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Abstra
t

Extra variables in a 
lause are variables whi
h o

ur in the body but not in

the head. It has been argued that extra variables are ne
essary and 
ontribute

to the expressive power of logi
 languages. In the �rst part of this paper, we

show that this is not true in general. For this purpose, we provide a simple

synta
ti
 transformation of ea
h logi
 program into a logi
 program without

extra variables, and we show a strong 
orresponden
e between the original

and the transformed program. In the se
ond and main part of this paper,

we use a similar te
hnique to provide new 
ompleteness results for equational

logi
 programs with extra variables. In equational logi
 programming it is

well known that extra variables 
ause problems sin
e narrowing, the stan-

dard operational semanti
s for equational logi
 programming, may be
ome

in
omplete in the presen
e of extra variables. Using a simple synta
ti
 trans-

formation, we derive a number of new 
ompleteness results for narrowing. In

parti
ular, we show the 
ompleteness of narrowing strategies in the presen
e

of nonterminating fun
tions and extra variables in right-hand sides of rewrite

rules. Using these results, 
urrent fun
tional logi
 languages 
an be extended

in a pra
ti
ally useful way.

1 Introdu
tion

Extra variables in a Horn 
lause L ( B are variables in the body B whi
h

do not o

ur in L (other notions are existential variables [20℄, lo
al variables

[2℄, or fresh variables [19℄). It has been argued that extra variables are ne
es-

sary and 
ontribute to the expressive power of logi
 languages. For instan
e,

Dershowitz and Okada [7℄ 
laim that the restri
tion of logi
 programming to


lauses without extra variables \is una

eptable sin
e even very simple rela-

tions, su
h as transitivity, require extra variables in 
onditions." In the �rst

part of this paper, we show that this is not true in general sin
e ea
h 
lause


ontaining extra variables 
an be transformed into a 
lause without extra

variables by adding the extra variables as a new argument to the predi
ate

in the head. We state a strong 
orresponden
e between the original and the

transformed program w.r.t. the de
larative and the operational semanti
s, in

order to show that there is no loss due to this transformation.

In the se
ond and main part of this paper, we 
onsider equational logi


programs. This 
lass of programs is important sin
e it is a basis for integrating

fun
tional and logi
 programming (see [14℄ for a re
ent survey on this subje
t).

In equational logi
 programming it is well known that extra variables 
ause

problems sin
e narrowing, the standard operational semanti
s for equational

logi
 programming, may be
ome in
omplete in the presen
e of extra variables.

This 
an be seen by the following example [11℄:
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Example 1.1 Consider the following equational logi
 program:

1

a ! b b ! 
 ( f(X,b)=f(
,X)

a ! 


This system has all the properties usually required for 
ompleteness of narrow-

ing, i.e., it is 
on
uent and terminating. However, narrowing 
annot infer the

validity of the equation b=
 sin
e there is only the following in�nite derivation

(the subterm where a rule is applied is underlined in ea
h step):

b=
 ; f(X,b)=f(
,X), 
=


; f(X1,b)=f(
,X1), f(X,
)=f(
,X), 
=
 ; � � �

In order to prove the 
ondition of the last rule, the extra variable X must

be instantiated to a and the instantiated o

urren
es must be derived to 


and b, respe
tively. However, this is not provided by the narrowing 
al
ulus.

Although narrowing is 
omplete for 
on
uent and terminating equational logi


programs without extra variables, this example shows that narrowing be
omes

in
omplete in the presen
e of extra variables. 2

Extra variables are useful from a programming point of view. For instan
e,

the let 
onstru
t used in fun
tional programming to share 
ommon subexpres-

sions 
an be expressed in equational logi
 programming using extra variables

[5℄. Therefore, mu
h resear
h has been 
arried out in order to 
hara
terize


lasses of equational logi
 programs with extra variables for whi
h narrowing

is 
omplete (see Se
tion 3 for a detailed dis
ussion). The aim of the se
ond

part of this paper is to provide su
h 
ompleteness results. For this purpose,

we transform general equational logi
 programs into programs without extra

variables and dis
uss 
onditions for the adequa
y of this transformation. The

main 
ondition is the property that di�erent o

urren
es of an extra variable

need not be derived to di�erent terms in an instantiated rule (note that this

is ne
essary in Example 1.1). An interesting 
lass satisfying this 
ondition

are almost orthogonal programs, whi
h is a reasonable 
lass from a program-

ming point of view. Based on these observations, we 
hara
terize new 
lasses

of equational logi
 programs for whi
h narrowing and parti
ular narrowing

strategies are 
omplete. For instan
e, we show the 
ompleteness of narrowing

and lazy narrowing for a 
lass of programs whi
h allows extra variables in

right-hand sides of 
lause heads. Su
h programs are very useful in pra
ti
e

but seldom dis
ussed in the narrowing literature.

2 Extra Variables in Logi
 Programming

In this se
tion we propose a method to avoid extra variables in pure logi


programming. We use standard notions from logi
 programming as to be

found in [16℄. Terms are 
onstru
ted from variables and fun
tion symbols,

and (program) 
lauses have the form L

0

( L

1

; : : : ; L

k

, where ea
h literal L

i

is a predi
ate p applied to a sequen
e of terms t

1

; : : : ; t

n

(in the following we

abbreviate sequen
es of terms by t). L

0

is 
alled head and L

1

; : : : ; L

k

is 
alled

body of the 
lause. The set of variables o

urring in a term t is denoted by

1

Sin
e the equation in the 
lause head is always used to derive an instan
e of the left-

hand side to an instan
e of the right-hand side, we use the arrow `!' instead of the equality

symbol in the head.
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Var(t) (similarly for other synta
ti
 
onstru
tions). A term t is 
alled ground

if Var(t) = ;. A logi
 program is a set of 
lauses. Consider the 
lause

C: p(t)( q

1

(t

1

); : : : ; q

k

(t

k

)

A variable x 2 Var(C) is 
alled extra variable if x 62 Var(t). In order to

eliminate all extra variables, we apply the transformation eev (eliminate extra

variables) to this 
lause, whi
h is de�ned by

eev(C): p(t; v

n+k

(x

1

; : : : ; x

n

; y

1

; : : : ; y

k

))( q

1

(t

1

; y

1

); : : : ; q

k

(t

k

; y

k

)

where x

1

; : : : ; x

n

are the extra variables of C and y

1

; : : : ; y

k

are new variables

not o

urring in C.

2

Moreover, v

0

; v

1

; v

2

; : : : is a family of new fun
tion sym-

bols not o

urring in the original program. We extend the transformation eev

to programs by applying eev to ea
h 
lause of the program.

Example 2.1 Let P be the program 
onsisting of the following 
lauses:

append([℄,L,L)

append([E|R℄,L,[E|RL℄) ( append(R,L,RL)

last(L,E) ( append(R,[E℄,L)

Then the transformed program eev(P ) 
ontains the following 
lauses:

append([℄,L,L,v

0

)

append([E|R℄,L,[E|RL℄,v

1

(Y)) ( append(R,L,RL,Y)

last(L,E,v

2

(R,Y)) ( append(R,[E℄,L,Y)

2

In the following, we state a strong 
orresponden
e between P and eev(P )

w.r.t. the de
larative and operational semanti
s. In parti
ular, we show

that the initial model of P is identi
al to the initial model of eev(P ) pro-

vided that the last argument of all predi
ates is deleted. For this purpose,

we de�ne a mapping on Herbrand interpretations whi
h deletes the addi-

tional arguments introdu
ed by eev. Let H be a Herbrand interpretation.

Then dla(H) (delete last argument) is the Herbrand interpretation de�ned by

dla(H) := fp(t

1

; : : : ; t

n

) j p(t

1

; : : : ; t

n

; t

n+1

) 2 Hg.

Theorem 2.2 Let H be the least Herbrand model of the logi
 program P ,

and H

0

be the least Herbrand model of P

0

:= eev(P ). Then H = dla(H

0

).

This theorem shows that there is no basi
 di�eren
e in the de
larative se-

manti
s between P and eev(P ). Everything whi
h is valid w.r.t. P is also

valid w.r.t. eev(P ), and vi
e versa, if we disregard the additional arguments

in eev(P ). The following theorem shows a similar property for the operational

semanti
s (SLD-resolution).

Theorem 2.3 Let P be a logi
 program, G = p

1

(t

1

); : : : ; p

k

(t

k

) be a goal,

and x

1

; : : : ; x

k

be new variables.

1. If � is a 
omputed answer for G w.r.t. P , then there are terms e

1

; : : : ; e

k

su
h that fx

1

7! e

1

; : : : ; x

k

7! e

k

g Æ � is a 
omputed answer for G

0

=

p

1

(t

1

; x

1

); : : : ; p

k

(t

k

; x

k

) w.r.t. eev(P ).

2. If �

0

is a 
omputed answer for G

0

= p

1

(t

1

; x

1

); : : : ; p

k

(t

k

; x

k

) w.r.t.

eev(P ), then �

0

restri
ted to Var(G) is a 
omputed answer for G w.r.t.

P .

2

The order of the variables in the term v

n+k

(x

1

; : : : ; x

n

; y

1

; : : : ; y

k

) is irrelevant. There-

fore, we 
an �x an arbitrary order for ea
h 
lause.

3



The proof of this theorem is based on the fa
t that ea
h resolution derivation

w.r.t. P 
an be transformed into a resolution derivation w.r.t. eev(P ), and vi
e

versa. Thus there is also a strong 
orresponden
e between P and eev(P ) w.r.t.

the derivation trees, i.e., P and eev(P ) have the same operational behavior.

This shows that the restri
tion to logi
 programs without extra variables is

not a real restri
tion, i.e., extra variables are not an important feature of logi


programming.

3 Extra Variables in Equational Logi
 Programs

Equational logi
 programming (see [14℄ for a survey) amalgamates fun
tional

and logi
 programming styles. It permits the de�nition of predi
ates by Horn


lauses and the de�nition of fun
tions by (
onditional) equations. Sin
e pred-

i
ates 
an be represented as Boolean fun
tions, we assume that all 
lauses in

an equational logi
 program have the form

l ! r ( s

1

= t

1

; : : : ; s

k

= t

k

(k � 0), where l; r; s

1

; t

1

; : : : ; s

k

; t

k

are terms and l is not a variable. Su
h a


lause is also 
alled 
onditional rewrite rule, and un
onditional rewrite rule

in 
ase of k = 0. A 
onditional term rewriting system (CTRS) is a set of


onditional rewrite rules. For instan
e, Example 1.1 is a CTRS. We 
onsider

an equational logi
 program as a CTRS.

3.1 Basi
 De�nitions

In order to give a pre
ise de�nition of the 
omputation with CTRS, we re
all

basi
 notions of (
onditional) term rewriting [4, 6℄.

Substitutions and most general uni�ers are de�ned as in logi
 program-

ming [16℄. A position p in a term t is represented by a sequen
e of natural

numbers (where � denotes the root position), tj

p

denotes the subterm of t at

position p, and t[s℄

p

denotes the result of repla
ing the subterm tj

p

by the

term s (see [6℄ for details).

Let ! be a binary relation on a set S. Then !

�

denotes the transitive

and re
exive 
losure of the relation !. We write e

1

# e

2

if there exists an

element e

3

2 S with e

1

!

�

e

3

and e

2

!

�

e

3

. ! is 
alled 
on
uent if e

1

# e

2

for all e; e

1

; e

2

2 S with e!

�

e

1

and e!

�

e

2

.

Let R be an un
onditional term rewriting system, i.e., an equational logi


program where all rules have the form l ! r with Var(r) � Var(l). A rewrite

step (w.r.t. R) is an appli
ation of a rewrite rule to a term (rewriting with


onditional rules is dis
ussed below), i.e., t!

R

s if there are a position p in t,

a rewrite rule l ! r 2 R and a substitution � with tj

p

= �(l) and s = t[�(r)℄

p

.

In this 
ase we say t is redu
ible. A term t is 
alled irredu
ible or in normal

form if there is no term s with t!

R

s.

The 
on
uen
e of the rewrite relation!

R

is a basi
 requirement to apply

rules only in one dire
tion during equational reasoning. In order to ensure


on
uen
e even for nonterminating rewrite systems,

3

we need some synta
ti


restri
tions on the rewrite rules. A rewrite rule l ! r is 
alled left-linear if

3

We do not require the termination of the rewrite system sin
e this 
annot be 
he
ked

automati
ally. Moreover, su
h a requirement ex
ludes important fun
tional programming

te
hniques like programming with in�nite data stru
tures.

4



there are no multiple o

urren
es of the same variable in l. An un
onditional

term rewriting system R is 
alled orthogonal if ea
h rule l ! r 2 R is left-

linear and for ea
h non-variable subterm lj

p

of l there exists no rule l

0

! r

0

2 R

su
h that lj

p

and l

0

unify (where l

0

! r

0

is not a variant of l ! r in 
ase of

p = �). R is almost orthogonal if all rules are left-linear and for ea
h pairs of

rules l ! r; l

0

! r

0

2 R, nonvariable subterm lj

p

of l, and mgu � for lj

p

and

l

0

, p is the root position � and the terms �(r) and �(r

0

) are identi
al.

An important property of almost orthogonal systems is the 
on
uen
e

of the rewrite relation (see [15℄ for a 
omprehensive survey on results for

orthogonal systems).

If R is a CTRS, we denote by R

u

:= fl ! r j l ! r ( C 2 Rg the

un
onditional part of R. A CTRS R is 
alled (almost) orthogonal if R

u

is

(almost) orthogonal.

3.2 Equational Logi
 Programs

The 
omputation me
hanism of un
onditional term rewrite systems was de-

�ned by the rewrite relation !

R

in the previous se
tion. If we want to de�ne

the 
omputation with a CTRS, we have to explain the evaluation of the 
on-

dition in a rewrite step. Due to [4, 7℄, there are di�erent possibilities. Here

we 
onsider normal CTRS where t

1

; : : : ; t

k

are ground normal forms w.r.t. R

u

for ea
h 
ondition s

1

= t

1

; : : : ; s

k

= t

k

, and su
h a 
ondition is provable if

every s

i

is redu
ible to t

i

. Note that this de�nition of 
onditional rewriting

is re
ursive, but we 
an also provide an iterative de�nition. Let R be a nor-

mal CTRS. We indu
tively de�ne the following un
onditional term rewriting

systems R

n

(n � 0) by:

R

0

:= fl ! r j l ! r 2 Rg

R

n+1

:= f�(l) ! �(r) j l ! r ( s

1

= t

1

; : : : ; s

k

= t

k

2 R and �(s

i

)!

R

n

t

i

g

We have s !

R

t i� s !

R

n

t for some n � 0. The restri
tion to normal

CTRS is essential, otherwise the rewrite relation may not be 
on
uent even

for orthogonal CTRS (see [4℄). On the other hand, normal CTRS have the

following 
on
uen
e property [15℄:

Theorem 3.1 The rewrite relation of an almost orthogonal normal CTRS is


on
uent.

Therefore, we 
onsider in the following only normal CTRS as equational log-

i
 programs (this restri
tion is also made in the fun
tional logi
 languages

BABEL [18℄ and K-LEAF [10℄). This is not a restri
tion from a logi
 pro-

gramming point of view, sin
e ea
h logi
 program 
an be transformed into a

almost orthogonal normal CTRS by representing predi
ates as Boolean fun
-

tions and eliminating multiple o

urren
es of variables in left-hand sides by

introdu
ing new variables and new equations for them in the 
ondition part

(see [18℄ for details).

In pra
ti
e, most equational logi
 programs are 
onstru
tor-based, i.e.,

the set of fun
tion symbols is divided into a set of 
onstru
tors C and a set

of de�ned fun
tions or operations D (see, for instan
e, the fun
tional logi


languages ALF [12℄, BABEL [18℄, K-LEAF [10℄, or SLOG [9℄). A 
onstru
tor

term is a term 
ontaining only variables and symbols from C. In a 
onstru
tor-

based term rewrite system, the left-hand side of ea
h 
lause must be of the form

f(t

1

; : : : ; t

n

), where f 2 D and t

1

; : : : ; t

n

are 
onstru
tor terms. Additionally,
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in a 
onstru
tor-based normal CTRS, ea
h 
onditional rule l ! r ( s

1

=

t

1

; : : : ; s

k

= t

k

has the property that t

1

; : : : ; t

k

are ground 
onstru
tor terms.

In 
onstru
tor-based normal CTRS we 
annot write arbitrary equations

in 
onditions. However, we 
an provide an expli
it de�nition of an equality

fun
tion � between 
onstru
tor terms by the following rules (this stri
t equal-

ity is the only sensible notion of equality for possible nonterminating systems,

sin
e normal forms may not exist [10, 18℄):


 � 
 ! true for all 0-ary 
 2 C


(x

1

; : : : ; x

n

) � 
(y

1

; : : : ; y

n

) ! ^

n

i=1

(x

i

� y

i

) for all n-ary 
 2 C

true ^ x ! x

The redu
tion of s � t to true is equivalent to the redu
tion of s and t to a

same ground 
onstru
tor term ([1℄, Proposition 1). In the rest of this paper,

we assume that an equation s � t in a 
ondition of a 
onstru
tor-based normal

CTRS denotes the equation (s � t) = true.

We are interested in the in
uen
e of extra variables to the 
ompleteness of

narrowing strategies for equational logi
 programs. In 
ontrast to pure logi


programming, equational logi
 programming allows a re�ned 
lassi�
ation of

rules a

ording to the o

urren
e of extra variables. Ea
h 
onditional rule

l ! r ( C is 
lassi�ed a

ording to the following table [17℄:

Type Requirement

1 Var(r) [ Var(C) � Var(l)

2 Var(r) � Var(l)

3 Var(r) � Var(l) [ Var(C)

4 no restri
tions

All variables in a 
onditional rule whi
h do not o

ur in the left-hand side

l are 
alled extra variables. An n-CTRS 
ontains only rules of type n, i.e.,

a 1-CTRS does not 
ontain extra variables, a 2-CTRS may 
ontain extra

variables only in the 
ondition, and a 3-CTRS may 
ontain extra variables in

the right-hand side, but these extra variables must also o

ur in the 
ondition.

Example 3.2 The program in Example 1.1 is a 2-CTRS, and the following

equational version of Example 2.1 is a 
onstru
tor-based normal 3-CTRS:

append([℄, L) ! L

append([E|R℄,L) ! [E|append(R,L)℄

last(L) ! E ( append(R,[E℄)�L

2

3.3 Conditional Narrowing

In equational logi
 programming we are interested in solving equational goals,

i.e., we want to 
ompute a substitution su
h that terms rewrite to some normal

forms under this substitution. Due to the restri
tion on 
onditions in rules

introdu
ed in the previous se
tion, we de�ne a (normal equational) goal (w.r.t.

a normal CTRS R) as a sequen
e of equations s

1

= t

1

; : : : ; s

k

= t

k

, where

t

1

; : : : ; t

k

are ground normal forms w.r.t. R

u

. Sin
e it is straightforward to

extend the de�nitions of Se
tion 3.1 to goals, we will use them in the following.

For instan
e, we use notions like \subterms of goals" and apply rewrite steps

to goals.

A narrowing step transforms a goal G into another goal by applying a rule

to some subterm of G. More pre
isely, G narrows to G

0

, denoted G;

�

G

0

, if

6



there exist a nonvariable position p in the goal G (i.e., Gj

p

is not a variable),

a variant l ! r ( C of a rewrite rule in R and a substitution � su
h that �

is a mgu of Gj

p

and l, and G

0

= �(C;G[r℄

p

). Sin
e R is a normal CTRS, it

is 
lear that G

0

is again a well-de�ned goal. If there is a narrowing sequen
e

G

1

;

�

1

G

2

;

�

2

� � �;

�

n�1

G

n

, we writeG

1

;

�

�

G

n

with � = �

n�1

Æ� � �Æ�

2

Æ�

1

.

A narrowing sequen
e is su

essful if the �nal goal G

n

is trivial, i.e., it has

the form t

1

= t

1

; : : : ; t

k

= t

k

.

The important property of evaluation strategies for (equational) logi
 pro-

grams is their 
ompleteness, i.e., their ability to 
ompute all answers whi
h

are valid w.r.t. the de
larative semanti
s. In our 
ontext we say narrowing

is 
omplete w.r.t. the equational logi
 program R if, for all goals G and sub-

stitutions � so that �(G) 
an be rewritten to a trivial goal, there exists a

narrowing derivation G ;

�

�

0

G

0

, where G

0

is a trivial goal and � = � Æ �

0

for

some substitution �. That is, ea
h valid answer � is subsumed by a more

general answer �

0


omputed by narrowing.

There are many results for the 
ompleteness of narrowing w.r.t. di�erent


lasses of programs (see [17℄ for a 
omprehensive survey). However, simple

narrowing de�ned so far is more or less of theoreti
al interest due to its huge

sear
h spa
e. In order to redu
e the sear
h spa
e and to avoid super
uous

work, lazy narrowing strategies have been proposed for languages like BABEL

[18℄ and K-LEAF [10℄, where lazy narrowing sele
ts an outermost position but

also allows narrowing steps at an inner position if the value at this position

is demanded by some rule (see [18℄ for details). It is well-known that lazy

narrowing is 
omplete for almost orthogonal normal 2-CTRS. However, there

are many 
ases where 2-CTRS are too restri
ted and 3-CTRS are appropri-

ate, but no 
ompleteness results are known for this 
lass. Moreover, there are

operationally better strategies than lazy narrowing. For instan
e, needed nar-

rowing [1℄ is an optimal strategy for indu
tively sequential programs, whi
h

is a sub
lass of un
onditional orthogonal programs, and for almost orthogo-

nal programs it has been shown that the 
ombination of lazy narrowing with

intermediate simpli�
ation steps yields a better behavior [13℄. Again, there

are no results for these re�ned strategies w.r.t. extra variables.

In order to avoid separate 
ompleteness proofs w.r.t. extra variables for

all these (and possible future) extensions, we present a systemati
 method to

eliminate extra variables in equational logi
 programs. The method is based

on the ideas presented in Se
tion 2, but the in
ompleteness of narrowing in

the presen
e of extra variables shows that this method 
annot work in general.

Therefore, we will dis
uss 
onditions for the adequa
y of our method.

3.4 Eliminating Extra Variables in Conditional Rules

In this se
tion we present a transformation on equational logi
 programs to

eliminate all extra variables. The purpose of this transformation is to pro-

vide a general method to derive 
ompleteness results in the presen
e of extra

variables. This method 
onsists of the following steps:

1. Transform an equational logi
 program into a new program without

extra variables.

2. Apply a 
omplete narrowing strategy to the transformed program (note

that more su
h strategies are known if extra variables do not o

ur).

3. Che
k the 
orresponden
e of narrowing derivations between the original

and the transformed program.

7



In this se
tion we dis
uss 
onditions for the 
orre
tness of steps 1 and 3.

Appli
ations of the entire method are dis
ussed in Se
tion 3.5.

In order to eliminate extra variables in equational logi
 programs, we

transform ea
h rewrite rule by adding new arguments to ea
h fun
tion o

ur-

ring in the rule. Sin
e fun
tions 
an be nested, we have to add new arguments

in ea
h subterm. For this purpose, we denote by

b

t the term obtained from t

by adding a new variable argument to ea
h fun
tion o

urring in t, i.e.,

b

t 
an

be de�ned as follows:

b

x = x for all variables x

b

t = f(

b

t

1

; : : : ;

b

t

n

; y) if t = f(t

1

; : : : ; t

n

) and y is a new variable

The new arguments added to ea
h fun
tion 
all are 
alled extension arguments

and the new variables introdu
ed in these arguments are 
alled extension vari-

ables. Terms that 
ontain extension arguments for ea
h subterm (whi
h may

be instantiated) are 
alled extended terms. Although the names of the exten-

sion variables are not �xed, we 
onsider in the following the transformation b

as a mapping from terms into terms (this 
an be formalized by taking a list of

new variables as an additional argument to b, but for the sake of readability

we avoid this formalism). The transformation will also be applied to lists of

terms and equations. We omit the straightforward de�nition.

Ea
h 
onditional rewrite rule R: f(t)! r ( C is transformed into a rule

eev(R) by applying the transformation b to t, r and C, and adding the extra

variables to the left-hand side, i.e.,

eev(R): f(

b

t; v

n

(x

1

; : : : ; x

n

))!

b

r (

b

C

where fx

1

; : : : ; x

n

g = (Var(

b

r) [ Var(

b

C))nVar(

b

t).

4

The transformed 
lause

may not be a normal one, but this 
auses no problems sin
e the requirement

for normal CTRS is only ne
essary for the original programs in order to ensure

the 
on
uen
e of the original rewrite relation.

We extend eev to sets of rewrite rules by applying it to ea
h rule. For the

sake of readability, we use the following obvious optimization in 
on
rete ex-

amples: Introdu
e extension arguments only in fun
tion 
alls of the form f(s)

where there is some rewrite rule f(t)! r ( C for f . In parti
ular, extension

arguments are not introdu
ed in 
onstru
tor terms ifR is a 
onstru
tor-based

program.

Example 3.3 Let R be the program of Example 1.1. Then eev(R) is the

following program:

a(v

1

(Y)) ! b(Y) b(v

2

(X,Z)) ! 
 ( f(X,b(Z))=f(
,X)

a(v

0

) ! 


It is not ne
essary to add extension arguments to the fun
tions 
 and f sin
e

there are no rewrite rules for them. 2

The elimination of extra variables in equational logi
 programs seems to be

very similar to pure logi
 programs. However, there is an essential di�eren
e.

The transformation does not 
hange the meaning in the 
ase of pure logi


4

In 
ontrast to pure logi
 programming, the order of the variables in the term

v

n

(x

1

; : : : ; x

n

) is relevant to ensure that the transformed programs are almost orthogonal

if the original programs are almost orthogonal (see Proposition 3.8). Therefore, we �x the

same ordering prin
iple for all rules. A possible 
hoi
e is a left-to-right innermost ordering

for all variables in br;

b

C.

8



programs (
f. Theorem 2.2), but this is no longer true in the equational 
ase.

The meaning of an equational logi
 program is the set of valid equalities. For

instan
e, b=
 is valid w.r.t. Example 1.1 (sin
e the instantiated 
ondition

f(a,b)=f(
,a) 
an be rewritten to the trivial equation f(
,b)=f(
,b), i.e.,

b !

R

1


). However, no instan
e of the equation b(V)=
 is valid w.r.t. the

transformed program in Example 3.3. In the original program the term a 
an

be rewritten to b as well as 
, whi
h is ne
essary to prove the 
ondition of

the last rule. However, in the transformed program, there is no term whi
h

is simultaneously redu
ible to b(Y) and 
.

The meanings of the original and the transformed program di�er when-

ever it is ne
essary to rewrite an instan
e of a variable to di�erent terms in

the original program. The inversion of this observation yields a 
riterion for

the adequa
y of the transformation. We 
an ensure that the original and the

transformed program have the same meaning if all o

urren
es of the same

variable are redu
ed to an identi
al term, i.e., if the same rewrite steps are

applied to all o

urren
es of a variable (in the instantiated rule). This 
an be

expressed by the notion of sharing, whi
h means that all o

urren
es of a rule

variable are represented only on
e. Sharing is also a well-known implemen-

tation te
hnique in fun
tional and logi
 languages. Sharing in rewriting 
an

be formally treated in the framework of term graph rewriting [3℄. In order

to avoid repeating all details of term graph rewriting, we assume familiarity

with graphs to represent shared subterms (see [3℄ for details). We only 
ite

the following result, whi
h is important in our framework.

Theorem 3.4 ([3℄) If R is an un
onditional almost orthogonal term rewrit-

ing system, then graph rewriting (where all variables in rules are shared) is

a sound and 
omplete implementation of term rewriting; in parti
ular, the

normal forms (w.r.t. traditional term rewriting) of terms are also 
omputable

if all rule variables are shared.

The restri
tion to almost orthogonal systems is essential. Otherwise, rewriting

with sharing is in
omplete (see [3℄). To apply the result of Theorem 3.4 in our

framework, we have to extend it to 
onditional rewrite systems. Although this

is not possible in general, sharing is a 
omplete implementation for the 
lass

of programs whi
h we 
onsider as equational logi
 programs. This also shows

that the restri
tion to normal CTRS is sensible from an implementation point

of view.

Theorem 3.5 Let R be an almost orthogonal normal CTRS (with extra

variables). Then all variables in rewrite rules 
an be shared during the 
om-

putation of a normal form.

Now we want to relate rewrite proofs in R with rewrite proofs in the trans-

formed system eev(R). In order to 
ompare extended terms with original

terms, we de�ne a mapping dv to delete extension arguments by dv(x) = x

for all variables x and dv(f(t

1

; : : : ; t

n

; t

n+1

)) = f(dv(t

1

); : : : ; dv(t

n

)). Clearly,

dv(

b

t) = t for all terms t. The following theorem shows that every normal

form 
omputation w.r.t. R 
an also be performed for the extended terms

w.r.t. eev(R), provided that R is an almost orthogonal normal CTRS.

Theorem 3.6 Let R be an almost orthogonal normal CTRS (with extra

variables), t be a term and R

0

= eev(R). If t !

�

R

s (where s is a normal

form), then there is an extended term t

0

with dv(t

0

) = t and t

0

!

�

R

0

b

s.

9



This theorem implies that all stri
t equalities w.r.t. R are also valid w.r.t.

eev(R). The next theorem shows that ea
h narrowing derivation w.r.t. eev(R)


orresponds to a narrowing derivation w.r.t. R, i.e., if there is a narrowing

derivation on the extended level, then there is also a narrowing derivation

on the original level. This property will be used to state new 
ompleteness

results for narrowing strategies in the presen
e of extra variables. Remember

that all trivial goals have the form t

1

= t

1

; : : : ; t

n

= t

n

, where t

1

; : : : ; t

n

are

in normal form (not ne
essarily ground if they 
ontain extension arguments).

Theorem 3.7 Let R be a normal CTRS su
h that eev(R) is almost orthogo-

nal and G be a goal. If there is a narrowing derivation

b

G;

�

�

G

1

, where G

1

is a

trivial goal, then there is a narrowing derivation G;

�

�

G

0

with dv(G

1

) = G

0

and dv(�(x)) = �(x) for all x 2 Var(G). Moreover, the narrowing positions

in both derivations are identi
al, and the applied rules 
orrespond via the

transformation eev.

IfR is an almost orthogonal normal CTRS and we want to apply our transfor-

mation in order to show the 
ompleteness of sophisti
ated narrowing strate-

gies, we have to ensure that the transformed program eev(R) is also almost

orthogonal (Theorem 3.7). The following proposition shows that this is always

the 
ase.

Proposition 3.8 If R is an almost orthogonal CTRS, then eev(R) is almost

orthogonal.

We mentioned in Se
tion 3.3 that simple narrowing has a huge sear
h spa
e

and, therefore, sophisti
ated narrowing strategies are needed in pra
ti
e. In

general, a narrowing strategy restri
ts the number of possible narrowing steps,

i.e., it 
an be seen as a mapping whi
h assigns to ea
h goal a set of pairs of

positions and rules.

5

However, a narrowing strategy should not destroy 
om-

pleteness, and 
ompleteness results are often known only for equational logi


programs without extra variables. In order to over
ome these problems, we


an apply the results of this se
tion to transfer 
ompleteness results for nar-

rowing strategies from programs without extra variables to programs whi
h

may 
ontain extra variables. The following main result shows the general

method.

Theorem 3.9 Let R be an almost orthogonal normal CTRS (with extra

variables) and N be a narrowing strategy whi
h is 
omplete for eev(R). Then

N is also 
omplete for R.

The following se
tion 
ontains 
on
rete appli
ations of this result.

3.5 Appli
ation of Extra Variable Elimination

3.5.1 Indu
tively Sequential Systems

Lazy narrowing is 
omplete for almost orthogonal normal 2-CTRS [18℄. How-

ever, it is well known that lazy narrowing may perform super
uous narrowing

5

An ex
eption is the needed narrowing strategy [1℄ whi
h additionally assigns a uni�er

be
ause the uni�er in a needed narrowing step is not ne
essarily a most general one.

10



steps due to the intera
tion of redex sele
tion and rule sele
tion. As an alter-

native, needed narrowing is proposed in [1℄. The needed narrowing strategy

is optimal w.r.t. the length of the derivations and the number of 
omputed

solutions. Needed narrowing is de�ned for the 
lass of indu
tively sequential

systems. These are parti
ular 
onstru
tor-based orthogonal un
onditional

rewrite systems (see [1℄ for a pre
ise de�nition). Roughly speaking, in indu
-

tively sequential systems all rules de�ning a fun
tion 
an be organized in a

hierar
hi
al stru
ture, 
alled de�nitional tree, whi
h represents a unique sele
-

tion of a rule by a 
ase distin
tion on the arguments for ea
h ground fun
tion


all. For instan
e, the rules for append in Example 3.2 are indu
tively se-

quential, sin
e a unique sele
tion of a rule 
an be made by the �rst argument

of append: if this argument is an empty list ([℄), the �rst rule is sele
ted,

and the se
ond rule is sele
ted if this argument is a nonempty list ([�|�℄). On

the other hand, the rules of Example 1.1 are not indu
tively sequential, sin
e

the �rst as well as the se
ond rule 
an be applied to the term `a'.

We will use the results of the previous se
tion to extend needed narrowing

to 
onditional rewrite rules with extra variables in a simple way. A CTRSR is


alled indu
tively sequential if it is a 
onstru
tor-based normal CTRS and its

un
onditional part R

u

is indu
tively sequential. Sin
e indu
tively sequential

systems are orthogonal, we 
an use the method proposed in [4℄ to translate

indu
tively sequential normal CTRS into an un
onditional system. For this

purpose, we introdu
e for ea
h 
onditional rule R: l ! r ( s = u of R (where

u is a ground 
onstru
tor term) a new fun
tion symbol 
ond

R

and repla
e R

by the following un
onditional rules:

l ! 
ond

R

(s; r)


ond

R

(u; x) ! x

We denote by u
(R) the new un
onditional system obtained from R. Sin
e

u is a ground 
onstru
tor term, the new un
onditional system is indu
tively

sequential if the original system is an indu
tively sequential CTRS without

extra variables.

6

Moreover, there is a strong 
orresponden
e between the

rewrite derivations (see [4℄, Proposition 2.5.4). In order to deal with extra

variables, we have to translate R by the transformation eev before applying

u
. The following proposition is obvious sin
e the introdu
tion of extension

arguments does not in
uen
e the non-overlapping of left-hand sides.

Proposition 3.10 If R is an indu
tively sequential CTRS, then u
(eev(R))

is an un
onditional indu
tively sequential rewrite system.

Example 3.11 Consider the following indu
tively sequential CTRSR whi
h

de�nes the Boolean fun
tion member on the basis of the fun
tion append:

append([℄, L) ! L

append([E|R℄,L) ! [E|append(R,L)℄

member(E,L) ! true ( append(L1,[E|L2℄)�L

Then the transformed system u
(eev(R)) 
onsists of the following rules:

append([℄, L,v

0

) ! L

append([E|R℄,L,v

1

(X)) ! [E|append(R,L,X)℄

member(E,L,v

3

(L1,L2,X)) ! 
ond(append(L1,[E|L2℄,X)�L,true)


ond(true,X) ! X

2

6

Proposition 2.5.3 in [4℄ is not true in the presen
e of extra variables.
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Sin
e needed narrowing is an optimal and 
omplete strategy for indu
tively

sequential un
onditional systems, we 
an apply the results of the previous

se
tion (as summarized in Theorem 3.9), and we obtain the following new

result.

Theorem 3.12 Needed narrowing is 
omplete for indu
tively sequential

CTRS (with extra variables). Moreover, it is optimal w.r.t. the length of

the derivations and the number of 
omputed solutions.

Sin
e this result 
an be easily extended to overlapping rules with ex
lud-

ing 
onditions, we obtain with our translation method an optimal narrowing

strategy for a large 
lass of equational logi
 programs.

3.5.2 Extra Variables in Right-Hand Sides

Current fun
tional logi
 languages like BABEL [18℄ and K-LEAF [10℄) permit

extra variables in 
onditions but not in the right-hand side of 
onditional rules.

However, as observed by several authors [8, 15, 17℄, it makes good sense to

allow extra variables also in right-hand sides if they o

ur in 
onditions (3-

CTRS). Example 3.2 shows a sensible use of extra variables in right-hand

sides. The following example [15℄ shows that su
h extra variables 
an be a

repla
ement for the let 
onstru
t of fun
tional languages.

Example 3.13 The Fibona

i numbers 
an be 
omputed by the following


onditional rules:

fib(0) ! <0,1>

fib(s(X)) ! <Z,Y+Z> ( fib(X)�<Y,Z>

2

However, an unrestri
ted use of extra variables in right-hand sides leads to

non
on
uent rewrite relations even for non-overlapping normal CTRS. To

ensure the 
on
uen
e of the rewrite relation and 
ompleteness of narrowing,

additional restri
tions are needed. Middeldorp and Hamoen [17℄ showed that

narrowing is 
omplete for level-
on
uent and terminating 3-CTRS. In [5, 7, 19℄

3-CTRS with a spe
ial rewrite relation are proposed, where extra variables

are instantiated only to irredu
ible terms and all su
h instantiations of 
ondi-

tional rules must be de
reasing (i.e., the left-hand side must greater than the


onditions and right-hand side w.r.t. a termination ordering). Narrowing is


omplete for su
h rewrite systems. Sin
e we do not want to restri
t ourselves

to terminating rewrite systems, we need other 
onditions. For this purpose,

we 
all a CTRS R fun
tional if the following 
onditions hold:

1. R is a normal CTRS.

2. The un
onditional part R

u

is almost orthogonal (where we use the same

de�nition as in Se
tion 3.1 but do not require Var(r) � Var(l) for all

l ! r 2 R

u

).

3. !

R

is 
on
uent.

Conditions 1 and 2 are ne
essary to extend Theorem 3.5 and Proposition 3.8

to fun
tional CTRS. Sin
e these 
onditions are not suÆ
ient for the 
on
uen
e

of the rewrite relation, we have the expli
it 
on
uen
e 
ondition 3. We will

dis
uss suÆ
ient 
onditions ensuring 
on
uen
e below. Note that ea
h almost

orthogonal normal 2-CTRS is fun
tional (by Theorem 3.1), while a 4-CTRS

12




annot be fun
tional. Hen
e the 
lass of fun
tional CTRS lies between the


lasses of almost orthogonal normal 2-CTRS and 3-CTRS.

We want to apply our transformation to show the 
ompleteness of narrow-

ing strategies for fun
tional CTRS. Sin
e fun
tional CTRS are transformed

by eev into almost orthogonal CTRS, it is easy to 
he
k that Theorem 3.9 is

also valid for fun
tional CTRS:

Theorem 3.14 Let R be a fun
tional CTRS and N be a narrowing strategy

whi
h is 
omplete for eev(R). Then N is also 
omplete for R.

We 
an use this result to show the 
ompleteness of various narrowing strategies

for equational logi
 programs with extra variables in right-hand sides. For

instan
e, 
ompleteness results for lazy narrowing strategies are only known

for 
onstru
tor-based normal 2-CTRS [18℄. Our transformation method yields

new 
ompleteness results for fun
tional CTRS by applying Theorem 3.14 to

the 
ompleteness result of lazy narrowing [18℄ for 
onstru
tor-based almost

orthogonal normal 2-CTRS.

Corollary 3.15 Lazy narrowing is 
omplete for 
onstru
tor-based fun
tional

CTRS.

To obtain a further interesting result, we apply Theorem 3.14 to indu
tively

sequential systems with extra variables in right-hand sides. For this purpose,

we use the same translation te
hniques as introdu
ed in Se
tion 3.5.1 and we

immediately obtain the following proposition.

Corollary 3.16 Let R be a fun
tional CTRS su
h that the un
onditional

part R

u

is indu
tively sequential.

7

Then needed narrowing is 
omplete for

R, and it is an optimal strategy w.r.t. the length of the derivations and the

number of 
omputed solutions.

Thus needed narrowing is a 
omplete and optimal strategy for the programs

in Examples 3.2 and 3.13.

Due to these results, it is no problem to extend equational logi
 languages

like BABEL [18℄ or K-LEAF [10℄ by permitting extra variables in right-hand

sides. However, the use of these extra variables must be restri
ted so that

the programs are fun
tional. The �rst two 
onditions of fun
tional CTRS

are easy to 
he
k, but the 
on
uen
e 
ondition 3 is usually hard to verify.

In some 
ases it is possible to show 
on
uen
e by proving that the rewrite

system R is level-
on
uent, i.e., we may show that ea
h un
onditional rewrite

system R

n

is 
on
uent for all n � 0. For instan
e, it is relatively easy to show

that the rewrite system in Example 3.2 is level-
on
uent. However, from a

pra
ti
al point of view, it is desirable to have synta
ti
 
riteria to ensure the


on
uen
e of a 3-CTRS. Fortunately, for 
onstru
tor-based programs there

is an interesting sub
lass of fun
tional CTRS whi
h has a simple synta
ti



hara
terization.

8

Note that in 
onstru
tor-based systems ea
h 
onditional

rule 
an be written in the form l ! r ( s � t.

7

Sin
e the property of indu
tive sequentiality depends only on the left-hand sides of

the rewrite rules, the de�nition 
an simply be extended to rules with extra variables in

right-hand sides.

8

Re
ently, Suzuki et al. [21℄ have independently 
hara
terized a 
lass of level-
on
uent

3-CTRS with similar restri
tions.
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Proposition 3.17 A 
onstru
tor-based normal CTRS R is fun
tional if the

following 
onditions holds:

1. The un
onditional part R

u

is almost orthogonal.

2. For ea
h rule l ! r ( s � t with extra variables in r, t is a 
onstru
tor

term, Var(s) � Var(l), and Var(r) � Var(l) [ Var(t).

As a 
onsequen
e of this proposition, the rewrite system in Example 3.13 is

fun
tional. It is straightforward to re�ne the proposition to 
onditional rules

with more than one stri
t equation in the 
ondition part.

4 Con
lusions

In this paper we have dis
ussed the ne
essity and problems of extra vari-

ables in pure logi
 programming and equational logi
 programming. In the

�rst part, we have shown that extra variables are unne
essary for pure logi


programming sin
e all o

urren
es of extra variables during a 
omputation


an be moved into the initial goal. Although this transformation does not


hange the de
larative and operational semanti
s of pure logi
 programs, it

does not generally work for equational logi
 programs, sin
e it is known that

the presen
e of extra variables may 
ause in
ompleteness of narrowing, the

standard operational semanti
s of equational logi
 programs. Nevertheless,

we have shown that this transformation works for the important sub
lass of

almost orthogonal normal programs. As a 
onsequen
e of this result, we have

provided a general method to lift 
ompleteness results for narrowing with-

out extra variables to programs with extra variables. Using this method, we


ould prove various new 
ompleteness results like 
ompleteness and optimali-

ty of needed narrowing and 
ompleteness of lazy narrowing in the presen
e of

extra variables. Programs with su
h properties often o

ur if programming

te
hniques like in�nite data stru
tures (e.g., streams) and let 
onstru
ts from

fun
tional programming are simultaneously used. Therefore, our results are

a 
ontribution to extend 
urrent fun
tional logi
 languages in a pra
ti
ally

useful way, sin
e su
h extensions give the programmer more expressivity and

allow a more eÆ
ient exe
ution of programs. Our method 
an also be help-

ful to simplify 
ompleteness proofs for possibly more sophisti
ated narrowing

strategies that will be developed in the future.
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