In Proc. of the Twelfth International Conference on Logic Programming,
Tokyo, June 1995, MIT Press, pp. 665-679

On Extra Variables in (Equational)
Logic Programming

Michael Hanus

Informatik II, RWTH Aachen
D-52056 Aachen, Germany
hanus@informatik.rwth-aachen.de

Abstract

Extra variables in a clause are variables which occur in the body but not in
the head. It has been argued that extra variables are necessary and contribute
to the expressive power of logic languages. In the first part of this paper, we
show that this is not true in general. For this purpose, we provide a simple
syntactic transformation of each logic program into a logic program without
extra variables, and we show a strong correspondence between the original
and the transformed program. In the second and main part of this paper,
we use a similar technique to provide new completeness results for equational
logic programs with extra variables. In equational logic programming it is
well known that extra variables cause problems since narrowing, the stan-
dard operational semantics for equational logic programming, may become
incomplete in the presence of extra variables. Using a simple syntactic trans-
formation, we derive a number of new completeness results for narrowing. In
particular, we show the completeness of narrowing strategies in the presence
of nonterminating functions and extra variables in right-hand sides of rewrite
rules. Using these results, current functional logic languages can be extended
in a practically useful way.

1 Introduction

Ezxtra variables in a Horn clause L < B are variables in the body B which
do not occur in L (other notions are ezistential variables [20], local variables
[2], or fresh variables [19]). It has been argued that extra variables are neces-
sary and contribute to the expressive power of logic languages. For instance,
Dershowitz and Okada [7] claim that the restriction of logic programming to
clauses without extra variables “is unacceptable since even very simple rela-
tions, such as transitivity, require extra variables in conditions.” In the first
part of this paper, we show that this is not true in general since each clause
containing extra variables can be transformed into a clause without extra
variables by adding the extra variables as a new argument to the predicate
in the head. We state a strong correspondence between the original and the
transformed program w.r.t. the declarative and the operational semantics, in
order to show that there is no loss due to this transformation.

In the second and main part of this paper, we consider equational logic
programs. This class of programs is important since it is a basis for integrating
functional and logic programming (see [14] for a recent survey on this subject).
In equational logic programming it is well known that extra variables cause
problems since narrowing, the standard operational semantics for equational
logic programming, may become incomplete in the presence of extra variables.
This can be seen by the following example [11]:

Example 1.1 Consider the following equational logic program:!

a—b b - ¢ « £f(X,b)=f(c,X)
a— ¢

This system has all the properties usually required for completeness of narrow-
ing, i.e., it is confluent and terminating. However, narrowing cannot infer the
validity of the equation b=c since there is only the following infinite derivation
(the subterm where a rule is applied is underlined in each step):

b=c ~ f£(X,b)=f(c,X), c=c
~ f(X1,b)=f(c,X1), f(X,c)=f(c,X), c=c ~

In order to prove the condition of the last rule, the extra variable X must
be instantiated to a and the instantiated occurrences must be derived to ¢
and b, respectively. However, this is not provided by the narrowing calculus.
Although narrowing is complete for confluent and terminating equational logic
programs without extra variables, this example shows that narrowing becomes
incomplete in the presence of extra variables. O

Extra variables are useful from a programming point of view. For instance,
the let construct used in functional programming to share common subexpres-
sions can be expressed in equational logic programming using extra variables
[5]. Therefore, much research has been carried out in order to characterize
classes of equational logic programs with extra variables for which narrowing
is complete (see Section 3 for a detailed discussion). The aim of the second
part of this paper is to provide such completeness results. For this purpose,
we transform general equational logic programs into programs without extra
variables and discuss conditions for the adequacy of this transformation. The
main condition is the property that different occurrences of an extra variable
need not be derived to different terms in an instantiated rule (note that this
is necessary in Example 1.1). An interesting class satisfying this condition
are almost orthogonal programs, which is a reasonable class from a program-
ming point of view. Based on these observations, we characterize new classes
of equational logic programs for which narrowing and particular narrowing
strategies are complete. For instance, we show the completeness of narrowing
and lazy narrowing for a class of programs which allows extra variables in
right-hand sides of clause heads. Such programs are very useful in practice
but seldom discussed in the narrowing literature.

2 Extra Variables in Logic Programming
In this section we propose a method to avoid extra variables in pure logic

programming. We use standard notions from logic programming as to be
found in [16]. Terms are constructed from variables and function symbols,

and (program) clauses have the form Ly <= Ly, ..., Ly, where each literal L;
is a predicate p applied to a sequence of terms ty,...,t, (in the following we
abbreviate sequences of terms by). Ly is called head and Ly, ..., Ly is called

body of the clause. The set of variables occurring in a term ¢ is denoted by

!Since the equation in the clause head is always used to derive an instance of the left-
hand side to an instance of the right-hand side, we use the arrow ‘—’ instead of the equality
symbol in the head.

Var(t) (similarly for other syntactic constructions). A term ¢ is called ground
if Var(t) = 0. A logic program is a set of clauses. Consider the clause

C:p(t) = qi(th), - -, i (te)
A variable z € Var(C) is called extra variable if z ¢ Var(t). In order to
eliminate all extra variables, we apply the transformation eev (eliminate extra
variables) to this clause, which is defined by

66’0(0): p(ta Un-l—k(Ila <o Tns Y1, - 7yk)) <= QI(tla yl)a s ,Qk(tk, yk)
where z1,...,xz, are the extra variables of C' and ¥, ...,y are new variables
not occurring in C.? Moreover, vy, v1, s, ... is a family of new function sym-
bols not occurring in the original program. We extend the transformation eev
to programs by applying eev to each clause of the program.

Example 2.1 Let P be the program consisting of the following clauses:

append([],L,L)
append([EIR],L, [E|RL]) <« append(R,L,RL)
last(L,E) < append(R, [E],L)

Then the transformed program eev(P) contains the following clauses:

append([1,L,L,v)
append([E|R],L, [E|IRL],v;(Y)) <« append(R,L,RL,Y)
last(L,E,v2(R,Y)) <« append(R,[E],L,Y) 0O

In the following, we state a strong correspondence between P and eev(P)
w.r.t. the declarative and operational semantics. In particular, we show
that the initial model of P is identical to the initial model of eev(P) pro-
vided that the last argument of all predicates is deleted. For this purpose,
we define a mapping on Herbrand interpretations which deletes the addi-
tional arguments introduced by eev. Let H be a Herbrand interpretation.
Then dla(H) (delete last argument) is the Herbrand interpretation defined by

dla(H) = {p(t1, ... t) | (1. . tn, tnr1) € HY.

Theorem 2.2 Let H be the least Herbrand model of the logic program P,
and H' be the least Herbrand model of P’ := eev(P). Then H = dla(H').

This theorem shows that there is no basic difference in the declarative se-
mantics between P and eev(P). Everything which is valid w.r.t. P is also
valid w.r.t. eev(P), and vice versa, if we disregard the additional arguments
in eev(P). The following theorem shows a similar property for the operational
semantics (SLD-resolution).

Theorem 2.3 Let P be a logic program, G = py(ty),...,pr(tx) be a goal,
and z1,...,x; be new variables.

1. If o is a computed answer for G w.r.t. P, then there are terms ey, ..., e
such that {z1 — ey,...,x — ey} o o is a computed answer for G' =
pi(ti,z1),- -, pi(te, Tk) W.r.t. eev(P).

2. If ¢’ is a computed answer for G' = pi(t1,21),...,p(tk,) W.r.t.
eev(P), then o' restricted to Var(G) is a computed answer for G w.r.t.

2The order of the variables in the term v, % (z1,...,Zn,y1,...,ys) is irrelevant. There-
fore, we can fix an arbitrary order for each clause.

The proof of this theorem is based on the fact that each resolution derivation
w.r.t. P can be transformed into a resolution derivation w.r.t. eev(P), and vice
versa. Thus there is also a strong correspondence between P and eev(P) w.r.t.
the derivation trees, i.e., P and eev(P) have the same operational behavior.
This shows that the restriction to logic programs without extra variables is
not a real restriction, i.e., extra variables are not an important feature of logic
programmainyg.

3 Extra Variables in Equational Logic Programs

Equational logic programming (see [14] for a survey) amalgamates functional
and logic programming styles. It permits the definition of predicates by Horn
clauses and the definition of functions by (conditional) equations. Since pred-
icates can be represented as Boolean functions, we assume that all clauses in
an equational logic program have the form

l—=r<s =t,...,8, =1

(k > 0), where I, r,s1,t1,...,Sk, tx are terms and [is not a variable. Such a
clause is also called conditional rewrite rule, and unconditional rewrite rule
in case of Kk = 0. A conditional term rewriting system (CTRS) is a set of
conditional rewrite rules. For instance, Example 1.1 is a CTRS. We consider
an equational logic program as a CTRS.

3.1 Basic Definitions

In order to give a precise definition of the computation with CTRS, we recall
basic notions of (conditional) term rewriting [4, 6].

Substitutions and most general unifiers are defined as in logic program-
ming [16]. A position p in a term ¢ is represented by a sequence of natural
numbers (where A denotes the root position), t|, denotes the subterm of ¢ at
position p, and t[s], denotes the result of replacing the subterm t|, by the
term s (see [6] for details).

Let — be a binary relation on a set S. Then —* denotes the transitive
and reflexive closure of the relation —. We write e; | ey if there exists an
element eg € S with e; —=* e3 and eo —* e3. — is called confluent if e | es
for all e,eq,e9 € S with e —* e and e —* es.

Let R be an unconditional term rewriting system, i.e., an equational logic
program where all rules have the form [— r with Var(r) C Var(l). A rewrite
step (w.r.t. R) is an application of a rewrite rule to a term (rewriting with
conditional rules is discussed below), i.e., ¢ —x s if there are a position p in ¢,
a rewrite rule ! — r € R and a substitution o with ¢|, = o(l) and s = t[o(r)],.
In this case we say t is reducible. A term t is called irreducible or in normal
form if there is no term s with ¢t —5 s.

The confluence of the rewrite relation —% is a basic requirement to apply
rules only in one direction during equational reasoning. In order to ensure
confluence even for nonterminating rewrite systems,? we need some syntactic
restrictions on the rewrite rules. A rewrite rule I — r is called left-linear if

3We do not require the termination of the rewrite system since this cannot be checked
automatically. Moreover, such a requirement excludes important functional programming
techniques like programming with infinite data structures.

there are no multiple occurrences of the same variable in [. An unconditional
term rewriting system R is called orthogonal if each rule | — r € R is left-
linear and for each non-variable subterm [|,, of [there exists norule!’ — ' € R
such that [|, and !’ unify (where I' — ' is not a variant of [— r in case of
p =A). R is almost orthogonal if all rules are left-linear and for each pairs of
rules [— r,I' = r' € R, nonvariable subterm [|,, of I, and mgu o for [|, and
I', p is the root position A and the terms o(r) and o(r') are identical.

An important property of almost orthogonal systems is the confluence
of the rewrite relation (see [15] for a comprehensive survey on results for
orthogonal systems).

If R is a CTRS, we denote by Ry, := {l - r |l - r < C € R} the
unconditional part of R. A CTRS R is called (almost) orthogonal if R, is
(almost) orthogonal.

3.2 Equational Logic Programs

The computation mechanism of unconditional term rewrite systems was de-
fined by the rewrite relation —% in the previous section. If we want to define
the computation with a CTRS, we have to explain the evaluation of the con-
dition in a rewrite step. Due to [4, 7], there are different possibilities. Here
we consider normal CTRS where t1,...,1; are ground normal forms w.r.t. R,
for each condition sy = t1,...,8; = t, and such a condition is provable if
every s; is reducible to #;. Note that this definition of conditional rewriting
is recursive, but we can also provide an iterative definition. Let R be a nor-
mal CTRS. We inductively define the following unconditional term rewriting
systems R,, (n > 0) by:

Ro:={l—=>r|l—>reR}
Rn—l—l = {a(l)—)a(r)|l—>r¢31=t1,...,sk=tkeRand O’(Si) R ti}

We have s —x t iff s -, t for some n > 0. The restriction to normal
CTRS is essential, otherwise the rewrite relation may not be confluent even
for orthogonal CTRS (see [4]). On the other hand, normal CTRS have the
following confluence property [15]:

Theorem 3.1 The rewrite relation of an almost orthogonal normal CTRS is
confluent.

Therefore, we consider in the following only normal CTRS as equational log-
ic programs (this restriction is also made in the functional logic languages
BABEL [18] and K-LEAF [10]). This is not a restriction from a logic pro-
gramming point of view, since each logic program can be transformed into a
almost orthogonal normal CTRS by representing predicates as Boolean func-
tions and eliminating multiple occurrences of variables in left-hand sides by
introducing new variables and new equations for them in the condition part
(see [18] for details).

In practice, most equational logic programs are constructor-based, i.e.,
the set of function symbols is divided into a set of constructors C and a set
of defined functions or operations D (see, for instance, the functional logic
languages ALF [12], BABEL [18], K-LEAF [10], or SLOG [9]). A constructor
term is a term containing only variables and symbols from C. In a constructor-
based term rewrite system, the left-hand side of each clause must be of the form
f(t1,...,ty), where f € D and tq,...,t, are constructor terms. Additionally,

in a constructor-based normal CTRS, each conditional rule [— r < s1 =
t1,...,S, = tg has the property that ¢1,...,%; are ground constructor terms.

In constructor-based normal CTRS we cannot write arbitrary equations
in conditions. However, we can provide an explicit definition of an equality
function = between constructor terms by the following rules (this strict equal-
ity is the only sensible notion of equality for possible nonterminating systems,
since normal forms may not exist [10, 18]):

c=c — true for all 0-ary ¢ € C
c(zr,....zp) =clyr,...,yn) — Alq(z; =y;) forall n-ary c € C
trueNr — x
The reduction of s =t to true is equivalent to the reduction of s and ¢ to a
same ground constructor term ([1], Proposition 1). In the rest of this paper,
we assume that an equation s = ¢ in a condition of a constructor-based normal
CTRS denotes the equation (s = t) = true.

We are interested in the influence of extra variables to the completeness of
narrowing strategies for equational logic programs. In contrast to pure logic
programming, equational logic programming allows a refined classification of
rules according to the occurrence of extra variables. Each conditional rule
[— r < C is classified according to the following table [17]:

Type ‘ Requirement
1 Var(r) UVar(C) C Var(l)
2 Var(r) C Var(l)
3 Var(r) C Var(l) U Var(C)

4 no restrictions

All variables in a conditional rule which do not occur in the left-hand side
[are called eztra variables. An n-CTRS contains only rules of type n, i.e.,
a 1-CTRS does not contain extra variables, a 2-CTRS may contain extra
variables only in the condition, and a 3-CTRS may contain extra variables in
the right-hand side, but these extra variables must also occur in the condition.

Example 3.2 The program in Example 1.1 is a 2-CTRS, and the following
equational version of Example 2.1 is a constructor-based normal 3-CTRS:

append([], L) — L
append([E|R],L) — [Elappend(R,L)]
last(L) — E <« append(R,[E]) =L 0O

3.3 Conditional Narrowing

In equational logic programming we are interested in solving equational goals,
i.e., we want to compute a substitution such that terms rewrite to some normal
forms under this substitution. Due to the restriction on conditions in rules
introduced in the previous section, we define a (normal equational) goal (w.r.t.
a normal CTRS R) as a sequence of equations s; = ty,...,8; = t, where
t1,...,t, are ground normal forms w.r.t. R,. Since it is straightforward to
extend the definitions of Section 3.1 to goals, we will use them in the following.
For instance, we use notions like “subterms of goals” and apply rewrite steps
to goals.

A narrowing step transforms a goal G into another goal by applying a rule
to some subterm of G. More precisely, G narrows to G’, denoted G ~, G, if

there exist a nonvariable position p in the goal G (i.e., G|, is not a variable),
a variant [— r < C of a rewrite rule in R and a substitution o such that o
is a mgu of G|, and I, and G' = o(C, G[r]y). Since R is a normal CTRS, it
is clear that G’ is again a well-defined goal. If there is a narrowing sequence
G ~g, Ga gy oo~y Gy, we write G~ Gy, with o = 0, _10- - -009007.
A narrowing sequence is successful if the final goal G, is trivial, i.e., it has
the form ¢; = tq,...,t = 1.

The important property of evaluation strategies for (equational) logic pro-
grams is their completeness, i.e., their ability to compute all answers which
are valid w.r.t. the declarative semantics. In our context we say narrowing
is complete w.r.t. the equational logic program R if, for all goals G and sub-
stitutions o so that o(G) can be rewritten to a trivial goal, there exists a
narrowing derivation G ~*, G', where G’ is a trivial goal and o = ¢ o o’ for
some substitution ¢. That is, each valid answer o is subsumed by a more
general answer ¢’ computed by narrowing.

There are many results for the completeness of narrowing w.r.t. different
classes of programs (see [17] for a comprehensive survey). However, simple
narrowing defined so far is more or less of theoretical interest due to its huge
search space. In order to reduce the search space and to avoid superfluous
work, lazy narrowing strategies have been proposed for languages like BABEL
[18] and K-LEAF [10], where lazy narrowing selects an outermost position but
also allows narrowing steps at an inner position if the value at this position
is demanded by some rule (see [18] for details). It is well-known that lazy
narrowing is complete for almost orthogonal normal 2-CTRS. However, there
are many cases where 2-CTRS are too restricted and 3-CTRS are appropri-
ate, but no completeness results are known for this class. Moreover, there are
operationally better strategies than lazy narrowing. For instance, needed nar-
rowing [1] is an optimal strategy for inductively sequential programs, which
is a subclass of unconditional orthogonal programs, and for almost orthogo-
nal programs it has been shown that the combination of lazy narrowing with
intermediate simplification steps yields a better behavior [13]. Again, there
are no results for these refined strategies w.r.t. extra variables.

In order to avoid separate completeness proofs w.r.t. extra variables for
all these (and possible future) extensions, we present a systematic method to
eliminate extra variables in equational logic programs. The method is based
on the ideas presented in Section 2, but the incompleteness of narrowing in
the presence of extra variables shows that this method cannot work in general.
Therefore, we will discuss conditions for the adequacy of our method.

3.4 Eliminating Extra Variables in Conditional Rules

In this section we present a transformation on equational logic programs to
eliminate all extra variables. The purpose of this transformation is to pro-
vide a general method to derive completeness results in the presence of extra
variables. This method consists of the following steps:
1. Transform an equational logic program into a new program without
extra variables.

2. Apply a complete narrowing strategy to the transformed program (note
that more such strategies are known if extra variables do not occur).

3. Check the correspondence of narrowing derivations between the original
and the transformed program.

In this section we discuss conditions for the correctness of steps 1 and 3.
Applications of the entire method are discussed in Section 3.5.

In order to eliminate extra variables in equational logic programs, we
transform each rewrite rule by adding new arguments to each function occur-
ring in the rule. Since functions can be nested, we have to add new arguments
in each subterm. For this purpose, we denote by ¢ the term obtained from ¢
by adding a new variable argument to each function occurring in %, i.e., ¢t can
be defined as follows:

T = =z for all variables z

t = f(t1,...,tn,y) ift = f(t1,...,t,) and y is a new variable
The new arguments added to each function call are called extension arguments
and the new variables introduced in these arguments are called eztension vari-
ables. Terms that contain extension arguments for each subterm (which may
be instantiated) are called extended terms. Although the names of the exten-
sion variables are not fixed, we consider in the following the transformation ™
as a mapping from terms into terms (this can be formalized by taking a list of
new variables as an additional argument to ~, but for the sake of readability
we avoid this formalism). The transformation will also be applied to lists of
terms and equations. We omit the straightforward definition.

Each conditional rewrite rule R: f(#) — r < C is transformed into a rule
eev(R) by applying the transformation ~to £, 7 and C, and adding the extra
variables to the left-hand side, i.e.,

~

eev(R): f(t,vn(z1,...,20)) > 7 < C

where {z1,...,2,} = (Var(7) U Var(C))\Var(f).* The transformed clause
may not be a normal one, but this causes no problems since the requirement
for normal CTRS is only necessary for the original programs in order to ensure
the confluence of the original rewrite relation.

We extend eev to sets of rewrite rules by applying it to each rule. For the
sake of readability, we use the following obvious optimization in concrete ex-
amples: Introduce extension arguments only in function calls of the form f(3)
where there is some rewrite rule f(f) — r < C for f. In particular, extension
arguments are not introduced in constructor terms if R is a constructor-based
program.

Example 3.3 Let R be the program of Example 1.1. Then eev(R) is the
following program:
a(v1(Y)) — b(Y) b(ve(X,Z2)) — ¢ « f(X,b(Z))=f(c,X)
a(vg) — c
It is not necessary to add extension arguments to the functions ¢ and f since
there are no rewrite rules for them. O

The elimination of extra variables in equational logic programs seems to be
very similar to pure logic programs. However, there is an essential difference.
The transformation does not change the meaning in the case of pure logic

* In contrast to pure logic programming, the order of the variables in the term
Un(Z1,...,2,) is relevant to ensure that the transformed programs are almost orthogonal
if the original programs are almost orthogonal (see Proposition 3.8). Therefore, we fix the
same ordering principle for all rules. A possible choice is a left-to-right innermost ordering
for all variables in 7, C.

programs (cf. Theorem 2.2), but this is no longer true in the equational case.
The meaning of an equational logic program is the set of valid equalities. For
instance, b=c is valid w.r.t. Example 1.1 (since the instantiated condition
f(a,b)=f(c,a) can be rewritten to the trivial equation f (c,b)=f(c,b), i.e.,
b —g, ¢). However, no instance of the equation b(V)=c is valid w.r.t. the
transformed program in Example 3.3. In the original program the term a can
be rewritten to b as well as ¢, which is necessary to prove the condition of
the last rule. However, in the transformed program, there is no term which
is simultaneously reducible to b(Y) and c.

The meanings of the original and the transformed program differ when-
ever it is necessary to rewrite an instance of a variable to different terms in
the original program. The inversion of this observation yields a criterion for
the adequacy of the transformation. We can ensure that the original and the
transformed program have the same meaning if all occurrences of the same
variable are reduced to an identical term, i.e., if the same rewrite steps are
applied to all occurrences of a variable (in the instantiated rule). This can be
expressed by the notion of sharing, which means that all occurrences of a rule
variable are represented only once. Sharing is also a well-known implemen-
tation technique in functional and logic languages. Sharing in rewriting can
be formally treated in the framework of term graph rewriting [3]. In order
to avoid repeating all details of term graph rewriting, we assume familiarity
with graphs to represent shared subterms (see [3] for details). We only cite
the following result, which is important in our framework.

Theorem 3.4 ([3]) IfR is an unconditional almost orthogonal term rewrit-
ing system, then graph rewriting (where all variables in rules are shared) is
a sound and complete implementation of term rewriting; in particular, the
normal forms (w.r.t. traditional term rewriting) of terms are also computable
if all rule variables are shared.

The restriction to almost orthogonal systems is essential. Otherwise, rewriting
with sharing is incomplete (see [3]). To apply the result of Theorem 3.4 in our
framework, we have to extend it to conditional rewrite systems. Although this
is not possible in general, sharing is a complete implementation for the class
of programs which we consider as equational logic programs. This also shows
that the restriction to normal CTRS is sensible from an implementation point
of view.

Theorem 3.5 Let R be an almost orthogonal normal CTRS (with extra
variables). Then all variables in rewrite rules can be shared during the com-
putation of a normal form.

Now we want to relate rewrite proofs in R with rewrite proofs in the trans-
formed system eev(R). In order to compare extended terms with original
terms, we define a mapping dv to delete extension arguments by dv(z) = =
for all variables z and dv(f(t1,...,tn,tht+1)) = f(dv(t1),...,dv(t,)). Clearly,
dv(t) = t for all terms ¢t. The following theorem shows that every normal
form computation w.r.t. R can also be performed for the extended terms
w.r.t. eev(R), provided that R is an almost orthogonal normal CTRS.

Theorem 3.6 Let R be an almost orthogonal normal CTRS (with extra
variables), t be a term and R' = eev(R). Ift —% s (where s is a normal
form), then there is an extended term t' with dv(t') =t and t' —%, 3.

This theorem implies that all strict equalities w.r.t. R are also valid w.r.t.
eev(R). The next theorem shows that each narrowing derivation w.r.t. eev(R)
corresponds to a narrowing derivation w.r.t. R, i.e., if there is a narrowing
derivation on the extended level, then there is also a narrowing derivation
on the original level. This property will be used to state new completeness
results for narrowing strategies in the presence of extra variables. Remember
that all trivial goals have the form ¢ = ¢1,...,t, = t,, where t1,...,%, are
in normal form (not necessarily ground if they contain extension arguments).

Theorem 3.7 Let R be a normal CTRS such that eev(R) is almost orthogo-

nal and G be a goal. If there is a narrowing derivation G ~* (G1, where Gy is a
trivial goal, then there is a narrowing derivation G ~§ Go with dv(G1) = Go
and dv(o(x)) = ¢(x) for all z € Var(G). Moreover, the narrowing positions
in both derivations are identical, and the applied rules correspond via the
transformation eev.

If R is an almost orthogonal normal CTRS and we want to apply our transfor-
mation in order to show the completeness of sophisticated narrowing strate-
gies, we have to ensure that the transformed program eev(R) is also almost
orthogonal (Theorem 3.7). The following proposition shows that this is always
the case.

Proposition 3.8 IfR is an almost orthogonal CTRS, then eev(R) is almost
orthogonal.

We mentioned in Section 3.3 that simple narrowing has a huge search space
and, therefore, sophisticated narrowing strategies are needed in practice. In
general, a narrowing strategy restricts the number of possible narrowing steps,
i.e., it can be seen as a mapping which assigns to each goal a set of pairs of
positions and rules.” However, a narrowing strategy should not destroy com-
pleteness, and completeness results are often known only for equational logic
programs without extra variables. In order to overcome these problems, we
can apply the results of this section to transfer completeness results for nar-
rowing strategies from programs without extra variables to programs which
may contain extra variables. The following main result shows the general
method.

Theorem 3.9 Let R be an almost orthogonal normal CTRS (with extra
variables) and N be a narrowing strategy which is complete for eev(R). Then
N is also complete for R.

The following section contains concrete applications of this result.

3.5 Application of Extra Variable Elimination
3.5.1 Inductively Sequential Systems

Lazy narrowing is complete for almost orthogonal normal 2-CTRS [18]. How-
ever, it is well known that lazy narrowing may perform superfluous narrowing

5 An exception is the needed narrowing strategy [1] which additionally assigns a unifier
because the unifier in a needed narrowing step is not necessarily a most general one.

10

steps due to the interaction of redex selection and rule selection. As an alter-
native, needed narrowing is proposed in [1]. The needed narrowing strategy
is optimal w.r.t. the length of the derivations and the number of computed
solutions. Needed narrowing is defined for the class of inductively sequential
systems. These are particular constructor-based orthogonal unconditional
rewrite systems (see [1] for a precise definition). Roughly speaking, in induc-
tively sequential systems all rules defining a function can be organized in a
hierarchical structure, called definitional tree, which represents a unique selec-
tion of a rule by a case distinction on the arguments for each ground function
call. For instance, the rules for append in Example 3.2 are inductively se-
quential, since a unique selection of a rule can be made by the first argument
of append: if this argument is an empty list ([]), the first rule is selected,
and the second rule is selected if this argument is a nonempty list ([-1-1). On
the other hand, the rules of Example 1.1 are not inductively sequential, since
the first as well as the second rule can be applied to the term ‘a’.

We will use the results of the previous section to extend needed narrowing
to conditional rewrite rules with extra variables in a simple way. A CTRS R is
called inductively sequential if it is a constructor-based normal CTRS and its
unconditional part R, is inductively sequential. Since inductively sequential
systems are orthogonal, we can use the method proposed in [4] to translate
inductively sequential normal CTRS into an unconditional system. For this
purpose, we introduce for each conditional rule R: | — r < s = u of R (where
u is a ground constructor term) a new function symbol condg and replace R
by the following unconditional rules:

I — condg(s,r)
condr(u,z) — =x

We denote by uc(R) the new unconditional system obtained from R. Since
u is a ground constructor term, the new unconditional system is inductively
sequential if the original system is an inductively sequential CTRS without
extra variables.® Moreover, there is a strong correspondence between the
rewrite derivations (see [4], Proposition 2.5.4). In order to deal with extra
variables, we have to translate R by the transformation eev before applying
uc. The following proposition is obvious since the introduction of extension
arguments does not influence the non-overlapping of left-hand sides.

Proposition 3.10 IfR is an inductively sequential CTRS, then uc(eev(R))
is an unconditional inductively sequential rewrite system.

Example 3.11 Consider the following inductively sequential CTRS R which
defines the Boolean function member on the basis of the function append:

append([], L) — L
append([E|R],L) — [Elappend(R,L)]
member (E,L) — true <« append(L1,[E|L2])=L
Then the transformed system uc(eev(R)) consists of the following rules:
append([]1, L,vg) - L
append ([E|R],L,v1 (X)) — [Elappend(R,L,X)]
member (E,L,v3(L1,L2,X)) — cond(append(L1, [E|L2],X) =L,true)
cond(true,X) — X 0O

®Proposition 2.5.3 in [4] is not true in the presence of extra variables.

11

Since needed narrowing is an optimal and complete strategy for inductively
sequential unconditional systems, we can apply the results of the previous
section (as summarized in Theorem 3.9), and we obtain the following new
result.

Theorem 3.12 Needed narrowing is complete for inductively sequential
CTRS (with extra variables). Moreover, it is optimal w.r.t. the length of
the derivations and the number of computed solutions.

Since this result can be easily extended to overlapping rules with exclud-
ing conditions, we obtain with our translation method an optimal narrowing
strategy for a large class of equational logic programs.

3.5.2 Extra Variables in Right-Hand Sides

Current functional logic languages like BABEL [18] and K-LEAF [10]) permit
extra variables in conditions but not in the right-hand side of conditional rules.
However, as observed by several authors [8, 15, 17], it makes good sense to
allow extra variables also in right-hand sides if they occur in conditions (3-
CTRS). Example 3.2 shows a sensible use of extra variables in right-hand
sides. The following example [15] shows that such extra variables can be a
replacement for the let construct of functional languages.

Example 3.13 The Fibonacci numbers can be computed by the following
conditional rules:

£ib(0) — <0,1>
fib(s(X)) — <Z,Y+Z> <« fib(X) =<Y,Z> 0

However, an unrestricted use of extra variables in right-hand sides leads to
nonconfluent rewrite relations even for non-overlapping normal CTRS. To
ensure the confluence of the rewrite relation and completeness of narrowing,
additional restrictions are needed. Middeldorp and Hamoen [17] showed that
narrowing is complete for level-confluent and terminating 3-CTRS. In [5, 7, 19]
3-CTRS with a special rewrite relation are proposed, where extra variables
are instantiated only to irreducible terms and all such instantiations of condi-
tional rules must be decreasing (i.e., the left-hand side must greater than the
conditions and right-hand side w.r.t. a termination ordering). Narrowing is
complete for such rewrite systems. Since we do not want to restrict ourselves
to terminating rewrite systems, we need other conditions. For this purpose,
we call a CTRS R functional if the following conditions hold:

1. R is a normal CTRS.

2. The unconditional part R, is almost orthogonal (where we use the same
definition as in Section 3.1 but do not require Var(r) C Var(l) for all
[=71 €Ry).

3. —x is confluent.

Conditions 1 and 2 are necessary to extend Theorem 3.5 and Proposition 3.8
to functional CTRS. Since these conditions are not sufficient for the confluence
of the rewrite relation, we have the explicit confluence condition 3. We will
discuss sufficient conditions ensuring confluence below. Note that each almost
orthogonal normal 2-CTRS is functional (by Theorem 3.1), while a 4-CTRS

12

cannot be functional. Hence the class of functional CTRS lies between the
classes of almost orthogonal normal 2-CTRS and 3-CTRS.

We want to apply our transformation to show the completeness of narrow-
ing strategies for functional CTRS. Since functional CTRS are transformed
by eev into almost orthogonal CTRS, it is easy to check that Theorem 3.9 is
also valid for functional CTRS:

Theorem 3.14 Let R be a functional CTRS and N be a narrowing strategy
which is complete for eev(R). Then N is also complete for R.

We can use this result to show the completeness of various narrowing strategies
for equational logic programs with extra variables in right-hand sides. For
instance, completeness results for lazy narrowing strategies are only known
for constructor-based normal 2-CTRS [18]. Our transformation method yields
new completeness results for functional CTRS by applying Theorem 3.14 to
the completeness result of lazy narrowing [18] for constructor-based almost
orthogonal normal 2-CTRS.

Corollary 3.15 Lazy narrowing is complete for constructor-based functional
CTRS.

To obtain a further interesting result, we apply Theorem 3.14 to inductively
sequential systems with extra variables in right-hand sides. For this purpose,
we use the same translation techniques as introduced in Section 3.5.1 and we
immediately obtain the following proposition.

Corollary 3.16 Let R be a functional CTRS such that the unconditional
part R, is inductively sequential.” Then needed narrowing is complete for
R, and it is an optimal strategy w.r.t. the length of the derivations and the
number of computed solutions.

Thus needed narrowing is a complete and optimal strategy for the programs
in Examples 3.2 and 3.13.

Due to these results, it is no problem to extend equational logic languages
like BABEL [18] or K-LEAF [10] by permitting extra variables in right-hand
sides. However, the use of these extra variables must be restricted so that
the programs are functional. The first two conditions of functional CTRS
are easy to check, but the confluence condition 3 is usually hard to verify.
In some cases it is possible to show confluence by proving that the rewrite
system R is level-confluent, i.e., we may show that each unconditional rewrite
system R, is confluent for all n > 0. For instance, it is relatively easy to show
that the rewrite system in Example 3.2 is level-confluent. However, from a
practical point of view, it is desirable to have syntactic criteria to ensure the
confluence of a 3-CTRS. Fortunately, for constructor-based programs there
is an interesting subclass of functional CTRS which has a simple syntactic
characterization.® Note that in constructor-based systems each conditional
rule can be written in the form [— r < s = 1.

"Since the property of inductive sequentiality depends only on the left-hand sides of
the rewrite rules, the definition can simply be extended to rules with extra variables in
right-hand sides.

®Recently, Suzuki et al. [21] have independently characterized a class of level-confluent
3-CTRS with similar restrictions.

13

Proposition 3.17 A constructor-based normal CTRS R is functional if the
following conditions holds:

1. The unconditional part R, is almost orthogonal.

2. For each rulel — r <= s =t with extra variables in r, t is a constructor
term, Var(s) C Var(l), and Var(r) C Var(l) U Var(t).

As a consequence of this proposition, the rewrite system in Example 3.13 is
functional. Tt is straightforward to refine the proposition to conditional rules
with more than one strict equation in the condition part.

4 Conclusions

In this paper we have discussed the necessity and problems of extra vari-
ables in pure logic programming and equational logic programming. In the
first part, we have shown that extra variables are unnecessary for pure logic
programming since all occurrences of extra variables during a computation
can be moved into the initial goal. Although this transformation does not
change the declarative and operational semantics of pure logic programs, it
does not generally work for equational logic programs, since it is known that
the presence of extra variables may cause incompleteness of narrowing, the
standard operational semantics of equational logic programs. Nevertheless,
we have shown that this transformation works for the important subclass of
almost orthogonal normal programs. As a consequence of this result, we have
provided a general method to lift completeness results for narrowing with-
out extra variables to programs with extra variables. Using this method, we
could prove various new completeness results like completeness and optimali-
ty of needed narrowing and completeness of lazy narrowing in the presence of
extra variables. Programs with such properties often occur if programming
techniques like infinite data structures (e.g., streams) and let constructs from
functional programming are simultaneously used. Therefore, our results are
a contribution to extend current functional logic languages in a practically
useful way, since such extensions give the programmer more expressivity and
allow a more efficient execution of programs. Our method can also be help-
ful to simplify completeness proofs for possibly more sophisticated narrowing
strategies that will be developed in the future.

Acknowledgements. The author is grateful to Aart Middeldorp and Enno Ohle-
busch for their comments on this paper. The research described in this paper was
supported in part by the German Ministry for Research and Technology (BMFT)
under grant ITS 9103 and by the ESPRIT Basic Research Working Group 6028
(Construction of Computational Logics).

References

[1] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc.
21st ACM Symposium on Principles of Programming Languages, pp. 268-279,
Portland, 1994.

[2] R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. A Transformational
Approach to Negation in Logic Programming. Journal of Logic Programming
(8), pp. 201-228, 1990.

14

3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J.
Plasmeijer, and M.R. Sleep. Term Graph Rewriting. In Proc. Parallel Archi-
tectures and Languages Europe (PARLE’87), pp. 141-158. Springer LNCS 259,
1987.

J.A. Bergstraand J.W. Klop. Conditional Rewrite Rules: Confluence and Termi-
nation. Journal of Computer and System Sciences, Vol. 32, No. 3, pp. 323-362,
1986.

H. Bertling and H. Ganzinger. Completion-Time Optimization of Rewrite-Time
Goal Solving. In Proc. of the Conference on Rewriting Techniques and Applica-
tions, pp. 45-58. Springer LNCS 355, 1989.

N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pp. 243-320. Elsevier, 1990.
N. Dershowitz and M. Okada. A Rationale for Conditional Equational Program-
ming. Theoretical Computer Science, Vol. 75, pp. 111-138, 1990.

N. Dershowitz, M. Okada, and G. Sivakumar. Confluence of Conditional Rewrite
Systems. In Proc. 1st Int. Workshop on Conditional Term Rewriting Systems,
pp. 31-44. Springer LNCS 308, 1987.

L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on
Clausal Superposition and Rewriting. In Proc. IEEE Internat. Symposium on
Logic Programming, pp. 172-184, Boston, 1985.

E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic
plus Functional Language. Journal of Computer and System Sciences, Vol. 42,
No. 2, pp. 139-185, 1991.

E. Giovannetti and C. Moiso. A completeness result for E-unification algorithms
based on conditional narrowing. In Proc. Workshop on Foundations of Logic and
Functional Programming, pp. 157-167. Springer LNCS 306, 1986.

M. Hanus. Compiling Logic Programs with Equality. In Proc. of the 2nd Int.
Workshop on Programming Language Implementation and Logic Programming,
pp- 387—401. Springer LNCS 456, 1990.

M. Hanus. Combining Lazy Narrowing and Simplification. In Proc. of the 6th
International Symposium on Programming Language Implementation and Logic
Programming, pp. 370-384. Springer LNCS 844, 1994.

M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, Vol. 19&20, pp. 583-628, 1994.
JW. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume II. Oxford
University Press, 1992.

J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended
edition, 1987.

A. Middeldorp and E. Hamoen. Completeness Results for Basic Narrowing.
Applicable Algebra in Engineering, Communication and Computing, Vol. 5, pp.
213-253, 1994.

J.J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic Programming with
Functions and Predicates: The Language BABEL. Journal of Logic Program-
ming, Vol. 12, pp. 191-223, 1992.

P. Padawitz. Generic Induction Proofs. In Proc. of the 3rd Intern. Workshop on
Conditional Term Rewriting Systems, pp. 175-197. Springer LNCS 656, 1992.
M. Proietti and A. Pettorossi. Completeness of Some Transformation Strategies
for Avoiding Unnecessary Logical Variables. In Proc. Eleventh International
Conference on Logic Programming, pp. 714-729. MIT Press, 1994.

T. Suzuki, A. Middeldorp, and T. Ida. Level-Confluence of Conditional Rewrite
Systems with Extra Variables in Right-Hand Sides. Technical Report ISE-TR
94-116, Univ. of Tsukuba, 1994. To appear in Proc. RTA’95.

15

