
A Uni�ed Computation Model

for De
larative Programming

Mi
hael Hanus

RWTH Aa
hen, Informatik II, D-52056 Aa
hen, Germany

hanus�informatik.rwth-aa
hen.de

In Pro
. of the 1997 Joint Conferen
e on De
larative Programming

(APPIA-GULP-PRODE'97), pp. 9{24, Grado (Italy), 1997

Abstra
t

We propose a new
omputation model whi
h
ombines the operational prin
iples

of fun
tional languages (redu
tion), logi
 languages (non-deterministi
 sear
h for

solutions), and integrated fun
tional logi
 languages (residuation and narrowing).

This
omputation model
ombines eÆ
ient evaluation prin
iples of fun
tional lan-

guages with the problem-solving
apabilities of logi
 programming. Sin
e the model

allows the delay of insuÆ
iently instantiated fun
tion
alls, it also supports a
on-

urrent style of programming. We show that many known evaluation prin
iples

of de
larative languages are parti
ular instan
es of our model. This
omputation

model is the basis of Curry, a multi-paradigm language whi
h
ombines fun
tional,

logi
 and
on
urrent programming styles. We
on
lude with a des
ription of some

features of Curry.

1 Introdu
tion

De
larative programming is motivated by the fa
t that a higher programming level using

powerful abstra
tion fa
ilities leads to reliable and maintainable software. Thus, de-

larative programming languages are based on mathemati
al formalisms and
ompletely

abstra
t from many details of the
on
rete hardware and the implementation of the pro-

grams on this hardware. For instan
e, pointers are avoided and repla
ed by the use of

algebrai
 data types, and
omplex pro
edures are split into easily
omprehensible parts

using pattern mat
hing and lo
al de�nitions. Sin
e de
larative programs strongly
orres-

pond to formulae of mathemati
al
al
uli, they simplify the reasoning (e.g., veri�
ation

w.r.t. non-exe
utable spe
i�
ations), provide freedom in the implementation (e.g., use

of parallel ar
hite
tures), and redu
e the program development time in
omparison to

lassi
al imperative languages.

Unfortunately, de
larative programming is
urrently split into two main �elds based

on di�erent mathemati
al formalisms, namely fun
tional programming (lambda
al
u-

lus) and logi
 programming (predi
ate logi
). This has negative
onsequen
es w.r.t. to

tea
hing (usually, there are di�erent
ourses on fun
tional programming and logi
 pro-

gramming, and students do not see many similarities between them), resear
h (ea
h �eld

has its own
ommunity,
onferen
es, and journals, and sometimes similar solutions are

developed twi
e), and appli
ations (ea
h �eld has its own appli
ation areas and some

e�ort has been done to show that one paradigm
an
over appli
ations of the other

paradigm [37℄ instead of showing the advantages of de
larative programming in various

appli
ation �elds). The separation is mainly due to the di�erent underlying
omputa-

tions models|deterministi
 redu
tion and lazy evaluation in fun
tional languages, and

non-deterministi
 sear
h in logi
 languages. On the other hand, fun
tional and logi

1

languages have a
ommon kernel and
an be seen as di�erent fa
ets of a single idea.

For instan
e, the use of algebrai
 data types instead of pointers, and the de�nition of

lo
al
omprehensible
ases by pattern mat
hing and lo
al de�nitions instead of
omplex

pro
edures are emphasized in fun
tional as well as logi
 programming. However, these

ommonalities are often hidden by the di�eren
es in the
omputation models and the

appli
ation areas of these languages.

In this paper we want to show how to over
ome this problem. Our approa
h is the

hoi
e of a single
omputation model whi
h
ombines lazy redu
tion of expressions with

a possibly non-deterministi
 binding of free variables o

urring in expressions. Sin
e it is

a
onservative extension of an optimal evaluation strategy for integrated fun
tional logi

languages [5℄, it
ombines the problem-solving
apabilities of logi
 programming with

optimal redu
tion strategies known from fun
tional programming for a large
lass of pro-

grams. Moreover, in order to avoid un
ontrolled non-determinism during the evaluation

of parti
ular expressions and to provide a simple
onne
tion to externally de�ned fun
-

tions, fun
tion
alls may be suspended until the arguments are suÆ
iently instantiated.

Thus, pure fun
tional programming, pure logi
 programming, and
on
urrent (logi
) pro-

gramming are obtained as parti
ular restri
tions of this model. Moreover, due to the use

of an integrated fun
tional logi
 language, we
an
hoose the best of the two worlds in

appli
ation programs. For instan
e, input/output (implemented in logi
 languages by

side e�e
ts)
an be handled with the monadi
 I/O
on
ept [31℄ in a fully de
larative

way. Similarly, most of the other impure features of Prolog (e.g., arithmeti
,
ut)
an be

avoided by the use of fun
tions.

This
omputation model is the basis of the multi-paradigm language Curry [16, 17, 19℄.

Apart from this new model, Curry o�ers many other features useful for pra
ti
al

programming, like a type and a module system, higher-order fun
tions, arithmeti
,

de
larative I/O et
. The development of Curry is an international initiative inten-

ded to provide a
ommon basis for fun
tional logi
 languages and further resear
h

and developments in this area. More details
an be found in the Curry home page:

http://www-i2.informatik.rwth-aa
hen.de/~hanus/
urry/

In the next se
tion, we introdu
e some basi
 notions and motivate the basi

omputa-

tion model of Curry. Properties of this model are brie
y dis
ussed in Se
tion 3. Se
tion 4

outlines some features of Curry, and Se
tion 5
ontains our
on
lusions.

2 A Uni�ed Computation Model for De
larative

Programming

In this se
tion we introdu
e the basi

omputation model of Curry, where we use a slightly

di�erent des
ription than in its original presentation [16℄. We motivate it by a stepwise

extension of a rewrite model to features from logi
 and
on
urrent programming. The

omplete formal spe
i�
ation of our
omputation model is summarized in Appendix A.

2.1 Term Rewriting

Firstly, we introdu
e some basi
 notions of term rewriting [11℄ and fun
tional logi
 pro-

gramming [15℄.

As mentioned in the previous se
tion, a
ommon idea of fun
tional as well as logi

programming is the use of algebrai
 data types instead pointers. Thus, the
omputational

2

domain of de
larative languages is a set of terms
onstru
ted from
onstants and data

onstru
tors. Fun
tions (or predi
ates in logi
 programming, but throughout this paper

we
onsider predi
ates as Boolean fun
tions for the sake of simpli
ity) operate on terms

and map terms to terms.

Formally, we
onsider a signature partitioned into a set C of
onstru
tors and a set

F of (de�ned) fun
tions or operations.

1

We write
=n 2 C and f=n 2 F for n-ary

onstru
tor and fun
tion symbols, respe
tively. A
onstru
tor
 with arity 0 is also
alled

a
onstant.

2

Usually, there are at least the 0-ary Boolean
onstru
tors true and false.

We denote by X a set of variables (with elements x; y). An expression (data term)

is a variable x 2 X or an appli
ation '(e

1

; : : : ; e

n

) where '=n 2 C [F ('=n 2 C) and

e

1

; : : : ; e

n

are expressions (data terms).

3

We denote by T (C [F ;X) and T (C;X) the

set of all expressions and data terms, respe
tively. Var(e) denotes the set of variables

o

urring in an expression e. An expression e is
alled ground if Var(e) = ;. A pattern

is an expression of the form f(t

1

; : : : ; t

n

) where ea
h variable o

urs only on
e, f=n 2 F ,

and t

1

; : : : ; t

n

2 T (C;X). A head normal form is a variable or an expression of the form

(e

1

; : : : ; e

n

) with
=n 2 C.

A position p is a sequen
e of positive integers identifying a subexpression in an ex-

pression. ej

p

denotes the subterm or subexpression of e at position p, and e[e

0

℄

p

denotes

the result of repla
ing the subterm ej

p

by the expression e

0

(see [11℄ for details).

A substitution is a mapping X ! T (C [F ;X), where id denotes the identity substi-

tution. Substitutions are extended to morphisms on expressions by �('(e

1

; : : : ; e

n

)) =

'(�(e

1

); : : : ; �(e

n

)) for every expression '(e

1

; : : : ; e

n

). A substitution � is
alled a uni�er

of two expressions e

1

and e

2

if �(e

1

) = �(e

2

).

A (de
larative) program P is a set of rules l = r where l is a pattern and Var(r) �

Var(l). l and r are
alled left-hand side and right-hand side, respe
tively.

4

A rule is

alled a variant of another rule if it is obtained by a unique repla
ement of variables

by other variables. In order to ensure well-de�nedness of fun
tions, we require that P

ontains only trivial overlaps, i.e., if l

1

=r

1

and l

2

=r

2

are variants of rewrite rules and � is a

uni�er for l

1

and l

2

, then �(r

1

) = �(r

2

) (weak orthogonality). However, it is also possible

to drop this restri
tion and allow non-deterministi
 fun
tions sin
e su
h fun
tions
an be

evaluated by a non-deterministi
 rewrite prin
iple [13℄, whi
h is part of this
omputation

model (
f. Se
tion 2.3).

Example 2.1 If natural numbers are data terms built from the
onstru
tors 0 and s, the

following rules de�ne the addition and the predi
ate \less than or equal to" for natural

numbers:

0 + y = y 0� x = true

s(x) + y = s(x+y) s(x)� 0 = false

s(x)� s(y) = x�y

Sin
e the left-hand sides are pairwise non-overlapping, the fun
tions are well de�ned. 2

1

For the sake of simpli
ity, we omit the types of the
onstru
tors and fun
tions in this se
tion sin
e

they are not relevant for the
omputation model. Note, however, that Curry is typed language with a

Hindley/Milner-like polymorphi
 type system (see Se
tion 4).

2

Note that elementary built-in types like truth values, integers, or
hara
ters
an also be
onsidered

as sets with (in�nitely) many
onstants.

3

We do not
onsider partial appli
ations in this part sin
e it is not relevant for the
omputation

model. Su
h higher-order features are dis
ussed in Se
tion 4.

4

For the sake of simpli
ity, we �rstly
onsider only un
onditional rewrite rules. An extension to

onditional rules is des
ribed in Se
tion 4.

3

From a fun
tional point of view, we are interested in
omputing values of expressions,

where a value does not
ontain fun
tion symbols (i.e., it is a data term) and should

be equivalent (w.r.t. the program rules) to the initial expression. The value
an be

omputed by applying rules from left to right. For instan
e, we
an
ompute the value

of s(s(0))+s(0) by applying the rules for addition to this expression:

s(s(0))+s(0) ! s(s(0)+s(0)) ! s(s(0+s(0))) ! s(s(s(0)))

Formally, a redu
tion step is an appli
ation of a rule l=r to the subterm (redex) tj

p

, i.e.,

t ! s if s = t[�(r)℄

p

for some substitution � with �(l) = tj

p

(i.e., the left-hand side l of

the sele
ted rule must mat
h the subterm tj

p

).

In
ontrast to imperative languages, where the algorithmi

ontrol is expli
itly
on-

tained in the programs by the use of various
ontrol stru
tures, de
larative languages

abstra
t from the
ontrol issue sin
e a program
onsists of rules and does not
ontain ex-

pli
it information about the order to apply the rules. This makes the reasoning about de-

larative programs easier (program analysis, transformation, or veri�
ation) and provides

more freedom for the implementor (e.g., transforming
all-by-need into
all-by-value, im-

plementation on parallel ar
hite
tures). On the other hand, a
on
rete programming

language must provide a pre
ise model of
omputation to the programmer. Thus, we

an distinguish between di�erent
lasses of fun
tional languages. In an eager fun
tional

language, the sele
ted redex in a redu
tion step is always an innermost redex, i.e., the

redex is a pattern, where in lazy fun
tional languages the sele
ted redex is an outermost

one. Innermost redu
tion may not
ompute a value of an expression in the presen
e of

nonterminating rules, i.e., innermost redu
tion is not normalizing (we
all a redu
tion

strategy normalizing i� it always
omputes a value of an expression if it exists). Thus,

we
onsider in the following outermost redu
tion, sin
e it allows the
omputation with

in�nite data stru
tures and provides more modularity by separating
ontrol aspe
ts [22℄.

2.2 Lazy Evaluation and Pattern Mat
hing

A subtle point in the de�nition of a lazy evaluation strategy in
ombination with pattern

mat
hing is the sele
tion of the \right" outermost redex. For instan
e,
onsider the

rules of Example 2.1 together with the rule f = f. Then the expression 0+0�f has two

outermost redexes, namely 0+0 and f. If we sele
t the �rst one, we
ompute the value

true after one further outermost redu
tion step. However, if we sele
t the redex f, we run

into an in�nite redu
tion sequen
e instead of
omputing the value. Thus, it is important

to know whi
h outermost redex is sele
ted. Most lazy fun
tional languages
hoose the

leftmost outermost redex whi
h is implemented by translating pattern mat
hing into

ase expressions [38℄. On the other hand, this may not be the best possible
hoi
e sin
e

leftmost outermost redu
tion is in general not normalizing (e.g., take the last example but

swap the arguments of �). It is well known that we
an obtain a normalizing redu
tion

strategy by redu
ing in ea
h step a needed redex [21℄. Although the
omputation of a

needed redex is unde
idable in general, there are relevant sub
lasses of programs where

needed redexes
an be e�e
tively
omputed. For instan
e, if fun
tions are indu
tively

de�ned on the stru
ture of data terms (so-
alled indu
tively sequential fun
tions [4℄), a

needed redex
an be simply
omputed by pattern mat
hing. This is the basis of our

omputation model.

For this purpose, we organize all rules of a fun
tion in a hierar
hi
al stru
ture
alled

4

de�nitional tree [4℄.

5

T is a de�nitional tree with pattern � i� the depth of T is �nite

and one of the following
ases holds:

T = rule(l = r); where l = r is a variant of a program rule su
h that l = �.

T = bran
h(�; p; T

1

; : : : ; T

k

); where p is a position of a variable in �,

1

; : : : ;

k

are dif-

ferent
onstru
tors (k > 0), and, for all i = 1; : : : ; k, T

i

is a de�nitional tree with

pattern �[

i

(x

1

; : : : ; x

n

)℄

p

, where n is the arity of

i

and x

1

; : : : ; x

n

are new variables.

A de�nitional tree of an n-ary fun
tion f is a de�nitional tree T with pattern

f(x

1

; : : : ; x

n

), where x

1

; : : : ; x

n

are distin
t variables, su
h that for ea
h rule l = r with

l = f(t

1

; : : : ; t

n

) there is a node rule(l

0

= r

0

) in T with l variant of l

0

. In the following, we

write pat(T) for the pattern of a de�nitional tree T , and DT for the set of all de�nitional

trees. A fun
tion is
alled indu
tively sequential i� there exists a de�nitional tree for it.

A program is indu
tively sequential if all de�ned fun
tions are indu
tively sequential.

For instan
e, the predi
ate � de�ned in Example 2.1 is indu
tively sequential, and a

de�nitional tree for � is:

bran
h(x1� x2; 1;rule(0� x2 = true);

bran
h(s(x)� x2; 2; rule(s(x)� 0 = false);

rule(s(x)� s(y) = x� y)))

Intuitively, a de�nitional tree of a fun
tion spe
i�es the strategy to evaluate a
all to

this fun
tion. If the tree is a rule node, we apply the rule. If it is a bran
h node, it is

ne
essary to evaluate the subterm at the spe
i�ed position to head normal form in order

to
ommit to one of the bran
hes. Thus, in order to evaluate the expression 0+0�f w.r.t.

the previous de�nitional tree, the top bran
h node requires that the �rst subterm 0+0

must be evaluated to head normal form (in this
ase: 0) in order to
ommit to the �rst

bran
h.

Formally, if e is an expression with a fun
tion f at the top

6

and T is a de�nitional

tree for f , then e ! e

0

is a redu
tion step i� e

0

=
s(e; T), where the partial fun
tion
s

(\
omputation step") is de�ned as follows:

s(e; rule(l = r)) = �(r) if � is a substitution with �(l) = e

s(e; bran
h(�; p; T

1

; : : : ; T

k

))

=

(

s(e; T

i

) if ej

p

=
(e

1

; : : : ; e

n

) and pat(T

i

)j

p

=
(x

1

; : : : ; x

n

)

e[e

0

℄

p

if ej

p

= f

0

(� � �), T

0

is a de�nitional tree of f

0

, and
s(ej

p

; T

0

) = e

0

This de�nition of a redu
tion strategy has the following advantages:

1. The strategy is normalizing, i.e., it always
omputes a value if it exists.

2. The strategy is independent on the order of rules. Note that pattern mat
hing

in traditional lazy fun
tional languages implemented by
ase expressions [38℄ is

independent on the order of rules only for uniform programs [38℄ whi
h is a stri
t

sub
lass of indu
tively sequential programs.

7

5

We
ould also introdu
e our strategy by
ompiling all rules of a fun
tion into a
ase expression [38℄.

However, the use of de�nitional trees has the advantage that the stru
ture of rules is not destroyed and

the trees
an be easily extended to more general
lasses of programs whi
h be
ome relevant later.

6

If the expression has a
onstru
tor at the top,
onsider the leftmost outermost subexpression whi
h

has a fun
tion at the top.

7

Uniform fun
tions are those fun
tions where a de�nitional tree with a stri
t left-to-right order in

the positions of the bran
hes exists.

5

3. The de�nitional trees
an be automati
ally generated from the left-hand sides of the

rules [16℄ (similarly to the
ompilation of pattern mat
hing into
ase expressions),

i.e., there is no need for the programmer to expli
itly spe
ify the trees.

4. There is a strong equivalen
e between redu
tion with de�nitional trees and redu
-

tion with
ase expressions sin
e de�nitional trees
an be easily translated into
ase

expressions (see [18℄ for details). However, redu
tion with de�nitional trees
an be

easily extended to more general strategies, as
an be seen in the following.

2.3 Overlapping Rules and Non-deterministi
 Rewriting

Indu
tively sequential fun
tions have the property that there is a single argument in the

left-hand sides whi
h distinguishes the di�erent rules. In parti
ular, fun
tions de�ned by

rules with overlapping left-hand sides, like the \parallel-or"

true_ x = true

x_ true = true

false_ false = false

are not indu
tively sequential. However, it is fairly easy to extend de�nitional trees to

over also su
h fun
tions. For this purpose, we introdu
e a further kind of nodes: a

de�nitional tree T with pattern �
an also have the form or(T

1

; T

2

) where T

1

and T

2

are de�nitional trees with pattern �.

8

It is easy to see that a de�nitional tree with or

nodes
an be
onstru
ted for ea
h de�ned fun
tion (see [16℄ for a
on
rete algorithm).

For instan
e, a de�nitional tree for the parallel-or is

or(bran
h(x1_x2; 1; rule(true_x2 = true);

bran
h(false_x2; 2; rule(false_false = false)));

bran
h(x1_x2; 2; rule(x1_true = true)))

The
orresponding extension of the redu
tion strategy is a more subtle point. The fol-

lowing extension of
s pro
esses the bran
hes of the or nodes in a sequential manner:

s(e; or(T

1

; T

2

)) =

�

s(e; T

1

) if
s(e; T

1

) is de�ned

s(e; T

2

) otherwise

This
orresponds to the implementation of overlapping rules in most lazy fun
tional

languages, i.e., rules in su
h languages
annot be read as equalities between the left- and

right-hand side but must be read as sequen
es where the latter rules are dis
arded if a

rule
an be su

essfully applied. This has the advantage that some negative
onditions

in subsequent rules
an be avoided, but it leads to a more operational than de
larative

reading of programs (i.e., some kind of modularity is lost sin
e the rules
annot be

understood independently). A further disadvantage is that no value is
omputed if the

omputation with the �rst bran
h does not terminate and only the se
ond bran
h leads to

the result. To over
ome this problem, we
ould repla
e the sequential implementation by

a non-deterministi
 one, i.e., we assume that
s maps expressions into sets of expressions

(
s : T (C [F ;X)�DT ! 2

T (C[F ;X)

) and de�ne

s(e; or(T

1

; T

2

)) =
s(e; T

1

) [
s(e; T

2

)

8

For the sake of simpli
ity, we
onsider only binary or nodes. The extension to more than two subtrees

is straightforward.

6

By redu
ing all expressions in parallel, it is ensured that a value will eventually be

omputed if it exists. Another alternative is the parallel redu
tion of independent subex-

pressions whi
h is a deterministi
 and normalizing redu
tion strategy [34℄. This
an also

be de�ned by a modi�
ation of
s so that a set of redex positions is
omputed by the

use of de�nitional trees and all these redexes are redu
ed in parallel (see [4, 6℄ for more

details). Sin
e our
omputation model must in
lude some kind of non-determinism in

order to
over logi
 programming languages, we take the �rst alternative and assume in

the following that
s maps expressions into sets of expressions.

2.4 Computing with Non-ground Expressions

Up to now, we have only
onsidered fun
tional
omputations where ground expressions

are redu
ed to some value. In logi
 languages, the initial expression (usually an expres-

sion of Boolean type,
alled a goal) may
ontain free variables. A logi
 programming

system should �nd values for these variables su
h that the goal is redu
ible to true.

Fortunately, it requires only a slight extension of the strategy introdu
ed so far to
over

non-ground expressions and variable instantiation (whi
h also shows that the di�eren
e

between fun
tional and logi
 programming is not so large from an operational point of

view). The
urrent de�nition of
s is unde�ned if we have to bran
h on a free variable.

Sin
e the value of this variable is needed in order to pro
eed the
omputation, we non-

deterministi
ally bind the variable to the
onstru
tor required in the subtrees. Thus, we

ould extend the de�nition of
s by the following
ase:

9

s(e; bran
h(�; p; T

1

; : : : ; T

k

)) =

k

[

i=1

s(�

i

(e); T

i

) if ej

p

= x and �

i

= fx 7! pat(T

i

)j

p

g

For instan
e, if the fun
tion f is de�ned by the rules

f(a) = a

f(b) = b

(where a and b are
onstants), then the expression f(x) with the free variable x is

evaluated by
s as follows:

f(x) ! fa,bg

Unfortunately, one of the most important aspe
ts, namely the instantiation of free vari-

ables, is not expli
itly shown in this
omputation step. Thus, we have to
hange our

omputational domain. Due to the presen
e of free variables in expressions, an expres-

sion may be redu
ed to di�erent values by binding the free variables to di�erent terms.

In fun
tional programming, one is interested in the
omputed value, whereas logi
 pro-

gramming has the interest in the di�erent bindings (answers). Thus, we de�ne for our

integrated framework an answer expression as a pair � e
onsisting of a substitution �

(the answer
omputed so far) and an expression e. An answer expression � e is solved

if e is a data term. We sometimes omit the identity substitution in answer expressions,

i.e., we write e instead of id e if it is
lear from the
ontext.

Sin
e more than one answer may exist for expressions
ontaining free variables, in

general, initial expressions are redu
ed to disjun
tions of answer expressions. Thus, a

disjun
tive expression is a (multi-)set of answer expressions f�

1

e

1

; : : : ; �

n

e

n

g. The

9

In order to ensure
ompleteness, we also have to ensure that the de�nitional tree taken to evaluate

a fun
tion symbol has always fresh variables.

7

set of all disjun
tive expressions is denoted by D, whi
h is the
omputational domain of

Curry.

For instan
e, if we
onsider the previous example, the evaluation of f(x) together with

the di�erent bindings for x is re
e
ted by the following non-deterministi

omputation

step:

f(x) ! ffx 7! ag a ; fx 7! bg bg

For the sake of readability, we write the latter disjun
tive expression in the form

fx=aga | fx=bgb. Similarly, the expression f(b) is redu
ed to b (whi
h is an abbrevi-

ation for a disjun
tive expression with one element and the identity substitution).

A single
omputation step performs a redu
tion in exa
tly one expression of a dis-

jun
tion (e.g., in the leftmost unsolved expression). This expression is redu
ed (with a

possible variable instantiation) a

ording to our strategy des
ribed so far. If the program

is indu
tively sequential, i.e., the de�nitional trees do not
ontain or nodes, then this

strategy is equivalent to the needed narrowing strategy [5℄. Needed narrowing enjoys sev-

eral optimality properties: every redu
tion step is needed, i.e., ne
essary to
ompute the

�nal result, it
omputes the shorted possible derivations (if
ommon subterms are shared)

and a minimal set of solutions, and it is fully deterministi
 on ground expressions, i.e., in

the fun
tional programming
ase. If some de�nitional trees
ontain or nodes, optimality

is lost (however, it is still optimal on the indu
tively sequential parts of the program),

but the resulting strategy is sound and
omplete in the sense of fun
tional and logi

programming, i.e., all values and answers are
omputed [6℄.

2.5 Equality and Constraints

Fun
tional logi
 languages are able to solve equations
ontaining de�ned fun
tions. For

instan
e,
onsider the fun
tion + de�ned in Example 2.1 and the equation x+0=s(0).

Using the
omputation model presented so far, this equation
an be solved by evaluating

the left-hand side x+0 to the answer expression fx=s(0)gs(0) (here we omit the other

alternatives in the disjun
tion). Sin
e the resulting equation is trivial, the equation is

valid w.r.t. the
omputed answer fx=s(0)g.

Thus, we
ould solve an equation by redu
ing both sides to uni�able terms. However,

it is well known [12, 27℄ that this notion of equality is not reasonable in the presen
e

of nonterminating fun
tions. The only sensible notion of equality whi
h is also used in

fun
tional languages, is the stri
t equality, i.e., an equational
onstraint e

1

=e

2

is satis�ed

if both sides e

1

and e

2

are redu
ible to a same data term. As a
onsequen
e, if both sides

are unde�ned (nonterminating), then the stri
t equality does not hold. Operationally,

an equational
onstraint e

1

=e

2

is solved by evaluating e

1

and e

2

to uni�able data terms.

The equational
onstraint
ould also be solved in an in
remental way by an interleaved

lazy evaluation of the expressions and binding of variables to
onstru
tor terms [25℄.

Equational
onstraints are di�erent from standard Boolean fun
tions sin
e they are

he
ked for satis�ability. For instan
e, the equational
onstraint x=s(0) is satis�able if

the variable x is bound to s(0). However, the evaluation of x=s(0) does not deliver a

Boolean value true or false, sin
e the latter value would require a binding of x to all

values di�erent from s(0) (whi
h
ould be expressed if we use a ri
her
onstraint system

than substitutions, for instan
e, disequality
onstraints [7℄). This is suÆ
ient sin
e,

similarly to logi
 programming,
onstraints are only used in
onditions of equations (
f.

Se
tion 4) whi
h must be
he
ked for satis�ability.

8

If we want to
he
k the equality of two fully known expressions, we
an redu
e both

sides to ground
onstru
tor terms and
he
k their identity. This test equality
an be

spe
i�ed as any other Boolean fun
tion by the following rules (where == and && are in�x

operators):

 ==
 = true 8
=0 2 C

(x

1

,...,x

n

) ==
(y

1

,...,y

n

) = x

1

==y

1

&&...&& x

n

==y

n

8
=n 2 C

(x

1

,...,x

n

) == d(y

1

,...,y

m

) = false 8
=n; d=m 2 C with
=n 6= d=m

true && x = x

false && x = false

For instan
e, the test \s(0)==s(0)" redu
es to true, whereas the test \s(0)==0" redu
es

to false. In order to avoid an in�nite set of solutions for insuÆ
iently instantiated tests

like x==y, the evaluation of a test equality is suspended if one side is a free variable (i.e.,

== is rigid in both arguments,
f. Se
tion 2.6). Therefore, the test equality
an be used

where Boolean values are required (e.g., in the
ondition part of if-then-else), whereas

equational
onstraints
an only be applied in the
ondition of a program rule. In terms

of
on
urrent
onstraint programming languages [33℄, == and =
orrespond to ask and

tell equality
onstraints, respe
tively. This is also justi�ed by the fa
t that a test e

1

==e

2

is suspended if one side is a variable, whereas an equational
onstraint e

1

=e

2

is
he
ked

for satis�ability and propagates new variable bindings.

Note that the basi
 kernel of Curry only provides stri
t equations e

1

=e

2

between

expressions as
onstraints. Sin
e it is
on
eptually fairly easy to add other
onstraint

stru
tures [26℄, future extensions of Curry will provide ri
her
onstraint systems to sup-

port
onstraint logi
 programming appli
ations.

2.6 Con
urrent Computations

The strategy des
ribed so far
overs fun
tional logi
 languages with a sound and
omplete

operational semanti
s (i.e., based on narrowing [15℄). However, it is still too restri
tive to

over all important aspe
ts of modern de
larative languages due to the following reasons:

1. Narrowing and guessing of free variables should not be applied to all fun
tions,

sin
e some fun
tions (de�ned on re
ursive data stru
tures) may not terminate if

parti
ular arguments are unknown.

2. The
omputation model requires the expli
it de�nition of all fun
tions by program

rules. It is not
lear how to
onne
t primitive (external, prede�ned) fun
tions where

the rules are not expli
itly given, like arithmeti
, I/O et
.

3. Modern logi
 languages provide
exible sele
tion rules (
on
urrent
omputations

based on the syn
hronization on free variables).

All these features
an be easily supported by allowing the delay of fun
tion
alls if a

parti
ular argument is not instantiated. For this purpose we extend the fun
tion
s so

that the evaluation of some fun
tion
all may suspend, i.e.,
s has the type

s : T (C [F ;X)�DT ! D [fsuspendg :

A fun
tion
all may be suspended if the value of some (needed) argument is unknown.

Thus, we extend the de�nition of bran
h nodes by an additional
ag, i.e, a bran
h

node has the form bran
h(�; p; r; T

1

; : : : ; T

k

) with r 2 frigid; f lexg. A rigid annotation

9

spe
i�es that the evaluation of the fun
tion
all is suspended if the bran
h argument is a

free variable. This is expressed by the following new de�nition of
s for the
ase of free

variables:

s(e; bran
h(�; p; r; T

1

; : : : ; T

k

))

=

8

<

:

: : :

suspend if ej

p

= x and r = rigid

S

k

i=1

f�

i

�

i

(e)g if ej

p

= x, r = flex, and �

i

= fx 7! pat(T

i

)j

p

g

Sin
e fun
tion
alls may suspend, we need a me
hanism to spe
ify
on
urrent
omputa-

tions. For this purpose, we introdu
e a �nal extension of de�nitional trees: a de�nitional

tree T with pattern �
an also have the form and(T

1

; T

2

) where the de�nitional trees

T

1

and T

2

have the same pattern � and
ontain the same set of rules. An and node

spe
i�es the ne
essity to evaluate more than one argument position. The
orresponding

operational behavior is to try to evaluate one of these arguments. If this is not possible

sin
e the fun
tion
alls in this argument are delayed, we pro
eed by trying to evaluate the

other argument. This generalizes
on
urrent
omputation models for residuating logi

programs [1, 2, 35℄ to fun
tional logi
 programs. For instan
e, the
on
urrent
onjun
tion

of
onstraints ^ is de�ned by the single rule

10

valid^ valid = valid

together with the de�nitional tree

and(bran
h(x1^x2; 1; rigid; bran
h(valid^x2; 2; rigid; rule(valid^valid = valid)));

bran
h(x1^x2; 2; rigid; bran
h(x1^valid; 1; rigid; rule(valid^valid = valid))))

Due to the and node in this tree, a
onstraint of the form t

1

^ t

2

is evaluated by an

attempt to evaluate t

1

. If the evaluation of t

1

suspends, an evaluation step is applied to

t

2

. If a variable responsible to the suspension of t

1

was bound during the last step, the

left expression will be evaluated in the subsequent step. Thus, we obtain a
on
urrent

behavior with an interleaving semanti
s.

This fairly simple model for
on
urrent
omputations is able to
over appli
ations of

Prolog systems with
oroutining [29℄. For instan
e, if gen is a predi
ate or
onstraint

whi
h instantiates its arguments with potential solutions (i.e., gen is de�ned with
exible

bran
h nodes) and test
he
ks whether the argument is a
orre
t solution (i.e., test is

de�ned with rigid bran
h nodes), then a
onstraint like \gen(X) ^ test(X)"
orresponds

to a \generate-and-test" solution whereas \test(X) ^ gen(X)" spe
i�es a \test-and-

generate" solution where the test is a
tivated as soon as its argument is suÆ
iently

instantiated.

It is also interesting to note that this model is able to
over re
ent developments

in parallel fun
tional
omputation models like Eden [9℄ or GoÆn [10℄. For instan
e, a

onstraint of the form \x=f(t1) ^ y=g(t2) ^ z=h(x,y)" spe
i�es a potentially
on-

urrent
omputation of the fun
tions f, g and h where the fun
tion h
an pro
eed its

omputation only if the arguments have been bound by evaluating the expressions f(t1)

and g(t2) (provided that h is rigid in all arguments).

The advantage of this
omputation model is the
lear separation between sequen-

tial and
on
urrent parts. Sequential
omputations, whi
h
ould be
onsidered as the

basi
 units of a program,
ould be expressed as usual fun
tional (logi
) programs, and

they
an be
omposed to
on
urrent
omputation units via
on
urrent
onjun
tions of

10

The auxiliary
onstru
tor valid denotes the result of a solved
onstraint. In terms of our
omputa-

tion model, the equational
onstraint s(x)=s(s(0)) is redu
ed to the answer expression fx=s(0)gvalid.

10

onstraints. Sin
e
onstraints
ould be passed as arguments or results of fun
tions (like

any other data obje
t or fun
tion), it is possible to spe
ify general operators to
reate

exible
ommuni
ation ar
hite
tures similarly to GoÆn [10℄. Thus, the same abstra
tion

fa
ilities
ould be used for sequential as well as
on
urrent programming. On the other

hand, the
lear separation between sequential and
on
urrent
omputations supports the

use of eÆ
ient and optimal evaluation strategies for the sequential parts, where similar

te
hniques for the
on
urrent parts are not available. This is in
ontrast to other, more

�ne-grained
on
urrent
omputation models like AKL [23℄, CCP [33℄, or Oz [35℄.

3 Properties of the Computation Model

Detailed soundness and
ompleteness results for the operational model presented in the

previous se
tion
an be found in [16℄. Due to the possible suspension of fun
tion
alls,

we
annot expe
t strong
ompleteness results as in logi
 programming. However, it
an

be shown that all
omputed answers are
orre
t and no answer is lost during the
om-

putation. Moreover, if all de�nitional trees have
exible bran
hes, then a
ompleteness

result similar to logi
 programming holds.

This
omputation model subsumes various known evaluation prin
iples for de
larat-

ive programming languages, whi
h
an be seen by parti
ular restri
tions of the form of

de�nitional trees (see [16℄ for a more detailed dis
ussion). For instan
e, if the de�nitional

trees only
ontains rule and
exible bran
h nodes, we obtain the optimal needed narrow-

ing strategy [5℄. This shows that the
omputation model is a
onservative extension of an

optimal evaluation strategy for fun
tional logi
 programs. The addition of or nodes sup-

ports fun
tion de�nitions with overlapping left-hand sides and results in the weakly needed

narrowing strategy [6, 25℄, whi
h is a widely used strategy in
urrent narrowing-based

lazy fun
tional logi
 languages. Simple lazy narrowing [27, 32℄ or SLD-resolution
an be

obtained by
onne
ting all trees for ea
h rule by or nodes. The lazy evaluation strategy

of fun
tional languages like Haskell [20℄ performs pattern mat
hing from left to right [38℄

and, therefore, it
an be implemented by de�nitional trees with \left-to-right"-oriented

bran
h nodes. The extension of this fun
tional kernel with equational
onstraints leads

to re
ent
omputation models for parallel fun
tional languages [9, 10℄. Finally, the e�e
t

of residuation [1, 2℄ is obtained by marking all bran
hes of predi
ates as
exible, and all

bran
hes of non-Boolean fun
tions as rigid.

Figure 1 summarizes the ne
essary restri
tions on the form of de�nitional trees in

order to obtain a parti
ular strategy.

4 Curry: A Multi-Paradigm De
larative Language

Curry [17, 19℄ is a multi-paradigm de
larative language aiming to integrate fun
tional,

logi
, and
on
urrent programming paradigms. Curry's operational semanti
s is based on

the
omputation model motivated and explained in Se
tion 2. The operational behavior

of ea
h fun
tion is spe
i�ed by its de�nitional tree. Sin
e it it tedious to spe
ify the

de�nitional trees for all fun
tions, they are automati
ally generated from the left-hand

sides of the rewrite rules using a left-to-right pattern mat
hing algorithm [16℄. Non-

Boolean fun
tions are annotated with rigid bran
hes, and predi
ates (i.e., fun
tions with

Boolean result type) are annotated with flex bran
hes (there are
ompiler pragmas

to override these defaults; moreover, de�nitional trees
an also be expli
itly provided

11

Strategy Restri
tions on de�nitional trees

Needed narrowing [5℄ only rule and
exible bran
h nodes; optimal strategy w.r.t.

length of derivations and number of
omputed solutions

Weakly needed narrowing [6, 25℄ only rule,
exible bran
h, and or nodes

Simple lazy narrowing [27, 32℄

and SLD-resolution

parti
ular de�nitional trees with
exible bran
h nodes (a

bran
h=rule tree for ea
h left-hand side, all rules
onne
ted

by or nodes)

Lazy fun
tional languages [38℄ de�nitional trees with left-to-right pattern mat
hing; initial

expression has no free variable

Residuation [1, 2, 24, 35℄ rigid bran
hes for non-Boolean fun
tions;
exible bran
hes

for predi
ates

Parallel fun
tional languages

[9, 10℄

de�nitional trees with left-to-right pattern mat
hing; paral-

lelism via equational
onstraints

Figure 1: Spe
i�
ation of di�erent operational models by de�nitional trees

similarly to type annotations). This has the
onsequen
e that the operational behavior

is nearly identi
al to lazy fun
tional languages if the logi
 programming features are not

used, and identi
al to logi
 programming if only predi
ates are de�ned.

Beyond this
omputation model, Curry provides a parametri
ally polymorphi
 type

system (the
urrent implementation has a type inferen
e algorithm for a Hindley/Milner-

like type system; the extension to Haskell-like type
lasses [39℄ is planned for a future

version), a module system, and a de
larative
on
ept for input/output operations based

on the monadi
 I/O
on
ept from fun
tional programming [31℄.

Basi
 arithmeti
 is provided by
onsidering integer values (like \42" or \-10") as
on-

stants, and the usual operations on integers as primitive fun
tions with rigid arguments,

i.e., they are delayed until all arguments are known
onstants. For instan
e, the expres-

sion 3+5 is redu
ed to 8, whereas x+y is delayed until x and y are bound by some other

part of the program. Thus, they
an a
t as passive
onstraints [3℄ providing for better

onstraint solvers than in pure logi
 programming [36℄ (e.g., by transforming \generate-

and-test" into \test-and-generate",
f. Se
tion 2.6). Con
eptually, primitive fun
tions
an

be
onsidered as de�ned by an in�nite set of rules whi
h provides a de
larative reading

for su
h fun
tions [8℄. In a similar way, any other external (side-e�e
t free!) fun
tion
an

be
onne
ted to Curry.

Higher-order fun
tions has been shown to be very useful to stru
ture programs and

write reusable software [22℄. Although the basi

omputation model in
ludes only �rst-

order fun
tions, Warren [40℄ has shown that the higher-order features of fun
tional pro-

gramming
an be implemented by providing a (�rst-order) de�nition of the appli
ation

fun
tion. Curry supports the higher-order features of
urrent fun
tional languages (par-

tial fun
tion appli
ations, lambda abstra
tions) by this te
hnique, where the rules for the

appli
ation fun
tion are impli
itly de�ned. In parti
ular, fun
tion appli
ation is rigid

in the �rst argument, i.e., an appli
ation is delayed until the fun
tion to be applied is

known (this avoids the expensive and operationally
omplex synthesis of fun
tions by

higher-order uni�
ation [28℄).

Conditional rules, in parti
ular with extra variables (i.e., variables not o

urring in the

left-hand side) in
onditions, are one of the essential features to provide the full power of

12

logi
 programming. Although the basi

omputation model only supports un
onditional

rules, it
an be easily extended to
onditional rules following the approa
h taken in Babel

[27℄:
onsider a
onditional rule

11

\l | f
g = r" (where the
ondition
 is a
onstraint) as

synta
ti
 sugar for the rule l = (
) r), where the right-hand side is a guarded expression.

The operational meaning of a guarded expression \
) r" is de�ned by the prede�ned

rule

(valid) x) = x .

Thus, a guarded expression is evaluated by an attempt to solve the
ondition. If this is

su

essful, the guarded expression is repla
ed by the right-hand side r of the
onditional

rule.

Further features of Curry, whi
h are under development, in
lude a
ommitted
hoi
e

onstru
t, the en
apsulation of sear
h to get more
ontrol over the non-deterministi

evaluation, and an interfa
e to other
onstraint solvers.

5 Con
lusions

Fun
tional and logi
 programming are often
onsidered as separate programming

paradigms and so that the
ommon idea of de
larative programming is sometimes lost.

We have shown in this paper that this need not be the
ase if a single programming

language based on a uni�ed
omputation model is taken into a

ount. From this point of

view, the di�eren
e between fun
tional and logi
 programming is the di�eren
e between

omputation with full and partial information whi
h also shows up in a di�eren
e in the

(non-)determinism of programs. Most of the other ideas, like algebrai
 data stru
tures,

pattern mat
hing, lazy evaluation, or lo
al de�nitions, are similar in both paradigms.

Additionally, some problemati
 \non-logi
al" features of Prolog
an be avoided in the

integrated language. For instan
e, I/O operations with side e�e
ts
an be repla
ed by

monadi
 I/O operations, and the use of the \
ut" operator of Prolog
ould be avoided,

sin
e the pruning of the sear
h spa
e
an be obtained by using fun
tions instead of pre-

di
ates [14℄ or an expli
it use of \if-then-else". Moreover, an integrated fun
tional logi

language leads to a natural amalgamation of programming te
hniques, e.g.,
onditions

in fun
tion rules
ould be solved by non-deterministi
 sear
h in the presen
e of extra

variables, or higher-order programming te
hniques
an be more often applied in logi

programming by partial appli
ations of predi
ates to arguments [30℄.

Referen
es

[1℄ H. A��t-Ka
i. An Overview of LIFE. In J.W. S
hmidt and A.A. Stogny, editors, Pro
.

Workshop on Next Generation Information System Te
hnology, pp. 42{58. Springer LNCS

504, 1990.

[2℄ H. A��t-Ka
i, P. Lin
oln, and R. Nasr. Le Fun: Logi
, equations, and Fun
tions. In Pro
.

4th IEEE Internat. Symposium on Logi
 Programming, pp. 17{23, San Fran
is
o, 1987.

[3℄ H. A��t-Ka
i and A. Podelski. Fun
tions as Passive Constraints in LIFE. ACM Transa
tions

on Programming Languages and Systems, Vol. 16, No. 4, pp. 1279{1318, 1994.

[4℄ S. Antoy. De�nitional Trees. In Pro
. of the 3rd International Conferen
e on Algebrai

and Logi
 Programming, pp. 143{157. Springer LNCS 632, 1992.

11

Constraints are en
losed in
urly bra
kets. Thus, a Haskell-like guarded rule \l | b = r", where b is

a Boolean expression,
an be
onsidered as synta
ti
 sugar for the
onditional rule \l | fb=trueg = r".

13

[5℄ S. Antoy, R. E
hahed, and M. Hanus. A Needed Narrowing Strategy. In Pro
. 21st ACM

Symposium on Prin
iples of Programming Languages, pp. 268{279, Portland, 1994.

[6℄ S. Antoy, R. E
hahed, and M. Hanus. Parallel Evaluation Strategies for Fun
tional Logi

Languages. In Pro
. of the Fourteenth International Conferen
e on Logi
 Programming

(ICLP'97). MIT Press (to appear), 1997.

[7℄ P. Arenas-S�an
hez, A. Gil-Luezas, and F.J. L�opez-Fraguas. Combining Lazy Narrowing

with Disequality Constraints. In Pro
. of the 6th International Symposium on Programming

Language Implementation and Logi
 Programming, pp. 385{399. Springer LNCS 844, 1994.

[8℄ S. Bonnier and J. Maluszynski. Towards a Clean Amalgamation of Logi
 Programs with

External Pro
edures. In Pro
. 5th Conferen
e on Logi
 Programming & 5th Symposium

on Logi
 Programming (Seattle), pp. 311{326. MIT Press, 1988.

[9℄ S. Breitinger, R. Loogen, and Y. Ortega-Mallen. Con
urren
y in Fun
tional and Logi

Programming. In Fuji International Workshop on Fun
tional and Logi
 Programming.

World S
ienti�
 Publ., 1995.

[10℄ M.M.T. Chakravarty, Y. Guo, M. K�ohler, and H.C.R. Lo
k. GoÆn - Higher-Order Fun
-

tions Meet Con
urrent Constraints. S
ien
e of Computer Programming (to appear), 1997.

[11℄ N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook

of Theoreti
al Computer S
ien
e, Vol. B, pp. 243{320. Elsevier, 1990.

[12℄ E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi
 plus

Fun
tional Language. Journal of Computer and System S
ien
es, Vol. 42, No. 2, pp. 139{

185, 1991.

[13℄ J.C. Gonz�ales-Moreno, M.T. Hortal�a-Gonz�ales, F.J. L�opez-Fraguas, and M. Rodr��guez-

Artalejo. A Rewriting Logi
 for De
larative Programming. In Pro
. ESOP'96, pp. 156{172.

Springer LNCS 1058, 1996.

[14℄ M. Hanus. Improving Control of Logi
 Programs by Using Fun
tional Logi
 Languages. In

Pro
. of the 4th International Symposium on Programming Language Implementation and

Logi
 Programming, pp. 1{23. Springer LNCS 631, 1992.

[15℄ M. Hanus. The Integration of Fun
tions into Logi
 Programming: From Theory to Pra
ti
e.

Journal of Logi
 Programming, Vol. 19&20, pp. 583{628, 1994.

[16℄ M. Hanus. A Uni�ed Computation Model for Fun
tional and Logi
 Programming. In Pro
.

of the 24th ACM Symposium on Prin
iples of Programming Languages (Paris), pp. 80{93,

1997.

[17℄ M. Hanus, H. Ku
hen, and J.J. Moreno-Navarro. Curry: A Truly Fun
tional Logi
 Lan-

guage. In Pro
. ILPS'95 Workshop on Visions for the Future of Logi
 Programming, 1995.

[18℄ M. Hanus and C. Prehofer. Higher-Order Narrowing with De�nitional Trees. In Pro
.

Seventh International Conferen
e on Rewriting Te
hniques and Appli
ations (RTA'96),

pp. 138{152. Springer LNCS 1103, 1996.

[19℄ M. Hanus (ed.). Curry: An Integrated Fun
tional Logi
 Language. Available at

http://www-i2.informatik.rwth-aa
hen.de/~hanus/
urry, 1997.

[20℄ P. Hudak, S. Peyton Jones, and P. Wadler. Report on the Programming Language Haskell

(Version 1.2). SIGPLAN Noti
es, Vol. 27, No. 5, 1992.

[21℄ G. Huet and J.-J. L�evy. Computations in Orthogonal Rewriting Systems. In J.-L. Lassez

and G. Plotkin, editors, Computational Logi
: Essays in Honor of Alan Robinson, pp.

395{443. MIT Press, 1991.

[22℄ J. Hughes. Why Fun
tional Programming Matters. In D.A. Turner, editor, Resear
h Top
is

in Fun
tional Programming, pp. 17{42. Addison Wesley, 1990.

[23℄ S. Janson and S. Haridi. An Introdu
tion to AKL: A Multi-Paradigm Programming Lan-

guage. In B. Mayoh, E. Tyugu, and J. Penjam, editors, Constraint Programming, NATO

ASI Series, pp. 414{449. Springer, 1994.

[24℄ J.W. Lloyd. Combining Fun
tional and Logi
 Programming Languages. In Pro
. of the

International Logi
 Programming Symposium, pp. 43{57, 1994.

14

[25℄ R. Loogen, F. Lopez Fraguas, and M. Rodr��guez Artalejo. A Demand Driven Computation

Strategy for Lazy Narrowing. In Pro
. of the 5th International Symposium on Programming

Language Implementation and Logi
 Programming, pp. 184{200. Springer LNCS 714, 1993.

[26℄ F.J. L�opez Fraguas. A General S
heme for Constraint Fun
tional Logi
 Programming.

In Pro
. of the 3rd International Conferen
e on Algebrai
 and Logi
 Programming, pp.

213{227. Springer LNCS 632, 1992.

[27℄ J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi
 Programming with Fun
tions and

Predi
ates: The Language BABEL. Journal of Logi
 Programming, Vol. 12, pp. 191{223,

1992.

[28℄ G. Nadathur and D. Miller. An Overview of �Prolog. In Pro
. 5th Conferen
e on Logi

Programming & 5th Symposium on Logi
 Programming (Seattle), pp. 810{827. MIT Press,

1988.

[29℄ L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.

[30℄ L. Naish. Higher-order logi
 programming in Prolog. In Pro
. JICSLP'96 Workshop on

Multi-Paradigm Logi
 Programming, pp. 167{176. TU Berlin, Te
hni
al Report No. 96-28,

1996.

[31℄ S.L. Peyton Jones and P. Wadler. Imperative Fun
tional Programming. In Pro
. 20th

Symposium on Prin
iples of Programming Languages (POPL'93), pp. 71{84, 1993.

[32℄ U.S. Reddy. Narrowing as the Operational Semanti
s of Fun
tional Languages. In Pro
.

IEEE Internat. Symposium on Logi
 Programming, pp. 138{151, Boston, 1985.

[33℄ V.A. Saraswat. Con
urrent Constraint Programming. MIT Press, 1993.

[34℄ R.C. Sekar and I.V. Ramakrishnan. Programming in Equational Logi
: Beyond Strong

Sequentiality. Information and Computation, Vol. 104, No. 1, pp. 78{109, 1993.

[35℄ G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, Computer S
ien
e

Today: Re
ent Trends and Developments, pp. 324{343. Springer LNCS 1000, 1995.

[36℄ P. Van Hentenry
k. Constraint Satisfa
tion in Logi
 Programming. MIT Press, 1989.

[37℄ P. Wadler. How to Repla
e Failure by a List of Su

esses. In Fun
tional Programming and

Computer Ar
hite
ture. Springer LNCS 201, 1985.

[38℄ P. Wadler. EÆ
ient Compilation of Pattern-Mat
hing. In S.L. Peyton Jones, editor, The

Implementation of Fun
tional Programming Languages, pp. 78{103. Prenti
e Hall, 1987.

[39℄ P. Wadler and S. Blott. How to make ad-ho
 polymorphism less ad ho
. In Pro
. POPL'89,

pp. 60{76, 1989.

[40℄ D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Ma
hine

Intelligen
e 10, pp. 441{454, 1982.

A Operational Semanti
s of Curry

The operational semanti
s of Curry is spe
i�ed using the fun
tions

se : T (C [F ;X) ! D [fsuspendg

s : T (C [F ;X) �DT ! D [fsuspendg :

The fun
tion
se performs a single
omputation step on an expression e. It
omputes a dis-

jun
tion of answer expressions or the spe
ial
onstant suspend indi
ating that no redu
tion is

possible in e. As shown in Figure 2,
se attempts to apply a redu
tion step to the leftmost

outermost fun
tion symbol in e by the use of
s whi
h is
alled with the appropriate subterm

and the de�nitional tree for the leftmost outermost fun
tion symbol.
s is de�ned by a
ase

distin
tion on the de�nitional tree. If it is a rule node, we apply this rule. If the de�nitional

tree is an and node, we try to evaluate the �rst bran
h and, if this is not possible due to the

15

Computation step for a single (unsolved) expression:

se(x) = suspend for all variables x

se(f(e

1

; : : : ; e

n

)) =
s(f(e

1

; : : : ; e

n

);T) if T is a fresh de�nitional tree for f

se(
(e

1

; : : : ; e

n

))

=

�

repla
e(
(e

1

; : : : ; e

n

); k;
se(e

k

)) if
se(e

1

) = � � � =
se(e

k�1

) = suspend 6=
se(e

k

)

suspend if
se(e

i

) = suspend, i = 1; : : : ; n

Computation step for an operation-rooted expression e:

s(e; rule(l = r)) = fid �(r)g if � is a substitution with �(l) = e

s(e; and(T

1

;T

2

)) =

�

s(e;T

1

) if
s(e;T

1

) 6= suspend

s(e;T

2

) otherwise

s(e; or(T

1

;T

2

)) =

�

s(e;T

1

) [
s(e;T

2

) if
s(e;T

1

) 6= suspend 6=
s(e;T

2

)

suspend otherwise

s(e; bran
h(�; p; r;T

1

; : : : ;T

k

))

=

8

>

>

>

>

>

<

>

>

>

>

>

:

s(e;T

i

) if ej

p

=
(e

1

; : : : ; e

n

) and pat(T

i

)j

p

=
(x

1

; : : : ; x

n

)

; if ej

p

=
(e

1

; : : : ; e

n

) and pat(T

i

)j

p

6=
(� � �); i = 1; : : : ; k

suspend if ej

p

= x and r = rigid

S

k

i=1

f�

i

�

i

(e)g if ej

p

= x, r = flex, and �

i

= fx 7! pat(T

i

)j

p

g

repla
e(e; p;
se(ej

p

)) if ej

p

= f(e

1

; : : : ; e

n

)

Derivation step for a disjun
tive expression:

f� eg [D ! f�

1

Æ � e

1

; : : : ; �

n

Æ � e

n

g [D

if � e is unsolved and
se(e) = f�

1

e

1

; : : : ; �

n

e

n

g

Figure 2: Operational semanti
s of Curry

suspension of all fun
tion
alls, the se
ond bran
h.

12

An or node produ
es a disjun
tion. To

ensure
ompleteness, we have to suspend the entire disjun
tion if one disjun
t suspends [16℄.

For a similar reason, we
annot
ommit to a disjun
t whi
h does not bind variables but we

have to
onsider both alternatives (see [6℄ for a
ounter-example). The most interesting
ase

is a bran
h node. Here we have to bran
h on the value of the top-level symbol at the sele
ted

position. If the symbol is a
onstru
tor, we pro
eed with the appropriate de�nitional subtree, if

possible. If it is a fun
tion symbol, we pro
eed by evaluating this subterm. If it is a variable, we

either suspend (if the bran
h is rigid) or instantiate the variable to the di�erent
onstru
tors.

The auxiliary fun
tion repla
e puts a possibly disjun
tive expression into a subterm:

repla
e(e; p; d) =

�

f�

1

�

1

(e)[e

1

℄

p

; : : : ; �

n

�

n

(e)[e

n

℄

p

g if d = f�

1

e

1

; : : : ; �

n

e

n

g

suspend if d = suspend

The overall
omputation strategy is a transformation on disjun
tive expressions. It takes a

disjun
t � e not in solved form and
omputes
se(e). If
se(e) = suspend, then the
ompu-

tation of this expression
ounders and we
annot pro
eed (i.e., this expression is not solvable).

If
se(e) is a disjun
tive expression, we substitute it for � e
omposed with the old answer

substitution.

12

For the sake of simpli
ity, we
hoose a simple sequential strategy for
on
urrent
omputations.

However, it is also possible to provide a more sophisti
ated strategy with a fair sele
tion of threads, e.g.,

as in Oz [35℄.

16

