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Abstra
t. Curry 
ombines the 
on
epts of fun
tional, logi
 and 
on
ur-rent programming languages. Con
urrent programming with ports allowsthe modeling of obje
ts in Curry similar to obje
t-oriented programminglanguages. In this paper, we present Obje
tCurry, a 
onservative exten-sion of Curry. Obje
tCurry allows the dire
t de�nition of templates whi
hplay the role of 
lasses in 
onventional obje
t-oriented languages. Obje
tsare instan
es of a template. An obje
t owns a state and rea
ts when itre
eives a message|usually by sending messages to other obje
ts or atransformation of its state. Obje
tCurry also provides inheritan
e be-tween templates. Furthermore, we show how programs 
an be translatedfrom Obje
tCurry into Curry by exploiting the 
on
urren
y and distri-bution features of Curry. To implement inheritan
e, we extend the typesystem of Curry, whi
h is based on parametri
 polymorphism, to in
ludesubtyping for obje
ts and messages.1 Introdu
tionCurry [4, 6℄ is a multi-paradigm de
larative language whi
h integrates fun
tional,logi
, and 
on
urrent programming paradigms (see [3℄ for a survey on integratedfun
tional logi
 languages). The syntax of Curry is similar to Haskell [15℄, e.g.,fun
tions are de�ned by rules of the form \f t1 : : : tn = e" where f is the fun
tionto be de�ned, t1; : : : ; tn are the pattern arguments, and e is an expression whi
hrepla
es a fun
tion 
all mat
hing the left-hand side. In addition to Haskell, lo
alnames introdu
ed in let and where 
lauses 
an be de
lared as \free" whi
hmeans that their value is unknown. Su
h free or logi
al variables in expressionssupports logi
 programming features like partial data stru
tures and sear
h forsolutions. Furthermore, fun
tions in Curry 
an be de�ned by 
onditional equa-tions \l | 
 = r" where the 
ondition 
 is a 
onstraint (an expression of theprede�ned type Su

ess) whi
h must be solved in order to apply the equation.Basi
 
onstraints are \su

ess" (the always satis�able 
onstraint) and equa-tional 
onstraints of the form \e1 =:= e2" whi
h are satis�ed if both sides e1? This resear
h has been partially supported by the German Resear
h Coun
il (DFG)under grant Ha 2457/1-2 and by the DAAD under the PROCOPE programme.



and e2 are redu
ible to the same value (data term). More 
omplex 
onstraints
an be 
onstru
ted with the 
on
urrent 
onjun
tion operator &. A non-primitive
onstraint like \
1 & 
2" is solved by solving both 
onstraints 
1 and 
2 
on
ur-rently. Finally, \
1 &> 
2 denotes the sequential 
onjun
tion of two 
onstraints,i.e., �rst the 
onstraint 
1 is solved and, if this was su

essful, the 
onstraint 
2is evaluated.Using both fun
tional and logi
 features of Curry, it is possible to modelobje
ts with states (see Se
tion 2) at a very low level. Therefore, we proposean extension of Curry, 
alled Obje
tCurry, whi
h provides all standard featuresof obje
t-oriented programming, like (
on
urrent and distributed) obje
ts withstate that 
an be de�ned by 
lass templates and inheritan
e between templates.This paper is stru
tured as follows. In the next se
tion, we review the model-ing of 
on
urrent obje
ts in Curry as proposed in [5℄. We present Obje
tCurry inthe subsequent se
tion and show the translation of Obje
tCurry programs intoCurry in Se
t. 4. Se
tion 5 des
ribes an extended type system for Obje
tCurryin order to dete
t type errors related to inheritan
e at 
ompile time before wedis
uss related work in Se
t. 6 and 
on
lude in Se
t. 7.2 Implementing Obje
ts in CurryIt is well known from 
on
urrent logi
 programming [16℄ that obje
ts 
an beeasily implemented as predi
ates pro
essing a stream of in
oming messages. Theinternal state of the obje
t 
an be implemented as a parameter whi
h may 
hangein re
ursive 
alls when the message stream is pro
essed. Sin
e 
onstraints playthe role of predi
ates in Curry, we 
onsider obje
ts as fun
tions with result typeSu

ess. These fun
tions take the 
urrent state of the obje
t and a streamof in
oming messages as arguments. If the stream is not empty, the \obje
t"fun
tion 
alls itself re
ursively with a new state, depending on the �rst elementof the message stream. Thus,o :: State! [MessageType℄! Su

essis the general type of an obje
t where State is the type of the internal state ofthe obje
t and MessageType is the type of messages. Usually, we de�ne a newalgebrai
 data type for the messages.The following example shows a 
ounter whi
h understands the messages In
,Set s, and Get v. Thus, we de�ne the data typedata CounterMessage = In
 | Set Int | Get IntThe 
ounter has an integer value as an internal state. Re
eiving In
 in
rementsthe internal state and Set s assigns it to a new value s. To get the 
urrent stateof the 
ounter as an answer, we send the message Get v to the obje
t where vis a free logi
al variable. In this 
ase the 
ounter obje
t binds this variable to its
urrent state:
ounter :: Int -> [CounterMessage℄ -> Su

ess2




ounter eval rigid
ounter x (In
 : ms) = 
ounter (x+1) ms
ounter _ (Set s : ms) = 
ounter s ms
ounter x (Get v : ms) = v =:= x & 
ounter x ms
ounter _ [℄ = su

essThe evaluation of the 
onstraint \
ounter 42 s" 
reates a new 
ounter obje
twith initial value 42. Messages are sent by instantiating the variable s. Theobje
t terminates if the stream of in
oming messages is empty. In this 
asethe 
onstraint is redu
ed to the trivial 
onstraint su

ess. For instan
e, the
onstraintlet s free in 
ounter 41 s & s=:=[In
, Get x℄is su

essfully evaluated where x is bound to the value 42. The annotation
ounter eval rigidmarks 
ounter as a rigid fun
tion. This means that an expression \
ounter x s"
an be redu
ed only if s is bound.1If there is more than one pro
ess sending messages to the same 
ounter obje
t,it is ne
essary to merge the message streams from di�erent pro
esses into a singlemessage stream. Doing that with a merger fun
tion 
auses a set of problems asdis
ussed in [5, 8℄. Therefore, Janson et al. [8℄ proposed the use of ports for the
on
urrent logi
 language AKL whi
h are generalized in [5℄ to support distributedprogramming in Curry. In prin
iple, a port is a 
onstraint between a multisetand a stream whi
h is satis�ed if the multiset and the stream 
ontain the sameelements. In Curry a port is 
reated by a 
onstraint \openPort p s" where pand s are free logi
al variables. This 
onstraint 
reates a multiset and a streamand 
ombines them over a port. Elements 
an be inserted into the multiset bysending them to p. When a message is sent to p, it will automati
ally be addedto the stream s in order to satisfy the port 
onstraint. For sending a message,there is a 
onstraint \send m p" where m is the message and p is a port 
reatedby openPort.Using ports, we 
an rewrite the 
ounter example as followsopenPort p s &> 
ounter 0 s & (send In
 p &> send (Get x) p)3 Obje
tCurry, an Obje
t-Oriented Extension of CurryUsing the te
hnique presented above is troublesome and error-prone, in parti
-ular, if the state 
onsists of many variables, be
ause the programmer has to1 In 
ontrast to rigid fun
tions, Curry also provides 
exible fun
tions whi
h nondeter-ministi
ally instantiate their arguments in order to allow the redu
tion of fun
tion
alls, whi
h provides for goal solving like in logi
 programming. As a default (whi
h
an be 
hanged by eval annotations), 
onstraints are 
exible and all other fun
tionsare rigid. 3



repeat the whole state in the re
ursive 
alls. This motivated us to introdu
esome spe
ial syntax for de�ning templates. Templates play the role of 
lassesin 
onventional obje
t-oriented programming languages. We use the word \tem-plate" instead of 
lass to avoid 
onfusion between 
lasses in an obje
t-orientedmeaning and Haskell's type 
lasses. For instan
e, a template for 
ounter obje
ts
an be de�ned in Obje
tCurry as follows:template Counter =
onstru
tor
ounter init = x := initmethodsIn
 = x := x + 1Set s = x := sGet v = v =:= xA template de�nition starts with the reserved keyword template followed bythe name of the template. Similar to a data type de
laration, the name of thetemplate is its own type. The 
onstru
tor is a fun
tion whi
h we use to instan-tiate new obje
ts. The left-hand side is 
onstru
ted as in 
onventional fun
tionde
larations. The right-hand side is a set of assignments des
ribing the attributesof the obje
t and their initial values. The assignments are 
onse
utively writtenusing the o�side rule.The messages whi
h are understood by the obje
t and the rea
tions to thesemessages are de�ned by methods. Messages are de�ned similarly as the 
on-stru
tor. The left-hand side of a method de
laration 
onsists of the name ofthe method followed by a list of patterns as in a fun
tion de
laration and de-s
ribes the signature of a message with the same name as the method. Theright-hand side des
ribes the behavior of the obje
t in response to re
eiving amessage. A rea
tion 
an be a transformation of the internal state of the obje
t.The transformation of a state 
an be expressed by a set A of assignments of theform \v := e". If the tuple (v01; : : : ; v0n) is the 
urrent state of the obje
t wherethe template has the attributes v1; : : : ; vn, A spe
i�es the state transformation(v01; : : : ; v0n) 7! (v001 ; : : : ; v00n) de�ned byv00i = �ei if vi := ei 2 Av0i otherwiseAdditionally, the right-hand side of a method 
an also in
lude 
onstraints, i.e.,expressions of the type Su

ess, be
ause 
onstraints o�er further possibilitiesto express rea
tions, e.g., equational 
onstraints are used to yield an answer bybinding a logi
al variable, or messages are sent to other obje
ts by the send
onstraint.The assignments and 
onstraints in the right-hand side of a method aretreated as a set (where for ea
h 
omponent of the state at most one assignmentis allowed), i.e., they 
an be pla
ed in any order: an assignment has no side e�e
tto another assignment in the same method.A template de�nition introdu
es the type of the template, the 
onstru
torfun
tion and the messages at the top level of the Curry program. If T is the type4



of the template and the 
onstru
tor fun
tion has n arguments �1; : : : ; �n, thetype of the 
onstru
tor fun
tion is�1 ! : : : ! �n ! Constru
tor TIn a similar manner, a method has the type�1 ! : : : ! �n ! Message Tif it takes n arguments. Additionally, ea
h obje
t understands the prede�nedmessage Stop whi
h terminates the obje
t.To instantiate a template, there is a 
onstraintnew :: Constru
tor � ! Obje
t � ! Su

ess .new takes a 
onstru
tor fun
tion and a free logi
al variable and binds the vari-able to a new instan
e of the template �. Messages 
an be sent to su
h an ob-je
t using the 
onstraint send :: Message � ! Obje
t � ! Su

ess. Forinstan
e, the evaluation of the following expression binds the variable v to thevalue 42:new (
ounter 41) o& (send In
 o &> send (Get v) o &> send Stop o)To give an obje
t the possibility to send a message to itself, there is a prede�nedidenti�er self. self is visible in the right-hand side of ea
h method and boundto the 
urrent obje
t. Note that sending a message to self has no immediateside e�e
t to the attributes of the obje
t be
ause the obje
ts 
an only rea
t tothis message after the evaluation of the 
urrent method is �nished.As a true extension to the modeling of obje
ts in Curry as des
ribed in Se
t. 2,Obje
tCurry also provides inheritan
e. A template 
an inherit attributes andmethods from another template, whi
h we 
all parent, where inherited methods
an be rede�ned or new attributes and methods 
an be added. A supertemplate ofa template T is T or one of its an
estors w.r.t. the parent relation. Subtemplatesare analogously de�ned.For instan
e, we de�ne a new template maxCounter whi
h inherits the at-tribute x and the methods In
, Set, and Get from 
ounter. It also introdu
es anew attribute maxwhi
h represents an upper bound for in
rementing the 
ounter.The method In
 will be rede�ned to avoid in
rementing x to a value greater thanmax. Additionally, we de�ne a new method SetMax v to set the upper bound:template MaxCounter extends Counter =
onstru
tormaxCounter init maxInit = 
ounter initmax := maxInitmethodsIn
 = x := (if x < max then x+1 else x)SetMax newMax = max := newMaxx := (if x<max then x else max)5



The reserved keyword extends followed by the name of the parent spe
i�es thatthe template inherits the attributes and methods from Counter.The �rst expression in the right-hand side of the 
onstru
tor of a subtemplatemust be the fun
tion 
all of the 
onstru
tor of the parent. In this way the initialvalues of the inherited attributes are determined.Methods 
an be rede�ned by de�ning a method with the same name in thesubtemplate. All methods whi
h are not rede�ned will be inherited.4 Translating Obje
tCurry into CurryTo translate Obje
tCurry programs into Curry, we basi
ally use the te
hniquepresented in Se
t. 2. An abstra
t data type Msg 
ontains data 
onstru
tors forea
h message de�ned in all templates and the additional message Stop. Wede
ided to use only one data type for all messages to obtain a maximum of
exibility. Of 
ourse, Obje
tCurry programs translated in this way are not typesafe in a sense that messages 
an be sent to obje
ts whi
h 
annot understandthese messages. We will dis
uss this issue and propose a solution for this inSe
t. 5.For our 
ounter example, we generate one data type for all messages:data Msg = In
 | Set Int | Get Int | SetMax Int | StopNext we de�ne a fun
tion whi
h de�nes the initial state of a new obje
t. If thestate of the obje
t 
onsists of more than one attribute, the state is implementedas a tuple.
ounterInitState init = initThe initialization fun
tion of a subtemplate uses the initialization fun
tion of itsparent to obtain the initial values for the inherited attributes:maxCounterInitState (init,maxInit) =let r_x = 
ounterInitState initin (r_x,maxInit)Given a state and a message, the following a
tion fun
tion 
omputes the nextstate de�ned by the 
orresponding method.
ounterA
tion x self In
 = State (x+1)
ounterA
tion x self (Set s) = State s
ounterA
tion x self (Get v) | v =:= x = State x
ounterA
tion x self Stop = FinalWe use the abstra
t data type \data State a = State a | Final" to distin-guish normal states and the �nal state.In a subtemplate, rede�ned and new methods are similarly translated:maxCounterA
tion (x,max) self In
= State (if x < max then x + 1 else x, max)6



maxCounterA
tion (x,max) self (SetMax newMax)= State (if x < max then x else max, newMax)The a
tion fun
tion of a subtemplate also 
ontains an equation for ea
h inheritedmethod. Su
h an equation 
alls the a
tion fun
tion of the parent of the templatefor re
eiving the next state:maxCounterA
tion (x,max) self (Get v)= let State r_x = 
ounterA
tion x self (Get v)in State (r_x,max)maxCounterA
tion (x,max) self Stop = FinalTo 
reate a new obje
t, we use the 
onstru
tor fun
tion and the new 
onstraint.The 
onstru
tor fun
tion determines the initial state of the obje
t using thetranslated fun
tion for the initialization de�ned above and transfers the initialstate and the a
tion fun
tion of the obje
t to a generi
 fun
tion loop whi
hhandles the re
ursive 
alls until the �nal state is rea
hed:
ounter init self =loop (
ounterInitState init) 
ounterA
tion selfFor ea
h template the same fun
tion loop is used whi
h is de�ned by:loop eval rigidloop state a
tion self (m:ms) = 
ontinuation nextState self mswherenextState = a
tion state self m
ontinuation (State ns) self ms = loop ns a
tion self ms
ontinuation Final _ _ = su

essThe fun
tion new has a 
onstru
tor fun
tion and a free logi
al variable as ar-guments. It 
reates a port to whi
h the logi
al variable is bound and passesa stream asso
iated with the port to the 
onstru
tor fun
tion. Additionally, itpasses the port to the 
onstru
tor as the value for the identi�er self:new 
onstru
tor port =let stream free inopenPort port stream &> 
onstru
tor port streamIn the transformation, ea
h message has the type Msg. Obje
ts are representedby ports, so an obje
t has the type Port Msg instead of Obje
t Template.We have implemented a 
ompiler for Obje
tCurry whi
h translates a programfrom Obje
tCurry to Curry following the ideas sket
hed in this se
tion. The
ompiler is written in Curry itself.5 Type SafenessThe presented translation into Curry programs is not type safe in the sensethat messages 
an be sent to obje
ts whi
h 
annot understand these messages.7



To dete
t su
h a kind of type errors without restri
ting the use of obje
ts andmessages, it is ne
essary to de�ne a new type system and implement a new type
he
ker whi
h supports subtyping.5.1 SubtypingWe introdu
e a new type system whi
h uses subtype 
onstraints for expressingthe types of obje
ts, messages and fun
tions whi
h have su
h argument types ordeliver obje
ts or messages as their results.First we take a look at the type of 
onstru
tor fun
tions, obje
ts, messagesand the prede�ned fun
tions send and new. In a �rst step, we de�ne three newprede�ned type 
onstru
tors named Constru
tor, Obje
t and Message witharity one. An obje
t as an instan
e of a template T has type Obje
t T . Amessage has type �1 ! � � � ! �n ! Message T , where �1; : : : ; �n are the types ofthe arguments of this message and T is the template whi
h de�nes this message.A 
onstru
tor of a template T has type �1 ! � � � ! �n ! Constru
tor T ,where again �1; : : : ; �n are the types of the arguments of this 
onstru
tor. Forexample, an instan
e of the template Counter has type Obje
t Counter, themessage Get has type Int ! Message Counter and the 
onstru
tor fun
tion
ounter has type Int! Constru
tor Counter. With these types the fun
tionsend must have the typesend :: Message � ! Obje
t � ! Su

essand new has the typenew :: Constru
tor � ! Obje
t � ! Su

essThese types do not allow subtyping w.r.t. a Hindley/Milner-like type system[2℄ as used in Curry. Therefore, we need subtyping in three 
ases in order tosupport obje
t-oriented programming te
hniques and to 
ombine them with theadvantages of parametri
 polymorphism:1. We want to send messages de�ned in a template T to instan
es of subtem-plates of T .2. It should be possible to keep obje
ts of di�erent templates in a polymorphi
data stru
ture, e.g., in a list: If these obje
ts have a 
ommon supertemplate,there are 
ommon messages whi
h all of these obje
ts understand.3. We also want to store messages de�ned in di�erent templates in a polymor-phi
 data stru
ture if these templates have a 
ommon subtemplate.Therefore, we introdu
e subtype 
onstraints and 
onstrained types. We use themto de�ne new types of obje
ts and messages whi
h supports subtyping in thethree des
ribed 
ases. Note that, in 
ontrast to other approa
hes to subtypingor order-sorted types, we 
onsider only subtype relations between templates andnot subtyping of standard data types, like numbers or fun
tions, sin
e this issuÆ
ient for our purposes. 8



De�nition 1. A subtype 
onstraint is an expression �1 � �2 where �i (i = 1; 2)is a type variable or the name of a template.De�nition 2. A 
onstrained type is a pair � jC 
onsisting of a type expression� and a set C of subtype 
onstraints. A 
onstrained type s
heme has the form8�1 : : : �n:� jC.Intuitively, a 
onstraint of the form �1 � �2 expresses that �1 must be a subtem-plate of �2. To allow keeping instan
es of di�erent templates in one polymor-phi
 data stru
ture, an obje
t gets the type Obje
t � j fT � �g. For example,an instan
e of Counter gets the type Obje
t � j fCounter � �g and an in-stan
e of MaxCounter gets the type Obje
t � j fMaxCounter� �g. We 
an keepboth obje
ts in a list where this list has the type [Obje
t �℄ j fCounter ��; MaxCounter � �g. The type of the list is inferred by using standard typingrules but additionally 
olle
ting all subtype 
onstraints in one set.Intuitively, this 
onstraint set 
an be satis�ed be
ause there exists a templateT whi
h is a supertemplate of Counter and a supertemplate of MaxCounter:Counter is a supertemplate of both Counter and MaxCounter . If we mix ob-je
ts whi
h do not have a 
ommon supertemplate, the 
onstraint set 
annot besatis�ed. This makes sense be
ause these obje
ts do not have a 
ommon messageand so there is no reason to store them in one data stru
ture. We will formallyde�ne the satis�ability of a 
onstraint set later.Using this type for an obje
t, we must also modify the type of new as follows:new :: Constru
tor � ! Obje
t � ! Su

ess | f� � �gA similar modi�
ation of the type of a message allows to mix messages of di�erenttypes in a 
ommon data stru
ture: A message gets the type�1 ! � � � ! �n ! Message � j f� � Tgwhere �1; : : : ; �n are the types of the arguments of this message.With these de�nitions it is possible to send a message de�ned in a template Tto an instan
e of a subtemplate of T : The resulting 
onstraint set 
an be satis�edi� the obje
t understands the message. For instan
e, if we send the message In
to an obje
t of the instan
e MaxCounter, we get the typed expressionsend In
 maxCounterObje
t :: Su

ess j f� � Counter; MaxCounter� �gUnfortunately, we must also modify the type of send. Consider the followingexample:f m1 m2 o1 o2 = send m1 o1 & send m2 o2 & send m1 o2f has two messages and two obje
ts as arguments. It sends the �rst messageto the �rst obje
t, the se
ond message to the se
ond obje
t, and also the �rstmessage to the se
ond obje
t. With the type of send de�ned above, we get thetypef :: Message � ! Message � ! Obje
t � ! Obje
t � ! Su

ess9



For our running example, we assume:In
 :: Message � | f� � Counterg(SetMax 42) :: Message � | f� � MaxCounterg
ounterObje
t :: Obje
t � | fCounter � �gmaxCounterObje
t :: Obje
t � | fMaxCounter� �gThus, the appli
ation of f to these arguments would yield the typef In
 (SetMax 42) 
ounterObje
t maxCounterObje
t ::Su

ess | f� � Counter; � � MaxCounter; Counter � �; MaxCounter� �gThe set of 
onstraints of this type is not satis�able be
ause there is no substitu-tion for � su
h that all 
onstraints are elements of the inheritan
e hierar
hy. Thisdoes not mat
h our intuition be
ause it is possible to send In
 to 
ounterObje
tand maxCounterObje
t and (SetMax 42) to maxCounterObje
t.The problem 
an be easily solved if we modify the type of send:send :: Message � ! Obje
t � ! Su

ess | f� � �gThis type 
orresponds to the intuition that a message de�ned in template � 
anbe send to all instan
es of template � provided that � is a subtemplate of �.Now the type of f isMessage � ! Message � ! Obje
t 
 ! Obje
t Æ ! Su

ess| f
 � �; Æ � �; Æ � �gand \f In
 (SetMax 42) 
ounterObje
t maxCounterObje
t" has typeSu

ess | f
 � �; Æ � �; Æ � �; � � Counter; � � MaxCounter;Counter � 
; MaxCounter� ÆgThese subtype 
onstraints are satis�able by the following substitution �:�(�) = Counter; �(�) = MaxCounter; �(
) = Counter; �(Æ) = MaxCounter5.2 Core Obje
tCurryIn order to de�ne the type system of Obje
tCurry, we introdu
e a simpli�ed
ore language to provide a more 
ompa
t representation of Obje
tCurry's typingrules. The expressions and templates of the 
ore language are de�ned in Fig. 1.An expression E of the 
ore language is either a variable, a lambda ab-stra
tion, an appli
ation of two expressions, an expression 
ombined with thede
laration of free variables, or a 
onditional expression. A template T 
onsistsof an initial assignment I , whi
h de�nes the attributes and initial values of thetemplate, and a set of methods. A template 
an also be de�ned as a subtem-plate of another template by an extends 
lause. I 0 
ontains additionally to theinitial assignments of the subtemplate a 
all to the 
onstru
tor fun
tion of itssupertemplate. This ensures that ea
h inherited attribute gets an initial value.10



E ::= x variablej �x:E abstra
tionj E1 E2 appli
ationj let x free inE free variablej if E1 then E2 else E3 
onditionalT ::= Template name I M� templatej Template name1extends name2 I 0 M� subtemplateA ::= (x := E)� assignmentI ::= A initial assignmentj �x:I abstra
tionI 0 ::= E;A initial assignment of subtemplatesj �x:I 0 abstra
tionM ::= E ) A bodyj �x:M abstra
tionFig. 1. A 
ore language for Obje
tCurryA blo
k of assignments A 
onsists of assignments of the form x := E whereE is any expression. Due to the fa
t that a 
onstru
tor fun
tion of Obje
tCurry
an have some arguments, we allow lambda abstra
tion on initial assignments.A method M is de�ned by an expression E and a blo
k of assignments A. Ehas to be a 
onstraint (a fun
tion with the result type Su

ess) whi
h has to besolved when the method is 
alled. The assignments de�ne the transformation ofthe 
urrent state of the obje
t.A program of Core Obje
tCurry is a set of de�nitions of fun
tions and tem-plates. The de�nition of a fun
tion has the form fun
tionName = E (where E isusually a lambda abstra
tion) and the de�nition of a template is written as(
onstrName;methodName1; : : : ;methodNamen) = T :Su
h a program 
ontains no lo
al de�nitions, i.e., all identi�ers are introdu
edon top level (thus, lo
al de
larations in Obje
tCurry programs are globalized inCore Obje
tCurry by lambda lifting).As an example, our original Counter and MaxCounter template de�nitionsare transformed into the 
ore language as follows:(
ounter; In
; Set; Get) = Template Counter�i : x := i (body of 
ounter)su

ess) x := x+1 (body of In
)�s : su

ess) x := s (body of Set)�v : (v =:= x)) � (body of Get)11



(maxCounter; In
; SetMax) = Template MaxCounter extends Counter�i : �mi : 
ounter i; max := misu

ess) x := if x<max then x+1 else x�v : su

ess) max := v;x := if x<max then x else max5.3 A Type System for Obje
tCurryBefore we present a type system for this 
ore language, we de�ne the satis�abilityof a set of 
onstraints.De�nition 3. A (type) substitution � is a mapping from type variables to typessu
h that �(�) 6= � only for �nitely many type variables �. We write a substi-tution as follows: � = [x1=�1; : : : ; xn=�n℄ if �(xi) = �i for all i = 1; : : : ; n and�(y) = y for all y 62 fx1; : : : ; xng. The extension of a substitution to types and
onstraint sets is obvious.In the following we assume that P is a Core Obje
tCurry program.De�nition 4. Let H be the relation of subtemplates of P de�ned by its extend
lauses. The re
exive and transitive 
losure of H is denoted by H�, also 
alledinheritan
e hierar
hy.De�nition 5. A substitution � satis�es a subtype 
onstraint �1 � �2 w.r.t. theinheritan
e hierar
hy H�, denoted � j=H� �1 � �2, if there is a substitution �with (��1; ��2) 2 H�.A substitution � satis�es a set C of subtype 
onstraints (� j=H� C) if for all
 2 C: � j=H� 
.A set C of subtype 
onstraints is satis�able w.r.t. the inheritan
e hierar
hyH�, denoted j=H� C, if there is a substitution � with � j=H� C.Type environments 
olle
t the type information for named entities in a program:De�nition 6. A type environment � is a mapping from names to 
onstrainedtype s
hemes. In the following we denote by TE the set of all type environments.The union of two type environments �1 and �2 with non-overlapping domainsis de�ned as follows:(�1 [ �2)(�) = ��2(�); if �1(�) is unde�ned�1(�); if �2(�) is unde�nedAdditionally, we de�ne another 
on
atenation of two type environments �1 and�2 whi
h gives preferen
e to �2 if an identi�er is a member of the domains ofboth environments. We need this operation in order to extend the global typeenvironment with the attributes of a template.(�1 � �2)(�) = ��2(�); if �2(�) is de�ned�1(�); otherwiseGeneri
 instan
es of 
onstrained type s
hemes are de�ned as usual:12



De�nition 7. A 
onstrained type � 0jC 0 is a generi
 instan
e of a 
onstrainedtype s
heme 8�1 : : : �n:� jC if there is a substitution � with � � j � C = � 0 jC 0and �(�) = � for all � 62 f�1; : : : ; �ng.An attribute whi
h is de�ned in a template T is also visible in the subtemplatesof T with the same type. To spe
ify the visibility of attributes in the methodsof all subtemplates, we introdu
e attribute type environments:De�nition 8. An attribute type environment � : Templates ! TE maps thename of a template to a type environment. This type environment 
ontains thetypes of the attributes de�ned in this template.Now we are able to de�ne the well-typedness of Core Obje
tCurry programs:De�nition 9. A fun
tion de�nition f =�x1 : : : �xn:e is well-typed w.r.t. a typeenvironment � , an attribute type environment �, and an inheritan
e hierar
hyH�, if the following 
onditions are satis�ed:{ � (f) = 8�1 : : : �m:� jC{ �;�;H� ` �x1 : : : �xn:e : �|C 
an be dedu
ed by the rules of Fig. 2 and 3{ j=H� CA template de�nition (
;m1; : : : ;mn) = e is well-typed w.r.t. a type environment� , an attribute type environment �, and an inheritan
e hierar
hy H�, if{ � (
) = �0jC0, � (mi) = 8�i:�ijCi for i = 1; : : : ; n,{ �;�;H� ` e : (�0jC0; �1jC1; : : : ; �njCn) 
an be dedu
ed by the rules of Fig. 2and 3{ j=H� C0 [ C1 [ : : : [ CnA Core Obje
tCurry program is well-typed if there exist a type environment � ,an attribute type environment � and an inheritan
e hierar
hy H� su
h that allfun
tion and template de�nitions are well-typed w.r.t. these environments and� (send) = 8�1; �2 : Message �1 ! Obje
t �2 ! Su

ess | f�2 � �1g� (new) = 8�1; �2 : Constru
tor �1 ! Obje
t �2 ! Su

ess | f�1 � �2gIn the inferen
e rules of Fig. 2 and 3, we use the auxiliary fun
tions super andtemplates whi
h yield all supertemplates of a template (in
luding the templateitself) and all templates of a program, respe
tively.In order to 
he
k the well-typedness of a program by the rules of Fig. 2 and 3,the type environment � must 
ontain the types of ea
h de�ned fun
tion andtemplate. The attribute type environment � maps the name of ea
h templateto a new type environment whi
h 
ontains the types of the attributes de�nedin that template. The inheritan
e hierar
hy 
onsists of the subtype relationsbetween all templates whi
h are de�ned in the program.The inferen
e rules [Axiom℄, [Abstra
tion℄, [Existential℄, and [Appli
ation℄are de�ned in the usual way, 
ompare the Curry Report [6℄. The only modi-�
ation is the 
olle
tion of all 
onstraints of all subexpressions into one set of
onstraints. The satis�ability of this 
onstraint set is 
he
ked outside the typing13



[Axiom℄ �;�;H� ` x : � jC if � jC generi
 instan
e of � (x)[Abstra
tion℄ � [x=� jC℄; �;H� ` E : � 0jC0�;�;H� ` �x:E : � ! � 0jC0[Existential℄ � [x=� jC℄; �;H� ` E : � 0jC0�;�;H� ` let x free inE : � 0jC [ C0[Appli
ation℄ �;�;H� ` E1 : �1 ! �2jC1 �;�;H� ` E2 : �1jC2�;�;H� ` E1E2 : �2jC1 [ C2[Template℄ name 2 templates(H�)(name; x) 62 H� for all x 2 templates(H�) with x 6= name� 0 = � ��(name)� 0; �;H� `nameI I : �0jC0 � 0; �;H� `nameM Mi : �ijCi (i = 1; : : : ;m)�;�;H� ` Template name I M1 : : : Mm : (�0jC0; �1jC1; : : : ; �mjCm)[Subtemplate℄ (name1; name2) 2 H�; (name2; name1) 62 H�� 0 = � �Sp2super(H�;name1)�(p)pi 2 super(H�; name1) (i = 1; : : : ;m)� 0; �;H� `name1name2I0 I 0 : �0jC0 � 0; �;H� `piM Mi : �ijCi (i = 1; : : : ; m)�;�;H� ` Template name1 extends name2 I 0 M1 : : : Mm: (�0jC0; �1jC1; : : : ; �mjCm)Fig. 2. Typing rules for Obje
tCurry programs (1)rules in the de�nition of a well-typed program (see Def. 9). In the rule [Abstra
-tion℄ we do not have to 
olle
t the 
onstraints C of the type of the variable x: IfE 
ontains an o

urren
e of x, the 
onstraints of the type of x are 
olle
ted intothe set of 
onstraints of E by the other rules. Otherwise, x is never used and its
onstraints 
an be ignored.In addition to Curry's type system, we introdu
e new rules [Template℄ and[Subtemplate℄ for 
he
king the types of templates and subtemplates. In the rule[Template℄, whi
h is appli
able if there is no true supertemplate in H�, we ex-tend the type environment � by the type assumptions for the attributes of thetemplate in order to make the attribute types visible in the type 
he
king ofthe methods. Note that the global type environment � 
ontains the types of allidenti�ers de�ned in the program (in
luding the method identi�ers) so that we
an use the methods of the template also inside the template and we do not needa spe
ial rule for re
ursion. 14



[Assignment1℄ �;�;H� ` x : � jC1 �;�;H� ` E : � jC2 �;�;H� `A A : CA�;�;H� `A x := E;A : C1 [ C2 [ CA[Assignment2℄ �;�;H� `A � : ;[Init℄ �;�;H� `A A : C�;�;H� `nameI A : Constru
tor namejC[Init'℄ �;�;H� ` E : Constru
tor name2j� �; �;H� `A A : C�;�;H� `name1name2I0 E;A : Constru
tor name1jC[Method℄ �;�;H� ` E : Su

essjC �;�;H� `A A : C0 v new type variable�;�;H� `nameM E ) A : Message vjfv � nameg [ C [ C0[Abstra
tionX ℄ � [x=� jC℄; �;H� `nX X : � 0jC0�;�;H� `nX �x:X : � ! � 0jC0 X 2 fI; I 0;MgFig. 3. Typing rules for Obje
tCurry programs (2)The rule [Subtemplate℄ is similar to [Template℄ ex
ept for the following dif-feren
es:{ The type environment � 0 also 
ontains the type assumptions of the inheritedattributes, i.e., the attributes of the 
urrent template and all its supertem-plates.{ I 0 
ontains a 
all to the 
onstru
tor fun
tion of the parent. It must be 
he
kedthat this has the type Constru
tor name2 where name2 is the name of theparent. This is ensured by using `I0 instead of `I .{ Furthermore, we have to ensure that (name1; name2) is an element of thetype hierar
hy H� and (name2; name1) must not be in H�. Due to thefa
t that H� is transitive and re
exive, it also 
ontains (name2; name2),(name1; name1), and (name1; p) for all supertemplates p of name1.{ For 
he
king the types of the methods, we also allow that a method Miis assigned to some supertemplate pi (note that pi is the 
urrent templatename1 or one of its supertemplates). This is ne
essary if the method isrede�ned. Note, however, that methods rede�ned in subtemplates must havethe same type as in supertemplates. This is reasonable sin
e, due to the logi
features of Curry, arguments of a method 
an be used as value parametersas well as result parameters so that a 
ontra- or 
ovarian
e restri
tion onarguments 
annot be 
learly required.[Template℄ and [Subtemplate℄ use the rules of Fig. 3 whi
h we dis
uss next. Therule [Assignment1℄ ensures that in an assignment of the form x := E the typeof x is the same as the type of the expression E. [Assignment2℄ handles thespe
ial 
ase of an empty list of assignments. The rule [Init℄ 
he
ks the type of15



a 
onstru
tor fun
tion where the name of the template must be provided as anextra argument. [Init'℄ additionally 
he
ks if E is a valid 
all of the 
onstru
torfun
tion of the parent. For this purpose, we also need the name of the parent(name2). The rule [Method℄ types a method with subtyping the result type asdis
ussed in Se
t. 5.1. It 
he
ks whether the expression E of a method E ) Ais a 
onstraint (with the type Su

ess) and 
olle
ts the resulting 
onstraints.Due to the fa
t that we need lambda abstra
tion over initial assignments Ior I 0 and methods M , we introdu
e a generi
 rule [Abstra
tionX ℄. X 
an be I ,I 0 or M . The rule is similar to the 
ommon rule for abstra
tion.5.4 Type Inferen
eWe have also developed a type inferen
er for our modi�ed type system. Due tola
k of spa
e we 
an not present it here but refer to [12℄ whi
h 
ontains the 
om-plete des
ription of the type inferen
er and its implementation. The algorithm isbased on the algorithm D of Kaes [10℄. However, our inferen
e algorithm is sim-pler be
ause we allow subtyping only for obje
ts and messages. The algorithmuni�es type expressions in the same way as standard type inferen
e algorithms[2℄ but additionally 
olle
ts the subtype 
onstraints. The resulting set of subtype
onstraints is then 
he
ked for satis�ability with a simple test pro
edure.Our implementation of the type 
he
ker for Obje
tCurry is based on MarkJones' \Typing Haskell in Haskell" [9℄ whi
h we adapted to Curry. The imple-mentation of the Obje
tCurry 
ompiler together with the type inferen
er is freelyavailable from the authors.6 Related WorkIn this se
tion we 
ompare Obje
tCurry with some other approa
hes for theobje
t-oriented extension of fun
tional (logi
) languages.Oz [17℄ is a 
on
urrent 
onstraint programming language with a parti
u-lar syntax for obje
t-oriented programming, thus, o�ering similar features asObje
tCurry. The main di�eren
es between Obje
tCurry and Oz are the typesystem and the operational semanti
s. Oz is untyped and supports no dete
-tion of type errors at 
ompile time in 
ontrast to Obje
tCurry. Furthermore, theoperational model of Obje
tCurry is based on Curry's 
omputation model [4℄whi
h 
ombines an optimal lazy evaluation strategy [1℄ for the fun
tional (logi
)parts of a program with the 
on
urrent evaluation of 
onstraints. In parti
ular,we 
onsider obje
ts as fun
tions 
onsuming the stream of in
oming messageswhere the state is passed as an argument between the di�erent fun
tion 
alls.In 
ontrast, Oz evaluates fun
tions in an eager manner and implement statefulobje
ts via a spe
i�
 
ell store.Haskell++ [7℄ extends Haskell's type 
lasses to obje
t 
lasses. It providesa limited form of multiple inheritan
e and virtual methods but does not pro-vide subtype polymorphism. For instan
e, it is not possible to 
reate a list with16



elements of di�erent instan
es of one obje
t 
lass. The main goal in the devel-opment of Haskell++ was a minimal extension to Haskell whi
h supports theinheritan
e of fun
tions. Obje
ts in Haskell++ 
ontain only methods but nostates. On the other hand, Obje
tCurry provides real obje
ts with states in thesense of obje
t-oriented programming. It 
ombines the 
exibility of 
onventionalobje
t-oriented languages with the features of fun
tional logi
 programming.O'Haskell [13, 14℄ provides an extension for full obje
t-oriented programmingwith states and subtype polymorphism. It uses monads for the implementation of
on
urrent obje
ts and states. The main advantage of our implementation, whi
huses the 
on
urrent and logi
al features of Curry, is the opportunity to 
ombinethis with Curry's port 
on
ept [5℄ for distributed programming. In 
ontrast toO'Haskell, obje
ts in Obje
tCurry 
an also be exe
uted in a distributed setting.This is supported by a fun
tion newNamedObje
t whi
h is similar to new butmakes the new obje
t a

essible from other ma
hines in the network with aunique port identi�er (see [5℄ for more details). The implementation of obje
tsremains un
hanged. Furthermore, the logi
al variables in Curry 
an be exploitedas answer 
hannels sin
e the re
eiver of a message 
an bind the logi
al variablesin the message to send answers ba
k to the sender.Finally, Obje
tive Caml [11℄ is an obje
t-oriented extension of ML. Obje
tiveCaml inherits the stri
t evaluation strategy of ML and subtype polymorphism
an only be programmed with expli
it 
oer
ions in 
ontrast to Obje
tCurrywhi
h is lazy and provides subtype polymorphism without any annotations sin
eall types 
an be automati
ally inferred.7 Con
lusionsWe presented the language Obje
tCurry as an extension of Curry to allow a
onvenient de�nition of obje
ts via templates. Templates play the role of 
lassesin 
onventional obje
t-oriented languages. A template de�nes the attributes andmethods of an obje
t. Methods are used to determine the rea
tions to in
omingmessages where rea
tions 
an be the 
hange of the obje
t's state or a 
onstraint tosend messages to other obje
ts. Assignments are used to express a transformationon the lo
al state of an obje
t. Templates 
an also inherit attributes and methodsfrom other templates and inherited methods 
an be rede�ned.We proposed a dire
t translation of templates into pure Curry but translatedtarget programs using more than one template are not type safe in the senseof traditional typed obje
t-oriented languages. Therefore, we developed a newtype system whi
h uses subtype 
onstraints in the types of obje
ts, messagesand fun
tions whi
h use obje
ts or messages. We implemented a 
ompiler whi
htranslates Obje
tCurry programs into Curry and a type 
he
ker whi
h also inferstypes of expressions without expli
it type annotations.A
knowledgements. The authors are grateful to the anonymous referees fortheir helpful remarks to improve the �nal version of this paper.17
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