In Proc. 3rd International Conference on Algebraic and Logic Programming,
pp. 228243, Springer LNCS 632, 1992

Incremental Rewriting in Narrowing Derivations

Michael Hanus

Max-Planck-Institut fiir Informatik
Im Stadtwald
W-6600 Saarbriicken, Germany
e-mail: michael@mpi-sb.mpg.de

Abstract. The operational semantics of many proposals for the integration
of functional and logic programming languages is based on narrowing. In
order to reduce the search space and to prefer deterministic computations,
the goal is rewritten to normal form between narrowing steps (normalizing
narrowing). This rewriting process may be costly since the entire goal must
be reduced to normal form after each narrowing step. We propose a useful
optimization of the rewriting process: since the goal is in normal form before
the narrowing step is applied and the narrowing step changes only small parts
of the goal, rewriting can be restricted to a small number of positions in the
narrowed goal in order to compute a new normal form. This optimization
can speed up the execution mechanism of programming languages based on
normalizing narrowing like SLOG or ALF.

1 Introduction

During recent years a lot of proposals have been made to amalgamate functional
and logic programming languages [DL86, BL86]. A sound and complete operational
semantics of such integrated languages is based on narrowing, a combination of the
reduction principle of functional languages and the resolution principle of logic lan-
guages. Narrowing was originally introduced in automated theorem proving [Sla74].
In our context narrowing is used to solve equations by finding appropriate values for
variables occurring in arguments of functions. This is done by unifying (rather than
matching) an input term with the left-hand side of some rule and then replacing the
instantiated input term by the instantiated right-hand side of the rule. For instance,
consider the following rules defining the addition of two natural numbers which are
represented by terms built from 0 and s:

0+ N — N
s(M) + N - s(M + N)

We can solve the equation X+s(0) = s(s(0)) by a narrowing step with the second
rule followed by a narrowing step with the first rule so that X is instantiated to s(0)
and the instantiated equation is reduced to s(s(0)) = s(s(0)) which is trivially
true. Hence we have found the solution X—s(0) to the given equation.

In order to be complete in general, each rule must be unified with each non-
variable subterm of the given equation. This has the consequence that the narrowing
method has a huge and infinite space even for simple programs. For instance, consider

the previous rules for addition together with the following rules defining a sum
function on naturals:

sum(0) — 0
sum(s(N)) — s(N) + sum(N)

Then the narrowing method applied to the equation sum(X) = s(0) has an infinite
search space due to the following infinite narrowing derivation (the instantiation of
variables occurring in the equation is recorded at the derivation arrow):

sum(X) = s(0) ~Xiss (N1) s(N1)+sum(N1) = s(0)
~Nss @) S(8(N2))+(s(N2)+sum(N2)) = s(0)
~N2-5s (N3)

In order to reduce the search space, narrowing can be combined with rewriting
(evaluation of a term): Before a narrowing step is applied, the equation is rewritten
to normal form w.r.t. the given rules (thus this strategy is also called normalizing
narrowing). This can avoid a lot of useless narrowing derivations. E.g., if we rewrite
the second derived equation in the above example, we can immediately terminate
this narrowing derivation:

s(s(N2))+(s(N2)+sum(N2)) = s(0) —* s(s(N2+(s(N2)+sum(N2)))) = s(0)

The last equation cannot be satisfied since the terms s (N2+(s(N2)+sum(N2))) and
0 are always different because there are no rules to reduce the symbols s and 0.
Hence we can terminate the unsuccessful narrowing derivation at this point.

The integration of rewriting into the narrowing process has at least two advan-
tages:

1. The search space is reduced since useless narrowing derivations can be de-
tected. As shown in [Fri85], [Han91] and [Han92] this has the consequence that
functional-logic programs are more efficiently executable than the equivalent
Prolog programs.

2. Deterministic computations are preferred. Since we assume a confluent and ter-
minating set of rules, normal forms are unique and can be computed by any
simplification strategy. Therefore rewriting can be implemented as a determin-
istic computation process in contrast to narrowing. Since rewriting is executed
before a narrowing step is performed, the goal is computed in a deterministic
way as long as possible. The preference of deterministic computations can save
a lot of time and space as shown in [Han91].

But the integration of rewriting in narrowing derivations has also one disadvantage.
Since the entire goal must be reduced to normal form after each narrowing step,
the rewriting process may be costly. Hence we propose a useful optimization of
the rewriting process: since the goal is in normal form before the narrowing step is
applied and the narrowing step changes only small parts of the goal, rewriting can be
restricted to a small number of positions in the narrowed goal in order to compute
a new normal form. This optimization can speed up the execution mechanism of

programming languages based on normalizing narrowing like SLOG [Fri85] or ALF
[Han90, Han91].

Josephson and Dershowitz [JD89] have also presented an implementation of a
narrowing strategy with rewriting. Although their main motivation was a space sav-
ing implementation by sharing common parts of different solutions in narrowing
derivations, they have also presented an interesting technique to identify reducible
subterms. Their technique is based on demons which are attached to subterms and
wait for sufficient instantiation of their arguments. The correctness of their method
is unclear since it depends on a particular firing strategy for the demons. Moreover,
they generate a large number of demons because a demon is created for each poten-
tially applicable rule at each subterm of the goal. These demons are not deleted even
if the corresponding subterm has no connection to the goal (e.g., if the term (X+Y)*0
is simplified to 0, the demons corresponding to the subterm (X+Y) could be deleted).
On the contrary, we will present an incremental rewriting algorithm which exactly
implements a normalizing narrowing strategy. The overhead of this algorithm is
quite small and the algorithm can be integrated in compiler-based implementations
of functional-logic languages [Han91, Loo91].

In the next section we recall basic notions and results from term rewriting and
narrowing. Our optimization techniques together with an incremental rewriting al-
gorithm are presented in Section 3, and techniques for an efficient implementation
of this algorithm are discussed in Section 4. Two extensions of this algorithm to
non-linear rules and rules with nested functions on the left-hand side are shown in
Section 5 and 6, respectively.

2 Preliminaries

In this section we recall basic notions of term rewriting [DJ90].

A signature is a set F of function symbols. Every f € F is associated with
an arity. Let X be a countably infinite set of variables. Then the set T(F,X) of
terms built from F and X is the smallest set containing X" such that f(¢1,...,t,) €
T(F,X) whenever f € F has arity n and t1,...,t, € T(F,X). We write f instead
of f() whenever f has arity 0. We call the terms t1,...,t, also argument terms of
f(t1,...,ty). The set of variables occurring in a term ¢ is denoted by Var(t). A term
is called linear if it does not contain multiple occurrences of the same variable. The
function symbol heading term ¢ is denoted by Head(t).

The notion of subterm is defined through the notion of position. The set O(t) of
positions in a term ¢ is inductively defined by

_ 4 if t € X
o) = {{A}U{i.ﬂ'|lgignandﬂ'e(’)(ti)} ift=f(tr,...,tn)

Hence positions are sequences of natural numbers. For the sake of readability we
omit the last A in nonempty sequences of natural numbers, i.e., we write 1.2 instead
of 1.2.A. Positions are partially ordered by the prefix ordering <, i.e., # < 7' if there
is a sequence p with mop = 7'. We write 7 < 7’ if # < 7’ and 7 # «'. Disjoint

positions 7, 7" are denoted by 7 || 7’ (i.e., neither # < 7’ nor 7’ < 7). We call a
position m mazimal (in a set of positions) if there is no position 7’ with 7 < #'.
A position © € O(t) denotes the subterm t|, of ¢, i.e.,

Hy = t ifr=A
T bl it = f(t1,...,tn) and T =i’

If 7 € O(t), then t[s], denotes the result of replacing the subterm t|, by the term s,
ie.,

; s ifr=4
Bl = b1, sl b)) it = (b,) and 7 = i

A substitution o is a mapping from X into T (F,X) such that the set {z €
X |o(x) # =z} is finite. We frequently identify a substitution o with the set
{z — o(x) | o(z) # x}. Substitutions are extended to morphisms on 7T (F,X) by
o(f(ti,...,tn)) = f(o(t1),...,0(tn)) for every term f(t1,...,t,). A unifier of two
terms s and ¢ is a substitution o with o(s) = o(t). A unifier ¢ is called most general
(mgu) if for every other unifier o’ there is a substitution ¢ with ¢’ = ¢ o o (concate-
nation of o and ¢). Most general unifiers are unique up to variable renaming. By
introducing a total ordering on variables we can uniquely choose the most general
unifier of two terms.

A rewrite rule | — r is a pair of terms [, r satisfying | ¢ X and Var(r) C Var(l)
where [and r are called left-hand side and right-hand side, respectively. A rewrite
rule is called left-linear if the left-hand side is linear, otherwise it is called non-
linear. The argument terms of a rewrite rule are the argument terms of the left-hand
side. A rewrite rule is called a wvariant of another rule if it is obtained by a unique
replacement of variables by other variables. A term rewriting system R is a set of
rewrite rules. In the following we assume a given term rewriting system R.

A rewrite step is an application of a rewrite rule to a term, i.e., t =% s if there
exist a position m € O(t), a rewrite rule I — r and a substitution ¢ with t|, = o(l)
and s = t[o(r)]r. In this case we say t is reducible (at position 7). A term ¢ is called
irreducible or in normal form if there is no term s with ¢t = s. A substitution o is
called irreducible or normalized if o(x) is in normal form for all variables z € X'.

—% denotes the transitive-reflexive closure of the rewrite relation —+%. R is called
terminating if there are no infinite rewriting sequences t; -5 to »>g t3 2 r -+~. R
is called confluent if for all terms ¢, t1, to with t =% t; and ¢ =% o there exists a
term t3 with ¢t1 —, ¢3 and t» —% ¢3. A terminating and confluent term rewriting
system R is called canonical.

If R is canonical, we can decide the validity of an equation s = ¢ (where =
denotes validity w.r.t. the equations {I =r |l = r € R}) by computing the normal
form of both sides using an arbitrary sequence of rewrite steps. In order to solve
an equation, we have to find appropriate instantiations for the variables in s and ¢.
This can be done by narrowing. A term t is narrowable into a term t' if there exist
a non-variable position m € O(t) (i.e., t|x ¢ X), a variant I — r of a rewrite rule
and a substitution o such that o is a mgu of t|, and [and ' = o(¢[r];). In this case

we write £ ~ [, o] t' or simply ¢ ~», t'. For variables x € Var(t) with o(z) # z
we say x is bound in the narrowing step t ~, t'. If there is a narrowing sequence
ty ~gy Lo gy o~ by, We write £ ~% ¢, With o =0, 0---00300].

Narrowing is able to solve equations w.r.t. R. For this purpose we introduce two
new function symbols =’ and true and add the rewrite rule z =’ z — true to R.
The following theorem states soundness and completeness of narrowing.

Theorem 1 ([Hul80]). Let R be a canonical term rewriting system.

1. If s =" t ~* true, then o(s) =g o(t).
2. If 0'(s) =g o'(t), then there exist a narrowing derivation s =" t ~* true and a
subsitution ¢ with ¢p(o(x)) =g o'(z) for all x € Var(s) U Var(t).

Since this simple narrowing procedure (enumerating all narrowing derivations) has
a huge search space, several authors have improved it by restricting the admissi-
ble narrowing derivations. For instance, Hullot [Hul80] has proved completeness of
basic narrowing where a narrowing step in a position introduced by a substitution
is forbidden. Fribourg [Fri85] has proposed innermost narrowing where narrowing
is performed from innermost to outermost positions (this is only complete for to-
tally defined functions), and Holldobler [H5189] has combined innermost and basic
narrowing (which is complete also for partially defined functions).

Another improvement of simple narrowing is normalizing narrowing [Fay79)
where the term is rewritten to normal form before a narrowing step is applied.
This optimization is important since it prefers deterministic computations: rewrit-
ing a term to normal form can be done in a deterministic way since every rewriting
sequence gives the same result (because R is canonical) whereas different narrowing
steps may lead to different solutions and therefore all admissible narrowing steps
must be considered. Hence in a sequential implementation rewriting can be effi-
ciently implemented like reductions in functional languages whereas narrowing steps
need costly backtracking management like in Prolog. For instance, if the equation
s =g t is valid, normalizing narrowing will prove it by a pure deterministic compu-
tation (reducing s and ¢ to the same normal form) whereas simple narrowing would
compute the normal form of s and ¢ by costly narrowing steps.

Normalizing narrowing can also be combined with the other optimizations men-
tioned before. Rety [Ret87] has proved completeness of normalizing basic narrow-
ing, Fribourg [Fri85] has proposed normalizing innermost narrowing and Holldobler
[H6189] has combined innermost basic narrowing with normalization. Because of
these important advantages, normalizing narrowing is the foundation of several pro-
gramming languages which combines functional and logic programming like SLOG
[Fri85] or ALF [Han91]. However, there is one problem with normalizing narrowing.
Since the entire term or equation must be normalized before a narrowing step is ap-
plied, the normalization process may be very costly especially if only small parts of
the term are influenced by the previous narrowing step. Therefore we present in the
next section an incremental rewriting algorithm which computes the normal form of
a term after a narrowing step and takes advantage of the fact that the term was in
normal form before the application of the last narrowing step.

3 The incremental rewriting algorithm

In this section we will present an algorithm which computes the normal form of
a term after a narrowing step and uses the fact that the narrowed term was in
normal form. In the following we assume that the given term rewriting system R is
canonical. Thus we can rewrite a term to normal form using an arbitrary strategy,
and in the following we apply rewrite steps from innermost to outermost positions.
Our method of optimizing the rewriting process after a narrowing step is based on
two observations:

Starting condition: If the term ¢ is in normal form and we apply a narrowing step
at position 7 in ¢ giving ¢/, then, in order to compute the normal form of #', we
have to rewrite the subterm ¢'|; (since the instantiated right-hand side of the
applied rule may be not in normal form) and all subterms of ¢ where a variable
of t has been bound in the narrowing step. All other subterms of ¢’ (except those
containing the subterms mentioned in the previous sentence) are in normal form
since ¢ was in normal form.

Stopping condition: Since we perform rewriting in an innermost manner, we try
to apply a rewrite rule to a subterm after computing the normal form of its
argument terms. But if no rewrite rule is applicable to any argument term, then
we need not try to apply a rewrite rule to this subterm in order to compute
the normal form after a narrowing step (this is only true under some additional
conditions, see below).

The following example shows the optimized normalization process using these two
conditions.

Ezxample 1. The following rewrite rules are given:

f(a) - b
gla) - b
h(a,X,b) — a

The term h(f(X),g(£(Y)),f(g(X))) is in normal form. If we apply the first rule
to the subterm f(X) in a narrowing step, the variable X is bound to a and the
narrowed term is h(b,g(£(Y)),f(g(a))). The starting condition tells us that we
must rewrite the first argument b (the narrowed subterm) and the subterm g(a)
(since here a variable has been bound). Rewriting g(a) gives h(b,g(£(Y)),f (b)),
but there is no rewrite rule applicable to the subterms b and f (b). Hence, by the
stopping condition, we can terminate the normalization process without trying to
apply rewrite rules to the subterms £ (Y), g(£(Y)) and h(b,g(£(Y)),f(b)). This
can save a lot of unnecessary rewrite attempts if the second argument is a large term
(instead of g(£(Y))) or the term is embedded in a larger one. O

The starting condition is justified by the following lemma.

Lemma 2 (Starting lemma). Let t be a term in normal form, x € Var(t) and
o ={z — t'} be a substitution with t' in normal form. If o(t) is reducible at position
m, then m € O(t) and z € Var(t|,).

Proof. Let o(t) be reducible at position m. Assume 7 ¢ O(t). Since 7 € O(o(t)) and
o (t) reducible at position , ¢ must be reducible in contradiction to our assumptions.
Therefore = € O(t).

Now assume that = ¢ Var(t|;). Since o replaces only variable z, we have t|, =
o(t)|x, i-e., t is also reducible at position 7 in contrast to our assumptions. Therefore
x € Var(t|r). |

The lemma can easily be extended to substitutions which replace more than one
variable. Note that if the substituted term ¢’ is not in normal form, then 7 € O(t)
is not implied by the fact that o(t) is reducible at position 7 since the reduction
may be performed in the substituted term ¢'. But the important consequence of this
lemma is that rewriting in a subterm is unnecessary if this subterm is not influenced
by the narrowing substitution.

The stopping condition expresses the fact that we can stop the rewriting process
in one path of the term if no rewrite rule is applicable at a distinct position. The
next lemma shows that this is true under additional conditions.

Lemma 3 (Stopping lemma). Let t and s be terms in normal form, s ¢ X, © €
O(t) with t|. € X and all rewrite rules be left-linear. If the head symbol Head(s)
does not occur in an argument term of any rewrite rule, then t[s], is in normal form.

Proof. Assume that t' = #[s]; is not in normal form. Then there is a rule [— r,
a position 7' € O(t') and a substitution o with ¢'|» = o(l). We distinguish the
following cases:

1. 7 < 7', ie., there exists p with 7' = 70 p: Then o(l) = t'|+ = t'|z0p = $],-
Hence s is reducible which contradicts our assumption.

2. 7' < 7, e, m = 7' op for some nonempty p: From t'|» = o(l) we can infer
o(l)], = s. Since the head symbol Head(s) does not occur in an argument
of I, s must belong to the substitution o, i.e., there exists y € Var(l) with
o(y) = ---s---. Now replace s by the variable ¢|, in o(y) and denote this new
substitution by ¢'. Then t|,» = o¢'(l) since [is linear. Hence ¢ is reducible in
contrast to our assumption.

3. m || «": Then t|p = t'|x» = o(l) since ¢ and ¢’ differ only at position 7. Hence ¢
is reducible in contrast to our assumption.

Therefore our assumption is wrong and thus ¢[s]; must be in normal form. a

This lemma, is not true if a rewrite rule is not left-linear. For instance, if there is the
rule

£(Y,Y) - Y

then £(1,X) and 1 are terms in normal form, but f(1,1) is not in normal form.
Fortunately, most functional programs are written with the left-linearity condition,
but we will also discuss a solution for general term rewrite rules in Section 5.

The relation between the stopping lemma and the stopping condition will be
clarified by the following lemma.

Lemmad4. Let t be a term in normal form, = € O(t), © a variable and all rewrite
rules be left-linear. Then t[z], is also in normal form.

Proof. Assume that t' = t[z], is not in normal form. Then there is a rule [— r,
a position 7' € O(t') and a substitution o with ¢'|» = o(l). We distinguish the
following cases:

1. # < 7': Then © = 7’ since t'|; is a variable. Because t'|» = z, | must be a
variable which contradicts our assumptions about rewrite rules (otherwise, if we
allow rewrite rules I — r with [€ X', this rule would also be applicable to ¢ at
position).

2. ' < m, ie., m =7’ op for some nonempty p: Because t'|, = = and [is a linear
term, we can modify o to ¢’ such that o'(l) = t|,+ (replace one occurrence of x
by t| in the codomain of o). Hence ¢t is reducible in contrast to our assumption.

3. 7 || «': Since t and ¢’ differ only at position 7, t| = ¢'|» = o(l). Hence t is
reducible in contrast to our assumption.

a

Lemma 3 and Lemma 4 imply the correctness of the stopping condition: if a sub-
term is in normal form and the term “outside” the subterm is also in normal form,
then the entire term is in normal form provided that all rules are left-linear and
do not contain the head symbol of the subterm in an argument term. The last re-
striction seems to be very strong for general term rewriting systems. But in most
functional logic languages (SLOG [Fri85], K-LEAF [BGL*87], BABEL [MR92], ALF
[Han90] etc.) a distinction is made between function symbols to construct data terms
(called constructors) and function symbols to operate on data terms (called defined
functions). This is also the case for pure functional languages like ML [HMMS86] or
Miranda [Tur85]. The partition of the set of functions symbols into constructors and
defined functions comes with a restriction on the set of rules:

(*) Each rule must define a unique function, i.e., the left-hand side of the
rule must contain a defined function as the head symbol and all argument
terms contain variables and constructors but no defined function.!

With this restriction it is clear that a subterm is reducible only if it contains a
defined function at the top. Therefore positions with constructor symbols need not
be considered in the rewriting process (this is essential for an efficient implementation
of such languages [Han91]). In this situation the condition on occurrences of function
symbols in argument terms (in the stopping lemma) is no real restriction: since we
try to apply rewrite rules only to subterms with a defined function symbol at the
top, the occurrence condition of Lemma 3 is always satisfied if the program satisfies
condition (*).

For the rest of this section we assume that the set of all function symbols is
divided into a set C of constructors and a set D of defined function symbols and all

! We do not consider equations between constructor terms which are admissible in some
languages.

rewrite rules satisfy condition (*) (see Section 6 for a relaxation of this requirement).
The following algorithm describes the optimized rewriting process after a narrowing
step. We assume that rewriting is performed using an innermost strategy, but this
is not essential since we can use any strategy because of the canonicity of the term
rewriting relation. In the description we use a set O of positions to describe the
subterm positions where we have to try to apply a rewrite rule. The set is initialized
in the narrowing step and manipulated during the rewriting process.

Algorithm: Perform a narrowing step and compute the normal form

Input: Term t in normal form, narrowing position 7y and rule ly — r¢ such that
t|z, and lo are unifiable with mgu oy

Output: Normal form of oo (¢[ro]x,)

Compute the mgu og of t|, and Iy
t':= oo (t[ro]no)
O := funpos(t',m)
if Head(t'|,) € C then O := O U father(t',m)
B :={r € O(t) | Head(t|z) € D and t|, contains variables bound by oq
and 7 maximal with this property}
6. 0:=0U U funpos(t',)
TeEB
7. while O # ()
do let 7 be a maximal position in O
0:=0—{n}
if there is a rewrite rule [— r and substitution o with |, = o(I)
then ¢ :=t'[o(r)]x
O :=0U funpos(t',m)
if Head(t'|;) € C then O := O U father(t',)

oL W

where funpos(t,m) = {m € O(t) | # <7, and Head(t|r,) € D}
0 ifr=4

and father(t,m) = {7} if 7 =a'.n and Head(t|) € D
father(t,n') if 7 = 7'.n and Head(t|) € C

The first two steps apply the narrowing rule to the given term. Step 3 initializes
the set O with the positions of the instantiated right-hand side of the applied rule.
The addition of the father position in step 4 is necessary since the rewriting process
can only be terminated if the normalized subterm has a defined function symbol
at the top (by condition (*) and Lemma 3). Step 5 computes the potential rewrite
positions by Lemma 2, i.e., the subterm positions where a variable has been bound.
Note that only the maximal positions are stored since the smaller positions (nearer
to the root) are added during rewriting by the function father. Step 6 adds all
occurrences of defined functions in these subterms. This is necessary because the
unifier oy is not normalized in general. If we use a narrowing strategy which ensures

that the narrowing substitutions are always normalized like the innermost strategy
of SLOG [Fri85], then we can simplify step 6 to the assignment

O := 0 U B

Step 7 describes the rewriting process where rewrite rules are only applied at posi-
tions of the restricted set O. The choice of a mazimal position in the rewriting loop
ensures that rewriting is performed in an innermost manner. If a rewrite rule can
be applied and the instantiated right-hand side has a constructor at the top, the
next outermost position is added to O since in this case we cannot terminate the
rewriting process by Lemma 3.

The correctness of this algorithm follows from the previous lemmas:

Theorem 5. If all rewrite rules are left-linear and satisfy condition (*), then the
above algorithm is correct, i.e., it computes the normal form after the narrowing
step.

Proof. Before rewriting is started, the position set O is initialized with the subterm
positions of the instantiated right-hand side of the narrowing rule and the positions
where a variable has been bound. Rewriting is not possible at other positions by
the previous lemmas. Note that not all positions from the root to the subterms are
stored (which must be correctly done by Lemma 2) but only the maximal positions:
the “father” of a position is only added to O if a rewrite step is possible and yields
a constructor symbol at this position. Otherwise, it is not necessary to try rewriting
at the father position by Lemma 3 and Lemma 4. a

Ezample 2. We show a computation of the algorithm w.r.t. the rewrite rules of Exam-
ple 1, i.e., the constructors are C = {a, b} and the defined functions are D = {£f, g, h}.
The term ¢t = h(g(£(X)),g(£(Y)),f(g(X))) is in normal form w.r.t. these rules.
We perform a narrowing step with rule £ (a) —b at position 1.1 (subterm £ (X)).

— The mgu of /1.1 and £ (a) binds X to a.

— The narrowed term is ¢’ = h(g(b) ,g(£(Y)),f(g(a))).

— The position set computed after step 6 is O = {1,3.1}, i.e., the terms g(b) and
g(a) (since the arguments of these terms have changed).

— No rewrite rule is applicable at position 1: O = {3.1}.

— Rewrite rule g(a)—b is applicable at position 3.1: ' = h(g(b) ,g(£(Y)),£(b))
and O = {3}

— No rule is applicable at position 3: O = 0.

Now we have computed the new normal form h(g(b),g(£(Y)),f(b)). Note that
without our optimizations we would also try to apply all rewrite rules at positions
2.1, 2 and A. |

We cannot state a general result for the efficiency improvement of our optimizations
because this strongly depends on the selected examples. In some cases there is no
improvement (if the binding of variables has the effect that all defined function
symbols can be rewritten) where in other cases we may have a dramatic improvement

10

(for instance, if Y is replaced by a large term containing function symbols but not the
variable X). But we want to remark that the overhead introduced by this incremental
rewriting technique is quite small (only during variable binding in a narrowing step
we have to store new information in comparison to a complete innermost rewriting
derivation). For some typical so-called generate-and-test programs (like permutation
sort [Fri85] or generation of mobiles [Han92]) where narrowing generates a part of
the solution and rewriting tests whether it is a solution we can avoid up to 70% of
unnecessary rewriting attempts.

4 TImplementation of the incremental rewriting algorithm

The reader may be under the impression that the implementation of our incremental
rewriting algorithm is too complex for an efficient execution in a functional logic
language. But this depends on the chosen narrowing strategy and therefore we will
give some hints for an efficient implementation of our algorithm.

First of all the function funpos seems to be costly because it requires a search
through instantiated subterms after each narrowing or rewriting step (in step 3, 6 and
7 in the algorithm). We can avoid this dynamic search by using a narrowing strategy
which ensures that rewriting inside narrowing substitutions is not performed. For
instance, the innermost strategy of SLOG [Fri85] and the innermost basic strategy
[H6189] of ALF [Han91] have this property.? In this case the compiler can determine
all positions of defined function symbols in the right-hand side of a rewrite rule
[Han91] in step 3 and 7, and step 6 simplifies to O := O U B. Hence we can avoid
the dynamic search in the funpos function calls.

Secondly, it seems to be disturbing that the algorithm is based on the manage-
ment of an explicit set O of rewriting positions. But this causes no overhead in
practice since the implementation of the functional logic language ALF [Han91] is
based on an explicit stack for storing positions. Moreover, this explicit management,
of positions is the key for a simple but efficient implementation based on an extension
of the Warren Abstract Machine [War83]. Hence our incremental rewriting algorithm
can be implemented on the basis of the ALF implementation if the structure of the
position stack is modified such that the father function is efficiently computable
(in the current implementation there is no path from “son” to “father” nodes in the
term representation).

Hence the only remaining critical operation is the computation of positions where
a variable has been bound in the narrowing step (set B in step 5). This operation
is close to the Prolog-II predicate freeze and therefore we can use a similar im-
plementation technique [Boi86]. The predicate freeze (X,G) delays the execution of
the goal G until the variable X is bound to a non-variable term. This behaviour can

2 In the innermost basic strategy the narrowing substitutions are not normalized in general.
If the goal is reducible inside a narrowing substitution, we can safely cut this derivation
without loosing completeness (Rety’s SL-test [Ret87]). But a narrowing strategy without
this SL-test can be efficiently implemented in a compiler-based system [Han90, Han91].
Therefore rewriting is never performed inside narrowing substitutions in ALF.

11

be implemented by connecting the variable X to the list of goals G which should be
executed if X is instantiated. The unification procedure must be modified such that
the goal list associated to a frozen variable X is executed if X is bound to a non-
variable term [Boi86]. A similar technique can be used to implement step 5 of our
incremental rewriting algorithm. For each goal variable x we associate the position
set

B(z) := {7 € O(t) | Head(t|z) € D,z € Var(t|,), ™ maximal with this property} .

This set can be simply built up during the construction of a new term and updated
during rewriting and unification of terms. If a variable x is bound to a term in a
narrowing step, we change the binding algorithm so that the associated positions
B(x) are added to the current position set O. This implements steps 5 and 6 of our
algorithm.

Note that this implementation is very similar to Naish’s proposal [Nai91] for
translating function definitions into NU-Prolog predicates with particular “when”
declarations. The “when” declarations ensure that a function call is evaluated when
the arguments are sufficiently instantiated. Hence Naish’s method implements a
normalization process for a restricted class of rewrite rules. Since Naish does never
instantiate goal variables in an application of a rewrite rule (i.e., narrowing is not
included in his proposal), his operational semantics is incomplete w.r.t. the standard
declarative semantics for Horn clause logic with equality in contrast to our approach.

There is one pitfall in our implementation. In contrast to the usage of freeze
in Prolog-IT or when declarations in NU-Prolog, in our case it is possible that some
part of the goal may be deleted during the normalization process if a rewrite rule
I — r with Var(r) # Var(l) is applied. For instance, the application of the rule
X*0—0 to the term (Y+2)*0 deletes the subterm (Y+2). From an operational point
of view this is a positive effect in comparison to pure logic languages because such
deleting rules reduce the search space (narrowing the subterm (Y+2) is no longer
necessary). But from an implementational point of view such deleting rules cause a
complication: we must update the set B(x) for each variable z occurring in a deleted
subterm (otherwise the set O will be inconsistent). Consequently, for deleting rules
the compiler must generate additional instructions which updates the position sets
associated to variables occurring in the deleted terms.

5 Non-linear rewrite rules

If one of the rules of the given term rewriting system R has a non-linear left-hand
side, the stopping condition of Section 3 cannot be applied. In such a case we can only
restrict the set of positions where we have to start the rewriting process (Lemma 2),
but then we have to try all positions up to the root even if the innermost subterms
are in normal form.

Example 3. Consider the following term rewriting system

£(X,X) — b

12

g(a) — a
h(b) — b

and the irreducible term
f(hh(g(¥)))),hh()))) .

We can apply a narrowing step at position 1.1.1.1 using the second rule. This nar-
rowing step binds variable Y to a and yields the term f (h(h(h(a))),h(h(h(a)))).
Although the subterms a and h(a) are in normal form, we cannot terminate the
rewriting process since an application of the first rewrite rule at position A yields
the term b in normal form. a

In order to avoid such problems we may restrict ourselves to left-linear rules as done
in other functional logic languages like K-LEAF [BGL*87] or BABEL [MR92]. But
we can also handle non-linear rules by a simple extension of our incremental rewriting
algorithm. Since the only positions where a rewrite rule is applicable in contrast to
the stopping condition are positions with an applicable non-linear rewrite rule (see
proof of Lemma 3), we simply add these “problematic” positions to the set O in
the algorithm. For this purpose we call a function symbol f non-linear if there is a
rewrite rule [— r with Head(l) = f and [is not linear. Now we add after step 6 in
the incremental rewriting algorithm the following extension of the set O:

O :=0U{r € Ot') | Head(t'|;) is a non-linear function symbol}

i.e., we simply add the positions with non-linear functions to O. This has the effect
that rewriting is also tried at these positions.

Example 4. Consider the term rewriting system of Example 3 and the term
f(h(h(h(g(¥)))),h(h(h(Y)))) .

After the narrowing step at position 1.1.1.1 (giving the term f(h(h(h(a))),
h(h(h(a))))) the set O is initialized to

0={4,1.11,2.1.1}

by the modified algorithm. Since the term is irreducible at positions 1.1.1 and 2.1.1,
a rewrite rule is applied at the remaining position A which is successful and yields
the term b. |

6 Rules with nested functions symbols

In Section 3 we have required the distinction between constructors and defined func-
tion symbols in order to use the stopping condition. In the rewrite rules we have
the restriction (*) that argument terms do not contain defined function symbols.
Although this restriction seems to be reasonable and is also used in many functional
logic languages like K-LEAF [BGL"87], SLOG [Fri85] or BABEL [MR92], in some
cases it is useful to have general rewrite rules which are only used to compute the

13

normal form of a term (therefore the language ALF [Han91] allows such rules). For
instance, Fribourg [Fri85] has argued that rewriting with inductive axioms can re-
duce the search space and is justified if someone is interested in ground-valid answers
(i.e., answers which are valid for each ground substitution applied to it). A typical
inductive axiom is rev(rev(L)) = L if rev denotes the function which reverses a
list. If we allow rules which do not satisfy restriction (*), the stopping condition
cannot be applied as in the incremental rewriting algorithm.

Example 5. Consider the rewrite rule
flg(a)) — a

(where f and g are defined function symbols) and a narrowing step where the rule
h(a)—a is applied to the term k(h(X),f(g(X))) giving the term k(a,f (g(a))).
Suppose that the term g(a) is irreducible. In this case our incremental rewriting
algorithm will not try to reduce the subterm f (g(a)). However, this must be done
in order to compute the normal form of the entire term. O

If we want to handle rules with defined function symbols in argument terms, it is
possible to extend our incremental rewriting algorithm to do this. The essential idea
is to add positions to the set O if the current subterm is irreducible but has a head
symbol which occurs in an argument term of a rewrite rule. For this purpose we
define the level of a defined function symbol f as the set of position depths where f
occurs in an argument term of a rule. To be more precise,

level(f) = {depth(w) | there is a rule [— r and position 7= # A with Head(l|z) = f}

0 ifr=4
where depth(ﬂ') = { 1+ depth(w') ifr=a'n

If a subterm t|, of a term is in normal form but there exists i € level(Head(t|,)),
then the entire term ¢ may be reducible at the i-th ancestor of 7. Thus we must add
this position to the position set O. Hence we define the i-th ancestor of a position 7
by

s ifi=0
anc(i,m) = {anc(i—l,ﬂ") ifi>0and 7 =7'".n
undefined ifi>0and 7w =4

and add the following else-branch to the first if-statement in step 7 in the incremental
rewriting algorithm:

else O := O U {anc(i,n) | i € level(Head(t'|r)) and anc(i,n) is defined}

Example 6. Consider Example 5 where k(a,f (g(a))) is the term after the narrowing
step and O = {4,2.1}. Since this term is irreducible at position 2.1 and level(g) =
{1}, our modified incremental rewriting algorithm extends the position set O by
the position 2 = anc(1,2.1). Thus the next rewriting step is performed at position
2 (subterm f(g(a))) which is necessary to compute the normal form of the entire
term. O

14

7 Conclusions

We have presented a useful optimization for functional logic languages based on
narrowing with normalization. This optimization is based on the observation that
rewriting can be restricted to a small number of positions after a narrowing step since
the term was in normal form before the narrowing step has been applied. We have
given two sufficient criteria for the optimization: the starting condition restricts the
number of term positions where the rewriting process is initiated, and the stopping
condition yields a criterion for the early termination of the rewriting process. Our
presented incremental rewriting algorithm combines both conditions. We have also
discussed techniques for an efficient implementation of the algorithm and extensions
to deal with rewrite rules which have non-linear left-hand sides and nested function
symbols on the left-hand side.

The presented algorithm is not optimal in the sense that it avoids all unnecessary
rewriting attempts. For instance, consider the following term rewriting system

f(cX)) — X
glc(a)) — a

and the narrowing step

h(f(Y),g(Y)) M, £(e (X)) =X, {T=c(X)) h(X,g(C(X)))-

Now our incremental rewriting algorithm attempts to apply a rewrite rule at posi-
tion 2 since Y has been bound to c(X) in the subterm g(Y). But a rewrite rule is
not applicable at this position because the argument term c(X) is not sufficiently
instantiated. To avoid unnecessary rewrite attempts of this kind one can implement
rewrite rules as demons waiting for sufficient instantiation of the arguments of a
subterm [JD89]. In order to reduce the number of demons the rules may be trans-
lated into rules with a uniform structure on the left-hand side [MKLR90] so that
only one demon is attached to each potentially reducible subterm. An integration of
such techniques in a compiler-based implementation of a functional-logic language
is an interesting topic for future research.

Acknowledgements. The author is grateful to Michael Gollner, Rudolf Opalla and
Andreas Werner for interesting discussions and their comments on this paper.

References

[BGL'87] P.G. Bosco, E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. A complete
semantic characterization of K-LEAF, a logic language with partial functions.
In Proc. jth IEEE Internat. Symposium on Logic Programming, pp. 318-327,
San Francisco, 1987.

[BL86] M. Bellia and G. Levi. The Relation between Logic and Functional Languages:
A Survey. Journal of Logic Programming (3), pp. 217-236, 1986.

[Boi86] P. Boizumault. A general model to implement dif and freeze. In Proc. Third In-
ternational Conference on Logic Programming (London), pp. 585-592. Springer
LNCS 225, 1986.

15

[DJ90]

[DLS6]

[Fay79]

[Fri85]

[Han90]

[Han91]

[Han92]

[FIMMS6]
[H5189]
[Hul80]
[TD89)

[Loo91]

N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, Vol. B, pp. 243-320. Elsevier,
1990.

D. DeGroot and G. Lindstrom, editors. Logic Programming, Functions, Rela-
tions, and Equations. Prentice Hall, 1986.

M.J. Fay. First-Order Unification in an Equational Theory. In Proc. 4th Work-
shop on Automated Deduction, pp. 161-167, Austin (Texas), 1979. Academic
Press.

L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on
Clausal Superposition and Rewriting. In Proc. IEEE Internat. Symposium on
Logic Programming, pp. 172-184, Boston, 1985.

M. Hanus. Compiling Logic Programs with Equality. In Proc. of the 2nd Int.
Workshop on Programming Language Implementation and Logic Programming,
pp- 387-401. Springer LNCS 456, 1990.

M. Hanus. Efficient Implementation of Narrowing and Rewriting. In Proc. Int.
Workshop on Processing Declarative Knowledge, pp. 344-365. Springer LNAI
567, 1991.

M. Hanus. Improving Control of Logic Programs by Using Functional Logic
Languages. In Proc. of the 4th International Symposium on Programming Lan-
guage Implementation and Logic Programming. Springer LNCS, 1992.

R. Harper, D.B. MacQueen, and R. Milner. Standard ML. LFCS Report Series
ECS-LFCS-86-2, University of Edinburgh, 1986.

S. Hoélldobler. Foundations of Equational Logic Programming. Springer LNCS
353, 1989.

J.-M. Hullot. Canonical Forms and Unification. In Proc. 5th Conference on
Automated Deduction, pp. 318-334. Springer LNCS 87, 1980.

A. Josephson and N. Dershowitz. An Implementation of Narrowing. Journal of
Logic Programming (6), pp. 57-77, 1989.

R. Loogen. From Reduction Machines to Narrowing Machines. In Proc. of the
TAPSOFT ’91, pp. 438-457. Springer LNCS 494, 1991.

[MKLR90] J.J. Moreno-Navarro, H. Kuchen, R. Loogen, and M. Rodriguez-Artalejo. Lazy

[MR92]

[Nai9l]

[Ret87]

[Sla74]

[Tur85]

[War83]

Narrowing in a Graph Machine. In Proc. Second International Conference on
Algebraic and Logic Programming, pp. 298-317. Springer LNCS 463, 1990.

J.J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic Programming with
Functions and Predicates: The Language BABEL. Journal of Logic Program-
ming, Vol. 12, pp. 191-223, 1992.

L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, pp. 15—26.
Springer LNCS 528, 1991.

P. Rety. Improving basic narrowing techniques. In Proc. of the Conference on
Rewriting Techniques and Applications, pp. 228-241. Springer LNCS 256, 1987.
J.R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Com-
mutativity, and Associativity. Journal of the ACM, Vol. 21, No. 4, pp. 622-642,
1974.

D. Turner. Miranda: A non-strict functional language with polymorphic types.
In Conference on Functional Programming Languages and Computer Architec-
ture, Nancy, France, pp. 1-16. Springer LNCS 201, 1985.

D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, Stanford, 1983.

16

