
Lazy Call-By-Value Evaluation ∗

Bernd Braßel Sebastian Fischer
Michael Hanus Frank Huch

Institute of Computer Science, CAU Kiel, Germany.
{bbr,sebf,mh,fhu}@informatik.uni-kiel.de

Germán Vidal
DSIC, Technical University of Valencia, Spain

gvidal@dsic.upv.es

Abstract
Designing debugging tools for lazy functional programming lan-
guages is a complex task which is often solved by expensive trac-
ing of lazy computations. We present a new approach in which the
information collected as a trace is reduced considerably (kilobytes
instead of megabytes). The idea is to collect a kind of step infor-
mation for a call-by-value interpreter, which can then efficiently re-
construct the computation for debugging/viewing tools, like declar-
ative debugging. We show the correctness of the approach, discuss
a proof-of-concept implementation with a declarative debugger as
back end and present some benchmarks comparing our new ap-
proach with the Haskell debugger Hat.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.5 [Software
Engineering]: Testing and Debugging

General Terms Languages, Theory

Keywords Laziness, debugging techniques.

1. Introduction
The demand-driven nature of lazy evaluation is one of the most ap-
pealing features of modern functional languages like Haskell (Pey-
ton Jones 2003). Unfortunately, it is also one of the most complex
features one should face in order to design a debugging tool for
these languages. In particular, printing the step-by-step trace of a
lazy computation is generally useless from a programmer’s point of
view, mainly because arguments of function calls are often shown
unevaluated and because the order of evaluation is counterintuitive.

There are several approaches that improve this situation by hid-
ing the details of lazy evaluation to the programmer. The main such
approaches are: Freja (Nilsson and Sparud 1997) and Buddha (Pope
and Naish 2003), which are based on the declarative debugging
technique from logic programming (Shapiro 1983), Hat (Sparud
and Runciman 1997b), which enables the exploration of a compu-
tation backwards starting at the program output or error message,

∗ This work has been partially supported by the EU (FEDER) and the
Spanish MEC under grant TIN2005-09207-C03-02, and by the DFG under
grant Ha 2457/1-2.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’07 October 1–3, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00

and Hood (Gill 2000), which allows the programmer to observe the
data structures at given program points.

Many of these approaches are based on recording a tree or graph
structure representing the whole computation, like the Evaluation
Dependence Tree (EDT) for declarative debugging or the redex
trail in Hat. For finding bugs, this recorded structure is represented
in a user-friendly (usually innermost-style) way to the programmer
in a separate viewing phase. Unfortunately, this structure dramati-
cally grows for larger computations and can contain several mega-,
even gigabytes of information.

In this paper, we introduce an alternative approach to debugging
lazy functional programs. Instead of storing a complete redex trail
or EDT, we memorize only the information necessary to guide a
call-by-value interpreter to produce the same results. To avoid un-
necessary reductions, similarly to the lazy semantics, the call-by-
value interpreter is controlled by a list of step numbers determining
which redexes should not be evaluated. If every redex is evaluated
even by a lazy strategy, the list of step numbers reduces to a sin-
gle number – the total number of reduction steps in the complete
computation – which demonstrates the compactness of our repre-
sentation. Furthermore, we are able to prove the correctness of our
approach, in contrast to the existing approaches in which the com-
pression of stored information is only motivated as an implementa-
tion issue. We illustrate our approach with a small example.

EXAMPLE 1.1. Consider the following simple (but erroneous)
Haskell program (where the concrete code for fib, which com-
putes the corresponding Fibonacci number, is omitted):

data Nat = Zero | S Nat

take Zero _ = []
take (S x) (y:ys) = y : take x ys

length [] = Zero
length (_:xs) = length xs

fibs x = fib x : fibs (S x)

main = length (take (S (S Zero)) (fibs Zero))

The lazy evaluation of main does not evaluate the individual list el-
ements. This behavior is represented by the step list [2,1,0,14].
This list is interpreted by a call-by-value interpreter to perform (in
innermost order) two steps, then discard the next innermost redex
(i.e., replace it by some value representing an unevaluated thunk),
perform one step, discard the next redex and the following one, and
finally perform 14 reduction steps. The three discarded redexes cor-
respond to the partial evaluation of the expression (fibs Zero)
to (_:_:_) (where _ denotes a discarded redex).

This example demonstrates the compactness of our representation
that usually only requires a fairly limited amount of memory (kilo-
bytes instead of megabytes). The step list is used in the subsequent
tracing/debugging session to control the call-by-value interpreter

Lam Γ : λy.e ⇓ε Γ : λy.e Con Γ : C xn ⇓ε Γ : C xn Var
Γ : e ⇓E ∆ : z

Γ[x 7→ e] : x ⇓E ∆[x 7→ z] : z

App
Γ : x1 ⇓E1

∆ : λy.e ∆ : el[x2/y] ⇓E2
Θ : z

Γ : x1 @r x2 ⇓E1·r 7→[|el|]·E2
Θ : z

where el = l(e)

Let
Γ[y 7→ e1[y/x]] : el

2[y/x] ⇓E ∆ : z

Γ : letr x = e1 in e2 ⇓r 7→[|el
2
|]·E ∆ : z

where y is a fresh variable
and el

2 = l(e2)

Case
Γ : x ⇓E1

∆ : Ci xki
∆ : ei

l[xki
/yki

] ⇓E2
Θ : z

Γ : caser x of {Cn ykn 7→ en} ⇓E1·r 7→[|ei
l|]·E2

Θ : z
where ei

l = l(ei)

Figure 2. Instrumented lazy semantics

x ∈ Var
z ∈ Value ::= λx.e | C xn

e ∈ Exp ::= λx.e
| C xn

| x1 @ x2

| x
| let x = e1 in e2

| case x of {Cn xkn 7→ en}

Figure 1. Syntax of normalized expressions

that shows the original evaluation in a more comprehensible order.
In a nutshell, we trade time for space in our approach.

This paper is organized as follows. The next section introduces
an instrumented version of Launchbury’s natural semantics for lazy
evaluation so that it produces a simple trace of the computation.
Then, Section 3 presents a lazy call-by-value semantics that is
driven by (a compressed form) of the trace produced by the instru-
mented lazy semantics. A prototype implementation of a debugging
tool for Haskell that follows the ideas presented in this paper is de-
scribed in Section 4. Section 5 discusses some related work before
we conclude in Section 6. The proofs of some technical results are
omitted but can be found in a technical report (Braßel et al. 2007).

2. Instrumented Lazy Semantics
In this section, we consider the natural semantics of Launchbury
(1993) for lazy evaluation. In this semantics, laziness is modeled
in two steps. First, the input expression is normalized such that
all arguments of applications and case expressions are variables.
This can easily be achieved by introducing additional let bindings.
Then, a semantics for normalized expressions is given, where one
can easily define the semantics of sharing, i.e., laziness.

We do not go into details of normalization and directly assume
normalized lambda expressions extended with (recursive) lets and
constructors, as shown in Figure 1, for the syntax of our expres-
sions. Here and in the following the notation on is used to denote
a sequence of objects of the form o1, . . . , on. In addition to the
normalization of Launchbury (1993), we assume that the first argu-
ment of an application is a variable and we restrict to lets which
define only one variable. With these restrictions, it will be easier to
relate the lazy and the call-by-value evaluation order. The first re-
quirement can easily be achieved by introducing additional lets for
the first argument of @. The second can be obtained by construct-
ing a tuple containing all mutually recursive definitions within a let
and selecting the corresponding arguments, cf. (Braßel et al. 2007).

In the examples, we use lets with multiple bindings. Since these
examples do not contain mutually recursive definitions, these lets
can simply be interpreted as syntactic sugar for nested lets.

The lazy semantics is shown in Figure 2 (ignore the indices
labeling the arrows and the superscripts l, r for the moment). Our
rules obey the following naming conventions:

Γ, ∆, Θ, Ω ∈ Heap = Var → Exp z ∈ Value

A heap is a partial mapping from variables to expressions (the
empty heap is denoted by []). The value associated to variable x in
heap Γ is denoted by Γ[x]. Γ[x 7→ e] denotes a heap with Γ[x] = e,
i.e., we use this notation either as a condition on a heap Γ or as a
modification of Γ. In the examples, we will also use the notation
Γ \ x for a heap with Γ \ x[y] = Γ[y] if y 6= x and Γ[x] undefined.

We use judgments of the form “Γ : e ⇓ ∆ : z” which
are interpreted as “the expression e in the context of the heap Γ
evaluates to the value z with the (possibly modified) heap ∆”,
according to the rules of Figure 2. We briefly explain the more
complex rules of our semantics:

(App) This rule allows us to evaluate function applications of the
form x1@x2.1 For this purpose, x1 is first evaluated to a lambda
abstraction so that a β-reduction can be performed.

(Var) This rule is used to look up the bindings of variables in the
heap. When the variable x is bound to an expression e, this e is
evaluated to a value z so that the binding x 7→ z replaces the
original binding x 7→ e in the heap. This is essential to achieve
the effect of sharing, since subsequent attempts to evaluate x
will use the value z instead of repeating the evaluation of e.
Note that e is evaluated in a heap which does not include the
binding x 7→ e. This is done to detect black holes, i.e., non-
terminating computations because the evaluation of x requires
again the evaluation of the same x.

(Let) In order to reduce a let expression, we add the bindings to the
heap and proceed with the evaluation of the let expression. Note
that we rename the variables introduced by the let construct
with fresh names in order to avoid variable name clashes.

(Case) This rule is used to evaluate a case expression. For this pur-
pose, the case argument should first be reduced to a constructor
call. Then, the evaluation continues by selecting the matching
branch of the case expression and by applying the correspond-
ing matching substitution.

The proof of a judgment is a proof tree using the rules of Figure 2.

1 The reason to write the application symbol “@” explicitly will become
apparent later when we present the instrumentation of the semantics.

Labeling of expressions (function l):

l(λx.e) = λx.e
l(C xn) = C xn

l(x) = x
l(x1 @ x2) = x1 @r x2

l(let x = e1 in e2) = letr x = l(e1) in e2

l(case x of {Cn ykn 7→ en}) = caser x of {Cn ykn 7→ en}

where r is always a fresh reference

Extraction of references (function [| |]):

[|λx.e|] = ε
[|C xn|] = ε

[|x|] = ε
[|x1 @r x2|] = r

[|letr x = e1 in e2|] = [|e1|] · r
[|caser x of {Cn ykn 7→ en}|] = r

Figure 3. Labeling and extraction of references

2.1 Collecting Events

The basic idea of collecting events representing a call-by-value
reduction is to keep track of a trace of the evaluated redexes in the
correct left-to-right innermost order by means of an instrumented
version of the lazy semantics.

Here, the evaluation of an expression e starts with an empty
heap and the labeled expression l(e) where the labeling function
l is shown in Figure 3. The labeling adds a reference from some
domain Ref with ⊥ ∈ Ref to every reducible symbol of a given
expression – i.e., applications, lets and cases. References need to be
identifiable and the distinguished reference ⊥ is never considered
fresh. In the examples we use the natural numbers augmented with
⊥. However, we do not need any order or arithmetic operations
on references. As shown in Figure 3, we only label the topmost
evaluable symbol in every expression. Thus, nothing is labeled in
a value or a variable. Also case branches are not labeled until they
are demanded by the computation.

During evaluation, the instrumented semantics will dynamically
generate new references for each newly introduced expression.
These references are then used to extract the history of the evalua-
tion in form of a sequence of events. These events will later be con-
sumed to compute a step list, cf. Example 1.1 and Definition 3.9.

We collect the references by means of an extraction function
[| |] defined in Figure 3. Since our aim is a call-by-value evaluation,
this function takes a labeled expression and extracts a sequence of
references following a left-to-right innermost order. As we will see,
collecting references in this order will enable us to replay the lazy
evaluation employing a sort of call-by-value strategy.

References are collected in the form of events. Each event maps
a reference r0 to a (possibly empty) sequence of references. Infor-
mally, we collect an event r0 7→ r1 · . . . · rn whenever the ex-
pression whose topmost reference is r0 reduces to the expression
labeled with the references r1 · . . . · rn. In the call-by-value eval-
uation, the reduction corresponding to r0 will be performed before
the reduction corresponding to r1, which will be performed before
the reduction corresponding to r2, and so on. Because of the na-
ture of events, there cannot be cycles nor more than one reference
mapping to the same reference.

DEFINITION 2.1 (Sequence, ∗, | |, ·, ε, {{ }}). Let M be a set. Then
M∗ is the set of finite sequences over M with the concatenation
operator “ · ”. I.e., M∗ := {a1 · . . . · an | {a1, . . . , an} ⊆ M}.
Furthermore, we denote the empty sequence by ε and use u, v, w

to denote sequences. For a given sequence v := a1 · . . . · an we
denote by {{v}} the set {a1, . . . , an} and by |v| the length n of v.

DEFINITION 2.2 (Set of Events, Sequence of Events).
Let M : 2Ref \{⊥}7→Ref ∗ where ⊥ ∈ Ref be a finite partial
mapping of references different from ⊥ to sequences of references.
We write r0 7→ r1 · . . . · rn ∈ M to denote that in M , r0 maps to
r1 · . . . · rn. Moreover, we define M̂ as the smallest set satisfying

M̂ (r) = (
[n

i=1
M̂(ri)) ∪ {rn}

for all r 7→ r1 · . . . · rn ∈ M . We say that M is a set of events iff
• there is no reference r with r ∈ M̂(r) and
• r1 7→ u · r · v, r2 7→ u′ · r · v′ ∈ M implies

r1 · u · v = r2 · u′ · v′ or (r = ⊥ ∧ u · v · u′ · v′ = ε).
Furthermore, we denote by ref (M) the set of all references in M ,
formally ref (M) := ∪r 7→r1...rn∈M {r, r1, . . . , rn} .

A sequence of reference mappings E is a sequence of events iff
{{E}} is a set of events.

To understand sets of events it is often useful to view them as
forests, i.e., sets of trees because their definition requires that there
is no undirected cycle in the structure of events. M̂(r) denotes all
references reachable from r by following the structure of events,
similar to a transitive closure.

Note that not every reference occurring in a set of events E is
mapped to a sequence. Informally, events are generated only for
those references which label expressions that were reduced during
the lazy evaluation. The special reference ⊥ will later be used to
generate an event r 7→ ⊥ for a reference which was not reduced. In
our framework this is only possible in the (non-deterministic) call-
by-value semantics that we will introduce in the next section. In
the context of lazy evaluation such an event can only be produced
by a so-called “finalizer”, a side-effect triggered by the garbage
collector. We will not consider garbage collection in this paper.

The instrumented semantics for computing sequences of events
is presented in Figure 2. Whenever the evaluation of a new expres-
sion is started in the rules performing relevant steps (rules App,
Let, and Case), we introduce a new labeling for this new expres-
sion. For instance, in rule App, we label the body of the function
(e) with fresh references (el). This reduction has to be performed in
the call-by-value evaluation as well, which will possibly introduce
further innermost redexes represented by the references in [|el|].

Following Launchbury (1993), we write judgments sequentially
as follows: if Γ : e ⇓E ∆ : z, we write

Γ : eˆ
a sub-proofˆ
another sub-proof

∆ : z

where the elements of the proof tree are depicted to the right of the
corresponding step. As an additional abbreviation, we omit copying
the result ∆ : z, if it stays unchanged, like in the rules App, Let,
and Case. Furthermore, instead of writing the whole sequence of
events in each proof step we only annotate the new events added to
the sequence to the right hand-side of the proof step. The following
example illustrates the instrumented semantics using this notation.

EXAMPLE 2.3. Consider the data type for natural numbers intro-
duced in Example 1.1 and the expression

main ≡ let { const = let {w = λa.λb.λc.b} in w @ w;
z = Zero;
id = λx.x;
s = id @ z;
f = const @ z

} in f @ s

[] : let
0 {const = let

1 {w = λa.λb.λc.b} in w @ w; z = Zero; id = λx.x; s = id @ z; f = const @ z} in f @ s
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ1 ≡ [const 7→ let
1 {w = λa.λb.λc.b} in w @ w] : let

2{z = Zero; id = λx.x; s = id @ z; f = const @ z} in f @ s
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ2 ≡ Γ1[z 7→ Zero] : let
3{id = λx.x; s = id @ z; f = const @ z} in f @ s

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ3 ≡ Γ2[id 7→ λx.x] : let
4{s = id @5 z; f = const @ z} in f @ s

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ4 ≡ Γ3[s 7→ id @5 z] : let
6{f = const @7 z} in f @ s

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ5 ≡ Γ4[f 7→ const @7 z] : f @8 s
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ5 : f
2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ4 : const @7 z
2

6

6

6

6

6

6

6

6

6

4

Γ4 : const
2

6

6

6

6

6

4

Γ6 ≡ Γ4 \ const : let
1 {w = λa.λb.λc.b} in w @ w

2

6

6

6

4

Γ7 ≡ Γ6[w 7→ λa.λb.λc.b] : w @9 w
2

4

Γ7 : w
ˆ

Γ6 : λa.λb.λc.b

Γ7 : λa.λb.λc.b
ˆ

Γ7 : λb.λc.b

Γ8 ≡ Γ7[const 7→ λb.λc.b] : λb.λc.b
ˆ

Γ8 : λc.z

Γ9 ≡ Γ8[f 7→ λc.z] : λc.z
2

4

Γ9 : z
ˆ

Γ9 \ z : Zero

Γ9 : Zero

Γ9 : Zero

0 7→ 2
2 7→ 3
3 7→ 5 · 4
4 7→ 7 · 6
6 7→ 8

1 7→ 9

9 7→ ε

7 7→ ε

8 7→ ε

Figure 4. Example of instrumented lazy evaluation

The complete lazy derivation of evaluating l(main) is shown in
Figure 4. The example derivation includes the generated sequence
of events on the right hand side of the figure. Considering that the
references in the initial expression are 0 and 1 (remember that no
further references are created since the outer let is an abbreviation
for let const = . . . in let z = . . .), the events in this sequence
can be interpreted as follows: every evaluable expression has been
reduced but the one labeled with reference 5.

It is easy to see that the sequences produced by the semantics are
indeed sequences of events in the sense of Definition 2.2.

LEMMA 2.4. Let Γ : e ⇓E ∆ : z be a lazy derivation. Then E is a
sequence of events.

Proof. Cf. (Braßel et al. 2007). �

Now, we prove a basic property of the instrumented semantics:
the computed events are preserved – up to renaming of references
– if closures are evaluated immediately (in rule Let), as long as
their evaluation would have been eventually required in the lazy
computation. This property is stated in two steps.

In the following, we say that two sets of events are equal up to
renaming of references, denoted M1 b= M2, if they have exactly
the same shape and only differ in the names of references of their
nodes. Formally, M1 b= M2 if there exists a bijective mapping
σ : ref (M1) 7→ ref (M2) such that r 7→ r1 . . . rn ∈ M1 iff
σ(r) 7→ σ(r1) . . . σ(rn) ∈ M2. We also write E1 b= E2 for two
sequences of events iff {{E1}} b= {{E2}}.

Our first result is the following.2

THEOREM 2.5.

If Γ : e1 ⇓E1
∆ : z1 and Γ : e2 ⇓E2

Θ : z2

then Θ : e1 ⇓E′

1
Ω : z1 and ∆ : e2 ⇓E′

2
Ω : z2

and E2 · E′
1 b= E1 · E′

2

Basically this result states that, given a heap Γ and two expressions
e1 and e2, they can be evaluated in any order, producing the same

2 In the following result – and in Corollary 2.6 – we omit the details about
renaming variables in the heap, which are addressed in the full version of
this paper (Braßel et al. 2007).

values, heap, and events. Graphically:

Γ
e1

��~~
~~

~~
~

E1
��~~

~~
~~

~
e2

��
@@

@@
@@

@

E2
��

@@
@@

@@
@

∆

e2

E′
2

��

Θ

e1

E′
1

��

Ω

Our second result states a key property for our development:

COROLLARY 2.6.

If Γ[y 7→ ey] : e ⇓Ee ∆[y 7→ zy] : z, ey 6≡ zy

and Γ : ey ⇓Eey
Θ : z′

y

then zy ≡ z′
y and Θ[y 7→ zy] : e ⇓E′

e
∆[y 7→ zy] : z

and Ee b= Eey · E′
e

Informally speaking it states that, given a let expression of the form
let y = ey in e, we can evaluate first the closure ey and then e
in the resulting heap with the updated binding for y, and we still
produce the same value, heap and events as when the standard lazy
evaluation order is followed, provided that the evaluation of ey

was demanded during the evaluation of e. The following diagram
depicts this property:

Γ[y 7→ ey]

e

��

ey

��Ee ��

ey

&&MMMMMMMMMM

Eey
&&MMMMMMMMMM

Θ[y 7→ zy]

e

xx E′

e
xx

∆[y 7→ zy]

Proof. Applying rule Var, we have:

Γ : ey ⇓Eey
Θ : z′

y

Γ[y 7→ ey] : y ⇓Eey
Θ[y 7→ z′

y] : z′
y

Discard Γ : e ⇓(r1 7→⊥)·...·(rn 7→⊥) Γ : _ where e 6∈ Value ∪ Var and r1 · . . . · rn = [|e|]

Let
Γ : e1[y/x] ⇓E1

∆ : z ∆[y 7→ z] : el
2[y/x] ⇓E2

Θ : z′

Γ : letr x = e1 in e2 ⇓E1·(r 7→[|el
2
|])·E2

Θ : z′
where y fresh and el

2 = l(e2)

Figure 5. Non-deterministic Call-by-Value Rules

Since e and y are reducible with the same heap Γ [y 7→ ey], we
can apply Theorem 2.5 which yields the existence of two dual
derivations. One of them is very simple:

∆ : zy ⇓ε ∆ : zy

∆[y 7→ zy] : y ⇓ε ∆[y 7→ zy] : z′
y

This already allows us to deduce that zy ≡ z′
y and simplifies the

conclusion of the other derivation as intended:

Θ[y 7→ zy] : e ⇓E′

e
∆[y 7→ zy] : z

Finally, we have Ee · ε b= Eey · E′
e. �

Corollary 2.6 implies that, for any lazy computation, we can
construct an equivalent computation that follows the call-by-value
evaluation order with the exception that expressions are only eval-
uated as much as needed in the original lazy computation (i.e., it is
basically a reordering of the lazy computation).

In the next section, we will introduce a call-by-value semantics
that is driven by the events of an associated lazy computation.

3. Lazy Call-By-Value Evaluation
In this section, we introduce a lazy call-by-value semantics. It is
call-by-value because the arguments of a function are evaluated
before the function is called. It is still lazy because every argument
is only evaluated as much as needed in the corresponding lazy
evaluation. Our first step towards this goal is to present a semantics
which discards unevaluated expressions non-deterministically.

3.1 Non-deterministic Call-By-Value Evaluation

Assume that we replace rule Let from Figure 2 with the rules of
Figure 5. A derivation obtained by this new set of rules will be
called a non-deterministic call-by-value derivation in the follow-
ing. This is because the new version of rule Let implements a call-
by-value semantics where closures are evaluated as soon as they
are introduced. On the other hand, rule Discard allows us to non-
deterministically discard the evaluation of a closure when its value
is not needed in the considered computation. In this case, we intro-
duce a fresh value denoted by _, i.e., _ is a constructor which does
not appear in the initial expression.

The rule Discard is only applicable to reducible expressions
whose topmost symbol is a let, a case or an application @, i.e., it is
only applicable where the call-by-value reduction would perform
superfluous steps from the perspective of the lazy computation.

EXAMPLE 3.1. Consider again the program of Example 2.3. The
unique non-deterministic call-by-value computation that produces
an equivalent sequence of events is shown in Figure 6. In this case,
the associated sequence is:

(1 7→ 2) · (2 7→ ε) · (0 7→ 3) · (3 7→ 4) · (4 7→ 6 · 5) · (6 7→ ⊥)
·(5 7→ 8 · 7) · (8 7→ ε) · (7 7→ 9) · (9 7→ ε)

Apart from event (6 7→⊥), it is equivalent to the sequence of
Example 2.3.

The following result states the equivalence between the original
lazy semantics and the non-deterministic call-by-value version. In

the following, given a heap Γ, we denote by Γ_ any heap that can
be obtained from Γ by replacing unevaluated closures x 7→ e by
x 7→ _. Likewise we denote by E⊥ a sequence of events that can
be obtained from E by replacing all events r 7→ ⊥ by ε.

THEOREM 3.2.
If Γ : e ⇓E ∆ : z is a lazy derivation
then there is one and only one non-deterministic call-by-value

derivation Γ : e ⇓E′ ∆_ : z such that E b= E′⊥.

Proof. By repeatedly applying Corollary 2.6 to the initial deriva-
tion Γ : e ⇓E ∆ : z, we know that there exists a derivation
Γ : e ⇓E2

∆ : z such that E b= E2 and for every let expression
let x = e in e′, the closure e was evaluated before e′ if needed.
From this derivation we can construct a non-deterministic call-by-
value derivation Γ : e ⇓E′ Θ : z. We only need to apply rule Dis-
card for every closure which is not evaluated in ∆. Because neither
rule Var nor rule Discard produce any events adding to E′⊥, we
have E2 = E′⊥. Also, by definition of Discard, ∆ and Θ only
differ in the value _ which yields ∆_ = Θ.

Now, we should prove that there is no other non-deterministic
call-by-value derivation Γ : e ⇓E′′ ∆_ : z such that E b= E′′.

The only source of non-determinism introduced by the rules of
Figure 5 is the overlapping of rule Discard with the rules Let, App

and Case. All three rules produce an event adding to E′⊥ whereas
rule Discard does not. As the labeling function l always introduces
fresh labels, every reference occurring in ∆ only occurs once. As
the rule Discard eliminates a labeled expression from the heap, the
remaining derivation cannot generate an event for the discarded
references. This means that applying any of the three rules instead
of Discard necessarily produces a different sequence of events. �

A direct consequence of this theorem is that we can use the
events produced by a lazy evaluation and construct, using this in-
formation, the unique corresponding call-by-value derivation. The
order in which the events were produced does not matter for this
theorem. However, this order will become important for the con-
siderations in the next sub sections.

Concluding the section, we make a simple but useful observa-
tion about the heaps occurring in non-deterministic call-by-value
derivations,

DEFINITION 3.3 (Call-by-Value Heap). A call-by-value heap is a
partial mapping from variables to values rather than expressions.
The notation for heaps carries over to call-by-value heaps.

PROPOSITION 3.4. Let [] : e ⇓E ∆ : z be a non-deterministic
call-by-value derivation. Then each heap occurring in that deriva-
tion is a call-by-value heap.

Proof. The only rules manipulating the heap are the rule Let
of Figure 5 and rule Var of Figure 2. Both rules introduce only
bindings to values. �

3.2 From Events to Step List

In the introduction an example of using a step list was given. This
section describes how to obtain a step list from a sequence of events
and how to use this step list to drive a lazy call-by-value semantics.

[] : let
0 {const = let

1 {w = λa.λb.λc.b} in w @ w; z = Zero; id = λx.x; s = id @ z; f = const @ z} in f @ s
2

6

6

6

6

6

6

6

4

[] : let
1 {w = λa.λb.λc.b} in w @ w

ˆ

[] : λa.λb.λc.b
2

6

6

6

4

Γ1 ≡ [w 7→ λa.λb.λc.b] : w @2 w
2

4

Γ1 : w
ˆ

[] : λa.λb.λc.b

Γ1 : λa.λb.λc.b
ˆ

Γ1 : λb.λc.b
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ2 ≡ Γ1[const 7→ λb.λc.b] : let
3 {z = Zero; id = λx.x; s = id @ z; f = const @ z} in f @ s

ˆ

Γ2 : Zero
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ3 ≡ Γ2[z 7→ Zero] : let
4 {id = λx.x; s = id @ z; f = const @ z} in f @ s

ˆ

Γ3 : λx.x
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ4 ≡ Γ3[id 7→ λx.x] : let
5 {s = id @6 z; f = const @ z} in f @ s

»

Γ4 : id @6 z
Γ4 :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ5 ≡ Γ4[s 7→] : let
7 {f = const @8 z} in f @ s

2

6

6

6

4

Γ5 : const @8 z
2

4

Γ5 : const
ˆ

Γ5 \ const : λb.λc.b

Γ5 : λb.λc.b
ˆ

Γ5 : λc.z
2

6

6

6

6

6

6

6

4

Γ6 ≡ Γ5[f 7→ λc.z] : f @9 s
2

4

Γ6 : f
ˆ

Γ6 \ f : λc.z

Γ6 : λc.z
2

4

Γ6 : z
ˆ

Γ6 \ z : Zero

Γ6 : Zero

Γ6 : Zero

1 7→ 2

2 7→ ε

0 7→ 3

3 7→ 4

4 7→ 6 · 5

6 7→ ⊥
5 7→ 8 · 7

8 7→ ε

7 7→ 9

9 7→ ε

Figure 6. Example of non-deterministic call-by-value computation

The main idea is that, by considering only a given set of events,
one can see in which sequence references would be mapped by the
lazy call-by-value semantics and where in this order references are
discarded. A sequence of reduced references means that ordinary
rules, i.e., not Discard, were applied. Simply counting the reduced
references between the discarded ones tells us how many ordinary
rules can be applied in the call-by-value derivation.

According to this main idea, we first define an ordering on
references for a given set of events. The additional condition on
the set of events E is equivalent to requiring that the mappings in
E form a tree (rather than a forest). The defined ordering is then a
standard prefix ordering.

DEFINITION 3.5 (Root, Rooted, Reference Ordering <M). Let M
be a set of events containing a reference r such that ref (M) =

{r} ∪ M̂(r). Then we call M rooted and r the root of M and
define the reference ordering <M as:

p <M q :⇔ (q ∈ M̂(p) ∨
(∃s, u, sp, v, sq, w : s 7→ u · sp · v · sq · w ∈ M

∧ p ∈ M̂ (sp) ∪ {sp} ∧ q ∈ M̂(sq) ∪ {sq}))

LEMMA 3.6. For a rooted set of events M , ordering <M is linear.

Proof. <M is irreflexive and antisymmetric because M contains
no cycles. <M is transitive as M̂ is a transitive closure. <M is total
because there exists a reference r ∈ M such that ref (M) = {r}∪

M̂(r), yielding that any two references p, q must be comparable by
choosing r for the existential proposition. �

We will show that this “prefix order” on the references in (special)
sets of events is exactly the order in which events are generated in
the non-deterministic call-by-value derivation, i.e., if the generated
sequence is of the form u · (r 7→ . . .) · v · (q 7→ . . .) · w then
r <{{E}} q. Before showing this, we need to extend the generated

events by a root, according to Definition 3.5. This is done by
bringing together the references labeling the initial expression.

LEMMA 3.7. Let Γ : e ⇓E ∆ : z and r 6∈ ref ({{E}}) a fresh
reference. Then for M ′ := {{(r 7→ [|e|]) · E}} holds ref (M ′) =

{r} ∪ M̂ ′(r).

Proof. Since all references r1 · . . . · rn created dynamically
during the derivation Γ : e ⇓E ∆ : z are immediately mapped
to other references by an event r 7→ r1 · . . . · rn upon creation,
we have ref ({{E}}) =

S
q∈[|e|]

ˆ{{E}}(q) ∪ {q}. Thus, adding the
event r 7→ [|e|] yields the desired property. �

Lemma 3.7 essentially means that we can use the ordering <{{E}}

on the events generated by our instrumented semantics. This en-
ables us to formulate our theorem that the non-deterministic call-
by-value derivation generates the events in exactly that order.

THEOREM 3.8. Let Γ : e ⇓E ∆ : z be a non-deterministic call-
by-value derivation, � a reference with � 6∈ ref ({{E}}) and M ′ =
{{(� 7→ [|e|]) · E}}. Then r <M′ q holds for all u, r, u′, v, q, v′, w
with E = u · (r 7→ u′) · v · (q 7→ v′) · w.

Proof. By induction on the structure of the derivation:
The base cases, rules Lam and Val, are immediate as [|e|] = E = ε.
The base case for rule Discard holds, since the generated sequence
(r1 7→ ⊥) · . . . · (rn 7→ ⊥) is constructed in correspondence to
[|e|] = r1 · . . . · rn.
Inductive cases:
Var: The claim directly stems from the induction hypothesis, since
the sequence of events is unchanged in this rule.
App: By Proposition 3.4, the event sequence of the left antecedence
for applications of this rule is always ε. By the induction hypothe-
sis, the claim holds for the evaluation of the body ∆ : el[x2/y] ⇓E2

Θ : z. Since this expression is freshly labeled, adding the event

Discard 0 : ns, Γ : e ↓ Γ : _, ns where e 6∈ Value ∪ Var and e 6= let x = e1 in e2

Lam ns, Γ : λy.e ↓ Γ : λy.e, ns

Con ns, Γ : C xn ↓ Γ : C xn, ns

App
n : ns, Γ[x1 7→ λy.e] : e[x2/y] ↓ Θ : z, ms

n + 1 : ns, Γ[x1 7→ λy.e] : x1 @ x2 ↓ Θ : z, ms

Var ns, Γ : x ↓ Γ : Γ[x], ns

Let1
ns, Γ : e1[y/x] ↓ ∆ : z, m + 1 : ms m : ms, ∆[y 7→ z] : e2[y/x] ↓ Θ : z′, ks

ns, Γ : let x = e1 in e2 ↓ Θ : z′, ks
where y fresh

Let2
ns, Γ : e1[y/x] ↓ ∆ : z, 0 : ms

ns, Γ : let x = e1 in e2 ↓ ∆[y 7→ z] : _, ms
where y fresh

Case
n : ns, Γ[x 7→ Ci xki

] : ei[xki
/yki

] ↓ ∆ : z, ms

n + 1 : ns, Γ[x 7→ Ci xki
] : case x of {Cn ykn 7→ en} ↓ ∆ : z, ms

Figure 7. Lazy call-by-value semantics

r 7→ [|el[x2/y]|] means that r <M′ r′ for all r′ ∈ ref ({{E2}}).
Since r is reduced in this application. i.e., before the body el[x1/y],
this is the desired property.
Case: As Proposition 3.4 also holds for case expressions, this case
is analogous to the previous case App.
Let: An application of this rule is of the following form:

Γ [y 7→ e1[y/x]] :y ⇓E1
∆:z ∆[y 7→ z] : el

2[y/x] ⇓E2
Θ:z′

Γ : letr x = e1 in e2 ⇓E1·(r 7→[|el
2
|])·E2

Θ : z′

where y fresh and el
2 = l(e2). Analogous to the previous cases,

adding the event r 7→ [|el
2|] yields the desired property with respect

to the evaluation of the body el
2. Moreover, by definition of func-

tion [| |] the event � 7→ [|letr x = e1 in e2|] is equal to � 7→ [|e1|]·r
which means that r′ <M′ r for all r′ ∈ ref ({{E1}}). As the ex-
pression e1 is indeed evaluated before reducing letr x = e1 in e2,
this concludes the proof. �

Theorem 3.8 directly justifies how to define the step list. Following
the linear sequence provided by <M′ , we count the length of
reference sequences which do not contain a discarded reference,
i.e., one that is mapped to ⊥.

DEFINITION 3.9 (Step List). Let E be a sequence of events. Then
the step list st(E) is defined as

st(v · (r 7→ ⊥) · w)= |v| : st(w) if v = v⊥

st(v) = |v| : [] if v = v⊥

EXAMPLE 3.10. Consider the events from Example 3.1. With

E1 = (1 7→ 2) · (2 7→ ε) · (0 7→ 3) · (3 7→ 4) · (4 7→ 6 · 5)
E2 = (5 7→ 8 · 7) · (8 7→ ε) · (7 7→ 9) · (9 7→ ε)

we produce the following step list:

st(E) = st(E1 · (6 7→ ⊥) · E2) = 5 : st(E2) = [5, 4]

The step list can be interpreted as follows: apply the rules of the
call-by-value semantics so that the first five pre-redexes should be
evaluated, the next one should be discarded, and the remaining
ones (four) should be evaluated.

3.3 Step-driven Call-by-Value Evaluation

A simple observation will be useful in the following.

PROPOSITION 3.11. Let r be a reference, v 6= ⊥ a sequence of
references and E a sequence of events. Then there exist a natural
number n and a list of numbers ns such that st(E) = n : ns and
st((r 7→ v) · E) = n + 1 : ns.

Proof. Immediate consequence of Definition 3.9. �

We now introduce our lazy call-by-value semantics that is driven
by the computed step list. The rules of the semantics are shown in
Figure 7. The judgments are extended with step lists denoted as ns.
We briefly explain the most relevant rules:

• Rule Discard can only be applied when the step list begins with
0. This means that a number in the list has been consumed and,
thus, no innermost reduction should be performed.

• In the rules App, Var and Case observe that we assume that the
variables are already bound in the current heap to a value. This
is justified by Proposition 3.4.

• Rule Let is split into rules Let1 and Let2. This is motivated
by the fact that an expression may contain nested let bindings
labeled with different references. Then, if the outermost let is
to be discarded, one should first also discard the inner lets, and
this is precisely the reason to introduce the new rule Let2. The
choice between the two rules is determined by the outgoing step
list of the first premise.

There is one main difference between the non-deterministic call-
by-value semantics and the lazy call-by-value semantics. The non-
deterministic discard rule can replace a complex expression, i.e.,
one with more than one label, by _, whereas the lazy call-by-value
semantics needs to discard every labeled sub-expression separately.
In the following lemma we show that we can construct a lazy call-
by-value derivation consisting of applications of Let2 and Discard
to discard complex expressions.

LEMMA 3.12 (Discarding complex expressions). Let n > 0 be a
natural number, e an expression with |[|l(e)|]| = n, Γ a call-by-
value heap and ns an arbitrary sequence of natural numbers. Then

there exists a lazy call-by-value derivation

0 : . . . : 0| {z }
n

: ns, Γ : e ↓ ∆ : _, ns such that Γ ⊆ ∆.

Proof. Cf. (Braßel et al. 2007) �

Now we can prove the correspondence between the non-determinis-
tic and the lazy call-by-value semantics. To compare heaps between
the different derivations we denote by Γl the heap Γ without labels.

THEOREM 3.13. Let e be an expression, el := l(e), Γ a call-by-
value heap and Γ : el ⇓E ∆ : z a non-deterministic call-by-value
derivation. Then for all sequences of events E′ there exists a step-
driven derivation st(E ·E′), Γl : e ↓ ∆′ : z, st(E′) with ∆l⊆ ∆′.

Proof. We inductively construct the step-driven derivation from
the non-deterministic derivation.
Base cases:
Lam: The derivation is Γ : λx.e′ ⇓ε Γ : λx.e′.
Since for all E′, st(ε · E′) = st(E′), we can construct the
derivation st(E′), Γl : λx.e′ ↓ Γl : λx.e′, st(E′).
Con: This case is analogous to the previous case.
Discard: An application of the rule Discard looks as follows:

Γ : el ⇓(r1 7→⊥)·...·(rn 7→⊥) Γ : _

where r1 · . . . · rn = [|el|]. Now we have

st((r1 7→ ⊥) · . . . · (rn 7→ ⊥) · E′) = 0 : . . . : 0| {z }
n

: st(E′)

Therefore, an application of Lemma 3.12 yields the existence of

0 : . . . : 0| {z }
n

: st(E′), Γl : e ↓ ∆′ : _, st(E′) where Γl⊆ ∆′.

Inductive cases:
Var: Both variants of this rule obviously neither change the set of
events nor the step lists. Due to Proposition 3.4 the heap also stays
unchanged. Therefore, we can omit evaluating the binding of x in
Γ and the claim directly stems from the inductive hypothesis.
App: By Proposition 3.4 the derivation has the form

Γ : λx.e′ ⇓ε Γ : λx.e′

Γ′ : x1 ⇓ε Γ′ : λx.e′ Γ′ : el ⇓E ∆ : z

Γ′ : x1 @ x2 ⇓(r 7→[|el|])·E ∆ : z

where Γ′ = Γ[x1 7→ λx.e′] and el = l(e′[x2/x]).
By induction hypothesis we can construct a derivation for all E′:

st(E · E′), Γ′l : e′[x2/x] ↓ ∆′ : z, st(E′)

where ∆l ⊆ ∆′. By Proposition 3.11, st((r 7→ [|el|]) · E · E′) is
of the form n + 1 : ns. Hence we can construct the derivation

n : ns, Γ′l : e′[x2/x] ↓ ∆′ : z, st(E′)

n + 1 : ns, Γ′l : x1 @ x2 ↓ ∆′ : z, st(E′)

Case: As Proposition 3.4 also holds for case expressions, this case
is analogous to the previous case App.
Let: The non-deterministic derivation has the form

Γ : el
1[y/x] ⇓E1

∆ : z ∆[y 7→ z] : el
2[y/x] ⇓E2

Θ : z′

Γ : letr x = el
1 in e2 ⇓E1·(r 7→[|el

2
|])·E2

Θ : z′

where y is a fresh variable and el
2 = l(e2).

We have [|el
1[y/x]|] · r = [|el

1|] · r = [|letr x = el
1 in e2|]. Further-

more, by induction hypothesis we can construct the derivations for

all E′, E′′

st(E1 · E
′′), Γl : e1[y/x] ↓ ∆′ : z, st(E′′) and

st(E2 · E
′), ∆′[y 7→ z] : e2[y/x] ↓ Θ′ : z, st(E′)

where ∆l⊆ ∆′ and Θl⊆ Θ′. We choose E′′ = (r 7→ [|el
2|]) ·E2 ·

E′ and conclude that by Proposition 3.11 st(E′′) is of the form
m + 1 : ms. Therefore, we can construct the derivation

st(E1 · E
′′), Γl : e1[y/x] ↓ ∆′ : z, m + 1 : ms

m : ms, ∆′[y 7→ z] : e2[y/x] ↓ Θ′ : z, st(E′)

st(E1 · E′′), Γ : let x = e1 in e2 ↓ Θ′ : z, st(E′)

This completes the proof. �

EXAMPLE 3.14. Consider again the expression of Example 2.3
and the step list computed in Example 3.10: [5, 4]. The associated
lazy call-by-value computation according to the rules of Figure 7
is shown in Figure 8.

3.4 Consuming Events in Arbitrary Top-Down Order

The algorithm to compute the step list given in Definition 3.9 con-
sumes events generated by a call-by-value derivation. We already
know that the same set of events is also computed by the lazy
derivation. Furthermore, we know how to order these events to ob-
tain the call-by-value sequence, cf. Lemma 3.6. A naive way to
implement the approach would therefore collect all events E gen-
erated by the lazy semantics then order them according to <{{E}}

and finally compute the step list. However, we can do better and
process each event as soon as its exact structure is known but be-
fore we know its exact position in the complete sequence. This last
step substantially increases the efficiency with which the step list is
generated in our approach. This algorithm is also straight forward
to implement as described in the next section.

In this section, we first give an alternative definition of how to
compute the step list that is less dependent on the order in which
the events are generated. After that we show that the sequence of
events generated by the lazy semantics meets the requirements of
this alternative definition.

The events generated by both our semantics have an important
property. Each reference occurring during the evaluation of an
expression e was either contained in e or is introduced on the right
hand side of an event before being reduced on the left hand side of
an event. We denote this property of “introduction before usage”
as “top-down” because in the view of events as trees it means that
parents always come before all of their children. Formally, the top-
down property is defined as follows.

DEFINITION 3.15 (Top-Down Sequence). Let E be a sequence of
events. We call E top-down iff for all sequences u, v, w and all
references r holds If E = u · (r 7→ v) · w and u 6= ε then
there exist a reference q and sequences u1, u2, v1, v2 such that
u = u1 · (q 7→ v1 · r · v2) · u2.

The challenge now is to compute the unique call-by-value step list
from a different sequence of events and in the presence of missing
information of the form r 7→ ⊥. The algorithm that meets this
challenge is defined as follows.

DEFINITION 3.16. Let E = (r 7→ v) · w be a top-down sequence
of events and � 6∈ ref {{E}} a fresh reference. Then, the associated
step list is computed from

as(E) := list(count(E⊥, (0, r) · (0, �))),

[5, 4], [] : let {const = let {w = λa.λb.λc.b} in w @ w; z = Zero; id = λx.x; s = id @ z; f = const @ z} in f @ s
2

6

6

4

[5, 4], [] : let {w = λa.λb.λc.b} in w @ w
ˆ

[5, 4], [] : λa.λb.λc.b
»

[4, 4], Γ1 ≡ [w 7→ λa.λb.λc.b] : w @ w
ˆ

[3, 4], Γ1 : λb.λc.b
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

[2, 4], Γ2 ≡ Γ1[const 7→ λb.λc.b] : let {z = Zero; id = λx.x; s = id @ z; f = const @ z} in f @ s
ˆ

[2, 4], Γ2 : Zero
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

[1, 4], Γ3 ≡ Γ2[z 7→ Zero] : let {id = λx.x; s = id @ z; f = const @ z} in f @ s
ˆ

[1, 4], Γ3 : λx.x
2

6

6

6

6

6

6

6

6

6

6

6

4

[0, 4], Γ4 ≡ Γ3[id 7→ λx.x] : let {s = id @ z; f = const @ z} in f @ s
»

[0, 4], Γ4 : id @ z
[4], Γ4 :

2

6

6

6

6

6

4

[3], Γ5 ≡ Γ4[s 7→] : let {f = const @ z} in f @ s
»

[3], Γ5 : const @ z
ˆ

[2], Γ5 : λc.z
2

4

[1], Γ6 ≡ Γ5[f 7→ λc.z] : f @ s
»

[0], Γ6 : z
[0], Γ6 : Zero

[0], Γ6 : Zero

Figure 8. Example of lazy call-by-value computation with the step list [5,4]

where the functions count and list are defined as follows:

count ((r 7→ ε) · E, v · (n, r) · (o, s) · w) =
count(E, v · (n + 1 + o, s) · w)

count ((r 7→ r0 · r1 · . . . · rn) · E, v · (n, r) · w) =
count(E, v · (n + 1, r0) · (0, r1) · . . . · (0, rn) · w)

count (ε, w) = w

list((n, r) · w) = n : list(w)
list(ε) = []

LEMMA 3.17 (Soundness of count). Let E = (r 7→ v) · w be a
top-down sequence of events and E′ the sequence where the events
in E are sorted according to <{{E}}. Then st(E′) = as(E).

Proof. First, observe that E′ is indeed unique as <{{E}} is a
linear ordering by Lemma 3.6. Furthermore, since E is a top-down
sequence and since count processes this sequence left to right, each
ri in a given event r 7→ r1 · . . . ·rn cannot yet have been processed.
As neither the root r nor the fresh � appear on the right hand side
of an event, this property also holds for the initial argument.

We extend <{{E}} such that � is the largest reference and ob-
serve that in the initial argument the references in the second se-
quence are ordered w.r.t. <{{E}}. This ordering is maintained by the
algorithm. In the first rule of count this is obvious as no new refer-
ences are introduced to the second sequence. In the second rule the
introduced references are greater than those in v as r is greater than
the references in v and smaller than each ri. The introduced refer-
ences ri are also smaller than the references in w because those are
not contained in Ê(r) because E is a top-down sequence.

Furthermore, each number n in (m, q) · (n, r) within the sec-
ond sequence exactly counts all references s which have been elim-
inated and for which q <{{E}} s <{{E}} r holds. This is immediate,
since the second sequence is ordered and the elimination of a ref-
erence x is added to the counter directly behind x in that sequence.

Finally, by definition of E⊥, count eliminates and counts all
references except those r for which E contained an event r 7→ ⊥.
All in all, count computes the number of events between r 7→ ⊥
events, as st() does. �

The only thing left to show is that the sequence of events generated
by the lazy semantics is indeed top-down.

LEMMA 3.18. Let [] : e ⇓E ∆ : z be a lazy derivation and r be
a reference not occuring in ref ({{E}}). Then (r 7→ [|e|]) · E is a
sequence of events which is top down.

Proof. Cf. (Braßel et al. 2007). �

We are ready to prove our main theorem.

THEOREM 3.19. Let e be an expression el := l(e) and [] : el ⇓E

∆ : z be a lazy derivation, and 1 + m : ms = as(E). Then there
exists a lazy call-by-value derivation m : ms, [] : e ↓ ∆′ : z, [0].

Proof. By Theorem 3.2 there exists a non-deterministic call by
value derivation [] : el ⇓E′ ∆− : z with E b= E′. Since st(ε) =
[0], by Theorem 3.13 there exists a lazy call by value derivation
st(E′), [] : e ↓ ∆′ : z, [0]. Let r be a reference not occuring
in ref ({{E}}). Then by Lemma 3.18, E′′ := (r 7→ [|e|]) · E′ is
top-down and therefore Lemma 3.17 yields st(E′′) = as(E′′).
Finally, by Proposition 3.11 st(E′′) is of the form 1 + m : ms
with m : ms = st(E′). �

4. Implementation
We have implemented a debugging tool for a kernel lazy functional
language (basically, Haskell without the IO monad)3. The tool
consists of two main components:

1. A program transformation (cf. Section 4.1) that associates to
each source program an instrumented program that behaves as
the source program but additionally stores the step list from the
sequence of events during its execution.

2. A combined tracer/declarative debugger that executes the source
program in a call-by-value manner w.r.t. the step list. To ensure
an efficient execution of the program during debugging time,
the source program is compiled into a strict language where the
functions have additional arguments to pass the step list.

4.1 Trace Generation

In this section, we describe the generation of the step list represent-
ing the information about laziness. We call this generation tracing
because the step list is produced by side effects during the execution
of a program. In this sense, the step list is a significantly condensed

3 At the moment, we also do not provide classes. However, in contrast to the
IO monad, supporting classes will not demand a conceptual extension.

version of the information retrieved by debugging approaches like
the ART of Hat (Sparud and Runciman 1997b) or the EDT of Freja
(Nilsson and Sparud 1997) and Buddha (Pope and Naish 2003).
Tracing a given program is implemented by transforming the pro-
gram into an instrumented version. Executing this new version will
generate a file containing the list of steps.

One of the main goals of the presented approach is the efficient
generation of the trace. To achieve this, we will not generate the
whole sequence of events produced by the instrumented lazy se-
mantics. Rather, we collapse the recorded data as much as possible
during the execution of the program. The structure we keep at run
time is at all times only the list of numbers which is built according
to the operation count (Definition 3.16) and, therefore, at any time
reduced as much as possible. We represent the step list as a doubly-
linked list where pointers are modeled as IORefs in order to allow
efficient destructive updates of the list structure. The data types for
list nodes and references to them are defined as follows:

type Ref = IORef Node
data Node = Empty | Node Ref StepCnt Ref
type StepCnt = Int

Empty is a special constructor used to mark the beginning and the
end of a linked list.

We provide an interface that reflects the structure of the events
that are released during the computation. In order to modify the
original program as little as possible, we use a projection function
with side effects to release events. The function

event :: Ref -> [Ref] -> a -> a

can be used to release an event of the form r 7→ r1 · r2 . . . · rn

before the evaluation of some expression e using the call

event r [r1,r2,...,rn] e

Corresponding to the definition of the operation count (Defini-
tion 3.16), we can consume each event directly when it is released
and do not have to consider a specific order in which they are gener-
ated. The first two rules of Definition 3.16 can be directly translated
into Haskell code. The first defining rule of the function event cor-
responds to the event r 7→ ε so it removes r from the linked list and
adds its increased step count to its successor.

event r [] x = unsafePerformIO (do
Node v n w <- readIORef r
updSucc v w
Node _ o s <- readIORef w
writeIORef w (Node v (n+1+o) s)
return x)

We employ the impure function unsafePerformIO to modify the
list structure as a side effect. The second rule releases an event
r 7→ s · rn with a non-empty list of references:

event r (s:rs) x = unsafePerformIO (do
Node v n w <- readIORef r
updSucc v s
link v (n+1) (s:rs) w
return x)

Here, we employ the action

link :: Ref -> StepCnt -> [Ref] -> Ref -> IO Ref

to replace the reference given as first argument to event by the
given list of references. link is only defined for non-empty lists
and the given step count is added to the head of this list.

link v n [r] w = do
writeIORef r (Node v n w)
updPred w r

link v n (r:s:rs) w = do
writeIORef r (Node v n s)
link r 0 (s:rs) w

The auxiliary functions updPred and updSucc update the prede-
cessor or the successor of a reference in a linked list respectively:

updPred, updSucc :: Ref -> Ref -> IO ()
updPred r p = do

Node _ n s <- readIORef r
writeIORef r (Node p n s)

updSucc r s = do
Node p n _ <- readIORef r
writeIORef r (Node p n s)

To compute a list of step numbers from a linked list represented by
pointers, we define an action list, which is the direct translation
of list in Definition 3.16:

list :: Ref -> IO [Int]
list r = do node <- readIORef r

case node of
Empty -> return []
Node _ n s -> do ns <- list s

return (n:ns)

The function list is called after the execution of the transformed
program and the resulting list of step numbers is then written into a
file. During the execution, the linked list represented by references
is held in main memory. This list is small compared to traces
generated by other debugging approaches, because it is compressed
on the fly whenever a subcomputation is executed completely. The
computation is started with a reference that points to distinguished
start and end nodes (cf. Theorem 3.19). The constant initialRef
returns the never collapsed start reference. Its successor is later
supplied to the instrumented program:

initialRef :: Ref
initialRef = unsafePerformIO (do

[start,hd,end,empty]
<- sequenceM (replicate 4 (newIORef Empty))

writeIORef start (Node empty 0 hd)
writeIORef hd (Node start 0 end)
writeIORef end (Node hd 0 empty)
return start)

Our definition of the function event can be improved. Whenever
a reference is replaced by a non-empty list of references, the orig-
inal reference is deleted from the list by updating the successor
of its predecessor. We can modify our approach to reuse references
whenever such an event occurs: the original reference can be reused
for the first reference in the list of replacements. As a consequence,
the predecessor of this reference can be left unchanged and we gen-
erate less fresh references during the execution of the instrumented
program. In our implementation, we use three specialized functions
instead of the single function event to release events:

collapse :: Ref -> a -> a
onlyInc :: Ref -> a -> a
extend :: Ref -> [Ref] -> a -> a

These functions behave as follows:

• collapse deletes the given reference from the linked list and
adds its incremented step count to its successor. It releases
events of the form r 7→ ε.

• onlyInc only increments the step count stored in the given
reference. It releases events of the form r 7→ r′ in order to
reuse the IORef of r for r′.

• extend increments the step count in the first reference and
inserts the list of references after this reference. It implements
events r 7→ rn where n > 1 and reuses the IORef of r for r1.

Note that the call onlyInc r needs to modify only a single IORef,
while event r [r’] accesses four.

The specific function to be applied is statically known during
the program transformation. Thus, there is no additional overhead
for dispatching to one of these functions at run time. The reuse of
references helps to save both memory and run time because less
references need to be created and less references are accessed in
order to process the events.

4.2 Program Debugging

In this section, we show a concrete example for a debugging ses-
sion by considering the program of Example 1.1. When we run our
debugging tool with this example, the program is transformed so
that the step list [2,1,0,14] is generated during the evaluation of
the initial expression main. As already discussed in Example 1.1,
this step list points out that there are three expressions that should
be discarded during the evaluation of main due to the partial eval-
uation of the expression (fibs Zero) to (_:_:_).

The tracer/debugger uses the step list to control the call-by-
value evaluation. It starts with the result of the initial expression:

main --> Zero

The result is computed during debugging time according to our lazy
call-by-value evaluation. Although we trade here computation time
during the debugging session against memory for storing the trace,
the evaluation time required during debugging is acceptable due to
the efficient innermost execution and the time required by the user
to decide the next interaction.

After printing an expression and its value, the user has the op-
tion to proceed like a (call-by-value) tracer, i.e., a typical procedural
debugger, or like a declarative debugger. For the latter, he has the
options c (stating that the result is correct w.r.t. his intended mean-
ing) or w (indicating a wrong result). For tracing, the user can move
to the next reduction step or skip the entire computation. Tracing
is useful when the user is undecided about a computation w.r.t. the
intended semantics. A debugging session is finished when the bug
has been located, i.e., when there is an application of a rule where
the evaluations of all functions occurring in the right-hand side are
correct. If the end of a computation is reached without locating a
bug (e.g., when the user has skipped over some potentially wrong
subcomputation), the session is restarted from the beginning.

In our example, the entire computation is buggy so that we type
w. Since the expression (fibs Zero) is innermost in the right-
hand side of the rule for main, its (partial) evaluation is shown next:

fibs Zero --> _:_:_

Here we type s in order to skip over this computation (which has
not enough information for a definitive decision at this point). Thus,
we see the next subexpression in innermost order:

take (S (S Zero)) (_:_:_) --> [_,_]

Although this looks fine, we type s to see the next subexpression:

length [_,_] --> Zero

Since this is definitely a wrong length, we type w and obtain:

length [_] --> Zero

We type w again and obtain

length [] --> Zero

which is intended so that we type c. Immediately, we get the report
that the bug is in the rule that reduces the redex length [_].

Looking at the source code for this rule, we can now see that an
application of the constructor S is missing in the right-hand side.

Similar to other debugging tools, our tool is also equipped with
a source code viewer that always shows the current rule applied
to the outermost function of the expression under consideration.
The algorithm for bug location is similar to that in other declarative
debugging tools (Shapiro 1983). However, note that the call-by-
value view is important to obtain the questions and trace order in a
comprehensible manner.

Although the example was simple due to lack of space, the de-
bugging tool also covers higher-order features (as already shown in
the semantics) and primitive functions like arithmetic operations.
Currently, the tool does not handle I/O actions. However, this is not
a principle limitation: I/O actions can be treated by storing their re-
sult in the step list that is then used during the debugging session
(instead of executing them again). The details about their repre-
sentation are non-trivial (e.g., the effect of getChar and putChar
should be visualized in some console window) so that we leave this
part of the implementation for future work.

4.3 Practical Experience

In this section we compare our debugger with the Haskell Tracer
Hat (Wallace et al. 2001). The time that is needed to generate our
trace is comparable to the time needed to generate Hat’s ART.
Obviously, our trace file is much smaller than the ART. The call-
by-value evaluation steps are performed reasonably fast.

We achieve this performance with a modest implementation ef-
fort. We neither use highly optimized external functions4 to gen-
erate the trace, nor do we need sophisticated random access file
operations in order to navigate our trace file. Although our trace
generation is already acceptably efficient, we plan to optimize it
using Haskell’s foreign function interface to access a C implemen-
tation. First experiments show that such an implementation will be
about five times faster than the current implementation.

As we only prototypically implemented our approach, we can
not make significant comparisons with Hat. We expect that the
main performance overhead of our approach is the re-computation
in call-by-value order. We choose an example with a lot of compu-
tation steps in order to compare the time spent in re-computing the
results with the time necessary to look them up in a trace file.

EXAMPLE 4.1. The following example program would print the
16th prime number if we would not have introduced a bug:

main = print (primes !! 15)

primes :: [Int]
primes = sieve [2..]

sieve :: [Int] -> [Int]
sieve (x:xs) =

x : sieve (filter ((==0) . (‘mod‘x)) xs)

If we run this program, it prints the surprisingly big number 65536
which is definitely not a prime number. We use Hat and our de-
bugger in order to debug the evaluation of the main expression
(primes !! 15). We measure the time that is used for generating
the traces and also compare their size. Our benchmarks were run on
an AppleTM PowerBook with an 1.33 GHz PowerPC G4 processor
and 768 MB DDR SDRAM main memory. Hat’s ART is generated
within 7 seconds and is 4.7 MB big. Our trace is generated within
about 5 seconds and is about 100 bytes big. So, our trace gener-
ation is as efficient as the generation of Hat’s ART although it is
completely implemented in Haskell. Hat’s trace file is about 50000
times bigger than ours which can be printed on a few lines:

4 We only use unboxed Ints to represent the step count.

[327673,0,1179615,589791,294879,147423,
73695,36831,18399,9183,4575,2271,1119,
543,255,111,39,2,0,0,184]

We can see that up to a million steps can be performed in innermost
order and only 20 suspensions are needed during the computation.

We used the declarative debugger hat-detect and our step debug-
ger and compared their response times. Unfortunately, debugging
the program in Example 4.1 was not feasible in both debuggers, so
we replaced the number 15 by 10 for this test.

Hat-detect poses the following question almost immediately:

primes = 2:4:8:16:32:64:128:256:512:1024:2048:_

We can see that we compute powers of 2 instead of primes. Stating
that this is wrong, it takes more than 10 sec until the next question
appears. Subsequent questions are generated within a few seconds.
Our tool shows every computation step in less than a second. The
time to show each step depends on how long it takes to compute the
arguments and the result of the displayed call. Recomputing these
values seems to be as feasible as looking them up in a redex trail.

5. Related Work
As already mentioned in the introduction, many of the approaches
to debug lazy functional programs are based on recording the com-
putation in a redex trail (Sparud and Runciman 1997b) or an EDT
(Nilsson and Sparud 1997). The size of these structures crucially
grows with the length of the computation to be debugged. As a so-
lution to this problem, some different approaches were proposed.

Sparud and Runciman (1997a) present one of the first ap-
proaches to reduce the size of redex trails. It is based on not record-
ing trusted computations (e.g., the evaluation of Prelude functions)
and on pruning trails. Unfortunately, considering trusted functions
does not reduce memory consumption as expected, since trusted
functions are applied to expressions for which debug information
has to be recorded, cf. Pope and Naish (2003). Pruning trails was
not considered further since the resulting trail is incomplete and the
buggy computation can be cut from the recorded information.

In the further development of Hat (Wallace et al. 2001), the
problem of recording large redex trails was not really tackled. All
information is written to a large file which results in a slowdown
when generating this file and analyzing it in viewer components.

The piecemeal tracing approach of Nilsson (1999, 2001) and
Pope and Naish (2003) was defined for declarative debugging by
means of an Evaluation Dependence Tree (EDT) used in Freja
(Nilsson and Sparud 1997) or Buddha (Pope 2005). In this ap-
proach, only a piece of the entire EDT is initially generated, and
new pieces are computed only if they are needed by re-executing
the entire program. Hence, the saving of space is purchased by ad-
ditional run-time during debugging. In contrast, our approach is
directly space efficient and only stores a minimal amount of infor-
mation at execution time. Furthermore, their approach is basically
oriented to declarative debugging in contrast to step lists.

Pope and Naish (2003) propose an optimization of the piece-
meal EDT construction in which it is not necessary to restart the
whole computation to compute new pieces of the EDT. Instead
computations are stored which allow the generation of the miss-
ing parts of the EDT. However, there exists no evaluation on how
much memory is needed for storing these computations yet (Pope
and Naish 2003). Furthermore, the implementation highly depends
on the internal structure of the Glasgow Haskell Compiler (ghc)
and the underlying C heap in which structures are stored to pre-
vent them from garbage collection. This makes it non-portable to
other Haskell systems. The whole approach is motivated from the
implementation perspective, without any correctness proofs.

6. Conclusions
We have presented a novel approach to debug lazy functional pro-
grams by re-executing them in the context of call-by-value evalu-
ation. To avoid unnecessary computation steps, we have designed
an instrumented lazy semantics that produces the information nec-
essary to drive the call-by-value evaluator so that it discards those
expressions whose evaluation is not needed. Furthermore, we have
shown that this information can be obtained by program transfor-
mation. We have formally defined the resulting lazy call-by-value
semantics and have proved its correctness. Our first experiments
with a prototypical implementation of a debugger are encouraging.

The approach is a completely new technique of relating lazy
and call-by-value computations. Although we developed it in the
context of debugging it should be applicable to arbitrary analyzes of
the run-time behavior of lazy functional language. As future work,
we expect many fruitful applications of this technique and want to
improve the implementation as well as the available back ends.

References
B. Braßel, S. Fischer, M. Hanus, F. Huch, and G. Vidal. Lazy Call-By-Value

Evaluation. Technical report, CAU Kiel, 2007.

A. Gill. Debugging Haskell by Observing Intermediate Data Structures. In
Proc. of the 4th Haskell Workshop. Technical report of the University of
Nottingham, 2000.

J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. of
the ACM Symp. on Principles of Programming Languages (POPL’93),
pages 144–154. ACM Press, 1993.

H. Nilsson. Tracing Piece by Piece: Affordable Debugging for Lazy Func-
tional Languages. In Proc. of the 1999 Int’l Conf. on Functional Pro-
gramming (ICFP’99), pages 36–47. ACM Press, 1999.

H. Nilsson. How to look busy while being as lazy as ever: the implementa-
tion of a lazy functional debugger. Journal of Functional Programming,
11(6):629–671, 2001.

H. Nilsson and J. Sparud. The Evaluation Dependence Tree as a Basis
for Lazy Functional Debugging. Automated Software Engineering, 4(2):
121–150, 1997.

S.L. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised
Report. Cambridge University Press, 2003.

B. Pope. Declarative Debugging with Buddha. In V. Vene and T. Uustalu,
editors, Advanced Functional Programming, 5th International School,
AFP 2004, volume 3622 of Lecture Notes in Computer Science, pages
273–308. Springer Verlag, September 2005. ISBN 3-540-28540-7.

B. Pope and Lee Naish. Practical aspects of declarative debugging in
Haskell-98. In Fifth ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, pages 230–240, 2003. ISBN:1-
58113-705-2.

P.M. Sansom and S.L. Peyton Jones. Formally Based Profiling for Higher-
Order Functional Languages. ACM Transactions on Programming Lan-
guages and Systems, 19(2):334–385, 1997.

E. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge,
Massachusetts, 1983.

J. Sparud and C. Runciman. Complete and Partial Redex Trails of Func-
tional Computations. In Proc. of the 9th Int’l Workshop on the Imple-
mentation of Functional Languages (IFL’97), pages 160–177. Springer
LNCS 1467, 1997a.

J. Sparud and C. Runciman. Tracing Lazy Functional Computations Us-
ing Redex Trails. In Proc. of the 9th Int’l Symp. on Programming Lan-
guages, Implementations, Logics and Programs (PLILP’97), pages 291–
308. Springer LNCS 1292, 1997b.

M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-View Tracing
for Haskell: a New Hat. In Proc. of the 2001 ACM SIGPLAN Haskell
Workshop. Universiteit Utrecht UU-CS-2001-23, 2001.

