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Abstra
t. Fun
tional logi
 languages amalgamate fun
tional and logi


programming paradigms. They 
an be eÆ
iently implemented by extend-

ing te
hniques known from logi
 programming. In this paper we show

how global information about the 
all modes of fun
tions 
an be used to

optimize the 
ompilation of fun
tional logi
 programs. Sin
e mode infor-

mation has been su

essfully used to improve the implementation of pure

logi
 programs and these te
hniques 
an be applied to implementations of

fun
tional logi
 programs as well, we 
on
entrate on optimizations whi
h

are unique to the operational semanti
s of fun
tional logi
 programs. We

de�ne a suitable notion of modes for fun
tional logi
 programs and present


ompile-time te
hniques to optimize the normalization pro
ess during the

exe
ution of fun
tional logi
 programs.

1 Introdu
tion

In re
ent years, a lot of proposals have been made to amalgamate fun
tional and

logi
 programming languages [7, 17℄. Fun
tional logi
 languages with a sound and


omplete operational semanti
s are based on narrowing (e.g., [10, 12, 26, 28℄),

a 
ombination of the redu
tion prin
iple of fun
tional languages and the resolu-

tion prin
iple of logi
 languages. Narrowing, originally introdu
ed in automated

theorem proving [29℄, is used to solve equations by �nding appropriate values for

variables o

urring in arguments of fun
tions. This is done by unifying (rather

than mat
hing) an input term with the left-hand side of some rule and then

repla
ing the instantiated input term by the instantiated right-hand side of the

rule.

Example 1. Consider the following rules de�ning the addition of two natural num-

bers whi
h are represented by terms built from 0 and s:

0 + N ! N (R

1

)

s(M) + N ! s(M + N) (R

2

)

The equation X+s(0)=s(s(0)) 
an be solved by a narrowing step with rule R

2

followed by a narrowing step with rule R

1

so that X is instantiated to s(0) and

the instantiated equation is redu
ed to s(s(0))=s(s(0)) whi
h is trivially true.

Hen
e we have found the solution X 7!s(0) to the given equation. 2

?
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In order to ensure 
ompleteness in general, ea
h rule must be uni�ed with ea
h

non-variable subterm of the given equation whi
h yields a huge sear
h spa
e.

This situation 
an be improved by parti
ular narrowing strategies whi
h restri
t

the possible positions for the appli
ation of the next narrowing step (see [17℄ for

a detailed survey). In this paper we are interested in an innermost narrowing

strategy where a narrowing step is performed at the leftmost innermost position.

This 
orresponds to eager evaluation in fun
tional languages.

However, the restri
tion to parti
ular narrowing positions is not suÆ
ient to

avoid a lot of useless derivations sin
e the un
ontrolled instantiation of variables

may 
ause in�nite loops. For instan
e, 
onsider the rules in Example 1 and the

equation (X+Y)+Z=0. Applying innermost narrowing to this equation using rule

R

2

produ
es the following in�nite derivation (the instantiation of variables o
-


urring in the equation is re
orded at the derivation arrow):

(X+Y)+Z = 0 ;

fX 7!s(X1)g

s(X1+Y)+Z = 0

;

fX1 7!s(X2)g

s(s(X2+Y))+Z = 0

;

fX2 7!s(X3)g

� � �

To avoid su
h useless derivations, narrowing 
an be 
ombined with simpli�
ation

(evaluation of a term): Before a narrowing step is applied, the equation is rewrit-

ten to normal form w.r.t. the given rules [9, 10℄ (thus this strategy is also 
alled

normalizing narrowing). The in�nite narrowing derivation above is avoided by

rewriting the �rst derived equation to normal form:

s(X1+Y)+Z = 0 ! s((X1+Y)+Z) = 0

The last equation 
an never be satis�ed sin
e the terms s((X1+Y)+Z) and 0 are

always di�erent due to the absen
e of rules for the symbols s and 0. Hen
e we


an safely terminate the unsu

essful narrowing derivation at this point. The

integration of rewriting into narrowing derivations has the following advantages:

1. The sear
h spa
e is redu
ed sin
e useless narrowing derivations 
an be de-

te
ted. As a 
onsequen
e, fun
tional logi
 programs are more eÆ
iently exe-


utable than equivalent Prolog programs [10, 13, 14℄.

2

2. There is a preferen
e for deterministi
 
omputations. Sin
e we assume a 
on-


uent and terminating set of rules, normal forms are unique and 
an be


omputed by any simpli�
ation strategy. Hen
e normalization 
an be deter-

ministi
ally implemented. Sin
e rewriting is exe
uted before ea
h nondeter-

ministi
 narrowing step, the goal is 
omputed in a deterministi
 way as long

as possible. The preferen
e of deterministi
 
omputations 
an save a lot of

time and spa
e as shown in [13℄.

Therefore we 
onsider in this paper a normalizing innermost narrowing strategy

where the 
omputation of the normal form between narrowing steps is performed

by applying rewrite rules from innermost to outermost positions, i.e., a rewrite

rule is applied to a term only if ea
h of its subterms is in normal form. Su
h an

operational semanti
s 
an be eÆ
iently implemented by extending 
ompilation

te
hniques known from logi
 programming [12, 13℄.

2

It is easy to see that the Prolog program 
orresponding to the above example would

run into an in�nite loop.

2



The integration of normalization into narrowing derivations has also one dis-

advantage. Sin
e the entire goal must be redu
ed to normal form after ea
h nar-

rowing step, the normalization pro
ess may be 
ostly. Fortunately, it is possible

to normalize the terms in an in
remental manner [15℄ sin
e normalization steps

after a narrowing step 
an only be performed at positions where some variables

have been instantiated. However, better optimizations 
ould be performed if the

evaluation modes for fun
tions are known at 
ompile time. In this paper we de�ne

the notion of evaluation modes, whi
h is di�erent from logi
 programs [35℄, and

show possible 
ompile-time optimizations using these modes. We are not inter-

ested in low-level 
ode optimizations to improve primitive uni�
ation instru
tions

sin
e su
h te
hniques, whi
h have been developed for pure logi
 programs (e.g.,

[24, 25, 31, 32, 33, 34, 35℄), 
an be applied to fun
tional logi
 programs as well

due to the similarities between WAM-based Prolog implementations and imple-

mentations of fun
tional logi
 languages [12, 13, 23℄. We limit our dis
ussion to

optimizations whi
h are unique to fun
tional logi
 programs based on an eager

evaluation strategy like ALF [12, 13℄, LPG [1℄, or SLOG [10℄. The automati


derivation of mode information for fun
tional logi
 programs is a di�erent topi


whi
h will be addressed in a forth
oming paper [18℄.

After a pre
ise de�nition of the operational semanti
s in Se
tion 2, we de�ne

the notion of modes for fun
tional logi
 programs in Se
tion 3. Se
tion 4 dis
usses

the optimization te
hniques using parti
ular mode information. Experimental

results for these optimization te
hniques are presented in Se
tion 5, and some

pe
uliarities of the automati
 mode derivation for fun
tional logi
 programs are

dis
ussed in Se
tion 6.

2 Normalizing narrowing

To de�ne the operational semanti
s 
onsidered in this paper in a pre
ise way, we

re
all basi
 notions of term rewriting [8℄.

A signature is a set F of fun
tion symbols. Every f 2 F is asso
iated with an

arity n, denoted f=n. Let X be a 
ountably in�nite set of variables. Then the set

T (F ;X ) of terms built from F and X is the smallest set 
ontaining X su
h that

f(t

1

; : : : ; t

n

) 2 T (F ;X ) whenever f 2 F has arity n and t

1

; : : : ; t

n

2 T (F ;X ).

We write f instead of f() whenever f has arity 0. We denote by T (F ;X )

n

the

set fht

1

; : : : ; t

n

i j t

i

2 T (F ;X ); i = 1; : : : ; ng of n-tuples of terms (n � 0). The

set of variables o

urring in a term t is denoted by Var(t). A term t is 
alled

ground if Var(t) = ?.

Usually, fun
tional logi
 programs are 
onstru
tor-based, i.e., a distin
tion is

made between operation symbols to 
onstru
t data terms, 
alled 
onstru
tors,

and operation symbols to operate on data terms, 
alled de�ned fun
tions or op-

erations (see, for instan
e, the fun
tional logi
 languages ALF [12℄, BABEL [26℄,

K-LEAF [11℄, SLOG [10℄). Hen
e we assume that the signature F is partitioned

into two sets F = C [ D with C \ D = ?. A 
onstru
tor term t is built from


onstru
tors and variables, i.e., t 2 T (C;X ). An innermost term t [10℄ is an

operation applied to 
onstru
tor terms, i.e., t = f(t

1

; : : : ; t

n

) with f 2 D and

t

1

; : : : ; t

n

2 T (C;X ). A fun
tion 
all f(t

1

; : : : ; t

n

) is an operation f 2 D applied

to arbitrary terms. Su
h a term is also 
alled f-rooted term.

3



A (rewrite) rule l ! r is a pair of an innermost term l and a term r satisfying

Var(r) � Var(l) where l and r are 
alled left-hand side and right-hand side,

respe
tively.

3

A rule is 
alled a variant of another rule if it is obtained by a

unique repla
ement of variables by other variables. A term rewriting system R is

a set of rules.

4

In the following we assume a given term rewriting system R.

The exe
ution of fun
tional logi
 programs requires notions like substitution,

uni�er, position et
. A substitution � is a mapping from X into T (F ;X ) su
h

that the set fx 2 X j �(x) 6= xg is �nite. We frequently identify a substitution

� with the set fx 7! �(x) j �(x) 6= xg. Substitutions are extended to morphisms

on T (F ;X ) by �(f(t

1

; : : : ; t

n

)) = f(�(t

1

); : : : ; �(t

n

)) for every term f(t

1

; : : : ; t

n

).

A uni�er of two terms s and t is a substitution � with �(s) = �(t). A uni�er �

is 
alled most general (mgu) if for every other uni�er �

0

there is a substitution

� with �

0

= � Æ � (
on
atenation of � and �). Most general uni�ers are unique

up to variable renaming. By introdu
ing a total ordering on variables we 
an

uniquely 
hoose the most general uni�er of two terms. A position p in a term t

is represented by a sequen
e of natural numbers, tj

p

denotes the subterm of t at

position p, and t[s℄

p

denotes the result of repla
ing the subterm tj

p

by the term

s (see [8℄ for details).

A rewrite step is an appli
ation of a rewrite rule to a term, i.e., t!

R

s if there

exist a position p in t, a rewrite rule l ! r and a substitution � with tj

p

= �(l)

and s = t[�(r)℄

p

. In this 
ase we say t is redu
ible (at position p). A term t is


alled irredu
ible or in normal form if there is no term s with t!

R

s.

!

�

R

denotes the transitive-re
exive 
losure of the rewrite relation !

R

. R is


alled terminating if there are no in�nite rewrite sequen
es t

1

!

R

t

2

!

R

t

3

!

R

� � �. R is 
alled 
on
uent if for all terms t, t

1

, t

2

with t!

�

R

t

1

and t!

�

R

t

2

there

exists a term t

3

with t

1

!

�

R

t

3

and t

2

!

�

R

t

3

. A terminating and 
on
uent term

rewriting system R is 
alled 
onvergent.

If R is 
onvergent, we 
an de
ide the validity of an equation s =

R

t (where

=

R

denotes validity w.r.t. the equations fl

:

= r j l ! r 2 Rg) by 
omputing the

normal form of both sides using an arbitrary sequen
e of rewrite steps. In order

to solve an equation, we have to �nd appropriate instantiations for the variables

in s and t. This 
an be done by narrowing. A term t is narrowable into a term

t

0

if there exist a non-variable position p in t (i.e., tj

p

62 X ), a variant l ! r of a

rewrite rule and a substitution � su
h that � is a most general uni�er of tj

p

and

l and t

0

= �(t[r℄

p

). In this 
ase we write t;

�

t

0

. If there is a narrowing sequen
e

t

1

;

�

1

t

2

;

�

2

� � �;

�

n�1

t

n

, we write t

1

;

�

�

t

n

with � = �

n�1

Æ � � � Æ �

2

Æ �

1

.

Narrowing is able to solve equations w.r.t. R. For this purpose we introdu
e

a new operation symbol = and a new 
onstru
tor true and add the rewrite rule

3

For the sake of simpli
ity we 
onsider only un
onditional rules, but our results 
an

easily be extended to 
onditional rules.

4

We will apply rules in two ways: (a) in rewrite steps to evaluate terms, and (b) in

narrowing steps to solve equations. Therefore we will sometimes distinguish between

rewrite rules and narrowing rules. Usually, the set of rewrite rules and the set of

narrowing rules are identi
al, but in some languages it is also possible to use some

rules only for rewrite steps or only for narrowing steps (e.g., in ALF [12, 13℄ or SLOG

[10℄).

4



x=x ! true toR. Then the following theorem states soundness and 
ompleteness

of narrowing.

Theorem1 [20℄. Let R be a 
onvergent term rewriting system.

1. If s=t;

�

�

true, then �(s) =

R

�(t).

2. If �

0

(s) =

R

�

0

(t), then there exist a narrowing derivation s=t ;

�

�

true and

a substitution � with �(�(x)) =

R

�

0

(x) for all x 2 Var(s) [ Var(t).

Thus to 
ompute all solutions to an equation s=t, we apply narrowing steps to it

until we obtain an equation s

0

=t

0

where s

0

and t

0

are uni�able. Sin
e this simple

narrowing pro
edure (enumerating all narrowing derivations) has a huge sear
h

spa
e, several authors have improved it by restri
ting the admissible narrowing

derivations (see [17℄ for a detailed survey). In the following we 
onsider normal-

izing innermost narrowing derivations [10℄ where

{ the narrowing step is performed at the leftmost innermost subterm, and

{ the term is simpli�ed to its normal form before a narrowing step is performed

by applying rewrite rules from innermost to outermost positions.

The innermost strategy provides an eÆ
ient implementation [12, 13, 21, 23℄ while

the normalization pro
ess is important sin
e it prefers deterministi
 
omputa-

tions: rewriting a term to normal form 
an be done in a deterministi
 way sin
e

every rewrite sequen
e yields the same result (be
ause R is 
onvergent) whereas

di�erent narrowing steps may lead to di�erent solutions and therefore all admis-

sible narrowing steps must be 
onsidered. Hen
e in a sequential implementation

rewriting 
an be eÆ
iently implemented like redu
tions in fun
tional languages

whereas narrowing steps need 
ostly ba
ktra
king management as in Prolog. For

instan
e, if the equation s =

R

t is valid, normalizing narrowing will prove it by

a pure deterministi
 
omputation (redu
ing s and t to the same normal form)

whereas simple narrowing would 
ompute the normal form of s and t by 
ostly

narrowing steps.

Normalizing innermost narrowing is 
omplete if R is 
onvergent and all fun
-

tions are totally de�ned, i.e., redu
ible on all appropriate 
onstru
tor terms [10℄.

This is a reasonable 
lass from the fun
tional programming point of view. But it

is also possible to extend this strategy to in
ompletely de�ned operations. In this


ase a so-
alled innermost re
e
tion rule must be added whi
h skips an innermost

fun
tion 
all that 
annot be evaluated [19℄. For the sake of simpli
ity we assume

in the following that all fun
tions are totally de�ned, i.e., normalizing innermost

narrowing is suÆ
ient to 
ompute all solutions.

3 Modes for fun
tional logi
 programs

In pure logi
 programs, the mode for a predi
ate is a des
ription of the possible

arguments of a predi
ate when it is 
alled [35℄. E.g., the mode p(g;f ;a) spe
i�es

that the �rst argument is a ground term, the se
ond argument is a free variable,

and the third argument is an arbitrary term for all 
alls to predi
ate p. The

mode information is useful to optimize the 
ompiled 
ode, i.e., to spe
ialize the

uni�
ation instru
tions and indexing s
heme for a predi
ate [24, 25, 32, 34, 35℄.

Sin
e fun
tional logi
 languages are usually based on narrowing whi
h uses uni�-


ation to apply a fun
tion to a subterm, mode information 
ould also be useful to

5



optimize fun
tional logi
 programs. However, the notion of \mode" in fun
tional

logi
 programs is di�erent from pure logi
 programs if normalization is in
luded

in the narrowing pro
ess be
ause fun
tions are evaluated by narrowing as well as

by rewriting. In the following we dis
uss this problem and de�ne a new notion of

modes for fun
tional logi
 programs whi
h will be used in Se
tion 4 to optimize

fun
tional logi
 programs.

Example 2. In this example we dis
uss a derivation w.r.t. our narrowing strategy.

Consider the rules of Example 1 together with the following rewrite rules:

double(0) ! 0 (R

3

)

double(s(N)) ! s(s(double(N))) (R

4

)

quad(N) ! (N+N)+double(N) (R

5

)

We want to 
ompute solutions to the initial equation quad(X)=4 by our strategy,

where 4 denotes the term s(s(s(s(0)))). Before applying any narrowing step,

the equation is redu
ed to its normal form by rewrite steps. Hen
e we apply rule

R

5

to the subterm quad(X):

quad(X)=4 !

R

(X+X)+double(X)=4

Then the resulting equation is normalized by trying to apply rewrite rules to the

three operation symbols, but no rewrite rule is appli
able due to the free variable

X. Hen
e the equation is already in normal form. Now a narrowing step is applied

at the leftmost innermost position, i.e., the subterm X+X. Both rules R

1

and R

2

are appli
able. We 
hoose rule R

2

so that X is instantiated to s(Y):

(X+X)+double(X)=4 ;

fX 7!s(Y)g

s(Y+s(Y))+double(s(Y))=4

The resulting equation must be redu
ed to its normal form by trying to apply

rewrite steps from innermost to outermost positions. A rewrite rule is not appli-


able to the leftmost innermost subterm Y+s(Y) sin
e the �rst argument Y is a

free variable. But we 
an apply rule R

4

to the subterm double(s(Y)) and rule

R

2

to the outer o

urren
e of +:

s(Y+s(Y))+double(s(Y))=4 !

R

s(Y+s(Y))+s(s(double(Y)))=4

!

R

s((Y+s(Y))+s(s(double(Y))))=4

The latter equation is in normal form. Therefore we apply a narrowing step to the

leftmost innermost subterm Y+s(Y). We 
hoose rule R

1

so that Y is instantiated

to 0:

s((Y+s(Y))+s(s(double(Y))))=4 ;

fY 7!0g

s(s(0)+s(s(double(0))))=4

We normalize the resulting equation by applying rule R

3

to double(0) and rules

R

2

and R

1

to the remaining o

urren
e of +:

s(s(0)+s(s(double(0))))=4 !

R

s(s(0)+s(s(0)))=4

!

R

s(s(0+s(s(0))))=4

!

R

s(s(s(s(0))))=4

Thus we have 
omputed the solution fX 7! s(0)g sin
e the left- and right-hand

side of the �nal equation are identi
al. A 
loser look to the narrowing and rewrite

attempts in this derivation yields the following fa
ts:

1. The operation + is evaluated both by narrowing and rewrite steps.

6



2. If a narrowing step is applied to +, the �rst argument is always free and the

se
ond argument may be partially instantiated.

3. If a rewrite step is applied to +, both arguments may be partially instantiated.

4. At the time when a narrowing step 
ould be applied to double (i.e., if all

fun
tions to the left of double are evaluated), its argument is ground. Hen
e

double is evaluated by rewriting and not by narrowing.

5. If a rewrite step is applied to double, its argument may be partially instan-

tiated.

6. If a rewrite or narrowing step is applied to quad, its argument is always a

free variable. Hen
e no rewrite rules 
an be applied to any fun
tion 
all in

the right-hand side of rule R

5

immediately after the appli
ation of these rule,

i.e., the rewrite attempts for these fun
tion 
alls 
an be skipped.

In order to have a formal representation of these properties, we assign to ea
h

operation a narrowing mode (+(f,a), double(g), quad(f) in this example)

and a rewrite mode (+(a,a), double(a), quad(f)). Using this kind of mode

information it is possible to avoid unne
essary rewrite attempts, 
ompile rewrite

derivations in a more eÆ
ient way, delete unne
essary rewrite or narrowing rules

et
. (see Se
tion 4). 2

In the following we give a pre
ise de�nition of the possible modes for fun
tional

logi
 programs w.r.t. a normalizing narrowing semanti
s. In this de�nition we


onsider a mode as a (possibly in�nite) set of term tuples. Su
h a set 
ontains all

possible parameters whi
h may o

ur in a fun
tion 
all. In subsequent se
tions

we abstra
t su
h a set to a �nite representation like g, f or a. Sin
e there are

also other useful abstra
tions (e.g., type approximations [4℄), we do not restri
t

the general de�nition of modes.

De�nition 2. Let f=n be an operation symbol and N;R � T (F ;X )

n

.

(a) N is 
alled N-mode (narrowing mode) for f=n whenever ht

1

; : : : ; t

n

i 2 N if a

narrowing step should be applied to the subterm f(t

1

; : : : ; t

n

) during program

exe
ution.

(b) R is 
alled R-mode (rewrite mode) for f=n whenever ht

1

; : : : ; t

n

i 2 R if a

rewrite step should be applied to the subterm f(t

1

; : : : ; t

n

) during program

exe
ution. 2

We have de�ned modes w.r.t. arbitrary program exe
utions. However, for the

sake of good program optimizations it is desirable to 
onsider only exe
utions

w.r.t. a given 
lass of initial goals. In this 
ase the modes are 
omputed by a

top-down analysis of the program starting from the initial goals.

4 Optimization of fun
tional logi
 programs using modes

As mentioned in the previous se
tion, we are not interested in the pre
ise term

sets 
ontained in the modes, but we abstra
t these term sets into a �nite number

of abstra
t values. For the optimizations te
hniques we have in mind the abstra
t

values g, f and a are suÆ
ient, where g denotes the set T (F ;?) of ground

terms, f the set X of free variables and a the set T (F ;X ) of all terms. Hen
e

the N-mode hg;a;fi for the operation f=3 spe
i�es that the �rst argument is

7



ground and the third argument is a free variable if a narrowing rule should be

applied to this operation. Su
h modes 
an be spe
i�ed by the programmer, but it

is more reliable to derive the modes automati
ally from the given program (w.r.t.

a mode for the initial goal). Automati
 mode inferen
e has been investigated for

pure logi
 programming (e.g., [3, 5, 6, 25, 30℄) and similar s
hemes for fun
tional

logi
 programs are under development [18℄. In the following we show possible

optimization te
hniques w.r.t. given modes for a fun
tional logi
 program.

4.1 Using freeness information

We have seen in Example 2 that rewrite steps 
annot be applied to fun
tion 
alls

if some arguments are not suÆ
iently instantiated. Hen
e we 
an omit all rewrite

attempts to a fun
tion 
all if an argument that is required in all rewrite rules has

R-mode f .

We say an operation f requires argument i if t

i

62 X for all rewrite rules

f(t

1

; : : : ; t

n

) ! r, i.e., t

i

has a 
onstru
tor at the top. Our optimization w.r.t.

freeness is based on the following proposition.

Proposition 3. If an operation f has R-mode hm

1

; : : : ;m

n

i with m

i

= f and

requires argument i, then no rewrite step 
an be applied to an f-rooted term

during exe
ution.

In this 
ase all rewrite rules for f 
an be deleted in the 
ompiled program and all

attempts to rewrite f -rooted subterms 
an be immediately skipped. However, in

pra
ti
e this 
ase rarely o

urs sin
e rewrite steps are always applied to the entire

goal before ea
h single narrowing step. Therefore fun
tion arguments are usually

not de�nitely free for all rewrite attempts but be
ome more and more instantiated

while narrowing steps are performed. But we 
an see in Example 2 that there is an

interesting situation where unne
essary rewrite attempts o

ur. After applying

a narrowing step with rule l ! r to the leftmost innermost subterm, due to

the eager normalization strategy, appli
ations of rewrite rules are tried to all

fun
tions o

urring in r. Sin
e a narrowing step is only applied be
ause of the

insuÆ
ient instantiation of arguments (otherwise the subterm would be evaluated

by rewriting), it is often the 
ase that the fun
tion 
alls in r are not suÆ
iently

instantiated to apply rewrite rules. Hen
e the rewrite attempts immediately after

a narrowing step 
ould be avoided.

In order to give a pre
ise de�nition of this optimization, we de�ne a spe
ial

kind of rewrite mode whi
h is valid immediately after a narrowing step.

De�nition 4. Let f(t

1

; : : : ; t

n

) ! r be a narrowing rule and N be a N-mode

for f=n. Let g(s

1

; : : : ; s

m

) be a fun
tion 
all in r and R

f

� T (F ;X )

m

. Then

R

f

is 
alled R=N-mode (w.r.t. to N) (rewrite mode w.r.t. narrowing) for the

fun
tion 
all g(s

1

; : : : ; s

m

) i� �(hs

1

; : : : ; s

n

i) 2 R

f

for ea
h most general uni�er

� of ht

1

; : : : ; t

n

i and some ht

0

1

; : : : ; t

0

n

i 2 N . 2

Note that suitable R=N-modes 
an be easily derived from a given N-mode of

an operation. Sin
e Proposition 3 is also valid w.r.t. R=N-modes and the imme-

diate rewrite attempts after a narrowing step, we 
an use R=N-modes to avoid

unne
essary rewrite attempts. For instan
e, 
onsider Example 2 and the rule

s(M) + N ! s(M + N) (R

2

)

8



Sin
e + has N-mode hf ;ai, a suitable R=N-mode of the fun
tion 
all M+N in the

right-hand side is hf ;ai. Therefore no rewrite rule is appli
able to M+N immedi-

ately after a narrowing step with R

2

be
ause + requires its �rst argument.

In the 
ase of nested fun
tion 
alls, we 
an also skip rewrite attempts to

fun
tion 
alls whi
h 
ontain fun
tion 
alls in normal form at a required argument

position. For instan
e, if (X+Y)+Z o

urs in the right-hand side of a narrowing rule

and the N-mode implies that X is always a free variable, then rewrite attempts

to both o

urren
es of + 
an be negle
ted.

The realization of this optimization in a 
ompiler-based implementation of

normalizing innermost narrowing is easy. In order to avoid a dynami
 sear
h in

the 
urrent goal for the leftmost innermost subterm, it is useful to manage an o
-


urren
e sta
k at run time [13℄. This sta
k 
ontains referen
es to all fun
tions 
alls

in a goal in leftmost innermost order, i.e., the top element refers to the leftmost

innermost subterm. If a narrowing rule l ! r is applied, the top element of the

o

urren
e sta
k is deleted, referen
es to all fun
tion 
alls in r are added, and the

appli
ation of rewrite rules are tried to all subterms referred by the o

urren
e

sta
k.

5

The management of the o

urren
e sta
k provides an eÆ
ient implemen-

tation and 
auses nearly no overhead (see [13℄ for ben
hmarks). Moreover, it

provides a simple realization of the freeness optimization. To skip unne
essary

rewrite attempts in the right-hand side of a narrowing rule, the o

urren
es of

the 
orresponding subterms are not pushed onto the o

urren
e sta
k. Although

this optimization is simple, it has measurable e�e
ts on the exe
ution time if the

portion of narrowing steps in the 
omputation is not too low (see Se
tion 5 for

ben
hmarks). In extreme 
ases all unne
essary rewrite attempts are avoided by

this optimization.

4.2 Using groundness information

An implementation of normalizing narrowing requires the appli
ation of rewrite

rules to all fun
tion 
alls in a goal before a narrowing step is performed. Therefore

fun
tion 
alls 
annot be represented by pie
es of 
ode similarly to predi
ate 
alls

in the WAM [36℄, but they must be expli
itly represented as a term stru
ture. For

instan
e, if the quad rule R

5

of Example 2 is applied in a narrowing or rewrite

step, the term representation of the right-hand side (N+N)+double(N) is 
reated

in the heap area (whi
h 
ontains all term stru
tures during program exe
ution [13,

36℄.)

6

This implementation has the disadvantage that many terms are 
reated on

the heap whi
h are garbage after the evaluation of the fun
tion 
alls. The situation


an be improved if it is known that some fun
tions are 
ompletely evaluable by

rewriting. A suÆ
ient 
riterion is the groundness of some arguments.

7

5

This explanation is slightly simpli�ed. In the 
on
rete implementation, a se
ond so-


alled 
opy o

urren
e sta
k is used in the rewrite pro
ess. See [13℄ for more details.

6

It is not ne
essary to 
reate a term representation for all fun
tions 
alls. Sin
e the

leftmost innermost fun
tion 
all N+N is evaluated in the next step, a representation

of this term is only ne
essary if no rewrite rule is appli
able to it. Therefore the


reation of this term is delayed in [13℄. This results in an implementation similar to

WAM-based Prolog systems.

7

Note that we assume that all narrowing rules are also used for rewriting, otherwise

the proposition does not hold.

9



Proposition 5. If an operation f has R-mode hg; : : : ; gi, then all f-rooted sub-

terms are 
ompletely evaluated by rewriting during exe
ution.

This property holds sin
e a narrowing step is only performed at an innermost

position if some arguments are not suÆ
iently instantiated, but the latter 
on-

dition 
an never be satis�ed if it is a ground fun
tion 
all. Consequently, ground

fun
tion 
alls 
an be implemented by a �xed sequen
e of fun
tion 
alls whi
h do

not require a representation on the heap. For instan
e, if quad has R-mode hgi,

then the rewrite rule quad(N)!(N+N)+double(N) 
ould be translated similarly

to fun
tions in imperative or fun
tional languages a

ording to the following 
ode

sequen
e:

N := A1 % Register A1 
ontains the a
tual argument of quad

N1 := N+N % 
all operation +

N2 := double(N) % 
all operation double

N3 := N1+N2 % 
all operation +

return(N3) % return the 
omputed value

The intermediate values 
ould be stored in an environment on the lo
al sta
k

whi
h 
an be deleted after the return (or before, if last 
all optimization is

implemented). Thus, if groundness information is available, we 
ould optimize

the 
ode su
h that fun
tion 
alls need not be represented on the heap and in-

termediate results are stored on the lo
al sta
k instead of the heap. This has

the advantage that the used memory spa
e on the lo
al sta
k is automati
ally

released after deterministi
 
omputations while the heap is 
leaned up only af-

ter a garbage 
olle
tion phase. Some results to this optimization are shown in

Se
tion 5.

4.3 Code elimination using mode information

Rewrite steps and narrowing steps di�er in the appli
ation of the left-hand side

to a subterm: while the subterm is mat
hed with the left-hand side in a rewrite

step, it is uni�ed with the left-hand side in a narrowing step. Due to this dif-

ferent behavior (and some other reasons, 
f. [13℄), rewrite rules and narrowing

rules are 
ompiled into separate instru
tions. In parti
ular, if the program rules

de�ning operations are used both as narrowing rules and rewrite rules, ea
h rule

is 
ompiled in two ways. This has a positive e�e
t on the time eÆ
ien
y of the


ompiled 
ode, but it doubles the 
ode spa
e. On the other hand, only a few rules

are a
tually used both for narrowing and rewriting in pra
ti
al programs. Some

rules are only used in rewrite steps, while others are ex
lusively used in narrowing

steps. Information about modes 
an help to dete
t these 
ases at 
ompile time

so that unne
essary 
ode 
an be avoided in the target program. The following


onditions are suÆ
ient 
riteria to omit rules in the target program:

1. If f has R-mode hm

1

; : : : ;m

n

i with m

i

= f , then rewrite rules of the form

f(t

1

; : : : ; t

n

) ! r with t

i

62 X are super
uous (by Proposition 3).

2. Narrowing rule f(t

1

; : : : ; t

n

) ! r is super
uous if f has N-mode hm

1

; : : : ;m

n

i

and for ea
h t

i

62 X and ea
h t

i

2 Var(t

j

) (for some j 6= i) m

i

= g holds

(sin
e in this 
ase the rule is always appli
able in a pre
eding rewrite step.)

8

8

Note that the 
ase t

i

2 Var(t

j

) is ne
essary sin
e we allow multiple o

urren
es of the

same variable in the left-hand side of a rule. E.g., the rule f(X,X)!X is not appli
able

10



Extreme 
ases of 2 are rules of the form f(X

1

; : : : ; X

n

) ! r where X

1

; : : : ; X

n

are pairwise di�erent variables, or all narrowing rules for a fun
tion f whi
h has

N-mode hg; : : : ; gi.

For instan
e, in Example 2 we 
an delete R

3

; R

4

; R

5

as narrowing rules. These

rules are only used in rewrite steps, while rules R

1

and R

2

are used both in rewrite

and narrowing steps.

5 Experimental results

In order to obtain results about the pra
ti
al usefulness of the optimizations

dis
ussed so far, we have applied these optimizations to some fun
tional logi


programs. These optimizations were performed with the ALF system [12, 13℄

whi
h uses normalizing innermost narrowing as the operational semanti
s. We

have not introdu
ed any new low-level instru
tions into the abstra
t ma
hine

A-WAM on whi
h the ALF system is based. All the optimizations dis
ussed

in Se
tion 4 are implemented using the standard instru
tion set of the A-WAM

whi
h is the simplest, but not the most eÆ
ient way to implement these optimiza-

tions. Therefore it is obvious that better results 
an be obtained if the A-WAM

would be redesigned a

ording to the availability of mode information.

Table 1 shows the di�eren
e of the exe
ution time between programs 
om-

piled without and with the optimizations w.r.t. freeness information as dis
ussed

in Se
tion 4.1. All programs were exe
uted on a Spar
 1. The programs are

small but typi
al fun
tional logi
 programs in the sense that fun
tions are 
alled

with non-ground arguments so that narrowing rules must be applied to evaluate

these fun
tions. arith is a program that solves the equation X+X=10 on natural

numbers (where natural numbers are represented by terms built from the 
on-

stru
tors 0 and s). hamilton 
omputes a Hamiltonian path in a graph. last


omputes the last element of a given list with 10 elements by solving the equa-

tion append(_,[E℄)=[� � �℄. path 
omputes a 
omplete path through a graph.

permsort is the fun
tional version of the permutation sort program, a typi
al

generate-and-test program whi
h demonstrates the advantages of fun
tional logi


programs 
ompared to pure logi
 programs [14℄.

Program Standard Optimized Improvement

arith 2.70 2.42 11.5%

hamilton 1180 980 20.4%

last 5.40 4.80 12.5%

path 1400 1120 25.0%

permsort 1680 1480 13.5%

Table 1. Exe
ution times (in mse
) for optimized programs w.r.t. freeness information

Although freeness information is only used to avoid some unne
essary rewrite

attempts for the right-hand side after a narrowing step (and not for other more

to the term f(Y,Z) in a rewrite step, thus this rule must be kept as a narrowing rule.
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Standard Optimized

Program lo
al sta
k heap lo
al sta
k heap

fa
 104 441168 161380 370104

fib 104 1145148 780 926248

zero 104 655620 636 280

Table 2. Maximum memory usage for optimized programs w.r.t. groundness informa-

tion (in bytes)

primitive optimizations [24, 31, 32, 34, 35℄), the table presents interesting im-

provements in the exe
ution time. The variations show that it is diÆ
ult to state

a general fa
tor of improvement using freeness information. This fa
tor largely

depends on the number of fun
tion 
alls whi
h 
an be safely skipped in the nor-

malization pro
ess after the appli
ation of a narrowing rule.

Table 2 shows the memory usage for unoptimized and optimized programs

w.r.t. groundness information as dis
ussed in Se
tion 4.2. The programs are re-


ursive fun
tions on natural numbers where natural numbers are represented by

terms built from the 
onstru
tors 0 and s. fa
 
omputes the fa
torial of 8, fib


omputes the 20'th Fibona

i number, and zero is a fun
tion whi
h maps all

inputs to the 
onstant 0 but it is re
ursively de�ned similarly to fib.

Sin
e we have not 
hanged the instru
tion set of the A-WAM, we 
ould only

simulate the optimizations with the existing instru
tion set. But we 
an see in

Table 2 that the heap spa
e is redu
ed while the lo
al sta
k in
reases. This is

a desirable property sin
e the lo
al sta
k is automati
ally 
leaned up after de-

terministi
 
omputations while the heap spa
e must be re
laimed by a garbage


olle
tor. In the optimized version, no fun
tion 
alls are 
reated on the heap. The

remaining heap 
ells are o

upied by 
onstru
tor terms 
reated during exe
ution

(in these examples: s-terms representing natural numbers). An extreme 
ase is

the re
ursive fun
tion zero whi
h 
reates no 
onstru
tor terms. The large heap

spa
e in the unoptimized version is due to the representation of re
ursive fun
tion


alls in the heap.

6 Automati
 derivation of modes

The main motivation of this paper is to show opportunities to optimize fun
tional

logi
 programs. For this purpose we have de�ned a notion of modes whi
h is suit-

able for the parti
ular operational semanti
s. However, the automati
 derivation

of these modes is another 
omplex topi
 whi
h will be addressed in a forth
om-

ing paper [18℄. In this se
tion we will dis
uss some pe
uliarities related to the

automati
 derivation of modes.

Innermost narrowing without normalization is equivalent to SLD-resolution

if the fun
tional logi
 program is transformed into a 
at program without nested

fun
tion 
alls [2℄. For instan
e, we 
ould transform the rules of Example 1 into

the 
at logi
 program

add(0,N,N).

add(s(M),N,s(Z)) :- add(M,N,Z).

12



where the predi
ate add 
orresponds to the fun
tion + with its result value. The

nested fun
tion 
all in the right-hand side of rule R

2

has been repla
ed by the

new variable Z and the additional 
ondition add(M,N,Z). Now ea
h innermost

narrowing derivation w.r.t. rules R

1

and R

2


orresponds to one SLD-derivation

w.r.t. the transformed logi
 program.

Due to these similarities of narrowing and SLD-resolution, one 
ould try to

apply abstra
t interpretation te
hniques developed for logi
 programming (e.g.,

[3, 22, 27℄) to derive the desired information. E.g., to derive the narrowing mode

of the fun
tion + w.r.t. to the 
lass of initial goals x+y=z, where x and y are

always ground and z is a free variable, we 
ould use an abstra
t interpretation

framework for logi
 programming to infer the 
all modes of the predi
ate add

w.r.t. the 
lass of initial goals add(x,y,z). In this 
ase we infer that the 
all

mode is hg; g;fi and the argument z of the initial goal will be bound to a ground

term at the end of a su

essful 
omputation. Hen
e we 
ould dedu
e that hg; gi

is the narrowing mode of the fun
tion +.

However, normalizing narrowing, whi
h we have 
onsidered in this paper, does

not dire
tly 
orrespond to SLD-resolution be
ause of the intermediate normal-

ization pro
ess. These normalization steps between narrowing steps may delete

entire subterms or 
hange the order of subterms. These subtleties require more

sophisti
ated analysis te
hniques than those developed for pure logi
 program-

ming. E.g., 
onsider the rules

f(0,Z) ! 0 g(0) ! 0

and the initial equation f(g(X),g(Y))=0. Using normalizing innermost narrow-

ing, this equation is solved by applying a narrowing step to the innermost subterm

g(X) followed by a rewrite step:

f(g(X),g(Y)) = 0 ;

fX 7!0g

f(0,g(Y)) = 0

!

R

0 = 0

Hen
e variable Y remains unbound at the end of the 
omputation. On the other

hand, the 
attening transformation yields the following 
orresponding logi
 pro-

gram:

f(0,Z,0).

g(0,0).

?- g(X,Z1), g(Y,Z2), f(Z1,Z2,0).

But this logi
 program has another behavior than the fun
tional logi
 program

sin
e the variable Y will be bound by SLD-resolution! Therefore we 
an apply

abstra
t interpretation frameworks for logi
 programming in our 
ontext only if

there are no rewrite rules whi
h may delete or permute arguments. Su
h rewrite

rules require a spe
ial treatment in the abstra
t interpretation pro
edure whi
h

will be des
ribed in a forth
oming paper [18℄. Another approa
h to abstra
t

interpretation of fun
tional logi
 programs based on an alternative operational

semanti
s is des
ribed in [16℄.

7 Con
lusions

In this paper we have shown optimization te
hniques in the presen
e of mode

information whi
h are unique to the exe
ution me
hanism of fun
tional logi
 pro-
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grams. We have 
onsidered normalizing innermost narrowing as the operational

semanti
s sin
e it has been shown that this strategy is a reasonable improvement

over Prolog's left-to-right resolution strategy [10, 14℄. We have de�ned the notion

of modes for fun
tional logi
 programs. These modes 
an be used to optimize the

normalization pro
ess. On the one hand, the normalization pro
ess is the rea-

son for the operational improvements of fun
tional logi
 languages 
ompared to

pure logi
 languages. On the other hand, the normalization pro
ess may add un-

ne
essary work. This 
an be improved using modes: freeness information avoids

super
uous rewrite attempts, and groundness information provides for a better

implementation (in terms of memory 
onsumption) of the normalization pro
ess.

Moreover, information about modes 
an also be used to avoid the generation of


ode for rewrite or narrowing rules whi
h will never be used at run time.

Future work in
ludes a re�nement of the abstra
t ma
hine for the exe
u-

tion of fun
tional logi
 programs following the lines presented in [32, 34℄, the

development of appropriate abstra
t interpretation frameworks to derive mode

information at 
ompile time [18℄, and re�ned appli
ability 
onditions for rewrite

rules using type information [4℄.

Referen
es

1. D. Bert and R. E
hahed. Design and Implementation of a Generi
, Logi
 and Fun
-

tional Programming Language. In Pro
. ESOP'86, pp. 119{132. Springer LNCS

213, 1986.

2. P.G. Bos
o, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-Resolution. Theo-

reti
al Computer S
ien
e 59, pp. 3{23, 1988.

3. M. Bruynooghe. A Pra
ti
al Framework for the Abstra
t Interpretation of Logi


Programs. Journal of Logi
 Programming (10), pp. 91{124, 1991.

4. M. Bruynooghe and G. Janssens. An Instan
e of Abstra
t Interpretation Integrat-

ing Type and Mode Inferen
ing. In Pro
. 5th Conferen
e on Logi
 Programming &

5th Symposium on Logi
 Programming (Seattle), pp. 669{683, 1988.

5. S.K. Debray. Stati
 Inferen
e of Modes and Data Dependen
ies in Logi
 Programs.

ACM TOPLAS, Vol. 11, No. 3, pp. 418{450, 1989.

6. S.K. Debray and D.S. Warren. Automati
 Mode Inferen
e for Logi
 Programs.

Journal of Logi
 Programming (5), pp. 207{229, 1988.

7. D. DeGroot and G. Lindstrom, editors. Logi
 Programming, Fun
tions, Relations,

and Equations. Prenti
e Hall, 1986.

8. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,

Handbook of Theoreti
al Computer S
ien
e, Vol. B, pp. 243{320. Elsevier, 1990.

9. M.J. Fay. First-Order Uni�
ation in an Equational Theory. In Pro
. 4th Workshop

on Automated Dedu
tion, pp. 161{167, Austin (Texas), 1979. A
ademi
 Press.

10. L. Fribourg. SLOG: A Logi
 Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro
. IEEE Int. Symp. on Logi
 Programming,

pp. 172{184, Boston, 1985.

11. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi
 plus

Fun
tional Language. Journal of Computer and System S
ien
es, Vol. 42, No. 2,

pp. 139{185, 1991.

12. M. Hanus. Compiling Logi
 Programs with Equality. In Pro
. PLILP'90, pp. 387{

401. Springer LNCS 456, 1990.

13. M. Hanus. EÆ
ient Implementation of Narrowing and Rewriting. In Pro
. PDK'91,

pp. 344{365. Springer LNAI 567, 1991.

14



14. M. Hanus. Improving Control of Logi
 Programs by Using Fun
tional Logi
 Lan-

guages. In Pro
. PLILP'92, pp. 1{23. Springer LNCS 631, 1992.

15. M. Hanus. In
remental Rewriting in Narrowing Derivations. In Pro
. ALP'92, pp.

228{243. Springer LNCS 632, 1992.

16. M. Hanus. On the Completeness of Residuation. In Pro
. of the 1992 Joint Int.

Conf. and Symp. on Logi
 Programming, pp. 192{206. MIT Press, 1992.

17. M. Hanus. The Integration of Fun
tions into Logi
 Programming: From Theory to

Pra
ti
e. To appear in Journal of Logi
 Programming, 1994.

18. M. Hanus and F. Zartmann. Automati
 derivation of modes for fun
tional logi


programs. Max-Plan
k-Institut f�ur Informatik, Saarbr�u
ken (in preparation), 1994.

19. S. H�olldobler. Foundations of Equational Logi
 Programming. Springer LNCS 353,

1989.

20. J.-M. Hullot. Canoni
al Forms and Uni�
ation. In Pro
. 5th Conferen
e on Auto-

mated Dedu
tion, pp. 318{334. Springer LNCS 87, 1980.

21. H. Ku
hen, R. Loogen, J.J. Moreno-Navarro, and M. Rodr��guez-Artalejo. Graph-

based Implementation of a Fun
tional Logi
 Language. In Pro
. ESOP'90, pp.

271{290. Springer LNCS 432, 1990.

22. B. Le Charlier, K. Musumbu, and P. Van Hentenry
k. A Generi
 Abstra
t Inter-

pretation Algorithm and its Complexity Analysis. In Pro
. International Confer-

en
e on Logi
 Programming, pp. 64{78. MIT Press, 1991.

23. R. Loogen. Relating the Implementation Te
hniques of Fun
tional and Fun
tional

Logi
 Languages. New Generation Computing, Vol. 11, pp. 179{215, 1993.

24. A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The impa
t of abstra
t

interpretation: an experiment in 
ode generation. In Pro
. Sixth International Con-

feren
e on Logi
 Programming (Lisboa), pp. 33{47. MIT Press, 1989.

25. C.S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logi


Programming (1), pp. 43{66, 1985.

26. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi
 Programming with Fun
-

tions and Predi
ates: The Language BABEL. Journal of Logi
 Programming,

Vol. 12, pp. 191{223, 1992.

27. U. Nilsson. Systemati
 Semanti
 Approximations of Logi
 Programs. In Pro
.

PLILP'90, pp. 293{306. Springer LNCS 456, 1990.

28. U.S. Reddy. Narrowing as the Operational Semanti
s of Fun
tional Languages. In

Pro
. IEEE Int. Symp. on Logi
 Programming, pp. 138{151, Boston, 1985.

29. J.R. Slagle. Automated Theorem-Proving for Theories with Simpli�ers, Commu-

tativity, and Asso
iativity. Journal of the ACM, Vol. 21, No. 4, pp. 622{642, 1974.

30. Z. Somogyi. A system of pre
ise modes for logi
 programs. In Pro
. Fourth Int.

Conf. on Logi
 Programming, pp. 769{787. MIT Press, 1987.

31. A. Taylor. Removal of Dereferen
ing and Trailing in Prolog Compilation. In Pro
.

Sixth Int. Conf. on Logi
 Programming, pp. 48{60. MIT Press, 1989.

32. A. Taylor. LIPS on a MIPS: Results form a Prolog Compiler for a RISC. In Pro
.

Seventh Int. Conf. on Logi
 Programming, pp. 174{185. MIT Press, 1990.

33. P. Van Roy. An Intermediate Language to Support Prolog's Uni�
ation. In Pro
.

1989 North Ameri
an Conf. on Logi
 Programming, pp. 1148{1164. MIT Press,

1989.

34. P.L. Van Roy. Can Logi
 Programming Exe
ute as Fast as Imperative Program-

ming? PhD thesis, Univ. of California Berkeley, 1990. Report No. UCB/CSD

90/600.

35. D.H.D. Warren. Implementing PROLOG - Compiling Logi
 Programs. 1 and 2.

D.A.I. Resear
h Report No. 39 and 40, University of Edinburgh, 1977.

36. D.H.D. Warren. An Abstra
t Prolog Instru
tion Set. Te
hni
al Note 309, SRI

International, Stanford, 1983.

15


