
Equivalence Checking of Non-deterministic Operations

Sergio Antoy1 Michael Hanus2

1 Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. Checking the semantic equivalence of operations is an important task
in software development. For instance, regression testing is a routine task when
software systems are developed and improved, and software package managers
require the equivalence of operations in different versions of a package within the
same major version. In order to support a good automation of this process, a solid
foundation is required. It has been shown that the notion of equivalence is not
obvious when non-deterministic features are present. In this paper, we discuss a
general notion of equivalence in functional logic programs and develop a practical
method to check it. Our method can be integrated in a property-based testing tool
which is used in a software package manager to check the semantic versioning of
software packages.

1 Motivation

Functional logic languages combine the most important features of functional and logic
programming in a single language (see [4, 14] for recent surveys). In this paper we
consider Curry [18], a contemporary functional logic language which conceptually ex-
tends Haskell with common features of logic programming. Hence, Curry combines the
demand-driven evaluation of functions with non-deterministic evaluation of operations
defined by overlapping rules. As discussed in [6], the combination of these features
poses new issues for defining the equivalence of expressions. Actually, three different
notions of equivalence can be distinguished:

1. Ground equivalence: Two expressions are equivalent if they have the same results
when their variables are replaced by ground terms.

2. Computed-result equivalence: Two expressions are equivalent if they have the same
outcomes, i.e., variables in expressions are considered as free variables which might
be instantiated during the evaluation process.

3. Contextual equivalence: Two expressions are equivalent if they produce the same
outcomes in all possible contexts.

Ground equivalence seems reasonable for functional programs since free variables are
not allowed in expressions to be evaluated in functional programming. For instance,
consider the Boolean negation defined by
not False = True
not True = False

The expressions not(not x) and x are ground equivalent, which can be checked eas-
ily by instantiating x to True and False, respectively, and evaluating both expressions.
However, these expressions are not computed-result equivalent w.r.t. the narrowing se-
mantics of functional logic programming: the expression not(not x) evaluates to the
two outcomes {x=False} False and {x=True} True,3 whereas the expression x eval-
uates to the single result {} x without instantiating the free variable x. Due to this differ-
ences, Bacci et al. [6] states that ground equivalence is “the (only possible) equivalence
notion used in the pure functional paradigm.” As we will see later, this is not true since
contextual equivalence is also relevant in non-strict functional languages.

The previous example shows that the evaluation of ground equivalent expressions
might result in answers with different degrees of instantiation. However, the presence
of logic variables and non-determinism might also lead to different results when ground
equivalent expressions are put in a same context. For instance, consider the following
contrived example [6] (a more natural example will be shown later):
f x = C (h x) g A = C A
h A = A

The expressions f x and g x are computed-result equivalent since the only computed
result is {x=A} C A. Now consider the following operation:
k (C x) B = B

Then the expression k(f x) x evaluated lazily produces {x=B} B, whereas the expres-
sion k(g x) x produces no values. In fact, the evaluation of g x instantiates (narrows)
x to A, and k(C A) A is irreducible. Hence, the ground and computed-result equivalent
expressions are not contextually equivalent.

The equivalence of operations is important when existing software packages are
further developed, e.g., refactored or implemented with more efficient data structures.
In this case, we want to ensure that operations available in the API of both versions of a
software package are equivalent, as long as we do not introduce intended API changes.
For this purpose, software package management systems associate version numbers to
software packages. In the semantic versioning standard,4 a version number consists of
major, minor, and patch number, separated by dots, and an optional pre-release specifier.
For instance, 2.0.1 and 3.2.1-alpha.2 are valid version numbers. An intended and
incompatible change of API operations is marked by a change in the major version
number. Thus, operations available in two versions of a package with identical major
version numbers should be equivalent. Unfortunately, most package managers do not
check this equivalence but leave it as a recommendation to the package developer.

Improving this situation is the motivation for our work. We want to develop a tool to
check the equivalence of two operations. Since we aim to integrate this kind of semantic
versioning checking in a practical software package manager [16], the tool should be
fully automatic. Thus, we are going to test equivalence properties rather than verify
them. Although this might be unsatisfactory from a theoretical point of view, it could
be quite powerful from a practical point of view and might prevent wasting time to
prove incorrect properties. For instance, property-based test tools like QuickCheck [8]

3 Note that functional logic languages compute a substitution as well as a value as a result.
4 http://www.semver.org

provide great confidence in programs by checking program properties with many test
inputs. For instance, we could check the equivalence of two operations f and f ′ by
checking the equation f x = f ′ x with many values for x. The previous discussion of
equivalence criteria shows that this property checks only the ground equivalence of f
and f ′. However, in the context of semantic versioning checking, ground equivalence is
too restricted since equivalent operations should deliver the same results in any context.
Therefore, contextual equivalence is desired. Actually, this kind of equivalence has been
proposed in [5] as the only notion to state the correctness of an implementation w.r.t.
a specification in functional logic programming. Unfortunately, the automatic checking
of contextual equivalence with property-based test tools does not seem feasible due to
the unlimited number of possible contexts. Therefore, Bacci et al. [6] state: “In a test-
based approach. . . the addition of a further outer context would dramatically alter the
performance.” Therefore, the authors abandon the use of a standard property-based test
tool in their work.

In this paper we show that we can use such tools for contextual equivalence (and,
thus, semantic versioning) checking if we use an appropriate encoding of test data. For
this purpose, we develop some theoretical results that allow us to reduce the contexts
to be considered for equivalence checking. From these results, we show how property-
based testing can be used for this purpose. Based on these results, we extend an existing
property-based test tool for functional logic programs [15] to test the equivalence of
operations. This is the basis of a software package manager with semantic versioning
checking [16].

In the next section, we review the main concepts of functional logic programming
and Curry. Section 3 defines our notion of equivalence which is used in Sect. 4 to
develop practically useful characterizations of equivalent operations. Section 5 shows
how to use these criteria in a property-based testing tool. Section 6 discusses some
related work before we conclude.

2 Functional Logic Programming and Curry

We briefly review those elements of functional logic languages and Curry that are nec-
essary to understand the contents of this paper. More details can be found in surveys on
functional logic programming [4, 14] and in the language report [18].

Curry is a declarative multi-paradigm language combining in a seamless way fea-
tures from functional and logic programming. The syntax of Curry is close to Haskell
[23]. In addition to Haskell, Curry allows free (logic) variables in conditions and right-
hand sides of rules. Thus, expressions in Curry programs contain operations (defined
functions), constructors (introduced in data type declarations), and variables (argu-
ments of operations or free variables). Function calls with free variables are evaluated
by a possibly non-deterministic instantiation of demanded arguments [2]. In contrast
to Haskell, rules with overlapping left-hand sides are non-deterministically (and not
sequentially) applied.

Example 1. The following example shows the definition of a non-deterministic list in-
sertion operation in Curry:

insert :: a → [a] → [a]
insert x ys = x : ys
insert x (y:ys) = y : insert x ys

For instance, the expression insert 0 [1,2] non-deterministically evaluates to one of
the values [0,1,2], [1,0,2], or [1,2,0]. Based on this operation, we can easily
define permutations:
perm [] = []
perm (x:xs) = insert x (perm xs)

Thus, perm [1,2,3,4] non-deterministically evaluates to all 24 permutations of the
input list.

Non-deterministic operations, which are interpreted as mappings from values into sets
of values [13], are an important feature of contemporary functional logic languages.
Using non-deterministic operations as arguments could cause a semantical ambiguity.
Consider the operations
coin = 0 double x = x + x
coin = 1

Standard term rewriting produces, among others, the derivation
double coin → coin + coin → 0 + coin → 0 + 1 → 1

whose result is (presumably) unintended. Therefore, González-Moreno et al. [13] pro-
posed the rewriting logic CRWL as a logical foundation for declarative programming
with non-strict and non-deterministic operations. This logic specifies the call-time choice
semantics [19] where values of the arguments of an operation are set, though not com-
puted, before the operation is evaluated. In a lazy strategy, this is naturally obtained by
sharing. For instance, the two occurrences of coin in the derivation above are shared so
that “double coin” has only two results: 0 or 2. Since standard term rewriting does
not conform to the intended call-time choice semantics, other notions of rewriting have
been proposed to formalize this idea, like graph rewriting [11, 12] or let rewriting [21].
In this paper, we use a simple reduction relation that we sketch without giving all details
(which can be found in [21]).

In the following, we ignore free (logic) variables since they can be considered as
syntactic sugar for non-deterministic data generator operations [3]. Thus, a value is
an expression without operations or free variables. To cover non-strict computations,
expressions can also contain the special symbol⊥ to represent undefined or unevaluated
values. A partial value is a value containing occurrences of ⊥. A partial constructor
substitution is a substitution that replaces variables by partial values. A context C[·] is
an expression with some “hole”. The reduction relation we use throughout this paper is
defined as follows (conditional rules are not considered for the sake of simplicity):

Fun C[f σ(t1) . . . σ(tn)] → C[σ(r)] where f t1 . . . tn = r is a program rule
and σ a partial constructor substitution

Bot C[e] → C[⊥] where e 6= ⊥
The first rule models call-time choice: if a rule is applied, the actual arguments of the
operation must have been evaluated to partial values. The second rule models non-
strictness by allowing the evaluation of any subexpression to an undefined value (which

is intended if the value of this subexpression is not demanded). As usual, ∗→ denotes
the reflexive and transitive closure of this reduction relation. The equivalence of this
rewrite relation and CRWL is shown in [21].

3 Equivalent Operations

As discussed above, equivalence of operations can be defined in different ways. Ground
equivalence and computed result equivalence only compare the values of applications.
This is too weak since some operations have no finite values.

Example 2. Consider the following operations that generate infinite lists of numbers:
ints1 n = n : ints1 (n+1) ints2 n = n : ints2 (n+2)

Since these operations do not produce finite values, we cannot detect any difference
when comparing only computed results. However, they behave different when put into
some context, e.g., an operation that selects the second element of a list:
snd (x:y:zs) = y

Now, snd (ints1 0) and snd (ints2 0) evaluate to 1 and 2, respectively.

Therefore, we do not consider these operations as equivalent. This motivates the fol-
lowing notion of equivalence for possibly non-terminating and non-deterministic oper-
ations.5

Definition 1 (Equivalence). Let f1, f2 be operations of type τ → τ ′. f1 is equivalent
to f2 iff, for any expression E1, E1

∗→ v iff E2
∗→ v, where v is a value and E2 is

obtained from E1 by replacing each occurrence of f1 with f2.

This notion of equivalence conforms with the usual notion of contextual equivalence
in programming languages (e.g., see [25] for a tutorial). It was already proposed in [5]
as the notion of equivalence for functional logic programs and also defined in [6] as
“contextual equivalence” for functional logic programs.

Thus, ints1 and ints2 are not equivalent. Moreover, even terminating operations
that always compute same results might not be equivalent if put into some context.

Example 3. Consider the definition of lists sorted in ascending order:
sorted [] = True
sorted [_] = True
sorted (x:y:zs) = x<=y && sorted (y:zs)

We can use this definition and the definition of permutations above to provide a precise
specification of sorting a list by computing some sorted permutation:
sort xs | sorted ys = ys where ys = perm xs

We might try to obtain an even more compact formulation by defining the “sorted”
property as an operation that is the (partial) identity on sorted lists:

5 The extension to operations with several arguments is straightforward. For the sake of simplic-
ity, we formally define our notions only for unary operations.

idSorted [] = []
idSorted [x] = [x]
idSorted (x:y:zs) | x<=y = x : idSorted (y:zs)

Then we can define another operation to sort a list by composing perm and idSorted:
sort’ xs = idSorted (perm xs)

Although both sort and sort’ compute sorted lists, they might behave differently in
a same context. For instance, suppose we want to compute the minimum of a list by
returning the head element of the sorted list:
head (x:xs) = x

Then head (sort [3,2,1]) returns 1, as expected, but head (sort’ [3,2,1]) re-
turns 1 as well as 2. The latter unintended value is obtained by computing the per-
muation [2,3,1] so that head (idSorted [2,3,1]) returns 2, since the list rest
idSorted [3,1] is not evaluated due to non-strictness.

This example shows that our strong notion of equivalence is reasonable. However, test-
ing this equivalence might require the generation of arbitrary contexts. Therefore, we
show in the next section how to avoid this context generation.

4 Refined Equivalence Criteria

The definition of equivalence as stated in Def. 1 covers the intuition that equivalent
operations can be interchanged at any place in an expression without changing its value.
Proving such a general form of equivalence could be difficult. Therefore, we define
another form of equivalence that is based on an operation to observe the computed
results of the corresponding operations.

Definition 2 (Observable equivalence). Let f1, f2 be operations of type τ → τ ′. f1 is
observably equivalent to f2 iff, for all operations g of type τ ′ → τ ′′, all expressions e
and values v, g (f1 e)

∗→ v iff g (f2 e)
∗→ v.

We can expect that proving observable equivalence is easier than equivalence since we
trade a context made of an arbitrary expression with multiple occurrences of a function
f with a single function call with a single occurrence of f . Fortunately, the next theorem
shows that proving observable equivalence is sufficient in general.

Theorem 1. Let f1, f2 be operations of type τ → τ ′. f1 and f2 are equivalent iff they
are observably equivalent.

Proof. It is trivial that equivalence implies observable equivalence. Hence, we assume
that f1 are f2 are observably equivalent, i.e., for all operations g of type τ ′ → τ ′′, all
expressions e and values v, g (f1 e)

∗→ v iff g (f2 e)
∗→ v. We show by induction on

the number n of occurrences of the symbol f1 the following claim:

If E1 is an expression with n occurrences of f1, E2 is obtained from E1 by
replacing each occurrence of f1 with f2, and v is a value, then E1

∗→ v iff
E2

∗→ v.

Base case (n = 0): Since E1 contains no occurrence of f1, E2 = E1 and the claim is
trivially satisfied.

Inductive case (n > 0): Assume the claim holds for n − 1 and E1 contains n
occurrences of f1 and E1

∗→ v for some value v. We have to show that E2
∗→ v

(the opposite direction is symmetric) where E2 is obtained from E1 by replacing each
occurrence of f1 with f2. Let p be a position in E1 with E1|p = f1 e and e does not
contain any occurrence of f1. Since E1

∗→ v, by definition of ∗→, there is a partial value
t1 with f1 e

∗→ t1 and E1[t1]p
∗→ v. We define a new operation g by

g x = E1[x]p

where x is a variable that does not occur inE1. Hence g (f1 e)
∗→ g t1 → E1[t1]p

∗→ v.
Our assumption implies g (f2 e)

∗→ v. By definition of ∗→, there is a partial value t2
with g (f2 e)

∗→ g t2 → E1[t2]p
∗→ v. Since E1[t2]p contains n − 1 occurrences of

f1, the induction hypothesis implies that E2[t2]p
∗→ v. Therefore, E2 = E2[f2 e]p

∗→
E2[t2]p

∗→ v. ut

A proof that two operations are observably equivalent could still be difficult since we
have to take all possible observation operations into account. However, the next result
shows that it is sufficient to verify that two operations yield always the same partial
values on identical inputs.

Theorem 2. Let f1, f2 be operations of type τ → τ ′. If, for all expressions e and partial
values t, f1 e

∗→ t iff f2 e
∗→ t, then f1 and f2 are equivalent.

Proof. By Theorem 1 it is sufficient to show the observable equivalence of f1 and f2.
Hence, let g be an operation of type τ ′ → τ ′′, e an expression and v a value with
g (f1 e)

∗→ v. We have to show that g (f2 e)
∗→ v (the other direction is symmetric).

By definition of ∗→, there is some partial value t with f1 e
∗→ t and g t ∗→ v. By the

assumption of the theorem, f2 e
∗→ t. Hence, g (f2 e)

∗→ g t
∗→ v. ut

Note that the consideration of all partial result values is essential to establish equiv-
alence. For instance, consider the operations sort and sort’ defined in Sect. 3. Al-
though sort and sort’ compute the same values, we have that sort’ [2,3,1]

∗→
2:⊥ but sort [2,3,1] cannot be derived to 2:⊥. Actually, we have seen that sort
and sort’ are not equivalent.

The following result is the converse of Theorem 2. It shows that not only having
the same partial values is a sufficient condition for the equivalence of function, but also
a necessary condition. For partial values t and u, we write t < u iff t is obtained by
one or more applications of the Bot rule to u. It follows that if u is a partial value of
an expression e, then any t < u is also a partial value of e. If t is a partial value, we
denote by t̄ an expression obtained from t by replacing any instance of ⊥ in t with a
fresh variable.

Theorem 3. Let f1, f2 be operations of type τ → τ ′. If, for some expression e, the
partial values of f1 e differ from those of f2 e, then f1 and f2 are not equivalent.

Proof. We construct a function g that, under the statement hypothesis, witnesses the
non-equivalence of f1 and f2. Let T1 be the set of partial values of f1 e and T2 the set
of partial values of f2 e. W.l.o.g., we assume that there exists some partial value t ∈ T1
such that t 6∈ T2. Let g be defined by the single rule:

g t̄→ 0

Then, g (f1 e)
∗→ g t → 0, whereas we show that g (f2 e) 6

∗→ 0. Suppose the contrary.
Then, it must be that f2 e

∗→ u with u is an instance of t̄. This implies t < u, which in
turn implies t ∈ T2. ut

The next corollary is useful to avoid the consideration of all argument expressions in
equivalence proofs.

Corollary 1. Let f1, f2 be operations of type τ → τ ′. If, for all partial values t and t′,
f1 t

∗→ t′ iff f2 t
∗→ t′, then f1 and f2 are equivalent.

Proof. Assume that f1 t
∗→ t′ iff f2 t

∗→ t′ holds for all partial values t and t′. Consider
an expression e and a partial value t1 such that f1 e

∗→ t1. By definition of ∗→, there
is a partial value t0 with e ∗→ t0 and f1 t0

∗→ t1. Our assumption implies f2 t0
∗→ t1.

Hence f2 e
∗→ f2 t0

∗→ t1. Since the other direction is symmetric, Theorem 2 implies
the equivalence of f1 and f2. ut

Hence, we have a sufficient criterion for equivalence checking which does not require
the enumeration of arbitrary contexts. Instead, it is sufficient to test the equivalence on
all partial values. Such a test can be performed by property-based test tools, as shown
in the next section.

One may wonder whether the consideration of values instead of partial values is
enough for equivalence checking. The next example shows that the answer is negative.

Example 4. Consider the following operations that take and return Booleans.
f1 True = True f2 _ = True
f1 False = True

Functions f1 and f2 behave identically on every input value. However, f1 ⊥ has no
value, whereas f2 ⊥ has value True. Thus, values as arguments are not as discrimi-
nating as partial values to expose a difference in behavior, whereas partial values are
as discriminating as expressions. Actually, f1 and f2 are not equivalent: consider the
operation failed which has no value.6 Then f2 failed has value True whereas
f1 failed has no value.

Corollary 1 requires to compare all partial result values and not just computed results.
The former is more laborious since an expression might evaluate to many partial values
even if it has a single value. For instance, consider the list generator
fromTo m n = if m>n then [] else m : fromTo (m+1) n

6 A possible definition is: failed = head []

The expression fromTo 1 5 evaluates to the single value [1,2,3,4,5]. According
to the reduction relation defined in Sect. 2, the same expression reduces to the partial
values ⊥, ⊥:⊥, 1:⊥, ⊥:⊥:⊥, 1:⊥:⊥, ⊥:2:⊥, 1:2:⊥, . . . If operations are non-
terminating, it is necessary to consider partial result values in general. For instance,
ints1 0 and ints2 0 do not evaluate to a value but they evaluate to the different partial
values 0:1:⊥ and 0:2:⊥, respectively, which shows the non-equivalence of ints1
and ints2 by Cor. 1. Thus, one may wonder whether for “well behaved” operations it
suffices to consider only result values. This good behavior is captured by the property
that a function returns a value for any argument value, see Def. 3. Unfortunately, the
answer is negative.

Definition 3 (Terminating, totally defined). Let f be an operation of type τ → τ ′. f
is terminating if, for all values t of type τ , any rewrite sequence f t→ t1 → t2 → · · ·
is finite. f is totally defined if, for all values t of type τ , rewrite rule Fun is applicable
to f t.

Requiring termination as a condition of good behavior is necessary, as the operations
ints1 and ints2 show. Total definedness is also necessary, as can be seen by this
example:
g1 x = 1 : head []

g2 x = 2 : head []

g1 and g2 are terminating but head is not totally defined. Actually, both g1 0 and g2 0
have no value but they are not equivalent: head (g1 0) and head (g2 0) evaluate to 1
and 2, respectively.

Example 5. Functions h1 and h2, defined below, are totally defined and terminating.
For any Boolean value t, h1 t and h2 t produce the same value result, namely t. How-
ever, h1 and h2 are not observably equivalent when applied to argument failed as
witnessed by g.
h1 True = Just True h2 x = Just x
h1 False = Just False g (Just _) = 0

Note that we have to use partial input values for equivalence tests even if all relevant
operations are terminating and totally defined. This has been shown in Example 4, since
both operations of this example are terminating and totally defined.

Now we have enough refined criteria to implement an equivalence checker with a
property-based checking tool.

5 Property-based Checking

Property-based testing is a useful technique to obtain reliable software systems. Testing
cannot verify the correctness of programs, but it can be performed automatically and
it might prevent wasting time when attempting to prove incorrect properties. If proof
obligations are expressed as properties, i.e., Boolean expressions parameterized over
input data, and we test these properties with a lot of input data, we have a higher con-
fidence in the correctness of the properties. This motivates the use of property testing

tools which automate the checking of properties by random or systematic generation
of test inputs. Property-based testing has been introduced with the QuickCheck tool [8]
for the functional language Haskell and adapted to other languages, like PrologCheck
[1] for Prolog, PropEr [22] for the concurrent functional language Erlang, and Easy-
Check [7] and CurryCheck [15] for the functional logic language Curry. If the test data
is generated in a systematic (and not random) manner, like in SmallCheck [26], GAST
[20], EasyCheck [7], or CurryCheck [15], these tools can actually verify properties for
finite input domains. In the following, we show how to extend the property-based test
tool CurryCheck to support equivalence checking of operations.

Properties can be defined in source programs as top-level entities with result type
Prop and an arbitrary number of parameters. CurryCheck offers a predefined set of
property combinators to define properties. In order to compare expressions involving
non-deterministic operations, CurryCheck offers the property “<˜>” which has the type
a→a→Prop. It is satisfied if both arguments have identical result sets. For instance,
we can state the requirement that permutations do not change the list length by the
property
permLength xs = length (perm xs) <˜> length xs

Since the left argument of “<˜>” evaluates to many (expectedly identical) values, it is
relevant that “<˜>” compares result sets (rather than multi-sets). This is reasonable from
a declarative programming point of view, since it is irrelevant how often some result is
computed.

Corollary 1 provides a specific criterion for equivalence testing: Two operations f1
and f2 are equivalent if, for any partial argument value, they produce the same partial
result value. Since partial values cannot be directly compared, we model partial values
by extending total values with an explicit ⊥ constructor. For instance, consider the data
types used in Sect. 1. Assume that they are defined by
data AB = A | B

data C = C AB

We define their extension to partial values by renaming all constructors and adding a ⊥
constructor to each type:
data P_AB = Bot_AB | P_A | P_B

data P_C = Bot_C | P_C P_AB

In order to compare the partial results of two operations, we introduce operations that
return the partial value of an expression w.r.t. a given partial value, i.e., the expression
is partially evaluated up to the degree required by the partial value (and it fails if the
expression has not this value). These operations can easily be implemented for each
data type:
peval_AB :: AB → P_AB → P_AB
peval_AB _ Bot_AB = Bot_AB -- no evaluation
peval_AB A P_A = P_A
peval_AB B P_B = P_B

peval_C :: C → P_C → P_C
peval_C _ Bot_C = Bot_C -- no evaluation
peval_C (C x) (P_C y) = P_C (peval_AB x y)

Now we can test the equivalence of f and g by evaluating both operations to the same
partial value. Thus, a single test consists of the application of each operation to an input
x and a partial result value p together with checking whether these applications produce
p:
f_equiv_g x p = peval_C (f x) p <˜> peval_C (g x) p

To check this property, CurryCheck systematically enumerates partial values for x (see
below how this can be implemented) and values for p. During this process, CurryCheck
generates the inputs x=failed and p=(P-C Bot-AB) for which the property does not
hold. This shows that f and g are not equivalent.

In a similar way, we can model partial list result values and test whether sort and
sort’, as defined in Sect. 3, are equivalent. If the domain of list elements has three
values (like the standard type Ordering with values LT, EQ, and GT), CurryCheck
reports a counter-example (a list with three different elements computed up to the first
element) with the 89th test. The high number of tests is due to the fact that test inputs
as well as partial output values are enumerated to test each property.

The number of test cases can be significantly reduced by a different encoding. In-
stead of enumerating operation inputs as well as partial result values, we can enumerate
operation inputs only and use a non-deterministic operation which returns all partial
result values of some given expression. For our example types, these operations can be
defined as follows:
pvalOf_AB :: AB → P_AB
pvalOf_AB _ = Bot_AB
pvalOf_AB A = P_A
pvalOf_AB B = P_B

pvalOf_C :: C → P_C
pvalOf_C _ = Bot_C
pvalOf_C (C x) = P_C (pvalOf_AB x)

Now we can test the equivalence of f and g by checking whether both operations have
the same set of partial values for a given input:
f_equiv_g x = pvalOf_C (f x) <˜> pvalOf_C (g x)

CurryCheck returns the same counter-example as before. This is also true for the per-
mutation sort example, but now the counter-example is found with the 11th test.

Due to the reduced search space of our second implementation of equivalence
checking, we might think that this method should always be preferred. However, in
case of non-terminating operations, it is less powerful. For instance, consider the opera-
tions ints1 and ints2 of Example 2. Since ints1 0 has an infinite set of partial result
values, the equivalence test with pvalOf operations would try to compare sets with in-
finitely many values. Thus, it would not terminate and does not yield a counter-example.
However, the equivalence test with peval operations returns a counter-example by fix-
ing a partial term (e.g., a partial list with at least two elements) and evaluating ints1

and ints2 up to this partial list.
Based on these considerations, equivalence checking is implemented in CurryCheck

as follows. First, CurryCheck provides a specific “operation equivalence” property de-
noted by <=>. Hence,

f_equiv_g = f <=> g

denotes the property that f and g are equivalent operations. In contrast to other proper-
ties like “<˜>”, which are implemented by some Curry code [7], the property “<=>” is
just a marker7 which will be transformed by CurryCheck into a standard property based
on the results of Sect. 4. For this purpose, CurryCheck transforms the property above
as follows:

1. If both operations f and g are terminating, then the sets of partial result values are
finite so that these sets can be compared in a finite amount of time. Thus, if T is
the result type of f and g, the auxiliary operation pvalOf-T (and similarly for all
types on which T depends) is generated as shown above and the following property
is generated:
f_equiv_g x = pvalOf_T (f x) <˜> pvalOf_T (g x)

2. Otherwise, for each partial value, CurryCheck tests whether both operations com-
pute this result. Thus, if T is the result type of f and g, the auxiliary operation
peval-T (and similarly for all types on which T depends) is generated as shown
above and the following property is generated:
f_equiv_g x p = peval_T (f x) p <˜> peval_T (g x) p

In order to decide between these transformation options, CurryCheck uses the analysis
framework CASS [17] to approximate the termination behavior of both operations. If
the termination property of both operations can be proved (for this purpose, CASS uses
an ordering on arguments in recursive calls), the first transformation is used, otherwise
the second. If the termination cannot be proved but the programmer is sure about the ter-
mination of both operations, he can also mark the property with the suffix ’TERMINATE
to tell CurryCheck to use the first transformation.

Example 6. Consider the recursive and non-recursive definition of the McCarthy 91
function:
mc91r n = if n > 100 then n-10 else mc91r (mc91r (n+11))

mc91n n = if n > 100 then n-10 else 91

Since CASS is not able to check the termination of mc91r, we annotate the equivalence
property so that CurryCheck uses the first transformation:
mc91r_equiv_mc91n’TERMINATE = mc91r <=> mc91n

Due to the results of Sect. 4, the generated properties must be checked with all partial
input values. In the default mode, CurryCheck generates (total) values for input param-
eters of properties. However, CurryCheck also supports the definition of user-defined
generators for input parameters (see [15] for details). For instance, one can define a
generator for partial Boolean values by
genBool = genCons0 failed ||| genCons0 False ||| genCons0 True

7 CurryCheck also ensures that both arguments of “<=>” are defined operations, otherwise an
error is reported.

CurryCheck automatically defines generators for partial values of all data types occur-
ring in equivalence properties.

According to the results of Sect. 4, checking the above properties allows us to find
counter-examples for non-equivalent operations if the domain of values is finite (as in
the example of Sect. 1) or we enumerate enough test inputs. An exception are specific
non-terminating operations. For instance, consider the contrived operations
k1 = [loop,True]
k2 = [loop,False]

where the evaluation of loop does not terminate. The non-equivalence of k1 and k2 can
be detected by evaluating them to [⊥,True] and [⊥,False], respectively. Since a
systematic enumeration of all partial values might generate the value [True,⊥] before
[⊥,True], CurryCheck might not find the counter-example due to the non-termination
of loop (since CurryCheck performs all tests in a sequential manner). Fortunately, this
is a problem which rarely occurs in practice. Not all non-terminating operations are
affected by this problem but only operations that loop without producing any data.
For instance, the non-equivalence of ints1 and ints2 of Example 2 can be shown
with our approach. Such operations are called productive in [16]. Intuitively, productive
operations always generate some data after a finite number of steps.

In order to avoid such non-termination problems when CurryCheck is used in an
automatic manner (e.g., by a software package manager), CurryCheck has an option for
a “safe” execution mode. In this mode, operations involved in an equivalence property
are analyzed for their productivity behavior. If it cannot be proved that an operation
is productive (by approximating their run-time behavior with CASS), the equivalence
check for this operation is ignored. This ensures the termination of all equivalence tests.
The restriction to productive operations is not a serious limitation since, as evaluated in
[16], most operations occurring in practical programs are actually productive. If there
are operations where CurryCheck cannot prove productivity but the programmer is sure
about this property, the property can be annotated with the suffix ’PRODUCTIVE so that
it is also checked in the safe mode.

Example 7. Consider the definition of all prime numbers by the sieve of Eratosthenes:
primes = sieve [2..]
where sieve (x:xs) = x : sieve (filter (\y → y ‘mod‘ x > 0) xs)

After looking at the first four values of this list, a naive programmer might think that
the following prime generator is much simpler:
dummy_primes = 2 : [3,5..]

Testing the equivalence of these two operations is not possible in the safe mode, since
the productivity of primes depends on the fact that there are infinitely many prime
numbers. Hence, a more experienced programmer would annotate the equivalence test
as
primes_equiv’PRODUCTIVE = primes <=> dummy_primes

so that it will be tested even in the safe mode and CurryCheck finds a counter-example
(evaluating the result list up to the first five elements) to this property.

6 Related Work

Equivalence of operations was defined for functional logic programs in [5]. There, this
notion is applied to relate specifications and implementations. Moreover, it is shown
how to use specifications as dynamic contracts to check the correct behavior of imple-
mentations at run-time, but static methods to check equivalence are not discussed.

Bacci et al. [6] formalized various notions of equivalence, as reviewed in Sect. 1,
and developed the tool AbsSpec which derives specifications, i.e., equations up to some
fixed depth of the involved expressions, from a given Curry program. Although the
derived specifications are equivalent to the implementation, their method cannot be used
to check the equivalence of arbitrary operations (and AbsSpec does no longer work at
the time of this writing).

QuickSpec [9] has similar goals as AbsSpec but is based on a different setting.
QuickSpec infers specifications in form of equations from a given functional program
but it uses a black box approach, i.e., it uses testing to infer program properties. Thus, it
can be seen as an intermediate approach between AbsSpec and our approach: similarly
to our approach, QuickSpec uses property-based testing to check the correctness of
specifications, but it is restricted to functional programs, which simplifies the notion of
equivalence.

Our method to check equality of computed results for all partial values is also
related to test properties in non-strict functional languages [10]. Thanks to the non-
deterministic features of Curry, our approach does not require impure features like
isBottom or unsafePerformIO, which are used in [10] to compare partial values.

Partial values as inputs for property-based testing are also used in Lazy SmallCheck
[26], a test tool for Haskell which generates data in a systematic (not random) manner.
Partial input values are used to reduce the number of test cases: if a property is satisfied
for a partial value, it is also satisfied for all refinements of this partial value so that it
is not necessary to test these refinements. Thus, Lazy SmallCheck exploits partial val-
ues to reduce the number of test cases for total values, where in our approach partial
values are used to avoid testing with all possible contexts and to find counter examples
which might not be detected with total values only. In contrast to our explicit encoding
of partial values, which is possible due to the logic features of Curry, Lazy SmallCheck
represents partial values as run-time errors which are observed using imprecise excep-
tions [24].

The use of property-based testing to check the equivalence of operations in a soft-
ware package manager with support for semantic versioning is proposed in [16]. This
approach concentrates on ensuring the termination of equivalence checking by intro-
ducing the notion of productive operations. However, for terminating operations only
ground equivalence is tested so that the proposed semantic versioning checking method
is more restricted than in our case. The results presented in this paper can be used to
generalize this semantic versioning tool.

7 Conclusions

We have presented a method to check the equivalence of operations defined by a func-
tional logic program. This method is useful for software package managers to provide

automatic semantic versioning checks, i.e., to compare two different versions of a soft-
ware package, or to check the correctness of an implementation against a specification.
Since we developed our results for a non-strict functional logic language, the same tech-
niques can be used to test equivalence in purely functional languages, e.g., for Haskell
programs.

We have shown that the general equivalence of operations, which requires that the
same values are computed in all possible contexts, can be reduced to checking or prov-
ing equality of partial results terms. Our results support the use of automatic property-
based test tools for equivalence checking. Although this method is incomplete, i.e., it
does not formally ensure equivalence, it provides a high confidence and prevent wast-
ing time in attempts to prove incorrect equivalence properties. Moreover, the presented
results could also be helpful for manual proof construction or using proof assistants.

For future work, we will integrate our method in the software package manager
CPM [16]. Furthermore, it is interesting to explore how automatic theorem provers can
be used to verify specific equivalence properties.

Acknowledgments. The authors are grateful to Finn Teegen for constructive remarks
to an initial version of this paper, and to the anonymous reviewers for their helpful
comments to improve this paper. This material is based in part upon work supported by
the National Science Foundation under Grant No. 1317249.

References

1. C. Amaral, M. Florido, and V. Santos Costa. PrologCheck - property-based testing in Pro-
log. In Proc. of the 12th International Symposium on Functional and Logic Programming
(FLOPS 2014), pages 1–17. Springer LNCS 8475, 2014.

2. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of the ACM,
47(4):776–822, 2000.

3. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic programs.
In Proceedings of the 22nd International Conference on Logic Programming (ICLP 2006),
pages 87–101. Springer LNCS 4079, 2006.

4. S. Antoy and M. Hanus. Functional logic programming. Communications of the ACM,
53(4):74–85, 2010.

5. S. Antoy and M. Hanus. Contracts and specifications for functional logic programming. In
Proc. of the 14th International Symposium on Practical Aspects of Declarative Languages
(PADL 2012), pages 33–47. Springer LNCS 7149, 2012.

6. G. Bacci, M. Comini, M.A. Feliú, and A. Villanueva. Automatic synthesis of specifications
for first order Curry. In Principles and Practice of Declarative Programming (PPDP’12),
pages 25–34. ACM Press, 2012.

7. J. Christiansen and S. Fischer. EasyCheck - test data for free. In Proc. of the 9th International
Symposium on Functional and Logic Programming (FLOPS 2008), pages 322–336. Springer
LNCS 4989, 2008.

8. K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of Haskell
programs. In International Conference on Functional Programming (ICFP’00), pages 268–
279. ACM Press, 2000.

9. K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guessing formal specifications us-
ing testing. In 4th International Conference on Tests and Proofs (TAP 2010), pages 6–21.
Springer LNCS 6143, 2010.

10. N.A. Danielsson and P. Jansson. Chasing bottoms: A case study in program verification in
the presence of partial and infinite values. In 7th International Conference on Mathematics
of Program Construction (MPC 2004), pages 85–109. Springer LNCS 3125, 2004.

11. R. Echahed and J.-C. Janodet. On constructor-based graph rewriting systems. Research
report imag 985-i, IMAG-LSR, CNRS, Grenoble, 1997.

12. R. Echahed and J.-C. Janodet. Admissible graph rewriting and narrowing. In Proc. Joint
International Conference and Symposium on Logic Programming (JICSLP’98), pages 325–
340, 1998.

13. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Rodrı́guez-
Artalejo. An approach to declarative programming based on a rewriting logic. Journal
of Logic Programming, 40:47–87, 1999.

14. M. Hanus. Functional logic programming: From theory to Curry. In Programming Logics -
Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS 7797, 2013.

15. M. Hanus. CurryCheck: Checking properties of Curry programs. In Proceedings of the 26th
International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR
2016), pages 222–239. Springer LNCS 10184, 2017.

16. M. Hanus. Semantic versioning checking in a declarative package manager. In Technical
Communications of the 33rd International Conference on Logic Programming (ICLP 2017),
OpenAccess Series in Informatics (OASIcs), pages 6:1–6:16, 2017.

17. M. Hanus and F. Skrlac. A modular and generic analysis server system for functional logic
programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program
Manipulation (PEPM’14), pages 181–188. ACM Press, 2014.

18. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Available at
http://www.curry-language.org, 2016.

19. H. Hussmann. Nondeterministic algebraic specifications and nonconfluent term rewriting.
Journal of Logic Programming, 12:237–255, 1992.

20. P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic automated soft-
ware testing. In Proc. of the 14th International Workshop on Implementation of Functional
Languages, pages 84–100. Springer LNCS 2670, 2003.

21. F.J. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández. A simple rewrite no-
tion for call-time choice semantics. In Proceedings of the 9th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming (PPDP’07), pages 197–
208. ACM Press, 2007.

22. M. Papadakis and K. Sagonas. A PropEr integration of types and function specifications
with property-based testing. In Proc. of the 10th ACM SIGPLAN Workshop on Erlang, pages
39–50, 2011.

23. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-
bridge University Press, 2003.

24. S. Peyton Jones, A. Reid, F. Henderson, T. Hoare, and S. Marlow. A semantics for impre-
cise exceptions. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation (PLDI’99), pages 25–36. ACM Press, 1999.

25. A.M. Pitts. Operational semantics and program equivalence. In Applied Semantics (Interna-
tional Summer School APPSEM 2000), pages 378–412. Springer LNCS 2395, 2000.

26. C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and Lazy SmallCheck: automatic ex-
haustive testing for small values. In Proc. of the 1st ACM SIGPLAN Symposium on Haskell,
pages 37–48. ACM Press, 2008.

