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Abstract. Functional logic languages can solve equations over user-
defined data and functions. Thus, the definition of an appropriate mean-
ing of equality has a long history in these languages, ranging from re-
flexive equality in early equational logic languages to strict equality in
contemporary functional logic languages like Curry. With the introduc-
tion of type classes, where the equality operation “==” is overloaded and
user-defined, the meaning became more complex. Moreover, logic vari-
ables appearing in equations require a different typing than pattern vari-
ables, since the latter might be instantiated with functional values or
non-terminating operations. In this paper, we present a solution to these
problems by introducing a new type class Data which is associated with
specific algebraic data types, logic variables, and strict equality. We dis-
cuss the ideas of this class and its implications on various concepts of
Curry, like unification, functional patterns, and program optimization.

1 Introduction

The amalgamation of the main declarative programming paradigms, namely
functional and logic programming, has a long history. The advantages of such
integrated functional logic languages are manifold. One can use the features
of functional programming (e.g., powerful type systems, higher-order functions,
lazy evaluation) and logic programming (e.g., non-deterministic search, com-
puting with partial information) in a single language which also leads to new
design patterns [3, 8]. Compared to logic programming, computations can be
more efficient due to the use of optimal evaluation strategies [2].

Early approaches to integrating functional and logic programming (see [15]
for a good collection of these proposals) used equational logic programming [19,
37] as a unifying framework. From a logic programming point of view, equational
logic programming extends the meaning of the standard equality predicate “=” by
taking user-defined functions into account before checking the equality of both
sides of an equation. Hence, both sides are evaluated before they are unified.
If the definition of evaluable functions are considered as axioms for an equa-
tional theory, this process is also known as E-unification [17]. In order to use
logic programming techniques (computing with partial information) also for the
evaluation of user-defined functions, one can use narrowing instead of reduction
[40], i.e., replace pattern matching by unification when a function call should be
reduced. In this way, functional logic languages based on narrowing can be used
to solve equations.



Example 1. Consider the following definition of Peano numbers and their addi-
tion (in Haskell [39] syntax):

data Nat = Z | S Nat

add :: Nat → Nat → Nat
add Z n = n
add (S m) n = S (add m n)

In the functional language Haskell, we can only compute the value of expressions,
e.g.,

> add (S Z) (S Z)
S (S Z)

However, if we interpret these definitions as a program written in the (narrowing-
based) functional logic language Curry [22, 27], we can also solve the equation

> add x (S Z) =:= S (S Z) where x free
{x = S Z} True

Here, “=:=” denotes equality w.r.t. user-defined operations (see below for more
details) and x is declared as a free (logic) variable which is bound to S Z in order
to evaluate the equation to True.

For the practical applicability of functional logic languages, it is important to
reduce the computation space by using specific evaluation strategies. Thus, much
work in this area has been devoted to develop appropriate narrowing strategies
(see [21] for an early account of this research). In order to provide the advantages
of lazy evaluation used in Haskell, e.g., optimal evaluation [29] and modularity
[30], later research concentrated on demand-driven strategies. Needed narrowing
[2] is an optimal strategy [1] and, thus, the basis of the language Curry.

Demand-driven evaluation strategies, like Haskell’s lazy evaluation or Curry’s
needed narrowing, can deal with non-terminating operations that compute in-
finite data structures [30]. However, this could be in conflict with the equa-
tion solving capabilities of functional logic languages discussed above. Standard
equality in the mathematical sense is required to be reflexive, i.e., x = x should
always hold [37]. Now consider two operations to compute infinite lists of Peano
numbers:

f1 :: Nat → [Nat]
f1 n = n : f1 (S n)

f2 :: Nat → [Nat]
f2 n = n : S n : f2 (S (S n))

By reflexivity, f1 Z = f1 Z should hold. This means that the infinite lists of all
Peano numbers are equal. As a consequence, f1 Z = f2 Z should also hold, but
it is unclear to verify it during run time. In early equational logic programming,
equations are solved by narrowing both sides to normal forms and unifying these
normal forms. However, this does not work here since f1 Z and f1 Z have no nor-
mal form. Thus, reflexivity is not a feasible property of equations to be evaluated
(more details including issues about semantics are discussed in [18, 36]).
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Therefore, contemporary languages interpret equations to be evaluated as
strict equality, denoted by “=:=” in Curry: e1 =:= e2 is satisfied iff e1 and e2 are
reducible to a same ground constructor term, i.e., an expression without variables
and defined functions. In particular, soundness, completeness, and optimality
results are stated w.r.t. strict equality [2]. As a consequence, f1 Z =:= f1 Z does
not hold so that it is not a defect that this equation cannot be solved.

Note that Haskell also offers the operation “==” intended to compare expres-
sions. Although standard textbooks on Haskell define this operation as “equality”
[11, 31, 41], its actual implementation can be different since, as a member of the
type class Eq, it can be defined with a behavior different than equality on con-
crete type instances. Actually, the documentation of the type class Eq1 denotes
“==” as “equality” but also contains the remark: “== is customarily expected to
implement an equivalence relationship where two values comparing equal are in-
distinguishable by “public” functions.” Thus, it is intended that e1 == e2 evaluates
to True even if e1 and e2 have not the same but only equivalent values. On the
other hand, the documentation requires that the reflexivity property

x == x = True

holds for any implementation, but this is not true even for the standard integer
equality (choose “last [1..] :: Int” for x).

This discussion shows that the precise treatment of equality, which is essential
for functional logic languages, might have some pitfalls when type classes are
used. As long as “==” is defined in the standard way (by the use of “deriving Eq”),
“==” conforms with strict equality. With the introduction of type classes to Curry,
one has to be more careful. For instance, consider the “classical” functional logic
definition of the operation last to compute the last element of a list by exploiting
list concatenation (“++”) and equation solving [21, 24]:

last xs | _ ++ [e] == xs = e
where e free

If “==” denotes equivalence rather than strict equality, last might not return the
last element of a list but one (or more than one) value which is equivalent to the
last element.

In this paper, we propose a solution to these problems by distinguishing
between strict equality and equivalence. For this purpose, we propose a new
type class Data which is associated with specific algebraic data types. We will
see that this type class can also be used for a better characterization of the
meaning of logic variables and the Curry’s unification operator “=:=”.

This paper is structured as follows. In the next section, we review some as-
pects of functional logic programming and Curry. After motivating the problem
this paper tackles in Sect. 3, we propose in Sect. 4 a new standard type class for
Curry, namely Data, as a solution to the problem. In Sect. 5, Sect. 6, and Sect. 7,
we discuss how the proposed Data type class affects logic variables, optimization
of equality constraints, and non-left-linear rules and functional patterns, respec-
tively. Finally, Sect. 8 discusses related work before we conclude in Sect. 9.
1 http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Eq.html
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2 Functional Logic Programming and Curry

We briefly review some aspects of functional logic programming and Curry that
are necessary to understand the contents of this paper. More details can be found
in surveys on functional logic programming [7, 24] and in the language report
[27].

Curry is a declarative multi-paradigm language intended to combine the most
important features from functional and logic programming. The syntax of Curry
is close to Haskell [39] but also allows free (logic) variables in conditions and
right-hand sides of rules. Thus, expressions in Curry programs contain opera-
tions (defined functions), constructors (introduced in data type declarations),
and variables (arguments of operations or free variables). Function calls with
free variables are evaluated by a possibly non-deterministic instantiation of de-
manded arguments [2]. This corresponds to narrowing [40], but Curry narrows
with possibly non-most-general unifiers to ensure the optimality of computa-
tions [2]. In contrast to Haskell, rules with overlapping left-hand sides are non-
deterministically (rather than sequentially) applied.

Example 2. The following simple program shows the functional and logic fea-
tures of Curry. It defines the well-known list concatenation and an operation
that returns some element of a list having at least two occurrences:

(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

someDup :: [a] → a
someDup xs | xs =:= _ ++ [x] ++ _ ++ [x] ++ _ = x

where x free

Since “++” can be called with free variables in arguments, the condition in the
rule of someDup is solved by instantiating x and the anonymous free variables “-”
to appropriate values before reducing the function calls. As already mentioned
in the introduction, “=:=” denotes strict equality, i.e., the condition of someDup is
satisfied if both sides are reduced to a same ground constructor term. In order
to avoid the enumeration of useless values, “=:=” is implemented as unification:
if y and z are free (unbound) variables, y =:= z is evaluated (to True) by bind-
ing y and z (or vice versa) instead of non-deterministically binding y and z to
identical ground constructor terms. This can be interpreted as an optimized im-
plementation by delaying the bindings to ground constructor terms [10]. Due to
this implementation, “=:=” is also called an equational constraint (rather than
Boolean equality).

We already used the logic programming features of Curry in the definition of last
shown in Sect. 1. In contrast to last, someDup is a non-deterministic operation
since it could yield more than one result for a given argument, e.g., the evaluation
of someDup [1,2,2,1] yields the values 1 and 2. Non-deterministic operations,
which can formally be interpreted as mappings from values into sets of values
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[20], are an important feature of contemporary functional logic languages. Hence,
Curry has also a predefined choice operation:

x ? _ = x
_ ? y = y

Thus, the expression “0 ? 1” evaluates to 0 and 1 with the value non-
deterministically chosen.

3 Equality vs. Equivalence

Type classes are an important feature to express ad-hoc polymorphism in a
structured manner [42]. In the context of Curry, it is also useful to restrict the
application of some operations to unintended expressions. For instance, in the
definition of Curry without type classes [27], the type of the unification operator
is defined as

(=:=) :: a → a → Bool

This implies that we could unify values of any type, including defined functions.
However, the meaning of equality on functions is not well defined. The Curry
implementation PAKCS [26], which compiles Curry programs into Prolog pro-
grams, uses an intensional meaning, i.e., functions are equal if they have the
same name. This means that PAKCS evaluates

not =:= not

to True but it fails on

not =:= (\x → not x)

(since the lambda abstraction will be lifted into a new top-level function). More-
over, the Curry implementation KiCS2 [12], which compiles Curry programs into
Haskell programs, produces an internal error for these expressions.

It would be preferable to forbid the application of “=:=” to functional values
at compile time. This is similar to the requirement on Haskell’s operator “==”.
Haskell uses the type class Eq in order to express that “==” is not parametric
polymorphic but overloaded for some (but not all) types. The type class Eq
contains two operations (we omit the default implementations):

class Eq a where
(==) :: a → a → Bool
(/=) :: a → a → Bool

Hence, the operator “==” cannot be applied to any type but only to types defining
instances of this class. We can use this operator to check whether an element
occurs in a list:

elem :: Eq a => a → [a] → Bool
elem _ [] = False
elem x (y:ys) = x==y || elem x ys
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Although type classes express type restrictions in an elegant manner, they might
also cause unexpected behaviors if they are not carefully used. For instance, we
can define a data type for values indexed by a unique number:

data IVal a = IVal Int a

Since the index is assumed to be unique, we define the comparison of index
values by just comparing the indices:

instance Eq a => Eq (IVal a) where
IVal i1 _ == IVal i2 _ = i1 == i2

With this definition, the operation elem defined above could yield surprising
results:

> elem (IVal 1 ’b’) [IVal 1 ’a’]
True

This is not intended since the element (first argument) does not occur in the list.
Actually, the Haskell documentation2 about elem contains the explanation “Does
the element occur in the structure?” which ignores the fact that some instances
of Eq are only equivalences rather than identities.

This unusual behavior could also influence logic-oriented computations in a
surprising manner. If the operation last is defined as shown in Sect. 1, we obtain
the following answer when computing the last element of a given IVal list (here,
“-” denotes a logical variable of type Char):

> last [IVal 1 ’a’]
IVal 1 _

Hence, instead of the last element, we get a rather general representation of it.
The next section presents our proposal to solve these problems.

4 Data

As discussed above, type classes are an elegant way to express type restrictions.
On the other hand, it is not a good idea to allow user-defined instance definitions
of important operations like strict equality. Therefore, we propose the introduc-
tion of a specific type class where only standard instances can be derived so that
all instances satisfy the intended meaning. This type class is called Data and has
the following definition:

class Data a where
aValue :: a
(===) :: a → a → Bool

Thus, any instance of this class provides two operations:

– The non-deterministic operation aValue returns some value, i.e., the complete
evaluation of aValue yields all values of type a.

2 http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html
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– The operation “===” implements the standard equality on values, i.e., it re-
turns True or False depending on whether the argument values are identical
or not.

The following definition specifies how to automatically derive a Data instance for
any algebraic datatype.

Definition 1. If T is an algebraic datatype declared by

data T a1 . . . ak = C1 b11 . . . b1k1 | . . . | Cn bn1 . . . bnkn

the standard derived Data instance has the following form:

instance cx => Data (T a1 . . . ak) where
aValue = C1 aValue . . . aValue ? . . . ? Cn aValue . . . aValue

C1 x1 . . . xk1 === C1 y1 . . . yk1 = x1 === y1 && . . . && xk1 === yk1

...
Cn x1 . . . xkn === Cn y1 . . . ykn = x1 === y1 && . . . && xkn === ykn

Ci _ . . . _ === Cj _ . . . _ = False ∀i, j ∈ {1, . . . , n} with i 6= j

In the instance declaration above, the context cx consists of Data constraints en-
suring that Data bij holds for each type bij with i ∈ {1, . . . , n} and j ∈ {1, . . . , ki}.

Example 3. For the type of Peano numbers (see Ex. 1), the Data instance can
be defined as follows:

instance Data Nat where
aValue = Z ? S aValue

Z === Z = True
S m === S n = m === n
Z === S _ = False
S _ === Z = False

A Data instance for lists requires a Data instance for its elements:

instance Data a => Data [a] where
aValue = [] ? aValue : aValue

[] === [] = True
(x:xs) === (y:ys) = x === y && xs === ys
[] === (_:_) = False
(_:_) === [] = False

The operation aValue is useful when a value of some data type should be guessed,
e.g., for testing [25]. The obvious relation to logic variables will be discussed later.

The definition of “===” is identical to “==” if the definition of the latter is
automatically derived (by a “deriving Eq” clause). As discussed above, it is also
possible to define other instances of Eq that leads to unintended results. To ensure
that “===” always denotes equality on values, it is not allowed to define explicit
Data instances as shown above. Such instances can only be generated by adding
a “deriving Data” clause to a data definition. Note that an instance derivation
requires that all arguments of all data constructors have Data instances. In par-
ticular, if some argument has a functional type, e.g.,
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data IntRel = IntRel (Int → Bool)

then a Data instance can not be derived.
For ease of use, one could always derive Data instances for data declarations

whenever it is possible (i.e., functional values do not occur in arguments), or
provide a language option to turn this behavior on or off.

With the introduction of the class Data, we can specify a more precise type
to Curry’s strict equality operation “=:=”. As discussed in [10], the meaning of
“=:=” is the “positive” part of “===”, i.e., its semantics can be defined by

x =:= y = solve (x === y) (1)

where solve is an operator that enforces positive evaluations for Boolean expres-
sions:

solve True = True (2)

Since expressions of the form e1 =:= e2 might return True but never False, “=:=”
can be implemented by unification, as already discussed in Sect. 2. Such an
optimized implementation is justified by the definition (1) above. However, if
the semantics of “=:=” is defined by

x =:= y = solve (x == y) (3)

as suggested before the introduction of type classes to Curry [9], an implemen-
tation of “=:=” by unification would not be correct since unification might put
stronger requirements on expressions to be compared than actually defined by
Eq instances.

As a spin-off of definition (1), we obtain a more restricted type of “=:=”:

(=:=) :: Data a => a → a → Bool (4)

This avoids the problems with the application of “=:=” to functional values
sketched at the beginning of Sect. 3.

5 Logic Variables

When a function call with free variables in arguments is evaluated by narrow-
ing, the free variables are instantiated to values so that the function call becomes
reducible. Conceptually, a free variable denotes possible values so that a com-
putation can pick one in order to proceed. With the definition of the type class
Data and the non-deterministic operation aValue, we make the notion of “possi-
ble value” explicit. Actually, it has been shown that non-deterministic operations
and logic variables have the same expressive power [5, 14] since one can replace
logic variables occurring in a functional logic program by non-deterministic value
generators.

Example 4. Consider the addition on Peano numbers shown in Ex. 1 which is
exploited to define subtraction:
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sub :: Nat → Nat → Nat
sub x y | add y z === x = z

where z free

We can replace the logic variable z by a value generator:

sub x y | add y z === x = z
where z = aValue

The equivalence of logic variables and non-deterministic value generators can
be exploited when Curry is implemented by translation into a target language
without support for non-determinism and logic variables. For instance, KiCS2
[12] compiles Curry into Haskell by adding only a mechanism to handle non-
deterministic computations. Therefore, KiCS2 is able to evaluate a logic variable
to all its values. Thus, KiCS2 could exploit this fact by using the following
alternative definition for aValue:

aValue = - (5)

This equivalence also sheds some new light on the type of logic variables. Cur-
rently, logic variables without any constraints on their types are considered to
have a polymorphic type. For instance, the inferred type of aValue as defined in
(5) is

aValue :: a

However, this type does not really describe the intent of this operation, since
aValue does not yield functional values. For instance, consider the definition

f x = y where y free

The type currently inferred is

f :: a → b

However, it is meaningless to use the result of some application of f in contexts
where a function is required. For instance, the evaluation of the expression

map (f True) [0,1] (6)

suspends in PAKCS and produces a run-time error in KiCS2 (very similar to
the examples described at the beginning of Sect. 3). Furthermore, the inferred
type of the definition

g x = g x

is

g :: a → b

Thus, it looks very similar to the type of f although g has a quite different
meaning: in contrast to f, an application of g never returns a value.

All these problems can be avoided by a simple fix: logic variables are con-
sidered as equivalent to the operation aValue of type class Data so that a logic
variable without any constraints on its type has type a where a is constrained
with the type class context Data a. With this change, the inferred type of f is
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f :: Data b => a → b

As a consequence, expression (6) will be rejected by the type checker since func-
tions have no Data instance.

6 Equality Optimization

Choosing the appropriate kind of equality might not be obvious to the program-
mer. The difference between identity and equivalence is semantically relevant
so that the decision between “===” and “==” is not avoidable. However, “=:=”
can be considered as an optimization of “===” so that it is not obvious when it
should be applied. In order to simplify this situation, it has been argued in [9,
10] that the programmer should always use strict equality (i.e., “===”) and the
selection of “=:=” should be done by an optimization tool. This tool analyzes
the required values of Boolean expressions. If an application of strict equality
requires only the result value True, e.g., in guards of conditional rules or in argu-
ments of solve, see (2), then one can safely replace the equality operator by the
unification operator “=:=” (see [10] for details). For instance, if last is defined
by

last xs | _ ++ [e] === xs
= e where e free

then it can be transformed into

last xs | _ ++ [e] =:= xs
= e where e free

As shown in [10], this transformation can have a big impact on the execution
time.

Up to now, this tool (which is part of the compilation chain of Curry systems)
considered the optimization of calls to “==”. Since this might lead to incomplete-
ness, as discussed above, it has to consider calls to “===” when the type class
Data is introduced. However, for backward compatibility and better optimiza-
tions, one can extend the optimizer also to calls of the form e1 == e2: if the types
of the arguments e1, e2 are monomorphic and the Eq instances of these types are
derived with the default scheme (by deriving annotations), the semantics of “==”
is identical to the semantics of “===” so that one can replace e1 == e2 by e1 === e2
and apply the optimization sketched above.

7 Non-Left-Linear Rules and Functional Patterns

The proposed introduction of the type class Data together with the adjusted type
of the unification operator “=:=” has also some influence on language constructs
where unification is implicitly used. We discuss this in more detail in this section.

In contrast to Haskell, Curry allows non-left-linear rules, i.e., defining rules
with multiple occurrences of a variable in the patterns of the left-hand side. For
instance, this function definition is valid in Curry:

10



f x x = x

Multiple occurrences of variables in the left-hand side are considered as an ab-
breviation for equational constraints between these occurrences [27], i.e., the
definition above is expanded to

f x y | x =:= y = x

This feature of Curry is motivated by logic programming where multiple variable
occurrences in rule heads are also solved by unification. However, in Curry the
situation is a bit more complex due to the inclusion of functions and infinite
data structures. As a matter of fact, our refined type of “=:=” makes the status
of non-left-linear rules clearer. According to the type shown in (4), the type
inferred for the definition above is

f :: Data a => a → a → a

Hence, f can not be called with functional values as arguments. This even in-
creases the compatibility with logic programming where unification is applied to
Herbrand terms, i.e., algebraic data.

Another feature of Curry, where equational constraints are implicitly used,
are functional patterns. Functional patterns are proposed in [4] as an elegant way
to describe pattern matching with an infinite set of patterns. For instance, con-
sider the definition of last shown above. Since the equational condition requires
the complete evaluation of the input list, an expression like last [failed,3]
(where failed is an expression that has no value) can not be evaluated to some
value. Now, consider that last is defined by the following (infinite) set of rules:

last [x] = x
last [x1,x] = x
last [x1,x2,x] = x
...

Then the expression above is reduced to the value 3 by applying the second rule.
This set of rules can be abbreviated by a single rule:

last (- ++ [x]) = x (7)

Since the argument contains the defined operation “++”, it is called a func-
tional pattern. Conceptually, a functional pattern denotes all constructor terms
to which it can be evaluated (by narrowing). In this case, these are the patterns
shown above. Operationally, pattern matching with functional patterns can be
implemented by a specific unification procedure which evaluates the functional
pattern in a demand-driven manner [4]. Functional patterns are useful to ex-
press pattern matching at arbitrary depths in a compact manner. For instance,
they can be exploited for a compact and declarative approach to process XML
documents [23].

A delicate point of functional patterns are non-linear patterns, i.e., if a func-
tional pattern is evaluated to some constructor term containing multiple occur-
rences of a variable. For instance, consider the function
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dup :: a → (a,a)
dup x = (x,x)

and its use in a functional pattern:

whenDup (dup x) = x

By the semantics of functional patterns, the latter rule is equivalent to the defi-
nition

whenDup (x,x) = x

Due to the non-linear left-hand side, the type of whenDup is

whenDup :: Data a => (a,a) → a

Now, consider the operation const defined by

const :: a → b → a
const x _ = x

and its use in a functional pattern:

g (const x x) = x (8)

By the semantics of functional pattern, the definition of g is equivalent to

g x = x

so that a correct type is

g :: a → a

Hence, the type context Data a is not required, although the variable x has a
multiple occurrence in (8). This example shows that, if functional patterns are
used, the requirement for a Data context depends on the linearity of the con-
structor terms to which the functional patterns evaluate. Since this property is
undecidable in general, a safe approximation is to add a Data constraint to the
result type of the functional pattern. This has the consequence that the type of
last, when defined as in (7), is inferred as

last :: Data a => [a] → a

Basically, this type is the same as we would obtain when defining last with an
equational constraint, but it could be done better: since the functional pattern
(- ++ [x]) always yields a linear term, the type class constraint Data a is not
necessary. Hence, one can make the type checking for operations defined with
functional patterns more powerful by approximating the linearity property of
the functional pattern. Such an approximation has already been used in [4]
to improve the efficiency of the unification procedure for functional patterns.
However, a significant drawback would be the fact that the inferred type of a
function would depend on the quality of the approximation. As a consequence,
the principal type of a function [28, 13] would become ambiguous under certain
circumstances and would depend on a function’s implementation.
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8 Related Work

We already discussed in the previous sections some work related to the interpre-
tation and use of equality in declarative languages. In the following, we focus on
some additional work related to our proposal.

The necessity to distinguish different equalities in the context of functional
logic programming and to define their exact semantics has been recognized be-
fore. In [16], the authors introduce several equality (and disequality) operations,
among others also an operation for strict equality. However, no explicit distinc-
tion between equality and equivalence is made as only the former is discussed.
Note also that some of these operations became obsolete with [9].

In [33], the author discusses the addition of Haskell-like overloading to Curry.
In doing so, a new type class Equal that contains the unification operation “=:=”
is proposed. The intent is to restrict this operation similarly to the equivalence
operation “==” so that it is only applicable to certain types. In contrast to our
proposal, it is not enforced that instances of the Equal type class should always
have the same form. In the same work, another type class Narrowable containing a
method called narrow is proposed in order to restrict the type of logical variables
against the background of higher-rank types. The method narrow is very similar
to our method aValue. But aside from a few downsides of the introduction of such
a method, e.g., a possibly fixed order when enumerating solutions, no further
consequences for the language itself are discussed in that work.

The idea to use a type relation to restrict the type of logical variables has
also been introduced in [35] for a better characterization of free theorems. In
[34], a type class Data is used for the same reason, but the class is only used as
a marker (as in [35]) so that the type class does not contain any methods.

On a side note, there is also a Data type class in Haskell. However, this par-
ticular type class is used for generic programming in Haskell and shares nothing
but the name with our type class [32].

9 Conclusions

In this paper we presented a solution to various problems w.r.t. equality and
logic variables in functional logic programs by introducing a new type class
Data. Instances of this class support a generator operation aValue for values and
a strict equality operation “===” on these values. In contrast to other classes,
instances of this class can only be derived in a standard manner and cannot
be defined by the programmer. This decision ensures a reasonable semantics:
if e1 === e2 evaluates to True, then the expressions e1 and e2 have an identical
value. Although this is the notion of strict equality proposed for a long time,
Haskell-like overloading of the class Eq and its operation “==” allows to specify
that “some expressions are more equal than others” [38].

At a first glance, it might be unnecessary to add a further equality operator
and base type class to a declarative language. The advantage is that this supports
a clear documentation for all functions depending on equality, as it makes a
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huge difference in functional logic programming whether one imposes equality
or equivalence in a function’s implementation. If a programmer is interested in
identical values, she or he has to use “===”.3 If only equivalence is relevant, “==”
is the right choice. For instance, consider the operation elem to check whether
an element occurs in a list. The type

elem :: Data a => a → [a] → Bool

indicates that this operation succeeds if the element actually occurs in the list,
whereas the type

elem :: Eq a => a → [a] → Bool

indicates that it succeeds if some equivalent element is contained in the list.
Unfortunately, these details are often not taken into account. As discussed

in this paper, many textbooks and program documentations simply ignore such
differences or are not formally precise in their statements.

We showed that our proposal is also useful to type logic variables in a more
meaningful way. The type of a logic variable is required to be an instance of
Data so that one can enumerate the possible values of this variable. Although
logic variables are often instantiated by narrowing or unification to appropriate
values, there are situations where an explicit enumeration is necessary to en-
sure completeness. For instance, consider the encapsulation of non-deterministic
computations in order to reason about the various outcomes. Set functions [6]
are a declarative, i.e., evaluation-independent, encapsulation approach. If f is
a (unary) function, its set function fS returns the set of all results computed
by f for a given argument. For instance, someDupS xs returns the set of all du-
plicate elements (see Ex. 2) occurring in the list xs. An important property of
a set function is that it encapsulates only the non-determinism caused by the
function’s definition and not by the arguments. Hence, someDupS ([1,1] ? [2])
yields two different sets: {1} and {}. This property of set functions is important
to ensure their declarative semantics. It has the consequence that arguments
must be evaluated outside the set function. Hence, to evaluate the expression

let x free in . . .(fS x). . .

it is not allowed to bind x inside the evaluation of f . As a consequence, x must
be instantiated outside in order to proceed a computation where f demands its
argument. This can easily be obtained by the use of the operation aValue:

let x = aValue in . . .(fS x). . .

In order to evaluate the practical consequences of our proposal, we implemented
it in a prototypical manner in our Curry front end that is used by various Curry
implementations. The changes in the type checker were minimal (e.g., adding
Data contexts to the inferred types of logic variables). Concerning libraries, only
a single type signature had to be adapted in the standard prelude, one of the

3 As discussed in Sect. 6, the unification operator “=:=” does not need to be used by
the programmer since it is an optimization of “===”.
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largest Curry modules: the type of the “arbitrary value” operation gets a Data
context:

unknown :: Data a => a
unknown = let x free in x

In other libraries, only a few types (related to search encapsulation primitives)
had to be adapted. With these few changes, even larger Curry applications could
be compiled without problems. This demonstrates that our proposal is a viable
alternative to the current unsatisfying handling of equality and logic variables
in Curry. Usually, no changes are necessary in existing Curry programs. Only
in the rare cases of function definitions with polymorphic non-linear left-hand
sides or polymorphic logic variables, type signatures have to be adapted.
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