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Abstra
t

We propose a new 
omputation model whi
h 
ombines the operational prin
iples

of fun
tional languages (redu
tion), logi
 languages (non-deterministi
 sear
h for

solutions), and integrated fun
tional logi
 languages (residuation and narrowing).

This 
omputation model 
ombines eÆ
ient evaluation prin
iples of fun
tional lan-

guages with the problem-solving 
apabilities of logi
 programming. Sin
e the model

allows the delay of insuÆ
iently instantiated fun
tion 
alls, it also supports a 
on-


urrent style of programming. We show that many known evaluation prin
iples

of de
larative languages are parti
ular instan
es of our model. This 
omputation

model is the basis of Curry, a multi-paradigm language whi
h 
ombines fun
tional,

logi
 and 
on
urrent programming styles. We 
on
lude with a des
ription of some

features of Curry.

1 Introdu
tion

De
larative programming is motivated by the fa
t that a higher programming level using

powerful abstra
tion fa
ilities leads to reliable and maintainable software. Thus, de-


larative programming languages are based on mathemati
al formalisms and 
ompletely

abstra
t from many details of the 
on
rete hardware and the implementation of the pro-

grams on this hardware. For instan
e, pointers are avoided and repla
ed by the use of

algebrai
 data types, and 
omplex pro
edures are split into easily 
omprehensible parts

using pattern mat
hing and lo
al de�nitions. Sin
e de
larative programs strongly 
orres-

pond to formulae of mathemati
al 
al
uli, they simplify the reasoning (e.g., veri�
ation

w.r.t. non-exe
utable spe
i�
ations), provide freedom in the implementation (e.g., use

of parallel ar
hite
tures), and redu
e the program development time in 
omparison to


lassi
al imperative languages.

Unfortunately, de
larative programming is 
urrently split into two main �elds based

on di�erent mathemati
al formalisms, namely fun
tional programming (lambda 
al
u-

lus) and logi
 programming (predi
ate logi
). This has negative 
onsequen
es w.r.t. to

tea
hing (usually, there are di�erent 
ourses on fun
tional programming and logi
 pro-

gramming, and students do not see many similarities between them), resear
h (ea
h �eld

has its own 
ommunity, 
onferen
es, and journals, and sometimes similar solutions are

developed twi
e), and appli
ations (ea
h �eld has its own appli
ation areas and some

e�ort has been done to show that one paradigm 
an 
over appli
ations of the other

paradigm [37℄ instead of showing the advantages of de
larative programming in various

appli
ation �elds). The separation is mainly due to the di�erent underlying 
omputa-

tions models|deterministi
 redu
tion and lazy evaluation in fun
tional languages, and

non-deterministi
 sear
h in logi
 languages. On the other hand, fun
tional and logi
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languages have a 
ommon kernel and 
an be seen as di�erent fa
ets of a single idea.

For instan
e, the use of algebrai
 data types instead of pointers, and the de�nition of

lo
al 
omprehensible 
ases by pattern mat
hing and lo
al de�nitions instead of 
omplex

pro
edures are emphasized in fun
tional as well as logi
 programming. However, these


ommonalities are often hidden by the di�eren
es in the 
omputation models and the

appli
ation areas of these languages.

In this paper we want to show how to over
ome this problem. Our approa
h is the


hoi
e of a single 
omputation model whi
h 
ombines lazy redu
tion of expressions with

a possibly non-deterministi
 binding of free variables o

urring in expressions. Sin
e it is

a 
onservative extension of an optimal evaluation strategy for integrated fun
tional logi


languages [5℄, it 
ombines the problem-solving 
apabilities of logi
 programming with

optimal redu
tion strategies known from fun
tional programming for a large 
lass of pro-

grams. Moreover, in order to avoid un
ontrolled non-determinism during the evaluation

of parti
ular expressions and to provide a simple 
onne
tion to externally de�ned fun
-

tions, fun
tion 
alls may be suspended until the arguments are suÆ
iently instantiated.

Thus, pure fun
tional programming, pure logi
 programming, and 
on
urrent (logi
) pro-

gramming are obtained as parti
ular restri
tions of this model. Moreover, due to the use

of an integrated fun
tional logi
 language, we 
an 
hoose the best of the two worlds in

appli
ation programs. For instan
e, input/output (implemented in logi
 languages by

side e�e
ts) 
an be handled with the monadi
 I/O 
on
ept [31℄ in a fully de
larative

way. Similarly, most of the other impure features of Prolog (e.g., arithmeti
, 
ut) 
an be

avoided by the use of fun
tions.

This 
omputation model is the basis of the multi-paradigm language Curry [16, 17, 19℄.

Apart from this new model, Curry o�ers many other features useful for pra
ti
al

programming, like a type and a module system, higher-order fun
tions, arithmeti
,

de
larative I/O et
. The development of Curry is an international initiative inten-

ded to provide a 
ommon basis for fun
tional logi
 languages and further resear
h

and developments in this area. More details 
an be found in the Curry home page:

http://www-i2.informatik.rwth-aa
hen.de/~hanus/
urry/

In the next se
tion, we introdu
e some basi
 notions and motivate the basi
 
omputa-

tion model of Curry. Properties of this model are brie
y dis
ussed in Se
tion 3. Se
tion 4

outlines some features of Curry, and Se
tion 5 
ontains our 
on
lusions.

2 A Uni�ed Computation Model for De
larative

Programming

In this se
tion we introdu
e the basi
 
omputation model of Curry, where we use a slightly

di�erent des
ription than in its original presentation [16℄. We motivate it by a stepwise

extension of a rewrite model to features from logi
 and 
on
urrent programming. The


omplete formal spe
i�
ation of our 
omputation model is summarized in Appendix A.

2.1 Term Rewriting

Firstly, we introdu
e some basi
 notions of term rewriting [11℄ and fun
tional logi
 pro-

gramming [15℄.

As mentioned in the previous se
tion, a 
ommon idea of fun
tional as well as logi


programming is the use of algebrai
 data types instead pointers. Thus, the 
omputational
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domain of de
larative languages is a set of terms 
onstru
ted from 
onstants and data


onstru
tors. Fun
tions (or predi
ates in logi
 programming, but throughout this paper

we 
onsider predi
ates as Boolean fun
tions for the sake of simpli
ity) operate on terms

and map terms to terms.

Formally, we 
onsider a signature partitioned into a set C of 
onstru
tors and a set

F of (de�ned) fun
tions or operations.

1

We write 
=n 2 C and f=n 2 F for n-ary


onstru
tor and fun
tion symbols, respe
tively. A 
onstru
tor 
 with arity 0 is also 
alled

a 
onstant.

2

Usually, there are at least the 0-ary Boolean 
onstru
tors true and false.

We denote by X a set of variables (with elements x; y). An expression (data term)

is a variable x 2 X or an appli
ation '(e

1

; : : : ; e

n

) where '=n 2 C [ F ('=n 2 C) and

e

1

; : : : ; e

n

are expressions (data terms).

3

We denote by T (C [ F ;X ) and T (C;X ) the

set of all expressions and data terms, respe
tively. Var(e) denotes the set of variables

o

urring in an expression e. An expression e is 
alled ground if Var(e) = ;. A pattern

is an expression of the form f(t

1

; : : : ; t

n

) where ea
h variable o

urs only on
e, f=n 2 F ,

and t

1

; : : : ; t

n

2 T (C;X ). A head normal form is a variable or an expression of the form


(e

1

; : : : ; e

n

) with 
=n 2 C.

A position p is a sequen
e of positive integers identifying a subexpression in an ex-

pression. ej

p

denotes the subterm or subexpression of e at position p, and e[e

0

℄

p

denotes

the result of repla
ing the subterm ej

p

by the expression e

0

(see [11℄ for details).

A substitution is a mapping X ! T (C [ F ;X ), where id denotes the identity substi-

tution. Substitutions are extended to morphisms on expressions by �('(e

1

; : : : ; e

n

)) =

'(�(e

1

); : : : ; �(e

n

)) for every expression '(e

1

; : : : ; e

n

). A substitution � is 
alled a uni�er

of two expressions e

1

and e

2

if �(e

1

) = �(e

2

).

A (de
larative) program P is a set of rules l = r where l is a pattern and Var(r) �

Var(l). l and r are 
alled left-hand side and right-hand side, respe
tively.

4

A rule is


alled a variant of another rule if it is obtained by a unique repla
ement of variables

by other variables. In order to ensure well-de�nedness of fun
tions, we require that P


ontains only trivial overlaps, i.e., if l

1

=r

1

and l

2

=r

2

are variants of rewrite rules and � is a

uni�er for l

1

and l

2

, then �(r

1

) = �(r

2

) (weak orthogonality). However, it is also possible

to drop this restri
tion and allow non-deterministi
 fun
tions sin
e su
h fun
tions 
an be

evaluated by a non-deterministi
 rewrite prin
iple [13℄, whi
h is part of this 
omputation

model (
f. Se
tion 2.3).

Example 2.1 If natural numbers are data terms built from the 
onstru
tors 0 and s, the

following rules de�ne the addition and the predi
ate \less than or equal to" for natural

numbers:

0 + y = y 0� x = true

s(x) + y = s(x+y) s(x)� 0 = false

s(x)� s(y) = x�y

Sin
e the left-hand sides are pairwise non-overlapping, the fun
tions are well de�ned. 2

1

For the sake of simpli
ity, we omit the types of the 
onstru
tors and fun
tions in this se
tion sin
e

they are not relevant for the 
omputation model. Note, however, that Curry is typed language with a

Hindley/Milner-like polymorphi
 type system (see Se
tion 4).

2

Note that elementary built-in types like truth values, integers, or 
hara
ters 
an also be 
onsidered

as sets with (in�nitely) many 
onstants.

3

We do not 
onsider partial appli
ations in this part sin
e it is not relevant for the 
omputation

model. Su
h higher-order features are dis
ussed in Se
tion 4.

4

For the sake of simpli
ity, we �rstly 
onsider only un
onditional rewrite rules. An extension to


onditional rules is des
ribed in Se
tion 4.
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From a fun
tional point of view, we are interested in 
omputing values of expressions,

where a value does not 
ontain fun
tion symbols (i.e., it is a data term) and should

be equivalent (w.r.t. the program rules) to the initial expression. The value 
an be


omputed by applying rules from left to right. For instan
e, we 
an 
ompute the value

of s(s(0))+s(0) by applying the rules for addition to this expression:

s(s(0))+s(0) ! s(s(0)+s(0)) ! s(s(0+s(0))) ! s(s(s(0)))

Formally, a redu
tion step is an appli
ation of a rule l=r to the subterm (redex) tj

p

, i.e.,

t ! s if s = t[�(r)℄

p

for some substitution � with �(l) = tj

p

(i.e., the left-hand side l of

the sele
ted rule must mat
h the subterm tj

p

).

In 
ontrast to imperative languages, where the algorithmi
 
ontrol is expli
itly 
on-

tained in the programs by the use of various 
ontrol stru
tures, de
larative languages

abstra
t from the 
ontrol issue sin
e a program 
onsists of rules and does not 
ontain ex-

pli
it information about the order to apply the rules. This makes the reasoning about de-


larative programs easier (program analysis, transformation, or veri�
ation) and provides

more freedom for the implementor (e.g., transforming 
all-by-need into 
all-by-value, im-

plementation on parallel ar
hite
tures). On the other hand, a 
on
rete programming

language must provide a pre
ise model of 
omputation to the programmer. Thus, we


an distinguish between di�erent 
lasses of fun
tional languages. In an eager fun
tional

language, the sele
ted redex in a redu
tion step is always an innermost redex, i.e., the

redex is a pattern, where in lazy fun
tional languages the sele
ted redex is an outermost

one. Innermost redu
tion may not 
ompute a value of an expression in the presen
e of

nonterminating rules, i.e., innermost redu
tion is not normalizing (we 
all a redu
tion

strategy normalizing i� it always 
omputes a value of an expression if it exists). Thus,

we 
onsider in the following outermost redu
tion, sin
e it allows the 
omputation with

in�nite data stru
tures and provides more modularity by separating 
ontrol aspe
ts [22℄.

2.2 Lazy Evaluation and Pattern Mat
hing

A subtle point in the de�nition of a lazy evaluation strategy in 
ombination with pattern

mat
hing is the sele
tion of the \right" outermost redex. For instan
e, 
onsider the

rules of Example 2.1 together with the rule f = f. Then the expression 0+0�f has two

outermost redexes, namely 0+0 and f. If we sele
t the �rst one, we 
ompute the value

true after one further outermost redu
tion step. However, if we sele
t the redex f, we run

into an in�nite redu
tion sequen
e instead of 
omputing the value. Thus, it is important

to know whi
h outermost redex is sele
ted. Most lazy fun
tional languages 
hoose the

leftmost outermost redex whi
h is implemented by translating pattern mat
hing into


ase expressions [38℄. On the other hand, this may not be the best possible 
hoi
e sin
e

leftmost outermost redu
tion is in general not normalizing (e.g., take the last example but

swap the arguments of �). It is well known that we 
an obtain a normalizing redu
tion

strategy by redu
ing in ea
h step a needed redex [21℄. Although the 
omputation of a

needed redex is unde
idable in general, there are relevant sub
lasses of programs where

needed redexes 
an be e�e
tively 
omputed. For instan
e, if fun
tions are indu
tively

de�ned on the stru
ture of data terms (so-
alled indu
tively sequential fun
tions [4℄), a

needed redex 
an be simply 
omputed by pattern mat
hing. This is the basis of our


omputation model.

For this purpose, we organize all rules of a fun
tion in a hierar
hi
al stru
ture 
alled

4



de�nitional tree [4℄.

5

T is a de�nitional tree with pattern � i� the depth of T is �nite

and one of the following 
ases holds:

T = rule(l = r); where l = r is a variant of a program rule su
h that l = �.

T = bran
h(�; p; T

1

; : : : ; T

k

); where p is a position of a variable in �, 


1

; : : : ; 


k

are dif-

ferent 
onstru
tors (k > 0), and, for all i = 1; : : : ; k, T

i

is a de�nitional tree with

pattern �[


i

(x

1

; : : : ; x

n

)℄

p

, where n is the arity of 


i

and x

1

; : : : ; x

n

are new variables.

A de�nitional tree of an n-ary fun
tion f is a de�nitional tree T with pattern

f(x

1

; : : : ; x

n

), where x

1

; : : : ; x

n

are distin
t variables, su
h that for ea
h rule l = r with

l = f(t

1

; : : : ; t

n

) there is a node rule(l

0

= r

0

) in T with l variant of l

0

. In the following, we

write pat(T ) for the pattern of a de�nitional tree T , and DT for the set of all de�nitional

trees. A fun
tion is 
alled indu
tively sequential i� there exists a de�nitional tree for it.

A program is indu
tively sequential if all de�ned fun
tions are indu
tively sequential.

For instan
e, the predi
ate � de�ned in Example 2.1 is indu
tively sequential, and a

de�nitional tree for � is:

bran
h(x1� x2; 1;rule(0� x2 = true);

bran
h(s(x)� x2; 2; rule(s(x)� 0 = false);

rule(s(x)� s(y) = x� y )))

Intuitively, a de�nitional tree of a fun
tion spe
i�es the strategy to evaluate a 
all to

this fun
tion. If the tree is a rule node, we apply the rule. If it is a bran
h node, it is

ne
essary to evaluate the subterm at the spe
i�ed position to head normal form in order

to 
ommit to one of the bran
hes. Thus, in order to evaluate the expression 0+0�f w.r.t.

the previous de�nitional tree, the top bran
h node requires that the �rst subterm 0+0

must be evaluated to head normal form (in this 
ase: 0) in order to 
ommit to the �rst

bran
h.

Formally, if e is an expression with a fun
tion f at the top

6

and T is a de�nitional

tree for f , then e ! e

0

is a redu
tion step i� e

0

= 
s(e; T ), where the partial fun
tion 
s

(\
omputation step") is de�ned as follows:


s(e; rule(l = r)) = �(r) if � is a substitution with �(l) = e


s(e; bran
h(�; p; T

1

; : : : ; T

k

))

=

(


s(e; T

i

) if ej

p

= 
(e

1

; : : : ; e

n

) and pat(T

i

)j

p

= 
(x

1

; : : : ; x

n

)

e[e

0

℄

p

if ej

p

= f

0

(� � �), T

0

is a de�nitional tree of f

0

, and 
s(ej

p

; T

0

) = e

0

This de�nition of a redu
tion strategy has the following advantages:

1. The strategy is normalizing, i.e., it always 
omputes a value if it exists.

2. The strategy is independent on the order of rules. Note that pattern mat
hing

in traditional lazy fun
tional languages implemented by 
ase expressions [38℄ is

independent on the order of rules only for uniform programs [38℄ whi
h is a stri
t

sub
lass of indu
tively sequential programs.

7

5

We 
ould also introdu
e our strategy by 
ompiling all rules of a fun
tion into a 
ase expression [38℄.

However, the use of de�nitional trees has the advantage that the stru
ture of rules is not destroyed and

the trees 
an be easily extended to more general 
lasses of programs whi
h be
ome relevant later.

6

If the expression has a 
onstru
tor at the top, 
onsider the leftmost outermost subexpression whi
h

has a fun
tion at the top.

7

Uniform fun
tions are those fun
tions where a de�nitional tree with a stri
t left-to-right order in

the positions of the bran
hes exists.
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3. The de�nitional trees 
an be automati
ally generated from the left-hand sides of the

rules [16℄ (similarly to the 
ompilation of pattern mat
hing into 
ase expressions),

i.e., there is no need for the programmer to expli
itly spe
ify the trees.

4. There is a strong equivalen
e between redu
tion with de�nitional trees and redu
-

tion with 
ase expressions sin
e de�nitional trees 
an be easily translated into 
ase

expressions (see [18℄ for details). However, redu
tion with de�nitional trees 
an be

easily extended to more general strategies, as 
an be seen in the following.

2.3 Overlapping Rules and Non-deterministi
 Rewriting

Indu
tively sequential fun
tions have the property that there is a single argument in the

left-hand sides whi
h distinguishes the di�erent rules. In parti
ular, fun
tions de�ned by

rules with overlapping left-hand sides, like the \parallel-or"

true_ x = true

x_ true = true

false_ false = false

are not indu
tively sequential. However, it is fairly easy to extend de�nitional trees to


over also su
h fun
tions. For this purpose, we introdu
e a further kind of nodes: a

de�nitional tree T with pattern � 
an also have the form or(T

1

; T

2

) where T

1

and T

2

are de�nitional trees with pattern �.

8

It is easy to see that a de�nitional tree with or

nodes 
an be 
onstru
ted for ea
h de�ned fun
tion (see [16℄ for a 
on
rete algorithm).

For instan
e, a de�nitional tree for the parallel-or is

or(bran
h(x1_x2; 1; rule(true_x2 = true);

bran
h(false_x2; 2; rule(false_false = false)));

bran
h(x1_x2; 2; rule(x1_true = true)))

The 
orresponding extension of the redu
tion strategy is a more subtle point. The fol-

lowing extension of 
s pro
esses the bran
hes of the or nodes in a sequential manner:


s(e; or(T

1

; T

2

)) =

�


s(e; T

1

) if 
s(e; T

1

) is de�ned


s(e; T

2

) otherwise

This 
orresponds to the implementation of overlapping rules in most lazy fun
tional

languages, i.e., rules in su
h languages 
annot be read as equalities between the left- and

right-hand side but must be read as sequen
es where the latter rules are dis
arded if a

rule 
an be su

essfully applied. This has the advantage that some negative 
onditions

in subsequent rules 
an be avoided, but it leads to a more operational than de
larative

reading of programs (i.e., some kind of modularity is lost sin
e the rules 
annot be

understood independently). A further disadvantage is that no value is 
omputed if the


omputation with the �rst bran
h does not terminate and only the se
ond bran
h leads to

the result. To over
ome this problem, we 
ould repla
e the sequential implementation by

a non-deterministi
 one, i.e., we assume that 
s maps expressions into sets of expressions

(
s : T (C [ F ;X )�DT ! 2

T (C[F ;X )

) and de�ne


s(e; or(T

1

; T

2

)) = 
s(e; T

1

) [ 
s(e; T

2

)

8

For the sake of simpli
ity, we 
onsider only binary or nodes. The extension to more than two subtrees

is straightforward.
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By redu
ing all expressions in parallel, it is ensured that a value will eventually be


omputed if it exists. Another alternative is the parallel redu
tion of independent subex-

pressions whi
h is a deterministi
 and normalizing redu
tion strategy [34℄. This 
an also

be de�ned by a modi�
ation of 
s so that a set of redex positions is 
omputed by the

use of de�nitional trees and all these redexes are redu
ed in parallel (see [4, 6℄ for more

details). Sin
e our 
omputation model must in
lude some kind of non-determinism in

order to 
over logi
 programming languages, we take the �rst alternative and assume in

the following that 
s maps expressions into sets of expressions.

2.4 Computing with Non-ground Expressions

Up to now, we have only 
onsidered fun
tional 
omputations where ground expressions

are redu
ed to some value. In logi
 languages, the initial expression (usually an expres-

sion of Boolean type, 
alled a goal) may 
ontain free variables. A logi
 programming

system should �nd values for these variables su
h that the goal is redu
ible to true.

Fortunately, it requires only a slight extension of the strategy introdu
ed so far to 
over

non-ground expressions and variable instantiation (whi
h also shows that the di�eren
e

between fun
tional and logi
 programming is not so large from an operational point of

view). The 
urrent de�nition of 
s is unde�ned if we have to bran
h on a free variable.

Sin
e the value of this variable is needed in order to pro
eed the 
omputation, we non-

deterministi
ally bind the variable to the 
onstru
tor required in the subtrees. Thus, we


ould extend the de�nition of 
s by the following 
ase:

9


s(e; bran
h(�; p; T

1

; : : : ; T

k

)) =

k

[

i=1


s(�

i

(e); T

i

) if ej

p

= x and �

i

= fx 7! pat(T

i

)j

p

g

For instan
e, if the fun
tion f is de�ned by the rules

f(a) = a

f(b) = b

(where a and b are 
onstants), then the expression f(x) with the free variable x is

evaluated by 
s as follows:

f(x) ! fa,bg

Unfortunately, one of the most important aspe
ts, namely the instantiation of free vari-

ables, is not expli
itly shown in this 
omputation step. Thus, we have to 
hange our


omputational domain. Due to the presen
e of free variables in expressions, an expres-

sion may be redu
ed to di�erent values by binding the free variables to di�erent terms.

In fun
tional programming, one is interested in the 
omputed value, whereas logi
 pro-

gramming has the interest in the di�erent bindings (answers). Thus, we de�ne for our

integrated framework an answer expression as a pair � e 
onsisting of a substitution �

(the answer 
omputed so far) and an expression e. An answer expression � e is solved

if e is a data term. We sometimes omit the identity substitution in answer expressions,

i.e., we write e instead of id e if it is 
lear from the 
ontext.

Sin
e more than one answer may exist for expressions 
ontaining free variables, in

general, initial expressions are redu
ed to disjun
tions of answer expressions. Thus, a

disjun
tive expression is a (multi-)set of answer expressions f�

1

e

1

; : : : ; �

n

e

n

g. The

9

In order to ensure 
ompleteness, we also have to ensure that the de�nitional tree taken to evaluate

a fun
tion symbol has always fresh variables.
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set of all disjun
tive expressions is denoted by D, whi
h is the 
omputational domain of

Curry.

For instan
e, if we 
onsider the previous example, the evaluation of f(x) together with

the di�erent bindings for x is re
e
ted by the following non-deterministi
 
omputation

step:

f(x) ! ffx 7! ag a ; fx 7! bg bg

For the sake of readability, we write the latter disjun
tive expression in the form

fx=aga | fx=bgb. Similarly, the expression f(b) is redu
ed to b (whi
h is an abbrevi-

ation for a disjun
tive expression with one element and the identity substitution).

A single 
omputation step performs a redu
tion in exa
tly one expression of a dis-

jun
tion (e.g., in the leftmost unsolved expression). This expression is redu
ed (with a

possible variable instantiation) a

ording to our strategy des
ribed so far. If the program

is indu
tively sequential, i.e., the de�nitional trees do not 
ontain or nodes, then this

strategy is equivalent to the needed narrowing strategy [5℄. Needed narrowing enjoys sev-

eral optimality properties: every redu
tion step is needed, i.e., ne
essary to 
ompute the

�nal result, it 
omputes the shorted possible derivations (if 
ommon subterms are shared)

and a minimal set of solutions, and it is fully deterministi
 on ground expressions, i.e., in

the fun
tional programming 
ase. If some de�nitional trees 
ontain or nodes, optimality

is lost (however, it is still optimal on the indu
tively sequential parts of the program),

but the resulting strategy is sound and 
omplete in the sense of fun
tional and logi


programming, i.e., all values and answers are 
omputed [6℄.

2.5 Equality and Constraints

Fun
tional logi
 languages are able to solve equations 
ontaining de�ned fun
tions. For

instan
e, 
onsider the fun
tion + de�ned in Example 2.1 and the equation x+0=s(0).

Using the 
omputation model presented so far, this equation 
an be solved by evaluating

the left-hand side x+0 to the answer expression fx=s(0)gs(0) (here we omit the other

alternatives in the disjun
tion). Sin
e the resulting equation is trivial, the equation is

valid w.r.t. the 
omputed answer fx=s(0)g.

Thus, we 
ould solve an equation by redu
ing both sides to uni�able terms. However,

it is well known [12, 27℄ that this notion of equality is not reasonable in the presen
e

of nonterminating fun
tions. The only sensible notion of equality whi
h is also used in

fun
tional languages, is the stri
t equality, i.e., an equational 
onstraint e

1

=e

2

is satis�ed

if both sides e

1

and e

2

are redu
ible to a same data term. As a 
onsequen
e, if both sides

are unde�ned (nonterminating), then the stri
t equality does not hold. Operationally,

an equational 
onstraint e

1

=e

2

is solved by evaluating e

1

and e

2

to uni�able data terms.

The equational 
onstraint 
ould also be solved in an in
remental way by an interleaved

lazy evaluation of the expressions and binding of variables to 
onstru
tor terms [25℄.

Equational 
onstraints are di�erent from standard Boolean fun
tions sin
e they are


he
ked for satis�ability. For instan
e, the equational 
onstraint x=s(0) is satis�able if

the variable x is bound to s(0). However, the evaluation of x=s(0) does not deliver a

Boolean value true or false, sin
e the latter value would require a binding of x to all

values di�erent from s(0) (whi
h 
ould be expressed if we use a ri
her 
onstraint system

than substitutions, for instan
e, disequality 
onstraints [7℄). This is suÆ
ient sin
e,

similarly to logi
 programming, 
onstraints are only used in 
onditions of equations (
f.

Se
tion 4) whi
h must be 
he
ked for satis�ability.
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If we want to 
he
k the equality of two fully known expressions, we 
an redu
e both

sides to ground 
onstru
tor terms and 
he
k their identity. This test equality 
an be

spe
i�ed as any other Boolean fun
tion by the following rules (where == and && are in�x

operators):


 == 
 = true 8
=0 2 C


(x

1

,...,x

n

) == 
(y

1

,...,y

n

) = x

1

==y

1

&&...&& x

n

==y

n

8
=n 2 C


(x

1

,...,x

n

) == d(y

1

,...,y

m

) = false 8
=n; d=m 2 C with 
=n 6= d=m

true && x = x

false && x = false

For instan
e, the test \s(0)==s(0)" redu
es to true, whereas the test \s(0)==0" redu
es

to false. In order to avoid an in�nite set of solutions for insuÆ
iently instantiated tests

like x==y, the evaluation of a test equality is suspended if one side is a free variable (i.e.,

== is rigid in both arguments, 
f. Se
tion 2.6). Therefore, the test equality 
an be used

where Boolean values are required (e.g., in the 
ondition part of if-then-else), whereas

equational 
onstraints 
an only be applied in the 
ondition of a program rule. In terms

of 
on
urrent 
onstraint programming languages [33℄, == and = 
orrespond to ask and

tell equality 
onstraints, respe
tively. This is also justi�ed by the fa
t that a test e

1

==e

2

is suspended if one side is a variable, whereas an equational 
onstraint e

1

=e

2

is 
he
ked

for satis�ability and propagates new variable bindings.

Note that the basi
 kernel of Curry only provides stri
t equations e

1

=e

2

between

expressions as 
onstraints. Sin
e it is 
on
eptually fairly easy to add other 
onstraint

stru
tures [26℄, future extensions of Curry will provide ri
her 
onstraint systems to sup-

port 
onstraint logi
 programming appli
ations.

2.6 Con
urrent Computations

The strategy des
ribed so far 
overs fun
tional logi
 languages with a sound and 
omplete

operational semanti
s (i.e., based on narrowing [15℄). However, it is still too restri
tive to


over all important aspe
ts of modern de
larative languages due to the following reasons:

1. Narrowing and guessing of free variables should not be applied to all fun
tions,

sin
e some fun
tions (de�ned on re
ursive data stru
tures) may not terminate if

parti
ular arguments are unknown.

2. The 
omputation model requires the expli
it de�nition of all fun
tions by program

rules. It is not 
lear how to 
onne
t primitive (external, prede�ned) fun
tions where

the rules are not expli
itly given, like arithmeti
, I/O et
.

3. Modern logi
 languages provide 
exible sele
tion rules (
on
urrent 
omputations

based on the syn
hronization on free variables).

All these features 
an be easily supported by allowing the delay of fun
tion 
alls if a

parti
ular argument is not instantiated. For this purpose we extend the fun
tion 
s so

that the evaluation of some fun
tion 
all may suspend, i.e., 
s has the type


s : T (C [ F ;X )�DT ! D [ fsuspendg :

A fun
tion 
all may be suspended if the value of some (needed) argument is unknown.

Thus, we extend the de�nition of bran
h nodes by an additional 
ag, i.e, a bran
h

node has the form bran
h(�; p; r; T

1

; : : : ; T

k

) with r 2 frigid; f lexg. A rigid annotation

9



spe
i�es that the evaluation of the fun
tion 
all is suspended if the bran
h argument is a

free variable. This is expressed by the following new de�nition of 
s for the 
ase of free

variables:


s(e; bran
h(�; p; r; T

1

; : : : ; T

k

))

=

8

<

:

: : :

suspend if ej

p

= x and r = rigid

S

k

i=1

f�

i

�

i

(e)g if ej

p

= x, r = flex, and �

i

= fx 7! pat(T

i

)j

p

g

Sin
e fun
tion 
alls may suspend, we need a me
hanism to spe
ify 
on
urrent 
omputa-

tions. For this purpose, we introdu
e a �nal extension of de�nitional trees: a de�nitional

tree T with pattern � 
an also have the form and(T

1

; T

2

) where the de�nitional trees

T

1

and T

2

have the same pattern � and 
ontain the same set of rules. An and node

spe
i�es the ne
essity to evaluate more than one argument position. The 
orresponding

operational behavior is to try to evaluate one of these arguments. If this is not possible

sin
e the fun
tion 
alls in this argument are delayed, we pro
eed by trying to evaluate the

other argument. This generalizes 
on
urrent 
omputation models for residuating logi


programs [1, 2, 35℄ to fun
tional logi
 programs. For instan
e, the 
on
urrent 
onjun
tion

of 
onstraints ^ is de�ned by the single rule

10

valid^ valid = valid

together with the de�nitional tree

and(bran
h(x1^x2; 1; rigid; bran
h(valid^x2; 2; rigid; rule(valid^valid = valid)));

bran
h(x1^x2; 2; rigid; bran
h(x1^valid; 1; rigid; rule(valid^valid = valid))))

Due to the and node in this tree, a 
onstraint of the form t

1

^ t

2

is evaluated by an

attempt to evaluate t

1

. If the evaluation of t

1

suspends, an evaluation step is applied to

t

2

. If a variable responsible to the suspension of t

1

was bound during the last step, the

left expression will be evaluated in the subsequent step. Thus, we obtain a 
on
urrent

behavior with an interleaving semanti
s.

This fairly simple model for 
on
urrent 
omputations is able to 
over appli
ations of

Prolog systems with 
oroutining [29℄. For instan
e, if gen is a predi
ate or 
onstraint

whi
h instantiates its arguments with potential solutions (i.e., gen is de�ned with 
exible

bran
h nodes) and test 
he
ks whether the argument is a 
orre
t solution (i.e., test is

de�ned with rigid bran
h nodes), then a 
onstraint like \gen(X) ^ test(X)" 
orresponds

to a \generate-and-test" solution whereas \test(X) ^ gen(X)" spe
i�es a \test-and-

generate" solution where the test is a
tivated as soon as its argument is suÆ
iently

instantiated.

It is also interesting to note that this model is able to 
over re
ent developments

in parallel fun
tional 
omputation models like Eden [9℄ or GoÆn [10℄. For instan
e, a


onstraint of the form \x=f(t1) ^ y=g(t2) ^ z=h(x,y)" spe
i�es a potentially 
on-


urrent 
omputation of the fun
tions f, g and h where the fun
tion h 
an pro
eed its


omputation only if the arguments have been bound by evaluating the expressions f(t1)

and g(t2) (provided that h is rigid in all arguments).

The advantage of this 
omputation model is the 
lear separation between sequen-

tial and 
on
urrent parts. Sequential 
omputations, whi
h 
ould be 
onsidered as the

basi
 units of a program, 
ould be expressed as usual fun
tional (logi
) programs, and

they 
an be 
omposed to 
on
urrent 
omputation units via 
on
urrent 
onjun
tions of

10

The auxiliary 
onstru
tor valid denotes the result of a solved 
onstraint. In terms of our 
omputa-

tion model, the equational 
onstraint s(x)=s(s(0)) is redu
ed to the answer expression fx=s(0)gvalid.
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onstraints. Sin
e 
onstraints 
ould be passed as arguments or results of fun
tions (like

any other data obje
t or fun
tion), it is possible to spe
ify general operators to 
reate


exible 
ommuni
ation ar
hite
tures similarly to GoÆn [10℄. Thus, the same abstra
tion

fa
ilities 
ould be used for sequential as well as 
on
urrent programming. On the other

hand, the 
lear separation between sequential and 
on
urrent 
omputations supports the

use of eÆ
ient and optimal evaluation strategies for the sequential parts, where similar

te
hniques for the 
on
urrent parts are not available. This is in 
ontrast to other, more

�ne-grained 
on
urrent 
omputation models like AKL [23℄, CCP [33℄, or Oz [35℄.

3 Properties of the Computation Model

Detailed soundness and 
ompleteness results for the operational model presented in the

previous se
tion 
an be found in [16℄. Due to the possible suspension of fun
tion 
alls,

we 
annot expe
t strong 
ompleteness results as in logi
 programming. However, it 
an

be shown that all 
omputed answers are 
orre
t and no answer is lost during the 
om-

putation. Moreover, if all de�nitional trees have 
exible bran
hes, then a 
ompleteness

result similar to logi
 programming holds.

This 
omputation model subsumes various known evaluation prin
iples for de
larat-

ive programming languages, whi
h 
an be seen by parti
ular restri
tions of the form of

de�nitional trees (see [16℄ for a more detailed dis
ussion). For instan
e, if the de�nitional

trees only 
ontains rule and 
exible bran
h nodes, we obtain the optimal needed narrow-

ing strategy [5℄. This shows that the 
omputation model is a 
onservative extension of an

optimal evaluation strategy for fun
tional logi
 programs. The addition of or nodes sup-

ports fun
tion de�nitions with overlapping left-hand sides and results in the weakly needed

narrowing strategy [6, 25℄, whi
h is a widely used strategy in 
urrent narrowing-based

lazy fun
tional logi
 languages. Simple lazy narrowing [27, 32℄ or SLD-resolution 
an be

obtained by 
onne
ting all trees for ea
h rule by or nodes. The lazy evaluation strategy

of fun
tional languages like Haskell [20℄ performs pattern mat
hing from left to right [38℄

and, therefore, it 
an be implemented by de�nitional trees with \left-to-right"-oriented

bran
h nodes. The extension of this fun
tional kernel with equational 
onstraints leads

to re
ent 
omputation models for parallel fun
tional languages [9, 10℄. Finally, the e�e
t

of residuation [1, 2℄ is obtained by marking all bran
hes of predi
ates as 
exible, and all

bran
hes of non-Boolean fun
tions as rigid.

Figure 1 summarizes the ne
essary restri
tions on the form of de�nitional trees in

order to obtain a parti
ular strategy.

4 Curry: A Multi-Paradigm De
larative Language

Curry [17, 19℄ is a multi-paradigm de
larative language aiming to integrate fun
tional,

logi
, and 
on
urrent programming paradigms. Curry's operational semanti
s is based on

the 
omputation model motivated and explained in Se
tion 2. The operational behavior

of ea
h fun
tion is spe
i�ed by its de�nitional tree. Sin
e it it tedious to spe
ify the

de�nitional trees for all fun
tions, they are automati
ally generated from the left-hand

sides of the rewrite rules using a left-to-right pattern mat
hing algorithm [16℄. Non-

Boolean fun
tions are annotated with rigid bran
hes, and predi
ates (i.e., fun
tions with

Boolean result type) are annotated with flex bran
hes (there are 
ompiler pragmas

to override these defaults; moreover, de�nitional trees 
an also be expli
itly provided

11



Strategy Restri
tions on de�nitional trees

Needed narrowing [5℄ only rule and 
exible bran
h nodes; optimal strategy w.r.t.

length of derivations and number of 
omputed solutions

Weakly needed narrowing [6, 25℄ only rule, 
exible bran
h, and or nodes

Simple lazy narrowing [27, 32℄

and SLD-resolution

parti
ular de�nitional trees with 
exible bran
h nodes (a

bran
h=rule tree for ea
h left-hand side, all rules 
onne
ted

by or nodes)

Lazy fun
tional languages [38℄ de�nitional trees with left-to-right pattern mat
hing; initial

expression has no free variable

Residuation [1, 2, 24, 35℄ rigid bran
hes for non-Boolean fun
tions; 
exible bran
hes

for predi
ates

Parallel fun
tional languages

[9, 10℄

de�nitional trees with left-to-right pattern mat
hing; paral-

lelism via equational 
onstraints

Figure 1: Spe
i�
ation of di�erent operational models by de�nitional trees

similarly to type annotations). This has the 
onsequen
e that the operational behavior

is nearly identi
al to lazy fun
tional languages if the logi
 programming features are not

used, and identi
al to logi
 programming if only predi
ates are de�ned.

Beyond this 
omputation model, Curry provides a parametri
ally polymorphi
 type

system (the 
urrent implementation has a type inferen
e algorithm for a Hindley/Milner-

like type system; the extension to Haskell-like type 
lasses [39℄ is planned for a future

version), a module system, and a de
larative 
on
ept for input/output operations based

on the monadi
 I/O 
on
ept from fun
tional programming [31℄.

Basi
 arithmeti
 is provided by 
onsidering integer values (like \42" or \-10") as 
on-

stants, and the usual operations on integers as primitive fun
tions with rigid arguments,

i.e., they are delayed until all arguments are known 
onstants. For instan
e, the expres-

sion 3+5 is redu
ed to 8, whereas x+y is delayed until x and y are bound by some other

part of the program. Thus, they 
an a
t as passive 
onstraints [3℄ providing for better


onstraint solvers than in pure logi
 programming [36℄ (e.g., by transforming \generate-

and-test" into \test-and-generate", 
f. Se
tion 2.6). Con
eptually, primitive fun
tions 
an

be 
onsidered as de�ned by an in�nite set of rules whi
h provides a de
larative reading

for su
h fun
tions [8℄. In a similar way, any other external (side-e�e
t free!) fun
tion 
an

be 
onne
ted to Curry.

Higher-order fun
tions has been shown to be very useful to stru
ture programs and

write reusable software [22℄. Although the basi
 
omputation model in
ludes only �rst-

order fun
tions, Warren [40℄ has shown that the higher-order features of fun
tional pro-

gramming 
an be implemented by providing a (�rst-order) de�nition of the appli
ation

fun
tion. Curry supports the higher-order features of 
urrent fun
tional languages (par-

tial fun
tion appli
ations, lambda abstra
tions) by this te
hnique, where the rules for the

appli
ation fun
tion are impli
itly de�ned. In parti
ular, fun
tion appli
ation is rigid

in the �rst argument, i.e., an appli
ation is delayed until the fun
tion to be applied is

known (this avoids the expensive and operationally 
omplex synthesis of fun
tions by

higher-order uni�
ation [28℄).

Conditional rules, in parti
ular with extra variables (i.e., variables not o

urring in the

left-hand side) in 
onditions, are one of the essential features to provide the full power of

12



logi
 programming. Although the basi
 
omputation model only supports un
onditional

rules, it 
an be easily extended to 
onditional rules following the approa
h taken in Babel

[27℄: 
onsider a 
onditional rule

11

\l | f
g = r" (where the 
ondition 
 is a 
onstraint) as

synta
ti
 sugar for the rule l = (
) r), where the right-hand side is a guarded expression.

The operational meaning of a guarded expression \
 ) r" is de�ned by the prede�ned

rule

(valid ) x) = x .

Thus, a guarded expression is evaluated by an attempt to solve the 
ondition. If this is

su

essful, the guarded expression is repla
ed by the right-hand side r of the 
onditional

rule.

Further features of Curry, whi
h are under development, in
lude a 
ommitted 
hoi
e


onstru
t, the en
apsulation of sear
h to get more 
ontrol over the non-deterministi


evaluation, and an interfa
e to other 
onstraint solvers.

5 Con
lusions

Fun
tional and logi
 programming are often 
onsidered as separate programming

paradigms and so that the 
ommon idea of de
larative programming is sometimes lost.

We have shown in this paper that this need not be the 
ase if a single programming

language based on a uni�ed 
omputation model is taken into a

ount. From this point of

view, the di�eren
e between fun
tional and logi
 programming is the di�eren
e between


omputation with full and partial information whi
h also shows up in a di�eren
e in the

(non-)determinism of programs. Most of the other ideas, like algebrai
 data stru
tures,

pattern mat
hing, lazy evaluation, or lo
al de�nitions, are similar in both paradigms.

Additionally, some problemati
 \non-logi
al" features of Prolog 
an be avoided in the

integrated language. For instan
e, I/O operations with side e�e
ts 
an be repla
ed by

monadi
 I/O operations, and the use of the \
ut" operator of Prolog 
ould be avoided,

sin
e the pruning of the sear
h spa
e 
an be obtained by using fun
tions instead of pre-

di
ates [14℄ or an expli
it use of \if-then-else". Moreover, an integrated fun
tional logi


language leads to a natural amalgamation of programming te
hniques, e.g., 
onditions

in fun
tion rules 
ould be solved by non-deterministi
 sear
h in the presen
e of extra

variables, or higher-order programming te
hniques 
an be more often applied in logi


programming by partial appli
ations of predi
ates to arguments [30℄.
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A Operational Semanti
s of Curry

The operational semanti
s of Curry is spe
i�ed using the fun
tions


se : T (C [ F ;X ) ! D [ fsuspendg


s : T (C [ F ;X ) �DT ! D [ fsuspendg :

The fun
tion 
se performs a single 
omputation step on an expression e. It 
omputes a dis-

jun
tion of answer expressions or the spe
ial 
onstant suspend indi
ating that no redu
tion is

possible in e. As shown in Figure 2, 
se attempts to apply a redu
tion step to the leftmost

outermost fun
tion symbol in e by the use of 
s whi
h is 
alled with the appropriate subterm

and the de�nitional tree for the leftmost outermost fun
tion symbol. 
s is de�ned by a 
ase

distin
tion on the de�nitional tree. If it is a rule node, we apply this rule. If the de�nitional

tree is an and node, we try to evaluate the �rst bran
h and, if this is not possible due to the
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Computation step for a single (unsolved) expression:


se(x) = suspend for all variables x


se(f(e

1

; : : : ; e

n

)) = 
s(f(e

1

; : : : ; e

n

);T ) if T is a fresh de�nitional tree for f


se(
(e

1

; : : : ; e

n

))

=

�

repla
e(
(e

1

; : : : ; e

n

); k; 
se(e

k

)) if 
se(e

1

) = � � � = 
se(e

k�1

) = suspend 6= 
se(e

k

)

suspend if 
se(e

i

) = suspend, i = 1; : : : ; n

Computation step for an operation-rooted expression e:


s(e; rule(l = r)) = fid �(r)g if � is a substitution with �(l) = e


s(e; and(T

1

;T

2

)) =

�


s(e;T

1

) if 
s(e;T

1

) 6= suspend


s(e;T

2

) otherwise


s(e; or(T

1

;T

2

)) =

�


s(e;T

1

) [ 
s(e;T

2

) if 
s(e;T

1

) 6= suspend 6= 
s(e;T

2

)

suspend otherwise


s(e; bran
h(�; p; r;T

1

; : : : ;T

k

))

=

8

>

>

>

>

>

<

>

>

>

>

>

:


s(e;T

i

) if ej

p

= 
(e

1

; : : : ; e

n

) and pat(T

i

)j

p

= 
(x

1

; : : : ; x

n

)

; if ej

p

= 
(e

1

; : : : ; e

n

) and pat(T

i

)j

p

6= 
(� � �); i = 1; : : : ; k

suspend if ej

p

= x and r = rigid

S

k

i=1

f�

i

�

i

(e)g if ej

p

= x, r = flex, and �

i

= fx 7! pat(T

i

)j

p

g

repla
e(e; p; 
se(ej

p

)) if ej

p

= f(e

1

; : : : ; e

n

)

Derivation step for a disjun
tive expression:

f� eg [D ! f�

1

Æ � e

1

; : : : ; �

n

Æ � e

n

g [D

if � e is unsolved and 
se(e) = f�

1

e

1

; : : : ; �

n

e

n

g

Figure 2: Operational semanti
s of Curry

suspension of all fun
tion 
alls, the se
ond bran
h.

12

An or node produ
es a disjun
tion. To

ensure 
ompleteness, we have to suspend the entire disjun
tion if one disjun
t suspends [16℄.

For a similar reason, we 
annot 
ommit to a disjun
t whi
h does not bind variables but we

have to 
onsider both alternatives (see [6℄ for a 
ounter-example). The most interesting 
ase

is a bran
h node. Here we have to bran
h on the value of the top-level symbol at the sele
ted

position. If the symbol is a 
onstru
tor, we pro
eed with the appropriate de�nitional subtree, if

possible. If it is a fun
tion symbol, we pro
eed by evaluating this subterm. If it is a variable, we

either suspend (if the bran
h is rigid) or instantiate the variable to the di�erent 
onstru
tors.

The auxiliary fun
tion repla
e puts a possibly disjun
tive expression into a subterm:

repla
e(e; p; d) =

�

f�

1

�

1

(e)[e

1

℄

p

; : : : ; �

n

�

n

(e)[e

n

℄

p

g if d = f�

1

e

1

; : : : ; �

n

e

n

g

suspend if d = suspend

The overall 
omputation strategy is a transformation on disjun
tive expressions. It takes a

disjun
t � e not in solved form and 
omputes 
se(e). If 
se(e) = suspend, then the 
ompu-

tation of this expression 
ounders and we 
annot pro
eed (i.e., this expression is not solvable).

If 
se(e) is a disjun
tive expression, we substitute it for � e 
omposed with the old answer

substitution.

12

For the sake of simpli
ity, we 
hoose a simple sequential strategy for 
on
urrent 
omputations.

However, it is also possible to provide a more sophisti
ated strategy with a fair sele
tion of threads, e.g.,

as in Oz [35℄.
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