
Curry: A Truly Fun
tional Logi
 Language

Mi
hael Hanus Herbert Ku
hen

RWTH Aa
hen

�

Juan Jos�e Moreno-Navarro

Universidad Polit�e
ni
a Madrid

y

In Pro
. ILPS'95 Workshop on Visions for the Future of Logi
 Programming,

Portland (USA), De
ember 1995, pp. 95{107

Abstra
t

Fun
tional and logi
 programming are the most important de
larative programming

paradigms, and interest in
ombining them has grown over the last de
ade. However,

integrated fun
tional logi
 languages are
urrently not widely used. This is due to the

fa
t that the operational prin
iples are not well understood and many di�erent evalu-

ation strategies have been proposed whi
h resulted in many di�erent fun
tional logi

languages. To over
ome this situation, we propose the fun
tional logi
 language Curry

whi
h is intended to be
ome a standard language in this area. It in
ludes important

ideas of existing fun
tional logi
 languages and re
ent developments, and
ombines the

most important features of fun
tional and logi
 languages. Thus, Curry
an be the basis

to
ombine the
urrently separated resear
h e�orts of the fun
tional and logi
 program-

ming
ommunities and to boost de
larative programming in general. Moreover, sin
e

fun
tions provide for more eÆ
ient evaluation strategies and are a de
larative repla
e-

ment of some impure features of Prolog (in parti
ular, pruning operators), Curry
an

be also used as a de
larative su

essor of Prolog.

1 Motivation

During the last de
ade, many proposals have been made to
ombine the most important de
lar-

ative programming paradigms (see [15℄ for a survey). Fun
tional logi
 languages o�er features

from fun
tional programming (redu
tion of nested expressions, higher-order fun
tions) and logi

programming (logi
al variables, partial data stru
tures, sear
h for solutions). Compared to pure

fun
tional languages, fun
tional logi
 languages have more expressive power due to the use of log-

i
al variables and built-in sear
h me
hanisms. Compared to pure logi
 languages, fun
tional logi

languages have more eÆ
ient evaluation me
hanisms due to the (deterministi
!) redu
tion of fun
-

tional expressions (see [8, 13, 17℄ for dis
ussions about the eÆ
ien
y improvements of fun
tional

logi
 languages in
omparison to Prolog). Thus, impure features of Prolog to restri
t the sear
h

spa
e, like the
ut operator,
an be avoided in fun
tional logi
 languages. However, there is no

obvious way to
ombine the sear
h fa
ilities of logi
 programming with eÆ
ient evaluation prin
i-

ples of fun
tional programming. Fun
tional approa
hes (i.e., (lazy) lists of su

esses [39℄) require a

dire
ted data
ow and do not allow partially instantiated data stru
tures. Approa
hes whi
h allow

an arbitrary data
ow have a tradeo� between
ompleteness and eÆ
ien
y (see dis
ussion below

on residuation and narrowing). As a
onsequen
e, quite di�erent methods to integrate fun
tional

and logi
 languages have been proposed in the past. The most promising operational prin
iples are

residuation and narrowing.

�

Informatik II, RWTH Aa
hen, D-52056 Aa
hen, Germany, fhanus,herbertg�informatik.rwth-aa
hen.de

y

Departamento LSIIS, Fa
ultad de Inform�ati
a, Boadilla del Monte, 28660 Madrid, Spain, jjmoreno�fi.upm.es

1

Residuation is based on the idea to delay fun
tion
alls until they are ready for deterministi

evaluation. The residuation prin
iple is used, for instan
e, in the languages Es
her [22, 23℄, Le Fun

[2℄, Life [1℄, NUE-Prolog [32℄, and Oz [38℄. Sin
e the residuation prin
iple evaluates fun
tion
alls

by deterministi
 redu
tion steps, nondeterministi
 sear
h must be expli
itly en
oded by predi
ates

[1, 2, 32℄ or disjun
tions [37℄. The residuation prin
iple is a reasonable integration of the fun
tional

and the logi
 paradigm sin
e it
ombines the deterministi
 redu
tion of fun
tions with partial data

stru
tures (logi
al variables). Moreover, it allows
on
urrent
omputation with syn
hronization on

logi
al variables. However, it has also two disadvantages. Firstly, it is in
omplete, i.e., it is unable to

ompute solutions if arguments of fun
tions are not suÆ
iently instantiated during the
omputation.

Se
ondly, it is not
lear whether this strategy is better than Prolog's resolution strategy sin
e there

are examples where residuation has an in�nite sear
h spa
e whereas the equivalent (
attened)

Prolog program has a �nite sear
h spa
e [16℄.

Fun
tional logi
 languages with a
omplete operational semanti
s, e.g., ALF [12℄, Babel [28℄,

K-Leaf [9℄, LPG [6℄, SLOG [8℄, are mainly based on narrowing, a
ombination of the redu
tion

prin
iple of fun
tional languages with uni�
ation for parameter passing. Narrowing provides
om-

pleteness in the sense of fun
tional programming (normal forms are
omputed if they exist) as

well as logi
 programming (solutions are
omputed if they exist). However, in order to
ompete

with Prolog's resolution strategy, sophisti
ated narrowing strategies are required. Innermost or

eager narrowing is equivalent to Prolog's left-to-right strategy if fun
tion
alls are
attened into

predi
ates. However, nested fun
tional expressions allow the appli
ation of deterministi
 redu
tion

steps between nondeterministi
 narrowing steps. Sin
e su
h normalizing narrowing strategies
an

largely redu
e the sear
h spa
e in
omparison to pure logi
 programs, they form the basis of lan-

guages like ALF [12℄, LPG [6℄, or SLOG [8℄. Sin
e many modern fun
tional languages are based on

lazy evaluation, most re
ent work has
on
entrated on lazy narrowing strategies [7, 9, 26, 28, 36℄.

Similarly to lazy evaluation in fun
tional languages, lazy narrowing evaluates an inner term only

when its value is demanded to narrow an outer term. Thus, lazy narrowing avoids unne
essary

omputations of inner subterms and supports typi
al fun
tional programming te
hniques like in-

�nite data stru
tures. In
ontrast to fun
tional languages, a naive version of lazy narrowing may

evaluate the same argument several times and may run into in�nite loops (in
ontrast to eager

narrowing!) due to the nondeterministi

hoi
e of a fun
tion's rewrite rules. Therefore, several

methods have been proposed aiming at evaluating arguments
ommonly demanded by all rules

before the nondeterministi

hoi
e [5, 11, 24, 27℄. Among these di�erent lazy narrowing strategies,

there is one,
alled needed narrowing [5℄, whi
h is optimal w.r.t. the length of derivations and the

number of
omputed solutions. This
learly shows the advantages of integrating fun
tions into

logi
 programs: by transferring results from fun
tional programming to logi
 programming, we

obtain better and, for parti
ular
lasses of programs, optimal evaluation strategies without loosing

the sear
h fa
ilities. De�ning fun
tions is not a burden to the programmer sin
e most predi
ates

of appli
ation programs are fun
tions. Moreover, the knowledge about fun
tional dependen
ies

an avoid useless
omputations (of arguments whi
h are not needed) and in
rease the number of

deterministi
 evaluation steps.

Improving the evaluation strategy is also a topi
 in logi
 programming [33℄. However, most of

the proposals are ad ho
 (\
ut") or do not exploit the full power of deterministi
 evaluations (An-

dorra model).

1

Therefore, fun
tional logi
 languages improve logi
 languages by avoiding impure

ontrol features. Hen
e, fun
tions are a de
larative notion to improve
ontrol in logi
 programming.

Moreover, they provide for useful fun
tional programming te
hniques and lead to
learer programs.

1

The Andorra
omputation model [18℄ prefers the evaluation of literals where at most one
lause is appli
able. In

ase of
lauses with overlapping left-hand sides, there may be several
lauses appli
able leading to the same result.

The possible pruning of the
omputation spa
e in these
ases is not
overed by the Andorra model.

2

The
urrently existing fun
tional logi
 languages
over only parti
ular aspe
ts of known results

in this area and modern fun
tional and logi
 languages in general. Therefore, the main motivation

for Curry is to provide an integrated fun
tional logi
 programming language whi
h
overs all im-

portant aspe
ts of modern fun
tional as well as logi
 languages. It should
ombine the best ideas

of existing de
larative languages, in
luding

1. Haskell [20℄ and SML [25℄ (fun
tional languages)

2. G�odel [19℄ and �Prolog [30℄ (logi
 languages)

3. ALF [12℄, Babel [28℄, and Es
her [22, 23℄ (fun
tional logi
 languages)

Curry does not subsume ea
h of these language but
ombines important aspe
ts of them in a pra
-

ti
al and
omprehensive way. In the following, we will des
ribe the fun
tional logi
 language Curry

whi
h is based on the ideas des
ribed above. In the next se
tion we will outline the operational

semanti
s. In Se
tion 3 we sket
h the other important features of the language.

2 Operational Semanti
s

As dis
ussed in the previous se
tion, there is no
lear view about the best operational semanti
s of

fun
tional logi
 languages. Residuation allows the eÆ
ient deterministi
 evaluation of fun
tion
alls

and provides for
on
urrent programming te
hniques, whereas narrowing is the basis of a
omplete

and, for indu
tively sequential programs [5℄, optimal evaluation strategy but requires the imple-

mentation of sear
h features. Although sear
h
an be
ostly and problemati
 in
onjun
tion with

I/O operations, it is one of the important extensions of pure fun
tional programming. Therefore,

Curry is based on a
ombination of narrowing and residuation. If the user does not spe
ify any

evaluation strategy, Curry
hooses a strategy whi
h is
omplete in the sense of fun
tional and logi

programming:

1. If there exists a solution to a goal, this solution (or a more general one) is
omputed.

2

2. If an expression is redu
ible to some value (data term), Curry
omputes this value.

3

In order to satisfy these requirements, Curry applies a sophisti
ated lazy narrowing strategy [5,

14, 24, 27℄. However, if the programmer prefers another strategy, he
an annotate fun
tions with

evaluation restri
tions.

4

These evaluation restri
tions spe
ify that a fun
tion will not be evaluated

until the arguments have a parti
ular form. For instan
e,
onsider the
on
atenation on lists de�ned

by

5

fun
tion append: [A℄ -> [A℄ -> [A℄

append [℄ L = L

2

In order to implement Curry eÆ
iently on sequential ar
hite
tures, Curry implements sear
h by ba
ktra
king

whi
h may
ause in
ompleteness in the Prolog sense. However, the user is free to
hoose a breadth-�rst sear
h

strategy by parti
ular sear
h operators (see below).

3

Ground terms based on fun
tions de�ned by un
onditional rewrite rules are evaluated in a fully deterministi

way. However, if fun
tions are de�ned by
onditional rules with extra variables in
onditions, some sear
h may be

ne
essary in order to apply su
h redu
tion rules. In this
ase,
ompleteness depends on the
ompleteness of the sear
h

strategy.

4

Evaluation restri
tions are
omparable to
oroutining de
larations [31℄ in Prolog where the programmer spe
i�es

onditions under whi
h a literal is ready for a resolution step. Moreover, they des
ribe the strategy to evaluate

di�erent and nested arguments.

5

The list notation is similar to Prolog. The type [A℄ denotes all lists with elements of type A.

3

append [E|R℄ L = [E | append R L℄

Without any evaluation restri
tions, Curry
omputes the answer L=[1,2℄ to the goal equation

append L [3,4℄ == [1,2,3,4℄ by narrowing. However, if the evaluation restri
tion

eval append 1:rigid

is added, an append
all is only redu
ed if the �rst argument is not headed by a de�ned fun
tion

symbol and di�erent from a logi
al variable,

6

otherwise the
all is delayed. Su
h evaluation restri
-

tions are impli
it in Le Fun [2℄ and Life [1℄, expli
it in Es
her [22, 23℄, and automati
ally generated

in NUE-Prolog [32℄. Using evaluation restri
tions, the programmer
an spe
ify any evaluation strat-

egy between lazy narrowing and residuation. In this
ase the programmer is responsible to ensure

that solutions
an be
omputed even with the restri
ted evaluation strategy. On the other hand,

there are program analysis methods whi
h provide suÆ
ient
riteria to ensure the
ompleteness of

residuation [16℄.

In
ontrast to logi
 programming, fun
tional logi
 programs
ontain nested fun
tion
alls. Fur-

thermore, the evaluation of some arguments is ne
essary only if some other arguments are evaluated

to parti
ular values. This is demonstrated by the following de�nition of the less-or-equal predi
ate

on natural numbers represented by terms built from 0 and s:

fun
tion leq: nat -> nat -> bool

leq 0 N = true

leq (s M) 0 = false

leq (s M) (s N) = leq M N

Consider a fun
tion
all like (leq e

1

e

2

). In order to apply some redu
tion rule, the �rst argument

e

1

must always be evaluated to head-normal form (i.e., to a term without a de�ned fun
tion symbol

at the top). However, the se
ond argument must be evaluated only if the �rst argument has the

form (s e).

7

This dependen
y between the �rst and the se
ond argument
an be expressed by the

evaluation restri
tion

eval leq 1:(s => 2)

whi
h spe
i�es that the �rst argument is evaluated at the beginning and the se
ond argument is

only evaluated if the �rst argument has the
onstru
tor s at the top. In the general
ase, we
an

also spe
ify deeper positions in arguments and nondeterministi
 sele
tion of arguments in
ase of

overlapping rules. Thus, evaluation restri
tions uses de�nitional trees [4℄ and its generalizations

[17, 24℄ whi
h have been shown useful to spe
ify sophisti
ated evaluation strategies for fun
tional

logi
 programs. Moreover, they
an be mixed with information to spe
ify that rules should not

be applied if there is a logi
al variable at some argument position. For instan
e, the evaluation

restri
tion

eval leq 1:rigid(s => 2:rigid)

spe
i�es the obvious residuation strategy for leq.

In order to support eager evaluation strategies where arguments are redu
ed to normal form

instead of head normal form, we also permit the annotation nf (similar to rigid). One possibility

is to generate su
h annotations automati
ally by a \demandedness" analyzer.

8

Other reasonable

extensions of evaluation restri
tions are
y
li
 patterns to spe
ify re�ned evaluation strategies [27℄.

6

For arguments of fun
tional type, rigid also requires that it is not of the form F e

1

...e

n

, i.e., a (partial)

appli
ation of an unknown fun
tion.

7

Naive lazy narrowing strategies may also evaluate the se
ond argument in any
ase. However, as shown in [5℄,

the
onsideration of dependen
ies between arguments is essential to obtain optimal evaluation strategies.

8

In
ontrast to fun
tional languages, stri
tness is not suÆ
ient to safely repla
e lazy by (more eÆ
ient) eager

evaluation in fun
tional logi
 languages.

4

The general form of evaluation restri
tions is de�ned in Appendix A.

3 Language Features

In this se
tion we dis
uss various features of Curry.

3.1 Type System

Modern fun
tional languages (e.g., Haskell [20℄, SML [25℄) allow the dete
tion of many programming

errors at
ompile time by the use of polymorphi
 type systems. Similar type systems are also used

in modern logi
 languages (e.g., G�odel [19℄, �Prolog [30℄). Curry has a polymorphi
 type system

similar to Haskell, in
luding type
lasses. Sin
e Curry is a higher-order language, fun
tion types

are written in their
urried form �

1

-> �

2

-> � � � -> �

n

-> � where � is not a fun
tional type. In

this
ase, n is
alled the arity of the fun
tion.

Curry distinguishes between fun
tions to
onstru
t data types,
alled
onstru
tors, and de�ned

fun
tions operating on these data types. Constru
tors are introdu
ed by data type de
larations like

datatype bool = true | false

datatype nat = 0 | s nat

datatype tree A = leaf A | node (tree A) A (tree A)

The extension of this type system to Haskell's type
lasses is a topi
 for future work.

3.2 Fun
tion De
larations

Fun
tions are de�ned by a type de
laration of the form

fun
tion f:�

1

-> �

2

-> � � � -> �

n

-> �

where �

1

; : : : ; �

n

; � are polymorphi
 types and � is not a fun
tional type, followed by
onditional

equations of the form

f t

1

: : : t

n

= t <= C

where the
onditional part \<= C"
an be omitted. The left-hand side
onsists of the fun
tion

symbol applied to a sequen
e of n patterns (i.e. variables or (full) appli
ations of
onstru
tors to

patterns). Note that de�ning rules of higher-type, e.g., f = g if f and g are of type nat -> nat,

are ex
luded sin
e this would
ause a gap between the standard notion of higher-order rewriting

and the
orresponding equational theory [34℄. Therefore, an equation f = g between fun
tions is

interpreted in Curry as synta
ti
 sugar for the
orresponding equation f X = g X on base types.

The
ondition C (also sometimes
alled a goal) is a
onjun
tion of Boolean expressions and

stri
t equations of the form l==r. A stri
t equation is provable if the left- and right-hand side are

redu
ible to uni�able
onstru
tor terms.

9

Note that stri
t equality is the only sensible notion of

equality in the presen
e of nonterminating fun
tions [9, 28℄. A Boolean expression is built from

Boolean fun
tions, prede�ned Boolean operators like \," (and), \;" (or) and not[28℄. not
hanges

true to false and vi
e versa; it is not handled by �nite failure.

In order to ensure the well-de�nedness and determinism of a fun
tion spe
i�ed by several equa-

tions, additional non-ambiguity requirements are ne
essary (see [28℄ for details). In
ontrast to

fun
tional languages, we allow extra variables in the
onditions, i.e., variables whi
h do not o

ur

9

In the theoreti
al setting, a stri
t equation is provable only if both sides are redu
ible to the same ground
on-

stru
tor term. Sin
e goal variables are only instantiated to
onstru
tor terms, we
an delay the ground instantiation

of variables by unifying both sides whi
h permits to deal with partial data stru
tures as in Prolog (see [10, 24℄ for a

more detailed dis
ussion on this subje
t).

5

in the left-hand side. These extra variables provide the power of logi
 programming sin
e a sear
h

for appropriate values is ne
essary in order to apply a
onditional rule with extra variables.

Note that Curry has no spe
ial notation for predi
ates sin
e they
an be de�ned as Boolean

fun
tions. Fa
ts and rules are represented by the de�ning equations

p t

1

: : : t

n

= true

p t

1

: : : t

n

= true <= p

1

s

11

: : : s

1n

1

,..., p

k

s

k1

: : : s

kn

k

The fun
tional notation of predi
ates provides for more deterministi
 evaluations than the relational

form.

3.3 Higher-order Features

Curry is a higher-order language supporting the
ommon fun
tional programming te
hniques by

partial fun
tion appli
ations and lambda abstra
tions. For instan
e, the well-known map fun
tion

is de�ned in Curry by

fun
tion map: (A -> B) -> [A℄ -> [B℄

map F [℄ = [℄

map F [E|L℄ = [(F E)|map F L℄

However, there is an important di�eren
e to fun
tional programming. Sin
e Curry is also a logi

language, it allows logi
al variables also for fun
tional values, i.e., it is possible to evaluate the

goal equation map F [1 2℄ == [2 3℄ whi
h has, for instan
e, a solution F=in
 if in
 is the in
re-

ment fun
tion on natural numbers. There are di�erent proposals to deal with higher-order logi
al

variables. In general, higher-order uni�
ation is ne
essary to
ompute all solutions to su
h goals

[30, 35℄. If logi
al variables at fun
tion positions are quanti�ed over all (partial appli
ations of)

de�ned fun
tions instead of all lambda expressions, higher-order uni�
ation
an be avoided and

repla
ed by an enumeration of all (type-
onform) fun
tion symbols [10, 40℄. A third alternative is

to delay the appli
ation of unknown fun
tions until the fun
tion be
omes known [2, 38℄. This last

alternative
an be implemented by residuation using the following spe
ial apply fun
tion:

fun
tion applyIfKnown: (A -> B) -> A -> B

eval applyIfKnown 1:rigid

applyIfKnown F A = (F A)

Thus, Curry supports only the �rst and se
ond alternative. Curry provides a restri
ted form of

higher-order uni�
ation (sin
e the left-hand sides of fun
tion de�nitions are required to be patterns,

in
ontrast to �Prolog [30℄) and an annotation for fun
tion variables spe
ifying that these variables

are quanti�ed only over all fun
tion symbols o

urring in the program.

Lambda terms are a useful data stru
ture to
apture the notion of bound variables and provide

a
omfortable way to manipulate programs as obje
ts [30℄. Lambda terms in left-hand sides of

de�ning rules
an be used to manipulate obje
ts with bound variables and to
apture the notion of

s
ope in the obje
t language. The following example
ontains a few rules of a symboli
 di�erentia-

tion fun
tion where Curry's abbreviation for equations of higher-order type is used (
f. Se
tion 3.2):

fun
tion diff: (real -> real) -> real -> real

diff �X.F = �X.0

diff �X.X = �X.1

diff �X.(sin (F X)) = �X.(
os F X) * diff (�Y.F Y) X

In the �rst rule, the variable F denotes an arbitrary fun
tion whi
h does not depend on X (otherwise,

the argument must have the form �X.F(X)). Therefore, �X.F mat
hes only lambda abstra
tions

6

where the body has no o

urren
e of the parameter, i.e., �X.F mat
hes only
onstant fun
tions.

Note that higher-order uni�
ation is ne
essary to
orre
tly treat bound variables.

3.4 En
apsulated Sear
h

Global sear
h, possibly implemented by ba
ktra
king, must be avoided in some situations (user-

ontrol of eÆ
ien
y,
on
urrent
omputations, non-ba
ktra
kable I/O). Hen
e it is sometimes ne
-

essary to en
apsulate sear
h in parts of larger programs. Sear
h
an take pla
e in Curry whenever

an argument must be evaluated with a logi
al variable as its a
tual value. In this
ase, the
om-

putation must follow di�erent bran
hes with di�erent substitutions applied to the
urrent goal.

To give the programmer
ontrol on the a
tions taken in this situation, Curry provides a sear
h

operator similar to that of Oz [37℄. However, in Curry it is not ne
essary to de�ne a fun
tion by

disjun
tions in order to apply the sear
h operator. Thus, the en
apsulation of sear
h is initiated

by the
aller and not visible in the de�nition of the
alled fun
tions. This has the advantage that

the same fun
tion
an be used for deterministi
 evaluation or sear
h depending on the stru
ture of

the a
tual arguments (ground terms or free variables).

Sin
e sear
h is used to �nd solutions to some Boolean expression, sear
h is always initiated by

some goal
ontaining a sear
h variable for whi
h a solution should be
omputed.

10

Sin
e the sear
h

variable may be bound to di�erent solutions in di�erent sear
h paths, they must be abstra
ted.

Therefore, a sear
h goal has the form �x:g where x is the sear
h variable
ontained in the goal g.

To des
ribe the result of the sear
h steps, Curry o�ers a prede�ned data type

datatype sear
hspa
e A = failed | solved (A -> bool) | distributed [A -> bool℄

Intuitively, failed represents a failed sear
h, solved �x:g denotes a su

essful sear
h where g is

a satis�able goal, and distributed [�x:g

1

,...,�x:g

n

℄ represents an intermediate sear
h state.

distributed [�x:g

1

,...,�x:g

n

℄
an be understood as a disjun
tion of goals. Moreover, there is

a prede�ned fun
tion

fun
tion solve: (A -> bool) -> sear
hspa
e A

where solve �x:g evaluates the goal until it is not further redu
ible and unsatis�able (in this
ase

the result is failed), it is not further redu
ible but satis�able (in this
ase the result is solved �x:g

0

representing the simpli�ed goal), or it
an be redu
ed to n di�erent goals �x:g

1

,. . . ,�x:g

n

by a

nondeterministi
 narrowing step, i.e., there are at least n di�erent rules appli
able to the goal (in

this
ase the result is distributed [�x:g

1

,...,�x:g

n

℄). Thus, solve evaluates a goal at most

until the �rst nondeterministi
 step o

urs. In this
ase, it exposes an intermediate state of the

sear
h to the user, who
an de
ide in whi
h dire
tion the sear
h spa
e should be explored further.

For instan
e, the result of solve �L.(append L [℄ == [0℄) is

distributed [�L.(L==[℄,[℄==[0℄), �L.9X9L1(L==[X|L1℄,[X|append L1 [℄℄==[0℄)℄

(Curry also provides existential quanti�ers, see Se
tion 3.7). To avoid
on
i
ting variable bindings

aused by distributed goals, solve requires an argument without free variables. A depth-�rst sear
h

strategy
an be formulated as:

fun
tion depthfirst: [A -> bool℄ -> sear
hspa
e A

depthfirst [℄ = failed

depthfirst [X|Xs℄ =

ase solve X of

failed: depthfirst Xs

solved Y: solved Y

10

The generalization to more than one sear
h variable is straightforward by using tuples.

7

distributed [Z|Zs℄:

ase depthfirst [Z℄ of

solved V: solved V

failed: depthfirst (append Zs Xs)

Besides depth-�rst sear
h, whi
h
omputes only the leftmost solution, many other kinds of sear
h

strategies
an be spe
i�ed, in
luding breadth-�rst sear
h,
olle
ting all solutions in a list, et
. A

library of typi
al sear
h strategies is provided, su
h that the
asual user does not have to bother

on how to implement them.

The sear
h operators
an be used in top-level goals as well as in
onditions of rules. For instan
e,

we
an
ompute by (depthfirst [�L.(append L [1℄ == [0,1℄)℄) == S a solution of this goal.

If S is of the form solved G, we
an bind by the appli
ation G X a global variable X to the value

[0℄.

3.5 Monadi
 I/O

Curry provides a de
larative model of I/O by
onsidering I/O operations as transformations on

the outside world. In order to avoid dealing with di�erent versions of the outside world, it must

be ensured that at ea
h point of a
omputation only one version of the world is a

essible. This

ensured by using monadi
 I/O like in Haskell and by requiring that I/O operations are not allowed

in program parts where nondeterministi
 sear
h is possible. Thus, all sear
h must be en
apsulated

between I/O operations. Using the evaluation restri
tions, the
ompiler is able to dete
t fun
tions

where sear
h is de�nitely avoided (if all evaluated positions are de
lared as rigid). In
ombination

with sear
h operators, the
ompiler
an infer that sear
h will not take pla
e ensuring well-de�ned

de
larative I/O operations.

3.6 Constraints

The integration of prede�ned data types by the use of
onstraints has been shown useful in logi

programming. Hen
e
onstraints are a ne
essary feature of any modern logi
 programming lan-

guage. However, the
ombination of arbitrary
onstraints with sophisti
ated narrowing strategies

is a topi
 for
urrent and future resear
h. As a
onsequen
e, the
urrent version of Curry does not

support arbitrary
onstraints. Curry provides disequality
onstraints [21℄ as a method to express

negative information. The in
lusion of other
onstraint systems like arithmeti

onstraints, �nite

domains, feature terms or re
ord stru
tures by a uniform interfa
e is a topi
 for future extensions.

3.7 Impli
ation and Quanti�ers

Impli
ation and quanti�ers inside
onditions are a useful feature of higher-order logi
 languages

[29, 30℄ sin
e they are a de
larative alternative to some impure features of Prolog, in parti
ular,

assert and retra
t. Moreover, they provide s
oping
onstru
ts in logi
 programming. Therefore,

Curry supports these features. When evaluating an impli
ation rules => e, rules are added to the

program while evaluating e. The value of the impli
ation is the value of e. If the evaluation of e

fails or is �nished, rules are removed from the program.

The
ombination of quanti�ers and impli
ations provide for s
oping
onstru
ts to improve the

stru
ture of larger programs. For instan
e, if a predi
ate sele
t is only an auxiliary predi
ate to

de�ne the predi
ate perm, it should be made lo
al to perm. This is possible by the use of quanti�ers

and impli
ations:

perm([℄,[℄)

8

perm([E|L℄,[F|M℄) <=

(8sele
t(8E8L(sele
t(E,[E|L℄,L)) ^

8E8F8L8M(sele
t(E,[F|L℄,[F|M℄) <= sele
t(E,L,M)))

=> sele
t(F,[E|L℄,N), perm(N,M))

The s
ope of the name of the auxiliary predi
ate sele
t is restri
ted by the quanti�er 8sele
t

inside the se
ond
lause of perm (see [29℄ for more examples for s
oping
onstru
ts). Of
ourse, the

user is not for
ed to use this awkward notation sin
e Curry o�ers where
lauses as synta
ti
 sugar

for the previous
lauses:

perm([℄,[℄)

perm([E|L℄,[F|M℄) <= sele
t(F,[E|L℄,N), perm(N,M)

where sele
t(E,[E|L℄,L)

sele
t(E,[F|L℄,[F|M℄) <= sele
t(E,L,M)

3.8 Modules

The design of a module system for Curry is not in
uen
ed by the fun
tional logi
 features of Curry.

Therefore, the
urrent version of Curry uses a standard module system similar to ALF's [12℄ or

G�odel's [19℄. The extension to a more sophisti
ated module system like in SML [25℄ is a topi
 for

future extensions.

4 Example

Let us
onsider an example program in order to demonstrate some features of Curry. We want to

ompute all homomorphisms between two abelian groups. The homomorphism
ondition is
he
ked

for all pairs of elements of the �rst group.

fun
tion hom: [nat℄ -> (nat->nat->nat)

-> [nat℄ -> (nat->nat->nat) -> (nat -> nat) -> bool

hom G1 Op1 G2 Op2 F = and [test Op1 Op2 F X Y | X <- G1, Y <- G1℄

fun
tion test: (nat->nat->nat) -> (nat->nat->nat) -> (nat -> nat)

-> nat -> nat -> bool

test Op1 Op2 F X Y = true <= Op2 (F X) (F Y) == F (Op1 X Y)

A valid query for the above program is

hom [0,1,2,3℄ add4 [0,1℄ add2 mod2

whi
h would
he
k, whether the remainder of the division by 2 (mod2) is a homomorphism between

the groups hf0; 1; 2; 3g; add4i and hf0; 1g; add2i, where add4 and add2 are the addition modulo 4

and modulo 2, respe
tively. mod2, add4, and add2 as well as the
onjun
tion and of list elements, are,

among others, assumed to be prede�ned by appropriate rules. [test X Y | X <- G1, Y <- G1℄

is a list
omprehension (see e.g. [20℄), and denotes the list of values test X Y where X and Y range

over the elements of the �rst group G1.

The above goal
an already be handled in \ordinary" fun
tional (logi
) languages. However,

Curry allows a goal like the following, whi
h requires (generalized) higher order uni�
ation:

hom [0,1,2,3℄ add4 [0,1℄ add2 F

Here, the variable F is bound to a homomorphism between the two groups. Thus, Curry allows to

sear
h for fun
tions. A possible solution is F=mod2. Note that Curry also
onsiders solutions whi
h

are
omposed of proje
tions,
onstru
tor symbols and de�ned fun
tions (in
ontrast to �Prolog)

(see [3℄ for more details).

9

5 Implementation

Although this paper des
ribes only the design of Curry, we will also brie
y dis
uss some implementa-

tion aspe
ts. Curry
ombines very powerful
on
epts. However, Curry
ontains various restri
tions

that allow an eÆ
ient implementation by transferring known implementation te
hniques to Curry.

The omission of de�ned fun
tion symbols in arguments of left-hand sides of fun
tion de�nitions

provide for eÆ
ient evaluation strategies (see [15℄ for a survey of di�erent strategies and the im-

portan
e of
onstru
tor-based rules). The restri
tion to patterns in left-hand sides ensure that

full higher-order uni�
ation is rarely used [35℄. Moreover, the evaluation restri
tions permit the

de�nition of appli
ation-spe
i�
 evaluation strategies. However, in this
ase the programmer is

responsible to ensure the
ompleteness of his strategy.

6 Con
lusions

From the (informal) des
ription of Curry in the previous se
tions it should be
lear that Curry is a

real integration of fun
tional and logi
 languages sin
e it
overs most aspe
ts of both paradigms. For

fun
tional programming, Curry provides higher-order fun
tions, lazy evaluation and deterministi

evaluation of ground expressions. Logi
 programming features are supported by logi
al variables,

partial data stru
tures and sear
h fa
ilities. It is interesting to note that ea
h purely logi
 program

an be simply mapped into a Curry program by mapping ea
h
lause p :- p

1

,...,p

n

into the

equation

p=true <= p

1

,...,p

n

If the evaluation restri
tion of the
onjun
tion \," is 1:(true => 2), Curry's narrowing strategy is

equivalent to Prolog's left-to-right resolution strategy. However, without any evaluation restri
tions,

Curry is free to
hoose a more sophisti
ated strategy whi
h prefer deterministi
 evaluations in

literals other than the leftmost one.

By the availability of several new features in
omparison to pure logi
 programming, Curry

avoids the following impure
onstru
ts of Prolog:

� The
ut and similar pruning operators are repla
ed by the deterministi
 evaluation of fun
-

tions (note that there is no dire
t repla
ement of the
ut in Curry sin
e deterministi
 fun
tion

evaluation
orresponds to \green
uts" due to the
omplete operational semanti
s of Curry).

� The
all predi
ate is repla
ed by the higher-order features of Curry.

� Many appli
ations of assert and retra
t
an be eliminated using impli
ations in
onditions.

� The I/O operations of Prolog are repla
ed by the de
larative monadi
 I/O
on
ept of fun
-

tional programming.

Although not every impure Prolog program
an be dire
tly mapped into a Curry program, we think

that Curry is a suitable de
larative alternative for most appli
ation problems written in Prolog.

The present proposal is far from its �nal shape. Its purpose is to stimulate the dis
ussion

on a standardized fun
tional logi
 language. Many aspe
ts have not yet been addressed and may

have to be in
luded, for instan
e, metaprogramming features, default rules, bounded quanti�
ation,

onstraints, a dedi
ated software environment (e.g. a debugger).

A
knowledgement

The authors would like to thank Sergio Antoy, John Lloyd, Rita Loogen, and Mario Rodr��guez-

Artalejo for a lot of valuable
omments and suggestions on this paper.

10

Referen
es

[1℄ H. A��t-Ka
i. An overview of LIFE. In J.W. S
hmidt and A.A. Stogny, editors, Pro
. Workshop on Next

Generation Information System Te
hnology, pages 42{58. Springer LNCS 504, 1990.

[2℄ H. A��t-Ka
i, P. Lin
oln, and R. Nasr. Le Fun: Logi
, equations, and fun
tions. In Pro
. 4th IEEE

Internat. Symposium on Logi
 Programming, pages 17{23, San Fran
is
o, 1987.

[3℄ J. Anastasiadis and H. Ku
hen. Higher order babel: Language and implementation. In Pro
. Workshop

of Extensions of Logi
 Programming, 1996.

[4℄ S. Antoy. De�nitional trees. In Pro
. of the 3rd International Conferen
e on Algebrai
 and Logi

Programming, pages 143{157. Springer LNCS 632, 1992.

[5℄ S. Antoy, R. E
hahed, and M. Hanus. A needed narrowing strategy. In Pro
. 21st ACM Symposium on

Prin
iples of Programming Languages, pages 268{279, Portland, 1994.

[6℄ D. Bert and R. E
hahed. Design and implementation of a generi
, logi
 and fun
tional programming

language. In Pro
. European Symposium on Programming, pages 119{132. Springer LNCS 213, 1986.

[7℄ J. Darlington and Y. Guo. Narrowing and uni�
ation in fun
tional programming - an evaluation me
ha-

nism for absolute set abstra
tion. In Pro
. of the Conferen
e on Rewriting Te
hniques and Appli
ations,

pages 92{108. Springer LNCS 355, 1989.

[8℄ L. Fribourg. SLOG: A logi
 programming language interpreter based on
lausal superposition and

rewriting. In Pro
. IEEE Internat. Symposium on Logi
 Programming, pages 172{184, Boston, 1985.

[9℄ E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A logi
 plus fun
tional language.

Journal of Computer and System S
ien
es, 42(2):139{185, 1991.

[10℄ J.C. Gonz�alez-Moreno, M.T. Hortal�a-Gonz�alez, and M. Rodr��guez-Artalejo. On the
ompleteness of

narrowing as the operational semanti
s of fun
tional logi
 programming. In Pro
. CSL'92, pages 216{

230. Springer LNCS 702, 1992.

[11℄ W. Hans, R. Loogen, and S. Winkler. On the intera
tion of lazy evaluation and ba
ktra
king. In Pro
. of

the 4th International Symposium on Programming Language Implementation and Logi
 Programming,

pages 355{369. Springer LNCS 631, 1992.

[12℄ M. Hanus. Compiling logi
 programs with equality. In Pro
. of the 2nd Int. Workshop on Programming

Language Implementation and Logi
 Programming, pages 387{401. Springer LNCS 456, 1990.

[13℄ M. Hanus. Improving
ontrol of logi
 programs by using fun
tional logi
 languages. In Pro
. of the 4th

International Symposium on Programming Language Implementation and Logi
 Programming, pages

1{23. Springer LNCS 631, 1992.

[14℄ M. Hanus. Combining lazy narrowing and simpli�
ation. In Pro
. of the 6th International Symposium

on Programming Language Implementation and Logi
 Programming, pages 370{384. Springer LNCS

844, 1994.

[15℄ M. Hanus. The integration of fun
tions into logi
 programming: From theory to pra
ti
e. Journal of

Logi
 Programming, 19&20:583{628, 1994.

[16℄ M. Hanus. Analysis of residuating logi
 programs. Journal of Logi
 Programming, 24(3):161{199, 1995.

[17℄ M. Hanus. EÆ
ient translation of lazy fun
tional logi
 programs into Prolog. In Pro
. of the Fifth

International Workshop on Logi
 Program Synthesis and Transformation, 1995.

[18℄ S. Haridi and P. Brand. Andorra prolog: An integration of prolog and
ommitted
hoi
e languages. In

Pro
. Int. Conf. on Fifth Generation Computer Systems, pages 745{754, 1988.

[19℄ P.M. Hill and J.W. Lloyd. The G�odel Programming Language. MIT Press, 1994.

[20℄ P. Hudak, S. Peyton Jones, and P. Wadler. Report on the programming language Haskell (version 1.2).

SIGPLAN Noti
es, 27(5), 1992.

11

[21℄ H. Ku
hen, F.J. L�opez-Fraguas, J.J. Moreno-Navarro, and M. Rodr��guez-Artalejo. Implementing a

lazy fun
tional logi
 language with disequality
onstraints. In Pro
. of the 1992 Joint International

Conferen
e and Symposium on Logi
 Programming. MIT Press, 1992.

[22℄ J.W. Lloyd. Combining fun
tional and logi
 programming languages. In Pro
. of the International

Logi
 Programming Symposium, pages 43{57, 1994.

[23℄ J.W. Lloyd. De
larative programming in Es
her. Te
hni
al report
str-95-013, University of Bristol,

1995.

[24℄ R. Loogen, F. Lopez Fraguas, and M. Rodr��guez Artalejo. A demand driven
omputation strategy for

lazy narrowing. In Pro
. of the 5th International Symposium on Programming Language Implementation

and Logi
 Programming, pages 184{200. Springer LNCS 714, 1993.

[25℄ R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press, 1990.

[26℄ J.J. Moreno-Navarro, H. Ku
hen, R. Loogen, and M. Rodr��guez-Artalejo. Lazy narrowing in a graph

ma
hine. In Pro
. Se
ond International Conferen
e on Algebrai
 and Logi
 Programming, pages 298{317.

Springer LNCS 463, 1990.

[27℄ J.J. Moreno-Navarro, H. Ku
hen, J. Marino-Carballo, S. Winkler, and W. Hans. EÆ
ient lazy narrowing

using demandedness analysis. In Pro
. of the 5th International Symposium on Programming Language

Implementation and Logi
 Programming, pages 167{183. Springer LNCS 714, 1993.

[28℄ J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi
 programming with fun
tions and predi
ates:

The language BABEL. Journal of Logi
 Programming, 12:191{223, 1992.

[29℄ G. Nadathur, B. Jayaraman, and K. Kwon. S
oping
onstru
ts in logi
 programming: Implementation

problems and their solution. Journal of Logi
 Programming, 25(2):119{161, 1995.

[30℄ G. Nadathur and D. Miller. An overview of �Prolog. In Pro
. 5th Conferen
e on Logi
 Programming

& 5th Symposium on Logi
 Programming (Seattle), pages 810{827. MIT Press, 1988.

[31℄ L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.

[32℄ L. Naish. Adding equations to NU-Prolog. In Pro
. of the 3rd Int. Symposium on Programming Language

Implementation and Logi
 Programming, pages 15{26. Springer LNCS 528, 1991.

[33℄ L. Naish. Pruning in logi
 programming. Te
hni
al report 95/16, University of Melbourne, 1995.

[34℄ T. Nipkow. Higher-order
riti
al pairs. In Pro
. 6th IEEE Symp. Logi
 in Computer S
ien
e, pages

342{349. IEEE Press, 1991.

[35℄ C. Prehofer. Higher-order narrowing. In Pro
. Ninth Annual IEEE Symposium on Logi
 in Computer

S
ien
e, pages 507{516, 1994.

[36℄ U.S. Reddy. Narrowing as the operational semanti
s of fun
tional languages. In Pro
. IEEE Internat.

Symposium on Logi
 Programming, pages 138{151, Boston, 1985.

[37℄ C. S
hulte and G. Smolka. En
apsulated sear
h for higher-order
on
urrent
onstraint programming.

In Pro
. of the 1994 International Logi
 Programming Symposium, pages 505{520. MIT Press, 1994.

[38℄ G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Current Trends in Computer

S
ien
e. Springer LNCS 1000, 1995.

[39℄ P. Wadler. How to repla
e failure by a list of su

esses. In Fun
tional Programming and Computer

Ar
hite
ture. Springer LNCS 201, 1985.

[40℄ D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Ma
hine Intelligen
e 10,

pages 441{454, 1982.

12

A Evaluation Restri
tions

The general form of evaluation restri
tions is \eval f restri
tion" where restri
tion is de�ned by the

following grammar:

restri
tion ::= position [:annotation ℄ % evaluate position

j restri
tion or restri
tion % alternative argument evaluations

position ::= number

j number.position

annotation ::= rigid [(
restri
tion

�

) ℄ % pro
eed if position is rigid

j nf [(
restri
tion

�

) ℄ %
ompute normal form

j (
restri
tion

�

) % pro
eed in any
ase

restri
tion ::=
 => restri
tion %
 is a
onstru
tor

13

