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Abstrat

Languages that integrate funtional and logi programming styles with a omplete opera-

tional semantis are based on narrowing. In order to avoid useless omputations, lazy narrowing

strategies have been proposed in the past. This paper presents an improvement of lazy narrowing

by inorporating deterministi simpli�ation steps into lazy narrowing derivations. These simpli-

�ation steps redue the searh spae so that in some ases in�nite searh spaes are redued to

�nite ones. We onsider two lasses of programs where this strategy an be applied. Firstly, we

show soundness and ompleteness of our strategy for funtional logi programs based on ground

onuent and terminating rewrite systems. Then, we show similar results for onstrutor-based

weakly orthogonal (not neessarily terminating) rewrite systems. Finally, we demonstrate the

improved operational behavior by means of several examples. Sine most funtional logi lan-

guages are based on programs belonging to one of these lasses, our result is a signi�ant step

to improve the operational semantis of existing funtional logi languages.

1 Introdution

In reent years, a lot of proposals have been made to amalgamate funtional and logi programming

languages [22℄. Funtional logi languages with a sound and omplete operational semantis are

based on narrowing, a ombination of the redution priniple of funtional languages and the

resolution priniple of logi languages. Narrowing, originally introdued in automated theorem

proving [43℄, is used to solve equations by �nding appropriate values for variables ourring in

arguments of funtions. This is done by unifying (rather than mathing) an input term with the

left-hand side of some rule and then replaing the instantiated input term by the instantiated

right-hand side of the rule.

Example 1.1 Consider the following rules de�ning the addition of two natural numbers whih are

represented by terms built from 0 and s:

0 + y ! y (R

1

)

s(x) + y ! s(x+ y) (R

2

)

�

This paper is a revised version of papers appeared in the proeedings of ESOP'94 and PLILP'94.
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The equation z + s(0) � s(s(0)) an be solved by a narrowing step with rule R

2

followed by a

narrowing step with rule R

1

so that z is instantiated to s(0) and the instantiated equation is

redued to the trivial equation s(s(0)) � s(s(0)):

z + s(0) � s(s(0)) ;

fz 7!s(x)g

s(x+ s(0)) � s(s(0)) ;

fx7!0g

s(s(0)) � s(s(0))

Hene we have found the solution z 7! s(0) to the given equation. 2

In order to ensure ompleteness in general, the left-hand side of eah rule must be uni�ed with

eah nonvariable subterm of the given equation. Clearly, this yields a huge searh spae. The

situation an be improved by partiular narrowing strategies whih restrit the possible positions

for the appliation of the next narrowing step, e.g., basi [26℄, innermost [14℄, outermost [11℄,

lazy [41℄, or needed narrowing [2℄. In this paper we onsider lazy narrowing strategies where

narrowing steps are applied at outermost positions in general and at an inner position only if

it is demanded and ontributes to some later narrowing step at an outer position. Similarly to

pure funtional programming, suh a lazy strategy avoids useless steps in omparison to an eager

strategy. However, in the ontext of funtional logi programming, a lazy narrowing strategy an

also have an unpleasant behavior if a demanded argument term has in�nitely many head normal

forms (i.e., if it an be derived to in�nitely many terms with a variable or onstrutor at the top).

Example 1.2 Consider the following rules whih may be part of a program for arithmeti opera-

tions:

0 � x ! 0 (R

3

) one(0) ! s(0) (R

5

)

x � 0 ! 0 (R

4

) one(s(x)) ! one(x) (R

6

)

If we want to ompute a solution to the equation one(z) � 0 � 0 by lazy narrowing, we ould try

to apply rule R

3

to evaluate the left-hand side. In this ase the �rst argument one(z) is demanded

and must be evaluated to a term with a onstrutor at the top. Unfortunately, there are in�nitely

many possibilities to ompute a head normal form s(0) of the term one(z) by instantiating z with

s(� � � s

| {z }

n

(0) � � �) for arbitrary n. Hene lazy narrowing has an in�nite searh spae in this example and

does not ompute a solution in a sequential implementation (see [18℄ for a disussion of problems

with sequential implementations of lazy narrowing). However, we ould avoid this in�nite searh

spae by omputing the normal form of both sides of the equation before applying a narrowing

step. The normal form of the initial equation is 0 � 0 (redution of the left-hand side with rule

R

4

) whih is trivially true. 2

The idea of redution to normal form before applying a narrowing step has been mainly proposed

with respet to eager narrowing strategies [13, 14, 25, 38, 42℄. It has been shown that eager nar-

rowing with normalization is a more eÆient ontrol strategy than left-to-right SLD-resolution for

equivalent logi programs [14, 21℄. On the other hand, only little work has been done to improve

the eÆieny of outermost or lazy strategies. Ehahed [12℄ has shown the ompleteness of any

narrowing strategy with simpli�ation under strong requirements (uniformity of spei�ations).

Dershowitz et al. [9℄ have proposed to ombine lazy narrowing with simpli�ation and demon-

strated the usefulness of indutive onsequenes for simpli�ation. However, they have not proved

2



ompleteness of their lazy uni�ation alulus if all terms are simpli�ed to their normal form after

eah uni�ation step.

1

The main ontribution of this paper is the ombination of lazy narrowing with intermediate

simpli�ation steps. We show that this ombination does not destroy the ompleteness of lazy

narrowing. We prove this result for the following two lasses of funtional logi programs.

2

1. Ground onuent and terminating rewrite systems: All existing proposals for ombining nar-

rowing with simpli�ation require terminating rewrite systems [13, 14, 25, 38, 42℄. For this

ase, narrowing is a method to ompute uni�ers in the presene of an equational theory

(known as E-uni�ation, see [3℄ for a survey). We will develop a alulus for this lass, alled

lazy uni�ation with simpli�ation, and provide a rigorous ompleteness proof. This alulus

has a lazy behavior w.r.t. uni�ation, i.e., funtions are only evaluated if their value is re-

quired to deide the uni�ability of terms. Moreover, we allow to use program rules as well as

additional indutive onsequenes for simpli�ation between narrowing steps. This has been

proved to be useful in other (eager) aluli [12, 14, 38℄.

2. Weakly orthogonal (not neessarily terminating) rewrite systems: If the funtional logi pro-

gram is not based on a terminating rewrite system, a lazy narrowing strategy is needed

[6, 35, 41℄. Sine normal forms may not exist in the presene of nonterminating funtions,

equality between two expressions is interpreted as strit equality in suh languages (e.g.,

BABEL [37℄, K-LEAF [17℄), i.e., two expressions are equal i� they are reduible to a same

ground onstrutor term. The onuene of the rewrite system is ensured by syntati riteria

(left-linearity and nonambiguity). Lazy narrowing is a omplete method to ompute uni�ers

w.r.t. strit equality for suh programs. However, no attempt has been made to use program

rules for simpli�ation between narrowing steps. Due to the absene of normal forms for

some expressions, full normalization between narrowing steps would be inomplete. There-

fore, we propose the integration of lazy simpli�ation into lazy narrowing derivations for suh

programs.

As far as we know, all funtional logi languages with a omplete operational semantis are based

on programs belonging to one of these lasses. For instane, programs with the requirements of

ALF [19℄, LPG [4℄ or SLOG [14℄ are ground omplete and terminating, whereas programs with the

requirements of BABEL [37℄ or K-LEAF [17℄ are weakly orthogonal. Thus our result is a signi�ant

step to improve the operational semantis of existing funtional logi languages. We will emphasize

this point by disussing the advantage of lazy narrowing with simpli�ation for various lasses of

funtional logi programs.

In the next setion we reall basi notions from term rewriting and funtional logi programming.

In Setion 3 we present the lazy uni�ation alulus with simpli�ation and prove its soundness

and ompleteness for ground onuent and terminating rewrite systems. In Setion 4 we show

1

In fat, their ompleteness proof for lazy narrowing does not hold if eager rewriting is inluded sine rewriting in

their sense does not redue the omplexity measure used in their ompleteness proof and may lead to in�nite instead

of suessful derivations.

2

For the sake of simpliity, we onsider only programs based on unonditional rewrite systems. However, it does

not seem diÆult to extend the results of Setion 4 to onditional rules with extra variables in onditions using the

transformation tehniques presented in [24℄.
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how to inlude a deterministi simpli�ation proess into lazy narrowing derivations w.r.t. weakly

orthogonal rewrite systems. In Setion 5 we disuss the usefulness of this simpli�ation proess

for di�erent lasses of funtional logi programs. Finally, we onlude with a disussion of related

work.

2 Preliminaries

In this setion we reall basi notions of term rewriting [8℄ and funtional logi programming [22℄.

A signature is a set F of funtion symbols.

3

Every f 2 F is assoiated with an arity n, denoted

f=n. Let X be a ountably in�nite set of variables. Then the set T (F ;X ) of terms built from F

and X is the smallest set ontaining X suh that f(t

1

; : : : ; t

n

) 2 T (F ;X ) whenever f 2 F has arity

n and t

1

; : : : ; t

n

2 T (F ;X ). We write f instead of f() whenever f has arity 0. The set of variables

ourring in a term t is denoted by Var(t) (similarly for the other syntati onstrutions de�ned

below, like equation, rewriting rule et.). A term t is alled ground if Var(t) = ;. In the following

we assume that F is a signature with at least one onstant.

The exeution of funtional logi programs requires notions like substitution, uni�er and sub-

term whih will be de�ned next. A substitution � is a mapping from X into T (F ;X ) suh that

its domain Dom(�) = fx 2 X j �(x) 6= xg is �nite. We frequently identify a substitution �

with the set fx 7! �(x) j x 2 Dom(�)g. Substitutions are extended to morphisms on T (�;X ) by

�(f(t

1

; : : : ; t

n

)) = f(�(t

1

); : : : ; �(t

n

)) for every term f(t

1

; : : : ; t

n

). A substitution � is alled ground

if �(x) is a ground term for all x 2 Dom(�). The omposition of two substitutions � and � is

de�ned by � Æ �(x) = �(�(x)) for all x 2 X . The union of two substitutions � and � is de�ned by

(� [ �)(x) =

8

<

:

�(x) if x 2 Dom(�)

�(x) if x 2 Dom(�)

x otherwise

only if Dom(�) \ Dom(�) = ;. The restrition �

jV

of a substitution � to a set V of variables is

de�ned by �

jV

(x) = �(x) if x 2 V and �

jV

(x) = x if x 62 V . A term s is alled instane of a term

t if there is a substitution � with s = �(t) (similarly for the other syntati onstrutions de�ned

below).

A uni�er of two terms s and t is a substitution � with �(s) = �(t). A uni�er � is alled most

general (mgu) if for every other uni�er �

0

there is a substitution � with �

0

= � Æ �. Most general

uni�ers are unique up to variable renaming. By introduing a total ordering on variables we an

uniquely hoose the most general uni�er of two terms. A position p in a term t is represented by a

sequene of natural numbers, tj

p

denotes the subterm of t at position p, and t[s℄

p

denotes the result

of replaing the subterm tj

p

by the term s (see [8℄ for details).

Let ! be a binary relation on a set S. Then !

�

denotes the transitive and reexive losure of

the relation !, and $

�

denotes the transitive, reexive and symmetri losure of !. ! is alled

terminating if there are no in�nite hains e

1

! e

2

! e

3

! � � �. ! is alled onuent if for all

e; e

1

; e

2

2 S with e!

�

e

1

and e!

�

e

2

there exists an element e

3

2 S with e

1

!

�

e

3

and e

2

!

�

e

3

.

3

In this paper we onsider only single-sorted programs. The extension to many-sorted signatures is straightforward

[39℄. Sine sorts are not relevant to the subjet of this paper, we omit them for the sake of simpliity.
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An equation s � t is a multiset ontaining two terms s and t. Thus equations to be uni�ed

are symmetri. In order to ompute with funtional logi programs, we will use the equations

speifying funtions only in one diretion. Hene we de�ne a rewrite rule l ! r as a pair of terms

l; r satisfying l 62 X and Var(r) � Var(l) where l and r are alled left-hand side and right-hand

side, respetively. A rewrite rule is alled a variant of another rule if it is obtained by a unique

replaement of variables by other variables. In the following we assume that R is a set of rewrite

rules, whih is also alled term rewriting system.

A rewrite step is an appliation of a rewrite rule to a term, i.e., t!

R

s if there exist a position

p in t, a rewrite rule l ! r and a substitution � with tj

p

= �(l) and s = t[�(r)℄

p

. In this ase we

say t is reduible (at position p). A term t is alled irreduible or in normal form if there is no term

s with t!

R

s. A substitution � is alled irreduible or normalized if �(x) is in normal form for all

variables x 2 X . A term rewriting system is (ground) onuent if the restrition of !

R

to the set

of all (ground) terms is onuent. If R is (ground) onuent and terminating, then eah (ground)

term t has a unique normal form whih is denoted by t#

R

.

We are interested in proving the validity of equations. An equation s � t is alled valid (w.r.t.

R) if s$

�

R

t. By Birkho�'s Completeness Theorem, this is equivalent to the validity of s � t in all

models of R. In this ase we also write s =

R

t. If R is (ground) onuent and terminating, we an

deide the validity of a (ground) equation s � t by omputing the normal form of both sides using

an arbitrary sequene of rewrite steps, sine s $

�

R

t i� s#

R

= t#

R

. In order to ompute solutions

to a nonground equation s � t, we have to �nd appropriate instantiations for the variables in s and

t. This an be done by narrowing. A term t is narrowable into a term t

0

if there exist a nonvariable

position p (i.e., tj

p

62 X ), a variant l ! r of a rewrite rule with Var(t) \ Var(l) = ;, a substitution

� suh that � is a mgu of tj

p

and l, and t

0

= �(t[r℄

p

). In this ase we write t;

[p;l!r;�℄

t

0

or simply

t ;

�

t

0

.

4

If there is a narrowing sequene t

1

;

�

1

t

2

;

�

2

� � � ;

�

n�1

t

n

, we write t

1

;

�

�

t

n

with

� = �

n�1

Æ � � � Æ �

2

Æ �

1

.

Narrowing is able to solve equations w.r.t. R. For this purpose we introdue two new funtion

symbols =

?

and true and add the rewrite rule x =

?

x! true to R. Then narrowing is sound and

omplete in the following sense.

Theorem 2.1 ([26℄) Let R be a term rewriting system so that !

R

is onuent and terminating.

1. If s =

?

t;

�

�

true, then �(s) =

R

�(t).

2. If �

0

(s) =

R

�

0

(t), then there exist a narrowing derivation s =

?

t;

�

�

true and a substitution

� with �(�(x)) =

R

�

0

(x) for all x 2 Var(s) [ Var(t).

Sine this simple narrowing proedure (enumerating all narrowing derivations) is very ineÆient,

several authors have proposed restritions on the admissible narrowing derivations (see [22℄ for

a detailed survey). For instane, Hullot [26℄ has introdued basi narrowing where narrowing

steps in positions introdued by substitutions are forbidden. Fribourg [14℄ has proposed innermost

narrowing where narrowing is applied only at innermost positions, and H�olldobler [25℄ has ombined

innermost and basi narrowing. Krisher and Bokmayr [29℄ have proposed additional tests during

narrowing derivations to eliminate redundant derivations. Narrowing at outermost positions is

4

Sine the instantiation of the variables in the rule l ! r by � is not relevant for the omputed solution of a

narrowing derivation, we omit this part of � in the example derivations in this paper.
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omplete only if the term rewrite system satis�es strong restritions [11℄. Lazy narrowing [6, 35, 41℄

is inuened by the idea of lazy evaluation in funtional programming languages. Lazy narrowing

steps are only applied at outermost positions with the exeption that arguments are evaluated by

narrowing to their head normal form if their values are required for an outermost narrowing step

(see [37℄ for an exat de�nition of a lazy narrowing position). Sine lazy strategies are relevant

in the ontext of nonterminating rewrite rules, these strategies have been proved to be omplete

w.r.t. domain-based interpretations of rewrite rules [17, 37℄. Lazy uni�ation is very similar to lazy

narrowing but manipulates sets of equations rather than terms. It has been proved to be omplete

for onuent and terminating term rewriting systems w.r.t. standard semantis [9, 34℄. Therefore,

lazy uni�ation aluli are more appropriate in the ontext of terminating rewrite systems and

standard semantis of equality, whereas lazy narrowing aluli are appropriate in the presene of

nonterminating rules. Thus, we follow this distintion.

5

Another improvement of simple narrowing is normalizing narrowing [13℄ where the term is

rewritten to its normal form before a narrowing step is applied. This optimization is important

sine it prefers deterministi omputations: rewriting a term to normal form an be done in a

deterministi way sine every rewriting sequene yields the same result (if R is onuent and

terminating) whereas di�erent narrowing steps may lead to di�erent solutions and, therefore, all

admissible narrowing steps must be onsidered. In a sequential implementation, rewriting an

be eÆiently implemented like redutions in funtional languages whereas narrowing steps need

ostly baktraking management like in Prolog. For instane, if s =

R

t, normalizing narrowing will

prove the validity by a pure deterministi omputation (reduing s and t to the same normal form)

whereas simple narrowing would ompute the normal form of s and t by ostly narrowing steps.

As shown in [14, 21℄, normalizing narrowing has the desirable e�et that funtional logi programs

are more eÆiently exeutable than pure logi programs.

The idea of normalizing narrowing an also be ombined with other narrowing restritions.

R�ety [42℄ has proved ompleteness of normalizing basi narrowing, Fribourg [14℄ has proposed nor-

malizing innermost narrowing and H�olldobler [25℄ has ombined innermost basi narrowing with

normalization. Beause of these advantages, normalizing narrowing is the foundation of several

programming languages whih ombines funtional and logi programming, like ALF [19℄, LPG [4℄,

or SLOG [14℄. However, normalization has not been inluded in lazy narrowing strategies.

6

There-

fore, we will show that deterministi simpli�ation steps an be performed before nondeterministi

lazy narrowing steps without destroying the ompleteness of lazy narrowing. The problems of

integrating normalization into basi narrowing [42℄ shows that suh a result is not obvious.

3 Ground Conuent and Terminating Programs

In this setion we assume that R is a ground onuent and terminating term rewriting system.

First, we present our basi lazy uni�ation alulus to solve a system of equations. The inlusion

of a normalization proess will be shown in Setion 3.2. The \laziness" of our alulus is in the

spirit of lazy evaluation in funtional programming languages, i.e., terms are evaluated only if their

values are needed.

5

Note that this distintion beomes essential if one onsiders higher-order rewrite rules [40℄.

6

Exept for [9, 12℄, but see the remarks in Setion 1.
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Lazy narrowing

f(t

1

; : : : ; t

n

) � t; E

lu

=) t

1

� l

1

; : : : ; t

n

� l

n

; r � t; E

if t 62 X or t 2 Var(f(t

1

; : : : ; t

n

)) [ Var(E) and f(l

1

; : : : ; l

n

)! r new variant of a rewrite rule

Deomposition of equations

f(t

1

; : : : ; t

n

) � f(t

0

1

; : : : ; t

0

n

); E

lu

=) t

1

� t

0

1

; : : : ; t

n

� t

0

n

; E

Partial binding of variables

x � f(t

1

; : : : ; t

n

); E

lu

=) x � f(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E)

if x 2 Var(f(t

1

; : : : ; t

n

)) [ Var(E) and � = fx 7! f(x

1

; : : : ; x

n

)g (where x

i

new variable)

Figure 1: The lazy uni�ation alulus

3.1 A Calulus for Lazy Uni�ation

Lazy narrowing as introdued in Setion 2 is de�ned only for onstrutor-based programs (see

also Setion 4). Sine we do not require onstrutor-based programs in this setion, we present a

lazy uni�ation alulus whih is slightly more general than lazy narrowing. This lazy uni�ation

alulus manipulates sets of equations in the style of Martelli and Montanari [33℄ rather than terms

as in narrowing aluli. Hene we de�ne an equation system E to be a multiset of equations (in

the following we write suh sets without urly brakets if it is lear from the ontext). A solution

of an equation system E is a ground substitution � suh that Var(E) � Dom(�) and �(s) =

R

�(t)

for all equations s � t 2 E.

7

An equation system E is solvable if it has at least one solution. A set

S of substitutions is a omplete set of solutions for E i�

1. for all � 2 S, � is a solution of E;

2. for every solution � of E, there exists some � 2 S with �(x) =

R

�(x) for all x 2 Var(E).

In order to ompute solutions of an equation system, we transform it by the rules in Figure 1

until no more rules an be applied. The lazy narrowing transformation applies a rewrite rule to a

funtion ourring outermost in an equation.

8

Atually, this is not a narrowing step as de�ned in

Setion 2 sine the argument terms may not be uni�able. Narrowing steps an be simulated by a

sequene of transformations in the lazy uni�ation alulus but not vie versa sine our alulus also

allows the appliation of rewrite rules to the arguments of the left-hand sides. The deomposition

transformation generates equations between the argument terms of an equation if both sides have

the same outermost symbol. The partial binding of variables an be applied if the variable x ours

at di�erent positions in the equation system. In this ase we instantiate the variable only with

the outermost funtion symbol. A full instantiation by the substitution � = fx 7! f(t

1

; : : : ; t

n

)g

may inrease the omputational work if x ours several times and the evaluation of f(t

1

; : : : ; t

n

)

7

We are interested in ground solutions sine later we will inlude indutive onsequenes whih are valid in the

ground models of R. As pointed out in [38℄, this ground approah subsumes the onventional narrowing approahes

where also nonground solutions are taken into aount (as in Theorem 2.1).

8

Similarly to logi programming, we have to apply rewrite rules with fresh variables in order to ensure ompleteness.
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is ostly. In order to avoid this problem of eager variable elimination (see [15℄), we perform only a

partial binding whih is also alled \root imitation" in [15℄.

It is possible to add further rules to simplify equation systems like the elimination of trivial

equations:

t � t; E

lu

=) E

However, these rules are not really neessary and we omit them in our �rst approah. Later we

will see how to add deterministi (failure) rules to redue the searh spae of the alulus.

At �rst sight our lazy uni�ation alulus has many similarities with the lazy uni�ation rules

presented in [9, 15, 34, 39℄. This is not aidental sine these systems have inspired us. However,

there are also essential di�erenes. Sine we are interested in reduing the omputational osts in

the E-uni�ation proedure, our rules behave \more lazily". In our alulus it is allowed to evaluate

a term only if its value is needed

9

(in several positions). Otherwise, the term is left unevaluated.

Example 3.1 Consider the rewrite rule 0 � x! 0. Then the only transformation sequene of the

equation 0 � t � 0 (where t may be a ostly funtion) is

0 � t � 0

lu

=) 0 � 0; t � x; 0 � 0 (lazy narrowing)

lu

=) t � x; 0 � 0 (deomposition)

lu

=) t � x (deomposition)

Thus the term t is not evaluated sine its onrete value is not needed. Consequently, we may

ompute solutions whih are not normalized. That is a desirable property in the presene of a lazy

evaluation mehanism. 2

The onventional transformation rules for uni�ation w.r.t. an empty equational theory [33℄ bind

a variable x to a term t only if x does not our in t. This our hek must be omitted in the

presene of evaluable funtion symbols. Moreover, we must also instantiate ourrenes of x in the

term t whih is done in our partial binding rule. The following example shows the neessity of

these extensions.

Example 3.2 Consider the rewrite rule f((a))! a. Then we an solve the equation x � (f(x))

by the following transformation sequene:

x � (f(x))

lu

=) x � (x

1

); x

1

� f((x

1

)) (partial binding)

lu

=) x � (x

1

); (x

1

) � (a); x

1

� a (lazy narrowing)

lu

=) x � (x

1

); x

1

� a; x

1

� a (deomposition)

lu

=) x � (a); x

1

� a; a � a (partial binding)

lu

=) x � (a); x

1

� a (deomposition)

In fat, the initial equation is solvable and fx 7! (a)g is a solution of this equation. This solution

is also an obvious solution of the �nal equation system if we disregard the auxiliary variable x

1

. 2

9

Although our lazy narrowing rule is more restrited than in other lazy uni�ation aluli, it is not optimal in the

sense of [2℄ sine we do not require strongly sequential rewrite systems.
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Coalese

x � y;E

var

=) x � y; �(E)

if x; y 2 Var(E), x 6= y, and � = fx 7! yg

Trivial

x � x;E

var

=) E

Figure 2: The variable elimination rules

In the rest of this setion, we will prove soundness and ompleteness of our lazy uni�ation

alulus. Soundness simply means that eah solution of the transformed equation system is also a

solution of the initial equation system. Completeness is more diÆult sine we have to take into

aount all possible transformations. Therefore, we will show that a solvable equation system an

be transformed into another very simple equation system whih has \an obvious solution". Suh

a �nal equation system is said to be in \solved form". Aording to [15, 33℄, we all an equation

x � t of an equation system E solved (in E) if x is a variable whih ours neither in t nor anywhere

else in E. In this ase variable x is also alled solved (in E). An equation system is solved or in

solved form if all its equations are solved. A variable or equation is unsolved in E if it ours in E

but is not solved.

The lazy uni�ation alulus in the present form annot transform eah solvable equation system

into a solved form sine equations between variables are not simpli�ed. For instane, the equation

system

x � f(y); y � z

1

; y � z

2

; z

1

� z

2

is irreduible w.r.t.

lu

=) but not in solved form sine the variables y; z

1

; z

2

have multiple ourrenes.

Fortunately, this is not a problem sine a solution an be extrated by merging the variables

ourring in unsolved equations. Therefore, we all this system quasi-solved. An equation system

is quasi-solved if eah equation s � t is solved or has the property s; t 2 X . In the following

we will show that a quasi-solved equation system has solutions whih an be easily omputed by

applying the rules in Figure 2 to it. The separation between the lazy uni�ation rules in Figure 1

and the variable elimination rules in Figure 2 has tehnial reasons that will beome apparent later

(e.g., applying variable elimination to the equation y � z

1

may not redue the omplexity measure

used in our ompleteness proofs). However, it is obvious to extrat the solutions of a quasi-solved

equation system E. For this purpose we transform E by the rules in Figure 2 into a solved equation

system whih has a diret solution. This is justi�ed by the following propositions.

Proposition 3.3 Let E and E

0

be equation systems with E

var

=)E

0

. Then E and E

0

have the same

solutions.

Proof: It is obvious that E and E

0

have the same solutions if the transformation rule \Trivial" is

applied. In ase of the rule \Coalese", E has the form x � y;E

0

, and E

0

has the form x � y; �(E

0

)

with � = fx 7! yg. Let � be a solution of E. Then �(x) $

�

R

�(y) = �(�(x)). By de�nition of

� and the ongruene property of $

�

R

, �(t) $

�

R

�(�(t)) for all terms t. Let s � t 2 E

0

. Sine �

9



is a solution of E, �(s) $

�

R

�(t). Moreover, �(s) $

�

R

�(�(s)) and �(t) $

�

R

�(�(t)) whih implies

�(�(s))$

�

R

�(�(t)). Therefore, � is also a solution of �(E

0

).

If � is a solution of E

0

, it an be shown in a similar way that � is also a solution of E

0

.

Due to this proposition, the transformation

var

=) preserves solutions. Moreover, it is a terminating

relation:

Proposition 3.4 The relation

var

=) on equation systems is terminating.

Proof: De�ne the omplexity of an equation system as the total number of ourrenes of unsolved

variables in this system. Obviously, both transformation rules of

var

=) redue this number.

If an equation system is quasi-solved, we an always transform it into a solved system:

Proposition 3.5 Let E be a quasi-solved equation system. Then there exists a solved equation

system E

0

with E

var

=)

�

E

0

.

Proof: Let E be a quasi-solved equation system whih is not solved. Then there exists an equation

x � y 2 E whih is unsolved. Hene x = y or x; y 2 Var(E � fx � yg). In the �rst ase we apply

the rule \Trivial" and in the seond ase we apply the rule \Coalese". The result of both ases

is a new equation system in quasi-solved form. Sine there are no in�nite derivations w.r.t.

var

=)

(Proposition 3.4), suessive transformation steps w.r.t.

var

=) will end in a solved equation system.

The solutions of an equation system in solved form an be obtained as follows:

Proposition 3.6 Let E be an equation system in solved form, i.e.,

E = fx

1

� t

1

; : : : ; x

n

� t

n

g

where x

1

; : : : ; x

n

are di�erent variables with x

i

62 Var(t

j

) for i; j 2 f1; : : : ; ng (reall that equations

are multisets, thus we an write solved systems always in this form). Then the substitution set

f Æ fx

1

7! t

1

; : : : ; x

n

7! t

n

g j  is a ground substitution with Dom() =

n

[

i=1

Var(t

i

)g

is a omplete set of solutions for E.

Proof: First we show that � : = Æfx

1

7! t

1

; : : : ; x

n

7! t

n

g is a solution of E for an arbitrary ground

substitution  with Dom() =

S

n

i=1

Var(t

i

). Clearly, Dom(�) = fx

1

; : : : ; x

n

g [Dom() = Var(E).

Consider the equation x

i

� t

i

2 E. Sine x

1

; : : : ; x

n

do not our in any t

i

, �(x

i

) = (t

i

) = �(t

i

),

i.e., � is a solution of x

i

� t

i

. Hene � is a solution of E.

Next we show that every solution of E is overed by some substitution from the substitution

set de�ned above. Let � be a solution of E. Then �(x

i

) =

R

�(t

i

) for i = 1; : : : ; n. Sine � is a

ground substitution with Var(E) � Dom(�), the substitution

� : = �

j

S

n

i=1

Var(t

i

)

Æ fx

1

7! t

1

; : : : ; x

n

7! t

n

g

is ontained in the above substitution set. We have to show �(x) =

R

�(x) for all x 2 Var(E):

10



� By de�nition of � and �, �(x

i

) = �(t

i

) =

R

�(x

i

) for i = 1; : : : ; n.

� If x 2 Var(t

j

) for some j 2 f1; : : : ; ng, then �(x) = �(x) by de�nition of � (note that x is

di�erent from any x

i

sine no x

i

ours in t

j

).

Altogether, �(x) =

R

�(x) for all x 2 Var(E).

Due to Propositions 3.3, 3.5 and 3.6, it is suÆient to transform an equation system into a quasi-

solved form in order to ompute its solutions. Hene we an state soundness and ompleteness

results by onentrating on quasi-solved forms. The next lemma shows the soundness if a trans-

formation rule of the lazy uni�ation alulus is applied.

Lemma 3.7 Let E and E

0

be equation systems with E

lu

=)E

0

. Then eah solution � of E

0

is also

a solution of E.

Proof: Assume that E

lu

=)E

0

and � is a solution of E

0

. Clearly, Var(E) � Dom(�) sine Var(E) �

Var(E

0

) � Dom(�). There are three ases orresponding to the applied transformation rule:

1. The lazy narrowing rule has been applied. Then E = f(t

1

; : : : ; t

n

) � t; E

0

, f(l

1

; : : : ; l

n

) !

r is a variant of a rewrite rule and E

0

= t

1

� l

1

; : : : ; t

n

� l

n

; r � t; E

0

. Sine � is a

solution of E

0

, �(t

i

)$

�

R

�(l

i

) (for i = 1; : : : ; n) and �(r)$

�

R

�(t). These equivalenes imply

�(f(t

1

; : : : ; t

n

))$

�

R

�(f(l

1

; : : : ; l

n

)) by the ongruene property of$

�

R

. Sine f(l

1

; : : : ; l

n

)!

r is a variant of a rewrite rule, �(f(l

1

; : : : ; l

n

))!

R

�(r)$

�

R

�(t). Hene �(f(t

1

; : : : ; t

n

))$

�

R

�(t), i.e., � is a solution of E.

2. The deomposition rule has been applied. Then E = f(t

1

; : : : ; t

n

) � f(t

0

1

; : : : ; t

0

n

); E

0

and

E

0

= t

1

� t

0

1

; : : : ; t

n

� t

0

n

; E

0

. Sine � is a solution of E

0

, �(t

i

) $

�

R

�(t

0

i

) (for i = 1; : : : ; n).

Hene �(f(t

1

; : : : ; t

n

))$

�

R

�(f(t

0

1

; : : : ; t

0

n

)) by the ongruene property of $

�

R

.

3. The partial binding rule has been applied. Then E = x � f(t

1

; : : : ; t

n

); E

0

and E

0

= x �

f(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E

0

) where � = fx 7! f(x

1

; : : : ; x

n

)g. Sine � is a

solution of E

0

, we have

(a) �(x)$

�

R

�(f(x

1

; : : : ; x

n

))

(b) �(x

i

)$

�

R

�(�(t

i

)) (for i = 1; : : : ; n)

() � solution of �(E

0

)

By de�nition of �, (a) and the ongruene property of $

�

R

,

�(�(t))$

�

R

�(t) for all terms t (�)

Hene � is also a solution of E

0

. Moreover,

�(x) $

�

R

�(f(x

1

; : : : ; x

n

)) (by (a))

$

�

R

�(f(�(t

1

); : : : ; �(t

n

))) (by (b))

$

�

R

�(f(t

1

; : : : ; t

n

)) (by (�))

Hene � is a solution of x � f(t

1

; : : : ; t

n

).
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The following soundness theorem an be proved by a simple indution on the transformation steps

using the previous lemma.

Theorem 3.8 Let E and E

0

be equation systems with E

lu

=)

�

E

0

. Then eah solution � of E

0

is a

solution of E.

The ompleteness proof is more diÆult sine we have to onsider all possible transformation

sequenes. Therefore, we show that for eah solution of an equation system there is a derivation

into a quasi-solved form that has the same solution. Note that the solution of the quasi-solved

form annot be idential to the required solution, beause new additional variables are generated

during the derivation (by lazy narrowing and partial binding transformations). However, this is

not a problem sine we are interested in solutions w.r.t. the variables of the initial equation system.

Theorem 3.9 Let E be a solvable equation system with solution �. Then there exists a derivation

E

lu

=)

�

E

0

with E

0

in quasi-solved form suh that E

0

has a solution �

0

with �

0

(x) =

R

�(x) for all

x 2 Var(E).

Proof: We show the existene of a derivation from E into a quasi-solved equation system by the

following steps:

1. We de�ne a redution relation ) on pairs of the form (�;E), where E is an equation system

and � is a solution of E, with the property that (�;E) ) (�

0

; E

0

) implies E

lu

=)E

0

and

�

0

(x) = �(x) for all x 2 Var(E).

2. We de�ne a terminating ordering � on these pairs.

3. We show: If E has a solution � but E is not in quasi-solved form, then there exists a pair

(�

0

; E

0

) with (�;E)) (�

0

; E

0

) and (�;E) � (�

0

; E

0

).

2 and 3 implies that eah solvable equation system an be transformed into a quasi-solved form.

By 1, the solution of this quasi-solved form is the required solution of the initial equation system.

In the sequel we will show 1 and 3 in parallel. First we de�ne the terminating ordering �.

For this purpose we use the strit subterm ordering �

sst

on terms de�ned by t �

sst

s i� there is a

position p in t with tj

p

= s 6= t. Sine R is a terminating rewrite system, the relation!

R

on terms

is also terminating. Let �� be the transitive losure of the relation !

R

[ �

sst

. Then �� is also

terminating [28℄.

10

Now we de�ne the following ordering on pairs (�;E): (�;E) � (�

0

; E

0

) i�

f�(s); �(t) j s � t 2 E is unsolved in Eg ��

mul

f�

0

(s

0

); �

0

(t

0

) j s

0

� t

0

2 E

0

is unsolved in E

0

g (�)

where ��

mul

is the multiset extension

11

of the ordering �� (all sets in this de�nition are multisets).

��

mul

is terminating (note that all multisets onsidered here are �nite) sine �� is terminating [7℄.

10

Note that the use of the relation !

R

instead of �� (as done in [9℄) is not suÆient for the ompleteness proof

sine !

R

has not the subterm property [7℄ in general.

11

The multiset ordering ��

mul

is the transitive losure of the replaement of an element by a �nite number of

elements that are smaller w.r.t. �� [7℄.
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Now we will show that we an apply a transformation step to a solvable but unsolved equation

system suh that its omplexity is redued. Let E be an equation system not in quasi-solved form

and � be a solution of E. Sine E is not quasi-solved, there must be an equation whih has one of

the following forms:

1. There is an equation E = s � t; E

0

with s; t 62 X : Let s = f(s

1

; : : : ; s

n

) with n � 0 (the other

ase is symmetri). Consider an innermost derivation of the normal forms of �(s) and �(t):

(a) No rewrite step is performed at the root of �(s) and �(t): Then t has the form t =

f(t

1

; : : : ; t

n

) and �(s)#

R

= �(t)#

R

= f(u

1

; : : : ; u

n

). Sine �(s) and �(t) are not redued

at the root, �(s

i

)#

R

= u

i

= �(t

i

)#

R

for i = 1; : : : ; n. Now we apply the deomposition

transformation and obtain the equation system

E

0

= s

1

� t

1

; : : : ; s

n

� t

n

; E

0

Obviously, � is a solution of E

0

. Moreover, the omplexity of the new equation system

is redued beause the equation s � t is unsolved in E and eah �(s

i

) and �(t

i

) is

smaller than �(s) and �(t), respetively, sine �� ontains the strit subterm ordering

�

sst

. Hene (�;E) � (�;E

0

).

(b) A rewrite step is performed at the root of �(s), i.e., the innermost rewriting sequene of

�(s) has the form

�(s)!

�

R

f(s

0

1

; : : : ; s

0

1

)!

R

�(r)!

�

R

�(s)#

R

where f(l

1

; : : : ; l

n

)! r is a new variant of a rewrite rule, �(l

i

) = s

0

i

and �(s

i

)!

�

R

s

0

i

for

i = 1; : : : ; n. An appliation of the lazy narrowing transformation yields the equation

system

E

0

= s

1

� l

1

; : : : ; s

n

� l

n

; r � t; E

0

We ombine � and � to a new substitution �

0

= � [ � (this is always possible sine

� does only work on the variables of the new variant of the rewrite rule). Note that

Var(E

0

) � Dom(�

0

). �

0

is a solution of E

0

sine

�

0

(s

i

) = �(s

i

)!

�

R

s

0

i

= �(l

i

) = �

0

(l

i

)

and

�

0

(r) = �(r)!

�

R

�(s)#

R

$

�

R

�(t) = �

0

(t)

Sine the transitive losure of !

R

is ontained in ��, �(s

i

) �� �

0

(l

i

) (if �(s

i

) 6= �

0

(l

i

))

and �(s) �� �

0

(r). Sine s � t is unsolved in E, the term �(s) is ontained in the left

multiset of the ordering de�nition (�), and it is replaed by a seletion of the smaller

terms �(s

1

); : : : ; �(s

n

); �

0

(l

1

); : : : ; �

0

(l

n

); �

0

(r) (�(s) �� �(s

i

) sine �� ontains the strit

subterm ordering). Therefore, the new equation system is smaller w.r.t. �, i.e., (�;E) �

(�

0

; E

0

).

2. There is an equation E = x � t; E

0

with t = f(t

1

; : : : ; t

n

) and x unsolved in E: Hene

x 2 Var(t) [ Var(E

0

). Again, we onsider an innermost derivation of the normal form of

�(t):

13



(a) A rewrite step is performed at the root of �(t). Then we apply a lazy narrowing step

and proeed as in the previous ase.

(b) No rewrite step is performed at the root of �(t), i.e., �(t)#

R

= f(t

0

1

; : : : ; t

0

n

) and �(t

i

)#

R

=

t

0

i

for i = 1; : : : ; n. We apply the partial binding transformation and obtain the equation

system

E

0

= x � f(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E

0

)

where � = fx 7! f(x

1

; : : : ; x

n

)g and x

i

are new variables. We extend � to a substitution

�

0

by adding the bindings �

0

(x

i

) = t

0

i

for i = 1; : : : ; n, i.e., Var(E

0

) � Dom(�

0

). Then

�

0

(f(x

1

; : : : ; x

n

)) = f(t

0

1

; : : : ; t

0

n

) = �(t)#

R

$

�

R

�(t)$

�

R

�(x) = �

0

(x)

Moreover, �

0

(�(x)) = �

0

(x)#

R

whih implies �

0

(s) $

�

R

�

0

(�(s)) for all terms s. Hene

�

0

(�(t

i

))$

�

R

�

0

(t

i

)$

�

R

t

0

i

= �

0

(x

i

). Altogether, �

0

is a solution of E

0

.

It remains to show that this transformation redues the omplexity of the equation

system. Sine �

0

(�(x)) = �(x)#

R

, we have �(x) !

�

R

�

0

(�(x)). Hene �(E

0

) is equal to

�

0

(�(E

0

)) (if �(x) = �

0

(�(x))) or �

0

(�(E

0

)) is smaller w.r.t. ��

mul

. Therefore, it remains

to hek that �(t) is greater than eah �

0

(x

1

); : : : ; �

0

(x

n

); �

0

(�(t

1

)); : : : ; �

0

(�(t

n

)) w.r.t.

�� (note that the equation x � t is unsolved in E, but the equation x � f(x

1

; : : : ; x

n

)

is solved in E

0

). First of all, �(t) �� �(t

i

) sine �� inludes the strit subterm ordering.

Moreover, �(t

i

) !

�

R

�

0

(x

i

), i.e., �

0

(x

i

) is equal or smaller than �(t

i

) w.r.t. �� for i =

1; : : : ; n. This implies �(t) �� �

0

(x

i

). Similarly, �

0

(�(t

i

)) is equal or smaller than �(t

i

)

w.r.t. �� sine �

0

(�(x)) = �(x)#

R

. Thus �(t) �� �

0

(�(t

i

)). Altogether, (�;E) � (�

0

; E

0

).

We want to point out that there exist also other orderings on substitution/equation system pairs to

prove the ompleteness of our alulus. However, the ordering hosen above is tailored to a simple

proof for the ompleteness of lazy uni�ation with simpli�ation as we will see in the next setion.

Propositions 3.3, 3.5, 3.6 and Theorems 3.8 and 3.9 imply that a omplete set of solutions for

a given equation system E an be omputed by enumerating all derivations in the lazy uni�ation

alulus from E into a quasi-solved equation system. Due to the nondeterminism in the lazy

uni�ation alulus, there are many unsuessful and often in�nite derivations. Therefore, we

will show in the next setion how to redue this nondeterminism by integrating a deterministi

simpli�ation proess into the lazy uni�ation alulus. More determinism an be ahieved by

dividing the set of funtion symbols into onstrutors and de�ned funtions. This will be the

subjet of Setion 3.3.

3.2 Integrating Simpli�ation Into Lazy Uni�ation

The lazy uni�ation alulus admits a high degree of nondeterminism even if there is only one

reasonable derivation. This is due to the fat that funtional expressions are proessed \too lazy".

Example 3.10 Consider the rewrite rules

f(a) !  g(a) ! a

f(b) ! d g(b) ! b
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and the equation f(g(b)) � d. Then there are the following four di�erent derivations in our lazy

uni�ation alulus:

f(g(b)) � d

lu

=) g(b) � a;  � d

lu

=) b � a; a � a;  � d

lu

=) b � a;  � d

f(g(b)) � d

lu

=) g(b) � a;  � d

lu

=) b � b; b � a;  � d

lu

=) b � a;  � d

f(g(b)) � d

lu

=) g(b) � b; d � d

lu

=) b � a; a � b; d � d

lu

=) b � a; a � b

f(g(b)) � d

lu

=) g(b) � b; d � d

lu

=) b � b; b � b; d � d

lu

=)

�

;

The �rst three derivations do not end in a quasi-solved form, only the last derivation is suessful.

However, if we �rst ompute the normal form of f(g(b)), whih is d, then there is only one possible

derivation: d � d

lu

=) ;. Hene we will show that the lazy uni�ation alulus remains to be sound

and omplete if the (deterministi!) normalization of terms is inluded. 2

It is well-known [14, 21℄ that the inlusion of indutive onsequenes for normalization may have

an essential e�et on the searh spae redution in normalizing narrowing strategies. Therefore,

we will also allow the use of additional indutive onsequenes for normalization. A rewrite rule

l ! r is alled indutive onsequene (of R) if �(l) =

R

�(r) for all ground substitutions � with

Dom(�) = Var(l). For instane, the rule x + 0 ! x is an indutive onsequene of the term

rewriting system

0 + y ! y

s(x) + y ! s(x+ y)

If we want to solve the equation s(x)+0 � s(x), our basi lazy uni�ation alulus would enumerate

the solutions fx 7! 0g, fx 7! s(0)g, fx 7! s(s(0))g, and so on, i.e., this equation has an in�nite

searh spae. Using the indutive onsequene x+0! x for normalization, the equation s(x)+0 �

s(x) is redued to s(x) � s(x) and then transformed into the quasi-solved form x � x representing

the solution set where x is replaed by any ground term.

12

In the following, we assume that I is a set of indutive onsequenes of R (the set of simpli-

�ation rules) so that the rewrite relation !

I

is terminating. We will use rules from R for lazy

narrowing and rules from I for simpli�ation. Note that eah rule from R is also an indutive

onsequene and an be inluded in I. However, we do not require that all rules from R must be

used for normalization. This is reasonable if there are dupliating rules where one variable of the

left-hand side ours several times on the right-hand side, like f(x)! g(x; x). If we normalize the

equation f(s) � t with this rule, then the term s is dupliated. This may inrease the omputa-

tional osts if the evaluation of s is neessary and ostly. In suh a ase it would be better to use

this rule only in lazy narrowing steps.

In order to inlude simpli�ation into the lazy uni�ation alulus, we de�ne a relation )

I

on systems of equations. s � t )

I

s

0

� t

0

i� s

0

and t

0

are normal forms of s and t w.r.t. !

I

,

respetively. E )

I

E

0

i� E = e

1

; : : : ; e

n

and E

0

= e

0

1

; : : : ; e

0

n

where e

i

)

I

e

0

i

for i = 1; : : : ; n. Note

12

In larger single-sorted term rewriting systems, it an be diÆult to �nd indutive onsequenes. E.g., x+ 0! x

is not an indutive onsequene if there is a onstant a sine a + 0 =

R

a is not valid. However, in pratie spei�-

ations are many-sorted and then indutive onsequenes must be valid only for all well-sorted ground substitutions.

Therefore, we want to point out that all results in this paper an also be extended to many-sorted term rewriting

systems in a straightforward way.
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that )

I

desribes a deterministi omputation proess.

13

E

lus

=)E

0

is a derivation step in the lazy

uni�ation alulus with simpli�ation if E )

I

E

lu

=)E

0

for some E.

The following lemma shows the soundness of one rewrite step with a simpli�ation rule. The

formulation of soundness di�ers from Lemma 3.7 sine we have to onsider the fat that goal

variables may be deleted by normalization.

Lemma 3.11 Let s � t be an equation, s !

I

s

0

be a rewrite step, and �

0

be a solution of

s

0

� t. Then any ground substitution � with Var(s � t) � Dom(�) and �(x) =

R

�

0

(x) for all

x 2 Var(s

0

� t) is a solution of s � t.

Proof: Let s !

I

s

0

and �

0

be a solution of s

0

� t, i.e., �(s

0

) =

R

�(t). We onsider a ground

substitution � with Var(s � t) � Dom(�) and �(x) =

R

�

0

(x) for all x 2 Var(s

0

� t). Obviously,

�(s) !

I

�(s

0

) using the same rewrite rule from I. Hene �(s) =

R

�(s

0

) sine I onsists of

indutive onsequenes of R and �(s) and �(s

0

) are ground terms. By �(s

0

) =

R

�(t), this implies

�(s) =

R

�(t), i.e., � is a solution of s � t.

Now we an state the soundness of the alulus

lus

=):

Theorem 3.12 Let E and E

0

be equation systems with E

lus

=)

�

E

0

where E

0

is in quasi-solved

form, and �

0

be a solution of E

0

. Then any ground substitution � with Var(E) � Dom(�) and

�(x) =

R

�

0

(x) for all x 2 Var(E

0

) is a solution of E.

Proof: By Lemma 3.11, we an show the soundness of)

I

with a simple indution on the sequene

of rewrite steps. Combining this result with Lemma 3.7 shows the soundness of one

lus

=) step. Then

the theorem follows by another simple indution on the number of

lus

=) steps.

For the ompleteness proof we have to show that solutions are not lost by the appliation of

simpli�ation rules:

Lemma 3.13 Let E be an equation system and � be a solution of E. If E )

I

E

0

, then � is a

solution of E

0

.

Proof: By de�nition of rewrite rules, Var(E

0

) � Var(E). Let s � t 2 E, �(s) =

R

�(t) and

s � t)

I

s

0

� t

0

. Hene s!

�

I

s

0

and t!

�

I

t

0

whih implies �(s)!

�

I

�(s

0

) and �(t)!

�

I

�(t

0

). Sine

� is a ground substitution with Var(E) � Dom(�) and I are indutive onsequenes, �(s) =

R

�(s

0

)

and �(t) =

R

�(t

0

). Hene �(s

0

) =

R

�(t

0

), i.e., � is a solution of all equations in E

0

.

The last lemma would imply the ompleteness of the alulus

lus

=) if a derivation step with )

I

does not inrease the ordering used in the proof of Theorem 3.9. Unfortunately, this is not the

ase in general sine the termination of !

R

and !

I

may be based on di�erent orderings (e.g.,

R = fa ! bg and I = fb ! ag). In order to avoid suh problems, we require that the relation

!

R[I

is terminating whih is not a real restrition in pratie.

13

If there exist more than one normal form w.r.t. !

I

, it is suÆient to selet don't are one of these normal forms.
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Theorem 3.14 Let I be a set of indutive onsequenes of the ground onuent and terminating

rewrite systemR suh that!

R[I

is terminating. Let E be a solvable equation system with solution

�. Then there exists a derivation E

lus

=)

�

E

0

suh that E

0

is in quasi-solved form and has a solution

�

0

with �

0

(x) =

R

�(x) for all x 2 Var(E).

Proof: In the proof of Theorem 3.9, we have shown how to apply a transformation step to an

equation system not in quasi-solved form suh that the solution is preserved. We an use the

same proof for the transformation

lus

=) sine Lemma 3.13 shows that normalization steps preserve

solutions. The only di�erene onerns the ordering where we use !

R[I

instead of !

R

, i.e., �� is

now de�ned to be the transitive losure of the relation!

R[I

[ �

sst

. Clearly, this does not hange

anything in the proof of Theorem 3.9. Moreover, the relation )

I

does not inrease the omplexity

w.r.t. this ordering but redues it if simpli�ation rules are applied sine!

I

is ontained in ��.

Theorems 3.12 and 3.14 show that we an integrate the deterministi simpli�ation proess into the

lazy uni�ation alulus without loosing soundness and ompleteness. Note that the rules from I

an only be applied if their left-hand sides an be mathed with a subterm of the urrent equation

system. If these subterms are not suÆiently instantiated, the rewrite rules are not appliable and

hene we loose potential determinism in the uni�ation proess.

Example 3.15 Consider the rules

zero(s(x)) ! zero(x)

zero(0) ! 0

(assume that these rules are ontained in R as well as in I) and the equation system zero(x) �

0; x � 0. Then there exists the following derivation in our alulus (this derivation is also possible

in the uni�ation aluli in [15, 34℄):

zero(x) � 0; x � 0

lus

=) x � s(x

1

); zero(x

1

) � 0; x � 0 (lazy narrowing with �rst rule)

lus

=) x � s(x

1

); x

1

� s(x

2

); zero(x

2

) � 0; x � 0 (lazy narrowing with �rst rule)

lus

=) x � s(x

1

); x

1

� s(x

2

); x

2

� s(x

3

); zero(x

3

) � 0; x � 0 (lazy narrowing with �rst rule)

lus

=) � � �

This in�nite derivation ould be avoided if we apply the partial binding rule in the �rst step:

zero(x) � 0; x � 0

lus

=) zero(0) � 0; x � 0 (partial binding)

)

I

0 � 0; x � 0 (rewriting with seond rule)

lus

=) x � 0 (deomposition)

In the next setion we will present an optimization whih prefers the latter derivation and avoids

the �rst in�nite derivation. 2

3.3 Construtor-based Systems

In most existing funtional logi programming languages, a distintion is made between operation

symbols to onstrut data terms, alled onstrutors, and operation symbols to operate on data

17



Deomposition of onstrutor equations

(t

1

; : : : ; t

n

) � (t

0

1

; : : : ; t

0

n

); E

lu

=) t

1

� t

0

1

; : : : ; t

n

� t

0

n

; E

if  2 C

Full binding of variables to ground onstrutor terms

x � t; E

lu

=) x � t; �(E)

if x 2 Var(E), t 2 T (C; ;) and � = fx 7! tg

Partial binding of variables to onstrutor terms

x � (t

1

; : : : ; t

n

); E

lu

=) x � (x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E)

if  2 C, x 2 Var((t

1

; : : : ; t

n

)) [ Var(E), x 62 var((t

1

; : : : ; t

n

)) and � = fx 7! (x

1

; : : : ; x

n

)g

(x

i

new variable)

Figure 3: Deterministi transformations for onstrutor-based rewrite systems

terms, alled de�ned funtions or operations (see, for instane, the funtional logi languages ALF

[19℄, BABEL [37℄, K-LEAF [17℄, SLOG [14℄, or the RAP system [16℄). Suh a distintion allows

to optimize our uni�ation alulus. Therefore, we assume in this setion that the signature F

is divided into two sets F = C [ D, alled onstrutors and de�ned funtions, with C \ D = ;.

A onstrutor term t is built from onstrutors and variables, i.e., t 2 T (C;X ). The distintion

between onstrutors and de�ned funtions omes with the restrition that for all rewrite rules

l ! r the outermost symbol of l is always a de�ned funtion.

14

A basi property of suh onstrutor-based term rewriting systems is the irreduibility of on-

strutor terms. Due to this fat, we an speialize the rules of our basi lazy uni�ation alulus.

Therefore, we de�ne the deterministi transformations in Figure 3. Deterministi transformations

are intended to be applied as long as possible before any transformation

lu

=) is used. Hene they

an be integrated into the deterministi normalization proess )

I

. It is obvious that this modi-

�ation preserves soundness and ompleteness. The deomposition transformation for onstrutor

equations must be applied in any ase in order to obtain a quasi-solved equation system sine a

lazy narrowing step R annot be applied to onstrutor equations. The full binding of variables

to ground onstrutor terms is an optimization whih ombines subsequent appliations of partial

binding transformations. This transformation dereases the omplexity used in the proof of The-

orem 3.14 sine a onstrutor term is always in normal form. The partial binding transformation for

onstrutor terms performs an eager (partial) binding of variables to onstrutor terms sine a lazy

narrowing step annot be applied to the onstrutor term. Moreover, this binding transformation

is ombined with an our hek sine it annot be applied if x 2 var((t

1

; : : : ; t

n

)) where var

14

In onstrutor-based systems, it is often required that all rules have the form f(t

1

; : : : ; t

n

)! r with f 2 D and

t

1

; : : : ; t

n

2 T (C;X ). However, this stronger requirement is not neessary for the results in this setion.

18



Clash of onstrutor equations

(t

1

; : : : ; t

n

) � d(t

0

1

; : : : ; t

0

m

); E

lu

=) fail

if ; d 2 C and  6= d

Our hek

x � (t

1

; : : : ; t

n

); E

lu

=) fail

if x 2 var((t

1

; : : : ; t

n

))

Figure 4: Failure rules for onstrutor-based rewrite systems

denotes the set of all variables ourring outside terms headed by de�ned funtion symbols:

var(x) = fxg

var((t

1

; : : : ; t

n

)) =

S

n

i=1

var(t

i

) if  2 C

var(f(t

1

; : : : ; t

n

)) = ; if f 2 D

This restrition avoids in�nite derivations of the following kind:

x � (x)

lu

=) x � (x

1

); x

1

� (x

1

) (partial binding)

lu

=) x � (x

1

); x

1

� (x

2

); x

2

� (x

2

) (partial binding)

lu

=) � � �

It is obvious that an equation of the form x � (t

1

; : : : ; t

n

) with x 2 var((t

1

; : : : ; t

n

)) is unsolvable.

A further optimization an be added if all funtions are reduible on ground onstrutor terms,

i.e., for all f 2 D and t

1

; : : : ; t

n

2 T (C; ;) there exists a term t with f(t

1

; : : : ; t

n

)!

R

t. In this ase

all ground terms have a ground onstrutor normal form and the partial binding transformation of

lu

=) an be ompletely omitted whih inreases the determinism in the lazy uni�ation alulus.

If we invert the deterministi transformation rules, we obtain a set of failure rules shown in

Figure 4. Failure rules are intended to be tried during the deterministi transformations. If a

failure rule is appliable, the derivation an be safely terminated sine the equation system annot

be transformed into a quasi-solved system.

3.4 Using Indutive Consequenes

In Setion 5 we will disuss the advantages of using program rules for simpli�ation between lazy

narrowing or uni�ation steps for various lasses of funtional logi programs. Therefore, we provide

in this setion only an example whih demonstrates the advantages of using indutive onsequenes

for simpli�ation in our lazy uni�ation alulus. Sine indutive onsequenes are only used for

simpli�ation, they do not inrease the searh spae. Formally, this is on�rmed by the fat that

lazy uni�ation derivations orrespond to rewrite derivations (Lemma 3.7) and the appliation of

indutive onsequenes redues the omplexity of goals (Theorem 3.14).
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Example 3.16 Consider the following rewrite rules for addition and multipliation on natural

numbers where C = f0; sg are onstrutors and D = f+; �g are de�ned funtions:

0 + y ! y (R

1

) 0 � y ! 0 (R

3

)

s(x) + y ! s(x+ y) (R

2

) s(x) � y ! y + x � y (R

4

)

If we use this onuent and terminating set of rewrite rules for lazy narrowing (R) as well as for

normalization (I) and add the indutive onsequene x � 0 ! 0 to I, then our lazy uni�ation

alulus with simpli�ation has a �nite searh spae for the equation x � y � s(0). This is due to

the fat that the following derivation an be terminated using the indutive onsequene and the

lash rule:

x � y = s(0)

lu

=) x � s(x

1

); y � y

1

; y

1

+ x

1

� y

1

� s(0) (lazy narrowing, R

4

)

lu

=) x � s(x

1

); y � y

1

; y

1

� 0; x

1

� y

1

� y

2

; y

2

� s(0) (lazy narrowing, R

1

)

lu

=) x � s(x

1

); y � 0; y

1

� 0; x

1

� 0 � y

2

; y

2

� s(0) (bind variable y

1

)

lu

=) x � s(x

1

); y � 0; y

1

� 0; x

1

� 0 � s(0); y

2

� s(0) (bind variable y

2

)

)

I

x � s(x

1

); y � 0; y

1

� 0; 0 � s(0); y

2

� s(0) (redue x

1

� 0)

lu

=) fail (lash between 0 and s)

The equation x

1

� 0 � s(0) ould not be transformed into the equation 0 � s(0) without the

indutive onsequene. Consequently, an in�nite derivation would our in our basi uni�ation

alulus of Setion 3.1.

Note that other lazy uni�ation aluli [15, 34℄ or lazy narrowing aluli [37, 41℄ have an in�nite

searh spae for this equation. It is also interesting to note that a normalizing innermost narrowing

strategy as in [14, 20℄ has also an in�nite searh spae even if the same simpli�ation rules are

available. This shows the advantage of ombining a lazy strategy with simpli�ation. 2

4 Rewrite Systems with Nonterminating Rules

In this setion we onsider rewrite systems whih are not neessarily terminating. Similarly to lazy

evaluation in funtional languages, lazy narrowing has at least two advantages in omparison to

other (eager) narrowing strategies:

1. Sine lazy narrowing applies narrowing steps at inner positions only if it is demanded by some

rule, useless narrowing steps (steps at inner positions whih do not ontribute to the result)

are avoided.

15

2. Sine lazy narrowing evaluates funtions only if their results are demanded, it an deal with

nonterminating funtions and in�nite data strutures. Other narrowing strategies (like basi,

innermost, or outermost narrowing) require a terminating set of rewrite rules and annot deal

with in�nite data strutures.

The next example should emphasize the latter point.

15

To be preise, the avoidane of useless narrowing steps depends on the lazy narrowing strategy. Although this

is one of the motivations of all lazy strategies, the only strategy for whih this property has been formally proved is

needed narrowing [2℄.
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Example 4.1 The following rules de�ne a funtion from(n), whih omputes an in�nite list of

naturals starting from n, and a funtion first(n; l), whih omputes the �rst n elements of the list

l ([℄ denotes the empty list and [ejl℄ denotes a nonempty list with �rst element e and tail l):

from(n) ! [njfrom(s(n))℄

first(0; l) ! [℄

first(s(n); [ejl℄) ! [ejfirst(n; l)℄

The �rst rule of this rewrite system is nonterminating. Lazy evaluation of the expression

first(s(s(0)); from(0)) yields the result [0; s(0)℄, whereas an eager evaluation does not termin-

ate due to the nonterminating eager evaluation of from(0). Similarly, lazy narrowing applied to

the equation first(x; from(y)) � [0; s(0)℄ omputes the solution fx 7! s(s(0)); y 7! 0g, whereas an

eager narrowing strategy runs into an in�nite loop. 2

Sine narrowing applies rules only in one diretion from left to right, the onuene of the rewrite

relation is an essential requirement for the ompleteness of all narrowing strategies. However,

onuene is an undeidable property of a rewrite system if it is not terminating. Therefore,

funtional logi languages with nonterminating rewrite systems have the following requirements on

rewrite rules:

1. Construtor-based: The signature F is divided into two disjoint sets C and D, alled on-

strutors and de�ned funtions. Moreover, if l ! r is a rewrite rule, then l has the form

f(t

1

; : : : ; t

n

) with f 2 D and t

1

; : : : ; t

n

2 T (C;X ).

2. Left-linearity: All rules are left-linear, i.e., no variable appears more than one in the left-hand

side of any rule.

3. Nonambiguity: If l

1

! r

1

and l

2

! r

2

are two di�erent rules, then l

1

and l

2

are not uni�able

(strong nonambiguity), or if l

1

and l

2

have a most general uni�er �, then �(r

1

) and �(r

2

) are

idential (weak nonambiguity).

Rewrite systems with these properties are alled onstrutor-based (weakly) orthogonal systems.

These onditions ensure the uniqueness of normal forms if they exist. Due to the presene of

nonterminating funtions, the ompleteness results for lazy strategies are stated with respet to

domain-based interpretations of rewrite rules [17, 37℄. In partiular, the equality of two expressions

holds only if both sides are reduible to the same ground onstrutor term. The ompleteness of

lazy narrowing w.r.t. this semantis is formally stated in [37℄. We will show that deterministi

simpli�ation steps an be inluded in lazy narrowing derivations without destroying ompleteness

for suh rewrite systems, i.e., we assume that R is a onstrutor-based weakly orthogonal term

rewriting system.

Loogen and Winkler [32℄ have shown how to inrease deterministi omputations in the im-

plementation of suh programs: if no goal variable has been bound in a narrowing step, then all

attempts to apply alternative rules at the same position an be ignored due to the nonambiguity

of the rules. In this ase a \ut" an be exeuted to eliminate the hoie point for alternative rules.

Sine the exeution of this \ut" depends on the run-time behavior of the program (whether or not

a goal variable has been bound during uni�ation), it is alled dynami ut in [32℄. The dynami
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ut an be implemented by a speial POP instrution whih heks whether a goal variable has been

bound during uni�ation and, if this did not happen, removes the last hoie point. The advantage

of this method is its simple implementation, but it has also two disadvantages:

1. The dynami ut removes hoie points whih have been reated but are not needed in the

further omputation proess. Hene it does not avoid the reation of hoie points (one of the

most expensive operations in the implementation of logi languages): if a hoie point is not

needed in a deterministi omputation, it is reated and then deleted after the uni�ation of

the rule's left-hand side.

2. The detetion of deterministi omputations depends on the order of the rules. If a rule whih

enables a deterministi omputation step is not at the beginning, nondeterministi steps may

be performed even if a deterministi step is possible.

The following example disusses the seond disadvantage in more detail.

Example 4.2 Consider the rules of Example 1.2 and the goal equation 0 � one(x) � 0. Using the

dynami ut tehnique, �rst a hoie point for the rules R

3

and R

4

is reated, rule R

3

is applied

to narrow the left-hand side yielding the trivial equation 0 � 0, and then the hoie point is

removed sine no goal variable (x) has been bound in the narrowing step (dynami ut). Hene the

attempt to apply rule R

4

is avoided by the dynami ut. However, if we try to solve the equation

one(x) � 0 � 0, the dynami ut has no e�et. As before, �rst a hoie point for the rules R

3

and

R

4

is reated, then an attempt to apply rule R

3

is made.

16

Sine it is neessary to evaluate the �rst

argument in order to deide the appliability of this rule, one(x) is a lazy narrowing redex whih

is evaluated by applying rules R

5

or R

6

(this evaluation has an in�nite searh spae and does not

terminate in a sequential implementation, f. Example 1.2). In any ase the goal variable x will be

bound and therefore the dynami ut has no e�et. 2

Although the dynami ut has some disadvantages sine it is applied after a narrowing attempt,

the nonambiguity of the rules is the key to exploit deterministi omputations in funtional logi

programs. In the following we will show that we an apply deterministi rewrite steps before a

narrowing step. This tehnique avoids the reation of superuous hoie points and is independent

on the order of rules (if we use all rules also for rewrite steps).

The next lemma is due to Loogen and Winkler [32℄ and shows that it is not neessary to onsider

alternative rules for narrowing if one rule is appliable without binding goal variables. This is a

onsequene of the nonambiguity ondition on rewrite rules.

Lemma 4.3 Let R

1

= l

1

! r

1

and R

2

= l

2

! r

2

be two di�erent program rules and t be a term

whih has no variables in ommon with R

1

and R

2

. If �(l

1

) = t, i.e., t is narrowable by rule R

1

without instantiating any goal variable, then rule R

2

need not be onsidered, beause either R

2

is

not appliable or the result of applying R

2

yields an instane of the appliation of R

1

.

This means that lazy narrowing is omplete in the sense of [37℄ even if the lazy narrowing derivation

starting with an appliation of rule R

2

to t is ignored. Hene we ould try to math the left-hand

16

Note that we onsider a sequential implementation where the rules are applied in the given textual order.

22



side of some rule with the urrent goal before applying a narrowing step. If this is possible, we

an perform the orresponding rewrite step and, by the previous lemma, ignore all other rules, i.e.,

we perform a deterministi omputation step. Although this solves the problems exempli�ed in

Example 4.2, it is not suÆient to exploit many possible deterministi omputations. In general,

rewrite steps must also be performed at inner positions in order to enable rewrite steps at outer

positions. For instane, onsider the rules of Examples 1.1 and 1.2 and the goal equation (0+0)�z �

0. A rewrite step by applying rules R

3

or R

4

to the left-hand side of the equation is not possible.

Hene we try to perform a narrowing step, i.e., generate a hoie point for the rules R

3

or R

4

, and

so on. However, if we apply a rewrite step to the subterm (0+0) before the narrowing attempt, the

equation is simpli�ed to 0 � z � 0 using rule R

1

, and we ould further simplify the equation to the

trivial one 0 � 0 using rule R

3

. Therefore, we ould solve the equation without any nondeterministi

narrowing step. The following lemma shows that deterministi rewrite steps at inner positions does

not inuene the appliability of narrowing steps at outer positions.

Lemma 4.4 Let t; t

0

be terms suh that t!

R

t

0

is a rewrite step at position p. Then all narrowing

rules whih are appliable to t at a position p

0

, where p

0

6= p is a position not below p, are also

appliable to t

0

with the same substitution of variables ourring in t.

Proof: This lemma is a onsequene of the requirement for onstrutor-based rules: the subterm

tj

p

must have a de�ned funtion symbol at the top sine t!

R

t

0

is a rewrite step at position p. If a

narrowing rule is appliable to t at position p

0

, i.e., there is a rule l ! r and a mgu � of tj

p

0

and l,

and p

0

is a position above p (the ase of independent positions is trivial sine variables in t are not

instantiated by the rewrite step), then there must be a variable position p

00

in l (i.e., lj

p

00

2 X ) suh

that �(l)j

p

00

ontains the subterm tj

p

(sine all proper subterms of l ontain only onstrutors and

variables). But then there is also a uni�er �

0

of t

0

j

p

0

and l whih an be obtained by modifying �

for the variable lj

p

00

(note that l has no multiple ourrenes of variables, hene �

0

jVar(t)

= �

jVar(t)

).

Hene we an apply rule l ! r to t

0

at position p

0

.

The following theorem justi�es deterministi rewrite steps at arbitrary lazy narrowing positions

(see [37℄ for a detailed de�nition of lazy narrowing positions).

Theorem 4.5 Let t; t

0

be terms suh that t !

R

t

0

is a rewrite step at lazy narrowing position p.

Then lazy narrowing is omplete even if we ignore all alternative narrowing rules appliable to t.

Proof: Let t;

[p

0

;R;�℄

t

00

be an alternative lazy narrowing step. We show that we do not loose any

solutions by ignoring this step and ontinuing with t

0

instead of t

00

.

p

0

= p: By Lemma 4.3 applied to position p, t

00

is an instane of t

0

. Hene all solutions omputed by

narrowing derivations starting from t

00

are also omputed by narrowing derivations starting

from t

0

.

p

0

is a position below p: Sine p

0

is a lazy narrowing position, the narrowing step at p

0

is demanded

by some rule whih may be appliable at position p at some later point. However, similarly

to the previous ase, this alternative step at position p an be ignored without destroying

ompleteness. Consequently, this narrowing step at position p

0

an also be ignored.
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p

0

is a position not below p and p

0

6= p: By Lemma 4.4, this alternative narrowing step is also ap-

pliable to t

0

with the same substitution of variables ourring in t. Hene we an ignore this

step without destroying ompleteness.

As a onsequene of this theorem, we an deterministially apply rewrite rules at any lazy narrowing

position before a narrowing step. A simple indution shows that we an also deterministially apply

a �nite sequene of rewrite steps at lazy narrowing positions. I.e., we an ombine lazy narrowing

with lazy simpli�ation (where lazy simpli�ation positions are de�ned similarly to lazy narrowing

positions [37℄) without destroying ompleteness. However, this is only true for �nite sequenes

of simpli�ation steps (due to the proof by indution). Nevertheless, an in�nite loop aused by

simpli�ation ours in lazy narrowing derivations without simpli�ation, too, sine rewrite steps

are also partiular narrowing steps. The only di�erene is that the order of rule appliations in

simpli�ation steps may be di�erent from the order of rule appliations in narrowing steps. Hene

it may be the ase that the simpli�ation proess runs into an in�nite loop, whereas lazy narrowing

without simpli�ation �rst omputes an answer and then runs into an in�nite loop.

Example 4.6 Consider the rules of Example 1.2 and the following rule de�ning a nonterminating

funtion:

inf ! inf

If the goal equation x � inf � 0 should be solved, a lazy simpli�ation strategy tries to evaluate

the subterm inf to the onstrutor 0 in order to apply rule R

4

to the left-hand side of the equation

(i.e., the seond argument of � is a lazy narrowing position). Sine the evaluation of inf loops,

the simpli�ation proess does not terminate and no solution is omputed. On the other hand,

lazy narrowing without simpli�ation narrows the left-hand side of the equation by applying rule

R

3

. This binds goal variable x to 0 and yields the trivial equation 0 � 0. However, after the

omputation of this solution an attempt to apply the alternative rule R

4

to the left-hand side is

made whih yields the same in�nite loop as in the simpli�ation proess. 2

Note that this di�erent behavior is due to a partiular sequential implementation of the strategy.

In an implementation whih ollets all answers until the entire searh spae has been examined,

we obtain no answer in both ases due to the in�nite searh spae.

In order to ensure the termination of the simpli�ation proess even if we blindly apply all

possible lazy simpli�ation steps, we inlude only a terminating subset of the program rules for

simpli�ation. Sine lazy narrowing is already omplete without simpli�ation, it is not neessary

to perform rewrite steps with all possible program rules, but we an arbitrarily restrit the set

of rules used for rewrite steps. In the light of the previous example, it is a reasonable deision to

inlude a rule set with a terminating rewrite relation for simpli�ation. This ensures the termination

of the simpli�ation proess. The seletion of this subset of rewrite rules ould be done by the

programmer or by the system (e.g., inlude only those rewrite rules for whih a termination proof

an be onstruted). We have made the experiene that, for most pratial examples, termination

proofs an be automatially onstruted using syntati termination orderings from term rewriting

[7℄. This is the ase for all rules presented so far (of ourse, exept for the first-rule of Example 4.1

and the inf-rule of Example 4.6). An example where a terminating subset of all program rules is

used for simpli�ation will be given in Setion 5.3.
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5 Appliation to Funtional Logi Programs

In this setion we disuss the usefulness of integrating simpli�ation into lazy narrowing derivations

with respet to di�erent lasses of funtional logi programs. In general, we onsider onstrutor-

based onuent rewrite systems. However, there are various sublasses of suh rewrite systems with

di�erent impliations on the usefulness of integrating simpli�ation. We will disuss the following

three sublasses in more detail: indutively sequential systems [1℄ where the rules for eah funtion

an be organized in a hierarhial struture, orthogonal systems satisfying the strong nonambiguity

ondition (no overlapping in the left-hand sides of the rules), and weakly orthogonal systems with

overlapping left-hand sides.

5.1 Indutively Sequential Programs

In many funtional as well as funtional logi programs, funtions are de�ned by a ase distintion on

the di�erent onstrutors ourring in the data type of the arguments. For instane, the de�nition

of the addition funtion on natural numbers (f. Example 1.1) is based on a ase distintion for the

�rst argument with respet to the onstrutors 0 and s. As another example onsider the following

rules de�ning a less-or-equal funtion on naturals:

0 � x ! true (R

1

)

s(x) � 0 ! false (R

2

)

s(x) � s(y) ! x � y (R

3

)

Here is the main ase distintion on the onstrutors of the �rst argument: if this argument is

0, then only rule R

1

is appliable. If this argument has the onstrutor s at the top, then a

further ase distintion on the seond argument is neessary to distinguish between rules R

2

and

R

3

. Altogether, the rules an be organized in a hierarhial struture representing the various

ase distintions. Suh hierarhial strutures have been introdued by Antoy [1℄ under the name

de�nitional trees. A program for whih the rules of eah funtion symbol an be organized in a

de�nitional tree is alled indutively sequential. Antoy, Ehahed and Hanus [2℄ have de�ned for

indutively sequential programs a narrowing strategy, alled needed narrowing, whih is optimal in

the following sense: (1) it redues only needed subterms in a narrowing step, i.e., subterms whih

must be redued in any possible suessful narrowing derivation, (2) it omputes the shortest

narrowing derivations if ommon subterms are shared, and (3) the solutions omputed by two

di�erent narrowing derivations are independent. The needed narrowing steps are omputed using

the struture of de�nitional trees. Thus it an be eÆiently implemented by pattern mathing, and

the strategy has an outermost (lazy) behavior.

Due to the optimality of needed narrowing the natural question arises whether the inlusion

of simpli�ation has an e�et for this lass of programs. To answer this question, we reall the

appliability onditions for a rewrite step. A funtional expression an be redued by a rewrite

step if the arguments of the funtion all are suÆiently instantiated suh that the left-hand side

of some rule an be mathed with the urrent all. Sine the program is indutively sequential,

there is always at most one rule mathing the urrent all and this rule will be seleted in the

next narrowing step without instantiating any goal variables (see [2℄ for a detailed desription of

the strategy). Therefore, a possible lazy redution step is also omputed by the needed narrowing
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strategy as a narrowing step, i.e., the inlusion of simpli�ation steps has no e�et. This is formally

justi�ed by the following proposition.

Proposition 5.1 Let R be a set of indutively sequential rules. Then the integration of simpli�-

ation does not shorten any needed narrowing derivation.

Proof: By de�nition, rewrite steps are also partiular narrowing steps. Thus any narrowing de-

rivation with intermediate simpli�ation steps is also a pure narrowing derivation. Sine needed

narrowing omputes the shortest narrowing derivations [2℄, simpli�ation annot shorten any needed

narrowing derivation.

Hene it is unneessary to integrate simpli�ation with program rules in narrowing derivations for

the lass of indutively sequential programs. Therefore, narrowing derivations an be optimized

for suh programs only if indutive onsequenes are added as simpli�ation rules. Atually, Ex-

ample 3.16 is an indutively sequential program and we have shown that simpli�ation with the

additional indutive onsequene x � 0! 0 an redue the searh spae.

5.2 Orthogonal Programs

The main example where we have demonstrated the improvements of simpli�ation with respet

to lazy narrowing (Example 1.2) has the property that two rules have overlapping left-hand sides.

In the following we will show that the inlusion of simpli�ation is useful even if there are no

overlapping rules.

Example 5.2 Consider the following rewrite rules:

f(0; s(x); y) ! 0 (R

1

)

f(s(x); y; 0) ! 0 (R

2

)

f(y; 0; s(x)) ! 0 (R

3

)

one(0) ! s(0) (R

4

)

one(s(x)) ! one(x) (R

5

)

This is an orthogonal term rewriting system sine all rules are left-linear and do not overlap in

the left-hand sides. However, it is not indutively sequential sine there is no argument whih

represents a ase distintion on the onstrutors 0 and s. In fat, simpli�ation has an e�et if we

onsider the goal equation f(one(z); 0; s(0)) � 0. Naive lazy narrowing �rst tries to apply rule R

1

to the left-hand side of this equation. Sine the �rst argument of the rule's left-hand side is 0, the

evaluation of the atual argument one(z) is required in order to deide the uni�ability of the �rst

argument.

17

Similarly to Example 1.2, the evaluation of one(z) has an in�nite searh spae and a

sequential implementation does not ompute any result sine all evaluations of one(z) yields s(0)

as the result whih is not uni�able with the demanded value 0. However, if we simplify the goal

equation before the attempt to apply a narrowing step, we use rule R

3

for a rewrite step whih

yields the trivial equation 0 � 0. Hene the in�nite searh spae is avoided. 2

17

We assume that arguments are uni�ed from left to right, otherwise a similar example an be onstruted.
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5.3 Weakly Orthogonal Programs

In Setions 5.1 and 5.2 we have shown that the boundary of the usefulness of simpli�ation in

lazy narrowing derivations is between indutively sequential and orthogonal systems. If we do not

inlude indutive onsequenes for simpli�ation, we onjeture that, for pratial appliations, the

most interesting lass, where simpli�ation is useful, is the lass of weakly orthogonal programs

whih have rules with overlapping left-hand sides. Example 1.2 ontains suh a simple program,

but the reursively de�ned onstant funtion one may not onvine the reader. Therefore, we will

demonstrate the positive e�ets of simpli�ation by a more natural example.

Example 5.3 Consider the following rules de�ning the Boolean operator _ and the prediate even

on natural numbers:

true _ b ! true (R

1

) even(0) ! true (R

4

)

b _ true ! true (R

2

) even(s(0)) ! false (R

5

)

false _ false ! false (R

3

) even(s(s(x))) ! even(x) (R

6

)

This rewrite system is weakly orthogonal sine rules R

1

and R

2

overlap. Now onsider the goal

equation even(z) _ true � true (note that this goal equation ould also be the result of the more

general equation even(z) _ b � true where the Boolean variable b has been bound to true in the

preeding omputation). Naive lazy narrowing without simpli�ation tries to apply a narrowing step

with rule R

1

. Sine the value of the �rst _-argument is demanded by this rule, the subterm even(z)

is evaluated to a onstrutor-headed term by narrowing. There are in�nitely many possibilities to do

this, in partiular, the onstrutor true is derived by instantiating variable z with the values s

2�i

(0),

i � 0. Therefore, lazy narrowing without simpli�ation has an in�nite searh spae and omputes

the additional speialized solutions fz 7! s

2�i

(0)g. Moreover, in a sequential implementation of lazy

narrowing by baktraking [18℄, only the in�nite set of speialized solutions would be omputed

without ever trying the seond _-rule. On the other hand, if the equation is �rst simpli�ed by

applying rule R

2

to the left-hand side, we immediately obtain the trivial equation true � true and

avoid the in�nite searh spae. 2

We have mentioned that our method is omplete even in the presene of nonterminating funtions

if a terminating subset of the program rules is used for simpli�ation. This is demonstrated by a

modi�ation of the previous example.

Example 5.4 Consider the rules for _ of Example 5.3 (R

1

; R

2

; R

3

) and the following new rules

for not, even and odd:

not(true) ! false (R

4

) even(x) ! not(odd(x)) (R

6

)

not(false) ! true (R

5

) odd(x) ! not(even(x)) (R

7

)

Although even and odd are nonterminating funtions, it is an admissible program. We use the

terminating subset of the rules fR

1

; R

2

; R

3

; R

4

; R

5

g for simpli�ation.

18

Consider the goal equation

even(z) _ not(false) � true. Lazy narrowing without simpli�ation tries to ompute the head

normal form of the subterm even(z) sine its value is demanded by rule R

1

. Sine this omputation

is nonterminating, naive lazy narrowing has an in�nite searh spae. The same holds for lazy

18

Note that the termination property of this subset an be automatially heked.
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narrowing with the dynami ut operator [32℄. However, lazy narrowing with simpli�ation tries

to apply rewrite steps �rst. No simpli�ation rule is appliable to the entire left-hand side of the

goal equation sine the arguments are not in head normal form. Due to the lazy simpli�ation

strategy, we try to evaluate the arguments by simpli�ation steps. The subterm even(z) annot

be further simpli�ed sine rule R

6

is not inluded in the set of simpli�ation rules. The seond

argument not(false) an be simpli�ed to true by R

5

whih auses the simpli�ation of the omplete

left-hand side to true by R

2

. Hene we obtain the trivial equation true � true and the in�nite

searh spae is avoided. 2

5.4 A Benhmark

In order to test our new exeution strategy on larger programs, we have implemented an interpreter

for lazy narrowing with simpli�ation in Prolog [23℄. An interesting lass of programs, where

simpli�ation has a relevant e�et on the searh spae, are \generate-and-test" programs. A typial

example for suh programs is the \permutation sort" program, where a list is sorted by enumerating

all permutations and heking whether they are sorted. In the Prolog version of this program ([44℄,

p. 55), all permutations are enumerated and heked. However, if we exeute the same program

by lazy narrowing with simpli�ation (in this ase prediates are onsidered as Boolean funtions,

see [14℄, p. 182), then the simpli�ation proess uts some parts of the searh spae so that not all

permutations are ompletely enumerated. Therefore, we obtain the following exeution times in

seonds (Sistus-Prolog 2.1 on a Spar10) to sort the list [n,...,2,1℄ for di�erent values of n:

Length n Prolog Lazy Lazy+Simp

4 0.01 0.02 0.04

5 0.01 0.1 0.1

6 0.05 0.8 0.2

7 0.3 5.4 0.5

8 2.6 45.9 1.1

9 23.6 420.1 2.5

10 240.9 4389.2 5.5

The olumn \Lazy+Simp" ontains the exeution times for lazy narrowing with simpli�ation, the

olumn \Lazy" the times for pure lazy narrowing without simpli�ation, and the olumn \Prolog"

the times for the diret implementation of permutation sort in Prolog. The searh spaes of \Prolog"

and \Lazy" are essentially the same. The slow timings of \Lazy" is due to the overhead of the lazy

narrowing interpreter (whih is also written in Prolog). However, the last olumn shows that this

overhead an be ompensated by the searh spae redution due to the simpli�ation proess.

6 Conlusions and Related Work

In this paper we have shown how to improve the exeution mehanism of funtional logi lan-

guages, where we have onsidered the most important lasses of programs: ground onuent and

terminating rewrite systems, and weakly orthogonal and possibly nonterminating rewrite systems.

The basi idea of our improvement is the integration of a deterministi simpli�ation proess into
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lazy narrowing derivations. This an be done in a simple way by using the program rules (or a

terminating subset of the program rules in the presene of nonterminating rules) as simpli�ation

rules. The simpli�ation strategy must be idential to the narrowing strategy in order to avoid

additional omputation steps aused by the simpli�ation proess. For partiular and pratially

relevant lasses of funtional logi programs (orthogonal and weakly orthogonal programs) this has

the positive e�et that the searh spae is redued without destroying ompleteness. Although

we have emphasized the e�et of simpli�ation to the searh spae, the inlusion of simpli�ation

an also have an e�et on the run time even if the searh spae is not redued. For instane, if

all program rules are used for simpli�ation, ground goals are evaluated by simpli�ation without

generating any hoie point, whereas a lazy narrowing implementation would generate (and after-

wards delete) hoie points. Hene lazy narrowing with simpli�ation ombines the features from

funtional and logi programming also from an implementation point of view.

We have mentioned in the introdution and in Setion 2 that the idea of exploiting deterministi

omputations by inluding simpli�ation in funtional logi languages has been proposed mainly

for eager narrowing strategies like basi [38, 42℄, innermost [14℄ or innermost basi narrowing [25℄.

Ehahed [12℄ has shown how to integrate normalization (with indutive onsequenes) in any nar-

rowing strategy, but he requires strong restritions on the set of rules (termination and uniformity,

whih is stronger than indutive sequentiality). As far as we know, the present paper is the �rst

attempt to inlude simpli�ation into narrowing derivations even in the presene of nonterminating

funtions.

19

The only related work for this lass of programs is the paper of Loogen and Winkler

[32℄ whih proposes the dynami ut to detet deterministi narrowing steps after the uni�ation

phase. As disussed in Setion 4, this does not avoid the generation of hoie points, and the ut of

in�nite derivation paths depends on the order of rules. The basi di�erene of our method is that

we hek the appliability of a deterministi omputation step before we apply a nondeterministi

step. Hene we prefer deterministi omputations to nondeterministi omputations. This quali�es

our exeution method as the operational priniple of eÆient funtional logi languages.

Loogen et al. [31℄ have proposed to improve lazy narrowing strategies by reordering the uni�a-

tion steps in rule appliations. For this purpose they use a version of de�nitional trees [1℄ extended

to weakly orthogonal rewrite systems. In order to handle overlapping left-hand sides, they intro-

due nondeterministi hoie nodes in de�nitional trees. However, these hoie nodes have the

e�et that possible deterministi omputations are not deteted. For instane, the in�nite searh

spaes of naive lazy narrowing in Examples 1.2, 5.2 and 5.3 would also our with respet to their

improved strategy.

Another alternative to improve lazy narrowing has been proposed by Moreno-Navarro et al.

[36℄. They use information about demanded arguments to avoid reevaluations of expressions during

uni�ation with di�erent rules. Sine they do not hange the order of argument evaluations and

rules, the in�nite searh spaes avoided by simpli�ation still our in their approah.

The integration of simpli�ation into lazy narrowing derivations requires new implementation

tehniques for funtional logi languages. Current eÆient implementations of lazy narrowing are

mainly based on extensions of redution mahines used for the implementation of funtional lan-

19

The ombination of lazy narrowing with deterministi redution steps has been also onsidered by Josephson and

Dershowitz [27℄. However, they provide no ompleteness proof but refer to [10℄ where only the ompleteness of naive

narrowing without simpli�ation and without a partiular lazy strategy is proved for terminating onditional rules.
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guages [5, 18, 30, 35℄. The inlusion of simpli�ation requires the implementation of an intermediate

redution proess. This ould be done by tehniques proposed for the eÆient implementation of

normalizing narrowing [19, 20℄ or by the implementation of demons waiting for the suÆient in-

stantiation of funtion arguments [27℄.
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