
Electronic Notes in Theoretical Computer Science 86 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume86.html 17 pages

Towards Translating Embedded Curry to C 1

Michael Hanus Klaus Höppner Frank Huch

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
{mh,klh,fhu}@informatik.uni-kiel.de

Abstract

This paper deals with a framework to program autonomous robots in the declarative
multi-paradigm language Curry. Our goal is to apply a high-level declarative pro-
gramming language for the programming of embedded systems. For this purpose,
we use a specialization of Curry called Embedded Curry. We show the basic ideas of
our framework and an implementation that translates Embedded Curry programs
into C.

Key words: functional logic programming, process-oriented
programming, embedded systems, domain-specific languages

1 Motivation

Although the advantage of declarative programming languages (e.g., func-
tional, logic, or functional logic languages) for a high-level implementation of
software systems is well known, the impact of such languages on many real
world applications is quite limited. One reason for this might be the fact that
many real-world applications have not only a logical (declarative) component
but also demand an appropriate modeling of the dynamic behavior of a sys-
tem. For instance, embedded systems become more important applications in
our daily life than traditional software systems on general purpose comput-
ers, but the reactive nature of such systems seems to make it fairly difficult
to use declarative languages for their implementation. We believe that this
is only partially true since there are many approaches to extend declarative
languages with features for reactive programming. In this paper we try to
apply one such approach, the extension of the declarative multi-paradigm lan-
guage Curry [12,16] with process-oriented features [6,7], to the programming
of concrete embedded systems.

1 This work has been partially supported by the German Research Council (DFG) under
grant Ha 2457/1-2 and by the DAAD/NSF under grant INT-9981317.

c©2003 Published by Elsevier Science B. V.



Hanus, Höppner, Huch

Fig. 1. The RCX, the “heart” of a Mindstorms robot

The embedded systems we consider in this paper are Lego Mindstorms
robots. 2 Although these are toys intended to introduce children to the con-
struction and programming of robots, they have all typical characteristics of
embedded systems. They act autonomously, i.e., without any connection to
a powerful host computer, have a limited amount of memory (32 kilobytes
for operating system and application programs) and a specialized processor
(Hitachi H8 16 MHz 8-bit microcontroller) which is not powerful compared to
current general purpose computers. In order to explain the examples in this
paper, we briefly survey the structure of these robots.

The Robotics Invention System (RIS) is a kit to build various kinds of
robots. Its heart is the Robotic Command Explorer (RCX, see Fig. 1) con-
taining a microprocessor, ROM, and RAM. To react to the external world,
the RCX contains three input ports to which various kinds of sensors (e.g.,
touch, light, temperature, rotation) can be connected. To influence the ex-
ternal world, the RCX has three output ports for connecting actuators (e.g.,
motors, lamps). Programs for the RCX are usually developed on standard host
computers (PCs, workstations) and cross-compiled into code for the RCX.

The RIS is distributed with a simple visual programming language (RCX
code) to simplify program development for children. However, the language
is quite limited and, therefore, various attempts have been made to replace
the standard program development environment by more advanced systems.
A popular representative of these systems is based on replacing the standard
RCX firmware by a new operating system, brickOS, 3 and writing programs
in C with specific libraries and a variant of the compiler gcc with a special
back end for the RCX controller. The resulting programs are quite efficient
and provide full access to the RCX’s capabilities.

In this paper we will use the declarative multi-paradigm programming lan-
guage Curry with synchronization and process-oriented features to program
the RCX. The language Curry [12,16] can be considered as a general pur-
pose declarative programming language since it combines in a seamless way
functional, logic, constraint, and concurrent programming paradigms. In or-
der to use it for reactive programming tasks as well, different extensions have
been proposed. [13] contains a proposal to extend Curry with a concept of

2 http://mindstorms.lego.com Note that these names are registered trademarks al-
though we do not put trademark symbols at every occurrence of them.
3 http://www.brickos.sourceforge.net

2

http://mindstorms.lego.com
http://www.brickos.sourceforge.net


Hanus, Höppner, Huch

ports (similar concepts exist also for other languages, like Erlang [4], Oz [19],
etc) in order to support the high-level implementation of distributed systems.
These ideas have been applied in [6] to implement a domain-specific language
for process-oriented programming, inspired by the proposal in [7] to combine
processes with declarative programming. The target of the latter is the ap-
plication of Curry for the implementation of reactive and embedded systems.
In [15] we have applied this framework to a concrete embedded system, the
Mindstorms robots described above, together with a simulator. In this paper
we present a compiler for a subset of this framework.

The paper is structured as follows. In the next section we sketch the
necessary features of Curry. Section 3 presents an example for a Mindstorms
robot and shows how to program it in Embedded Curry. Then we survey the
possibilities to translate Embedded Curry programs to C in Section 4 and
conclude in Section 5 with a discussion of related work.

2 Curry

In this section we survey the elements of Curry which are necessary to under-
stand the examples in this paper. More details about Curry’s computation
model and a complete description of all language features can be found in
[12,16].

Curry is a multi-paradigm declarative language combining in a seamless
way features from functional, logic, and concurrent programming and supports
programming-in-the-large with specific features (types, modules, encapsulated
search). From a syntactic point of view, a Curry program is a functional
program 4 extended by the possible inclusion of free (logical) variables in con-
ditions and right-hand sides of defining rules. Thus, a Curry program consists
of the definition of data types and functions. Functions are evaluated lazily.
To provide the full power of logic programming, functions can be called with
partially instantiated arguments and defined by conditional equations with
constraints in the conditions. However, this feature will not be used in this
paper.

Example 2.1 The following Curry program defines the data types of Boolean
values, the polymorphic type Maybe, and a type SensorMsg (first three lines).
Furthermore, it defined a test and a selector function for Maybe:

data Bool = True | False

data Maybe a = Nothing | Just a

data SensorMsg = Light Int

fromJust :: Maybe a -> a

4 Curry has a Haskell-like syntax [18], i.e., (type) variables and function names usually start
with lowercase letters and the names of type and data constructors start with an uppercase
letter. The application of f to e is denoted by juxtaposition (“f e”).

3



Hanus, Höppner, Huch

fromJust (Just x) = x

isJust :: Maybe a -> Bool

isJust Nothing = False

isJust (Just _) = True

The data type declarations introduce True and False as constants of type
Bool, Nothing (no value) and Just (some value) as the constructors for Maybe
(a is a type variable ranging over all types), and a constructor Light with an
integer argument for the data type SensorMsg.

The (optional) type declarations (“::”) of the functions fromJust and
isJust specify that they take a Maybe-value as input and produce a Boolean
value or a value of the (unspecified) type a. 5

The operational semantics of Curry, described in detail in [12,16], is based
on an optimal evaluation strategy [2] and can be considered as a conservative
extension of lazy functional programming and (concurrent) logic program-
ming.

FlatCurry is an intermediate language that can be used as a common in-
terface for connecting different tools for Curry programs or programs written
in other (functional logic) declarative languages (e.g., Toy). In FlatCurry, all
functions are defined at top level (i.e., local function declarations in source
programs are globalized by lambda lifting). Furthermore, the pattern match-
ing strategy is made explicit by the use of case expressions. Thus, a FlatCurry
program basically consists of a sequence of data type declarations and a se-
quence of function definitions. Current Curry implementations like PAKCS
[14] use FlatCurry as intermediate language so that the front end can be used
with different back ends. The FlatCurry representation of the function isJust

from Example 2.1 is the following:

isJust :: Maybe a -> Bool

isJust v0 = case v0 of

Nothing -> False

Just v1 -> True

We use FlatCurry as the source language for our compiler.

3 Programming Robots in Embedded Curry

In this section we survey the framework for programming autonomous robots
in Curry as proposed in [15]. In this framework we separate the entire pro-
gramming task into two parts. To control and evaluate the connected sensors
of the RCX, we use a synchronous component which generates messages for
relevant sensor events (e.g., certain values are reached or exceeded, a value

5 Curry uses curried function types where α->β denotes the type of all functions mapping
elements of type α into elements of type β.

4



Hanus, Höppner, Huch

has changed etc.). An Embedded Curry program contains a specification that
describes the connected sensors of the robot and the kind of messages that
are generated for certain sensor events. The description of the actions to be
executed in reaction to the sensor events are described in an asynchronous
manner as a process system. A process system consists of a set of processes
(p1, p2,. . . ), a global state and mailbox for sensor messages. The behavior of
a process is specified by

• a pattern matching/condition (on mailbox and state),

• a sequence of actions (to be performed when the condition is satisfied and
the process is selected for execution), and

• a process expression describing the further activities after executing the
actions.

A process can be activated depending on the conditions on the global state and
mailbox. If a process is activated (e.g., because a particular message arrives
in the mailbox), it performs its actions and then the execution continues with
the process expression. The check of the condition and the execution of the
actions are performed as one atomic step. Process expressions are constructed
similarly to process algebras [8] and defined by the following grammar:

p ::= Terminate successful termination

| Proc (p t1...tn) run process p with parameters t1. . . tn

| p1 >>> p2 sequential composition

| p1 <|> p2 parallel composition

| p1 <+> p2 nondeterministic choice

In order to specify processes in Curry following the ideas above, there are data
types to define the structure of actions (Action inmsg outmsg state) and
processes (ProcExp inmsg outmsg state). Furthermore, we define a guarded
process as a pair of a list of actions and a process term:

data GuardedProc inmsg outmsg state =

GuardedProc [Action inmsg outmsg state]
(ProcExp inmsg outmsg state)

For the sake of readability, we define an infix operator to construct guarded
processes:

acts |> pexp = GuardedProc acts pexp

In order to exploit the language features of Curry for the specification of
process systems, we consider a process specification as a mapping which assigns
to each mailbox (list of incoming messages) and global state a guarded process
(similarly to Haskell, a type definition introduces a type synonym in Curry):

5



Hanus, Höppner, Huch

Fig. 2. Example of a robot that sorts bricks

type Process inmsg outmsg state =

[inmsg] -> state -> GuardedProc inmsg outmsg state

This definition has the advantage that one can use standard function defini-
tions by pattern matching for the specification of processes, i.e., one can define
the behavior of a process ps with parameters x1, . . . , xn in the following form:

ps x1...xn mailbox state (1)
| < condition on x1, . . . , xn, mailbox, state >
= [actions] |> process expression

Thus, Embedded Curry is Curry plus a library containing the type definitions
sketched above and an interpreter for the processes according to the opera-
tional semantics [15]. This paper presents a compiler for a subset of Embedded
Curry.

As a concrete example, we want to use this framework to program a robot
that sorts bricks depending on their color (yellow and blue) into two bins.
The robot consists of two more or less independent parts, a robot arm that
sorts the bricks into the bins and a conveyor belt that moves the bricks from
a storage to the pick-up area of the arm. On its way, the conveyor belt passes
a light sensor. This sensor has two purposes: it detects when the next brick
is coming and it recognizes the different colors of the bricks. Fig. 2 shows a
picture of this robot. In the following we will call it “sorter”.

The synchronous component for the sorter has to control the light sensor
which is connected to the sensor port In_2. When a brick passes the light
sensor, the reflected light of the brick will increase the brightness measured by
the sensor. A brick is recognized if the brightness value exceeds the threshold
of a blue brick thblue (yellow bricks are even brighter). The specification of the
synchronous component is a list of pairs, mapping a sensor port to a sensor
specification. This specification is stored in the definition of a distinguished
constant with name sensors:

sensors = [(In_2, LightSensor [OverThresh thblue Light])]

6



Hanus, Höppner, Huch

OverThresh states that a message should be sent if the brightness exceeds the
given value. The second argument of OverThresh is a function which maps a
brightness value (an Int) to a message. Here we use the constructor Light

from Example 2.1.

Our implementation divides the sorter into two independent processes as
well: the conveyor belt and the robotic arm. The communication between
these two processes is handled through the global state. When a brick reaches
the pick-up area, the belt process changes the global state to BlueBrick or
YellowBrick, respectively, to inform the arm process of the detected brick.
After the robotic arm has grasped the brick, the arm process changes the
global state back to Empty to indicate that the pick-up area is empty again
and the conveyor belt can be restarted.

After starting the conveyor belt, the belt process waits until the light
sensor detects a brick. This event is indicated by a message (Light br) in the
mailbox of the process system (br is the brightness value of the brick). Waiting
for this message can be expressed by pattern matching on the mailbox. This
means that the process will only be activated when the first message in the
mailbox is of the form (Light i):

waitBrickSpotted ((Light br):_) _ =

[Deq (Light br)] |> wait tend >>>

atomic [Send (MotorDir Out_C Off),

Set (brickType br)] >>>

Proc transportBrick

Since messages are not automatically deleted, we have to delete the message
(Light br) explicitly after receiving it to prevent from multiple reactions on
the same message. Deletion of messages in the mailbox is done by the action
(Deq msg). Since it is performed in the initial action sequence, the matching
on the mailbox and deletion of the message are performed in one atomic step.

When a brick is detected, it has not reached the pick-up area yet. Hence,
the process waits for a period tend of time until it stops the belt. This can be
done by a call of the predefined process expression (wait t) that suspends for
t milliseconds. Then the action (Send cmd) is used to send a command cmd
to the actuators of the robot. The RCX has three ports for actuators: Out_A,
Out_B and Out_C. The motor that controls the conveyor belt is connected to
port Out_C and the command (MotorDir Out_C Off) will stop it. To execute
a list of actions inside a process expression, one can use the function atomic

which is implemented as follows:

atomic actions = Proc (\_ _ -> actions |> Terminate)

To inform the arm process of the brick in the pick-up area, we change the global
state to BlueBrick or YellowBrick. This is done by the action (Set e) that
sets the global state to e. The function brickType determines the values
BlueBrick or YellowBrick out of its brightness value. Because the conveyor
belt should only be restarted when the pick-up area is empty, we have to wait

7



Hanus, Höppner, Huch

until the global state changes back to Empty. This behavior can be expressed
by a second process specification that is activated by pattern matching on the
global state, starts the belt with the command (MotorDir Out_C Fwd) and
then calls the first specification:

transportBrick _ Empty =

[Send (MotorDir Out_C Fwd)] |> Proc waitBrickSpotted

The arm process is equally simple: the arm stays over the pick-up area until
there is a brick ready to be picked up, i.e., the global state changes to either
BlueBrick or YellowBrick. Then it closes the gripper and sets the global
state back to Empty (this allows the conveyor belt to restart). Finally, it calls
the process putBrick with the amount of time it takes to turn to the blue or
the yellow bin. These times are provided by the function brickTurnTime:

sortBrick _ brickKind | brickKind /= Empty =

[] |> closeGripper >>>

atomic [Set Empty] >>>

Proc (putBrick (brickTurnTime brickKind))

The function closeGripper defines a process expression that closes the grip-
per of the robotic arm.

The process putBrick has a parameter time that specifies the amount of
time it takes to turn to the correct bin. It starts the motor that turns the arm
(Out_A) and waits for time milliseconds before it turns the motor off. The
arm should now be placed above the bin and the gripper can be opened to
drop the brick. Then the arm turns back for the same amount of time to the
pick-up area and restarts the arm process:

putBrick time _ _ =

[Send (MotorDir Out_A Rev)] |>

wait time >>>

atomic [Send (MotorDir Out_A Off)] >>>

openGripper >>>

atomic [Send (MotorDir Out_A Fwd)] >>>

wait time >>>

atomic [Send (MotorDir Out_A Off)] >>>

Proc sortBrick

These two processes can be combined to the whole system in two different
ways: sequentially, but then the conveyor belt will not restart until the arm is
back at the pick-up area, or, by using two parallel processes. Using the latter,
the conveyor belt can be restarted immediately after the brick has been picked
up by the arm:

go _ _ = [Set Empty] |> Proc transportBrick <|> Proc sortBrick

As a result the bricks are sorted faster.

8



Hanus, Höppner, Huch

In this example, we use time periods to determine when the bins and the
pick-up area are reached. This is the simplest implementation, but different
battery charge levels result in different motor speeds so that the time the arm
takes to turn to a certain position can differ from one use to another. In most
cases it is much better to use rotation sensors to determine the progress of a
movement. This can easily be added to the implementation by replacing the
wait expressions by processes listening for messages from the rotation sensors.
In our current implementation of the sorter, we use two rotation sensors to
determine the position of the arm and when a brick, detected by the light
sensor, reaches the pick up area. For simplicity of the example, we do not
present these details here.

In this configuration the sorter uses all three sensors and all three motor
ports of the RCX. This means that the sorter is already one of the most
complex examples that are possible for Lego mindstorms robots. However,
this is not an unrealistic example since real world embedded systems usually
also have very restricted sensor suits and do not control very complex systems
by themselves.

4 Translation

Our goal is to use Embedded Curry to control Lego Mindstorms Robots. Due
to the (speed and time) limitations of the RCX, a simple approach, like port-
ing a complete Curry implementation (e.g., PAKCS [14]) to the RCX, will
not work. This contrasts with [17] where a functional robot control language
is proposed which is executed on top of Haskell running on a powerful Linux
system. Our previous implementation of the process extension of Curry [6] is
based on an interpreter (written in Curry) for the process expressions following
the operational semantics of the process algebra [6,7,15]. This implementa-
tion is fairly simple (approximately 200 lines of code) but causes too much
overhead. Thus, a direct compilation of the process specifications into more
primitive code is necessary. As mentioned in Section 1, one of the more flex-
ible operating systems for the RCX is brickOS. It is a POSIX-like operating
system offering an appropriate infrastructure like multi-threading, semaphores
for synchronization etc. Therefore, using C as an intermediate language and
the brickOS compiler as back end is appropriate to implement a Curry com-
piler for the Lego Mindstorms. Nevertheless, many optimizations are required
to map the operational semantics of Curry into features available in brickOS.
However, we do not intend to cover all features of Curry (e.g., constraint solv-
ing) with our compiler since they are not necessary for our applications on the
limited target architectures.

Our current implementation is restricted to a first-order functional subset
of Curry with nonrecursive data declarations. Furthermore, we ignore laziness
and generate strict target code. These restrictions were made for the follow-
ing reasons: lazy evaluation (as well as higher-order partial applications) are

9



Hanus, Höppner, Huch

memory consumptive. Furthermore, dynamic data structures need garbage
collection which can be critical to guarantee constant reaction times. Finally,
our experiences with the programming of Mindstorms shows that these re-
strictions seem to be acceptable in practice although we intend to extend our
implementation in the future.

We use FlatCurry as the source code for our translation. To implement
the parallel execution of processes, we use processes of the operating system
(we will call them OS processes in future). An extra OS process is used
for the synchronous component. The implementation of this component can
be generated out of the sensor specification given in the Embedded Curry
program.

To describe our translation, we start with algebraic data types which are
declared as:

data A = C0 A0,0 . . . A0,m0 | . . . | Cn An,0 . . . An,mn

One can easily map such a declaration to structures of the target language C
(i.e., records). The structure consists of an enumeration of the constructors
(C0,. . .,Cn) and a union of all argument structures (structures that can store
all the arguments of a certain constructor).

Function declarations of Curry are mapped to C function declarations.
Because in FlatCurry all conditions have been resolved into if-expressions
and pattern matching has been made explicit by the use of case expressions,
this can be easily achieved. Case expressions in FlatCurry contain no nested
patterns, i.e., all patterns are of the form C x1 . . . xn. Hence, they can be
translated to switch statements over the enumeration of the constructors.

4.1 Global State and Mailbox

The global state and mailbox parameters of an Embedded Curry program
have a special interpretation that differs from standard Curry parameters.
For each check of the guards (i.e., pattern matching and rule conditions) of
a process, the current values of the global state and mailbox are used (and
not the values at the time of the creation of that process). This behavior can
be implemented in C by using global variables for the mailbox and the global
state. To guarantee mutual exclusion of the guard checking for all processes,
we use a global semaphore. Before checking the guards, the processes waits
for this semaphore and releases it afterwards. In the case that one of the
guards is satisfied, the semaphore is released only after performing the list of
actions of the selected process. The actions are translated accordingly to the
operational semantics in [6,15]. Note that all actions are performed within an
initial phase of a process (see definition of action). Hence, in the translation
all modifications of the state and the mailbox are synchronized by the global
semaphore as well.

In Embedded Curry the mailbox is a list of messages. Since the mailbox
is extended by the synchronous sensor component, we implement the mailbox

10



Hanus, Höppner, Huch

as a queue with corresponding operations. Therefore, our translation contains
an abstract data type (ADT) definition for the mailbox. For the sake of
simplicity, we use a queue implementation of fixed size at the moment but
this implementation can be easily replaced by a dynamic queue. To allow
pattern matching on the mailbox, one has to implement it similarly to pattern
matching on algebraic data types using the selector functions of the ADT
mailbox. Although the mailbox can be seen as a recursive data structure, all
modifications of the mailbox are made explicit by actions. Hence, no garbage
arises during the execution.

4.2 Process Specifications

In Embedded Curry a process specification is a function that maps a mailbox
and a state to a pair of actions and process expressions, i.e., it can be easily
identified by its type. To generate an executable robot control program, these
function declarations are compiled in a different way than other function dec-
larations. Their guards (i.e., pattern matching and rule conditions) have to
be checked continously until one of them is satisfied.

We translate a process specification as shown in (1) to the following general
form:

void ps (x1,. . .,xn) {

while (1) {

lockState();

<check guards sequentially . If satisfied , execute process>
unlockState(); suspend();}

}

Since the global state and mailbox are global variables, we do not need to
pass them as parameters. The arguments xi represent the local state of the
process. To implement the continuous checking of the guards until one guard
is satisfied, we use an infinite loop. Inside the loop we first lock the state (by
setting the semaphore) in order to guarantee mutual exclusion on the global
state and mailbox. Then we sequentially check all guards of the process spec-
ification. If none is satisfied, we unlock the state (by releasing the semaphore)
and suspend this process until a change to the global state or mailbox occurs.

If one of the guards is satisfied, the corresponding code is executed and
the procedure ps is terminated by return. This code includes an unlocking
of the state after the actions are performed.

Example 4.1 The process specification transportBrick has the following
FlatCurry representation:

transportBrick v0 v1 = case v1 of

Empty -> [Send (MotorDir Out_C Fwd)] |>

(Proc waitBrickSpotted)

This code is translated to the C procedure:

11



Hanus, Höppner, Huch

void transportBrick () {

while (1) {lockState();

switch ((state).kind) {

case Empty : motor_c_dir(fwd); unlockState();

waitBrickSpotted(); return;

default : unlockState(); suspend();}

}

}

In this example the guard consists of a pattern matching on the global state.
If the global state is Empty, then the motor connected to port Out_C is started
and then the process waitBrickSpotted is called.

4.3 Tail Call Optimization

Reactive programs, as in embedded systems, are usually non-terminating. In
a declarative programming language, non-terminating programs are imple-
mented by recursion. At this point a problem arises because the GNU C
compiler we use 6 has no general tail call optimization. If a program con-
tains non-terminating recursion, the execution of the program would result
in a stack overflow. However, this problem is only relevant for process spec-
ifications. All other function calls should terminate. A workaround for this
problem is to execute a tail call of a process outside the process specification.
This means that the process specification is terminated before the new process
is called, i.e., the stack frame of the old process specification is deleted before
the stack frame of the new process is put on the stack.

We implement this by using a small interpreter to execute all process calls
of a process system. The information of a process call (i.e., the name of the
called process and the parameters of the call) are stored in a data structure
and passed to the interpreter procedure. The call information of the tail calls
is the result of a process specification. The interpreter stores this information
and executes the next call.

Our sorter example consists of five process specifications: go, sortBrick,
putBrick, transportBrick, and waitBrickSpotted. In the current imple-
mentation this specification is translated into the following interpreter proce-
dure:

int process_system (ProcType np) {

while (np.next != p_Terminate) {

switch (np.next) {

case p_go : np = go(); break;

case p_transportBrick : np = transportBrick(); break;

case p_waitBrickSpotted : np = waitBrickSpotted();

break;

6 gcc version 2.95.3

12



Hanus, Höppner, Huch

case p_sortBrick : np = sortBrick(); break;

case p_putBrick : np = putBrick(np.arg.putBrick.arg0);

break;

}

}

}

The parameter np is used to store the information about the next process
call. The attribute next is the name of the called process and arg is a union
of all possible parameter combinations. The prefix p_ is used to prevent
name conflicts between functions and data type constructors. Termination
of a process is handled as a call of a process Terminate and results in a
termination of the interpreter procedure.

Example 4.2 The process specification transportBrick from Example 4.1
now returns the information of the tail call of the process waitBrickSpotted
as result, instead of calling it directly.

ProcType transportBrick () {

while (1) {lockState();

switch ((state).kind) {

case Empty : motor_c_dir(fwd); unlockState();

return cNext_waitBrickSpotted();

default : unlockState(); suspend();}

}

}

The function cNext_waitBrickSpotted creates a data structure (of the type
ProcType) with the information for the call of the process waitBrickSpotted.

On the other hand, not all calls of processes must be located in tail posi-
tions. Non-tail calls are handled in the following way. Consider a call inside
a sequential process expression:

Proc (ps e1 . . . en) >>> pe

Here we can use the C call stack by the translation:

process_system(cNext_ps(e1,. . .,en)); pe′

cNext_ps is a function that creates the data structure with the information
for the call of the process ps. pe′ is the remaining translation of pe.

For process calls in parallel expressions, we create a new OS process for
one of the processes, the other can run in the actual OS process. A problem
arises because it is not possible to pass arbitrary parameters to a new OS
process. This can be solved by supplying a global variable nextProcess were
the call information is stored. Thus, a parallel expression containing at least
one process call

Proc (ps e1 . . . en) <|> pe

13



Hanus, Höppner, Huch

is translated to:

nextProcess = cNext_ps(e1,. . .,en);
execi(&process_system,0,NULL,PRIO,STACK_SIZE);

pe′

execi forks a new OS process that will execute the procedure process_system
without parameters. The procedure then retrieves the call information (i.e.,
parameters) from nextProcess.

In our implementation we use this global variable also for all other process
calls (i.e., sequential and tail recursive). One global variable nextProcess is
sufficient for the whole program because it is only needed for the short time
of the initialization of the new process. Since multiple processes could be
called in parallel, we ensure mutual exclusion on the variable nextProcess

by an additional semaphore. This means that all process calls are executed
sequentially. Only after the call is executed and the new process has been
initialized, another OS process can use nextProcess for another process call.
However, the execution of a process call takes only a small amount of time,
so it will cause no problems for the reactivity of the whole system.

Example 4.3 The process specification go of our sorter example has the fol-
lowing FlatCurry representation:

go v0 v1 =

[Set Empty] |> (Proc transportBrick <|> Proc sortBrick)

This code is translated to the C procedure:

ProcType go () {

unlockNext();

lockState(); state = Empty; unlockState();

lockNext(); nextProcess = cNext_sortBrick();

execi(&process_system,0,NULL,PRIO,STACK_SIZE);

lockNext();

return cNext_transportBrick();

}

Shortly before the information for the call of sortBrick is stored in the global
variable nextProcess, the semaphore protecting this global variable is set
(lockNext). Then the new OS process for the execution of sortBrick is cre-
ated with execi. No other OS process will then be able to use nextProcess

until the initialization of sortBrick is finished. The tail call of the process
transportBrick uses the same mechanism by locking nextProcess immedi-
ately before returning to the C function process_system, where the informa-
tion for the tail call is stored in nextProcess.

Because all process calls are protected by the locking of nextProcess,
each process function unlocks it before it enters the code that represents the
execution of the process.

14



Hanus, Höppner, Huch

Another approach to solve this problem is to combine all process specifica-
tions into one C function. Inside this function it is then possible to realize tail
calls by jumps without any overhead. We have not implemented this approach
yet, but want to compare both approaches to use the more efficient for our
implementation.

5 Conclusions

We have implemented a compiler for Embedded Curry based on the ideas
described above. The compiler translates Embedded Curry programs into C
programs which can then be translated into executable code for the RCX. To
get an impression of the code size (which is important for embedded systems),
the size of the Curry sorter program is 2947 bytes, the FlatCurry code has
24261 bytes, the generated C code has 10407 bytes, and the RCX binary code
has 2986 bytes. Our previous Curry interpreter of Embedded Curry produces
executables of more than 1 MB (by compilation into Prolog [3]). Since we use
C as intermediate language, it is also possible to generate executable code for
nearly every platform that has a C compiler.

At the moment we do not have a time analysis that would allow us to
guarantee certain reaction times. We have restricted our subset to nonrecur-
sive data structures, because the otherwise necessary garbage collection could
interfere with the reaction times of the system. The reactivity depends on the
fairness of the scheduling of the brickOS. Nevertheless, our experience showed
that the reactivity of the resulting programs is sufficient for our applications.

For embedded system programming, synchronous languages like Esterel
[5] or Lustre [9] are often used. Thus, one can also apply such languages
to program embedded systems like the Lego Mindstorms robots. Actually,
there already exist compilers for those languages into C. Hence, one can use
the brickOS compiler to produce RCX code for these languages as well. The
translation of the synchronous languages normally produces sequential code
by synthesizing the control structure of the object code in the form of an
extended finite automaton [10]. This is a major drawback since one does not
have much control on the size of the generated code. In some cases only slight
modifications in a robot specification can result in a big increase in the size
of the generated code. Due to state explosion this could result in too large
programs for the limited amount of memory in the RCX. Another proposal
to use high-level languages for programming embedded or process-oriented
systems is [17]. In contrast to our approach, they propose a functional robot
control language which is executed on top of Haskell running on a powerful
Linux system. The domain-specific language proposed in [11] is comparable
to our language with similar results.

For future work, we want to enlarge the subset of Curry translatable by
our compiler. First, we will investigate possibilities to compile higher-order
functions by translating to first-order using partial evaluation [1] or by means

15



Hanus, Höppner, Huch

of pointers. Further interesting fields of research could be the high-level speci-
fication of Embedded Curry programs. This could be integrated in a tool also
supporting debugging, testing and formal verification.

References

[1] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-
paradigm declarative language. Journal of Functional and Logic Programming,
2002(1), 2002.

[2] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal
of the ACM, 47(4):776–822, 2000.

[3] S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into
Prolog. In Proc. International Workshop on Frontiers of Combining Systems
(FroCoS’2000), pages 171–185. Springer LNCS 1794, 2000.

[4] J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Concurrent
Programming in Erlang. Prentice Hall, 1996.

[5] G. Berry and G. Gonthier. The Esterel synchronous programming language:
Design, semantics, implementation. Science of Computer Programming,
19(2):87–152, 1992.

[6] B. Braßel, M. Hanus, and F. Steiner. Embedding processes in a declarative
programming language. In Proc. Workshop on Programming Languages and
Foundations of Programming, pages 61–73. Aachener Informatik Berichte
Nr. AIB-2001-11, RWTH Aachen, 2001.

[7] R. Echahed and W. Serwe. Combining mobile processes and declarative
programming. In Proc. of the 1st International Conference on Computation
Logic (CL 2000), pages 300–314. Springer LNAI 1861, 2000.

[8] W. Fokkink. Introduction to Process Algebra. Springer, 2000.

[9] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[10] N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code from data-
flow programs. In Third International Symposium on Programming Language
Implementation and Logic Programming, pages 207–218. Springer LNCS 528,
1991.

[11] K. Hammond and G. Michaelson. Hume: a domain-specific language for real-
time embedded systems. In Proc. of GPCE ’03 – Generative Programming and
Component Engineering. to appear in Springer LNCS, Sep 2003.

[12] M. Hanus. A unified computation model for functional and logic programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pages 80–93, 1997.

16



Hanus, Höppner, Huch

[13] M. Hanus. Distributed programming in a multi-paradigm declarative language.
In Proc. of the International Conference on Principles and Practice of
Declarative Programming (PPDP’99), pages 376–395. Springer LNCS 1702,
1999.

[14] M. Hanus, S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. Pakcs: The portland aachen kiel curry system. Available at
http://www.informatik.uni-kiel.de/~pakcs/, 2003.

[15] M. Hanus and K. Höppner. Programming autonomous robots in Curry.
Electronic Notes in Theoretical Computer Science, 76, 2002.

[16] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8).
Available at http://www.informatik.uni-kiel.de/~curry, 2003.

[17] J. Peterson, P. Hudak, and C. Elliott. Lambda in motion: Controlling robots
with Haskell. In Proc. of the First International Workshop on Practical Aspects
of Declarative Languages, pages 91–105. Springer LNCS 1551, 1999.

[18] S.L. Peyton Jones and J. Hughes. Haskell 98: A non-strict, purely functional
language. http://www.haskell.org, 1999.

[19] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today: Recent Trends and Developments, pages 324–343. Springer
LNCS 1000, 1995.

17

http://www.haskell.org

	Motivation
	Curry
	Programming Robots in Embedded Curry
	Translation
	Global State and Mailbox
	Process Specifications
	Tail Call Optimization

	Conclusions
	References

