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Abstract

Logic programming is a flexible programming paradigm due to the use of predicates without a fixed data

flow. To extend logic languages with the compact notation of functional programming, there are various

proposals to map evaluable functions into predicates in order to stay in the logic programming framework.

Since amalgamated functional logic languages offer flexible as well as efficient evaluation strategies, we

propose an opposite approach in this paper. By mapping logic programs into functional logic programs with

a transformation based on inferring functional dependencies, we develop a fully automatic transformation

which keeps the flexibility of logic programming but can improve computations by reducing infinite search

spaces to finite ones.

Under consideration for acceptance in TPLP.
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1 Motivation

Functional and logic programming are the most prominent declarative programming paradigms.

Functional programming provides a compact notation, due to nested expressions, and demand-

driven (optimal) evaluation strategies, whereas logic programming provides flexibility due to free

variables, unification, and built-in search. Thus, both paradigms have their advantages for appli-

cation programming so that it is reasonable to offer their features in a single language. One option

to achieve this is to extend a logic language with functional syntax (equations, nested functional

expressions) and transform evaluable functions into predicates and flatten nested expressions

(Barbuti et al. 1984; Casas et al. 2006; Naish 1991). Hence, logic programming can be consid-

ered as the more general paradigm. On the other hand, functional programming supports efficient,

in particular, optimal evaluation strategies, by exploiting functional dependencies during evalua-

tion so that it provides more modularity and new programming concepts, like programming with

infinite data structures (Hughes 1990). In Prolog systems which support coroutining, i.e., delay-

ing the evaluation of literals when arguments are not sufficiently instantiated, one can exploit

coroutining to implement the basic idea of lazy evaluation (Casas et al. 2006; Naish 1991). How-

ever, the use of coroutines might add new problems. For instance, computations with coroutin-

ing introduce the risk of incompleteness by floundering (Lloyd 1987). Furthermore, coroutining

might yield infinite search spaces due to delaying literals generated by recursively defined pred-

icates (Hanus 1995). Although the operational behavior of particular programs can be improved

with coroutines, there are no general results characterizing classes of programs where this always

leads to an improved operational behavior.

http://arxiv.org/submit/4306142/pdf
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Amalgamated functional logic languages (Antoy and Hanus 2010) are an approach to support

flexible as well as efficient evaluation strategies. For instance, the language Curry (Hanus 2016) is

based on an optimal and logically sound and complete strategy (Antoy et al. 2000; Antoy 1997).

The motivation of this paper is to show that functional logic languages are actually superior to

pure logic languages. Instead of transforming functions into predicates, we present a sequence of

transformations which map logic programs into functional logic programs. Using a sophisticated

mapping based on inferring functional dependencies, we obtain a fully automatic transformation

tool which can reduce the computational efforts. In particular, infinite search spaces w.r.t. logic

programs can be reduced to finite ones w.r.t. the transformed functional logic programs.

This paper is structured as follows. The next section reviews basic notions of logic and func-

tional logic programming. Section 3 presents a simple embedding of logic into functional logic

programs, which is extended in Sect. 4 and 5 by considering functional dependencies. Section 6

discusses the inference of such dependencies and Sect. 7 adds some extensions. This final trans-

formation is implemented in a tool sketched in Sect. 8. We evaluate our transformation in Sect. 9

before we conclude. The appendix contains the proofs of the theorems.

2 Logic and Functional Logic Programming

In this section we fix our notation for logic programs and briefly review some relevant features of

functional logic programming. More details are in the textbook of Lloyd (1987) and in surveys

on functional logic programming (Antoy and Hanus 2010; Hanus 2013).

In logic programming (we use Prolog syntax for concrete examples), terms are constructed

from variables (X ,Y . . .), numbers, atom constants (c,d, . . .), and functors or term constructors

( f ,g, . . .) applied to a sequence of terms, like f (t1, . . . , tn). A literal p(t1, . . . , tn) is a predicate p

applied to a sequence of terms, and a goal L1, . . . ,Lk is a sequence of literals, where � denotes

the empty goal (k = 0). Predicates are defined by clauses L :- B, where the head L is a literal

and the body B is a goal (a fact is a clause with an empty body �, otherwise it is a rule). A logic

program is a sequence of clauses.

Logic programs are evaluated by SLD-resolution steps, where we consider the leftmost se-

lection rule here. Thus, if G = L1, . . . ,Lk is a goal and L :- B is a variant of a program

clause (with fresh variables) such that there exists a most general unifier1 (mgu) σ of L1

and L, then G ⊢σ σ(B,L2, . . . ,Lk) is a resolution step. We denote by G1 ⊢∗
σ

Gm a sequence

G1 ⊢σ1
G2 ⊢σ2

. . . ⊢σm−1
Gm of resolution steps with σ = σm−1 ◦ · · · ◦σ1. A computed answer

for a goal G is a substitution σ (usually restricted to the variables occurring in G) with G ⊢∗
σ
�.

Example 1

The following logic program defines the well-known predicate app for list concatenation, a pred-

icate app3 to concatenate three lists, and a predicate dup which is satisfied if the second argument

occurs at least two times in the list provided as the first argument:

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

app3(Xs,Ys,Zs,Ts) :- app(Xs,Ys,Rs), app(Rs,Zs,Ts).

dup(Xs,Z) :- app3(_,[Z|_],[Z|_],Xs).

1 Substitutions, variants, and unifiers are defined as usual (Lloyd 1987).
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The computed answers for the goal dup([1,2,2,1],Z) are {Z 7→ 1} and {Z 7→ 2}. They can be

computed by a Prolog system, but after showing these answers, Prolog does not terminate due

to an infinite search space. Actually, Prolog does not terminate for the goal dup([],Z) since it

enumerates arbitrary long lists for the first argument of app3.

Functional logic programming (Antoy and Hanus 2010; Hanus 2013) integrates the most impor-

tant features of functional and logic languages in order to provide a variety of programming

concepts. Functional logic languages support higher-order functions and lazy (demand-driven)

evaluation from functional programming as well as non-deterministic search and computing with

partial information from logic programming. The declarative multi-paradigm language Curry

(Hanus 2016), which we use in this paper, is a functional logic language with advanced program-

ming concepts. Its syntax is close to Haskell (Peyton Jones 2003), i.e., variables and names of

defined operations start with lowercase letters and the names of data constructors start with an

uppercase letter. The application of an operation f to e is denoted by juxtaposition (“ f e”).

In addition to Haskell, Curry allows free (logic) variables in program rules (equations) and ini-

tial expressions. Function calls with free variables are evaluated by a possibly non-deterministic

instantiation of arguments.

Example 2

The following Curry program2 defines the operations of Example 1 in a functional manner, where

logic features (free variables z and _) are exploited to define dup:

app [] ys = ys

app (x:xs) ys = x : app xs ys

app3 xs ys zs = app (app xs ys) zs

dup xs | xs =:= app3 _ (z:_) (z:_)

= z

“|” introduces a condition, and “=:=” denotes semantic unification, i.e., the expressions on both

sides are evaluated before unifying them.

Since app can be called with free variables in arguments, the condition in the definition of dup

is solved by instantiating z and the anonymous free variables “_” to appropriate values (i.e.,

expressions without defined functions) before reducing the function calls. This corresponds to

narrowing (Reddy 1985; Slagle 1974). t  σ t ′ is a narrowing step if there is some non-variable

position p in t, an equation (program rule) l = r, and an mgu σ of t|p and l such that t ′ = σ(t[r]p),
3

i.e., t ′ is obtained from t by replacing the subterm t|p by the equation’s right-hand side and

applying the unifier. This definition also applies to conditional equations l | c = r which are

considered as syntactic sugar for the unconditional equation l = c &> r, where the operation “&>”

is defined by True &> x = x.

Curry is based on the needed narrowing strategy (Antoy et al. 2000) which also uses non-most-

general unifiers in narrowing steps to ensure the optimality of computations. Needed narrowing

is a demand-driven evaluation strategy, i.e., it supports computations with infinite data structures

(Hughes 1990) and can avoid superfluous computations. The latter property is our motivation

to transform logic programs into Curry programs, since this can reduce infinite search spaces to

2 We simplify the concrete syntax by omitting the declaration of free variables, like z, which is required in concrete
Curry programs to enable some consistency checks by the compiler.

3 We use common notations from term rewriting (Baader and Nipkow 1998; TeReSe 2003).



4 Michael Hanus

finite ones. For instance, the evaluation of the expression dup [] has a finite computation space:

the generation of longer lists for the first argument of app3 is avoided since there is no demand

for such lists.

dup is a non-deterministic operation since it might deliver more than one result for a given

argument, e.g., the evaluation of dup[1,2,2,1] yields the values 1 and 2. Non-deterministic

operations, which can formally be interpreted as mappings from values into sets of values

(González-Moreno et al. 1999), are an important feature of contemporary functional logic lan-

guages. For the transformation described in this paper, this feature has the advantage that it is not

important to transform predicates into purely mathematical functions (having at most one result

for a given combination of arguments).

Curry has many more features which are useful for application programming, like set functions

(Antoy and Hanus 2009) to encapsulate search, and standard features from functional program-

ming, like modules or monadic I/O (Wadler 1997). However, the kernel of Curry described so

far should be sufficient to understand the transformation described in the following sections.

3 Conservative Transformation

Functional logic programming is an extension of pure logic programming. Hence, there is a

straightforward way to map logic programs into functional logic programs: map each predicate

into a Boolean function and transform each clause into a (conditional) equation. We call this

mapping the conservative transformation since it keeps the basic structure of derivations. Since

narrowing-based functional logic languages support free variables as well as overlapping rules,

this mapping does not change the set of computed solutions (in contrast to a purely functional

target language where always the first matching rule is selected).

As a first step to describe this transformation, we have to map terms from logic into functional

logic notation. Since terms in logic programming (here: Prolog syntax) have a direct correspon-

dence to data terms (as used in Curry), the mapping of terms is just a change of syntax (e.g.,

uppercase variables are mapped into lowercase, and lowercase constants and constructors are

mapped into their uppercase equivalents). We denote this term transformation by J·K
T

, i.e., J·K
T

is a syntactic transformation which maps a (Prolog) term, written inside the brackets, into a

(Curry) data term. It is defined by a case distinction as follows:

JXK
T

= x (variable)

JnK
T

= n (number constant)

JcK
T

= C (atom constant)

J f (t1, . . . , tn)KT
= F Jt1KT

. . . Jt1KT
(constructed term)

Based on this term transformation, we define a mapping J·K
C

from logic into functional logic

programs where facts and rules are transformed into unconditional and conditional equations,

respectively (the symbol “&&” is an infix operator in Curry denoting the Boolean conjunction):

Jp(t1, . . . , tn)KC
= p Jt1KT

. . . JtnKT
(literal)

Jl1, . . . , lkKC
= Jl1KC

&& . . . && JlkKC
(goal)

Jl.K
C

= JlK
C

= True (fact)

Jl :- b.KC = JlKC | JbKC = True (rule)

Jclause1 . . . clausemK
C

= Jclause1KC
. . . JclausemK

C
(program)
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Example 3

Consider the following program to add two natural numbers in Peano representation, where o

represents zero and s represents the successor of a natural (Sterling and Shapiro 1994):

plus(o,Y,Y).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

The conservative transformation produces the following Curry program:

plus O y y = True

plus (S x) y (S z) | plus x y z = True

Note that the first rule would not be allowed in functional languages, like Haskell, since the left-

hand side is not linear due to the two occurrences of the pattern variable y. For compatibility

with logic programming, such multiple occurrences of variables in patterns are allowed in Curry,

where they are considered as syntactic sugar for explicit unification constraints. Thus, the first

rule is equivalent to

plus O y y’ | y =:= y’ = True

Apart from small steps to handle conditions and conjunctions, there is a strong correspondence

between the derivations steps in the logic programs and the functional logic programs obtained

by the conservative transformation. Therefore, the following result can be proved by induction

on the length of the resolution and narrowing derivations, respectively.

Theorem 1 (Correctness of the conservative transformation)

Let P be a logic program and G a goal. There is a resolution derivation G ⊢∗
σ
� w.r.t. P if and only

if there is a narrowing derivation JGKC

∗
 σ True w.r.t. JPKC .

4 Functional Transformation

The conservative transformation simply maps n-ary predicates into n-ary Boolean functions.

In order to exploit features from functional logic programming, one should mark at least one

argument as a result argument with the intended meaning that the operation maps values for the

remaining arguments into values for the result arguments. For instance, consider the predicate

plus defined in Example 3. Here, the third argument could be considered as a result argument

since plus maps values for the first two arguments into a value for the third argument. Hence,

the definition of plus can also be transformed into the following functional logic program:

plus O y = y

plus (S x) y | z =:= plus x y = S z

We call this the functional transformation and denote it by J·K
F

. At this point we do not re-

place the occurrence of z in the right-hand side by plus x y since this might lead to a different

semantics, as we will see later.

It is interesting to note that, without such a replacement, it is not really relevant which argu-

ments are considered as results. For instance, if the first two arguments of plus are marked as

result arguments, we obtain the following program by the functional transformation:

plus y = (O, y)

plus (S z) | (x,y) =:= plus z = (S x, y)

This specifies a non-deterministic operation which returns, for a given natural number n, all

splittings into two numbers such that their sum is equal to n:
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> plus (S (S O))

(S (S O), O)

(S O, S O)

(O, S (S O))

Later we will show how to prefer the transformation into deterministic operations, since they

will lead to a better operational behavior. For the moment we should keep in mind that the

selection of result arguments could be arbitrary. In order to fix it, we assume that, for each n-

ary predicate p, there is an assignment R(p/n) ⊆ {1, . . . ,n} which defines the result argument

positions, e.g., R(plus/3) = {3} or R(plus/3) = {1,2}. In practice, one can specify the result

argument positions for a predicate by a specific directive, e.g.,

:- function plus/3: 3.

or

:- function plus/3: [1,2].

If the set of result argument positions for an n-ary predicate is {n}, it can also be omitted in the

directive, as in

:- function plus/3.

Our tool, described below, respects such directives or tries to infer them automatically.

With these prerequisites in mind, we denote the functional transformation w.r.t. a result argu-

ment position mapping R by J·KR

F
. To define this transformation, we use the following notation to

split the arguments of a predicate call p(t1, . . . , tn) into the result and the remaining arguments. If

R(p/n)= {π1, . . . ,πu} and {π
′
1, . . . ,π

′
v}= {1, . . . ,n}\R(p/n) (where πi < πi+1 and π

′
j < π

′
j+1),

then the result arguments are ri = tπi
, for i ∈ {1, . . . ,u}, and the remaining arguments are a j = t

π
′
j
,

for j ∈ {1, . . . ,v}. Then J·KR

F
is defined as follows:

Jp(t1, . . . , tn)KR

F
= (Jr1KT

, . . . ,JruKT
) =:= p Ja1KT

. . . JavKT
(literal, u > 0)

Jp(t1, . . . , tn)KR

F
= p Jt1KT

. . . JtnKT
(literal, u = 0)

Jl1, . . . , lkKR

F
= Jl1KR

F
&& . . . && JlkKR

F
(goal)

Jp(t1, . . . , tn).KR

F = p Ja1KT . . . JavKT = (Jr1KT , . . . ,JruKT ) (fact, u > 0)

Jp(t1, . . . , tn).KR

F = p Jt1KT . . . JtnKT = True (fact, u = 0)

Jp(t1, . . . , tn) :- b.KR
F

= p Ja1KT
. . . JavKT

| JbKR

F
= (Jr1KT

, . . . ,JruKT
) (rule, u > 0)

Jp(t1, . . . , tn) :- b.KR
F

= p Jt1KT
. . . JtnKT

| JbKR

F
= True (rule, u = 0)

Jcls1 . . . clsmKR

F
= Jcls1KR

F
. . . JclsmKR

F
(program)

As already mentioned, the actual selection of result positions is not relevant so that we have the

following result, which can be proved similarly to Theorem 1:

Theorem 2 (Correctness of the functional transformation)

Let P be a logic program, R a result argument position mapping for all predicates in P, and G a

goal. There is a resolution derivation G ⊢∗
σ
� w.r.t. P if and only if there is a narrowing derivation

JGKR

F

∗
 σ True w.r.t. JPKR

F
.
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5 Demand Functional Transformation

Consider the result of the functional transformation of plus w.r.t. the result argument position

mapping R(plus/3) = {3}:

plus O y = y

plus (S x) y | z =:= plus x y = S z

Since the value of z is determined by the expression plus x y, we could be tempted to replace the

unification in the condition by a local binding for z:

plus O y = y

plus (S x) y = S z where z = plus x y

Since z is used only once, we could inline the definition of z and obtain the purely functional

definition

plus O y = y

plus (S x) y = S (plus x y)

Although this transformation looks quite natural, there is a potential problem with this transfor-

mation. In a strict language, where arguments are evaluated before jumping into the function’s

body (“call by value”), there is no difference between these versions of plus. However, there is

also no operational advantage of this transformation. An advantage could come from the non-

strict or demand-driven evaluation of functions, as used in Haskell or Curry and discussed by

Hughes (1990) and Huet and Lévy (1991). For instance, consider the predicate isPos which re-

turns True if the argument is non-zero

isPos O = False

isPos (S x) = True

and the expression isPos (plus n1 n2), where n1 is a big natural number. A strict language re-

quires n1 + 1 rewrite steps to evaluate this expression, whereas a non-strict language needs only

two steps w.r.t. the purely functional definition of plus.

The potential problem of this transformation comes from the fact that it does not require the

evaluation of subexpressions which do not contribute to the overall result. For instance, consider

the functions

dec (S x) = x const x y = x

and the expression e = const O (dec O). Following the mathematical principle of “replacing

equals by equals”, e is equivalent to O, but a strict language does not compute this value.

Hence, it is a matter of taste whether we want to stick to purely equational reasoning, i.e.,

ignore the evaluation of subexpressions that do not contribute to the result, or strictly evalu-

ate all subexpressions independent of their demand.4 Since non-strict evaluation yields reduced

search spaces (as discussed below), we accept this slight change in the semantics and define

the demand functional transformation J·KR

D
as follows. Its definition is identical to J·KR

F
except

for the translation of a literal in a goal. Instead of a unification, J·KR

D
generates a local binding

let/where (Jr1KT
, . . . ,JruKT

) = p Ja1KT
. . . JavKT

if the result arguments r1, . . . ,ru are vari-

ables which do not occur in the rule’s left-hand side or in result arguments of other goal literals.

The latter restriction avoids inconsistent bindings for a variable. Since such bindings are evalu-

ated on demand in non-strict languages, this change has the effect that the transformed programs

might require fewer steps to compute a result.

4 Note that every reasonable programming language requires the non-strict evaluation of conditional (if-then-else) ex-
pressions so that there is no completely strict language.
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In order to produce more compact and readable program, local bindings of single variables,

i.e., x = e, are inlined if possible, i.e., if there is only a single occurrence of x in the rule, this

occurrence is replaced by e and the binding is deleted. This kind of inlining is the inverse of

the normalisation of functional programs presented by Launchbury (1993) to specify a natural

semantics for lazy evaluation.

Example 4

Consider the usual definition of naive reverse:

:- function app/3.

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

:- function rev/2.

rev([],[]).

rev([X|Xs],Zs) :- rev(Xs,Ys), app(Ys,[X],Zs).

The demand functional transformation translates this program into the Curry program

app [] ys = ys

app (x:xs) ys = x : app xs ys

rev [] = []

rev (x:xs) = app (rev xs) [x]

Thanks to the functional logic features of Curry, one can use the transformed program similarly

to the logic program. For instance, the equation app xs ys =:= [1,2,3] computes all splittings

of the list [1,2,3], and rev ps =:= ps computes palindromes ps.

An advantage of this transformation becomes apparent for nested applications of recursive pred-

icates. For instance, consider the concatenation of three lists, as shown in Example 1:

:- function app3/4.

app3(Xs,Ys,Zs,Ts) :- app(Xs,Ys,Rs), app(Rs,Zs,Ts).

The demand functional transformation maps it into

app3 xs ys zs = app (app xs ys) zs

The Prolog goal app3(Xs,Ys,Zs,[]) has an infinite search space, i.e., it does not terminate after

producing the solution Xs=[],Ys=[],Zs=[]. In contrast, Curry has a finite search space since

the demand-driven evaluation avoids the superfluous generation of longer lists. This shows the

advantage of transforming logic programs into functional logic programs: the operational be-

havior is improved, i.e., the size of the search space could be reduced due to the demand-driven

exploration of the search space, whereas the positive features, like backward computations, are

kept.

A slight disadvantage of the demand functional transformation is the fact that it requires the

specification of the result argument position mapping R, e.g., by explicit function directives. In

the next section, we show how it can be automatically inferred.

6 Inferring Result Argument Positions

As already discussed above, the selection of result arguments is not relevant for the applicability

of our transformation. For instance, the predicate

p(a,c).

p(b,c).
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could be transformed into the function

p A = C

p B = C

as well as into the non-deterministic operation

p C = A

p C = B

or just kept as a predicate:

p A C = True

p B C = True

In general, it is difficult to say what is the best representation of a predicate as a function. One

could argue that deterministic operations are preferable, but there are also examples where non-

deterministic operations lead to reduced search spaces. For instance, the complexity of the clas-

sical permutation sort can be improved by defining the computation of permutations as a non-

deterministic operation (González-Moreno et al. 1999; Hanus 2013).

A possible criterion can be derived from the theory of term rewriting (Huet and Lévy 1991)

and functional logic programming (Antoy et al. 2000). If the function definitions are inductively

sequential (Antoy 1992), i.e., the left-hand sides of the rules of each function contain arguments

with a unique case distinction, the demand-driven evaluation (needed narrowing) is optimal in

the number of computed solutions and the length of successful derivations (Antoy et al. 2000).

In the following, we present a definition of this criterion adapted to logic programs.

In many logic programs, there is a single argument which allows a unique case distinction

between all clauses, e.g., the first argument in the predicates app, rev, or plus shown above.

However, there are also predicates requiring more than one argument for a unique selection of a

matching rule. For instance, consider Ackermann’s function as a logic program, as presented by

Sterling and Shapiro (1994):

ackermann(o,N,s(N)).

ackermann(s(M),o,V) :- ackermann(M,s(o),V).

ackermann(s(M),s(N),V) :- ackermann(s(M),N,V1), ackermann(M,V1,V).

The first argument distinguishes between the cases of an atom o and a structure s(M), but, for the

latter case, two rules might be applicable. Hence, the second argument is necessary to distinguish

between these rules. Therefore, we call {1,2} a set of inductively sequential argument positions

for this predicate.

A precise definition of inductively sequential argument positions is based on the notion of

definitional trees (Antoy 1992). The following definition is adapted to our needs.

Definition 1 (Inductively sequential arguments)

A partial definitional tree T with a literal l is either a clause node of the form clause(l :- b)

with some goal b, or a branch node of the form branch(l, p,T1, . . . ,Tk), where p is a position

of a variable x in l, f1, . . . , fk are pairwise different functors, σi = {x 7→ fi(x1, . . . ,xai
)} where

x1, . . . ,xai
are new pairwise distinct variables, and, for all i in {1, . . . ,k}, the child Ti is a partial

definitional tree with literal σi(l).

A definitional tree of an n-ary predicate p defined by a set of clauses cs is a partial definitional

tree T with literal p(x1, . . . ,xn), where x1, . . . ,xn are pairwise distinct variables, such that a vari-

ant of each clause of cs is represented in exactly one clause node of T . In this case, p/n is called

inductively sequential.
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A set D ⊆ {1, . . . ,n} of argument positions of p/n is called inductively sequential if there is a

definitional tree T of p/n such that all positions occurring in branch nodes of T with more than

one child are equal or below a position in D.

The predicate ackermann shown above has the inductively sequential argument sets {1,2,3}

and {1,2}. For the predicates app and rev (see Example 4), {1} is the minimal set of inductively

sequential argument positions.

Our inference of result argument positions for a n-ary predicate p is based on the following

heuristic:

1. Find a minimal set D of inductively sequential argument positions of p/n.

2. If D exists and the set R = {1, . . . ,n} \D is not empty, select the maximum value m of R

as the result argument, i.e., R(p/n) = {m}, otherwise R(p/n) =∅.

Thus, a predicate is transformed into a function only if there are some inductively sequential

arguments and some other arguments. In this case, we select the maximum argument position,

since this is usually the intended one in practical programs. Moreover, a single result argument

allows a better nesting of function calls which leads to a better demand-driven evaluation.

Minimal sets of inductively sequential argument positions can be computed by analyzing the

heads of all clauses. There might be different inductively sequential argument sets for a given set

of clauses. For instance, the predicate q defined by the clauses

q(a,c).

q(b,d).

has two minimal sets of inductively sequential arguments: {1} and {2}. The actual choice of ar-

guments is somehow arbitrary. If predicates are inductively sequential, the results of Antoy et al.

(2000) ensure that the programs obtained by our transformation with the heuristic described

above can be evaluated in an optimal manner.

A special case of our heuristic to infer result argument positions are predicates defined by a

single rule. Since such a definition is clearly non-overlapping and inductively sequential, all such

predicates might be considered as functions. However, this might lead to unintended function

definitions, e.g., if a predicate is defined by a single clause containing a conjunction of literals.

Therefore, we use the following heuristic. A predicate defined by a single rule is transformed

into a function only if the last argument of the head is not a variable or a variable which occurs in

a result argument position in the rule’s body. The first case is reasonable to transform predicates

which define constants, as

two(s(s(o))).

into constant definitions, as

two = S (S O)

An example for the second case is the automatic transformation of app3 into a function, as shown

in Sect. 5.

Although these heuristics yield the expected transformations in most practical cases (they have

been developed during the experimentation with our tool, see below), one can always override

them using an explicit function directive in the logic program.
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7 Extensions

Our general objective is the transformation of pure logic programs into functional logic ones.

Prolog programs often use many impure features which cannot be directly translated into a

language like Curry. This is intended, because functional logic languages are an approach to

demonstrate how to avoid impure features and side effects by concepts from functional pro-

gramming. For instance, I/O operations, offered in Prolog as predicates with side effects, can

be represented in functional (logic) languages by monadic operations which structure effectful

computations (Wadler 1997). Encapsulated search (findall) or cuts in Prolog, whose behavior

depends on the search strategy and ordering of rules, can be represented in functional logic pro-

gramming in a strategy-independent manner as set functions (Antoy and Hanus 2009) or default

rules (Antoy and Hanus 2017). Thus, a complete transformation of Prolog programs into Curry

programs might have to distinguish between “green” and “red” cuts, which is not computable.

Nevertheless, it is possible to transform some Prolog features which we discuss in the following.

A useful feature of Prolog is the built-in arithmetic which avoids to compute with numbers in

Peano arithmetic. For instance, consider the definition of the predicate length to relate a list with

its number of elements:

length([],0).

length([X|Xs],L) :- length(Xs,L1), L is L1+1.

Since the first argument position is inductively sequential, it is reasonable to transform length

into a function with R(length/2) = {2}. Furthermore, the predicate “is” evaluates its sec-

ond argument to a number and returns this result by unifying it with its first argument. Thus,

R(is/2) = {1}. Using this result argument position mapping, the demand functional transfor-

mation yields the program

length [] = 0

length (x:xs) = length xs + 1

where the occurrence of is is omitted since it behaves as the identity function.

Arbitrary Prolog cuts cannot be translated (or only into awkward code). However, Prolog cuts

can be avoided by using Prolog’s if-then-else construct. If the condition is a simple predicate, like

a deterministic test or an arithmetic comparison, it can be translated into a functional if-then-else

construct. For instance, consider the following definition of the factorial function as a Prolog

predicate:

fac(N,F) :- (N=0 → F=1 ; N1 is N - 1, fac(N1, F1), F is F1 * N).

Translating this into a function (note that variable F is used in a result argument position in the

body) with the arithmetic operations transformed as discussed above, we obtain the functional

definition

fac n = if n == 0 then 1 else fac (n - 1) * n

With these extensions, many other arithmetic functions are automatically transformed into their

typical functional definition.
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8 Implementation

In order to evaluate our approach, we have implemented the transformation described in this

paper as a tool pl2curry in Curry so that it can easily be installed by Curry’s package manager.5

pl2curry has various options to influence the transformation strategy (e.g., conservative, without

let bindings, without result position inference, etc). In the default mode, the demand functional

transformation is used where result arguments are inferred if they are not explicitly specified

by function directives. The tool assumes that the logic program is written in standard Prolog

syntax. It reads the Prolog file and transforms it into an abstract representation,6 from which a

Curry program is generated that can be directly loaded into a Curry system.

A delicate practical issue of the transformation is the typing of the transformed programs.

Curry is a strongly typed language with parametric types and type classes (Wadler and Blott

1989). Since logic programs and standard Prolog do not contain type information, our tool defines

a single type Term containing all atoms and functors occurring in the logic program. Although this

works fine for smaller programs, it could be improved by using type information. For instance,

CIAO-Prolog (Hermenegildo et al. 2012) supports the definition of regular and Hindley-Milner

types, which could be translated into algebraic data types, or Barbosa et al. (2021) describe a

tool to infer similar types from logic programs. Although there is some interest towards adding

types to Prolog programs (Schrijvers et al. 2008), there is no general agreement about its syn-

tax and structure. Therefore, the translation of more refined types is omitted from the current

implementation but it could be added in the future.

9 Evaluation

The main motivation for this work is to show that functional logic programs have concrete op-

erational advantages compared to pure logic programs. This has been demonstrated by defining

transformations for logic programs into functional logic programs. The simplest transformations

(conservative and functional) keeps the structure of computations, whereas the demand func-

tional transformation has the potential advantage to reduce the computation space by evaluating

fewer subexpressions.

The practical comparison of original and transformed programs is not straightforward since

it depends on the underlying implementation to execute these programs. Compilers for func-

tional languages might contain good optimizations since they must not be prepared for non-

deterministic computations (although Prolog systems based on Warren’s Abstract Machine

(Aı̈t-Kaci 1991; Warren 1983) implement specific indexing techniques to support determinis-

tic branching when it is possible). This can be demonstrated by some typical examples: the

naive reverse of list structures (see Example 4), the highly recursive tak function used in var-

ious benchmarks (Partain 1993) for logic and functional languages, and the Ackermann func-

tion (see Sect. 6). Since these logic programs are automatically transformed into purely func-

tional programs using our demand functional transformation, we can execute the original logic

programs with Prolog systems and the transformed programs with Haskell (GHC) and Curry

(KiCS2 (Braßel et al. 2011)) systems (since the functional kernel of Curry use the same syn-

tax as Haskell). KiCS2 compiles Curry programs to Haskell programs by representing non-

5 https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/prolog2curry.html
6 https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/prolog.html

https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/prolog2curry.html
https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/prolog.html
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deterministic computations as search trees, i.e., the generated Haskell functions return a tree

of all result values. Table 1 contains the average execution times in seconds7 of reversing a list

with 4096 elements, the function tak applied to arguments (27,16,8), implemented with built-in

integers (takInt) and Peano numbers (takPeano), and the Ackermann function applied to the

Peano representation of the numbers (3,9).

Table 1. Execution times of Prolog, Haskell, and Curry programs

Language: Prolog Prolog Haskell Curry

System: SWI 8.0.2 SICStus 4.7.0 GHC 8.4.4 KiCS2 3.0.0

rev_4096 0.57 0.27 0.09 0.13

takInt_27_16_8 0.85 0.29 0.07 0.54

takPeano_27_16_8 5.81 0.79 0.17 0.47

ackermann_3_9 231.10 13.27 0.09 0.07

Note that the demand strategy has no real advantage in these examples. The values of all

subexpressions are required so that the same resolution/rewrite steps, possibly in a different or-

der, are performed in Prolog and Haskell/Curry. Therefore, the results show the dependency on

the actual language implementations. Although the table indicates the superiority of the func-

tional programs (in particular, GHC seems to implement recursion quite efficiently), one might

also obtain better results for a logic programming system by sophisticated implementation tech-

niques, e.g., by specific compilation techniques based on mode information, as done in Mer-

cury (Somogyi et al. 1996), or by statically analyzing programs to optimize the generated code

(Van Roy and Despain 1990). For instance, the large execution times of the Prolog version of the

Ackermann function are probably due to the fact that the function is defined by pattern matching

on two arguments whereas typical Prolog systems implement indexing on one argument only.

Nevertheless, the results for the Curry system KiCS2 show a clear improvement without loosing

the flexibility of logic programming, since the same Curry program can compute result values

as well as search for required argument values. Note that all systems of these benchmarks use

unbounded integers, whereas KiCS2 has a more complex representation of integers in order to

support searching demanded values for free integer variables (Braßel et al. 2008).

Because it is difficult to draw definite conclusions from the absolute execution times, we want

to emphasize the qualitative improvement of our transformation. The demand functional trans-

formation might reduce the number of evaluation steps and leads to a demand-driven exploration

of the search space. In the best case, it can reduce infinite search spaces to finite ones. We already

discussed such examples before. For instance, our transformation automatically maps the logic

program of Example 1 into the functional logic program of Example 2 so that the infinite search

space of the predicate dup applied to an empty list is cut down to a small finite search space for

the function dup. As a similar example, the goal plus(X,Y,R), plus(R,Z,o) (w.r.t. Example 3)

has an infinite search space, whereas the transformed expression plus (plus x y) z =:= O has a

finite search space w.r.t. the demand functional transformation.

7 The benchmarks, which are contained in the Curry package prolog2curry, were executed on a Linux machine
running Debian 10 with an Intel Core i7-7700K (4.2Ghz) processor. The time is the total run time of executing a
binary generated with the various Prolog/Haskell/Curry systems.
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These examples show that our transformation has a considerable advantage when goals con-

taining several recursive predicates are used to search for solutions. Such goals naturally occur

when complex data structures, like XML structures, are explored. The good behavior of func-

tional logic programs on such applications is exploited by Hanus (2011) to implement a domain-

specific language for XML processing as a library in Curry. Without the demand-driven evalua-

tion strategy, many of the library functions would not terminate. Actually, the library has similar

features as the logic-based language Xcerpt (Bry and Schaffert 2002) which uses a specialized

unification procedure to ensure finite matching and unification w.r.t XML terms.

10 Conclusions

We presented methods to transform logic programs into functional logic programs. By specifying

one or more arguments as results to transform predicates into functions and evaluating them with

a demand-driven strategy, we showed with various examples that this transformation is able

to reduce the computation space. Although this effect depends on the concrete examples, our

transformation never introduces new or superfluous steps in successful computations. We also

discussed a heuristic to infer result arguments for predicates. It is based on detecting inductively

sequential argument positions so that the programs transformed by our method benefit from

strong completeness and optimality results of functional logic programming (Antoy et al. 2000;

Antoy 1997).

In principle, it is not necessary to switch to another programming language since demand-

driven functional computations can be implemented in Prolog systems supporting coroutining.

However, one has to be careful about the precise evaluation strategy implemented in this way. For

instance, Naish (1991) implements lazy evaluation in Prolog by representing closures as terms

and use when declarations to delay insufficiently instantiated function calls. This might lead to

floundering so that completeness is lost when predicates are transformed into functions. More-

over, delaying recursively defined predicates could result in infinite search spaces which can be

avoided by complete strategies (Hanus 1995). Casas et al. (2006) use coroutining to implement

lazy evaluation and offer a notation for functions which are mapped into Prolog predicates. Al-

though this syntactic transformation might yield the same values and search space as functional

logic languages, there are no formal results justifying this transformation. On the other hand,

there are various approaches to implement lazy narrowing strategies in Prolog (Antoy and Hanus

2000; Jiménez-Martin et al. 1992; Loogen et al. 1993; López-Fraguas and Sánchez-Hernández

1999). In this sense, our results provide a systematic method to improve computations in logic

programs by mapping predicates into functions and applying sound and complete evaluation

strategies to the transformed programs. In particular, if predicates are defined with inductively

sequential arguments (as all examples in this paper), the needed narrowing strategy is optimal,

i.e., the set of computed solutions is minimal and successful derivations have the shortest possible

length (Antoy et al. 2000). This does not restrict the flexibility of logic programming but might

reduce the computation space. Although our implemented tool maps logic programs into Curry

programs, one could also map them back into Prolog programs by compiling the demand-driven

evaluation strategy into appropriate features of Prolog (e.g., coroutining).

There is a long history to improve the execution of logic programs by modified control rules

(Bruynooghe et al. 1989; Narain 1986). However, these proposals usually consider the opera-

tional level so that a declarative justification (soundness and completeness) is missing. In this
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sense, our work provides a justification for specific control rules used in logic programming,

since it is based on soundness and completeness results for functional logic programs.

For future work it is interesting to use a refined representation of types (as discussed in Sect. 8)

or to consider other methods to infer result positions, e.g., by a program analysis taking into

account the data flow between arguments of literals in goals.
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Appendix A Proofs

Theorem 1 (Correctness of the conservative transformation)

Let P be a logic program and G a goal. There is a resolution derivation G ⊢∗
σ
� w.r.t. P if and only

if there is a narrowing derivation JGK
C

∗
 σ True w.r.t. JPK

C
.

Proof

We generalize the theorem and prove it also for empty goals G = � which are transformed as

J�K
C

= True

The operations for Boolean conjunction and conditional expressions are defined in Curry by

True && b = b True &> x = x

False && b = False

First, we prove the existence of a narrowing derivation JGK
C

∗
 σ True w.r.t. JPK

C
for each reso-

lution derivation G ⊢∗
σ
� w.r.t. P by induction on the length n of the given resolution derivation.

Base case (n = 0): Since the derivation has zero length, G = � and σ = {}. Then JGK
C
= True

and True
∗
 {} True so that the claim holds in this case.

Inductive case (n > 0): Consider a resolution derivation G ⊢∗
σ
� w.r.t. P consisting of n > 0

resolution steps. Hence, this derivation has the structure

G ⊢
σ
′ G′ ⊢∗

σ
′′ �

where G = l1, . . . , lk and there exists a variant “l :- b.” of a program rule (the case for a fact

“l.” can be proved in a similar way) such that σ
′ is an mgu of l and l1 and G′ = σ

′(b, l2 . . . , lk).

Since G′ ⊢∗
σ
′′ � is a derivation with n− 1 resolution steps, there are derivations

σ
′(b) ⊢∗

σ1
�

σ1(σ
′(l2)) ⊢∗

σ2
�

...

σk−1(· · ·(σ1(σ
′(lk))) · · · ) ⊢∗

σk
�

where each derivation has less than n steps and σ
′′ =σk ◦· · ·◦σ1. Hence, by induction hypothesis,

there are narrowing derivations

Jσ
′(b)K

C

∗
 σ1

True

Jσ1(σ
′(l2))KC

∗
 σ2

True

...

Jσk−1(· · · (σ1(σ
′(lk))) · · · )KC

∗
 σk

True

w.r.t. JPK
C

. By definition of J·K
C

,

JGKC = Jl1KC && . . . && JlkKC

and

JlK
C

| JbK
C

= True

is a variant of a program rule of JPK
C

. Since the conservative transformation changes only the

syntax of literals but keep their structure and variables, σ
′ is an mgu of Jl1KC

and JlK
C

so that

JGK
C
 

σ
′ (σ ′(JbK

C
&> True) && Jl2KC

&& . . . && JlkKC
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is a narrowing step. Due to the existence of the narrowing derivations shown above and the

definition of &> and &&, we can combine all this into a narrowing derivation

JGK
C

∗
 

σ
′′◦σ

′ True

Thus, the claim holds.

To prove the opposite direction, we assume the existence of a narrowing derivation JGK
C

∗
 σ

True w.r.t. JPK
C

and have to show the existence of a resolution derivation G ⊢∗
σ
� w.r.t. P. We

prove this claim by induction on the length n of the given narrowing derivation.

Base case (n = 0): Since the derivation JGKC

∗
 σ True has zero length, JGKC = True and

σ = {} so that G = �. Hence, the claim vacuously holds.

Inductive case (n > 0): Assume there is a narrowing derivation JGKC

∗
 σ True w.r.t. JPKC

consisting of n > 0 narrowing steps. Hence, this derivation has the structure

JGK
C
 

σ
′ G′ ∗
 

σ
′′ True

where the derivation G′ ∗
 

σ
′′ True consists n−1 narrowing steps. Therefore JGK

C
6= True (since

there is no rule in JPK
C

with left-hand side True) so that G 6= �. Thus, G = l1, . . . , lk (k > 0) and

JGK
C

= Jl1KC
&& . . . && JlkKC

Furthermore, there is a narrowing step for Jl1KC
w.r.t. JPK

C
. By definition of JPK

C
, the logic pro-

gram contains a variant of a fact “l.” or a rule “l :- b.” so that b′ = True or b′ = JbKC &> True,

respectively, such that σ
′ is an mgu of JlK

C
and Jl1KC

and

G′ = σ
′(b′ && Jl2KC

&& . . . && JlkKC
) = σ

′(b′) &&
q

σ
′(l2)

y
C

&& . . . &&
q

σ
′(lk)

y
C

By definition of && and the fact that G′ ∗
 

σ
′′ True consists n− 1 narrowing steps, there are nar-

rowing derivations

Jσ
′(b′)K

C

∗
 σ1

True

Jσ1(σ
′(l2))KC

∗
 σ2

True

...

Jσk−1(· · · (σ1(σ
′(lk))) · · · )KC

∗
 σk

True

where each derivation has less than n steps and σ
′′ =σk ◦· · ·◦σ1. Hence, by induction hypothesis,

there are resolution derivations

σ
′(b′′) ⊢∗

σ1
�

σ1(σ
′(l2)) ⊢∗

σ2
�

...

σk−1(· · · (σ1(σ
′(lk))) · · · ) ⊢∗

σk
�

where b′′ = � if b′ = True or b′′ = b if b′ = JbKC &> True. Hence,

σ
′(b′′, l2, . . . , lk) ⊢∗

σk◦···◦σ1
�

is a resolution derivation. Furthermore, G ⊢
σ
′ σ

′(b′′, l2, . . . , lk) is a resolution step w.r.t. P since

σ
′ is also an mgu of l1 and l. Altogether, the resolution derivation

G ⊢∗
σ
′′◦σ

′ �

exists, which proves the claim.
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Theorem 2 (Correctness of the functional transformation)

Let P be a logic program, R a result argument position mapping for all predicates in P, and G a

goal. There is a resolution derivation G ⊢∗
σ
� w.r.t. P if and only if there is a narrowing derivation

JGKR

F

∗
 σ True w.r.t. JPKR

F
.

Proof

Note that the difference between the conservative transformation J·K
C

and the functional trans-

formation J·KR

F is the transformation of literals. The conservative transformation maps a literal

into a structurally equivalent call of a Boolean function, whereas the functional transformation

maps literals with a non-empty set of result argument positions into a unification between the

call with some arguments and the tuple of the result arguments. Since this tuple does not contain

any evaluable function, the unification is equivalent to replacing the function by its result and

unifying this with the given tuple. Hence, one can prove this theorem similarly to Theorem 1.
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