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Abstract. Although functional as well as logic languages use equality to discriminate between logically
different cases, the operational meaning of equality is different in such languages. Functional languages
reduce equational expressions to their Boolean values, True or False, logic languages use unification to
check the validity only and fail otherwise. Consequently, the language Curry, which amalgamates functional
and logic programming features, offers two kinds of equational expressions so that the programmer has to
distinguish between these uses. We show that this distinction can be avoided by providing an analysis and
transformation method that automatically selects the appropriate operation. Without this distinction in
source programs, the language design can be simplified and the execution of programs can be optimized. As
a consequence, we show that one kind of equational expressions is sufficient and unification is nothing else
than an optimization of Boolean equality.
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1. Motivation

Functional as well as logic programming languages are based on the common idea of specifying computa-
tional problems in a high-level and descriptive manner. However, the computational entities and, thus, the
programming styles are different. This can be seen in a prominent feature of such languages: the discrim-
ination between logically different cases of a given problem. Functional (as well as imperative) languages
use Boolean equations for this purpose, i.e., an equational expression is reduced to either True or False
and, depending on the computed result, a different computation path is selected. A typical example is the
factoriazl function where the base case is distinguished from the recursive case by comparing the argument
with O:
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fac n = if n==0 then 1
else n * fac (n-1)

On the other hand, logic languages, like Prolog, use separate rules for different cases where (equational)
constraints restrict the applicability of the rules. For instance, the following Prolog program defines the
concatenation relation between three lists (where we do not use patterns in left-hand sides to make the
equational constraints explicit):

append (X,Y,Z) :- X=[], Y=Z.
append(X,Y,Z) :- X=[E|T], Z=[E|U], append(T,Y,U).
The equality symbol “=" used in this program is different from the Boolean equality “==" above. For instance,

the intent in the first rule is not to evaluate X=[] to True or False, but to ensure that this equality holds
for applying this rule, i.e., the equality is a constraint for subsequent evaluation steps. As a consequence,
it is not necessary to fully evaluate equational expressions, but one can continue a computation even with
partial knowledge as long as the constraint holds. For instance, if we want to ensure that a list L ends with
the element 0, we can write

append(_, [0],L)

which is solvable even if the values of the list elements are not known. Thus, if L=[A,B,C] is a list of three
variables, then the literal above is solved by binding C to 0 but leaving all other list elements unspecified.
Operationally, this is done by unification [Rob65] instead of evaluation to Boolean values.

Functional logic languages attempt to combine the most important features of functional and logic pro-
gramming in a single language (see [AH10, Han13] for recent surveys). In particular, the functional logic lan-
guage Curry [Hanl6] extends Haskell by common features of logic programming, i.e., non-determinism, free
variables, and equational constraints. Due to its roots in functional and logic programming, Curry provides
two kinds of equalities: Boolean equality (“==”) as in functional programming and equational constraints
(“=:=7) as in logic programming. The motivation for this decision is to support nested case distinctions,
like in functional programming, as well as rule-oriented programming with partial information, like in logic
programming. Although one might argue that it is always possible to guess values for unknowns, so that one
kind of equality is sufficient, an important insight of logic programming is that unification can restrict the
search space by binding variables instead of guessing values [Rob65]. For instance, if X and Y are Boolean
variables, the equational constraint “X=Y” can be solved by simply binding X to Y instead of enumerating
appropriate values for X and Y.

The following example highlights the differences between these two notions of equality. Consider the
following type:

data Color = White | Black

and let ¢t and u be colors. We discuss various cases. If ¢ and u are the same color, then ¢ ==u returns True
whereas ¢ =:=u succeeds. If ¢ and u are different colors, then ¢ ==w returns False whereas t=:=u fails (the
computation is aborted). A more interesting situation occurs when one side is a variable. Suppose that ¢
is a variable and u is White. In this case, t ==wu either binds ¢ to White and returns True or it binds t to
Black and returns False. By contrast, £=:=u binds ¢ to White only and succeeds. Finally, if both ¢ and
u are variables, “==" binds them to all possible combinations of colors and return either True or False
accordingly, whereas “=:=" unifies the variables and succeeds. “==" in Curry is a conservative extension of
“==" in popular functional languages, e.g., Haskell. The behavior we just described conforms with version
0.9.0 of Curry [Han16]. In previous versions [Han12], “==" was rigid, i.e., the evaluation would suspend when
either side, or both, were variables.

Although the distinction between these two kinds of equalities is present in Curry from its early design
[Han97], it also causes some complications. A programmer might not always easily understand which equality
should be chosen in a particular situation. Moreover, the distinction between solving and evaluating equalities
is also present in the type system (in earlier versions of Curry [Hanl2]), i.e., “==" has the result type Bool
whereas “=:=" has the result type Success (indicating the type of constraints). As a consequence, various
standard (combinator) functions on Booleans need also be duplicated for the type Success.

In order to improve this situation, we argue in this paper that one kind of equality, namely Boolean
equality, is sufficient for the programmer. This will be justified by an automatic method for transforming
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Boolean equalities into constraint equalities, if it is appropriate. Hence, we automatically obtain the advan-
tages of unification, i.e., reduction of the search space. For this purpose, we present a program analysis and
transformation method that automatically selects the appropriate kind of equality. This leads to a simpler
language design without sacrificing program efficiency.

In the next section, we review the main concepts of functional logic programming and Curry. Sect. 3
discusses the basic ideas of our transformation method. The analysis of required values is formalized and
proved to be correct in Sect. 4. The actual implementation is sketched in Sect. 5 and followed by a discussion
of some practical experiences with our transformation method in Sect. 6. Some related work is discussed in
Sect. 7 before we conclude in Sect. 8.

2. Functional Logic Programming and Curry

We briefly review the elements of functional logic programming and Curry which are necessary to understand
the contents of this paper. More details can be found in recent surveys on functional logic programming
[AH10, Han13] and in the language report [Han16].

Curry is a declarative multi-paradigm language combining in a seamless way features from functional,
logic, and concurrent programming (concurrency is irrelevant as our work goes, hence it is ignored in this
paper). Curry’s syntax is close to Haskell’s [PJ03], i.e., type variables and names of defined operations
usually start with lowercase letters and the names of type and data constructors start with an uppercase
letter. & — 8 denotes the type of all functions mapping elements of type « into elements of type § (where
B can also be a functional type, i.e., functional types are “curried”), and the application of an operation f
to an argument e is denoted by juxtaposition (“f €”).

A Curry program consists in the definition of functions or operations and the data types on which the
functions operate. Functions are defined by (conditional) equations and are evaluated lazily. In addition
to Haskell, Curry allows free (logic) variables in conditions and right-hand sides of rules and expressions
evaluated by an interpreter. These variables are a source of non-determinism in computations much in the
same way of logic programming. Function calls with arguments that are or contain free variables are evaluated
by narrowing.

Narrowing [Sla74, Red85] is a computation used in Curry with the same intent as resolution, i.e., guess-
ing values for unknown information with guesses that keep the computation going. Narrowing extends and
generalizes resolution in that resolution binds variables through predicates whereas narrowing through func-
tions of any type. Furthermore, since function calls can be nested, free variables are bound only when a
value is demanded by the computation. Curry narrows with possibly non-most-general unifiers to ensure the
optimality of computations [AEH00]. Narrowing contributes elegant and conceptually simple solutions to
non-trivial programming problems [Ant10].

Example 2.1. We present the above features in a program chosen for its simplicity and brevity, rather than
its power. The program defines the data type of Boolean values and polymorphic lists and operations to
concatenate two lists and compute the last element of a list:?

data Bool = True | False

data List a = [] | a : List a
(++) :: [al] — [a]l — [al

(] ++ ys = ys

(x:xs8) ++ ys = x : (xs ++ ys)
last :: [a] — a

last xs | _++[x] =:= xs = x

The data type declarations define True and False as Boolean values and [] (empty list) and : (non-
empty list) as the constructors for polymorphic lists (a is a type variable ranging over all types and the

3 Note that Curry requires the explicit declaration of free variables, as x in the rule of last, to ensure checkable redundancy,
but we omit them in this paper for the sake of simplicity.
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type “List a” is written as [a] for conformity with Haskell). The (optional) type declaration (“::”) of the
operation “++” specifies that “++” takes two lists as input and produces an output list, where all list elements
are of the same (unspecified) type. Since “++” can be called with free variables in arguments, the equation
“_++ [x] =:= xs” in the condition of last is solved by instantiating the anonymous free variable “_” to the
list xs without the last argument, i.e., the only solution to this equation satisfies that x is the last element
of xs. Here, “=:=" is the correct choice of equality since we have no interest for the value of x when the
equation is falsified. In this situation it is not guaranteed that x is the last element of xs.

The (optional) condition of a program rule is typically a conjunction of constraints. Each Curry system
provides at least equational constraints of the form e; =:= e which are satisfiable if both sides e; and ey are
reducible to unifiable data terms.

In order to use equations to discriminate between different cases, as in the definition of the factorial
function fac shown in Section 1, Curry also offers a Boolean equality operator “==" which evaluates to
True if both arguments can be evaluated to identical data terms, and to False if the arguments evaluate
to different data terms. Conceptually, “==" can be considered as defined by rules comparing constructors of
the same type, i.e., by the following rules (“&&” is the Boolean conjunction):

True == True = True

False == False = True

True == False = False

False == True = False

(] == [] = True

(x:xs) == (y:ys) = x==y && xs==ys
[] == (y:ys) = False

(x:x8) == [] = False

As already discussed in [AH14], the presence of the types Success and Bool together with two equality
operators, rooted in the history of Curry, might cause confusions and should be avoided in order to obtain
a simpler definition of Curry. Hence, [AH14] proposes to omit the type Success from the definition of
Curry (as done in the current version of the language [Hanl6]) and do not use the operator “=:=” in
source programs. We follow this proposal in our paper. Note that one can also solve equations by narrowing
with the above rules. For instance, [x,x]==[True,y] is solved by instantiating x and y to True while
evaluating “==". However, solving equations by narrowing with “==" rules has also a drawback compared
to logic programming. If there is an equation between two variables, narrowing enumerates all values for
these variables whereas unification (deterministically!) binds one variable to the other. Hence, the expression
“xs ==ys && xs++ys == [True]” has an infinite search space with solely False results.

This was the motivation for the inclusion of the operator “=:=" in Curry. Conceptually, it can be con-
sidered as defined by “positive” rules:

True =:= True = True

False =:= False = True

] =:= [] = True

(x:xs) =:= (y:ys) = x=:=y && xs=:=ys

Thus, “=:=" yields True for identical data terms or fails.* Operationally, these rules are not applied by
narrowing but combined with the unification principle [Rob65], i.e., if one argument is a free variable, it is
bound to the evaluated data term of the other side (if the variable is not contained in this term, see [Han16]

for details). Therefore, the expression “xs =:=ys” evaluates to True by binding xs to ys and the expression
“xs =:=ys && xs++ys =:= [Truel]” has a finite search space without any result.
It would be desirable to automatically replace occurrences of “==" by “=:=" whenever it can be done

without losing solutions (see the next section). This would free the programmer from having to select the

4 Note that this conforms with the current version of the language Curry [Han16]. In previous versions, equational constraints
have the specific result type Success. A detailed discussion about the reasons to replace the type Success by Bool can be found
in [AH14].
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“right” equality and simplify the language: programmers always use “==" so that the operator “=:=" is just
an optimization of “==". This is the motivation for our current work.

Since Curry with all its syntactic sugar (we have only presented a small fragment of it) is a quite rich source
language, a simpler intermediate representation of Curry programs has been shown to be useful to describe
the operational semantics [AHH'05], compile programs [BHPR11, HAB™16], or implement analyzers [HS14]
and similar tools. Programs of this intermediate language, called FlatCurry, contain a single rule for each
function where the pattern matching strategy is represented by case expressions. The basic structure of
FlatCurry is defined as follows (where z; denotes variables, f defined functions, C' constructors, and of a
sequence of objects 0 ... 0):

P == D;...D, (program)
D == fz,=e (function definition)
p == CIT, (flat pattern)
e u= (variable)
| Ce, (constructor application)
|  fen (function application)
| case ey of {Dr — ex} (case distinction)
|  e17eo (non-deterministic choice)

A program P (we omit data type declarations) consists of a sequence of function definitions D with pair-
wise different variables in the left-hand sides. The right-hand sides are expressions e composed by vari-
ables, constructor and function calls, case expressions, and disjunctions. A case expression® has the form
case e of {Cy T, — e1,...,Ck Tn, — ext (k > 0), where e is an expression, C1,...,Cy are different
constructors of the type of e, and ey,...,e; are expressions. The pattern variables T, are local variables
which occur only in the corresponding subexpression e;.

By fixing a strategy to match arguments, one can translate Curry programs into FlatCurry programs.
The higher-order constructs of Curry are translated into FlatCurry by defunctionalization [Rey72]. Thus,
lambda abstractions are transformed into top-level functions and there is a predefined operation apply to
apply an expression of functional type to an argument (see [Han13, War82] for more details).

Conditional rules are not present in FlatCurry since, as shown in [Ant01], they can be transformed into
unconditional ones by introducing a “conditional” operator cond defined by

cond True x = x
For instance, the rule defining last as shown above can be transformed into
last xs = cond (_++[x] =:=xs) x

The evaluation strategy of Curry is by-need. Hence, the second argument of cond is evaluated only if the
first argument is True.

3. Transforming Equalities

In this section we discuss an automatic method to replace occurrences of Boolean equalities of the form
e1 ==eo by an equational constraint e; =:=ey. Obviously, such a replacement is not always correct. For
instance, consider the following contrived example:

isEmpty xs = if xs==[] then True else False

If we evaluate the expression “isEmpty xs”, where xs is a free variable, we obtain the following two results
(e.g., with the Curry system KiCS2 [BHPRI11]):

{xs = [1} True
{xs (_x1:_x2)} False

5 Since we do not discuss residuation and concurrent computations, we also omit the difference between rigid and flexible case
expressions [Han13].
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These two results are computed by narrowing the equation xs==[] w.r.t. the rules defining “==" shown in
the previous section. However, if we replace the Boolean equality by an equational constraint, as in

isEmpty’ xs = if xs=:=[] then True else False
and evaluate the expression “isEmpty’ xs”, then we obtain only the single result
{xs = [1} True

since the constraint “xs=:=[1" can only be satisfied, i.e., delivers the value True only.

Thus, in order to avoid losing solutions, a Boolean equation e; ==e5 can be replaced by the equational
constraint e; =:=ey if it is ensured that only the value True is required as the result of this equation. In
general, this depends on the context of the equation. Fortunately, there are many situations in functional
logic programs where this requirement can be deduced. For instance, consider the following definition of
last:

last xs | xs==_++[x] = x
As discussed above, this rule is transformed into the unconditional rule
last xs = cond (xs==_++[x]) x

Since the definition of cond requires that the first argument must have the value True in order to evaluate
a cond expression, the condition can be replaced by an equational constraint:

last’ xs = cond (xs=:=_++[x]) x
Hence, if we evaluate, e.g., last’ [x,42], where x is a free variable, we obtain the single result
{x = _x1} 42

On the other hand, we obtain infinitely many answers for the expression last [x,42] (where in each answer

x is bound to a different integer value). Similarly, we can replace the occurrences of “==” by “=:=" in the
rule
f xs ys | xs==_++[x] && ys==_++[x]++_ = x

However, in the rule

g xs ys | xs==_++[x] && not (ys==_++[x]++_) = x

2 9

only the first occurrence of “==" can be replaced by “=:=", since the second occurrence is required to be
evaluated to False in order to apply the rule.®

These examples show that a careful analysis of the kind of values required for a successful evaluation
is necessary in order to perform our proposed transformation. Note that such an analysis is different from
a strictness analysis in purely functional programming [Myc80]. A strictness analysis provides information
about the necessary demand of a computation in order to compute any value, whereas we need information
about possible values in order to compute other values. For instance, in order to transform the definition of
f above, it is necessary to know that both arguments of the conjunction operator “&&” need to be True in
order to obtain the overall value True. For this purpose, we define in the next section an appropriate analysis
for “required” values.

4. Analysis of Required Values

Our goal is to develop a program analysis to infer which kind of values are required at some position in a
program in order to compute a result, i.e., some value. To obtain a manageable analysis, we consider only
top-level constructors in the analysis so that a wvalue is some constructor-rooted expression. In principle,
this could be extended to any depth bound k (as used in the abstract diagnosis of functional programs

6 The latter equality could also be improved when disequality constraints [AGL94, KLMR92] are available in the target
language, but since this is not the case for standard implementations of Curry, we do not consider them in this paper.
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[ACET02] or in the abstraction of term rewriting systems [BE95, BE?93]), but in practice only a depth
k =1 (i.e., top-level constructors) is useful due to the quickly growing size of the abstract domain for & > 1.
For instance, for lists we distinguish the values [1 (empty list) and “:” (non-empty lists) and for Booleans
we distinguish the values True and False.

Following the framework of abstract interpretation [CC77], we define for each type T an abstract domain
7%, i.e., a set of abstract values, as follows. If C; = {C1,...,Cy} is the set of all constructors of type 7, then
7 =C, U{L, T}, i.e., an abstract value of 7% is either a constructor of type 7 or the constants L or T. For
instance, the abstract domain for Boolean values is

Bool® = { 1, True, False, T 1}

Abstract values are ordered as a flat domain, i.e., L C a and a £ T for all abstract values a. Thus, for two
constructors C7 and Cs considered as abstract values with Cy # Cs, the least upper bound C; UC5 is T and
the greatest lower bound Cy M Cy is L.

The meaning of an abstract value a, i.e., the concretization [a] of a, is defined as follows (where root(e)
denotes the symbol at the root of the expression e):

(%] ifa=1
[a] = 4 {e | e expression} ifa=T
{e|root(e) =C} ifa=C
We call two abstract values a,a’ € 7% compatible if [a] N[a'] # @, i.e., if they have some element in common.
Proposition 4.1. For all abstract values a1 and ay with a; C ag, [a1] C [az] holds.

As discussed above, we are interested to deduce required argument values from required result values. For
instance, if True is the required value of a conjunction e; && es, then True is also the required value of both
e; and es. We denote this property by

(&&) ::“ True,True — True

We can read this type as: in order to compute the result True, the argument values are required to be True.
Or in other words: unless both arguments are evaluated to True, the result cannot be True.

Definition 4.2. A typing f ::“aq,...,a, — a of a function f is correct iff the following implication holds
for all expressions eq,...,e,: if f e;...e, evaluates to some value (constructor-rooted term) ¢ € [a], then,
for i =1,...,n, e; evaluates to some ¢, € [a;].

The above notion of correctness establishes a condition on the values of the arguments of a function appli-
cation to produce a certain value as the result of the application. For each function f of (concrete) type
Tiy-..,Tn — T, the typing f::*T,..., T — T (with appropriate numbers of arguments) is correct since
any expression is an element of [T]. Clearly, defined functions can have more than one correct typing. For
instance, consider the Boolean negation and conjunction operators defined by

not True = False True && x = x
not False = True False && _ = False

Then the negation operator not has the types

not ::*True — False
not ::*False — True

and the conjunction operator (&&) has the types

(&&) ::“ True,True — True
(&&) ::“T,T — False

The first type of “&&” expresses the fact that the expression e; && es cannot evaluate to True unless both e;
and ey evaluate to True.

These abstract types can be used as follows. If the condition of a program rule has the form e; && e, the
value True is required as the result of this conjunction. By the first type of “&&”, we can deduce that True
is also required as the result of both expressions e; and es, otherwise the conjunction cannot be evaluated
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to True. However, if a condition has the form not (e; && e3), we cannot deduce a single value required for
e1 or ez (by the second type of “&&”). The rule of “&&”, shown later, executes a case distinction on the first
argument, hence this condition yields True if e; has the value False or if e; has the value True and e, has
the value False. Note that

(&&) ::“False, T —False

is not a correct typing: True ¢ [False] but True&&False € [False]. This is intended: we cannot deduce
from the required result value False that the first argument is required to be False.

In order to define well-typed programs, we assume a type environment F (for a given program) which
contains for each n-ary function symbol f occurring in the program elements of the form f ::“a4,...,a, = a
or f::* 1L — a. The first form is related to the meaning defined in Def. 4.2, whereas the second form is used
to express impossible evaluations. This is essential to derive precise information about required arguments.

For instance, consider an operator solve which enforces positive evaluations for Boolean expressions:

solve True = True

Typically, solve is used in the top-level (i.e., initial expressions to be evaluated) to get solutions to some
equation, e.g.,

solve (xs ++ ys == [1,2,3])
By the use of solve, we ignore the computation of “non-solutions” like {xs=[1,ys=[1}. Intuitively,
solve ::“ True — True

is a correct typing. This expresses the fact that one can compute the result True only if the argument
evaluates to True. We can use this information to transform the above expression into the constraint

solve (xs ++ ys =:= [1,2,3])
Now consider the function f defined by

f True _ = False
f False x solve x

A correct type for this function is
f::“True, | — False

since the second rule of £ cannot be used to derive False. This reasoning requires the fact that solve cannot
yield the result False, but this is not expressed by the above type of solve. For this purpose, we use the

type
solve ::* 1 — False

to express the impossibility to evaluate solve to False.

Apart from the types of functions, we also need to reason about the required values of argument vari-
ables in order to compute some value of an expression. Therefore, our type analysis also uses a variable
type environment E which contains for each variable x at most one variable type x ::®a. The absence
of a variable type is interpreted as type T, i.e., the sets {z ::“a} and {z ::“a,y ::* T} denote the same
variable type environment, and the empty set @ denotes a variable type environment where all variables
have type T. We order variable type environments element-wise, i.e., By T Es iff, for all variables x with
r::% € Ey and x::%ay € FEs, a; T ao holds. Hence, the least upper bound FE; LI Es of two vari-
able type environments F; and Fs is the element-wise least upper bound of the associated types, e.g.,
{z ::*True,y ::“True} U {x ::“False} = {x :* T,y ::*T}. Observe that y ::* T is in the upper bound
because the second environment places no restrictions on y. Similarly, E; M Es denotes the greatest lower
bound of E; and Es. We also assume a least element 1 for all variable environments, i.e., L T E for all
variable environments E. Since 1 does not define a required value for any variable, it is used to specify the
impossibility to compute some value. Note that the meaning of the variable type environment & is different
from 1: whereas @ does not put any requirement on the variables, i.e., it denotes the set of all concrete
substitutions, 1 denotes a conflict, i.e., there is no concrete substitution that agrees with abstract value L.
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Var (zooa} P o va if x is a variable

if C' and a are compatible
Conl oFFCel...en::%a P
if C' and a are not compatible
Con2 LHFFCer...e, % P
0 EiFF e ivaq EybFFey:i®a
" E1UE2|—F€1?6222aa
EiFFeq i@ . E, e, i %a,
Funl L a l 7 ¢ a if f::%ay,...,ap >a€F
[HE:i |a; AT fer...en:i%a
iffe*l g€l
Funz LEF fer...ep:®a /
EoFlegi®ag EyFepi%a ... EjF e; % where a9 = C1 U...UCj (if j > 0)
J_}—Fej+1::°‘a...J_l—Fen::aa orag =T (if j = 0)
Case

Eon(EyU...UE)) ' case e of {C1 T, —e1;...;Cn T, — en} 1%

Fig. 1. Abstract typing rules for FlatCurry expressions

In this sense, a variable type environment containing x ::® L is identical to the environment | since both
denote the empty set of concrete substitutions.

The (abstract) typing rules are shown in Fig. 1. The notation E F" e¢::®qa (with a # 1) should be
read as: “F are the required values of variables in order to evaluate e to some value of type a w.r.t. type
environment F.” Having this interpretation in mind, the typing rules can be read as follows:

e Rule Var expresses that computing a particular value for a variable is also the requirement for that
variable.

e Rule Conl does not put requirements on variables since the term is already a value compatible with the
abstract result. In contrast, rule Con2 expresses by the variable environment | that it is impossible to
get a value of the abstract result.

e Rule Or joins the requirements expressed by the variable type environments to evaluate a choice ex-
pression of some type. Note that it is sufficient that one argument of a choice expression can be evalu-
ated to the demanded value. For instance, @ " True ? False ::® True is derivable by this rule since
@ FF True ::“ True and L F¥ False ::® True are derivable by rules Conl and ConZ, respectively, and
ogul=ga.

e Rule Funl! requires well-typed arguments and an appropriate function typing to apply a function but
joins only the requirements of arguments where a value is definitely required, since other arguments might
not be evaluated. Rule Fun2 can be applied if there is no typing of the function for the given abstract
result type.

e Rule Case requires that the constructors of the patterns in the various branches must be contained
in the type of the discriminating expression (where there are no requirements, i.e., ag = T, for the
extreme case j = 0). However, branches which cannot be evaluated to the overall result type are ignored
for the type of the discriminating expression. This refinement is essential to obtain precise information
about required arguments, as shown in subsequent examples. Since the order of the branches in the case
construct is irrelevant, we move at the end of the line the branches that cannot be evaluated to simplify
the formulation.

In order to obtain information about impossible result types, as exploited in the rule Case, we allow two
kinds of function types: f ::“ay,...,a, — a and f ::* L — a. They are related to different kinds of typings
as defined next.

Definition 4.3. A program P is well typed w.r.t. a type environment F for P if, for each function defined



10 S. Antoy and M. Hanus

by the rule f x1...7, = e € P and each f::%ay,...,a, - a € F, {z1 ::%ay,...,x, :%a,} FF e::%a is
derivable by the rules in Fig. 1, and for each f::* 1L — a € F, L " e¢::®q is derivable by the rules in
Fig. 1.

Since F' is usually fixed in all examples and proofs, we omit it from the symbol F in the following. We show
the usage of this type system in a few examples that are relevant for the application intended by this paper.
In these examples, True and False overload Boolean values and the corresponding abstract types. For the
first example, consider the operator solve introduced above by the rule

solve True = True
In FlatCurry, solve can be defined by the rule
solve x = case x of { True — True }

Using our inference rules, we can derive the type solve ::® True — True as follows:

Conl
Case

1%
{x::*True} F x ::“True S True ::° True

{x ::*True} I case x of {True — True} ::*True

The second type of solve, solve ::“ | — False, can be derived by:

{xa*ThhxaoT Var 1 F True ::®False Con2
Case

1t case x of {True — True} ::*False

Our second example is the operator cond introduced in Sect. 2 to transform conditional equations. In
FlatCurry, this operator is defined by the rule

cond x y = case x of { True — y }

This rule can be shown well-typed w.r.t. cond ::* True, T — T so that we can deduce that the first argument
is required to be True in order to compute any value:

{x::*True} F x ::* True Var {y*T}thyueT Var

{x::*True,y ::*T} I case x of {True -y} :®T

Case

Note that this rule is also well typed w.r.t. cond ::* T, T — T, but this typing provides less precise infor-
mation about required arguments.
For the next example, consider the negation operator not which is defined in FlatCurry by

not x = case x of { True — False
; False — True }

It is easy to check that not ::* True — False is a well-typing of not since the following derivation is valid
w.r.t. F'= {not ::* True — False}:

{x::*True} F x ::“ True Var & I False ::“False Conl L I True ::“False

{x ::*True} }- case x of {True — False;False — True} ::“False

Con2
Case

In the application of the Case rule, the discriminating constructor False of the second case branch is ignored
to compute the required type of x, since the result value True of this branch is not compatible with the
overall result type False. Similarly, the following types (among others) can be derived to be well typed:

not ::*False — True
not ::¢T — T

Finally, we consider the conjunction operator (&&) defined in FlatCurry by

X & y = case x of { True — y
; False — False }
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(&&) ::*True, True — True is a well-typing since the following derivation holds for the type environment
F = {(&&%) ::*True, True — True}:

Con2

{x::*True} F x ::* True Var {y ::*True} Fy ::*True Var 1 - False ::“ True o
ase

{x ::*True,y ::“ True} I case x of {True — y;False — False} ::*True

Note that our typing rules allow the derivation of less precise typings, like (&&) ::*T, T — T, but no
derivation with stronger information about arguments. For instance, the operation

f x = True

could be well typed with £ ::* T — True, but the type f ::* True — True cannot be derived. This is intended
since the latter type is not correct: any application of £ can be derived to True, i.e., it is not required that
the argument needs to be True.

The correctness of our type analysis can be stated by the following theorem:

Theorem 4.4. If a program P is well typed w.r.t. a type environment F for P, then each f ::“aq,...,a, —
a € F is correct.

In order to prove this main theorem, we need a couple of statements about the typing rules, which are stated
and proved in the following. The next lemma shows that the type system can derive that required values in
variable type environments are actually required, i.e., if such a variable is instantiated with a constructor
different from the required one, one can derive the impossibility of typing this instantiation.

Lemma 4.5. Let P be a well-typed program w.r.t. a type environment F for Pand Et e ::%a. Ifx ::“C €
E and the substitution o replaces z by a different constructor C’ # C, i.e., o(z) = C'..., then L F o(e) ::*a.

Proof. We prove the claim by structural induction on the expression e.

e If e is a variable, then e = z (otherwise, z ::*C' ¢ E by rule Var) and a = C. Since o(z) = C’... and
C#C', Lt o(e)::*a by rule Con2.

e ¢ cannot be constructor-rooted, otherwise x ::* C' & E by rules Con! and Con2.

o If e = e 7€y, then, fort = 1,2, F; Fe;::%a and E = E; U FEy by rule Or. Since z ::*C € E, either
x*CeF;orx:*leFE;,fori=12 In the first case, L F o(F;) ::“a by the induction hypothesis.
In the second case, L F o(e;) ::%a since L F ¢; ::*a and the type of z is not relevant for a. Hence
1lFo(er?es)::%a.

o If e = case ey of {C1 Ti;, — e1;...;Cy Tk, — ey}, then, by rule Case, Eg e, ::%ag and x ::*C € Ey
(the case ¢ ::*T € Ep and ¢ ::*C € E; U...U E; can be treated similarly to the Or case above). By
the induction hypothesis, L F o(e,) ::“ag so that L o(e) ::*a by rule Case.

e Consider the final case e = f e;...e,. Rule Fun2 cannot be applied, otherwise = ::“C ¢ FE. Hence
rule Funl is applicable so that f::%ay,...,a, — a € F and there is at least one i € {1,...,n}
with E; F e; ::%a;, a; # T, and z ::*C € E;. By the induction hypothesis, L F o(e;) ::%a; so that
Llto(fer...en):%a by rule Funl.

O

Next we show that the derivation of impossible typings is closed under substitutions, i.e., if we derive that
some expression is not evaluable to some constructor value, the same holds for all instantiated expressions.

Lemma 4.6. Let P be a well-typed program w.r.t. a type environment F for P, L F e::%a and o a
substitution. Then L F o(e) ::a.

Proof. We prove the claim by structural induction on the expression e.

e The case that e is a variable cannot occur (since a # 1).

elf e = C e5...e,, then C and a are not compatible by rule Con2. Since o(e) = C o(ey)...o(ep),
1 Fo(e)::*a again by rule ConZ.

e If ¢ = e1 7eg, then, for i = 1,2, L F ¢; ::®a. By the induction hypothesis, L F o(e;) ::*a so that we
have L Fo(e) ::“a.
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o If e = case ey of {Cy T, — e1;...;Cp T, — ey}, then, by rule Case, Ey - e, ::%ag, F; Fe;::%a
(t=1,...,5),and L = ExN(Ey U...UE;). If By = L, then L F ¢, ::%ag and, by the induction
hypothesis, L F o(e,) ::* ag so that the claim holds by rule Case. Similarly, if £y U... U E; = 1, then
Llte::®afori=1,...,jand, by the induction hypothesis, | - o(e;) ::%a, fori =1,...,7, so that that
the claim holds by rule Case. Otherwise, there is some variable  with 2 ::* L € EgM(E;U...UE;) and
x::*C € Ey,x::*C' € E; for some i € {1,...,j} such that CMC’" = L, ie., C # C'. By Lemma 4.5, ¢
cannot instantiate ey and e; such that x satisfies both required constructors, i.e., it is impossible to type
o(e;) as well as o(e;) with some environment different from L, which implies the claim.

e Finally, consider the case e = f e1...e,. If rule Fun2 has been applied, we can also apply it to o(e).
Hence we assume that rule Funl has been applied, i.e., f ::%ay,...,a, — a € F and E; | ¢; ::%a; for
i=1,...,n. If there is some i € {1,...,n} with E; = L and a; # T, then, by the induction hypothesis,
1 Fo(e;)::%a; so that L+ o(e) ::*a by rule Funl. Otherwise, there are i,5 € {1,...,n}, i # j, such
that a; # T, a; # T,z :*C € E;, x ::*C’ € E; such that CNC’ = 1, ie, C # C'. By Lemma 4.5, ¢
cannot instantiate e; and e; such that x satisfies both required constructors, i.e., it is impossible to type
o(e;) as well as o(e;) with an environment different from L. Hence L o(f e1...e,) 1:%a.

O

The next lemma states that if we instantiate a required variable with an expression that cannot be mean-
ingfully typed, then one can derive the impossibility of typing this instantiation.

Lemma 4.7. Let P be a well-typed program w.r.t. a type environment F for P, {z :: C} F e::%a, and
Lbkeu*C. Ifo={x— e}, then L+ o(e)::%a.

Proof. We prove the claim by structural induction on the expression e.

e If e is a variable, then e = z, a = C, and o(e) = ¢’. Since we assumed L F ¢’ ::“ C, we have L - o(e) ::*

e ¢ cannot be constructor-rooted, since none of the rules Con! and Con2 can require x ::*C.

o If ¢ = ey 7eq, then, for i = 1,2, F; Fe; ::%a and {x :: C} = E; U Ey by rule Or. Hence x ::*b; € E;
(i = 1,2) such that b; U by = C. Then either by = by = C or by = L or by = L. Hence we can apply the
induction hypothesis to show the claim.

o If e = case ey of {Cy Ty, — e1;...;Chn Tk, — e}, then, by rule Case, Eg F e, ::%ag and E; Fe; ::%a
(¢ =1,...,74). Moreover, x ::*by € Ey, x::*by € E1 U...E; and by Mby = C. Thus, either by or by is
equal to C. Hence we can apply the induction hypothesis to show the claim.

e Counsider the final case e = f e; ...e,. Rule Fun2 cannot be applied (otherwise x ::® C is not required).
Hence rule Funl is applicable so that f ::%ay,...,a, 2a € Fand E; Fe; ::%a; (i=1,...,n). Ifa; =T
foralli=1,...,n, then z ::* C is not required in contrast to our assumption. Hence there is at least one
ie{l,...,n} witha; # T and z ::*b; € E;. If b; = C, the induction hypothesis implies L F o(e;) ::* a;
which implies the claim by rule Funl. Otherwise, there are two different i,5 € {1,...,n} with a; # T,
a; # T, x::%b; € By, x::%b; € Ej, by1b; = C, and b; # C and b; # C. This is impossible by the
structure of our abstract domain.

O

Now we can prove our first result relating type information with the operational behavior of programs: if we
can derive an impossible typing for some result type, we know that this expression cannot be evaluated to
a value of this type. In the following, “—” denotes the rewrite relation [Ter03] defined by the program rules

a.

b2

* . . ..
and, as customary, “—” its reflexive, transitive closure.

Lemma 4.8. Let P be a well-typed program w.r.t. a type environment F' for P and L F e ::*a. Then e
does not evaluate to some ¢ € [a].

Proof. Assume that there is a derivation of e of the form
e=ty = t1 = to = -+ — i,

where n is the smallest index such that ¢,, is a constructor-rooted expression. We show by the induction on
the length of all such derivations that the root of t, is not compatible with a.

Base case (n = 0): e is already an expression rooted by some constructor C. Since L F e ::%a, by rule
Con2, C and a are not compatible so that e ¢ [a].
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Induction step: We assume | F e ::“a and the claim holds for all derivations of length n — 1. Since e is
not constructor-rooted, the following outermost evaluation steps are possible on e:

e If e = e1 7 ey, then t; = e; (the other case is symmetric). Since L F e ::®a, we have L I ey ::%a by rule
Or. Hence we can apply the induction hypothesis to the derivation starting with ¢;.

o If e =caseeg of {Cy Ty, — e1;...;Cn Th,, — en}, then, by rule Case, either L e, ::%agor LFe;::%a
(i=1,...,n). In the first case, g is not evaluable to some constructor in aqy (by the induction hypothesis).
Hence, ¢g evaluates to some constructor C; with ¢ > j (where j is chosen as in rule Case). Since
1+ e;::*abyrule Case, L F o(e;) ::*a (by Lemma 4.6) so that the instantiated case-branch cannot be
evaluated to some value in [a] by the induction hypothesis. In the second case, ey might be evaluable to
some constructor C; with ¢ < j, but then the case-branch is not evaluable to some value in [a] as before.

elfe=fe...epand f x1...20, = € € P, then t; = o(¢/) with 0 = {1 — e1,...,2, = ep}. If

fu*L —sa€F, then LFe ::*a (by Def. 4.3) so that L F o(¢’) ::“a (by Lemma 4.6) and o(e’) is not
evaluable to some value in [a] by the induction hypothesis.
If f::%aq,...,a, — a € F, then, by rule Funli, there is some i € {1,...,n} with L F e; ::*a; and
a; # T, ie., a; = C for some constructor C. Since {z1 ::%ay,...,z, ::%a,} b € ::%a (by Def. 4.3),
1+ o(€) ::*a (by Lemma 4.7, which can be easily extended to environments with more than one
element). By the induction hypothesis, o(e’) (and also e) is not evaluable to some value in [a].

O

The next lemma shows that well-typed expressions put the correct demands on required values for variables

occurring in the expression. To simplify the statements, we use the notation e X [a] for the fact the e
evaluates to some t with ¢ € [a].

Lemma 4.9. Let P be a well-typed program w.r.t. a type environment F' for P and E F e ::“ a derivable
with E # L. If o(e) evaluates to some value (constructor-rooted term) ¢ € [a] for some substitution o, then,

forall z ::%7 € E, o(z) > [r].

Proof. Assume that F' is a well-typed type environment for program P, E F e ::® a derivable, E # 1, 0 is a
substitution such that o(e) evaluates to some constructor-rooted term ¢ € [a], and x is some variable with

x::*7 € E. We show, by the induction on the length k of the derivation of o(e) to t, that o(x) = [7] with
at most k steps.

e If ¢ is a variable, then, by rule Var, e = 2 and a = 7. Since o(x) = o(e) = [a], we have o(z) = [r] with
the same number of steps.

e Ife=Ce;...e,, then, by rule Con! (rule Con2 is not applicable since we assumed E # 1), F = @ and
the claim trivially holds (since 7 = T).

e If e = e1 7ey, then, by rule Or, E; - e; ::%a (i = 1,2) and E = E; U Es. Since o(e) evaluates to t,
there is some ¢ € {1,2} such that o(e;) evaluates to ¢t with at most k — 1 steps. Furthermore, E; # L
(otherwise, o(e;) does not evaluate to ¢ by Lemma 4.6 and Lemma 4.8) so that z ::“7; € E;. Therefore,

o If e = case ey of {C1 Tx; — e1;...;Cy Tk, — e}, by rule Case, E = EgM(E1U...UEj;), Eg F e ::% ag,
Eite :%a,...,EjFeji%a, LFejq::%a,..., Lt e, 2%, and a9 = C1 U...UCj. Since o(e)
evaluates to ¢, by the operational meaning of case expressions, o(eg) evaluates to C; e, and o’(e;)
evaluates to t for o' = {Tg, = €, }. If i > j, then t & [a] by Lemma 4.8 (since L F e; ::*a). Due to this
contradiction, we know that i < j.

Since z ::*7 € Fand E = EyMN(E; U...UEj;), we can distinguish the following cases:

by the induction hypothesis, o(z) = [r;] C [r] since 7; C 7 and Prop. 4.1.

1. z ::%79 € Ep: By the induction hypothesis (the derivation of o(ep) is a shorter than the derivation of
a(e)), o(z) > [ro]. Iz ::*T € (B, U...UE;), 7o = 7 and the claim holds. Otherwise, z ::* 7; € E;
with 7; # T. Since F; F e; ::® a, by the induction hypothesis (the derivation of o(e;) is a shorter than
the derivation of o(e)), o(x) = [;]. Furthermore, 7; C 7 so that we have o(z) > [r] by Prop. 4.1.

2. x %7 & Ep: Assume that 7 # T (otherwise, the claim trivially holds). Then z ::®7; € E; with
7; 7 T and we can proceed as in the previous case.

elfe=fey...en byrule Funl, f ::%ay,...,a, 2 a € F,E;lFe;::%a; (i=1,...,n),and E =[|{E; |
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a; # T}. By Def. 43, f z1...20, =€ € P, ' F € ::%a, and F' = {x; ::%a; | 1 < i < n}. Let
o' ={x1 — e1,...,2n > en}. Then o(c’(€')) evaluates to ¢ with at most k — 1 steps. By the induction
hypothesis, o(e;) = (o’ (x;)) = [a;] with at most k — 1 steps. Assume that = ::*7; € E;, a; # T and
7; # T (otherwise, 7 = T and the claim trivially holds). Since o(e;) — [a;] and a; # T, by the induction
hypothesis, o(x) = [r;] € [7].

O
Now we come back to the proof of Theorem 4.4:

Proof. Let P be a program which is well typed w.r.t. a type environment F' for P, and f ::“aq,...,a, —
a € F. In order to show that this typing is correct, we have to show by Def. 4.2 that, for all expressions
€1,...,6en, the following implication holds: if f e;...e, evaluates to some value (constructor-rooted term)
t € [a], then, for i = 1,...,n, e; evaluates to some t; € [a;]. Hence, assume that f e;...e, evaluates to
some value ¢ € [a]. Consider the rule f z;...2, = e € P and the substitution 0 = {1 — e1,...,2, —> en}.
Since P is well typed w.r.t. F, by Def. 4.3, EF e ::*a with E = {z; ::*a; | 1 < i < n}. Since the function
call f e;...e, evaluates to ¢, o(e) also evaluates to ¢. By Lemma 4.9, each e¢; = o(x;) evaluates to some
t; € [a;] since z; ::%a; € E. [

Although our main interest for this development is the transformation of Boolean equalities in Curry pro-
grams, the results in this section have also other interesting applications, even for purely functional programs,
i.e., program without occurrences of free variables and non-deterministic choices. For instance, we can use
the inferred abstract types to find restrictions on the use of defined operations. As an example, consider an
operation min to compute the minimum value of a list which is defined as follows:

min xs = smallerThan (head xs) xs
smallerThan m [] =m
smallerThan m (x:xs) = if x<m then smallerThan x xs

else smallerThan m xs
head (x:_) = x

With our inference rules, we can derive the following type:
min::* () - T

From this type we can infer that any successful evaluation of a call to min requires that the argument must
be a non-empty list. Hence, we can document this restriction by adding it as a precondition to min, e.g., by
using the contract/specification language for Curry proposed in [AH12].

Another application of our inference system is the detection of bugs in programs. If there is an expression
e in a program for which one can derive L - e ::* C for all constructors C' of the concrete type of e, then,
by Lemma 4.6 and 4.8, this expression can never be evaluated to a value. A similar result holds for function
types which might be useful to find buggy operations:

Corollary 4.10. Let P be a well-typed program w.r.t. a type environment F for P, f a function defined
in P,and f::“ L — C € F for all constructors C' of the concrete result type of f. Then no application of f
can be evaluated to a value.

Proof. Consider the definition f z; ...z, = e € P of f, the application ¢’ = f e; ... e,, and some constructor
C of the concrete result type of f. If f ::* 1 — C € F,byDef. 4.3, LFe:*C.Let 0 = {z1 — e1,..., 2, —
en}. By Lemma 4.6, L F o(e) ::*C so that, by Lemma 4.8, o(e) is not evaluable to some value in [C].
Hence, €’ is not evaluable to some value in [C]. Since this holds for any constructor C, the claim holds. [

For instance, consider the following operation:
buggy x = solve (x && not x)
The following types can easily be derived with our inference rules:

buggy :: ¢ L — True
buggy ::* L — False
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Therefore, by the previous corollary, an application of buggy can never yield a value.

5. Implementation

We have seen in various examples that there does not exist a meaningful most general type for each function.
Therefore, classical type inference systems [DM82] are not directly applicable to infer the non-standard types
used in this work. Instead, we use the idea to compute types by a fixpoint analysis [Cou97]. The analysis is
started with no information about each function (e.g., f ::*T,..., T — T) and uses the rules in Fig.1 to
compute values for required arguments. If the analysis computes some more precise information about the
result of a function, i.e., a result type like C', then the analysis performs a new iteration with all constructors
(of the corresponding concrete data type): if Ci,...,Cy are all constructors of the data type to which C
belongs, we restart the analysis with the environment containing f ::*T,..., T — C; (for i = 1,...,k).
In this way we obtain more meaningful results without testing all constructors from the beginning, which
seems a good compromise between efficiency and precision of the analysis. Since the signature of a program
is finite, the possible typings of a program are finite. Hence only a finite number of iterations are possible
and the analysis always terminates.

The actual implementation of the analysis uses the Curry analysis system CASS [HS14]. CASS is a
generic program analysis system which provides an infrastructure to implement new bottom-up analyses.
CASS requires only the definition of the abstract domain and the abstract operations to compute the
abstract values for each function based on given abstract values for the operations on which the operation
to be analyzed depend. Then the reading, parsing, and analysis of modules in their import order and the
fixpoint computations are managed by CASS.

The analysis of required values is a prerequisite to implement the transformation of equalities as discussed
in Sect. 3. The analysis results are used to transform Boolean equations as follows. For each function f, we
apply the rules in Fig. 1 in order to compute the required values at an occurrence of an expression of the form
e1==e5 in the right-hand side of the rule of f. If the abstract type is always True, we replace this expression
by e;=:=e5. This is justified by the fact that the result False is never required when this function must be
evaluated.

Hence, our implementation automatically transforms the occurrences of “==" shown in Sect. 3. Since this
transformation is performed on FlatCurry programs, it can be easily integrated into the compilation chain
for Curry programs. In fact, the transformation is fully integrated into the current releases of the Curry
systems PAKCS [HAB"16] and KiCS2 [BHPR11].

In order to assess the usefulness of our transformation, we tested it on some benchmarks. As discussed
in Sect. 2, our transformation can reduce infinite search spaces into finite ones. For instance, the expression

9

solve (xs ==ys && xs++ys == [Truel])
has an infinite search space, whereas the transformed expression
solve (xs =:=ys && xs++ys =:= [Truel)

has a finite search space. Even in the case of finite search spaces, replacing Boolean equations by equational
constraints often has a good impact on the run time since non-deterministic search is transformed into
deterministic bindings, as demonstrated by some benchmarks.

We used the Curry implementation KiCS2 [BHPR11] for the benchmarks. KiCS2 evaluates the Boolean
equality operator by narrowing with the “==" rules shown in Sect. 2 and the equational constraints by
managing variable bindings [BHPR13]. The benchmarks were executed on a Linux machine (Debian 8.0) with
an Intel Core i7-4790 (3.60Ghz) processor and 8GiB of memory. KiCS2 (Version 0.4.0) has been used with the
Glasgow Haskell Compiler (GHC 7.6.3, option -O2) as its backend. The timings were performed with the time
command measuring the execution time to compute all solutions (in seconds) of a compiled executable for
each benchmark as a mean of three runs. The programs used for the benchmarks are last n (compute the last
element of a list containing n — 1 variables and True at the end), half (compute the half of a Peano number
using logic variables), grep (string matching based on a non-deterministic specification of regular expressions
[AH10]), simplify (simplify a symbolic arithmetic expression), and varInExp (non-deterministically return
a variable occurring in a symbolic arithmetic expression). Figure 2 shows the execution times for evaluating
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Expression == =:=
last 10 0.01 0.00
last 15 0.41 0.00
last 20 13.12 0.00
fromPeano (half (toPeano 10000)) 31.09 12.98
grep 0.54  0.37
simplify 22.41 16.68
varInExp 0.95 042

Fig. 2. Benchmarks: comparing Boolean equations and equational constraints

Program #lines  =:= (original) == (transformed) full  fast

CHR 474 11 11 2.65 0.76
CurryStringClassifier 194 21 21 0.82 0.25
HTML 1316 13 13 6.04 214
Parser 49 6 6 0.22  0.02
SetFunctions 90 28 28 0.40  0.07
AddTypes 117 4 4 1.46  0.20
Curry2JS 633 6 6 2.85 0.8
maxtree 17 3 3 0.18 0.01
queens 12 5 2 0.19 0.01

Fig. 3. Benchmarks: transforming Boolean equations into equational constraints

some expressions without (==) or with (=:=) our transformation. As expected, the creation and traversal of
a large search space introduced by “==” is much slower than manipulating variable bindings by “=:=".

6. Practical Evaluation

As discussed in the introduction, an objective of this work is to simplify the usage of Curry by using
only Boolean equations in source programs and automatically replacing them by equational constraints,
if possible. In order to assess whether our method is sufficient for this purpose in practice, we applied it
to various existing Curry programs which use equational constraints. We replaced all such constraints by
Boolean equalities and checked how many of these Boolean equalities are replaced by equational constraints
with our transformation tool. The results are summarized in Fig. 3. The first group of Curry programs
are standard libraries distributed with KiCS2, where HTML is the largest one (supporting programming of
dynamic web pages [Han01]). The next two programs (AddTypes, Curry2JS) are tools contained in the KiCS2
distribution to add type signatures to top-level operations and compiling Curry programs into JavaScript
programs (which is used to implement type-safe dynamic web pages [Han07]), respectively. The last two
programs are small examples demonstrating typical functional logic programming techniques. The column
“#lines” shows the number of source code lines of each program, and the column headed by “=:=" shows the
number of occurrences of this operator in the original program’. In the benchmarks, all these occurrences

were replaced by “==" before applying our transformation to these programs.
The column headed by “==" reports the number of occurrences of this operator that were transformed
back into the original “=:=" operator. The numbers in these columns show that our tool was able to transform

almost all of them into constraints. The rare cases where this was not possible (queens) are operations that

7 A logic programmer might wonder about the low number of equational constraints even in larger functional logic programs.
This is mainly due to the fact that functional logic programming supports nested expressions (where Prolog programmers have
to use auxiliary variables and unification to connect the result from an inner computation to an outer one). Moreover, predicates
delivering multiple results can also be expressed as non-deterministic functions.
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return constraints to be solved instead of using them in a condition of a program rule. For a simplified
example of this kind, consider an operation that returns True if its three arguments are pairwise equal:

equd x y z = x==y && y==z

Obviously, our transformation cannot replace the Boolean equalities by equational constraints since this may
cause a loss of solutions. For instance, for Boolean values, the expression “not (equ3 x y z)” evaluates to
True by binding x to True and y to False (among other solutions). Such solutions would be lost if we
replace “==" by “=:=". However, if it is intended that the operation equ3 should only be used for “positive”
evaluations, one can easily redefine it by

equd x y z = solve (x==y && y==z)

With this definition, our transformation tool is able to replace both occurrences of “==" by “=:=".

As sketched in the previous section, our transformation tool is integrated into the compilation chain
of the recent releases of the Curry systems PAKCS and KiCS2. In order to control the application of the
transformation tool during the compilation process, the configuration files of these systems allow the user to
set the following usage modes:

off: In this mode, the transformation is not applied to the source program.

full: In this mode, the source program is analyzed as described in Sect. 4 and then the analysis results are
used to perform the transformation described in Sect. 5.

fast: We introduced this mode after realizing that, in applications programs, the opportunities to transform
Boolean equations into constraints are often due to the use of Boolean functions defined in the prelude, like
“&&” (conjunction), “||” (disjunction), not (negation), and the conditional operator cond. Therefore, the
“fast” mode does not perform the fixpoint analysis of Sect. 4 but simply uses the pre-computed abstract
types for the most relevant Boolean functions defined in the prelude to perform the transformation
described in Sect. 5. In all benchmarks shown in Fig. 3, there was no difference in the transformation
results between the “full” and the “fast” mode. This indicates that the “fast” mode is sufficient to perform
the desired transformations in practical programs. Therefore, it is the default mode of the tool.

The last two columns show the run times of our transformation tool in the “full” and “fast” mode (in seconds,
where the same machine as for the benchmarks in the previous section has been used). These numbers clearly
indicate the advantage of the “fast” mode. Hence, the “fast” mode is a reasonable compromise between
effectiveness and efficiency.

In order to speed up the actual program transformation, only functions that contain occurrences of “=="
are checked for a potential transformation. Thanks to the fast mode and this simple optimization, even large
modules can be transformed without any perceivable slowdown in the compilation chain.

7. Related Work

Although our approach is the first one that analyzes required types in order to compute particular values,
there are various related works in the area of analyzing declarative programs. For instance, [BE®93] discussed
an abstraction of term rewriting (which was extended in [BE95] to conditional term rewriting systems). The
objective of this abstraction is the approximation of the top-level constructors of term evaluations in order
to improve E-unification. For this purpose, they associate to a set of rewrite rules an abstract rewrite system
that is able to compute finite approximations of top-level constructors. Since their framework is restricted
to constructor-based, confluent and terminating rewrite systems without partial functions, it is too limited
for functional logic programming. Moreover, they approximate only result values but not the conditions to
compute such values.

In order to detect program errors, [ACET02] also approximated the constructor values of successful
evaluations by a fixpoint characterization of the input/output relation of functions defined by term rewrit-
ing systems. In contrast to our approach, they approximate only the input/output behavior of functional
programs but not the necessary input requirements to compute some abstract value. This is also the case
in [Han08] where call patterns occurring in functional logic computations are analyzed and approximated
in order to optimize programs or checking safety properties of functional logic programs. Another method
with similar goals has been presented in [MRO7], where Haskell programs are checked for the absence of
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pattern-match errors due to functions with incomplete patterns in their definitions. A static checker extracts
constraints from pattern-based definitions and tries to solve them by simplification and fixpoint iteration in
order to compute approximations of data constructors occurring in computations.

A quite different approach to make logic computations more efficient has been taken in the declarative
programming language Mercury [SHC96]. Mercury supports mode annotations for predicates. The Mercury
compiler exploits mode annotations to re-order predicate calls so that the general unification of two terms
is reduced to either comparing the known values of these terms or assignments where one side contains (at
run time) free variables that are assigned to the value of the other side. This leads to a highly efficient
implementation but restricts the usage of logic computations. Although some of these restrictions can be
relaxed by a more advanced mode analysis [0SS02], mode and determinism restrictions are still present in
Mercury in contrast to Curry. Note that our analysis and transformation is independent of the call modes
of the operations at run time.

8. Conclusions

We have presented an automatic method to replace Boolean equalities by equational constraints in functional
logic programs. This can be done only if it is ensured that True is required as the result of a Boolean equality,
which is the case, e.g., in conditions of rules. To this aim, we developed an analysis for required values. This
analysis can be seen as a non-standard type inference where abstract types represent sets of required values.
The results of this analysis are then used to drive the actual program transformation.

Our transformation method has the following advantages over the current design of functional logic
languages like Curry:

1. The source language becomes simpler. Since equational constraints are considered as an optimization
of Boolean equality, the type Success, present in previous versions of Curry, can be omitted. This has
the consequence that quite similar operations, like inequalities between values (<=), do not need to be
duplicated for the type of Booleans and constraints, as it is currently the case.

2. It is not necessary to consider the subtle differences between the types Bool and Success and the
operators “==" and “=:=". A programmer uses “==" only (where the operator “=:=" must still be provided
for the transformation target and in exceptional cases where a programmer wants to write efficient code
independent of a program transformation). This also simplifies the teaching of declarative multi-paradigm
languages [Han97].

3. Equational constraints can be considered as an optimized implementation of Boolean equalities. Hence,
from a declarative point of view, one has to deal with Boolean equalities only, which are easy to define
by standard rewrite rules as shown in Sect. 2.

If the target system also supports disequality constraints, as proposed in early functional logic languages
[AGL94, KLMR92], one could exploit them in an extension of our transformation tool. For instance, if an
expression e;==ey requires always False as its result, one could replace it by e;=/=e5, where the operator
“=/=" represents a disequality constraint. This might be more efficient than guessing values by narrowing
with the standard “==" rules but requires a specific implementation of a solver for “=/=".

Apart from transforming Boolean equalities in functional logic programs, the type analysis developed
in this paper has also applications, briefly discussed in Sect. 4, even for purely functional programs. For
instance, we can use abstract type information to detect buggy operations that cannot yield any value, or
to infer restrictions on operations that can serve as preconditions for their correct application.
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