length of derivations and the
number of computed solutions. This clearly shows the advantages of integrating functions into
logic programs: by transferring results from functional programming to logic programming, we
obtain better and, for particular classes of programs, optimal evaluation strategies without loosing
the search facilities. Defining functions is not a burden to the programmer since most predicates
of application programs are functions. Moreover, the knowledge about functional dependencies
can avoid useless computations (of arguments which are not needed) and increase the number of
deterministic evaluation steps.

Improving the evaluation strategy is also a topic in logic programming [33]. However, most of
the proposals are ad hoc (“cut”) or do not exploit the full power of deterministic evaluations (An-
dorra model).! Therefore, functional logic languages improve logic languages by avoiding impure
control features. Hence, functions are a declarative notion to improve control in logic programming.
Moreover, they provide for useful functional programming techniques and lead to clearer programs.

!The Andorra computation model [18] prefers the evaluation of literals where at most one clause is applicable. In
case of clauses with overlapping left-hand sides, there may be several clauses applicable leading to the same result.
The possible pruning of the computation space in these cases is not covered by the Andorra model.



The currently existing functional logic languages cover only particular aspects of known results
in this area and modern functional and logic languages in general. Therefore, the main motivation
for Curry is to provide an integrated functional logic programming language which covers all im-
portant aspects of modern functional as well as logic languages. It should combine the best ideas
of existing declarative languages, including

1. Haskell [20] and SML [25] (functional languages)
2. Godel [19] and AProlog [30] (logic languages)
3. ALF [12], Babel [28], and Escher [22, 23] (functional logic languages)

Curry does not subsume each of these language but combines important aspects of them in a prac-
tical and comprehensive way. In the following, we will describe the functional logic language Curry
which is based on the ideas described above. In the next section we will outline the operational
semantics. In Section 3 we sketch the other important features of the language.

2 Operational Semantics

As discussed in the previous section, there is no clear view about the best operational semantics of
functional logic languages. Residuation allows the efficient deterministic evaluation of function calls
and provides for concurrent programming techniques, whereas narrowing is the basis of a complete
and, for inductively sequential programs [5], optimal evaluation strategy but requires the imple-
mentation of search features. Although search can be costly and problematic in conjunction with
I/0O operations, it is one of the important extensions of pure functional programming. Therefore,
Curry is based on a combination of narrowing and residuation. If the user does not specify any
evaluation strategy, Curry chooses a strategy which is complete in the sense of functional and logic
programming;:

1. If there exists a solution to a goal, this solution (or a more general one) is computed.?
2. If an expression is reducible to some value (data term), Curry computes this value.?

In order to satisfy these requirements, Curry applies a sophisticated lazy narrowing strategy [5,
14, 24, 27]. However, if the programmer prefers another strategy, he can annotate functions with
evaluation restrictions.* These evaluation restrictions specify that a function will not be evaluated
until the arguments have a particular form. For instance, consider the concatenation on lists defined
by®

function append: [A] -> [A] -> [A]

append [] L=1L

’In order to implement Curry efficiently on sequential architectures, Curry implements search by backtracking
which may cause incompleteness in the Prolog sense. However, the user is free to choose a breadth-first search
strategy by particular search operators (see below).

3Ground terms based on functions defined by unconditional rewrite rules are evaluated in a fully deterministic
way. However, if functions are defined by conditional rules with extra variables in conditions, some search may be
necessary in order to apply such reduction rules. In this case, completeness depends on the completeness of the search
strategy.

*Evaluation restrictions are comparable to coroutining declarations [31] in Prolog where the programmer specifies
conditions under which a literal is ready for a resolution step. Moreover, they describe the strategy to evaluate
different and nested arguments.

®The list notation is similar to Prolog. The type [A] denotes all lists with elements of type A.



append [E|IR] L = [E | append R L]

Without any evaluation restrictions, Curry computes the answer L=[1,2] to the goal equation
append L [3,4] == [1,2,3,4] by narrowing. However, if the evaluation restriction

eval append 1:rigid

is added, an append call is only reduced if the first argument is not headed by a defined function
symbol and different from a logical variable,® otherwise the call is delayed. Such evaluation restric-
tions are implicit in Le Fun [2] and Life [1], explicit in Escher [22, 23], and automatically generated
in NUE-Prolog [32]. Using evaluation restrictions, the programmer can specify any evaluation strat-
egy between lazy narrowing and residuation. In this case the programmer is responsible to ensure
that solutions can be computed even with the restricted evaluation strategy. On the other hand,
there are program analysis methods which provide sufficient criteria to ensure the completeness of
residuation [16].

In contrast to logic programming, functional logic programs contain nested function calls. Fur-
thermore, the evaluation of some arguments is necessary only if some other arguments are evaluated
to particular values. This is demonstrated by the following definition of the less-or-equal predicate
on natural numbers represented by terms built from 0 and s:

function leq: nat -> nat -> bool

leq O N = true
leq (s M) O = false
leq (s M) (s N) =leqM VN

Consider a function call like (1eq e; e3). In order to apply some reduction rule, the first argument
e1 must always be evaluated to head-normal form (i.e., to a term without a defined function symbol
at the top). However, the second argument must be evaluated only if the first argument has the
form (s e).” This dependency between the first and the second argument can be expressed by the
evaluation restriction

eval leq 1:(s => 2)

which specifies that the first argument is evaluated at the beginning and the second argument is
only evaluated if the first argument has the constructor s at the top. In the general case, we can
also specify deeper positions in arguments and nondeterministic selection of arguments in case of
overlapping rules. Thus, evaluation restrictions uses definitional trees [4] and its generalizations
[17, 24] which have been shown useful to specify sophisticated evaluation strategies for functional
logic programs. Moreover, they can be mixed with information to specify that rules should not
be applied if there is a logical variable at some argument position. For instance, the evaluation
restriction

eval leq 1:rigid(s => 2:rigid)
specifies the obvious residuation strategy for legq.

In order to support eager evaluation strategies where arguments are reduced to normal form
instead of head normal form, we also permit the annotation nf (similar to rigid). One possibility

is to generate such annotations automatically by a “demandedness” analyzer.® Other reasonable
extensions of evaluation restrictions are cyclic patterns to specify refined evaluation strategies [27].

SFor arguments of functional type, rigid also requires that it is not of the form F e;...en, i.e., a (partial)
application of an unknown function.

"Naive lazy narrowing strategies may also evaluate the second argument in any case. However, as shown in [5],
the consideration of dependencies between arguments is essential to obtain optimal evaluation strategies.

®In contrast to functional languages, strictness is not sufficient to safely replace lazy by (more efficient) eager
evaluation in functional logic languages.



The general form of evaluation restrictions is defined in Appendix A.

3 Language Features

In this section we discuss various features of Curry.

3.1 Type System

Modern functional languages (e.g., Haskell [20], SML [25]) allow the detection of many programming
errors at compile time by the use of polymorphic type systems. Similar type systems are also used
in modern logic languages (e.g., Goédel [19], AProlog [30]). Curry has a polymorphic type system
similar to Haskell, including type classes. Since Curry is a higher-order language, function types
are written in their curried form 7y -> 75 -> --- => 7, -> 7 where 7 is not a functional type. In
this case, m is called the arity of the function.

Curry distinguishes between functions to construct data types, called constructors, and defined
functions operating on these data types. Constructors are introduced by data type declarations like

datatype bool = true | false
datatype nat = 0 | s nat
datatype tree A = leaf A | node (tree A) A (tree A)

The extension of this type system to Haskell’s type classes is a topic for future work.

3.2 Function Declarations

Functions are defined by a type declaration of the form

function fimq -> 1 => -+ => T, > T
where 7, ..., 7,, T are polymorphic types and 7 is not a functional type, followed by conditional
equations of the form

ftl... t, =t <= C

where the conditional part “<= C” can be omitted. The left-hand side consists of the function
symbol applied to a sequence of n patterns (i.e. variables or (full) applications of constructors to
patterns). Note that defining rules of higher-type, e.g., £ = g if £ and g are of type nat -> nat,
are excluded since this would cause a gap between the standard notion of higher-order rewriting
and the corresponding equational theory [34]. Therefore, an equation £ = g between functions is
interpreted in Curry as syntactic sugar for the corresponding equation £ X = g X on base types.

The condition C (also sometimes called a goal) is a conjunction of Boolean expressions and
strict equations of the form [==r. A strict equation is provable if the left- and right-hand side are
reducible to unifiable constructor terms.” Note that strict equality is the only sensible notion of
equality in the presence of nonterminating functions [9, 28]. A Boolean expression is built from
Boolean functions, predefined Boolean operators like “,” (and), “;” (or) and not[28]. not changes
true to false and vice versa; it is not handled by finite failure.

In order to ensure the well-definedness and determinism of a function specified by several equa-
tions, additional non-ambiguity requirements are necessary (see [28] for details). In contrast to
functional languages, we allow extra variables in the conditions, i.e., variables which do not occur

°In the theoretical setting, a strict equation is provable only if both sides are reducible to the same ground con-
structor term. Since goal variables are only instantiated to constructor terms, we can delay the ground instantiation
of variables by unifying both sides which permits to deal with partial data structures as in Prolog (see [10, 24] for a
more detailed discussion on this subject).



in the left-hand side. These extra variables provide the power of logic programming since a search
for appropriate values is necessary in order to apply a conditional rule with extra variables.

Note that Curry has no special notation for predicates since they can be defined as Boolean
functions. Facts and rules are represented by the defining equations

pti...t, = true
pti...ty true <= p1 S11---Stnis---»> Pk Skl---Skn,

The functional notation of predicates provides for more deterministic evaluations than the relational
form.

3.3 Higher-order Features

Curry is a higher-order language supporting the common functional programming techniques by
partial function applications and lambda abstractions. For instance, the well-known map function
is defined in Curry by

function map: (A -> B) -> [A] -> [B]

map F [] = [

map F [E|L] = [(F E)Imap F L]
However, there is an important difference to functional programming. Since Curry is also a logic
language, it allows logical variables also for functional values, i.e., it is possible to evaluate the
goal equation map F [1 2] == [2 3] which has, for instance, a solution F=inc if inc is the incre-
ment function on natural numbers. There are different proposals to deal with higher-order logical
variables. In general, higher-order unification is necessary to compute all solutions to such goals
[30, 35]. If logical variables at function positions are quantified over all (partial applications of)
defined functions instead of all lambda expressions, higher-order unification can be avoided and
replaced by an enumeration of all (type-conform) function symbols [10, 40]. A third alternative is
to delay the application of unknown functions until the function becomes known [2, 38]. This last
alternative can be implemented by residuation using the following special apply function:

function applyIfKnown: (A -> B) -> A -> B
eval applyIfKnown 1:rigid
applyIfKnown F A = (F A)

Thus, Curry supports only the first and second alternative. Curry provides a restricted form of
higher-order unification (since the left-hand sides of function definitions are required to be patterns,
in contrast to AProlog [30]) and an annotation for function variables specifying that these variables
are quantified only over all function symbols occurring in the program.

Lambda terms are a useful data structure to capture the notion of bound variables and provide
a comfortable way to manipulate programs as objects [30]. Lambda terms in left-hand sides of
defining rules can be used to manipulate objects with bound variables and to capture the notion of
scope in the object language. The following example contains a few rules of a symbolic differentia-
tion function where Curry’s abbreviation for equations of higher-order type is used (cf. Section 3.2):

function diff: (real -> real) —-> real -> real

diff MX.F = XX.0

diff XX.X = XX.1

diff AX.(sin (F X)) = MX.(cos F X) * diff (AY.F Y) X

In the first rule, the variable F denotes an arbitrary function which does not depend on X (otherwise,
the argument must have the form AX.F(X)). Therefore, AX.F matches only lambda abstractions



where the body has no occurrence of the parameter, i.e., AXX.F matches only constant functions.
Note that higher-order unification is necessary to correctly treat bound variables.

3.4 Encapsulated Search

Global search, possibly implemented by backtracking, must be avoided in some situations (user-
control of efficiency, concurrent computations, non-backtrackable I/0). Hence it is sometimes nec-
essary to encapsulate search in parts of larger programs. Search can take place in Curry whenever
an argument must be evaluated with a logical variable as its actual value. In this case, the com-
putation must follow different branches with different substitutions applied to the current goal.
To give the programmer control on the actions taken in this situation, Curry provides a search
operator similar to that of Oz [37]. However, in Curry it is not necessary to define a function by
disjunctions in order to apply the search operator. Thus, the encapsulation of search is initiated
by the caller and not visible in the definition of the called functions. This has the advantage that
the same function can be used for deterministic evaluation or search depending on the structure of
the actual arguments (ground terms or free variables).

Since search is used to find solutions to some Boolean expression, search is always initiated by
some goal containing a search variable for which a solution should be computed.'? Since the search
variable may be bound to different solutions in different search paths, they must be abstracted.
Therefore, a search goal has the form Az.g where x is the search variable contained in the goal g¢.
To describe the result of the search steps, Curry offers a predefined data type

datatype searchspace A = failed | solved (A -> bool) | distributed [A -> booll]

Intuitively, failed represents a failed search, solved Az.g denotes a successful search where g is
a satisfiable goal, and distributed [Az.¢;,...,Az.g,] represents an intermediate search state.
distributed [Az.¢1,...,Ax.gp] can be understood as a disjunction of goals. Moreover, there is
a predefined function

function solve: (A -> bool) -> searchspace A

where solve Az.g evaluates the goal until it is not further reducible and unsatisfiable (in this case
the result is failed), it is not further reducible but satisfiable (in this case the result is solved Az.¢'
representing the simplified goal), or it can be reduced to n different goals Az.g,...,\z.g, by a
nondeterministic narrowing step, i.e., there are at least n different rules applicable to the goal (in
this case the result is distributed [Az.g1,...,Az.gp]). Thus, solve evaluates a goal at most
until the first nondeterministic step occurs. In this case, it exposes an intermediate state of the
search to the user, who can decide in which direction the search space should be explored further.
For instance, the result of solve AL.(append L [] == [0]) is

distributed [AL.(L==[1,[]1==[0]), AL.3X3L1(L==[X|L1],[X|append L1 [1]1==[0]1)]

(Curry also provides existential quantifiers, see Section 3.7). To avoid conflicting variable bindings
caused by distributed goals, solve requires an argument without free variables. A depth-first search
strategy can be formulated as:

function depthfirst: [A -> bool] -> searchspace A
depthfirst [] = failed
depthfirst [X|Xs] =
case solve X of
failed: depthfirst Xs
solved Y: solved Y

10The generalization to more than one search variable is straightforward by using tuples.



distributed [Z|Zs]:
case depthfirst [Z] of
solved V: solved V
failed: depthfirst (append Zs Xs)

Besides depth-first search, which computes only the leftmost solution, many other kinds of search
strategies can be specified, including breadth-first search, collecting all solutions in a list, etc. A
library of typical search strategies is provided, such that the casual user does not have to bother
on how to implement them.

The search operators can be used in top-level goals as well as in conditions of rules. For instance,
we can compute by (depthfirst [AL.(append L [1] == [0,1]1)]) == S a solution of this goal.
If S is of the form solved G, we can bind by the application G X a global variable X to the value
ol.

3.5 Monadic I/O

Curry provides a declarative model of I/O by considering I/O operations as transformations on
the outside world. In order to avoid dealing with different versions of the outside world, it must
be ensured that at each point of a computation only one version of the world is accessible. This
ensured by using monadic I/0O like in Haskell and by requiring that I/O operations are not allowed
in program parts where nondeterministic search is possible. Thus, all search must be encapsulated
between 1/O operations. Using the evaluation restrictions, the compiler is able to detect functions
where search is definitely avoided (if all evaluated positions are declared as rigid). In combination
with search operators, the compiler can infer that search will not take place ensuring well-defined
declarative I/O operations.

3.6 Constraints

The integration of predefined data types by the use of constraints has been shown useful in logic
programming. Hence constraints are a necessary feature of any modern logic programming lan-
guage. However, the combination of arbitrary constraints with sophisticated narrowing strategies
is a topic for current and future research. As a consequence, the current version of Curry does not
support arbitrary constraints. Curry provides disequality constraints [21] as a method to express
negative information. The inclusion of other constraint systems like arithmetic constraints, finite
domains, feature terms or record structures by a uniform interface is a topic for future extensions.

3.7 Implication and Quantifiers

Implication and quantifiers inside conditions are a useful feature of higher-order logic languages
[29, 30] since they are a declarative alternative to some impure features of Prolog, in particular,
assert and retract. Moreover, they provide scoping constructs in logic programming. Therefore,
Curry supports these features. When evaluating an implication rules => e, rules are added to the
program while evaluating e. The value of the implication is the value of e. If the evaluation of e
fails or is finished, rules are removed from the program.

The combination of quantifiers and implications provide for scoping constructs to improve the
structure of larger programs. For instance, if a predicate select is only an auxiliary predicate to
define the predicate perm, it should be made local to perm. This is possible by the use of quantifiers
and implications:

perm([1,[1)



perm([E|L], [FIM]) <=
(Vselect (VEVL(select (E, [EIL],L)) A
VEVFVLVM (select (E, [FIL], [FIM]) <= select(E,L,M)))
=> select (F, [E|IL],N), perm(N,M))

The scope of the name of the auxiliary predicate select is restricted by the quantifier Vselect
inside the second clause of perm (see [29] for more examples for scoping constructs). Of course, the
user is not forced to use this awkward notation since Curry offers where clauses as syntactic sugar
for the previous clauses:

perm([]1,[1)
perm([E|L],[FIM]) <= select(F,[E|L],N), perm(N,M)
where select(E,[E|L],L)
select(E,[F|L],[FIM]) <= select(E,L,M)

3.8 Modules

The design of a module system for Curry is not influenced by the functional logic features of Curry.
Therefore, the current version of Curry uses a standard module system similar to ALF’s [12] or
Godel’s [19]. The extension to a more sophisticated module system like in SML [25] is a topic for
future extensions.

4 Example

Let us consider an example program in order to demonstrate some features of Curry. We want to
compute all homomorphisms between two abelian groups. The homomorphism condition is checked
for all pairs of elements of the first group.

function hom: [nat] -> (nat->nat->nat)
-> [nat] -> (nat->nat->nat) -> (nat -> nat) -> bool
hom G1 Opl G2 Op2 F = and [ test Opl Op2 F X Y | X <- G1, Y <~ Gi]
function test: (nat->nat->nat) -> (nat->nat->nat) -> (nat -> nat)
-> mnat -> nat -> bool
test Opl Op2 F X Y = true <= 0p2 (FX) (FY) ==F (Op1 XY)

A valid query for the above program is
hom [0,1,2,3] add4 [0,1] add2 mod2

which would check, whether the remainder of the division by 2 (mod2) is a homomorphism between
the groups ({0,1,2,3}, add4) and ({0,1}, add2), where add4 and add2 are the addition modulo 4
and modulo 2, respectively. mod2, add4, and add2 as well as the conjunction and of list elements, are,
among others, assumed to be predefined by appropriate rules. [ test X Y | X <= G1, Y <- G1]
is a list comprehension (see e.g. [20]), and denotes the list of values test X Y where X and Y range
over the elements of the first group G1.

The above goal can already be handled in “ordinary” functional (logic) languages. However,
Curry allows a goal like the following, which requires (generalized) higher order unification:

hom [0,1,2,3] add4 [0,1] add2 F
Here, the variable F is bound to a homomorphism between the two groups. Thus, Curry allows to
search for functions. A possible solution is F=mod2. Note that Curry also considers solutions which

are composed of projections, constructor symbols and defined functions (in contrast to AProlog)
(see [3] for more details).



5 Implementation

Although this paper describes only the design of Curry, we will also briefly discuss some implementa-
tion aspects. Curry combines very powerful concepts. However, Curry contains various restrictions
that allow an efficient implementation by transferring known implementation techniques to Curry.
The omission of defined function symbols in arguments of left-hand sides of function definitions
provide for efficient evaluation strategies (see [15] for a survey of different strategies and the im-
portance of constructor-based rules). The restriction to patterns in left-hand sides ensure that
full higher-order unification is rarely used [35]. Moreover, the evaluation restrictions permit the
definition of application-specific evaluation strategies. However, in this case the programmer is
responsible to ensure the completeness of his strategy.

6 Conclusions

From the (informal) description of Curry in the previous sections it should be clear that Curry is a
real integration of functional and logic languages since it covers most aspects of both paradigms. For
functional programming, Curry provides higher-order functions, lazy evaluation and deterministic
evaluation of ground expressions. Logic programming features are supported by logical variables,
partial data structures and search facilities. It is interesting to note that each purely logic program
can be simply mapped into a Curry program by mapping each clause p :- pi,...,pn into the
equation

p=true <= pi,...,Pn
If the evaluation restriction of the conjunction is 1: (true => 2), Curry’s narrowing strategy is
equivalent to Prolog’s left-to-right resolution strategy. However, without any evaluation restrictions,
Curry is free to choose a more sophisticated strategy which prefer deterministic evaluations in
literals other than the leftmost one.

By the availability of several new features in comparison to pure logic programming, Curry
avoids the following impure constructs of Prolog:

(A3}
b

e The cut and similar pruning operators are replaced by the deterministic evaluation of func-
tions (note that there is no direct replacement of the cut in Curry since deterministic function
evaluation corresponds to “green cuts” due to the complete operational semantics of Curry).

e The call predicate is replaced by the higher-order features of Curry.
e Many applications of assert and retract can be eliminated using implications in conditions.

e The I/0 operations of Prolog are replaced by the declarative monadic I/O concept of func-
tional programming.

Although not every impure Prolog program can be directly mapped into a Curry program, we think
that Curry is a suitable declarative alternative for most application problems written in Prolog.

The present proposal is far from its final shape. Its purpose is to stimulate the discussion
on a standardized functional logic language. Many aspects have not yet been addressed and may
have to be included, for instance, metaprogramming features, default rules, bounded quantification,
constraints, a dedicated software environment (e.g. a debugger).
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A Evaluation Restrictions

The general form of evaluation restrictions is “eval f restriction” where restriction is defined by the
following grammar:

restriction = position [ :annotation | % evaluate position
| restriction or restriction % alternative argument evaluations

position = number
number . position

annotation = rigid [ (crestriction™) | % proceed if position is rigid
|  nf[ (crestriction*) ] % compute normal form
| (crestriction®) % proceed in any case
crestriction = ¢ => restriction % c is a constructor
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