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Abstra
t. The operational semanti
s of many proposals for the integration

of fun
tional and logi
 programming languages is based on narrowing. In

order to redu
e the sear
h spa
e and to prefer deterministi
 
omputations,

the goal is rewritten to normal form between narrowing steps (normalizing

narrowing). This rewriting pro
ess may be 
ostly sin
e the entire goal must

be redu
ed to normal form after ea
h narrowing step. We propose a useful

optimization of the rewriting pro
ess: sin
e the goal is in normal form before

the narrowing step is applied and the narrowing step 
hanges only small parts

of the goal, rewriting 
an be restri
ted to a small number of positions in the

narrowed goal in order to 
ompute a new normal form. This optimization


an speed up the exe
ution me
hanism of programming languages based on

normalizing narrowing like SLOG or ALF.

1 Introdu
tion

During re
ent years a lot of proposals have been made to amalgamate fun
tional

and logi
 programming languages [DL86, BL86℄. A sound and 
omplete operational

semanti
s of su
h integrated languages is based on narrowing, a 
ombination of the

redu
tion prin
iple of fun
tional languages and the resolution prin
iple of logi
 lan-

guages. Narrowing was originally introdu
ed in automated theorem proving [Sla74℄.

In our 
ontext narrowing is used to solve equations by �nding appropriate values for

variables o

urring in arguments of fun
tions. This is done by unifying (rather than

mat
hing) an input term with the left-hand side of some rule and then repla
ing the

instantiated input term by the instantiated right-hand side of the rule. For instan
e,


onsider the following rules de�ning the addition of two natural numbers whi
h are

represented by terms built from 0 and s:

0 + N ! N

s(M) + N ! s(M + N)

We 
an solve the equation X+s(0) = s(s(0)) by a narrowing step with the se
ond

rule followed by a narrowing step with the �rst rule so that X is instantiated to s(0)

and the instantiated equation is redu
ed to s(s(0)) = s(s(0)) whi
h is trivially

true. Hen
e we have found the solution X 7!s(0) to the given equation.

In order to be 
omplete in general, ea
h rule must be uni�ed with ea
h non-

variable subterm of the given equation. This has the 
onsequen
e that the narrowing

method has a huge and in�nite spa
e even for simple programs. For instan
e, 
onsider



the previous rules for addition together with the following rules de�ning a sum

fun
tion on naturals:

sum(0) ! 0

sum(s(N)) ! s(N) + sum(N)

Then the narrowing method applied to the equation sum(X) = s(0) has an in�nite

sear
h spa
e due to the following in�nite narrowing derivation (the instantiation of

variables o

urring in the equation is re
orded at the derivation arrow):

sum(X) = s(0) ;

X 7!s(N1)

s(N1)+sum(N1) = s(0)

;

N1 7!s(N2)

s(s(N2))+(s(N2)+sum(N2)) = s(0)

;

N2 7!s(N3)

� � �

In order to redu
e the sear
h spa
e, narrowing 
an be 
ombined with rewriting

(evaluation of a term): Before a narrowing step is applied, the equation is rewritten

to normal form w.r.t. the given rules (thus this strategy is also 
alled normalizing

narrowing). This 
an avoid a lot of useless narrowing derivations. E.g., if we rewrite

the se
ond derived equation in the above example, we 
an immediately terminate

this narrowing derivation:

s(s(N2))+(s(N2)+sum(N2)) = s(0) !

�

s(s(N2+(s(N2)+sum(N2)))) = s(0)

The last equation 
annot be satis�ed sin
e the terms s(N2+(s(N2)+sum(N2))) and

0 are always di�erent be
ause there are no rules to redu
e the symbols s and 0.

Hen
e we 
an terminate the unsu

essful narrowing derivation at this point.

The integration of rewriting into the narrowing pro
ess has at least two advan-

tages:

1. The sear
h spa
e is redu
ed sin
e useless narrowing derivations 
an be de-

te
ted. As shown in [Fri85℄, [Han91℄ and [Han92℄ this has the 
onsequen
e that

fun
tional-logi
 programs are more eÆ
iently exe
utable than the equivalent

Prolog programs.

2. Deterministi
 
omputations are preferred. Sin
e we assume a 
on
uent and ter-

minating set of rules, normal forms are unique and 
an be 
omputed by any

simpli�
ation strategy. Therefore rewriting 
an be implemented as a determin-

isti
 
omputation pro
ess in 
ontrast to narrowing. Sin
e rewriting is exe
uted

before a narrowing step is performed, the goal is 
omputed in a deterministi


way as long as possible. The preferen
e of deterministi
 
omputations 
an save

a lot of time and spa
e as shown in [Han91℄.

But the integration of rewriting in narrowing derivations has also one disadvantage.

Sin
e the entire goal must be redu
ed to normal form after ea
h narrowing step,

the rewriting pro
ess may be 
ostly. Hen
e we propose a useful optimization of

the rewriting pro
ess: sin
e the goal is in normal form before the narrowing step is

applied and the narrowing step 
hanges only small parts of the goal, rewriting 
an be

restri
ted to a small number of positions in the narrowed goal in order to 
ompute

a new normal form. This optimization 
an speed up the exe
ution me
hanism of
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programming languages based on normalizing narrowing like SLOG [Fri85℄ or ALF

[Han90, Han91℄.

Josephson and Dershowitz [JD89℄ have also presented an implementation of a

narrowing strategy with rewriting. Although their main motivation was a spa
e sav-

ing implementation by sharing 
ommon parts of di�erent solutions in narrowing

derivations, they have also presented an interesting te
hnique to identify redu
ible

subterms. Their te
hnique is based on demons whi
h are atta
hed to subterms and

wait for suÆ
ient instantiation of their arguments. The 
orre
tness of their method

is un
lear sin
e it depends on a parti
ular �ring strategy for the demons. Moreover,

they generate a large number of demons be
ause a demon is 
reated for ea
h poten-

tially appli
able rule at ea
h subterm of the goal. These demons are not deleted even

if the 
orresponding subterm has no 
onne
tion to the goal (e.g., if the term (X+Y)*0

is simpli�ed to 0, the demons 
orresponding to the subterm (X+Y) 
ould be deleted).

On the 
ontrary, we will present an in
remental rewriting algorithm whi
h exa
tly

implements a normalizing narrowing strategy. The overhead of this algorithm is

quite small and the algorithm 
an be integrated in 
ompiler-based implementations

of fun
tional-logi
 languages [Han91, Loo91℄.

In the next se
tion we re
all basi
 notions and results from term rewriting and

narrowing. Our optimization te
hniques together with an in
remental rewriting al-

gorithm are presented in Se
tion 3, and te
hniques for an eÆ
ient implementation

of this algorithm are dis
ussed in Se
tion 4. Two extensions of this algorithm to

non-linear rules and rules with nested fun
tions on the left-hand side are shown in

Se
tion 5 and 6, respe
tively.

2 Preliminaries

In this se
tion we re
all basi
 notions of term rewriting [DJ90℄.

A signature is a set F of fun
tion symbols. Every f 2 F is asso
iated with

an arity. Let X be a 
ountably in�nite set of variables. Then the set T (F ;X ) of

terms built from F and X is the smallest set 
ontaining X su
h that f(t

1

; : : : ; t

n

) 2

T (F ;X ) whenever f 2 F has arity n and t

1

; : : : ; t

n

2 T (F ;X ). We write f instead

of f() whenever f has arity 0. We 
all the terms t

1

; : : : ; t

n

also argument terms of

f(t

1

; : : : ; t

n

). The set of variables o

urring in a term t is denoted by Var(t). A term

is 
alled linear if it does not 
ontain multiple o

urren
es of the same variable. The

fun
tion symbol heading term t is denoted by Head(t).

The notion of subterm is de�ned through the notion of position. The set O(t) of

positions in a term t is indu
tively de�ned by

O(t) =

�

f�g if t 2 X

f�g [ fi:� j 1 � i � n and � 2 O(t

i

)g if t = f(t

1

; : : : ; t

n

)

Hen
e positions are sequen
es of natural numbers. For the sake of readability we

omit the last � in nonempty sequen
es of natural numbers, i.e., we write 1:2 instead

of 1:2:�. Positions are partially ordered by the pre�x ordering �, i.e., � � �

0

if there

is a sequen
e � with � Æ � = �

0

. We write � < �

0

if � � �

0

and � 6= �

0

. Disjoint
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positions �; �

0

are denoted by � k �

0

(i.e., neither � � �

0

nor �

0

� �). We 
all a

position � maximal (in a set of positions) if there is no position �

0

with � < �

0

.

A position � 2 O(t) denotes the subterm tj

�

of t, i.e.,

tj

�

=

�

t if � = �

t

i

j

�

0

if t = f(t

1

; : : : ; t

n

) and � = i:�

0

If � 2 O(t), then t[s℄

�

denotes the result of repla
ing the subterm tj

�

by the term s,

i.e.,

t[s℄

�

=

�

s if � = �

f(t

1

; : : : ; t

i

[s℄

�

0

; : : : ; t

n

) if t = f(t

1

; : : : ; t

n

) and � = i:�

0

A substitution � is a mapping from X into T (F ;X ) su
h that the set fx 2

X j �(x) 6= xg is �nite. We frequently identify a substitution � with the set

fx 7! �(x) j �(x) 6= xg. Substitutions are extended to morphisms on T (F ;X ) by

�(f(t

1

; : : : ; t

n

)) = f(�(t

1

); : : : ; �(t

n

)) for every term f(t

1

; : : : ; t

n

). A uni�er of two

terms s and t is a substitution � with �(s) = �(t). A uni�er � is 
alled most general

(mgu) if for every other uni�er �

0

there is a substitution � with �

0

= � Æ� (
on
ate-

nation of � and �). Most general uni�ers are unique up to variable renaming. By

introdu
ing a total ordering on variables we 
an uniquely 
hoose the most general

uni�er of two terms.

A rewrite rule l ! r is a pair of terms l; r satisfying l 62 X and Var(r) � Var(l)

where l and r are 
alled left-hand side and right-hand side, respe
tively. A rewrite

rule is 
alled left-linear if the left-hand side is linear, otherwise it is 
alled non-

linear. The argument terms of a rewrite rule are the argument terms of the left-hand

side. A rewrite rule is 
alled a variant of another rule if it is obtained by a unique

repla
ement of variables by other variables. A term rewriting system R is a set of

rewrite rules. In the following we assume a given term rewriting system R.

A rewrite step is an appli
ation of a rewrite rule to a term, i.e., t !

R

s if there

exist a position � 2 O(t), a rewrite rule l ! r and a substitution � with tj

�

= �(l)

and s = t[�(r)℄

�

. In this 
ase we say t is redu
ible (at position �). A term t is 
alled

irredu
ible or in normal form if there is no term s with t!

R

s. A substitution � is


alled irredu
ible or normalized if �(x) is in normal form for all variables x 2 X .

!

�

R

denotes the transitive-re
exive 
losure of the rewrite relation!

R

.R is 
alled

terminating if there are no in�nite rewriting sequen
es t

1

!

R

t

2

!

R

t

3

!

R

� � �. R

is 
alled 
on
uent if for all terms t, t

1

, t

2

with t !

�

R

t

1

and t !

�

R

t

2

there exists a

term t

3

with t

1

!

�

R

t

3

and t

2

!

�

R

t

3

. A terminating and 
on
uent term rewriting

system R is 
alled 
anoni
al.

If R is 
anoni
al, we 
an de
ide the validity of an equation s =

R

t (where =

R

denotes validity w.r.t. the equations fl

:

= r j l ! r 2 Rg) by 
omputing the normal

form of both sides using an arbitrary sequen
e of rewrite steps. In order to solve

an equation, we have to �nd appropriate instantiations for the variables in s and t.

This 
an be done by narrowing. A term t is narrowable into a term t

0

if there exist

a non-variable position � 2 O(t) (i.e., tj

�

62 X ), a variant l ! r of a rewrite rule

and a substitution � su
h that � is a mgu of tj

�

and l and t

0

= �(t[r℄

�

). In this 
ase
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we write t ;

[�;l!r;�℄

t

0

or simply t ;

�

t

0

. For variables x 2 Var(t) with �(x) 6= x

we say x is bound in the narrowing step t ;

�

t

0

. If there is a narrowing sequen
e

t

1

;

�

1

t

2

;

�

2

� � �;

�

n�1

t

n

, we write t

1

;

�

�

t

n

with � = �

n�1

Æ � � � Æ �

2

Æ �

1

.

Narrowing is able to solve equations w.r.t. R. For this purpose we introdu
e two

new fun
tion symbols =

?

and true and add the rewrite rule x =

?

x ! true to R.

The following theorem states soundness and 
ompleteness of narrowing.

Theorem1 ([Hul80℄). Let R be a 
anoni
al term rewriting system.

1. If s =

?

t;

�

�

true, then �(s) =

R

�(t).

2. If �

0

(s) =

R

�

0

(t), then there exist a narrowing derivation s =

?

t;

�

�

true and a

subsitution � with �(�(x)) =

R

�

0

(x) for all x 2 Var(s) [ Var(t).

Sin
e this simple narrowing pro
edure (enumerating all narrowing derivations) has

a huge sear
h spa
e, several authors have improved it by restri
ting the admissi-

ble narrowing derivations. For instan
e, Hullot [Hul80℄ has proved 
ompleteness of

basi
 narrowing where a narrowing step in a position introdu
ed by a substitution

is forbidden. Fribourg [Fri85℄ has proposed innermost narrowing where narrowing

is performed from innermost to outermost positions (this is only 
omplete for to-

tally de�ned fun
tions), and H�olldobler [H�ol89℄ has 
ombined innermost and basi


narrowing (whi
h is 
omplete also for partially de�ned fun
tions).

Another improvement of simple narrowing is normalizing narrowing [Fay79℄

where the term is rewritten to normal form before a narrowing step is applied.

This optimization is important sin
e it prefers deterministi
 
omputations: rewrit-

ing a term to normal form 
an be done in a deterministi
 way sin
e every rewriting

sequen
e gives the same result (be
ause R is 
anoni
al) whereas di�erent narrowing

steps may lead to di�erent solutions and therefore all admissible narrowing steps

must be 
onsidered. Hen
e in a sequential implementation rewriting 
an be eÆ-


iently implemented like redu
tions in fun
tional languages whereas narrowing steps

need 
ostly ba
ktra
king management like in Prolog. For instan
e, if the equation

s =

R

t is valid, normalizing narrowing will prove it by a pure deterministi
 
ompu-

tation (redu
ing s and t to the same normal form) whereas simple narrowing would


ompute the normal form of s and t by 
ostly narrowing steps.

Normalizing narrowing 
an also be 
ombined with the other optimizations men-

tioned before. Rety [Ret87℄ has proved 
ompleteness of normalizing basi
 narrow-

ing, Fribourg [Fri85℄ has proposed normalizing innermost narrowing and H�olldobler

[H�ol89℄ has 
ombined innermost basi
 narrowing with normalization. Be
ause of

these important advantages, normalizing narrowing is the foundation of several pro-

gramming languages whi
h 
ombines fun
tional and logi
 programming like SLOG

[Fri85℄ or ALF [Han91℄. However, there is one problem with normalizing narrowing.

Sin
e the entire term or equation must be normalized before a narrowing step is ap-

plied, the normalization pro
ess may be very 
ostly espe
ially if only small parts of

the term are in
uen
ed by the previous narrowing step. Therefore we present in the

next se
tion an in
remental rewriting algorithm whi
h 
omputes the normal form of

a term after a narrowing step and takes advantage of the fa
t that the term was in

normal form before the appli
ation of the last narrowing step.
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3 The in
remental rewriting algorithm

In this se
tion we will present an algorithm whi
h 
omputes the normal form of

a term after a narrowing step and uses the fa
t that the narrowed term was in

normal form. In the following we assume that the given term rewriting system R is


anoni
al. Thus we 
an rewrite a term to normal form using an arbitrary strategy,

and in the following we apply rewrite steps from innermost to outermost positions.

Our method of optimizing the rewriting pro
ess after a narrowing step is based on

two observations:

Starting 
ondition: If the term t is in normal form and we apply a narrowing step

at position � in t giving t

0

, then, in order to 
ompute the normal form of t

0

, we

have to rewrite the subterm t

0

j

�

(sin
e the instantiated right-hand side of the

applied rule may be not in normal form) and all subterms of t

0

where a variable

of t has been bound in the narrowing step. All other subterms of t

0

(ex
ept those


ontaining the subterms mentioned in the previous senten
e) are in normal form

sin
e t was in normal form.

Stopping 
ondition: Sin
e we perform rewriting in an innermost manner, we try

to apply a rewrite rule to a subterm after 
omputing the normal form of its

argument terms. But if no rewrite rule is appli
able to any argument term, then

we need not try to apply a rewrite rule to this subterm in order to 
ompute

the normal form after a narrowing step (this is only true under some additional


onditions, see below).

The following example shows the optimized normalization pro
ess using these two


onditions.

Example 1. The following rewrite rules are given:

f(a) ! b

g(a) ! b

h(a,X,b) ! a

The term h(f(X),g(f(Y)),f(g(X))) is in normal form. If we apply the �rst rule

to the subterm f(X) in a narrowing step, the variable X is bound to a and the

narrowed term is h(b,g(f(Y)),f(g(a))). The starting 
ondition tells us that we

must rewrite the �rst argument b (the narrowed subterm) and the subterm g(a)

(sin
e here a variable has been bound). Rewriting g(a) gives h(b,g(f(Y)),f(b)),

but there is no rewrite rule appli
able to the subterms b and f(b). Hen
e, by the

stopping 
ondition, we 
an terminate the normalization pro
ess without trying to

apply rewrite rules to the subterms f(Y), g(f(Y)) and h(b,g(f(Y)),f(b)). This


an save a lot of unne
essary rewrite attempts if the se
ond argument is a large term

(instead of g(f(Y))) or the term is embedded in a larger one. 2

The starting 
ondition is justi�ed by the following lemma.

Lemma2 (Starting lemma). Let t be a term in normal form, x 2 Var(t) and

� = fx 7! t

0

g be a substitution with t

0

in normal form. If �(t) is redu
ible at position

�, then � 2 O(t) and x 2 Var(tj

�

).
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Proof. Let �(t) be redu
ible at position �. Assume � 62 O(t). Sin
e � 2 O(�(t)) and

�(t) redu
ible at position �, t

0

must be redu
ible in 
ontradi
tion to our assumptions.

Therefore � 2 O(t).

Now assume that x 62 Var(tj

�

). Sin
e � repla
es only variable x, we have tj

�

=

�(t)j

�

, i.e., t is also redu
ible at position � in 
ontrast to our assumptions. Therefore

x 2 Var(tj

�

). ut

The lemma 
an easily be extended to substitutions whi
h repla
e more than one

variable. Note that if the substituted term t

0

is not in normal form, then � 2 O(t)

is not implied by the fa
t that �(t) is redu
ible at position � sin
e the redu
tion

may be performed in the substituted term t

0

. But the important 
onsequen
e of this

lemma is that rewriting in a subterm is unne
essary if this subterm is not in
uen
ed

by the narrowing substitution.

The stopping 
ondition expresses the fa
t that we 
an stop the rewriting pro
ess

in one path of the term if no rewrite rule is appli
able at a distin
t position. The

next lemma shows that this is true under additional 
onditions.

Lemma3 (Stopping lemma). Let t and s be terms in normal form, s 62 X , � 2

O(t) with tj

�

2 X and all rewrite rules be left-linear. If the head symbol Head(s)

does not o

ur in an argument term of any rewrite rule, then t[s℄

�

is in normal form.

Proof. Assume that t

0

= t[s℄

�

is not in normal form. Then there is a rule l ! r,

a position �

0

2 O(t

0

) and a substitution � with t

0

j

�

0

= �(l). We distinguish the

following 
ases:

1. � � �

0

, i.e., there exists � with �

0

= � Æ �: Then �(l) = t

0

j

�

0

= t

0

j

�Æ�

= sj

�

.

Hen
e s is redu
ible whi
h 
ontradi
ts our assumption.

2. �

0

< �, i.e., � = �

0

Æ � for some nonempty �: From t

0

j

�

0

= �(l) we 
an infer

�(l)j

�

= s. Sin
e the head symbol Head(s) does not o

ur in an argument

of l, s must belong to the substitution �, i.e., there exists y 2 Var(l) with

�(y) = � � � s � � �. Now repla
e s by the variable tj

�

in �(y) and denote this new

substitution by �

0

. Then tj

�

0

= �

0

(l) sin
e l is linear. Hen
e t is redu
ible in


ontrast to our assumption.

3. � k �

0

: Then tj

�

0

= t

0

j

�

0

= �(l) sin
e t and t

0

di�er only at position �. Hen
e t

is redu
ible in 
ontrast to our assumption.

Therefore our assumption is wrong and thus t[s℄

�

must be in normal form. ut

This lemma is not true if a rewrite rule is not left-linear. For instan
e, if there is the

rule

f(Y,Y) ! Y

then f(1,X) and 1 are terms in normal form, but f(1,1) is not in normal form.

Fortunately, most fun
tional programs are written with the left-linearity 
ondition,

but we will also dis
uss a solution for general term rewrite rules in Se
tion 5.

The relation between the stopping lemma and the stopping 
ondition will be


lari�ed by the following lemma.
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Lemma4. Let t be a term in normal form, � 2 O(t), x a variable and all rewrite

rules be left-linear. Then t[x℄

�

is also in normal form.

Proof. Assume that t

0

= t[x℄

�

is not in normal form. Then there is a rule l ! r,

a position �

0

2 O(t

0

) and a substitution � with t

0

j

�

0

= �(l). We distinguish the

following 
ases:

1. � � �

0

: Then � = �

0

sin
e t

0

j

�

is a variable. Be
ause t

0

j

�

0

= x, l must be a

variable whi
h 
ontradi
ts our assumptions about rewrite rules (otherwise, if we

allow rewrite rules l ! r with l 2 X , this rule would also be appli
able to t at

position �).

2. �

0

< �, i.e., � = �

0

Æ � for some nonempty �: Be
ause t

0

j

�

= x and l is a linear

term, we 
an modify � to �

0

su
h that �

0

(l) = tj

�

0

(repla
e one o

urren
e of x

by tj

�

in the 
odomain of �). Hen
e t is redu
ible in 
ontrast to our assumption.

3. � k �

0

: Sin
e t and t

0

di�er only at position �, tj

�

0

= t

0

j

�

0

= �(l). Hen
e t is

redu
ible in 
ontrast to our assumption.

ut

Lemma 3 and Lemma 4 imply the 
orre
tness of the stopping 
ondition: if a sub-

term is in normal form and the term \outside" the subterm is also in normal form,

then the entire term is in normal form provided that all rules are left-linear and

do not 
ontain the head symbol of the subterm in an argument term. The last re-

stri
tion seems to be very strong for general term rewriting systems. But in most

fun
tional logi
 languages (SLOG [Fri85℄, K-LEAF [BGL

+

87℄, BABEL [MR92℄, ALF

[Han90℄ et
.) a distin
tion is made between fun
tion symbols to 
onstru
t data terms

(
alled 
onstru
tors) and fun
tion symbols to operate on data terms (
alled de�ned

fun
tions). This is also the 
ase for pure fun
tional languages like ML [HMM86℄ or

Miranda [Tur85℄. The partition of the set of fun
tions symbols into 
onstru
tors and

de�ned fun
tions 
omes with a restri
tion on the set of rules:

(*) Ea
h rule must de�ne a unique fun
tion, i.e., the left-hand side of the

rule must 
ontain a de�ned fun
tion as the head symbol and all argument

terms 
ontain variables and 
onstru
tors but no de�ned fun
tion.

1

With this restri
tion it is 
lear that a subterm is redu
ible only if it 
ontains a

de�ned fun
tion at the top. Therefore positions with 
onstru
tor symbols need not

be 
onsidered in the rewriting pro
ess (this is essential for an eÆ
ient implementation

of su
h languages [Han91℄). In this situation the 
ondition on o

urren
es of fun
tion

symbols in argument terms (in the stopping lemma) is no real restri
tion: sin
e we

try to apply rewrite rules only to subterms with a de�ned fun
tion symbol at the

top, the o

urren
e 
ondition of Lemma 3 is always satis�ed if the program satis�es


ondition (*).

For the rest of this se
tion we assume that the set of all fun
tion symbols is

divided into a set C of 
onstru
tors and a set D of de�ned fun
tion symbols and all

1

We do not 
onsider equations between 
onstru
tor terms whi
h are admissible in some

languages.

8



rewrite rules satisfy 
ondition (*) (see Se
tion 6 for a relaxation of this requirement).

The following algorithm des
ribes the optimized rewriting pro
ess after a narrowing

step. We assume that rewriting is performed using an innermost strategy, but this

is not essential sin
e we 
an use any strategy be
ause of the 
anoni
ity of the term

rewriting relation. In the des
ription we use a set O of positions to des
ribe the

subterm positions where we have to try to apply a rewrite rule. The set is initialized

in the narrowing step and manipulated during the rewriting pro
ess.

Algorithm: Perform a narrowing step and 
ompute the normal form

Input: Term t in normal form, narrowing position �

0

and rule l

0

! r

0

su
h that

tj

�

0

and l

0

are uni�able with mgu �

0

Output: Normal form of �

0

(t[r

0

℄

�

0

)

1. Compute the mgu �

0

of tj

�

0

and l

0

2. t

0

:= �

0

(t[r

0

℄

�

0

)

3. O := funpos(t

0

; �

0

)

4. if Head(t

0

j

�

0

) 2 C then O := O [ father(t

0

; �

0

)

5. B := f� 2 O(t) j Head(tj

�

) 2 D and tj

�


ontains variables bound by �

0

and � maximal with this propertyg

6. O := O [

[

�2B

funpos(t

0

; �)

7. while O 6= ;

do let � be a maximal position in O

O := O � f�g

if there is a rewrite rule l ! r and substitution � with t

0

j

�

= �(l)

then t

0

:= t

0

[�(r)℄

�

O := O [ funpos(t

0

; �)

if Head(t

0

j

�

) 2 C then O := O [ father(t

0

; �)

where funpos(t; �) = f�

t

2 O(t) j � � �

t

and Head(tj

�

t

) 2 Dg

and father(t; �) =

8

<

:

; if � = �

f�

0

g if � = �

0

:n and Head(tj

�

0

) 2 D

father(t; �

0

) if � = �

0

:n and Head(tj

�

0

) 2 C

The �rst two steps apply the narrowing rule to the given term. Step 3 initializes

the set O with the positions of the instantiated right-hand side of the applied rule.

The addition of the father position in step 4 is ne
essary sin
e the rewriting pro
ess


an only be terminated if the normalized subterm has a de�ned fun
tion symbol

at the top (by 
ondition (*) and Lemma 3). Step 5 
omputes the potential rewrite

positions by Lemma 2, i.e., the subterm positions where a variable has been bound.

Note that only the maximal positions are stored sin
e the smaller positions (nearer

to the root) are added during rewriting by the fun
tion father. Step 6 adds all

o

urren
es of de�ned fun
tions in these subterms. This is ne
essary be
ause the

uni�er �

0

is not normalized in general. If we use a narrowing strategy whi
h ensures

9



that the narrowing substitutions are always normalized like the innermost strategy

of SLOG [Fri85℄, then we 
an simplify step 6 to the assignment

O := O [ B

Step 7 des
ribes the rewriting pro
ess where rewrite rules are only applied at posi-

tions of the restri
ted set O. The 
hoi
e of a maximal position in the rewriting loop

ensures that rewriting is performed in an innermost manner. If a rewrite rule 
an

be applied and the instantiated right-hand side has a 
onstru
tor at the top, the

next outermost position is added to O sin
e in this 
ase we 
annot terminate the

rewriting pro
ess by Lemma 3.

The 
orre
tness of this algorithm follows from the previous lemmas:

Theorem5. If all rewrite rules are left-linear and satisfy 
ondition (*), then the

above algorithm is 
orre
t, i.e., it 
omputes the normal form after the narrowing

step.

Proof. Before rewriting is started, the position set O is initialized with the subterm

positions of the instantiated right-hand side of the narrowing rule and the positions

where a variable has been bound. Rewriting is not possible at other positions by

the previous lemmas. Note that not all positions from the root to the subterms are

stored (whi
h must be 
orre
tly done by Lemma 2) but only the maximal positions:

the \father" of a position is only added to O if a rewrite step is possible and yields

a 
onstru
tor symbol at this position. Otherwise, it is not ne
essary to try rewriting

at the father position by Lemma 3 and Lemma 4. ut

Example 2. We show a 
omputation of the algorithmw.r.t. the rewrite rules of Exam-

ple 1, i.e., the 
onstru
tors are C = fa; bg and the de�ned fun
tions areD = ff; g; hg.

The term t = h(g(f(X)),g(f(Y)),f(g(X))) is in normal form w.r.t. these rules.

We perform a narrowing step with rule f(a)!b at position 1:1 (subterm f(X)).

{ The mgu of t=1:1 and f(a) binds X to a.

{ The narrowed term is t

0

= h(g(b),g(f(Y)),f(g(a))).

{ The position set 
omputed after step 6 is O = f1; 3:1g, i.e., the terms g(b) and

g(a) (sin
e the arguments of these terms have 
hanged).

{ No rewrite rule is appli
able at position 1: O = f3:1g.

{ Rewrite rule g(a)!b is appli
able at position 3:1: t

0

= h(g(b),g(f(Y)),f(b))

and O = f3g

{ No rule is appli
able at position 3: O = ;.

Now we have 
omputed the new normal form h(g(b),g(f(Y)),f(b)). Note that

without our optimizations we would also try to apply all rewrite rules at positions

2:1, 2 and �. 2

We 
annot state a general result for the eÆ
ien
y improvement of our optimizations

be
ause this strongly depends on the sele
ted examples. In some 
ases there is no

improvement (if the binding of variables has the e�e
t that all de�ned fun
tion

symbols 
an be rewritten) where in other 
ases we may have a dramati
 improvement

10



(for instan
e, if Y is repla
ed by a large term 
ontaining fun
tion symbols but not the

variable X). But we want to remark that the overhead introdu
ed by this in
remental

rewriting te
hnique is quite small (only during variable binding in a narrowing step

we have to store new information in 
omparison to a 
omplete innermost rewriting

derivation). For some typi
al so-
alled generate-and-test programs (like permutation

sort [Fri85℄ or generation of mobiles [Han92℄) where narrowing generates a part of

the solution and rewriting tests whether it is a solution we 
an avoid up to 70% of

unne
essary rewriting attempts.

4 Implementation of the in
remental rewriting algorithm

The reader may be under the impression that the implementation of our in
remental

rewriting algorithm is too 
omplex for an eÆ
ient exe
ution in a fun
tional logi


language. But this depends on the 
hosen narrowing strategy and therefore we will

give some hints for an eÆ
ient implementation of our algorithm.

First of all the fun
tion funpos seems to be 
ostly be
ause it requires a sear
h

through instantiated subterms after ea
h narrowing or rewriting step (in step 3, 6 and

7 in the algorithm). We 
an avoid this dynami
 sear
h by using a narrowing strategy

whi
h ensures that rewriting inside narrowing substitutions is not performed. For

instan
e, the innermost strategy of SLOG [Fri85℄ and the innermost basi
 strategy

[H�ol89℄ of ALF [Han91℄ have this property.

2

In this 
ase the 
ompiler 
an determine

all positions of de�ned fun
tion symbols in the right-hand side of a rewrite rule

[Han91℄ in step 3 and 7, and step 6 simpli�es to O := O [ B. Hen
e we 
an avoid

the dynami
 sear
h in the funpos fun
tion 
alls.

Se
ondly, it seems to be disturbing that the algorithm is based on the manage-

ment of an expli
it set O of rewriting positions. But this 
auses no overhead in

pra
ti
e sin
e the implementation of the fun
tional logi
 language ALF [Han91℄ is

based on an expli
it sta
k for storing positions. Moreover, this expli
it management

of positions is the key for a simple but eÆ
ient implementation based on an extension

of the Warren Abstra
t Ma
hine [War83℄. Hen
e our in
remental rewriting algorithm


an be implemented on the basis of the ALF implementation if the stru
ture of the

position sta
k is modi�ed su
h that the father fun
tion is eÆ
iently 
omputable

(in the 
urrent implementation there is no path from \son" to \father" nodes in the

term representation).

Hen
e the only remaining 
riti
al operation is the 
omputation of positions where

a variable has been bound in the narrowing step (set B in step 5). This operation

is 
lose to the Prolog-II predi
ate freeze and therefore we 
an use a similar im-

plementation te
hnique [Boi86℄. The predi
ate freeze(X,G) delays the exe
ution of

the goal G until the variable X is bound to a non-variable term. This behaviour 
an

2

In the innermost basi
 strategy the narrowing substitutions are not normalized in general.

If the goal is redu
ible inside a narrowing substitution, we 
an safely 
ut this derivation

without loosing 
ompleteness (Rety's SL-test [Ret87℄). But a narrowing strategy without

this SL-test 
an be eÆ
iently implemented in a 
ompiler-based system [Han90, Han91℄.

Therefore rewriting is never performed inside narrowing substitutions in ALF.
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be implemented by 
onne
ting the variable X to the list of goals G whi
h should be

exe
uted if X is instantiated. The uni�
ation pro
edure must be modi�ed su
h that

the goal list asso
iated to a frozen variable X is exe
uted if X is bound to a non-

variable term [Boi86℄. A similar te
hnique 
an be used to implement step 5 of our

in
remental rewriting algorithm. For ea
h goal variable x we asso
iate the position

set

B(x) := f� 2 O(t) j Head(tj

�

) 2 D; x 2 Var(tj

�

); � maximal with this propertyg :

This set 
an be simply built up during the 
onstru
tion of a new term and updated

during rewriting and uni�
ation of terms. If a variable x is bound to a term in a

narrowing step, we 
hange the binding algorithm so that the asso
iated positions

B(x) are added to the 
urrent position set O. This implements steps 5 and 6 of our

algorithm.

Note that this implementation is very similar to Naish's proposal [Nai91℄ for

translating fun
tion de�nitions into NU-Prolog predi
ates with parti
ular \when"

de
larations. The \when" de
larations ensure that a fun
tion 
all is evaluated when

the arguments are suÆ
iently instantiated. Hen
e Naish's method implements a

normalization pro
ess for a restri
ted 
lass of rewrite rules. Sin
e Naish does never

instantiate goal variables in an appli
ation of a rewrite rule (i.e., narrowing is not

in
luded in his proposal), his operational semanti
s is in
omplete w.r.t. the standard

de
larative semanti
s for Horn 
lause logi
 with equality in 
ontrast to our approa
h.

There is one pitfall in our implementation. In 
ontrast to the usage of freeze

in Prolog-II or when de
larations in NU-Prolog, in our 
ase it is possible that some

part of the goal may be deleted during the normalization pro
ess if a rewrite rule

l ! r with Var(r) 6= Var(l) is applied. For instan
e, the appli
ation of the rule

X*0!0 to the term (Y+2)*0 deletes the subterm (Y+2). From an operational point

of view this is a positive e�e
t in 
omparison to pure logi
 languages be
ause su
h

deleting rules redu
e the sear
h spa
e (narrowing the subterm (Y+2) is no longer

ne
essary). But from an implementational point of view su
h deleting rules 
ause a


ompli
ation: we must update the set B(x) for ea
h variable x o

urring in a deleted

subterm (otherwise the set O will be in
onsistent). Consequently, for deleting rules

the 
ompiler must generate additional instru
tions whi
h updates the position sets

asso
iated to variables o

urring in the deleted terms.

5 Non-linear rewrite rules

If one of the rules of the given term rewriting system R has a non-linear left-hand

side, the stopping 
ondition of Se
tion 3 
annot be applied. In su
h a 
ase we 
an only

restri
t the set of positions where we have to start the rewriting pro
ess (Lemma 2),

but then we have to try all positions up to the root even if the innermost subterms

are in normal form.

Example 3. Consider the following term rewriting system

f(X,X) ! b
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g(a) ! a

h(b) ! b

and the irredu
ible term

f(h(h(h(g(Y)))),h(h(h(Y)))) .

We 
an apply a narrowing step at position 1:1:1:1 using the se
ond rule. This nar-

rowing step binds variable Y to a and yields the term f(h(h(h(a))),h(h(h(a)))).

Although the subterms a and h(a) are in normal form, we 
annot terminate the

rewriting pro
ess sin
e an appli
ation of the �rst rewrite rule at position � yields

the term b in normal form. 2

In order to avoid su
h problems we may restri
t ourselves to left-linear rules as done

in other fun
tional logi
 languages like K-LEAF [BGL

+

87℄ or BABEL [MR92℄. But

we 
an also handle non-linear rules by a simple extension of our in
remental rewriting

algorithm. Sin
e the only positions where a rewrite rule is appli
able in 
ontrast to

the stopping 
ondition are positions with an appli
able non-linear rewrite rule (see

proof of Lemma 3), we simply add these \problemati
" positions to the set O in

the algorithm. For this purpose we 
all a fun
tion symbol f non-linear if there is a

rewrite rule l ! r with Head(l) = f and l is not linear. Now we add after step 6 in

the in
remental rewriting algorithm the following extension of the set O:

O := O [ f� 2 O(t

0

) j Head(t

0

j

�

) is a non-linear fun
tion symbolg

i.e., we simply add the positions with non-linear fun
tions to O. This has the e�e
t

that rewriting is also tried at these positions.

Example 4. Consider the term rewriting system of Example 3 and the term

f(h(h(h(g(Y)))),h(h(h(Y)))) .

After the narrowing step at position 1:1:1:1 (giving the term f(h(h(h(a))),

h(h(h(a))))) the set O is initialized to

O = f�; 1:1:1; 2:1:1g

by the modi�ed algorithm. Sin
e the term is irredu
ible at positions 1:1:1 and 2:1:1,

a rewrite rule is applied at the remaining position � whi
h is su

essful and yields

the term b. 2

6 Rules with nested fun
tions symbols

In Se
tion 3 we have required the distin
tion between 
onstru
tors and de�ned fun
-

tion symbols in order to use the stopping 
ondition. In the rewrite rules we have

the restri
tion (*) that argument terms do not 
ontain de�ned fun
tion symbols.

Although this restri
tion seems to be reasonable and is also used in many fun
tional

logi
 languages like K-LEAF [BGL

+

87℄, SLOG [Fri85℄ or BABEL [MR92℄, in some


ases it is useful to have general rewrite rules whi
h are only used to 
ompute the
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normal form of a term (therefore the language ALF [Han91℄ allows su
h rules). For

instan
e, Fribourg [Fri85℄ has argued that rewriting with indu
tive axioms 
an re-

du
e the sear
h spa
e and is justi�ed if someone is interested in ground-valid answers

(i.e., answers whi
h are valid for ea
h ground substitution applied to it). A typi
al

indu
tive axiom is rev(rev(L)) = L if rev denotes the fun
tion whi
h reverses a

list. If we allow rules whi
h do not satisfy restri
tion (*), the stopping 
ondition


annot be applied as in the in
remental rewriting algorithm.

Example 5. Consider the rewrite rule

f(g(a)) ! a

(where f and g are de�ned fun
tion symbols) and a narrowing step where the rule

h(a)!a is applied to the term k(h(X),f(g(X))) giving the term k(a,f(g(a))).

Suppose that the term g(a) is irredu
ible. In this 
ase our in
remental rewriting

algorithm will not try to redu
e the subterm f(g(a)). However, this must be done

in order to 
ompute the normal form of the entire term. 2

If we want to handle rules with de�ned fun
tion symbols in argument terms, it is

possible to extend our in
remental rewriting algorithm to do this. The essential idea

is to add positions to the set O if the 
urrent subterm is irredu
ible but has a head

symbol whi
h o

urs in an argument term of a rewrite rule. For this purpose we

de�ne the level of a de�ned fun
tion symbol f as the set of position depths where f

o

urs in an argument term of a rule. To be more pre
ise,

level(f) = fdepth(�) j there is a rule l! r and position � 6= � with Head(lj

�

) = fg

where depth(�) =

�

0 if � = �

1 + depth(�

0

) if � = �

0

:n

If a subterm tj

�

of a term is in normal form but there exists i 2 level(Head(tj

�

)),

then the entire term t may be redu
ible at the i-th an
estor of �. Thus we must add

this position to the position set O. Hen
e we de�ne the i-th an
estor of a position �

by

an
(i; �) =

(

� if i = 0

an
(i� 1; �

0

) if i > 0 and � = �

0

:n

unde�ned if i > 0 and � = �

and add the following else-bran
h to the �rst if-statement in step 7 in the in
remental

rewriting algorithm:

else O := O [ fan
(i; �) j i 2 level(Head(t

0

j

�

)) and an
(i; �) is de�nedg

Example 6. Consider Example 5 where k(a,f(g(a))) is the term after the narrowing

step and O = f�; 2:1g. Sin
e this term is irredu
ible at position 2:1 and level(g) =

f1g, our modi�ed in
remental rewriting algorithm extends the position set O by

the position 2 = an
(1; 2:1). Thus the next rewriting step is performed at position

2 (subterm f(g(a))) whi
h is ne
essary to 
ompute the normal form of the entire

term. 2
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7 Con
lusions

We have presented a useful optimization for fun
tional logi
 languages based on

narrowing with normalization. This optimization is based on the observation that

rewriting 
an be restri
ted to a small number of positions after a narrowing step sin
e

the term was in normal form before the narrowing step has been applied. We have

given two suÆ
ient 
riteria for the optimization: the starting 
ondition restri
ts the

number of term positions where the rewriting pro
ess is initiated, and the stopping


ondition yields a 
riterion for the early termination of the rewriting pro
ess. Our

presented in
remental rewriting algorithm 
ombines both 
onditions. We have also

dis
ussed te
hniques for an eÆ
ient implementation of the algorithm and extensions

to deal with rewrite rules whi
h have non-linear left-hand sides and nested fun
tion

symbols on the left-hand side.

The presented algorithm is not optimal in the sense that it avoids all unne
essary

rewriting attempts. For instan
e, 
onsider the following term rewriting system

f(
(X)) ! X

g(
(a)) ! a

and the narrowing step

h(f(Y),g(Y)) ;

[1; f(
(X))!X; fY 7!
(X)g℄

h(X,g(
(X))) :

Now our in
remental rewriting algorithm attempts to apply a rewrite rule at posi-

tion 2 sin
e Y has been bound to 
(X) in the subterm g(Y). But a rewrite rule is

not appli
able at this position be
ause the argument term 
(X) is not suÆ
iently

instantiated. To avoid unne
essary rewrite attempts of this kind one 
an implement

rewrite rules as demons waiting for suÆ
ient instantiation of the arguments of a

subterm [JD89℄. In order to redu
e the number of demons the rules may be trans-

lated into rules with a uniform stru
ture on the left-hand side [MKLR90℄ so that

only one demon is atta
hed to ea
h potentially redu
ible subterm. An integration of

su
h te
hniques in a 
ompiler-based implementation of a fun
tional-logi
 language

is an interesting topi
 for future resear
h.
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