
Lazy Uni�ation with Simpli�ation

Mihael Hanus

Max-Plank-Institut f�ur Informatik

Im Stadtwald, D-66123 Saarbr�uken, Germany.

mihael�mpi-sb.mpg.de

In Pro. 5th European Symposium on Programming

Edinburgh, April 1994, Springer LNCS 788, pp. 272{286

Abstrat. Uni�ation in the presene of an equational theory is an im-

portant problem in theorem-proving and in the integration of funtional

and logi programming languages. This paper presents an improvement of

the proposed lazy uni�ation methods by inorporating simpli�ation into

the uni�ation proess. Sine simpli�ation is a deterministi omputation

proess, more eÆient uni�ation algorithms an be ahieved. Moreover,

simpli�ation redues the searh spae so that in some ase in�nite searh

spaes are redued to �nite ones. We show soundness and ompleteness of

our method for equational theories represented by ground onuent and

terminating rewrite systems whih is a reasonable lass w.r.t. funtional

logi programming.

1 Introdution

Uni�ation is not only an important operation in theorem provers but also the most

important operation in logi programming systems. Uni�ation in the presene of

an equational theory, also known as E-uni�ation, is neessary if the omputational

domain in a theorem prover enjoys ertain equational properties [26℄ or if funtions

should be integrated into a logi language [10℄. Therefore the development of E-

uni�ation algorithms is an ative researh topi during reent years (see, for

instane, [29℄).

Sine E-uni�ation is a omplex problem even for simple equational axioms,

we are interested in eÆient E-uni�ation methods in order to inorporate suh

methods into funtional logi programming languages. One general method to im-

prove the eÆieny of implementations is the use of a lazy strategy. \Lazy" means

that evaluations are performed only if it is neessary to ompute the required so-

lutions. In the ontext of uni�ation this orresponds to the idea that terms are

manipulated at outermost positions. Hene lazy uni�ation means that equational

axioms are applied to outermost positions of equations. For instane, onsider the

following equations for addition and multipliation on natural numbers whih are

represented by terms of the form s(� � � s(0) � � �):

0 + y � y 0 � y � 0

s(x) + y � s(x + y) s(x) � y � y + x � y

If we have to unify the terms 0 � (s(0) + s(z)) and 0, we ould apply equational

axioms to inner subterms starting with s(0)+s(z) (innermost or eager strategy) or

to outermost subterms (outermost or lazy strategy). This will lead to the following

two derivations (the subterms manipulated in the next step are underlined):

0 � (s(0) + s(z)) � 0) 0 � (s(0 + s(z))) � 0) 0 � (s(s(z))) � 0) 0 � 0

0 � (s(0) + s(z)) � 0) 0 � 0

Obviously, the seond lazy uni�ation derivation should be preferred.

There are many proposals for suh lazy uni�ation strategies. For instane,

Martelli et al. [22℄ have proposed a lazy uni�ation algorithm for onuent and

terminating equational axioms. Due to the onuene requirement, equations are

only applied in one diretion. However, their method is not pure lazy sine equa-

tions are applied to inner subterms in equations of the form x � t where the

variable x ours in t. Gallier and Snyder [11℄ have proved the ompleteness of a

lazy uni�ation method for arbitrary equational theories where equations an be

applied in both diretions. Narrowing is a method to ompute E-uni�ers in the

presene of onuent axioms. It is a ombination of the redution priniple of fun-

tional languages with syntati uni�ation in order to instantiate variables. Lazy

narrowing were proposed by Reddy [27℄ as the operational priniple of funtional

logi languages. Reently, Antoy, Ehahed and Hanus [1℄ have proposed a nar-

rowing strategy for programs where the funtions are de�ned by ase distintions

over the data strutures. This strategy redues only needed redexes, omputes no

redundant solutions, and is optimal w.r.t. the length of narrowing derivations.

From a pratial point of view the disadvantage of E-uni�ation is its inher-

ent nondeterminism. In the area of narrowing there are many proposals for the

inlusion of a deterministi simpli�ation proess in order to redue the nondeter-

minism [8, 9, 19, 24, 28℄, but all these proposals are based on an eager narrowing

strategy. On the other hand, only little work has been done to improve the eÆ-

ieny of outermost or lazy strategies. Ehahed [7℄ has shown the ompleteness of

any narrowing strategy with simpli�ation under strong requirements (uniformity

of spei�ations). Dershowitz et al. [6℄ have proposed to ombine lazy uni�ation

with simpli�ation and demonstrated the usefulness of indutive onsequenes for

simpli�ation. However, they have not proved ompleteness of their lazy uni�a-

tion alulus if all terms are simpli�ed to their normal form after eah uni�ation

step. In fat, their ompleteness proof for lazy narrowing does not hold if eager

rewriting is inluded sine rewriting in their sense does not redue the omplexity

measure used in their ompleteness proof and may lead to in�nite instead of su-

essful derivations. Therefore we will formulate a alulus for lazy uni�ation whih

inludes simpli�ation and give a rigorous ompleteness proof. The distinguishing

features of our framework are:

{ We onsider a ground onuent and terminating equational spei�ation in

order to apply equations only in one diretion and to ensure the existene of

normal forms. This is reasonable if one is interested in delarative programming

rather than theorem proving.

{ The uni�ation alulus is lazy, i.e., funtions are not evaluated if their value is

not required to deide the uni�ability of terms. Consequently, we may ompute

reduible solutions as answers aording to the spirit of lazy evaluation. For

instane, in ontrast to other \lazy" uni�ation methods we do not allow any

evaluation of t in the equation x � t if x ours only one.

{ We inlude a deterministi simpli�ation proess in our uni�ation alulus.

In order to restrit nondeterministi omputations as muh as possible, we

allow to use additional indutive onsequenes for simpli�ation whih has

been proved to be useful in other aluli [7, 9, 24℄.

After realling basi notions from term rewriting, we present in Setion 3 our ba-

si lazy uni�ation alulus. In Setion 4 we inlude a deterministi simpli�ation

proess into the lazy uni�ation alulus. Finally, we show in Setion 5 some im-

portant optimizations for onstrutor-based spei�ations. Due to lak of spae we

omit the details of some proofs, but the interested reader will �nd them in [17℄.

2

2 Computing in equational theories

In this setion we reall the notations for equations and term rewriting systems

[5℄ whih are neessary in our ontext.

Let the signature F be a set of funtion symbols

1

and X be a ountably in�nite

set of variables. Then T (F ;X) denotes the set of terms built from F and X .

Var(t) is the set of variables ourring in t. A ground term t is a term without

variables, i.e., Var(t) = ;. A substitution � is a mapping from X into T (F ;X)

suh that its domain Dom(�) = fx 2 X j �(x) 6= xg is �nite. We frequently

identify a substitution � with the set fx 7! �(x) j x 2 Dom(�)g. Substitutions are

extended to morphisms on T (�;X) by �(f(t

1

; : : : ; t

n

)) = f(�(t

1

); : : : ; �(t

n

)) for

every term f(t

1

; : : : ; t

n

). A substitution � is alled ground if �(x) is a ground term

for all x 2 Dom(�). The omposition of two substitutions � and � is de�ned by

� Æ �(x) = �(�(x)) for all x 2 X . A uni�er of two terms s and t is a substitution

� with �(s) = �(t). A uni�er � is alled most general (mgu) if for every other

uni�er �

0

there is a substitution � with �

0

= � Æ �. A position p in a term t is

represented by a sequene of natural numbers, tj

p

denotes the subterm of t at

position p, and t[s℄

p

denotes the result of replaing the subterm tj

p

by the term s

(see [5℄ for details). The outermost position � is also alled root position.

Let ! be a binary relation on a set S. Then !

�

denotes the transitive and

reexive losure of the relation !, and $

�

denotes the transitive, reexive and

symmetri losure of !. ! is alled terminating if there are no in�nite hains

e

1

! e

2

! e

3

! � � �. ! is alled onuent if for all e; e

1

; e

2

2 S with e!

�

e

1

and

e!

�

e

2

there exists an element e

3

2 S with e

1

!

�

e

3

and e

2

!

�

e

3

.

An equation s � t is a multiset ontaining two terms s and t. Thus equations

to be uni�ed are symmetri. In order to ompute with equational spei�ations,

we will use the spei�ed equations only in one diretion. Hene we de�ne a rewrite

rule l ! r as a pair of terms l; r satisfying l 62 X and Var(r) � Var(l) where l and

r are alled left-hand side and right-hand side, respetively. A rewrite rule is alled

a variant of another rule if it is obtained by a unique replaement of variables by

other variables. A term rewriting system R is a set of rewrite rules. In the following

we assume a given term rewriting system R.

A rewrite step is an appliation of a rewrite rule to a term, i.e., t !

R

s if

there exists a position p, a rewrite rule l ! r and a substitution � with tj

p

= �(l)

and s = t[�(r)℄

p

. A term t is alled reduible if we an apply a rewrite rule to it,

and t is alled irreduible or in normal form if there is no term s with t !

R

s.

A term rewriting system is ground onuent if the restrition of !

R

to the set of

all ground terms is onuent. If R is ground onuent and terminating, then eah

ground term t has a unique normal form whih is denoted by t#

R

.

We are interested in proving the validity of equations. Hene we all an equation

s � t valid (w.r.t. R) if s $

�

R

t. By Birkho�'s Completeness Theorem, this is

equivalent to the validity of s � t in all models of R. In this ase we also write

s =

R

t. If R is ground onuent and terminating, we an deide the validity

of a ground equation s � t by omputing the normal form of both sides using

an arbitrary sequene of rewrite steps sine s $

�

R

t i� s#

R

= t#

R

. In order to

ompute solutions to a non-ground equation s � t, we have to �nd appropriate

instantiations for the variables in s and t. This an be done by narrowing. A term

1

In this paper we onsider only single-sorted programs. The extension to many-sorted

signatures is straightforward [25℄. Sine sorts are not relevant to the subjet of this

paper, we omit them for the sake of simpliity.

3

t is narrowable into a term t

0

if there exist a non-variable position p (i.e., tj

p

62 X),

a variant l ! r of a rewrite rule and a substitution � suh that � is a mgu of tj

p

and l and t

0

= �(t[r℄

p

). In this ase we write t;

�

t

0

.

Narrowing is able to solve equations w.r.t. R by deriving both sides of an

equation to syntatially uni�able terms. Due to the huge searh spae of simple

narrowing, several authors have proposed restritions on the admissible narrowing

derivations (see [18℄ for a detailed survey). Lazy narrowing [3, 23, 27℄ is inu-

ened by the idea of lazy evaluation in funtional programming languages. Lazy

narrowing steps are only applied at outermost positions with the exeption that

arguments are evaluated by narrowing to their head normal form if their values

are required for an outermost narrowing step. Sine lazy strategies are important

in the ontext of non-terminating rewrite rules, these strategies have been proved

to be omplete w.r.t. domain-based interpretations of rewrite rules [13, 23℄. Lazy

uni�ation is very similar to lazy narrowing but manipulates sets of equations

rather than terms. It has been proved to be omplete for anonial term rewriting

systems w.r.t. standard semantis [6, 22℄.

From a pratial point of view the most essential improvement of simple nar-

rowing is normalizing narrowing [8℄ where the term is rewritten to its normal form

before a narrowing step is applied. This optimization is important sine it prefers

deterministi omputations: rewriting a term to normal form an be done in a

deterministi way sine every rewriting sequene gives the same result (if R is

onuent and terminating). As shown in [9, 16℄, normalizing narrowing has the

important e�et that equational logi programs are more eÆiently exeutable

than pure logi programs. Normalization an also be ombined with other nar-

rowing restritions [9, 19, 28℄. Beause of these important advantages, normalizing

narrowing is the foundation of several programming languages whih ombines

funtional and logi programming like ALF [15℄, LPG [2℄ or SLOG [9℄. However,

normalization has not been inluded in lazy narrowing strategies.

2

Therefore we

will present a lazy uni�ation alulus whih inludes a normalization proess

where the term rewrite rules as well as additional indutive onsequenes are used

for normalization.

3 A alulus for lazy uni�ation

In the rest of this paper we assume that R is a ground onuent and terminating

term rewriting system. This setion presents our basi lazy uni�ation alulus to

solve a system of equations. The inlusion of a normalization proess will be shown

in Setion 4. The \laziness" of our alulus is in the spirit of lazy evaluation in

funtional programming languages, i.e., terms are evaluated only if their values

are needed.

Our lazy uni�ation alulus manipulates sets of equations in the style of

Martelli and Montanari [21℄ rather than terms as in narrowing aluli. Hene

we de�ne an equation system E to be a multiset of equations (in the following we

write suh sets without urly brakets if it is lear from the ontext). A solution

of an equation system E is a ground substitution � suh that �(s) =

R

�(t) for

all equations s � t 2 E.

3

An equation system E is solvable if it has at least one

solution. A set S of substitutions is a omplete set of solutions for E i�

2

Exept for [6, 7℄, but see the remarks in Setion 1.

3

We are interested in ground solutions sine later we will inlude indutive onsequenes

whih are valid in the ground models of R. As pointed out in [24℄, this ground approah

subsumes the onventional narrowing approahes where also non-ground solutions are

4

Lazy narrowing

f(t

1

; : : : ; t

n

) � t; E

lu

=) t

1

� l

1

; : : : ; t

n

� l

n

; r � t; E

if t 62 X or t 2 Var(f(t

1

; : : : ; t

n

))[Var(E) and f(l

1

; : : : ; l

n

)! r new variant of a rule

Deomposition of equations

f(t

1

; : : : ; t

n

) � f(t

0

1

; : : : ; t

0

n

); E

lu

=) t

1

� t

0

1

; : : : ; t

n

� t

0

n

; E

Partial binding of variables

x � f(t

1

; : : : ; t

n

); E

lu

=) x � f(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E)

if x 2 Var(f(t

1

; : : : ; t

n

)) [Var(E) and � = fx 7! f(x

1

; : : : ; x

n

)g (x

i

new variable)

Figure 1. The lazy uni�ation alulus

1. for all � 2 S, � is a solution of E;

2. for every solution � of E, there exists some � 2 S with �(x) =

R

�(x) for all

x 2 Var(E).

In order to ompute solutions of an equation system, we transform it by the rules

in Figure 1 until no more rules an be applied. The lazy narrowing transformation

applies a rewrite rule to a funtion ourring outermost in an equation.

4

Atually,

this is not a narrowing step as de�ned in Setion 2 sine the argument terms may

not be uni�able. Narrowing steps an be simulated by a sequene of transforma-

tions in the lazy uni�ation alulus but not vie versa sine our alulus also

allows the appliation of rewrite rules to the arguments of the left-hand sides. The

deomposition transformation generates equations between the argument terms of

an equation if both sides have the same outermost symbol. The partial binding

of variables an be applied if the variable x ours at di�erent positions in the

equation system. In this ase we instantiate the variable only with the outermost

funtion symbol. A full instantiation by the substitution � = fx 7! f(t

1

; : : : ; t

n

)g

may inrease the omputational work if x ours several times and the evaluation

of f(t

1

; : : : ; t

n

) is ostly. In order to avoid this problem of eager variable elim-

ination (see [11℄), we perform only a partial binding whih is also alled \root

imitation" in [11℄.

At �rst sight our lazy uni�ation alulus has many similarities with the lazy

uni�ation rules presented in [6, 11, 22, 25℄. This is not aidental sine these

systems have inspired us. However, there are also essential di�erenes. Sine we

are interested in reduing the omputational osts in the E-uni�ation proedure,

our rules behave \more lazily". In our rules it is allowed to evaluate a term only if

its value is needed (in several positions). Otherwise, the term is left unevaluated.

Example 1. Consider the rewrite rule 0 � x ! 0. Then the only transformation

sequene of the equation 0 � t � 0 (where t is a ostly funtion) is

0 � t � 0

lu

=) 0 � 0; t � x; 0 � 0

lu

=) t � x; 0 � 0

lu

=) t � x

Thus the term t is not evaluated sine its onrete value is not needed. Con-

sequently, we may ompute solutions with reduible terms whih is a desirable

property in the presene of a lazy evaluation mehanism. 2

taken into aount.

4

Similarly to logi programming, we have to apply rewrite rules with fresh variables in

order to ensure ompleteness.

5

Coalese x � y; E

var

=) x � y; �(E) if x; y 2 Var(E) and � = fx 7! yg

Trivial x � x;E

var

=) E

Figure 2. The variable elimination rules

The onventional transformation rules for uni�ation w.r.t. an empty equational

theory [21℄ bind a variable x to a term t only if x does not our in t. This our

hek must be omitted in the presene of evaluable funtion symbols. Moreover,

we must also instantiate ourrenes of x in the term t whih is done in our partial

binding rule. The following example shows the neessity of these extensions.

Example 2. Consider the rewrite rule f((a))! a. Then we an solve the equation

x � (f(x)) by the following transformation sequene:

x � (f(x))

lu

=) x � (x

1

); x

1

� f((x

1

)) (partial binding)

lu

=) x � (x

1

); (x

1

) � (a); x

1

� a (lazy narrowing)

lu

=) x � (x

1

); x

1

� a; x

1

� a (deomposition)

lu

=) x � (a); x

1

� a; a � a (partial binding)

lu

=) x � (a); x

1

� a (deomposition)

In fat, the initial equation is solvable and fx 7! (a)g is a solution of this equation.

This solution is also an obvious solution of the �nal equation system if we disregard

the auxiliary variable x

1

. 2

In the rest of this setion we will show soundness and ompleteness of our lazy

uni�ation alulus. Soundness simply means that eah solution of the transformed

equation system is also a solution of the initial equation system. Completeness is

more diÆult sine we have to take into aount all possible transformations.

Therefore we will show that a solvable equation system an be transformed into

another very simple equation system whih has \an obvious solution". Suh a �nal

equation system is alled in \solved form". Aording to [11, 21℄ we all an equation

x � t 2 E solved (in E) if x is a variable whih ours neither in t nor anywhere

else in E. In this ase variable x is also alled solved (in E). An equation system

is solved or in solved form if all its equations are solved. A variable or equation is

unsolved in E if it ours in E but is not solved.

The lazy uni�ation alulus in the present form annot transform eah solv-

able equation system into a solved form sine equations between variables are not

simpli�ed. For instane, the equation system

x � f(y); y � z

1

; y � z

2

; z

1

� z

2

is irreduible w.r.t.

lu

=) but not in solved form sine the variables y; z

1

; z

2

have

multiple ourrenes. Fortunately, this is not a problem sine a solution an be

extrated by merging the variables ourring in unsolved equations. Therefore we

all this system quasi-solved. An equation system is quasi-solved if eah equation

s � t is solved or has the property s; t 2 X . In the following we will show that

a quasi-solved equation system has solutions whih an be easily omputed by

applying the rules in Figure 2 to it. The separation between the lazy uni�ation

rules in Figure 1 and the variable elimination rules in Figure 2 has tehnial rea-

sons that will beome apparent later (e.g., applying variable elimination to the

6

equation y � z

1

may not redue the omplexity measure used in our ompleteness

proofs). However, it is obvious to obtain the solutions of a quasi-solved equation

system E. For this purpose we transform E by the rules in Figure 2 into a solved

equation system whih has a diret solution. This is always possible beause

var

=)

is terminating, preserves solutions, and transforms eah quasi-solved system into

a solved one (see [17℄ for details). Moreover, the solutions of an equation system

in solved form an be obtained as follows:

Proposition 1. Let E = fx

1

� t

1

; : : : ; x

n

� t

n

g be an equation system in solved

form. Then the substitution set

f Æ fx

1

7! t

1

; : : : ; x

n

7! t

n

g j is a ground substitutiong

is a omplete set of solutions for E.

Therefore it is suÆient to transform an equation system into a quasi-solved form.

The soundness of the lazy uni�ation alulus is implied by the following theorem

whih an be proved by a ase analysis on the applied transformation rule [17℄.

Theorem2. Let E and E

0

be equation systems with E

lu

=)E

0

. Then eah solution

� of E

0

is also a solution of E.

For the ompleteness we show that for eah solution of an equation system there

is a derivation into a quasi-solved form that has the same solution. Note that

the solution of the quasi-solved form annot be idential to the required solution

sine new additional variables are generated during the derivation (by lazy nar-

rowing and partial binding transformations). But this is not a problem sine we

are interested in solutions w.r.t. the variables of the initial equation system.

Theorem3. Let E be a solvable equation system with solution �. Then there exists

a derivation E

lu

=)

�

E

0

with E

0

in quasi-solved form suh that E

0

has a solution �

0

with �

0

(x) =

R

�(x) for all x 2 Var(E).

Proof. We show the existene of a derivation from E into a quasi-solved equation

system by the following steps:

1. We de�ne a redution relation) on pairs of the form (�;E) (where E is an

equation system and � is a solution of E) with the property that (�;E))

(�

0

; E

0

) implies E

lu

=)E

0

and �

0

(x) = �(x) for all x 2 Var(E).

2. We de�ne a terminating ordering � on these pairs.

3. We show: If E has a solution � but E is not in quasi-solved form, then there

exists a pair (�

0

; E

0

) with (�;E)) (�

0

; E

0

) and (�;E) � (�

0

; E

0

).

2 and 3 implies that eah solvable equation system an be transformed into a quasi-

solved form. By 1, the solution of this quasi-solved form is the required solution

of the initial equation system.

In the sequel we will show 1 and 3 in parallel. First we de�ne the terminating

ordering �. For this purpose we use the strit subterm ordering �

sst

on terms

de�ned by t �

sst

s i� there is a position p in t with tj

p

= s 6= t. Sine R is a termi-

nating term rewriting system, the relation !

R

on terms is also terminating. Let

�� be the transitive losure of the relation!

R

[�

sst

. Then �� is also terminating

[20℄.

5

Now we de�ne the following ordering on pairs (�;E): (�;E) � (�

0

; E

0

) i�

f�(s); �(t) j s � t 2 E unsolvedg ��

mul

f�

0

(s

0

); �

0

(t

0

) j s

0

� t

0

2 E

0

unsolvedg (�)

5

Note that the use of the relation !

R

instead of �� (as done in [6℄) is not suÆient for

the ompleteness proof sine !

R

has not the subterm property [4℄ in general.

7

where ��

mul

is the multiset extension

6

of the ordering �� (all sets in this de�nition

are multisets). ��

mul

is terminating (note that all multisets onsidered here are

�nite) sine �� is terminating [4℄.

Now we will show that we an apply a transformation step to a solvable but

unsolved equation system suh that its omplexity is redued. Let E be an equation

system not in quasi-solved form and � be a solution of E. Sine E is not quasi-

solved, there must be an equation whih has one of the following forms:

1. There is an equation E = s � t; E

0

with s; t 62 X : Let s = f(s

1

; : : : ; s

n

) with

n � 0 (the other ase is symmetri). Consider an innermost derivation of the

normal forms of �(s) and �(t):

(a) No rewrite step is performed at the root of �(s) and �(t): Then t has

the form t = f(t

1

; : : : ; t

n

) and �(s)#

R

= �(t)#

R

= f(u

1

; : : : ; u

n

). Sine

�(s) and �(t) are not reduible at the root, �(s

i

)#

R

= u

i

= �(t

i

)#

R

for

i = 1; : : : ; n. Now we apply the deomposition transformation and obtain

the equation system

E

0

= s

1

� t

1

; : : : ; s

n

� t

n

; E

0

Obviously, � is a solution of E

0

. Moreover, the omplexity of the new

equation system is redued beause the equation s � t is unsolved in E

and eah �(s

i

) and �(t

i

) is smaller than �(s) and �(t), respetively, sine

�� ontains the strit subterm ordering �

sst

. Hene (�;E) � (�;E

0

).

(b) A rewrite step is performed at the root of �(s), i.e., the innermost rewriting

sequene of �(s) has the form

�(s)!

�

R

f(s

0

1

; : : : ; s

0

1

)!

R

�(r) !

�

R

�(s)#

R

where f(l

1

; : : : ; l

n

) ! r is a new variant of a rewrite rule, �(l

i

) = s

0

i

and �(s

i

) !

�

R

s

0

i

for i = 1; : : : ; n. An appliation of the lazy narrowing

transformation yields the equation system

E

0

= s

1

� l

1

; : : : ; s

n

� l

n

; r � t; E

0

We extend � to a new substitution �

0

with �

0

(x) = �(x) for all x 2 Dom(�)

(this is always possible sine � does only work on the variables of the new

variant of the rewrite rule). �

0

is a solution of E

0

sine

�

0

(s

i

) = �(s

i

)!

�

R

s

0

i

= �(l

i

) = �

0

(l

i

)

and

�

0

(r) = �(r)!

�

R

�(s)#

R

$

�

R

�(t) = �

0

(t)

Sine the transitive losure of !

R

is ontained in ��, �(s

i

) �� �

0

(l

i

) (if

�(s

i

) 6= �

0

(l

i

)) and �(s) �� �

0

(r). Sine s � t is unsolved in E, the term

�(s) is ontained in the left multiset of the ordering de�nition (�), and

it is replaed by the smaller terms �(s

1

); : : : ; �(s

n

); �

0

(l

1

); : : : ; �

0

(l

n

); �

0

(r)

(�(s) �� �(s

i

) sine �� ontains the strit subterm ordering). Therefore

the new equation system is smaller w.r.t. �, i.e., (�;E) � (�

0

; E

0

).

2. There is an equation E = x � t; E

0

with t = f(t

1

; : : : ; t

n

) and x unsolved in

E: Hene x 2 Var(t) [Var(E

0

). Again, we onsider an innermost derivation

of the normal form of �(t):

(a) A rewrite step is performed at the root of �(t). Then we apply a lazy

narrowing step and proeed as in the previous ase.

6

The multiset ordering ��

mul

is the transitive losure of the replaement of an element

by a �nite number of elements that are smaller w.r.t. �� [4℄.

8

(b) No rewrite step is performed at the root of �(t), i.e., �(t)#

R

= f(t

0

1

; : : : ; t

0

n

)

and �(t

i

)#

R

= t

0

i

for i = 1; : : : ; n. We apply the partial binding transfor-

mation and obtain the equation system

E

0

= x � f(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E

0

)

where � = fx 7! f(x

1

; : : : ; x

n

)g and x

i

are new variables. We extend � to

a substitution �

0

by adding the bindings �

0

(x

i

) = t

0

i

for i = 1; : : : ; n. Then

�

0

(f(x

1

; : : : ; x

n

)) = f(t

0

1

; : : : ; t

0

n

) = �(t)#

R

$

�

R

�(t)$

�

R

�(x) = �

0

(x)

Moreover, �

0

(�(x)) = �

0

(x)#

R

whih implies �

0

(s) $

�

R

�

0

(�(s)) for all

terms s. Hene �

0

(�(t

i

)) $

�

R

�

0

(t

i

) $

�

R

t

0

i

= �

0

(x

i

). Altogether, �

0

is a

solution of E

0

.

It remains to show that this transformation redues the omplexity of the

equation system. Sine �

0

(�(x)) = �(x)#

R

, we have �(x) !

�

R

�

0

(�(x)).

Hene �(E

0

) is equal to �

0

(�(E

0

)) (if �(x) = �

0

(�(x))) or �

0

(�(E

0

)) is

smaller w.r.t. ��

mul

. Therefore it remains to hek that �(t) is greater

than eah �

0

(x

1

); : : : ; �

0

(x

n

); �

0

(�(t

1

)); : : : ; �

0

(�(t

n

)) w.r.t. �� (note that

the equation x � t is unsolved in E, but the equation x � f(x

1

; : : : ; x

n

) is

solved in E

0

). First of all, �(t) �� �(t

i

) sine �� inludes the strit subterm

ordering. Moreover, �(t

i

) !

�

R

�

0

(x

i

), i.e., �

0

(x

i

) is equal or smaller than

�(t

i

) w.r.t. �� for i = 1; : : : ; n. This implies �(t) �� �

0

(x

i

). Similarly,

�

0

(�(t

i

)) is equal or smaller than �(t

i

) w.r.t. �� sine �

0

(�(x)) = �(x)#

R

.

Thus �(t) �� �

0

(�(t

i

)). Altogether, (�;E) � (�

0

; E

0

). ut

We want to point out that there exist also other orderings on substitution/equation

system pairs to prove the ompleteness of our alulus. However, the ordering

hosen in the above proof is tailored to a simple proof for the ompleteness of lazy

uni�ation with simpli�ation as we will see in the next setion.

The results of this setion imply that a omplete set of solutions for a given

equation system E an be omputed by enumerating all derivations in the lazy

uni�ation alulus from E into a quasi-solved equation system. Due to the nonde-

terminism in the lazy uni�ation alulus, there are many unsuessful and often

in�nite derivations. Therefore we will show in the next setion how to redue this

nondeterminism by integrating a deterministi simpli�ation proess into the lazy

uni�ation alulus. More determinism an be ahieved by dividing the set of fun-

tion symbols into onstrutors and de�ned funtions. This will be the subjet of

Setion 5.

4 Integrating simpli�ation into lazy uni�ation

The lazy uni�ation alulus admits a high degree of nondeterminism even if there

is only one reasonable derivation. This is due to the fat that funtional expressions

are proessed \too lazy".

Example 3. Consider the rewrite rules

f(a) ! g(a) ! a

f(b) ! d g(b) ! b

and the equation f(g(b)) � d. Then there are four di�erent derivations in our lazy

uni�ation alulus, but only one derivation is suessful. If we would �rst ompute

the normal form of f(g(b)), whih is d, then there is only one possible derivation:

d � d

lu

=) ;. Hene we will show that the lazy uni�ation alulus remains to be

sound and omplete if the (deterministi!) normalization of terms is inluded. 2

9

It is well-known [9, 16℄ that the inlusion of indutive onsequenes for normal-

ization may have an essential e�et on the searh spae redution in normalizing

narrowing strategies. Therefore we will also allow the use of additional indutive

onsequenes for normalization. A rewrite rule l ! r is alled indutive onse-

quene (of R) if �(l) =

R

�(r) for all ground substitutions �. For instane, the rule

x+ 0! x is an indutive onsequene of the term rewriting system

0 + y ! y s(x) + y ! s(x+ y)

If we want to solve the equation s(x)+0 � s(x), our basi lazy uni�ation alulus

would enumerate the solutions x 7! 0, x 7! s(0), x 7! s(s(0)) and so on, i.e., this

equation has an in�nite searh spae. Using the indutive onsequene x+ 0! x

for normalization, the equation s(x)+0 � s(x) is redued to s(x) � s(x) and then

transformed into the quasi-solved form x � x representing the solution set where

x is replaed by any ground term.

7

In the following we assume that S is a set of indutive onsequenes of R (the

set of simpli�ation rules) so that the rewrite relation !

S

is terminating. We will

use rules from R for lazy narrowing and rules from S for simpli�ation. Note that

eah rule from R is also an indutive onsequene and an be inluded in S. But

we do not require that all rules from R must be used for normalization. This is

reasonable if there are dupliating rules where one variable of the left-hand side

ours several times on the right-hand side, like f(x) ! g(x; x). If we normalize

the equation f(s) � t with this rule, then the term s is dupliated whih may

inrease the omputational osts if the evaluation of s is neessary and ostly. In

suh a ase it would be better to use this rule only in lazy narrowing steps.

In order to inlude simpli�ation into the lazy uni�ation alulus, we de�ne

a relation)

S

on systems of equations. s � t)

S

s

0

� t

0

i� s

0

and t

0

are normal

forms of s and t w.r.t. !

S

, respetively. E)

S

E

0

i� E = e

1

; : : : ; e

n

and E

0

=

e

0

1

; : : : ; e

0

n

where e

i

)

S

e

0

i

for i = 1; : : : ; n. Note that)

S

desribes a deterministi

omputation proess.

8

E

lus

=)E

0

is a derivation step in the lazy uni�ation alulus

with simpli�ation if E)

S

E

lu

=)E

0

for some E.

The soundness of the alulus

lus

=) an be shown by a simple indution on

the omputation steps using Theorem 2 and the following lemma whih shows the

soundness of one rewrite step with a simpli�ation rule:

Lemma4. Let s � t be an equation and s !

S

s

0

be a rewrite step. Then eah

solution of s

0

� t is also a solution of s � t.

For the ompleteness proof we have to show that solutions are not lost by the

appliation of indutive onsequenes:

Lemma5. Let E be an equation system and � be a solution of E. If E)

S

E

0

,

then � is a solution of E

0

.

7

In larger single-sorted term rewriting systems it would be diÆult to �nd indutive

onsequenes. E.g., x+ 0! x is not an indutive onsequene if there is a onstant a

sine a+ 0 =

R

a is not valid. However, in pratie spei�ations are many-sorted and

then indutive onsequenes must be valid only for all well-sorted ground substitutions.

Therefore we want to point out that all results in this paper an also be extended to

many-sorted term rewriting systems in a straightforward way.

8

If there exist more than one normal form w.r.t. !

S

, it is suÆient to selet don't are

one of these normal forms.

10

This lemma would imply the ompleteness of the alulus

lus

=) if a derivation

step with)

S

does not inrease the ordering used in the proof of Theorem 3.

Unfortunately, this is not the ase in general sine the termination of!

R

and!

S

may be based on di�erent orderings (e.g., R = fa ! bg and S = fb ! ag). In

order to avoid suh problems, we require that the relation !

R[S

is terminating

whih is not a real restrition in pratie.

Theorem6. Let S be a set of indutive onsequenes of the ground onuent and

terminating term rewriting system R suh that !

R[S

is terminating. Let E be a

solvable equation system with solution �. Then there exists a derivation E

lus

=)

�

E

0

suh that E

0

is in quasi-solved form and has a solution �

0

with �

0

(x) =

R

�(x) for

all x 2 Var(E).

Proof. In the proof of Theorem 3 we have shown how to apply a transformation

step to an equation system not in quasi-solved form suh that the solution is

preserved. We an use the same proof for the transformation

lus

=) sine Lemma 5

shows that normalization steps preserve solutions. The only di�erene onerns

the ordering where we use !

R[S

instead of !

R

, i.e., �� is now de�ned to be

the transitive losure of the relation !

R[S

[�

sst

. Clearly, this does not hange

anything in the proof of Theorem 3. Moreover, the relation)

S

does not inrease

the omplexity w.r.t. this ordering but redues it if indutive onsequenes are

applied sine !

S

is ontained in ��. ut

These results show that we an integrate the deterministi simpli�ation proess

into the lazy uni�ation alulus without loosing soundness and ompleteness.

Note that the rules from S an only be applied if their left-hand sides an be

mathed with a subterm of the urrent equation system. If these subterms are not

suÆiently instantiated, the rewrite rules are not appliable and hene we loose

potential determinism in the uni�ation proess.

Example 4. Consider the rules

zero(s(x)) ! zero(x) zero(0) ! 0

(assume that these rules are ontained in R as well as in S) and the equation

system zero(x) � 0; x � 0. Then there exists the following derivation in our

alulus (this derivation is also possible in the uni�ation aluli in [11, 22℄):

zero(x) � 0; x � 0

lus

=) x � s(x

1

); zero(x

1

) � 0; x � 0 (lazy narrowing)

lus

=) x � s(x

1

); x

1

� s(x

2

); zero(x

2

) � 0; x � 0 (lazy narrowing)

lus

=) � � �

This in�nite derivation ould be avoided if we apply the partial binding rule in the

�rst step:

zero(x) � 0; x � 0

lus

=) zero(0) � 0; x � 0 (partial binding)

)

S

0 � 0; x � 0 (rewriting with seond rule)

lus

=) x � 0 (deomposition)

In the next setion we will present an optimization whih prefers the latter deriva-

tion and avoids the �rst in�nite derivation. 2

11

Deomposition of onstrutor equations

(t

1

; : : : ; t

n

) � (t

0

1

; : : : ; t

0

n

); E

lu

=) t

1

� t

0

1

; : : : ; t

n

� t

0

n

; E if 2 C

Full binding of variables to ground onstrutor terms

x � t; E

lu

=) x � t; �(E) if x 2 Var(E), t 2 T (C; ;) and � = fx 7! tg

Partial binding of variables to onstrutor terms

x � (t

1

; : : : ; t

n

); E

lu

=) x � (x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E)

if x 2 Var((t

1

; : : : ; t

n

))[Var(E), x 62 var((t

1

; : : : ; t

n

)) and � = fx 7! (x

1

; : : : ; x

n

)g

(x

i

new variable)

Figure 3. Deterministi transformations for onstrutor-based rewrite systems

5 Construtor-based systems

In pratial appliations of equational logi programming a distintion is made

between operation symbols to onstrut data terms, alled onstrutors, and oper-

ation symbols to operate on data terms, alled de�ned funtions (see, for instane,

the funtional logi languages ALF [15℄, BABEL [23℄, K-LEAF [13℄, SLOG [9℄,

or the RAP system [12℄). Suh a distintion allows to optimize our uni�ation

alulus. Therefore we assume in this setion that the signature F is divided into

two sets F = C [D, alled onstrutors and de�ned funtions, with C \ D = ;. A

onstrutor term t is built from onstrutors and variables, i.e., t 2 T (C;X). The

distintion between onstrutors and de�ned funtions omes with the restrition

that for all rewrite rules l ! r the outermost symbol of l is always a de�ned

funtion.

The important property of suh onstrutor-based term rewriting systems is

the irreduibility of onstrutor terms. Due to this fat we an speialize the rules

of our basi lazy uni�ation alulus. Therefore we de�ne the deterministi trans-

formations in Figure 3. Deterministi transformations are intended to be applied

as long as possible before any transformation

lu

=) is used. Hene they an be in-

tegrated into the deterministi normalization proess)

S

. It is obvious that this

modi�ation preserves soundness and ompleteness. The deomposition transfor-

mation for onstrutor equations must be applied in any ase in order to obtain a

quasi-solved equation system sine a lazy narrowing step R annot be applied to

onstrutor equations. The full binding of variables to ground onstrutor terms is

an optimization whih ombines subsequent appliations of partial binding trans-

formations. This transformation dereases the omplexity used in the proof of

Theorem 6 sine a onstrutor term is always in normal form. The partial bind-

ing transformation for onstrutor terms performs an eager (partial) binding of

variables to onstrutor terms sine a lazy narrowing step annot be applied to

the onstrutor term. Moreover, this binding transformation is ombined with an

our hek sine it annot be applied if x 2 var((t

1

; : : : ; t

n

)) where var denotes

the set of all variables ourring outside terms headed by de�ned funtion symbols.

This restrition avoids in�nite derivations of the following kind:

x � (x)

lu

=) x � (x

1

); x

1

� (x

1

) (partial binding)

lu

=) x � (x

1

); x

1

� (x

2

); x

2

� (x

2

) (partial binding)

lu

=) � � �

A further optimization an be added if all funtions are reduible on ground

onstrutor terms, i.e., for all f 2 D and t

1

; : : : ; t

n

2 T (C; ;) there exists a term t

12

Clash (t

1

; : : : ; t

n

) � d(t

0

1

; : : : ; t

0

m

); E

lu

=) fail if ; d 2 C and 6= d

Our hek x � (t

1

; : : : ; t

n

); E

lu

=) fail if x 2 var((t

1

; : : : ; t

n

))

Figure 4. Failure rules for onstrutor-based rewrite systems

with f(t

1

; : : : ; t

n

) !

R

t. In this ase all ground terms have a ground onstrutor

normal form and therefore the partial binding transformation of

lu

=) an be om-

pletely omitted whih inreases the determinism in the lazy uni�ation alulus.

If we invert the deterministi transformation rules, we obtain a set of failure

rules shown in Figure 4. Failure rules are intended to be tried during the deter-

ministi transformations. If a failure rule is appliable, the derivation an be safely

terminated sine the equation system annot be transformed into a quasi-solved

system.

6 Examples

In this setion we demonstrate the improved omputational power of our lazy uni-

�ation alulus with simpli�ation by means of two examples. The �rst example

shows that simpli�ation redues the searh spae in the presene of rewrite rules

with overlapping left-hand sides.

Example 5. Consider the following ground onuent and terminating rewrite sys-

tem de�ning the Boolean operator _ and the prediate even on natural numbers:

true _ b ! true even(0) ! true

b _ true ! true even(s(0)) ! false

false_ false ! false even(s(s(x))) ! even(x)

If we want to solve the equation even(z)_true � true, the lazy uni�ation alulus

without simpli�ation ould apply a lazy narrowing step with the �rst _-rule. This

yields the equation system

even(z) � true; true � b; true � true

Now there are in�nitely many solutions to the new equation even(z) � true by

instantiating the variable z with the values s

2�i

(0), i � 0, i.e., the lazy uni�ation

alulus without simpli�ation (f. Setion 3) has an in�nite searh spae. The

same is true for other lazy uni�ation aluli [11, 22℄ or lazy narrowing aluli

[23, 27℄. Moreover, in a sequential implementation of lazy narrowing by baktrak-

ing [14℄ only an in�nite set of speialized solutions would be omputed without

ever trying the seond _-rule. But if we use our lazy uni�ation alulus with

simpli�ation where all rewrite rules are used for simpli�ation (i.e., R = S), then

the initial equation even(z) _ true � true is �rst simpli�ed to true � true by

rewriting with the seond _-rule. Hene our alulus has a �nite searh spae. 2

If the left-hand sides of the rewrite rules do not overlap, i.e., if the funtions are

de�ned by a ase distintion on one argument, then there exists a lazy narrowing

strategy (needed narrowing [1℄) whih is optimal w.r.t. the length of derivations.

However, unsuessful in�nite derivations an be avoided also in this ase by our

lazy uni�ation alulus with simpli�ation if indutive onsequenes are added to

the set of simpli�ation rules.

Example 6. Consider the following rewrite rules for the addition and multipliation

on natural numbers where C = f0; sg are onstrutors and D = f+; �g are de�ned

funtions:

13

0 + y ! y (1) 0 � y ! 0 (3)

s(x) + y ! s(x+ y) (2) s(x) � y ! y + x � y (4)

If we use this onuent and terminating set of rewrite rules for lazy narrowing (R)

as well as for normalization (S) and add the indutive onsequene x � 0 ! 0 to

S, then our lazy uni�ation alulus with simpli�ation has a �nite searh spae

for the equation x � y � s(0). This is due to the fat that the following derivation

an be terminated using the indutive onsequene and the lash rule:

x � y � s(0)

lu

=) x � s(x

1

); y � y

1

; y

1

+ x

1

� y

1

� s(0) (lazy narrowing, rule 4)

lu

=) x � s(x

1

); y � y

1

; y

1

� 0; x

1

� y

1

� y

2

; y

2

� s(0) (lazy narrowing, rule 1)

lu

=) x � s(x

1

); y � 0; y

1

� 0; x

1

� 0 � y

2

; y

2

� s(0) (bind variable y

1

)

lu

=) x � s(x

1

); y � 0; y

1

� 0; x

1

� 0 � s(0); y

2

� s(0) (bind variable y

2

)

)

S

x � s(x

1

); y � 0; y

1

� 0; 0 � s(0); y

2

� s(0) (redue x

1

� 0)

lu

=) fail (lash between 0 and s)

The equation x

1

� 0 � s(0) ould not be transformed into the equation 0 � s(0)

without the indutive onsequene. Consequently, an in�nite derivation would o-

ur in our basi uni�ation alulus of Setion 3.

Note that other lazy uni�ation aluli [11, 22℄ or lazy narrowing aluli [23, 27℄

have an in�nite searh spae for this equation. It is also interesting to note that a

normalizing innermost narrowing strategy as in [9℄ has also an in�nite searh spae

even if the same indutive onsequenes are available. This shows the advantage

of ombining a lazy strategy with a simpli�ation proess. 2

7 Conlusions

In this paper we have presented a alulus for uni�ation in the presene of an

equational theory. In order to obtain a small searh spae, the alulus is designed

in the spirit of lazy evaluation, i.e., funtions are not evaluated if their result is

not required to solve the uni�ation problem. The most important property of

our alulus is the inlusion of a deterministi simpli�ation proess. This has the

positive e�et that our alulus is more eÆient (in terms of the searh spae size)

than other lazy uni�ation aluli or eager narrowing aluli (like basi narrowing,

innermost narrowing) with simpli�ation. We think that our alulus is the basis

of eÆient implementations of future funtional logi languages.

Aknowledgements. The author is grateful to Harald Ganzinger for his pointer to a

suitable termination ordering and to two anonymous referees for their helpful remarks.

The researh desribed in this paper was supported in part by the German Ministry

for Researh and Tehnology (BMFT) under grant ITS 9103 and by the ESPRIT Basi

Researh Working Group 6028 (Constrution of Computational Logis).

Referenes

1. S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. In Pro. 21st

ACM Symp. on Priniples of Programming Languages, pp. 268{279, Portland, 1994.

2. D. Bert and R. Ehahed. Design and Implementation of a Generi, Logi and Fun-

tional Programming Language. In Pro. ESOP'86, pp. 119{132. Springer LNCS 213,

1986.

3. J. Darlington and Y. Guo. Narrowing and uni�ation in funtional programming -

an evaluation mehanism for absolute set abstration. In Pro. of the Conferene on

Rewriting Tehniques and Appliations, pp. 92{108. Springer LNCS 355, 1989.

14

4. N. Dershowitz. Termination of Rewriting. J. Symboli Computation, Vol. 3, pp.

69{116, 1987.

5. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,

Handbook of Theoretial Computer Siene, Vol. B, pp. 243{320. Elsevier, 1990.

6. N. Dershowitz, S. Mitra, and G. Sivakumar. Equation Solving in Conditional AC-

Theories. In Pro. ALP'90, pp. 283{297. Springer LNCS 463, 1990.

7. R. Ehahed. Uniform Narrowing Strategies. In Pro. of the 3rd International Con-

ferene on Algebrai and Logi Programming, pp. 259{275. Springer LNCS 632, 1992.

8. M.J. Fay. First-Order Uni�ation in an Equational Theory. In Pro. 4th Workshop

on Automated Dedution, pp. 161{167, Austin (Texas), 1979. Aademi Press.

9. L. Fribourg. SLOG: A Logi Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro. IEEE Internat. Symposium on Logi Pro-

gramming, pp. 172{184, Boston, 1985.

10. J.H. Gallier and S. Raatz. Extending SLD-Resolution to Equational Horn Clauses

Using E-Uni�ation. Journal of Logi Programming (6), pp. 3{43, 1989.

11. J.H. Gallier and W. Snyder. Complete Sets of Transformations for General E-

Uni�ation. Theoretial Computer Siene, Vol. 67, pp. 203{260, 1989.

12. A. Geser and H. Hussmann. Experienes with the RAP system { a spei�ation

interpreter ombining term rewriting and resolution. In Pro. ESOP 86, pp. 339{

350. Springer LNCS 213, 1986.

13. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi plus

Funtional Language. Journal of Computer and System Sienes, Vol. 42, No. 2, pp.

139{185, 1991.

14. W. Hans, R. Loogen, and S. Winkler. On the Interation of Lazy Evaluation and

Baktraking. In Pro. PLILP'92, pp. 355{369. Springer LNCS 631, 1992.

15. M. Hanus. Compiling Logi Programs with Equality. In Pro. PLILP'90, pp. 387{

401. Springer LNCS 456, 1990.

16. M. Hanus. Improving Control of Logi Programs by Using Funtional Logi Lan-

guages. In Pro. PLILP'92, pp. 1{23. Springer LNCS 631, 1992.

17. M. Hanus. Lazy Uni�ation with Indutive Simpli�ation. Tehnial Report MPI-I-

93-215, Max-Plank-Institut f�ur Informatik, Saarbr�uken, 1993.

18. M. Hanus. The Integration of Funtions into Logi Programming: From Theory to

Pratie. To appear in Journal of Logi Programming, 1994.

19. S. H�olldobler. Foundations of Equational Logi Programming. Springer LNCS 353,

1989.

20. J.-P. Jouannaud and H. Kirhner. Completion of a set of rules modulo a set of

equations. SIAM Journal on Computing, Vol. 15, No. 4, pp. 1155{1194, 1986.

21. A. Martelli and U. Montanari. An EÆient Uni�ation Algorithm. ACM Transa-

tions on Programming Languages and Systems, Vol. 4, No. 2, pp. 258{282, 1982.

22. A. Martelli, G.F. Rossi, and C. Moiso. Lazy Uni�ation Algorithms for Canonial

Rewrite Systems. In Hassan A��t-Kai and Maurie Nivat, editors, Resolution of

Equations in Algebrai Strutures, Volume 2, Rewriting Tehniques, hapter 8, pp.

245{274. Aademi Press, New York, 1989.

23. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi Programming with Fun-

tions and Prediates: The Language BABEL. Journal of Logi Programming, Vol. 12,

pp. 191{223, 1992.

24. W. Nutt, P. R�ety, and G. Smolka. Basi Narrowing Revisited. Journal of Symboli

Computation, Vol. 7, pp. 295{317, 1989.

25. P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs

on Theoretial Computer Siene. Springer, 1988.

26. G.D. Plotkin. Building-in Equational Theories. In B. Meltzer and D. Mihie, editors,

Mahine Intelligene 7, pp. 73{90, 1972.

27. U.S. Reddy. Narrowing as the Operational Semantis of Funtional Languages. In

Pro. IEEE Internat. Symposium on Logi Programming, pp. 138{151, Boston, 1985.

28. P. R�ety. Improving basi narrowing tehniques. In Pro. of the Conferene on

Rewriting Tehniques and Appliations, pp. 228{241. Springer LNCS 256, 1987.

29. J.H. Siekmann. An Introdution to Uni�ation Theory. In Formal Tehniques in

Arti�ial Intelligene, pp. 369{425. Elsevier Siene Publishers, 1990.

15

