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Abstract. Curry combines the concepts of functional, logic and concur-
rent programming languages. Concurrent programming with ports allows
the modeling of objects in Curry similar to object-oriented programming
languages. In this paper, we present ObjectCurry, a conservative exten-
sion of Curry. ObjectCurry allows the direct definition of templates which
play the role of classes in conventional object-oriented languages. Objects
are instances of a template. An object owns a state and reacts when it
receives a message—usually by sending messages to other objects or a
transformation of its state. ObjectCurry also provides inheritance be-
tween templates. Furthermore, we show how programs can be translated
from ObjectCurry into Curry by exploiting the concurrency and distri-
bution features of Curry. To implement inheritance, we extend the type
system of Curry, which is based on parametric polymorphism, to include
subtyping for objects and messages.

1 Introduction

Curry [4, 6] is a multi-paradigm declarative language which integrates functional,
logic, and concurrent programming paradigms (see [3] for a survey on integrated
functional logic languages). The syntax of Curry is similar to Haskell [15], e.g.,
functions are defined by rules of the form “f¢; ...t, =e” where f is the function
to be defined, t1, ..., t, are the pattern arguments, and e is an expression which
replaces a function call matching the left-hand side. In addition to Haskell, local
names introduced in let and where clauses can be declared as “free” which
means that their value is unknown. Such free or logical variables in expressions
supports logic programming features like partial data structures and search for
solutions. Furthermore, functions in Curry can be defined by conditional equa-
tions “l | ¢ =r” where the condition ¢ is a constraint (an expression of the
predefined type Success) which must be solved in order to apply the equation.
Basic constraints are “success” (the always satisfiable constraint) and equa-
tional constraints of the form “e; =:= ey” which are satisfied if both sides e;
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and ey are reducible to the same value (data term). More complex constraints
can be constructed with the concurrent conjunction operator &. A non-primitive
constraint like “c; & c2” is solved by solving both constraints ¢; and ¢z concur-
rently. Finally, “c; &> c» denotes the sequential conjunction of two constraints,
i.e., first the constraint ¢; is solved and, if this was successful, the constraint ¢,
is evaluated.

Using both functional and logic features of Curry, it is possible to model
objects with states (see Section 2) at a very low level. Therefore, we propose
an extension of Curry, called ObjectCurry, which provides all standard features
of object-oriented programming, like (concurrent and distributed) objects with
state that can be defined by class templates and inheritance between templates.

This paper is structured as follows. In the next section, we review the model-
ing of concurrent objects in Curry as proposed in [5]. We present ObjectCurry in
the subsequent section and show the translation of ObjectCurry programs into
Curry in Sect. 4. Section 5 describes an extended type system for ObjectCurry
in order to detect type errors related to inheritance at compile time before we
discuss related work in Sect. 6 and conclude in Sect. 7.

2 Implementing Objects in Curry

It is well known from concurrent logic programming [16] that objects can be
easily implemented as predicates processing a stream of incoming messages. The
internal state of the object can be implemented as a parameter which may change
in recursive calls when the message stream is processed. Since constraints play
the role of predicates in Curry, we consider objects as functions with result type
Success. These functions take the current state of the object and a stream
of incoming messages as arguments. If the stream is not empty, the “object”
function calls itself recursively with a new state, depending on the first element
of the message stream. Thus,

o :: State — [Message Type]l — Success

is the general type of an object where State is the type of the internal state of
the object and MessageType is the type of messages. Usually, we define a new
algebraic data type for the messages.

The following example shows a counter which understands the messages Inc,
Set s, and Get v. Thus, we define the data type

data CounterMessage = Inc | Set Int | Get Int

The counter has an integer value as an internal state. Receiving Inc increments
the internal state and Set s assigns it to a new value s. To get the current state
of the counter as an answer, we send the message Get v to the object where v
is a free logical variable. In this case the counter object binds this variable to its
current state:

counter :: Int -> [CounterMessage] -> Success



counter eval rigid

counter x (Inc : ms) counter (x+1) ms

counter _ (Set s : ms) = counter s ms
counter x (Get v : ms) = v =:= x & counter x ms
counter _ [] = success

The evaluation of the constraint “counter 42 s” creates a new counter object
with initial value 42. Messages are sent by instantiating the variable s. The
object terminates if the stream of incoming messages is empty. In this case
the constraint is reduced to the trivial constraint success. For instance, the
constraint

let s free in counter 41 s & s=:=[Inc, Get x]
is successfully evaluated where x is bound to the value 42. The annotation
counter eval rigid

marks counter as arigid function. This means that an expression “counter x s”
can be reduced only if s is bound.!

If there is more than one process sending messages to the same counter object,
it is necessary to merge the message streams from different processes into a single
message stream. Doing that with a merger function causes a set of problems as
discussed in [5, 8]. Therefore, Janson et al. [8] proposed the use of ports for the
concurrent logic language AKL which are generalized in [5] to support distributed
programming in Curry. In principle, a port is a constraint between a multiset
and a stream which is satisfied if the multiset and the stream contain the same
elements. In Curry a port is created by a constraint “openPort p s” where p
and s are free logical variables. This constraint creates a multiset and a stream
and combines them over a port. Elements can be inserted into the multiset by
sending them to p. When a message is sent to p, it will automatically be added
to the stream s in order to satisfy the port constraint. For sending a message,
there is a constraint “send m p” where m is the message and p is a port created
by openPort.

Using ports, we can rewrite the counter example as follows

openPort p s &> counter 0 s & (send Inc p &> send (Get x) p)

3 ObjectCurry, an Object-Oriented Extension of Curry

Using the technique presented above is troublesome and error-prone, in partic-
ular, if the state consists of many variables, because the programmer has to

! In contrast to rigid functions, Curry also provides flexible functions which nondeter-
ministically instantiate their arguments in order to allow the reduction of function
calls, which provides for goal solving like in logic programming. As a default (which
can be changed by eval annotations), constraints are flexible and all other functions
are rigid.



repeat the whole state in the recursive calls. This motivated us to introduce
some special syntax for defining templates. Templates play the role of classes
in conventional object-oriented programming languages. We use the word “tem-
plate” instead of class to avoid confusion between classes in an object-oriented
meaning and Haskell’s type classes. For instance, a template for counter objects
can be defined in ObjectCurry as follows:

template Counter =

constructor

counter init = x := init
methods

Inc = x :=x +1

Set s = x :=s

Get v = v =:=x

A template definition starts with the reserved keyword template followed by
the name of the template. Similar to a data type declaration, the name of the
template is its own type. The constructor is a function which we use to instan-
tiate new objects. The left-hand side is constructed as in conventional function
declarations. The right-hand side is a set of assignments describing the attributes
of the object and their initial values. The assignments are consecutively written
using the offside rule.

The messages which are understood by the object and the reactions to these
messages are defined by methods. Messages are defined similarly as the con-
structor. The left-hand side of a method declaration consists of the name of
the method followed by a list of patterns as in a function declaration and de-
scribes the signature of a message with the same name as the method. The
right-hand side describes the behavior of the object in response to receiving a
message. A reaction can be a transformation of the internal state of the object.
The transformation of a state can be expressed by a set A of assignments of the
form “v :=e”. If the tuple (v{,...,v],) is the current state of the object where
the template has the attributes vq,...,v,, A specifies the state transformation
(v],...,v) = (v),...,0!) defined by

»¥n ’r¥n
U,,_{ei ifv; :=¢; €A

i 7 vl otherwise

Additionally, the right-hand side of a method can also include constraints, i.e.,
expressions of the type Success, because constraints offer further possibilities
to express reactions, e.g., equational constraints are used to yield an answer by
binding a logical variable, or messages are sent to other objects by the send
constraint.

The assignments and constraints in the right-hand side of a method are
treated as a set (where for each component of the state at most one assignment,
is allowed), i.e., they can be placed in any order: an assignment has no side effect
to another assignment in the same method.

A template definition introduces the type of the template, the constructor
function and the messages at the top level of the Curry program. If T is the type



of the template and the constructor function has n arguments 71, ..., 7, the
type of the constructor function is

T — ... > T, — Constructor T
In a similar manner, a method has the type
™ — ... > T, — Message T

if it takes n arguments. Additionally, each object understands the predefined
message Stop which terminates the object.
To instantiate a template, there is a constraint

new :: Constructor ¢ — Object a — Success .

new takes a constructor function and a free logical variable and binds the vari-
able to a new instance of the template a. Messages can be sent to such an ob-
ject using the constraint send :: Message a — 0Object a — Success. For
instance, the evaluation of the following expression binds the variable v to the
value 42:

new (counter 41) o
& (send Inc o &> send (Get v) o &> send Stop o)

To give an object the possibility to send a message to itself, there is a predefined
identifier self. self is visible in the right-hand side of each method and bound
to the current object. Note that sending a message to self has no immediate
side effect to the attributes of the object because the objects can only react to
this message after the evaluation of the current method is finished.

As a true extension to the modeling of objects in Curry as described in Sect. 2,
ObjectCurry also provides inheritance. A template can inherit attributes and
methods from another template, which we call parent, where inherited methods
can be redefined or new attributes and methods can be added. A supertemplate of
a template T is T or one of its ancestors w.r.t. the parent relation. Subtemplates
are analogously defined.

For instance, we define a new template maxCounter which inherits the at-
tribute x and the methods Inc, Set, and Get from counter. It also introduces a
new attribute max which represents an upper bound for incrementing the counter.
The method Inc will be redefined to avoid incrementing x to a value greater than
max. Additionally, we define a new method SetMax v to set the upper bound:

template MaxCounter extends Counter =

constructor
maxCounter init maxInit = counter init
max := maxInit
methods
Inc = x = (if x < max then x+1 else x)

max := newMax
(if x<max then x else max)

SetMax newMax

>
1]



The reserved keyword extends followed by the name of the parent specifies that
the template inherits the attributes and methods from Counter.

The first expression in the right-hand side of the constructor of a subtemplate
must be the function call of the constructor of the parent. In this way the initial
values of the inherited attributes are determined.

Methods can be redefined by defining a method with the same name in the
subtemplate. All methods which are not redefined will be inherited.

4 Translating ObjectCurry into Curry

To translate ObjectCurry programs into Curry, we basically use the technique
presented in Sect. 2. An abstract data type Msg contains data constructors for
each message defined in all templates and the additional message Stop. We
decided to use only one data type for all messages to obtain a maximum of
flexibility. Of course, ObjectCurry programs translated in this way are not type
safe in a sense that messages can be sent to objects which cannot understand
these messages. We will discuss this issue and propose a solution for this in
Sect. 5.
For our counter example, we generate one data type for all messages:

data Msg = Inc | Set Int | Get Int | SetMax Int | Stop

Next we define a function which defines the initial state of a new object. If the
state of the object consists of more than one attribute, the state is implemented
as a tuple.

counterInitState init = init

The initialization function of a subtemplate uses the initialization function of its
parent to obtain the initial values for the inherited attributes:

maxCounterInitState (init,maxInit) =
let r_x = counterInitState init
in (r_x,maxInit)

Given a state and a message, the following action function computes the next
state defined by the corresponding method.

counterAction x self Inc State (x+1)

counterAction x self (Set s) = State s
counterAction x self (Get v) | v =:= x = State x
counterAction x self Stop = Final

We use the abstract data type “data State a = State a | Final” to distin-
guish normal states and the final state.
In a subtemplate, redefined and new methods are similarly translated:

maxCounterAction (x,max) self Inc
= State (if x < max then x + 1 else x, max)



maxCounterAction (x,max) self (SetMax newMax)
= State (if x < max then x else max, newMax)

The action function of a subtemplate also contains an equation for each inherited
method. Such an equation calls the action function of the parent of the template
for receiving the next state:

maxCounterAction (x,max) self (Get v)
= let State r_x = counterAction x self (Get v)
in State (r_x,max)
maxCounterAction (x,max) self Stop = Final

To create a new object, we use the constructor function and the new constraint.
The constructor function determines the initial state of the object using the
translated function for the initialization defined above and transfers the initial
state and the action function of the object to a generic function loop which
handles the recursive calls until the final state is reached:

counter init self =
loop (counterInitState init) counterAction self

For each template the same function loop is used which is defined by:

loop eval rigid
loop state action self (m:ms) = continuation nextState self ms
where
nextState = action state self m
continuation (State ns) self ms = loop ns action self ms
continuation Final success

The function new has a constructor function and a free logical variable as ar-
guments. It creates a port to which the logical variable is bound and passes
a stream associated with the port to the constructor function. Additionally, it
passes the port to the constructor as the value for the identifier self:

new constructor port =
let stream free in
openPort port stream &> constructor port stream

In the transformation, each message has the type Msg. Objects are represented
by ports, so an object has the type Port Msg instead of Object Template.

We have implemented a compiler for Object Curry which translates a program
from ObjectCurry to Curry following the ideas sketched in this section. The
compiler is written in Curry itself.

5 Type Safeness

The presented translation into Curry programs is not type safe in the sense
that messages can be sent to objects which cannot understand these messages.



To detect such a kind of type errors without restricting the use of objects and
messages, it is necessary to define a new type system and implement a new type
checker which supports subtyping.

5.1 Subtyping

We introduce a new type system which uses subtype constraints for expressing
the types of objects, messages and functions which have such argument types or
deliver objects or messages as their results.

First we take a look at the type of constructor functions, objects, messages
and the predefined functions send and new. In a first step, we define three new
predefined type constructors named Constructor, Object and Message with
arity one. An object as an instance of a template 7' has type Object T. A
message has typem — +-+ — 7, — Message T, where 7, ..., 7, are the types of
the arguments of this message and T is the template which defines this message.
A constructor of a template T has type ;m — --- — 7, — Constructor T,
where again 7,...,7, are the types of the arguments of this constructor. For
example, an instance of the template Counter has type Object Counter, the
message Get has type Int — Message Counter and the constructor function
counter has type Int — Constructor Counter. With these types the function
send must have the type

send :: Message a — 0Object a — Success
and new has the type
new :: Constructor aw — Object & — Success

These types do not allow subtyping w.r.t. a Hindley/Milner-like type system
[2] as used in Curry. Therefore, we need subtyping in three cases in order to
support object-oriented programming techniques and to combine them with the
advantages of parametric polymorphism:

1. We want to send messages defined in a template T to instances of subtem-
plates of T'.

2. It should be possible to keep objects of different templates in a polymorphic
data structure, e.g., in a list: If these objects have a common supertemplate,
there are common messages which all of these objects understand.

3. We also want to store messages defined in different templates in a polymor-
phic data structure if these templates have a common subtemplate.

Therefore, we introduce subtype constraints and constrained types. We use them
to define new types of objects and messages which supports subtyping in the
three described cases. Note that, in contrast to other approaches to subtyping
or order-sorted types, we consider only subtype relations between templates and
not subtyping of standard data types, like numbers or functions, since this is
sufficient for our purposes.



Definition 1. A subtype constraint is an expression 7 < 7o where 7; (i =1,2)
is a type variable or the name of a template.

Definition 2. A constrained type is a pair 7|C consisting of a type expression
T and a set C of subtype constraints. A constrained type scheme has the form
Yoy ...o,.7|C.

Intuitively, a constraint of the form 7 < 75 expresses that 7; must be a subtem-
plate of . To allow keeping instances of different templates in one polymor-
phic data structure, an object gets the type Object « | {T < a}. For example,
an instance of Counter gets the type Object « | {Counter < a} and an in-
stance of MaxCounter gets the type Object a|{MaxCounter < a}. We can keep
both objects in a list where this list has the type [0bject al | {Counter <
a,MaxCounter < a}. The type of the list is inferred by using standard typing
rules but additionally collecting all subtype constraints in one set.

Intuitively, this constraint set can be satisfied because there exists a template
T which is a supertemplate of Counter and a supertemplate of MaxCounter:
Counter is a supertemplate of both Counter and MaxCounter . If we mix ob-
jects which do not have a common supertemplate, the constraint set cannot be
satisfied. This makes sense because these objects do not have a common message
and so there is no reason to store them in one data structure. We will formally
define the satisfiability of a constraint set later.

Using this type for an object, we must also modify the type of new as follows:

new :: Constructor a — Object § — Success | {a <}

A similar modification of the type of a message allows to mix messages of different
types in a common data structure: A message gets the type

T — o+ = T, — Message a|{a<T}

where 7,..., T, are the types of the arguments of this message.

With these definitions it is possible to send a message defined in a template T’
to an instance of a subtemplate of T: The resulting constraint set can be satisfied
iff the object understands the message. For instance, if we send the message Inc
to an object of the instance MaxCounter, we get the typed expression

send Inc maxCounterObject :: Success|{a < Counter,MaxCounter < o}

Unfortunately, we must also modify the type of send. Consider the following
example:

f ml1 m2 ol 02 = send ml1 ol & send m2 02 & send ml o2

f has two messages and two objects as arguments. It sends the first message
to the first object, the second message to the second object, and also the first
message to the second object. With the type of send defined above, we get the

type

f :: Message a — Message a — Object a — Object a — Success



For our running example, we assume:

Inc :: Message a | {«a < Counter}
(SetMax 42) :: Message a | {a < MaxCounter}
counterQObject :: Object a | {Counter < a}

maxCounterObject :: Object a | {MaxCounter < a}
Thus, the application of f to these arguments would yield the type

f Inc (SetMax 42) counterObject maxCounterObject ::
Success | {a < Counter, a < MaxCounter, Counter < «,MaxCounter < a}

The set of constraints of this type is not satisfiable because there is no substitu-
tion for o such that all constraints are elements of the inheritance hierarchy. This
does not match our intuition because it is possible to send Inc to counterObject
and maxCounterObject and (SetMax 42) to maxCounterObject.

The problem can be easily solved if we modify the type of send:

send :: Message a — Object § — Success | {8 <a}

This type corresponds to the intuition that a message defined in template o can
be send to all instances of template 5 provided that S is a subtemplate of .
Now the type of £ is

Message a — Message 8 — O0Object v — Object § — Success
| {y<a,0<B,6<a}

and “f Inc (SetMax 42) counterObject maxCounterObject” has type

Success | {y<a,d <f8,§ <a,a < Counter, 3 < MaxCounter,
Counter < 7,MaxCounter < §}

These subtype constraints are satisfiable by the following substitution o:

o(a) = Counter, o(f) = MaxCounter, o(y) = Counter, o(d) = MaxCounter

5.2 Core ObjectCurry

In order to define the type system of ObjectCurry, we introduce a simplified
core language to provide a more compact representation of ObjectCurry’s typing
rules. The expressions and templates of the core language are defined in Fig. 1.
An expression E of the core language is either a variable, a lambda ab-
straction, an application of two expressions, an expression combined with the
declaration of free variables, or a conditional expression. A template T' consists
of an initial assignment I, which defines the attributes and initial values of the
template, and a set of methods. A template can also be defined as a subtem-
plate of another template by an extends clause. I' contains additionally to the
initial assignments of the subtemplate a call to the constructor function of its
supertemplate. This ensures that each inherited attribute gets an initial value.

10



E :==x variable

| A\z.E abstraction

| Ei E» application

| letz free in E free variable

| if E; then E, else Ej conditional
T ::= Template namelI M" template

Template name;
p
extends names I' M* subtemplate

A = (z:=E)" assignment
n=A initial assignment
| Azt abstraction
I' :=E A initial assignment of subtemplates
| Az.I' abstraction
M:@:»=E=A body
| Az.M abstraction

Fig. 1. A core language for ObjectCurry

A block of assignments A consists of assignments of the form z := E where
FE is any expression. Due to the fact that a constructor function of ObjectCurry
can have some arguments, we allow lambda abstraction on initial assignments.

A method M is defined by an expression E and a block of assignments A. E
has to be a constraint (a function with the result type Success) which has to be
solved when the method is called. The assignments define the transformation of
the current state of the object.

A program of Core ObjectCurry is a set of definitions of functions and tem-
plates. The definition of a function has the form functionName = E (where E is
usually a lambda abstraction) and the definition of a template is written as

(constrName, methodNamey, . .., methodName,) =T .

Such a program contains no local definitions, i.e., all identifiers are introduced
on top level (thus, local declarations in ObjectCurry programs are globalized in
Core ObjectCurry by lambda lifting).

As an example, our original Counter and MaxCounter template definitions
are transformed into the core language as follows:

(counter, Inc, Set, Get) = Template Counter

Ai.x:=1 (body of counter)
success = x 1= x+1 (body of Inc)
As . success =>x:=5 (body of Set)
M. (v==x%x)=>¢ (body of Get)

11



(maxCounter, Inc, SetMax) = Template MaxCounter extends Counter
Ai. Ami . counter i, max := mi
success = x := if x<max then x+1 else x
AU . success = max = v,
x := if x<max then x else max

5.3 A Type System for ObjectCurry

Before we present a type system for this core language, we define the satisfiability
of a set of constraints.

Definition 3. A (type) substitution o is a mapping from type variables to types
such that o(a) # « only for finitely many type variables a. We write a substi-
tution as follows: o = [x1/71,...,&n/Ta] if o(x;) = 7 for alli =1,...,n and
o(y) =y for ally & {x1,...,x,}. The extension of a substitution to types and
constraint sets is obvious.

In the following we assume that P is a Core ObjectCurry program.

Definition 4. Let H be the relation of subtemplates of P defined by its extend
clauses. The reflexive and transitive closure of H is denoted by H*, also called
inheritance hierarchy.

Definition 5. A substitution o satisfies a subtype constraint 7 < 1o w.r.t. the
inheritance hierarchy H*, denoted o |=y+ 71 < T2, if there is a substitution o
with (o1 ,0m) € H*.

A substitution o satisfies a set C' of subtype constraints (o =4+ C) if for all
ceC:okEy c.

A set C of subtype constraints is satisfiable w.r.t. the inheritance hierarchy
H*, denoted |=4~ C, if there is a substitution o with o =+ C.

Type environments collect the type information for named entities in a program:

Definition 6. A type environment I" is a mapping from names to constrained
type schemes. In the following we denote by TE the set of all type environments.

The union of two type environments I and I3 with non-overlapping domains
is defined as follows:

_ [ Ib(w), if I () is undefined
(MU D) (e) = {Fl(a), if Iy(c) is undefined

Additionally, we define another concatenation of two type environments I'; and
I'; which gives preference to I if an identifier is a member of the domains of
both environments. We need this operation in order to extend the global type
environment with the attributes of a template.

Iy(«), if In(a) is defined
It (a), otherwise

(11 0 1)) = {

Generic instances of constrained type schemes are defined as usual:

12



Definition 7. A constrained type T'|C’ is a generic instance of a constrained
type scheme VYo . ..an.7T|C if there is a substitution o with o 7|0 C = 7" |C’

and o(B) = for all B & {au,...,an}.

An attribute which is defined in a template T is also visible in the subtemplates
of T with the same type. To specify the visibility of attributes in the methods
of all subtemplates, we introduce attribute type environments:

Definition 8. An attribute type environment @ : Templates — TFE maps the
name of a template to a type environment. This type environment contains the
types of the attributes defined in this template.

Now we are able to define the well-typedness of Core ObjectCurry programs:

Definition 9. A function definition f=MXxq ... \xy,.e is well-typed w.r.t. a type
environment I, an attribute type environment ©, and an inheritance hierarchy
H*, if the following conditions are satisfied:

- I'(f) =Vaq...an.7|C
— IO, H*F Xxy ... xp.e : TIC can be deduced by the rules of Fig. 2 and 3
- Fwn C

A template definition (c,mq,...,my) = e is well-typed w.r.t. a type environment
I, an attribute type environment @, and an inheritance hierarchy H*, if

— I'(¢) = 10|Co, I'(m;) =Va;.7|C;  fori=1,...,n,

- I,0,H*Fe: (10|Co,m1|C1,...,mn|Cr) can be deduced by the rules of Fig. 2
and 3

— gy CoUCLU...UC,

A Core ObjectCurry program is well-typed if there exist a type environment I,
an attribute type environment @ and an inheritance hierarchy H* such that all
function and template definitions are well-typed w.r.t. these environments and

I'(send) = V11,7» . Message 71 — Object 72 — Success | {n <7}
I'(new) = V11, 7> . Constructor 74 — Object 73 — Success | {r < ™}

In the inference rules of Fig. 2 and 3, we use the auxiliary functions super and
templates which yield all supertemplates of a template (including the template
itself) and all templates of a program, respectively.

In order to check the well-typedness of a program by the rules of Fig. 2 and 3,
the type environment I" must contain the types of each defined function and
template. The attribute type environment @ maps the name of each template
to a new type environment which contains the types of the attributes defined
in that template. The inheritance hierarchy consists of the subtype relations
between all templates which are defined in the program.

The inference rules [Axiom], [Abstraction], [Existential], and [Application]
are defined in the usual way, compare the Curry Report [6]. The only modi-
fication is the collection of all constraints of all subexpressions into one set of
constraints. The satisfiability of this constraint set is checked outside the typing

13



[Axiom]

TO.70 Tz 70 if 7|C generic instance of I'(z)

I'lz/7|C],0,H* - E:7'|C’

[Abstraction] 75 S xr B 7 5 7|0
i ) I'lz/7|C],0,H* - E:7'|C’
[Existential] IO, H* Fletxfree inE: 7 |CUC’
. . F,@,H* |—E1:T1—)T2|01 F,@,H* |—E2:T1|Cz
[Application]

re,H |—E1E2:T2|01 UuCs

name € templates(H™)

(name,z) ¢ H* for all z € templates(H™) with = # name
[Template] I =TI ® O(name)

F,,@,H* l—?ame I: T0|Oo F’,@,H* l—%me Mi : T1|Cl (Z = ].,. . ,m)

IO, H" + Template name I My ... My, : (10|Co, 1|C1, ..., Tm|Cm)

(namei, names) € H*, (names,namey) ¢ H*
L
r'=re UpEsuper(’H*,namel) e(p)
pi € super(H*,name1) (i=1,...,m)
[Subtemplate] name;
I, eH l—?,ame?‘ I':m|Co I, O,H* Hio M; - m|Cy (i=1,...,m)
IO, H* - Template name; extends namez I' My ... My,
: (T0|Co,T1|C1, e ,Tm|Cm)

Fig. 2. Typing rules for ObjectCurry programs (1)

rules in the definition of a well-typed program (see Def. 9). In the rule [Abstrac-
tion] we do not have to collect the constraints C of the type of the variable z: If
FE contains an occurrence of z, the constraints of the type of = are collected into
the set of constraints of E by the other rules. Otherwise, = is never used and its
constraints can be ignored.

In addition to Curry’s type system, we introduce new rules [Template] and
[Subtemplate] for checking the types of templates and subtemplates. In the rule
[Template], which is applicable if there is no true supertemplate in H*, we ex-
tend the type environment I" by the type assumptions for the attributes of the
template in order to make the attribute types visible in the type checking of
the methods. Note that the global type environment I' contains the types of all
identifiers defined in the program (including the method identifiers) so that we
can use the methods of the template also inside the template and we do not need
a special rule for recursion.
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e,H +z:7|Cy e, H*+E : 7|C> INeo,H*Fa A:Ca

[Assignment, T[O,H Faz:=E,A:CiUC,UCa
[A551gnment2] W
(nit] FOH FAA:C

IO, H* -7 A : Constructor name|C

(it I''O,H" - E : Constructor names|e NO,H F4 A:C
nit mamer
IO, H" 7™ E, A : Constructor name; |C

I'O,H" F E : Success|C I,0,H" 4 A:C’" v new type variable
Io,H* ™ E = A :Message v|{v < name} UCUC’

[Method]

Iz/7|C],0,H* % X : '|C'
Lo,H Fy e X : 17— 7|C’

[Abstraction ] X el{l,I',M}

Fig. 3. Typing rules for ObjectCurry programs (2)

The rule [Subtemplate] is similar to [Template] except for the following dif-
ferences:

— The type environment I'" also contains the type assumptions of the inherited
attributes, i.e., the attributes of the current template and all its supertem-
plates.

— I’ contains a call to the constructor function of the parent. It must be checked
that this has the type Constructor names where names is the name of the
parent. This is ensured by using - instead of 7.

— Furthermore, we have to ensure that (name;,names) is an element of the
type hierarchy H* and (namesz,name;) must not be in H*. Due to the
fact that H* is transitive and reflexive, it also contains (names,names),
(namey,name;), and (namey, p) for all supertemplates p of name; .

— For checking the types of the methods, we also allow that a method M;
is assigned to some supertemplate p; (note that p; is the current template
name; or one of its supertemplates). This is necessary if the method is
redefined. Note, however, that methods redefined in subtemplates must have
the same type as in supertemplates. This is reasonable since, due to the logic
features of Curry, arguments of a method can be used as value parameters
as well as result parameters so that a contra- or covariance restriction on
arguments cannot be clearly required.

[Template] and [Subtemplate] use the rules of Fig. 3 which we discuss next. The
rule [Assignment, ] ensures that in an assignment of the form z := E the type
of z is the same as the type of the expression E. [Assignment,]| handles the
special case of an empty list of assignments. The rule [Init] checks the type of

15



a constructor function where the name of the template must be provided as an
extra argument. [Init’] additionally checks if F is a valid call of the constructor
function of the parent. For this purpose, we also need the name of the parent
(names). The rule [Method] types a method with subtyping the result type as
discussed in Sect. 5.1. It checks whether the expression E of a method £ = A
is a constraint (with the type Success) and collects the resulting constraints.

Due to the fact that we need lambda abstraction over initial assignments
or I' and methods M, we introduce a generic rule [Abstractiony]. X can be I,
I' or M. The rule is similar to the common rule for abstraction.

5.4 Type Inference

We have also developed a type inferencer for our modified type system. Due to
lack of space we can not present it here but refer to [12] which contains the com-
plete description of the type inferencer and its implementation. The algorithm is
based on the algorithm D of Kaes [10]. However, our inference algorithm is sim-
pler because we allow subtyping only for objects and messages. The algorithm
unifies type expressions in the same way as standard type inference algorithms
[2] but additionally collects the subtype constraints. The resulting set of subtype
constraints is then checked for satisfiability with a simple test procedure.

Our implementation of the type checker for ObjectCurry is based on Mark
Jones’ “Typing Haskell in Haskell” [9] which we adapted to Curry. The imple-
mentation of the ObjectCurry compiler together with the type inferencer is freely
available from the authors.

6 Related Work

In this section we compare ObjectCurry with some other approaches for the
object-oriented extension of functional (logic) languages.

Oz [17] is a concurrent constraint programming language with a particu-
lar syntax for object-oriented programming, thus, offering similar features as
ObjectCurry. The main differences between ObjectCurry and Oz are the type
system and the operational semantics. Oz is untyped and supports no detec-
tion of type errors at compile time in contrast to ObjectCurry. Furthermore, the
operational model of ObjectCurry is based on Curry’s computation model [4]
which combines an optimal lazy evaluation strategy [1] for the functional (logic)
parts of a program with the concurrent evaluation of constraints. In particular,
we consider objects as functions consuming the stream of incoming messages
where the state is passed as an argument between the different function calls.
In contrast, Oz evaluates functions in an eager manner and implement stateful
objects via a specific cell store.

Haskell++ [7] extends Haskell’s type classes to object classes. It provides
a limited form of multiple inheritance and virtual methods but does not pro-
vide subtype polymorphism. For instance, it is not possible to create a list with
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elements of different instances of one object class. The main goal in the devel-
opment of Haskell++ was a minimal extension to Haskell which supports the
inheritance of functions. Objects in Haskell++ contain only methods but no
states. On the other hand, ObjectCurry provides real objects with states in the
sense of object-oriented programming. It combines the flexibility of conventional
object-oriented languages with the features of functional logic programming.

O’Haskell [13, 14] provides an extension for full object-oriented programming
with states and subtype polymorphism. It uses monads for the implementation of
concurrent objects and states. The main advantage of our implementation, which
uses the concurrent and logical features of Curry, is the opportunity to combine
this with Curry’s port concept [5] for distributed programming. In contrast to
O’Haskell, objects in ObjectCurry can also be executed in a distributed setting.
This is supported by a function newNamedObject which is similar to new but
makes the new object accessible from other machines in the network with a
unique port identifier (see [5] for more details). The implementation of objects
remains unchanged. Furthermore, the logical variables in Curry can be exploited
as answer channels since the receiver of a message can bind the logical variables
in the message to send answers back to the sender.

Finally, Objective Caml [11] is an object-oriented extension of ML. Objective
Caml inherits the strict evaluation strategy of ML and subtype polymorphism
can only be programmed with explicit coercions in contrast to ObjectCurry
which is lazy and provides subtype polymorphism without any annotations since
all types can be automatically inferred.

7 Conclusions

We presented the language ObjectCurry as an extension of Curry to allow a
convenient definition of objects via templates. Templates play the role of classes
in conventional object-oriented languages. A template defines the attributes and
methods of an object. Methods are used to determine the reactions to incoming
messages where reactions can be the change of the object’s state or a constraint to
send messages to other objects. Assignments are used to express a transformation
on the local state of an object. Templates can also inherit attributes and methods
from other templates and inherited methods can be redefined.

We proposed a direct translation of templates into pure Curry but translated
target programs using more than one template are not type safe in the sense
of traditional typed object-oriented languages. Therefore, we developed a new
type system which uses subtype constraints in the types of objects, messages
and functions which use objects or messages. We implemented a compiler which
translates ObjectCurry programs into Curry and a type checker which also infers
types of expressions without explicit type annotations.

Acknowledgements. The authors are grateful to the anonymous referees for
their helpful remarks to improve the final version of this paper.
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