In Proc. of the 1997 Joint Conference on Declarative Programming

(APPIA-GULP-PRODE’97), pp. 9-24, Grado (Italy), 1997

A Unified Computation Model

for Declarative Programming

Michael Hanus
RWTH Aachen, Informatik IT, D-52056 Aachen, Germany

hanus@informatik.rwth-aachen.de

Abstract

We propose a new computation model which combines the operational principles
of functional languages (reduction), logic languages (non-deterministic search for
solutions), and integrated functional logic languages (residuation and narrowing).
This computation model combines efficient evaluation principles of functional lan-
guages with the problem-solving capabilities of logic programming. Since the model
allows the delay of insufficiently instantiated function calls, it also supports a con-
current style of programming. We show that many known evaluation principles
of declarative languages are particular instances of our model. This computation
model is the basis of Curry, a multi-paradigm language which combines functional,
logic and concurrent programming styles. We conclude with a description of some
features of Curry.

1 Introduction

Declarative programming is motivated by the fact that a higher programming level using
powerful abstraction facilities leads to reliable and maintainable software. Thus, de-
clarative programming languages are based on mathematical formalisms and completely
abstract from many details of the concrete hardware and the implementation of the pro-
grams on this hardware. For instance, pointers are avoided and replaced by the use of
algebraic data types, and complex procedures are split into easily comprehensible parts
using pattern matching and local definitions. Since declarative programs strongly corres-
pond to formulae of mathematical calculi, they simplify the reasoning (e.g., verification
w.r.t. non-executable specifications), provide freedom in the implementation (e.g., use
of parallel architectures), and reduce the program development time in comparison to
classical imperative languages.

Unfortunately, declarative programming is currently split into two main fields based
on different mathematical formalisms, namely functional programming (lambda calcu-
lus) and logic programming (predicate logic). This has negative consequences w.r.t. to
teaching (usually, there are different courses on functional programming and logic pro-
gramming, and students do not see many similarities between them), research (each field
has its own community, conferences, and journals, and sometimes similar solutions are
developed twice), and applications (each field has its own application areas and some
effort has been done to show that one paradigm can cover applications of the other
paradigm [37] instead of showing the advantages of declarative programming in various
application fields). The separation is mainly due to the different underlying computa-
tions models—deterministic reduction and lazy evaluation in functional languages, and
non-deterministic search in logic languages. On the other hand, functional and logic



languages have a common kernel and can be seen as different facets of a single idea.
For instance, the use of algebraic data types instead of pointers, and the definition of
local comprehensible cases by pattern matching and local definitions instead of complex
procedures are emphasized in functional as well as logic programming. However, these
commonalities are often hidden by the differences in the computation models and the
application areas of these languages.

In this paper we want to show how to overcome this problem. Our approach is the
choice of a single computation model which combines lazy reduction of expressions with
a possibly non-deterministic binding of free variables occurring in expressions. Since it is
a conservative extension of an optimal evaluation strategy for integrated functional logic
languages [5], it combines the problem-solving capabilities of logic programming with
optimal reduction strategies known from functional programming for a large class of pro-
grams. Moreover, in order to avoid uncontrolled non-determinism during the evaluation
of particular expressions and to provide a simple connection to externally defined func-
tions, function calls may be suspended until the arguments are sufficiently instantiated.
Thus, pure functional programming, pure logic programming, and concurrent (logic) pro-
gramming are obtained as particular restrictions of this model. Moreover, due to the use
of an integrated functional logic language, we can choose the best of the two worlds in
application programs. For instance, input/output (implemented in logic languages by
side effects) can be handled with the monadic I/O concept [31] in a fully declarative
way. Similarly, most of the other impure features of Prolog (e.g., arithmetic, cut) can be
avoided by the use of functions.

This computation model is the basis of the multi-paradigm language Curry [16, 17, 19].
Apart from this new model, Curry offers many other features useful for practical
programming, like a type and a module system, higher-order functions, arithmetic,
declarative 1/O etc. The development of Curry is an international initiative inten-
ded to provide a common basis for functional logic languages and further research
and developments in this area. More details can be found in the Curry home page:
http://www-i2.informatik.rwth-aachen.de/“hanus/curry/

In the next section, we introduce some basic notions and motivate the basic computa-
tion model of Curry. Properties of this model are briefly discussed in Section 3. Section 4
outlines some features of Curry, and Section 5 contains our conclusions.

2 A Unified Computation Model for Declarative
Programming

In this section we introduce the basic computation model of Curry, where we use a slightly
different description than in its original presentation [16]. We motivate it by a stepwise
extension of a rewrite model to features from logic and concurrent programming. The
complete formal specification of our computation model is summarized in Appendix A.

2.1 Term Rewriting

Firstly, we introduce some basic notions of term rewriting [11] and functional logic pro-
gramming [15].

As mentioned in the previous section, a common idea of functional as well as logic
programming is the use of algebraic data types instead pointers. Thus, the computational



domain of declarative languages is a set of terms constructed from constants and data
constructors. Functions (or predicates in logic programming, but throughout this paper
we consider predicates as Boolean functions for the sake of simplicity) operate on terms
and map terms to terms.

Formally, we consider a signature partitioned into a set C of constructors and a set
F of (defined) functions or operations.! We write ¢/n € C and f/n € F for n-ary
constructor and function symbols, respectively. A constructor ¢ with arity 0 is also called
a constant.? Usually, there are at least the 0-ary Boolean constructors true and false.

We denote by X" a set of variables (with elements z,y). An expression (data term)
is a variable z € X or an application ¢(eq,...,e,) where ¢/n € CUF (p/n € C) and
ei,...,e, are expressions (data terms).> We denote by 7(C U F,X) and T(C,X) the
set of all expressions and data terms, respectively. Var(e) denotes the set of variables
occurring in an expression e. An expression e is called ground if Var(e) = 0. A pattern
is an expression of the form f(ty,...,t,) where each variable occurs only once, f/n € F,
and t1,...,t, € T(C,X). A head normal form is a variable or an expression of the form
cler,...,e,) with ¢/n € C.

A position p is a sequence of positive integers identifying a subexpression in an ex-
pression. e|, denotes the subterm or subezpression of e at position p, and e[e'], denotes
the result of replacing the subterm e|, by the expression €’ (see [11] for details).

A substitution is a mapping X — T (C U F, X'), where id denotes the identity substi-
tution. Substitutions are extended to morphisms on expressions by o(p(eq,...,e,)) =
o(o(er),...,o(e,)) for every expression ¢(eq,...,e,). A substitution o is called a unifier
of two expressions e; and ey if o(e1) = o(es).

A (declarative) program P is a set of rules [=r where [ is a pattern and Var(r) C
Var(l). [ and r are called left-hand side and right-hand side, respectively.* A rule is
called a wvariant of another rule if it is obtained by a unique replacement of variables
by other variables. In order to ensure well-definedness of functions, we require that P
contains only trivial overlaps, i.e., if [y=r; and [y=r, are variants of rewrite rules and o is a
unifier for [y and Iy, then o(ry) = o(ry) (weak orthogonality). However, it is also possible
to drop this restriction and allow non-deterministic functions since such functions can be
evaluated by a non-deterministic rewrite principle [13], which is part of this computation
model (cf. Section 2.3).

Example 2.1 If natural numbers are data terms built from the constructors 0 and s, the
following rules define the addition and the predicate “less than or equal to” for natural
numbers:

O+y =y 0<x = true
s(x) +y = s(x+y) s(x) <0 = false
s(x) <s(y) = x<y

Since the left-hand sides are pairwise non-overlapping, the functions are well defined. O

'For the sake of simplicity, we omit the types of the constructors and functions in this section since
they are not relevant for the computation model. Note, however, that Curry is typed language with a
Hindley/Milner-like polymorphic type system (see Section 4).

2Note that elementary built-in types like truth values, integers, or characters can also be considered
as sets with (infinitely) many constants.

3We do not consider partial applications in this part since it is not relevant for the computation
model. Such higher-order features are discussed in Section 4.

4For the sake of simplicity, we firstly consider only unconditional rewrite rules. An extension to
conditional rules is described in Section 4.



From a functional point of view, we are interested in computing values of expressions,
where a value does not contain function symbols (i.e., it is a data term) and should
be equivalent (w.r.t. the program rules) to the initial expression. The value can be
computed by applying rules from left to right. For instance, we can compute the value
of s(s(0))+s(0) by applying the rules for addition to this expression:

s(s(0))+s(0) — s(s(0)+s(0)) — s(s(0+s(0))) — s(s(s(0)))

Formally, a reduction step is an application of a rule I=r to the subterm (redez) t|,, i.e.,
t — s if s = t[o(r)], for some substitution o with o(l) = t|, (i.e., the left-hand side [ of
the selected rule must match the subterm ¢|,).

In contrast to imperative languages, where the algorithmic control is explicitly con-
tained in the programs by the use of various control structures, declarative languages
abstract from the control issue since a program consists of rules and does not contain ex-
plicit information about the order to apply the rules. This makes the reasoning about de-
clarative programs easier (program analysis, transformation, or verification) and provides
more freedom for the implementor (e.g., transforming call-by-need into call-by-value, im-
plementation on parallel architectures). On the other hand, a concrete programming
language must provide a precise model of computation to the programmer. Thus, we
can distinguish between different classes of functional languages. In an eager functional
language, the selected redex in a reduction step is always an innermost redex, i.e., the
redex is a pattern, where in lazy functional languages the selected redex is an outermost
one. Innermost reduction may not compute a value of an expression in the presence of
nonterminating rules, i.e., innermost reduction is not normalizing (we call a reduction
strategy normalizing iff it always computes a value of an expression if it exists). Thus,
we consider in the following outermost reduction, since it allows the computation with
infinite data structures and provides more modularity by separating control aspects [22].

2.2 Lazy Evaluation and Pattern Matching

A subtle point in the definition of a lazy evaluation strategy in combination with pattern
matching is the selection of the “right” outermost redex. For instance, consider the
rules of Example 2.1 together with the rule f = f. Then the expression 0+0<f has two
outermost redexes, namely 0+0 and f. If we select the first one, we compute the value
true after one further outermost reduction step. However, if we select the redex f, we run
into an infinite reduction sequence instead of computing the value. Thus, it is important
to know which outermost redex is selected. Most lazy functional languages choose the
leftmost outermost redex which is implemented by translating pattern matching into
case expressions [38]. On the other hand, this may not be the best possible choice since
leftmost outermost reduction is in general not normalizing (e.g., take the last example but
swap the arguments of <). It is well known that we can obtain a normalizing reduction
strategy by reducing in each step a needed redex [21]. Although the computation of a
needed redex is undecidable in general, there are relevant subclasses of programs where
needed redexes can be effectively computed. For instance, if functions are inductively
defined on the structure of data terms (so-called inductively sequential functions [4]), a
needed redex can be simply computed by pattern matching. This is the basis of our
computation model.

For this purpose, we organize all rules of a function in a hierarchical structure called



definitional tree [4].° T is a definitional tree with pattern 7 iff the depth of 7T is finite
and one of the following cases holds:

T = rule(l=r), where [ =7 is a variant of a program rule such that [ = 7.

T = branch(m,p,Ti,...,Tx), where p is a position of a variable in 7, ¢q,..., ¢, are dif-
ferent constructors (k > 0), and, for all i = 1,...,k, 7; is a definitional tree with
pattern 7[c;(x1, . .., Ty)]p, where n is the arity of ¢; and x, . .., z,, are new variables.

A definitional tree of an n-ary function f is a definitional tree 7 with pattern
f(z1,...,2,), where z1,...,x, are distinct variables, such that for each rule [=r with
[ = f(t1,...,t,) there is a node rule(l'=r") in T with [ variant of . In the following, we
write pat(T) for the pattern of a definitional tree 7, and DT for the set of all definitional
trees. A function is called inductively sequential iff there exists a definitional tree for it.
A program is inductively sequential if all defined functions are inductively sequential.

For instance, the predicate < defined in Example 2.1 is inductively sequential, and a
definitional tree for < is:

branch(x1 <x2,1,rule(0 <x2 = true),

branch(s(x) <x2,2, rule(s(x) <0
rule(s (x) <s(y)

false),
x<y )))

Intuitively, a definitional tree of a function specifies the strategy to evaluate a call to
this function. If the tree is a rule node, we apply the rule. If it is a branch node, it is
necessary to evaluate the subterm at the specified position to head normal form in order
to commit to one of the branches. Thus, in order to evaluate the expression 0+0<f w.r.t.
the previous definitional tree, the top branch node requires that the first subterm 0+0
must be evaluated to head normal form (in this case: 0) in order to commit to the first
branch.

Formally, if e is an expression with a function f at the top® and 7 is a definitional
tree for f, then e — €’ is a reduction step iff ¢’ = cs(e, T'), where the partial function cs
(“computation step”) is defined as follows:

cs(e,rule(l=r)) = o(r) if o is a substitution with o(l) = e

cs(e, branch(m,p, Ty ..., Tr))
_ Joes(e, Ti) ifel, =cler,...,e,) and pat(T;)|, = c(z1, ..., zy)
1 ele], if e|l, = f'(--+), T" is a definitional tree of f’, and es(e|,, T') =€

This definition of a reduction strategy has the following advantages:

1. The strategy is normalizing, i.e., it always computes a value if it exists.

2. The strategy is independent on the order of rules. Note that pattern matching
in traditional lazy functional languages implemented by case expressions [38] is
independent on the order of rules only for uniform programs [38] which is a strict
subclass of inductively sequential programs.”

®We could also introduce our strategy by compiling all rules of a function into a case expression [38].
However, the use of definitional trees has the advantage that the structure of rules is not destroyed and
the trees can be easily extended to more general classes of programs which become relevant later.

STf the expression has a constructor at the top, consider the leftmost outermost subexpression which
has a function at the top.

" Uniform functions are those functions where a definitional tree with a strict left-to-right order in
the positions of the branches exists.



3. The definitional trees can be automatically generated from the left-hand sides of the
rules [16] (similarly to the compilation of pattern matching into case expressions),
i.e., there is no need for the programmer to explicitly specify the trees.

4. There is a strong equivalence between reduction with definitional trees and reduc-
tion with case expressions since definitional trees can be easily translated into case
expressions (see [18] for details). However, reduction with definitional trees can be
easily extended to more general strategies, as can be seen in the following.

2.3 Overlapping Rules and Non-deterministic Rewriting

Inductively sequential functions have the property that there is a single argument in the
left-hand sides which distinguishes the different rules. In particular, functions defined by
rules with overlapping left-hand sides, like the “parallel-or”

true Vx = true
xVtrue = true
falseV false = false

are not inductively sequential. However, it is fairly easy to extend definitional trees to
cover also such functions. For this purpose, we introduce a further kind of nodes: a
definitional tree 7 with pattern 7 can also have the form or (7, 7;2) where 7; and 75
are definitional trees with pattern 7.® It is easy to see that a definitional tree with or
nodes can be constructed for each defined function (see [16] for a concrete algorithm).
For instance, a definitional tree for the parallel-or is

or(branch(x1Vx2, 1, rule(trueVx2 = true),
branch(falseVx2,2,rule(falseVfalse = false))),
branch(x1Vx2,2, rule(x1Vtrue = true)))

The corresponding extension of the reduction strategy is a more subtle point. The fol-
lowing extension of cs processes the branches of the or nodes in a sequential manner:

cs(e, Th) if cs(e, Ty) is defined
cs(e, Ta) otherwise

cs(e,or(Ti,Ta)) = {

This corresponds to the implementation of overlapping rules in most lazy functional
languages, i.e., rules in such languages cannot be read as equalities between the left- and
right-hand side but must be read as sequences where the latter rules are discarded if a
rule can be successfully applied. This has the advantage that some negative conditions
in subsequent rules can be avoided, but it leads to a more operational than declarative
reading of programs (i.e., some kind of modularity is lost since the rules cannot be
understood independently). A further disadvantage is that no value is computed if the
computation with the first branch does not terminate and only the second branch leads to
the result. To overcome this problem, we could replace the sequential implementation by

a non-deterministic one, i.e., we assume that cs maps expressions into sets of expressions
(cs: T(CUF,X)x DT — 27€9FX)) and define

cs(e,or(T, T2)) = es(e, Th) Ues(e, To)

8For the sake of simplicity, we consider only binary or nodes. The extension to more than two subtrees
is straightforward.



By reducing all expressions in parallel, it is ensured that a value will eventually be
computed if it exists. Another alternative is the parallel reduction of independent subex-
pressions which is a deterministic and normalizing reduction strategy [34]. This can also
be defined by a modification of ¢s so that a set of redex positions is computed by the
use of definitional trees and all these redexes are reduced in parallel (see [4, 6] for more
details). Since our computation model must include some kind of non-determinism in
order to cover logic programming languages, we take the first alternative and assume in
the following that cs maps expressions into sets of expressions.

2.4 Computing with Non-ground Expressions

Up to now, we have only considered functional computations where ground expressions
are reduced to some value. In logic languages, the initial expression (usually an expres-
sion of Boolean type, called a goal) may contain free variables. A logic programming
system should find values for these variables such that the goal is reducible to true.
Fortunately, it requires only a slight extension of the strategy introduced so far to cover
non-ground expressions and variable instantiation (which also shows that the difference
between functional and logic programming is not so large from an operational point of
view). The current definition of ¢s is undefined if we have to branch on a free variable.
Since the value of this variable is needed in order to proceed the computation, we non-
deterministically bind the variable to the constructor required in the subtrees. Thus, we
could extend the definition of ¢s by the following case:®

k
cs(e, branch(m,p, Tr,...,T)) = U cs(oi(e), T;) ifel, =z and 0; = {x — pat(T;)|,}
i=1

For instance, if the function f is defined by the rules

f(a) a
f(b) =D

(where a and b are constants), then the expression f(x) with the free variable x is
evaluated by cs as follows:

f(x) — {a,b}

Unfortunately, one of the most important aspects, namely the instantiation of free vari-
ables, is not explicitly shown in this computation step. Thus, we have to change our
computational domain. Due to the presence of free variables in expressions, an expres-
sion may be reduced to different values by binding the free variables to different terms.
In functional programming, one is interested in the computed wvalue, whereas logic pro-
gramming has the interest in the different bindings (answers). Thus, we define for our
integrated framework an answer expression as a pair o [| e consisting of a substitution o
(the answer computed so far) and an expression e. An answer expression o [| e is solved
if e is a data term. We sometimes omit the identity substitution in answer expressions,
i.e., we write e instead of id [ e if it is clear from the context.

Since more than one answer may exist for expressions containing free variables, in
general, initial expressions are reduced to disjunctions of answer expressions. Thus, a
disjunctive expression is a (multi-)set of answer expressions {0y [ e,...,0, [ e,}. The

In order to ensure completeness, we also have to ensure that the definitional tree taken to evaluate
a function symbol has always fresh variables.



set, of all disjunctive expressions is denoted by D, which is the computational domain of
Curry.

For instance, if we consider the previous example, the evaluation of £ (x) together with
the different bindings for x is reflected by the following non-deterministic computation
step:

f(x) - {{x—a}]a, {x—Db}[b}

For the sake of readability, we write the latter disjunctive expression in the form
{x=a}a | {x=b}b. Similarly, the expression f(b) is reduced to b (which is an abbrevi-
ation for a disjunctive expression with one element and the identity substitution).

A single computation step performs a reduction in exactly one expression of a dis-
junction (e.g., in the leftmost unsolved expression). This expression is reduced (with a
possible variable instantiation) according to our strategy described so far. If the program
is inductively sequential, i.e., the definitional trees do not contain or nodes, then this
strategy is equivalent to the needed narrowing strategy [5]. Needed narrowing enjoys sev-
eral optimality properties: every reduction step is needed, i.e., necessary to compute the
final result, it computes the shorted possible derivations (if common subterms are shared)
and a minimal set of solutions, and it is fully deterministic on ground expressions, i.e., in
the functional programming case. If some definitional trees contain or nodes, optimality
is lost (however, it is still optimal on the inductively sequential parts of the program),
but the resulting strategy is sound and complete in the sense of functional and logic
programming, i.e., all values and answers are computed [6].

2.5 Equality and Constraints

Functional logic languages are able to solve equations containing defined functions. For
instance, consider the function + defined in Example 2.1 and the equation x+0=s(0).
Using the computation model presented so far, this equation can be solved by evaluating
the left-hand side x+0 to the answer expression {x=s(0)}s(0) (here we omit the other
alternatives in the disjunction). Since the resulting equation is trivial, the equation is
valid w.r.t. the computed answer {x=s(0) }.

Thus, we could solve an equation by reducing both sides to unifiable terms. However,
it is well known [12, 27] that this notion of equality is not reasonable in the presence
of nonterminating functions. The only sensible notion of equality which is also used in
functional languages, is the strict equality, i.e., an equational constraint e;=e, is satisfied
if both sides e; and ey are reducible to a same data term. As a consequence, if both sides
are undefined (nonterminating), then the strict equality does not hold. Operationally,
an equational constraint e;=ey is solved by evaluating e; and e, to unifiable data terms.
The equational constraint could also be solved in an incremental way by an interleaved
lazy evaluation of the expressions and binding of variables to constructor terms [25].

Equational constraints are different from standard Boolean functions since they are
checked for satisfiability. For instance, the equational constraint x=s(0) is satisfiable if
the variable x is bound to s(0). However, the evaluation of x=s(0) does not deliver a
Boolean value true or false, since the latter value would require a binding of x to all
values different from s(0) (which could be expressed if we use a richer constraint system
than substitutions, for instance, disequality constraints [7]). This is sufficient since,
similarly to logic programming, constraints are only used in conditions of equations (cf.
Section 4) which must be checked for satisfiability.



If we want to check the equality of two fully known expressions, we can reduce both
sides to ground constructor terms and check their identity. This test equality can be
specified as any other Boolean function by the following rules (where == and && are infix
operators):

c ==c = true Ve/0 el
c(x1,...,%,) == c(yy,...,y,) = x==y, &&...&& x,==y, Ve/neC
c(xy,...,%,) == d(y,,...,y,,) = false Ve/n,d/m € C with ¢/n # d/m
true && x = x

false && x = false

For instance, the test “s(0)==s5(0)” reduces to true, whereas the test “s(0)==0" reduces
to false. In order to avoid an infinite set of solutions for insufficiently instantiated tests
like x==y, the evaluation of a test equality is suspended if one side is a free variable (i.e.,
== is rigid in both arguments, cf. Section 2.6). Therefore, the test equality can be used
where Boolean values are required (e.g., in the condition part of if-then-else), whereas
equational constraints can only be applied in the condition of a program rule. In terms
of concurrent constraint programming languages [33], == and = correspond to ask and
tell equality constraints, respectively. This is also justified by the fact that a test e;==e,
is suspended if one side is a variable, whereas an equational constraint e;=e, is checked
for satisfiability and propagates new variable bindings.

Note that the basic kernel of Curry only provides strict equations e;=e; between
expressions as constraints. Since it is conceptually fairly easy to add other constraint
structures [26], future extensions of Curry will provide richer constraint systems to sup-
port constraint logic programming applications.

2.6 Concurrent Computations

The strategy described so far covers functional logic languages with a sound and complete
operational semantics (i.e., based on narrowing [15]). However, it is still too restrictive to
cover all important aspects of modern declarative languages due to the following reasons:

1. Narrowing and guessing of free variables should not be applied to all functions,
since some functions (defined on recursive data structures) may not terminate if
particular arguments are unknown.

2. The computation model requires the explicit definition of all functions by program
rules. It is not clear how to connect primitive (external, predefined) functions where
the rules are not explicitly given, like arithmetic, I/O etc.

3. Modern logic languages provide flexible selection rules (concurrent computations
based on the synchronization on free variables).

All these features can be easily supported by allowing the delay of function calls if a
particular argument is not instantiated. For this purpose we extend the function cs so
that the evaluation of some function call may suspend, i.e., ¢s has the type

cs: T(CUF,X)x DT — DU {suspend} .

A function call may be suspended if the value of some (needed) argument is unknown.
Thus, we extend the definition of branch nodes by an additional flag, i.e, a branch
node has the form branch(m,p,r, Tr,..., Ty) with r € {rigid, flex}. A rigid annotation



specifies that the evaluation of the function call is suspended if the branch argument is a
free variable. This is expressed by the following new definition of ¢s for the case of free
variables:

cs(e, branch(m,p,r, Ti,y ..., Tk))

_ ) suspend if e|, = = and r = rigid
Ur_{oi]oi(e)} ifel, =z, r= flex, and o; = {x > pat(T;)|,}

Since function calls may suspend, we need a mechanism to specify concurrent computa-
tions. For this purpose, we introduce a final extension of definitional trees: a definitional
tree 7 with pattern 7 can also have the form and(Ty,7z) where the definitional trees
T: and 75 have the same pattern m and contain the same set of rules. An and node
specifies the necessity to evaluate more than one argument position. The corresponding
operational behavior is to try to evaluate one of these arguments. If this is not possible
since the function calls in this argument are delayed, we proceed by trying to evaluate the
other argument. This generalizes concurrent computation models for residuating logic
programs [1, 2, 35] to functional logic programs. For instance, the concurrent conjunction
of constraints A is defined by the single rule'®

valid Avalid = valid
together with the definitional tree

and(branch(x1Ax2, 1, rigid, branch(validAx2, 2, rigid, rule(validAvalid = valid))),
branch(x1Ax2, 2, rigid, branch(x1Avalid, 1, rigid, rule(validAvalid = valid))))

Due to the and node in this tree, a constraint of the form ¢; A 5 is evaluated by an
attempt to evaluate ¢;. If the evaluation of ¢; suspends, an evaluation step is applied to
to. If a variable responsible to the suspension of ¢; was bound during the last step, the
left expression will be evaluated in the subsequent step. Thus, we obtain a concurrent
behavior with an interleaving semantics.

This fairly simple model for concurrent computations is able to cover applications of
Prolog systems with coroutining [29]. For instance, if gen is a predicate or constraint
which instantiates its arguments with potential solutions (i.e., gen is defined with flexible
branch nodes) and test checks whether the argument is a correct solution (i.e., test is
defined with rigid branch nodes), then a constraint like “gen(X) A test(X)” corresponds
to a “generate-and-test” solution whereas “test(X) A gen(X)” specifies a “test-and-
generate” solution where the test is activated as soon as its argument is sufficiently
instantiated.

It is also interesting to note that this model is able to cover recent developments
in parallel functional computation models like Eden [9] or Goffin [10]. For instance, a
constraint of the form “x=f(t1) A y=g(t2) A z=h(x,y)” specifies a potentially con-
current computation of the functions f, g and h where the function h can proceed its
computation only if the arguments have been bound by evaluating the expressions f (t1)
and g(t2) (provided that h is rigid in all arguments).

The advantage of this computation model is the clear separation between sequen-
tial and concurrent parts. Sequential computations, which could be considered as the
basic units of a program, could be expressed as usual functional (logic) programs, and
they can be composed to concurrent computation units via concurrent conjunctions of

10The auxiliary constructor valid denotes the result of a solved constraint. In terms of our computa-
tion model, the equational constraint s (x)=s(s(0)) is reduced to the answer expression {x=s(0) }valid.

10



constraints. Since constraints could be passed as arguments or results of functions (like
any other data object or function), it is possible to specify general operators to create
flexible communication architectures similarly to Goffin [10]. Thus, the same abstraction
facilities could be used for sequential as well as concurrent programming. On the other
hand, the clear separation between sequential and concurrent computations supports the
use of efficient and optimal evaluation strategies for the sequential parts, where similar
techniques for the concurrent parts are not available. This is in contrast to other, more
fine-grained concurrent computation models like AKL [23], CCP [33], or Oz [35].

3 Properties of the Computation Model

Detailed soundness and completeness results for the operational model presented in the
previous section can be found in [16]. Due to the possible suspension of function calls,
we cannot expect strong completeness results as in logic programming. However, it can
be shown that all computed answers are correct and no answer is lost during the com-
putation. Moreover, if all definitional trees have flexible branches, then a completeness
result similar to logic programming holds.

This computation model subsumes various known evaluation principles for declarat-
ive programming languages, which can be seen by particular restrictions of the form of
definitional trees (see [16] for a more detailed discussion). For instance, if the definitional
trees only contains rule and flexible branch nodes, we obtain the optimal needed narrow-
ing strategy [5]. This shows that the computation model is a conservative extension of an
optimal evaluation strategy for functional logic programs. The addition of or nodes sup-
ports function definitions with overlapping left-hand sides and results in the weakly needed
narrowing strategy [6, 25], which is a widely used strategy in current narrowing-based
lazy functional logic languages. Simple lazy narrowing [27, 32] or SLD-resolution can be
obtained by connecting all trees for each rule by or nodes. The lazy evaluation strategy
of functional languages like Haskell [20] performs pattern matching from left to right [38]
and, therefore, it can be implemented by definitional trees with “left-to-right”-oriented
branch nodes. The extension of this functional kernel with equational constraints leads
to recent computation models for parallel functional languages [9, 10]. Finally, the effect
of residuation [1, 2] is obtained by marking all branches of predicates as flexible, and all
branches of non-Boolean functions as rigid.

Figure 1 summarizes the necessary restrictions on the form of definitional trees in
order to obtain a particular strategy.

4 Curry: A Multi-Paradigm Declarative Language

Curry [17, 19] is a multi-paradigm declarative language aiming to integrate functional,
logic, and concurrent programming paradigms. Curry’s operational semantics is based on
the computation model motivated and explained in Section 2. The operational behavior
of each function is specified by its definitional tree. Since it it tedious to specify the
definitional trees for all functions, they are automatically generated from the left-hand
sides of the rewrite rules using a left-to-right pattern matching algorithm [16]. Non-
Boolean functions are annotated with rigid branches, and predicates (i.e., functions with
Boolean result type) are annotated with flex branches (there are compiler pragmas
to override these defaults; moreover, definitional trees can also be explicitly provided

11



Strategy Restrictions on definitional trees
Needed narrowing [5] only rule and flexible branch nodes; optimal strategy w.r.t.
length of derivations and number of computed solutions

Weakly needed narrowing [6, 25] | only rule, flexible branch, and or nodes

Simple lazy narrowing [27, 32] particular definitional trees with flexible branch nodes (a
and SLD-resolution branch/rule tree for each left-hand side, all rules connected
by or nodes)

Lazy functional languages [38] definitional trees with left-to-right pattern matching; initial
expression has no free variable

Residuation [1, 2, 24, 35] rigid branches for non-Boolean functions; flexible branches
for predicates

Parallel functional languages definitional trees with left-to-right pattern matching; paral-
9, 10] lelism via equational constraints

Figure 1: Specification of different operational models by definitional trees

similarly to type annotations). This has the consequence that the operational behavior
is nearly identical to lazy functional languages if the logic programming features are not
used, and identical to logic programming if only predicates are defined.

Beyond this computation model, Curry provides a parametrically polymorphic type
system (the current implementation has a type inference algorithm for a Hindley/Milner-
like type system; the extension to Haskell-like type classes [39] is planned for a future
version), a module system, and a declarative concept for input/output operations based
on the monadic I/O concept from functional programming [31].

Basic arithmetic is provided by considering integer values (like “42” or “~10") as con-
stants, and the usual operations on integers as primitive functions with rigid arguments,
i.e., they are delayed until all arguments are known constants. For instance, the expres-
sion 3+5 is reduced to 8, whereas x+y is delayed until x and y are bound by some other
part of the program. Thus, they can act as passive constraints [3] providing for better
constraint solvers than in pure logic programming [36] (e.g., by transforming “generate-
and-test” into “test-and-generate”, cf. Section 2.6). Conceptually, primitive functions can
be considered as defined by an infinite set of rules which provides a declarative reading
for such functions [8]. In a similar way, any other external (side-effect free!) function can
be connected to Curry.

Higher-order functions has been shown to be very useful to structure programs and
write reusable software [22]. Although the basic computation model includes only first-
order functions, Warren [40] has shown that the higher-order features of functional pro-
gramming can be implemented by providing a (first-order) definition of the application
function. Curry supports the higher-order features of current functional languages (par-
tial function applications, lambda abstractions) by this technique, where the rules for the
application function are implicitly defined. In particular, function application is rigid
in the first argument, i.e., an application is delayed until the function to be applied is
known (this avoids the expensive and operationally complex synthesis of functions by
higher-order unification [28]).

Conditional rules, in particular with extra variables (i.e., variables not occurring in the
left-hand side) in conditions, are one of the essential features to provide the full power of

12



logic programming. Although the basic computation model only supports unconditional
rules, it can be easily extended to conditional rules following the approach taken in Babel
[27]: consider a conditional rule! “I | {c} =r" (where the condition ¢ is a constraint) as
syntactic sugar for the rule [ = (¢ = r), where the right-hand side is a guarded expression.
The operational meaning of a guarded expression “c = r” is defined by the predefined
rule

(valid = x) = x .

Thus, a guarded expression is evaluated by an attempt to solve the condition. If this is
successful, the guarded expression is replaced by the right-hand side r of the conditional
rule.

Further features of Curry, which are under development, include a committed choice
construct, the encapsulation of search to get more control over the non-deterministic
evaluation, and an interface to other constraint solvers.

5 Conclusions

Functional and logic programming are often considered as separate programming
paradigms and so that the common idea of declarative programming is sometimes lost.
We have shown in this paper that this need not be the case if a single programming
language based on a unified computation model is taken into account. From this point of
view, the difference between functional and logic programming is the difference between
computation with full and partial information which also shows up in a difference in the
(non-)determinism of programs. Most of the other ideas, like algebraic data structures,
pattern matching, lazy evaluation, or local definitions, are similar in both paradigms.
Additionally, some problematic “non-logical” features of Prolog can be avoided in the
integrated language. For instance, I/O operations with side effects can be replaced by
monadic I/O operations, and the use of the “cut” operator of Prolog could be avoided,
since the pruning of the search space can be obtained by using functions instead of pre-
dicates [14] or an explicit use of “if-then-else”. Moreover, an integrated functional logic
language leads to a natural amalgamation of programming techniques, e.g., conditions
in function rules could be solved by non-deterministic search in the presence of extra
variables, or higher-order programming techniques can be more often applied in logic
programming by partial applications of predicates to arguments [30].

References

[1] H. Ait-Kaci. An Overview of LIFE. In J.W. Schmidt and A.A. Stogny, editors, Proc.
Workshop on Next Generation Information System Technology, pp. 42-58. Springer LNCS
504, 1990.

[2] H. Ait-Kaci, P. Lincoln, and R. Nasr. Le Fun: Logic, equations, and Functions. In Proc.
4th IEEE Internat. Symposium on Logic Programming, pp. 17-23, San Francisco, 1987.

[3] H. Ait-Kaci and A. Podelski. Functions as Passive Constraints in LIFE. ACM Transactions
on Programming Languages and Systems, Vol. 16, No. 4, pp. 1279-1318, 1994.

[4] S. Antoy. Definitional Trees. In Proc. of the 3rd International Conference on Algebraic
and Logic Programming, pp. 143-157. Springer LNCS 632, 1992.

" Constraints are enclosed in curly brackets. Thus, a Haskell-like guarded rule I | b =r”, where b is
a Boolean expression, can be considered as syntactic sugar for the conditional rule “I | {b=true} =¢".

13



[5]

[6]

[10]
[11]

[12]

[13]

[19]
[20]

[21]

[22]

[23]

[24]

S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st ACM
Symposium on Principles of Programming Languages, pp. 268-279, Portland, 1994.

S. Antoy, R. Echahed, and M. Hanus. Parallel Evaluation Strategies for Functional Logic
Languages. In Proc. of the Fourteenth International Conference on Logic Programming
(ICLP’97). MIT Press (to appear), 1997.

P. Arenas-Sanchez, A. Gil-Luezas, and F.J. Lépez-Fraguas. Combining Lazy Narrowing
with Disequality Constraints. In Proc. of the 6th International Symposium on Programming
Language Implementation and Logic Programming, pp. 385-399. Springer LNCS 844, 1994.
S. Bonnier and J. Maluszynski. Towards a Clean Amalgamation of Logic Programs with
External Procedures. In Proc. 5th Conference on Logic Programming & 5th Symposium
on Logic Programming (Seattle), pp. 311-326. MIT Press, 1988.

S. Breitinger, R. Loogen, and Y. Ortega-Mallen. Concurrency in Functional and Logic
Programming. In Fuji International Workshop on Functional and Logic Programming.
World Scientific Publ., 1995.

M.M.T. Chakravarty, Y. Guo, M. Kohler, and H.C.R. Lock. Goffin - Higher-Order Func-
tions Meet Concurrent Constraints. Science of Computer Programming (to appear), 1997.
N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Vol. B, pp. 243-320. Elsevier, 1990.

E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus
Functional Language. Journal of Computer and System Sciences, Vol. 42, No. 2, pp. 139—
185, 1991.

J.C. Gonzéles-Moreno, M.T. Hortala-Gonzéles, F.J. Lépez-Fraguas, and M. Rodriguez-
Artalejo. A Rewriting Logic for Declarative Programming. In Proc. ESOP’96, pp. 156-172.
Springer LNCS 1058, 1996.

M. Hanus. Improving Control of Logic Programs by Using Functional Logic Languages. In
Proc. of the Jth International Symposium on Programming Language Implementation and
Logic Programming, pp. 1-23. Springer LNCS 631, 1992.

M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice.
Journal of Logic Programming, Vol. 19&20, pp. 583-628, 1994.

M. Hanus. A Unified Computation Model for Functional and Logic Programming. In Proc.
of the 24th ACM Symposium on Principles of Programming Languages (Paris), pp. 80-93,
1997.

M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A Truly Functional Logic Lan-
guage. In Proc. ILPS’95 Workshop on Visions for the Future of Logic Programming, 1995.
M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. In Proc.
Seventh International Conference on Rewriting Techniques and Applications (RTA’96),
pp- 138-152. Springer LNCS 1103, 1996.

M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at
http://www-i2.informatik.rwth-aachen.de/“hanus/curry, 1997.

P. Hudak, S. Peyton Jones, and P. Wadler. Report on the Programming Language Haskell
(Version 1.2). SIGPLAN Notices, Vol. 27, No. 5, 1992.

G. Huet and J.-J. Lévy. Computations in Orthogonal Rewriting Systems. In J.-L. Lassez
and G. Plotkin, editors, Computational Logic: FEssays in Honor of Alan Robinson, pp.
395—443. MIT Press, 1991.

J. Hughes. Why Functional Programming Matters. In D.A. Turner, editor, Research Topcis
in Functional Programming, pp. 17-42. Addison Wesley, 1990.

S. Janson and S. Haridi. An Introduction to AKL: A Multi-Paradigm Programming Lan-
guage. In B. Mayoh, E. Tyugu, and J. Penjam, editors, Constraint Programming, NATO
AST Series, pp. 414-449. Springer, 1994.

J.W. Lloyd. Combining Functional and Logic Programming Languages. In Proc. of the
International Logic Programming Symposium, pp. 43-57, 1994.

14



[25] R. Loogen, F. Lopez Fraguas, and M. Rodriguez Artalejo. A Demand Driven Computation
Strategy for Lazy Narrowing. In Proc. of the 5th International Symposium on Programming
Language Implementation and Logic Programming, pp. 184-200. Springer LNCS 714, 1993.

[26] F.J. Lopez Fraguas. A General Scheme for Constraint Functional Logic Programming.
In Proc. of the 3rd International Conference on Algebraic and Logic Programming, pp.
213-227. Springer LNCS 632, 1992.

[27] J.J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic Programming with Functions and
Predicates: The Language BABEL. Journal of Logic Programming, Vol. 12, pp. 191-223,
1992.

[28] G. Nadathur and D. Miller. An Overview of AProlog. In Proc. 5th Conference on Logic
Programming € 5th Symposium on Logic Programming (Seattle), pp. 810-827. MIT Press,
1988.

[29] L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.

[30] L. Naish. Higher-order logic programming in Prolog. In Proc. JICSLP’96 Workshop on
Multi- Paradigm Logic Programming, pp. 167-176. TU Berlin, Technical Report No. 96-28,
1996.

[31] S.L. Peyton Jones and P. Wadler. Imperative Functional Programming. In Proc. 20th
Symposium on Principles of Programming Languages (POPL’93), pp. 71-84, 1993.

[32] U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages. In Proc.
IEEE Internat. Symposium on Logic Programming, pp. 138151, Boston, 1985.

[33] V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[34] R.C. Sekar and I.V. Ramakrishnan. Programming in Equational Logic: Beyond Strong
Sequentiality. Information and Computation, Vol. 104, No. 1, pp. 78-109, 1993.

[35] G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, Computer Science
Today: Recent Trends and Developments, pp. 324-343. Springer LNCS 1000, 1995.

[36] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[37] P. Wadler. How to Replace Failure by a List of Successes. In Functional Programming and
Computer Architecture. Springer LNCS 201, 1985.

[38] P. Wadler. Efficient Compilation of Pattern-Matching. In S.L. Peyton Jones, editor, The
Implementation of Functional Programming Languages, pp. 78-103. Prentice Hall, 1987.

[39] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. POPL’89,
pp. 60-76, 1989.

[40] D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Machine
Intelligence 10, pp. 441-454, 1982.

A Operational Semantics of Curry

The operational semantics of Curry is specified using the functions

cse : T(CUF,X) — DU {suspend}
cs : T(CUF,X)x DT — DU {suspend} .

The function cse performs a single computation step on an expression e. It computes a dis-
junction of answer expressions or the special constant suspend indicating that no reduction is
possible in e. As shown in Figure 2, cse attempts to apply a reduction step to the leftmost
outermost function symbol in e by the use of ¢s which is called with the appropriate subterm
and the definitional tree for the leftmost outermost function symbol. cs is defined by a case
distinction on the definitional tree. If it is a rule node, we apply this rule. If the definitional
tree is an and node, we try to evaluate the first branch and, if this is not possible due to the

15



Computation step for a single (unsolved) expression:
cse(x) = suspend for all variables x

cse(fler,... en)) = cs(fler,...,en),T) if T is a fresh definitional tree for f

cse(e(er, ... en))
_ {replace(c(el, cooyen), kocse(er)) ifcse(er) =+ = cse(ep_1) = suspend # cse(ey)
| suspend if cse(e;) = suspend, i =1,...,n

Computation step for an operation-rooted expression e:

cs(e,rule(l=r)) = {id[Jo(r)} if 0 is a substitution with o(l) = e
_ [es(e,Th) if cs(e, T1) # suspend
es(e,and(Ti, T2)) = {03(6,7'2) otherwise
_ [ecs(e,Ti)Ues(e, T2) if cs(e, Ti) # suspend # cs(e, Ta)
ese,or(T, o)) = { suspend otherwise

cs(e,branch(m,p,r,Ti,..., Tk))

cs(e, Ti) if e, = c(e1,...,e,) and pat(T;)|p = c(z1,...,2p)

0 if el, = c(er,...,en) and pat(T;)|p, #c(---),i =1,...,k
= ( suspend if e, = z and r = rigid

U {oi [ os(e)} ifel, =z, r = flex, and o; = {z — pat(T;)|p}

replace(e, p, cse(ely)) ifel, = f(e1,...,en)

Derivation step for a disjunctive expression:
{o[leyUD — {oioofei,...,onp00[e,}UD

if o [ e is unsolved and cse(e) = {01 [ e1,...,0n [ en}

Figure 2: Operational semantics of Curry

suspension of all function calls, the second branch.'> An or node produces a disjunction. To
ensure completeness, we have to suspend the entire disjunction if one disjunct suspends [16].
For a similar reason, we cannot commit to a disjunct which does not bind variables but we
have to consider both alternatives (see [6] for a counter-example). The most interesting case
is a branch node. Here we have to branch on the value of the top-level symbol at the selected
position. If the symbol is a constructor, we proceed with the appropriate definitional subtree, if
possible. If it is a function symbol, we proceed by evaluating this subterm. If it is a variable, we
either suspend (if the branch is rigid) or instantiate the variable to the different constructors.
The auxiliary function replace puts a possibly disjunctive expression into a subterm:

{o1loi(e)leilps--- ononle)len]p} ifd={o1]er,...,on[len}

replace(e,p,d) = { suspend if d = suspend

The overall computation strategy is a transformation on disjunctive expressions. It takes a
disjunct o [] e not in solved form and computes cse(e). If cse(e) = suspend, then the compu-
tation of this expression flounders and we cannot proceed (i.e., this expression is not solvable).
If cse(e) is a disjunctive expression, we substitute it for o [| e composed with the old answer
substitution.

12For the sake of simplicity, we choose a simple sequential strategy for concurrent computations.
However, it is also possible to provide a more sophisticated strategy with a fair selection of threads, e.g.,
as in Oz [35].

16



