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Abstrat

Needed narrowing [2℄ is urrently the best (lazy) narrowing strategy for fun-

tional logi programs. In order to automatially improve ompilation, it is essen-

tial to rely on an adequate semanti framework. The denotational semantis of

a programming language is its standard semantis and an be used as a formal

basis to improve implementations. In this work we introdue a denotational

semantis whih is adequate to express needed narrowing.
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1 Introdution

Lazy narrowing strategies in funtional logi programming are important in avoiding

unneessary omputations and enabling the use of in�nite data strutures. In order

to have a good framework to implement lazy languages and automatially improve

ompilation, we need to rely on an adequate semanti de�nition. The denotational

semantis of a programming language maps syntati onstruts in the program to

the abstrat values whih they denote [15℄. It is often onsidered as the standard

semantis of programming languages and an be used as a suitable basis for analyses

and implementations.

The denotational de�nition of a programming language may be more or less lose

to the operational priniple of the language. In the setting of funtional logi lan-

guages, this is to say that the partiular narrowing strategy used in the operational

semantis an be more or less reeted in the denotational desription of the language.

Some denotational approahes to the semantis of funtional logi languages an be

found in [11, 13℄. However, these semanti de�nitions do not reet the strategy used

for narrowing and, therefore, they are not onsidered here.

In this paper we introdue a denotational semantis for term rewriting systems

whih allows us express the needed narrowing strategy. The needed narrowing strategy

is onsidered as a ombination of program transformation and speialization of the

general narrowing mehanism.
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This work is a short version of [6℄ whih we refer to �nd out the missing details and proofs.
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In the semanti desription of the omputation, we work with �nite substitutions

in representing the solutions of narrowing evaluations thus borrowing the treatment

of [3℄ from the logi programming setting. The formalization here is slightly di�erent.

We de�ne a suitable notion of �nite substitution and use them to deal with renaming

as well as for the solutions of evaluations.

We give the main properties of the semanti de�nition and prove the adequay of

this semantis to express needed narrowing.

In Setion 2, we briey reall the tehnial onepts and results used in the re-

mainder of the paper. In Setion 3, we desribe the notion of �nite substitution that

we deal in the semantis. In Setion 4, we summarize the notion of needed narrowing.

In Setion 5, the denotational semantis and its basi properties are given. We also

give the adequay result. Finally, Setion 6 points to onlusions and future work.

2 Preliminaries

We introdue the most important notations used in the paper. For full de�nitions we

refer to [4℄.

The set of terms T (�; V ) is onstruted w.r.t. a given many-sorted signature �

and variables from V . We denote by ar(f) the number of argument positions of a

symbol f 2 �. We write Var(t) for the set of variables ourring in a term t, and t

n

for a tuple t

1

; : : : ; t

n

of terms (where we sometimes omit the subsript n). Funtional

logi programs are generally onstrutor-based [5℄, i.e., the signature is the disjoint

union � = C ℄ F of two lasses of symbols: onstrutors  2 C that onstrut data

terms, and de�ned funtions or operations f 2 F that operate on data terms. We

denote by HNF

�

the set of terms in T (�; V ) whih are in head normal form (hnf ),

i.e., terms where the root symbol is not a de�ned funtion.

Terms are viewed as labelled trees in the usual way. An ourrene or position p

is a path identifying a subterm in a term. tj

p

denotes the subterm of t at position p,

and t[s℄

p

denotes the result of replaing tj

p

with s in t.

A term rewriting system (TRS ) is a pair R = (�; R) where R is a set of rewrite

rules. Sine funtional logi programs are onstrutor-based, we assume that a pro-

gram R is a onstrutor-based term rewriting system onsisting of rewrite rules l ! r,

where l is a pattern, i.e., the root of l is an operation and the arguments of l do not

ontain any operation symbols.

A substitution is a mapping � : V ! T (�; V ) whih is the identity mapping at

all but �nitely many points. We denote by � the identity substitution. We write

substitutions in the form fx

1

7! t

1

; : : : ; x

n

7! t

n

g. Terms t; s unify if there exists a

substitution � suh that �(t) = �(s). In this ase, � is alled a uni�er of t and s. If

W is a set of variables, we denote by � =

W

�

0

that �(x) = �

0

(x) for all x 2 W . A

term t is a variant of s if it is obtained from s by a unique replaement of variables

by new variables.

Funtional logi programs ompute with partial information, i.e., a funtional

expression may ontain logial variables. The goal is to ompute values for these

variables suh that the expression is evaluable to a partiular normal form, e.g., a
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onstrutor term [11℄. This is done by narrowing. A term t is narrowable to a term

s if there exist a non-variable position p in t (i.e., tj

p

is not a variable), a variant

� : l ! r of a rewrite rule in R with Var(t) \ Var(l ! r) = � and a uni�er � of tj

p

and l suh that s = �(t[r℄

p

). In this ase we write t ;

p;�;�

s. If � is a most general

uni�er of tj

p

and l, the narrowing step is alled most general.

2

We write t

0

;

�

�

t

n

if there is a narrowing derivation t

0

;

p

1

;�

1

;�

1

t

1

;

p

2

;�

2

;�

2

� � � ;

p

n

;�

n

;�

n

t

n

with

� = �

n

Æ� � �Æ�

2

Æ�

1

. The renamings in the i-th narrowing step must be also performed

apart of all variables appearing in the previous narrowing steps j < i.

Narrowing solves equations, i.e., omputes values for the variables in an equation

suh that the equation beomes true, where an equation is a pair t � t

0

of terms of

the same sort. Sine we do not require terminating term rewriting systems, normal

forms may not exist. Hene, we de�ne the validity of an equation as a strit equality

on terms in the spirit of funtional logi languages with a lazy operational semantis

suh as BABEL [11℄. Thus, a substitution � is a solution for an equation t � t

0

i�

�(t) and �(t

0

) are reduible to a same ground onstrutor term. Equations an also

be interpreted as terms by de�ning the symbol � as a binary operation symbol, more

preisely, one operation symbol for eah sort. Therefore, all notions for terms, suh

as substitution, narrowing et., will also be used for equations. The semantis of �

is de�ned by the following rules, where ^ is assumed to be a right-assoiative in�x

symbol, and  is a onstrutor of arity 0 in the �rst rule and arity k > 0 in the seond

rule.

 �  ! true

(x

1

; : : : ; x

k

) � (y

1

; : : : ; y

k

) ! x

1

� y

1

^ � � � ^ x

k

� y

k

true ^ x ! x

These are the equality rules of a signature. By adding the equality rules to the rewrite

system, equation solving an be done by narrowing equations to \true" [2, 11℄.

3 Finite substitutions

3.1 Formalization of �nite substitutions

In this setion we formalize the notion of �nite substitution whih we need in this

work. The de�nition is very lose to the one in [3℄. Nevertheless, some di�erenes

arise in the detail and meaning of involved operations.

De�nition 3.1 (Finite substitution) Let V be an in�nite set of variables and D �

V a �nite subset of variables. A �nite substitution (f:s:) � is a mapping � : D !

T (�; V ). The set of all �nite substitutions is denoted as FSubst. Some basi funtions

in FSubst! V are used to desribe the �nite substitutions.

Dom(�) = D Rng(�) = [

x2Dom(�)

Var(�(x)) Var(�) = Dom(�) [ Rng(�)

Ide(�) = fx 2 Dom(�) j �(x) = xg DOM(�) = Dom(�)nIde(�)

2

Narrowing is often identi�ed with most general narrowing. However, it is shown in [2℄ that

dropping the requirement for most general narrowing steps is ruial for optimal evaluation strategies.

3



A f:s: � suh that Ide(�) = � is alled a strit �nite substitution (s:f:s:).

In [3℄ is alled Dom(�) what we refer as Var(�). In [3℄ Dom(�) is atually the do-

main of the substitution, but it is (impliitly) also the range and ontains (neessarily,

to be onsistent with the de�nition) identity bindings for some variables. Therefore,

impliit assumptions on the identity bindings in the f:s: are taken. We feel that this

does not aid the formal treatment of the f:s: Our de�nition is based on the standard

intuitive notion of (partial) funtion, where domain and range are not neessarily

overlapping.

We apply a �nite substitution � (whih is not de�ned for some variables) to any

term t 2 T (�; V ) by means of the lifting � : FSubst ! Subst whih is de�ned as

�

�(x) = �(x) if x 2 Dom(�) and

�

�(x) = x otherwise. Then �(t) =

�

�(t). This is nees-

sary if we use �nite substitutions to `ollet' the omputed answers in the narrowing

proess. The following example shows that the omposition of �nite substitutions

based on the omposition of partial funtions is not adequate to express the ompos-

ition of partial solutions.

Example 3.2 Let � = fx

0

7! 0g and � = fx 7! f(x

0

; y

0

)g be f:s's. Then, if

we onsider the appliation of f:s:'s to terms in the standard treatment of partially

de�ned funtions, we an not obtain the omposite substitution, sine f(x

0

; y

0

) is not

in T (�; fx

0

g) whih is the (extended to terms) domain of �. Therefore, the binding

for x will not be orretly established. With the previous de�nition of appliation we

would obtain the binding x 7! f(0; y

0

), as expeted.

The (in�x) restrition operation (#: FSubst� }(V )! FSubst) ombines the proje-

tion and extension operations in [3℄ as follows.

De�nition 3.3 (Restrition of �nite substitutions) Let �; � be f:s's. and W be

a �nite set. � #

W

is a f:s suh that Dom(� #

W

) = W , � #

W

(x) = �(x) if x 2

Dom(�) \W and �#

W

(x) = x if x 2WnDom(�).

The Example 3.2 points out that, in spite of the fat that the f:s:'s are partially

de�ned funtions w.r.t. the set of variables V , it is desirable to have a mehanism to

ompose two f:s:'s. We de�ne the omposition operation by lifting f:s:'s to the spae

of substitutions.

De�nition 3.4 (Composition of �nite substitutions) Let �; � be f:s's. De�ne

� Æ � = (

�

� Æ

�

�)#

Dom(�)[Dom(�)

. This amounts to say that Dom(� Æ �) = Dom(�) [

Dom(�).

3.2 Narrowing and �nite substitutions

Managing the renaming in the narrowing proess leads to new onsiderations onern-

ing �nite substitutions. By following [3℄, the renaming proess is guided in part by

the `urrent' omputed f:s. The requirement of joining domains in the omposition of

f:s:'s (see De�nition 3.4) is needed if we use f:s's to propagate the renaming-apart re-

stritions in the narrowing proess [14℄. We rename terms apart of the set of variables
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appearing in a given f:s. Therefore, we must distinguish even between the f:s: � and

� Æ � or � Æ �

0

provided that � and �

0

are di�erent identity f:s: (i.e. Dom(�) 6= Dom(�

0

)

and not ontained in �), sine rename a term l

0

out of Var(�) is not the same that

renaming it out of Var(�) [ Var(�). Thus, the domains of f:s:'s must be arefully

managed in the operations onerning them.

The following proposition expresses an important property of partial solutions in

a narrowing derivation.

Proposition 3.5 Let t ;

+

�

00

t

00

;

�

�

0

t

0

be a narrowing derivation. Then �#

Var(t)

=

(�

0

Æ �

00

)#

Var(t)

= (�

0

#

Var(t

00

)

Æ�

00

)#

Var(t)

.

4 Needed narrowing

4.1 De�nitional trees

Needed narrowing relies on the onept of de�nitional trees of [1℄. A de�nitional tree

an be used as a representation of the rules de�ning a given funtion symbol. T is a

partial de�nitional tree (pdt) i� one of the following ases holds:

3

T = rule(� ! r) where � ! r is a variant of a rule in R.

T = branh(�; o; T

1

; : : : ; T

n

) where � is a pattern, o is the ourrene of a variable of

�, 

1

; : : : ; 

n

are onstrutors of the sort of �j

o

for some n > 0, and for all i in

f1; : : : ; ng, T

i

is a pdt with pattern �[

i

(x

1

; : : : ; x

ar(

i

)

)℄

o

where x

1

; : : : ; x

ar(

i

)

are new variables. Moreover, T

i

must be of �nite depth.

A de�nitional tree of a k-ary funtion f is a pdt T with pattern f(x), where x is

an ar(f)-tuple of distint variables. A funtion f with de�nitional tree T is alled

indutively sequential if T ontains all and only the rules de�ning f in the term

rewriting system R whih we all the `program'.

Example 4.1 Let us onsider the following program:

from(N)! [Njfrom(s(N))℄

first(0; L)! [ ℄

first(s(N); [EjL℄)! [Ejfirst(N; L)℄

Then

rule(from(N)! [Njfrom(s(N))℄)

is a de�nitional tree for the funtion from, and

branh(first(X; Y); 1;

rule(first(0; Y)! [ ℄);

branh(first(s(N); Y); 2;

rule(first(s(N); [EjL℄)! [Ejfirst(N; L)℄)))

is a de�nitional tree for the funtion first.

3

We ignore the exempt nodes whih are in the original de�nition of [1℄.
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A TRS is alled indutively sequential if all funtion symbols are indutively sequen-

tial. An indutively sequential TRS an be viewed as a set of de�nitional trees, eah

de�ning a funtion symbol.

A de�nitional tree determines a narrowing strategy, namely the needed narrowing

strategy. Roughly speaking, given a term t = f(t), the needed narrowing strategy

looks in the de�nitional tree of f for a rule node whih applies to t diretly or after

reduing some of its subterms to head normal form.

More formally, if T is a node rule(l ! r), then we apply the rule l ! r to t. If

T is a node branh(�; o; T

1

; : : : ; T

n

), then we onsider the subterm tj

o

. If tj

o

has a

funtion symbol at the top, this subterm is redued to a head normal form by applying

reursively the strategy to tj

o

. If tj

o

has a onstrutor symbol at the top, we narrow t

with a subtree T

i

whose pattern uni�es with t, or fail otherwise. If tj

o

is a variable, we

(nondeterministially) selet a subtree T

i

, unify t with the pattern of T

i

, and narrow

this instane of t with T

i

.

4.2 Term Rewriting Systems and ase expressions

It is possible to integrate the de�nitional trees into the term rewriting system by

using ase expressions. In this way, eah funtion symbol has just one assoiated rule

whih ompletely de�nes the meaning of the funtion. Using ase expressions as a

represention of the equations whih de�ne a funtion is a ommon transformation

tehnique in funtional programming. The syntax of a ase expression is as follows:

ase X of 

1

(x) : X

1

: : :



n

(y) : X

n

where X is a variable, 

1

: : : 

n

are di�erent onstrutors of the sort of X, x; : : : ; y

are tuples of new variables, and X

1

: : : ;X

n

are terms, possibly ontaining ase ex-

pressions. We interpret suh a ase expression with n patterns and n ations as a

2n+ 1-ary funtion ase(X; 

1

(x);X

1

; : : : ; 

n

(y);X

n

).

In this way, we an put together the rules de�ning a funtion f in the original

program into a single (ase) rule in a transformed TRS. A more omplete treatment

of ase expressions in the setting of the de�nitional trees an be found in [7℄.

Example 4.2 The TRS of the Example 4.1 is transformed into the following TRS:

from(N) ! [N|from(s(N))℄

first(X,Y) ! ase(X,0,[ ℄,s(N),ase'(Y,[E|L℄,[E|first(N,L)℄))

The semantis of the funtions ase and ase' an be simply de�ned by the following

rewrite rules:

ase(0 ,0,X,s(N),Y) ! X

ase(s(N),0,X,s(N),Y) ! Y

ase'([E|L℄,[E|L℄,X) ! X

In general, a ase expression with patterns �

1

; : : : ; �

n

an be viewed as a funtion

ase

�

1

;:::;�

n

whih is de�ned by the following set of rules:
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ase

�

1

;:::;�

n

(�

1

; �

1

; X; ; : : : ; ) ! X

: : :

ase

�

1

;:::;�

n

(�

n

; ; : : : ; ; �

n

; X) ! X

We often omit the index �

1

; : : : ; �

n

and abbreviate a `pattern/ation' pair (�;X ) as

� and a tuple of these pairs as �.

4.3 Narrowing with ase expressions

Given a term rewriting system R = (�; R), let R

0

= (� [ �



; R

0

[ R



) be the trans-

formed TRS where �



is the set of ase funtion symbols, R

0

ontains the ase version

of rules in R, and R



is the set of additional ase rules whih must be onsidered.

Remark 4.3 The transformation of R into R

0

have some onsequenes:

1. For eah de�ned funtion f there is only one rule f(x) ! r 2 R

0

. The right-

hand side r of the rule is a (normal) term or a ase expression.

2. Given a term t = f(t), it is always possible to apply a rule. No evaluation of

arguments in t is required for this appliation.

3. All rules in R



have the form ase(

i

(x); X

1

; X

0

1

; : : : ; 

i

(x); X

0

i

; : : : ; X

n

; X

0

n

) !

X

0

i

, where x;X

1

; X

0

1

; : : : ; X

n

; X

0

n

are distint variables.

4. Given a term t = ase(s; �

1

;X

1

; : : : ; �

n

;X

n

), only the �rst argument of this

ase term must be evaluated up to a head normal form in order to apply some

ase rule. Evaluations in the remaining arguments of a ase expressions are not

neessary.

In expressing the de�nitional trees by means of ase expressions, we an evaluate

the goals by using a simpler narrowing strategy, namely leftmost-outermost narrow-

ing.

4

Evaluating goals by needed narrowing w.r.t. R is equivalent to evaluating goals

by leftmost-outermost narrowing w.r.t. R

0

in the following sense.

Theorem 4.4 ([7℄) Let t be a term with a funtion symbol at the top and T a de�n-

itional tree for this funtion symbol. For eah needed narrowing derivation t

N

;

�

�



w.r.t. R, there exists a leftmost-outermost narrowing derivation t

L

;

�

�

0

 w.r.t. R

0

with � =

V ar(t)

�

0

and vie versa.

4

A position p is leftmost-outermost in a set P of positions if there is no p

0

2 P with p

0

pre�x of

p, or p

0

= q � i � q

0

and p = q � j � q

00

and i < j. A narrowing step is leftmost-outermost if the seleted

subterm is the leftmost-outermost one among all possible narrowing positions.
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5 Lazy denotational semantis

5.1 Preliminary de�nitions

In funtional logi programming, given a goal t, we are interested in two lasses of

observable information: the evaluated expression(s) orresponding to this goal and

the solution (or set of solutions) leading to this omputed expression. Therefore,

the answer for a goal is a funtion  : Term ! }(FSubst) whih maps (possible

evaluated) results to sets of substitutions.

5

Example 5.1 Consider the rules of Example 4.1 and the term first(X,from(0)).

Then the answer  representing all possible evaluations of this term has the property

 ([℄) = ffX 7! 0gg,  ([0℄) = ffX 7! s(0)gg,  ([0,s(0)℄) = ffX 7! s(s(0))gg,

and so on. Thus,  has a non-empty denotation ontaining a single substitution on

lists of asending natural numbers starting from 0.

In the following, we use some operations on answers:

� The bottom answer  

?

is de�ned by  

?

(t) = � for all term t.

This is the bottom element in the domain of answers.

� The additive omposition � : Answer �Answer ! Answer is de�ned by

( �  

0

)(t) =  (t) [  

0

(t) :

Sine � is a ommutative and assoiative operation, we extend it to a set of

answers 	 in the obvious way, and write � 	. In partiular, if 	 = � we de�ne

� 	 =  

?

.

� The non-trivial domain � : Answer ! }(T (�; V )), de�ned by

�( ) = ft 2 T (�; V ) j  (t) 6= �g ;

denotes the set of all terms whih are omputable by applying some substitution.

� We denote by t 7! � a unique-valued answer  whih has the property  (t) = �

and  (t

0

) = � for all t

0

6= t.

� The restrition (in�x operator) #: Answer � }(V ) ! Answer is de�ned by

 #

W

(t) =  (t)#

W

.

� The right substitution omposition / : FSubst�Answer ! Answer is de�ned

by (� /  )(t) = ( (t)) Æ �. Note that (� Æ �) /  = � / (� /  ).

5

Other representations of answers, like sets of pairs of terms and substitutions sets, are also

possible. However, our representation leads to a onise denotational semantis.
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5.2 Denotational semantis

For a omplete presentation of the denotational semantis, we introdue the denota-

tional domains and the signatures of the semanti funtions.

� Domains:

Program = Rule

�

(R) Rule = Rule (�)

Den = Term! FSubst! Answer (Æ) FSubst = FSubst (�; �; �)

Goal = Term (t) Term = T (�; V ) (t)

Answer = Term! }(FSubst) ( )

� Semanti funtions:

P[[ ℄℄ : Program! Den! Den

R[[ ℄℄ : Rule! Den! Den

G[[ ℄℄ : Goal ! Den! FSubst! Answer

� De�nition of semantis funtions:

P[[�℄℄ Æ = Æ

?

P[[f�g [ R℄℄ Æ = R[[�℄℄ Æ } P[[R℄℄ Æ

R[[l ! r℄℄ Æ t � = if � = fail _ �(t) 2 V then  

?

else (G[[�(r

0

)℄℄ Æ (�Æ�))#

Var(�)

where l

0

! r

0

= ren(l ! r;Var(�) [ Var(t)) and � = unif(�(t); l

0

)

G[[x℄℄ Æ � = x 7! f�g

G[[(t)℄℄ Æ � = (t) 7! f�g

G[[f(t)℄℄ Æ � = Æ(f(t)) �

G[[ase(s;�)℄℄ Æ � =

let  

s

= G[[s℄℄ Æ � in �

s

0

2 �( 

s

)

�

0

2  

s

(s

0

)

(Æ(ase(s

0

;�)) (�

0

Æ �))#

Var(�)

A program is a sequene of rewrite rules (of the speial form disussed in Setion 4.2).

The meaning of a program is a funtion whih maps denotations into denotations.

A denotation Æ 2 Den maps eah term instantiated by some substitution into an

answer. It desribes the `transformation power' of a program. Hene, Æ(t) � expresses

the (diret) evaluation (by means of the program) of t in the ontext of the substitution

�.

The meaning of an empty program is the bottom denotation Æ

?

: P[[�℄℄ Æ = Æ

?

where Æ

?

is de�ned as follows: Æ

?

(t) � =  

?

for all t and �. Thus, an empty program

annot ompute any value for all possible input terms and substitutions.

The meaning of a non-empty program is the ombination of all answers obtained by

the di�erent rules of the program. For this purpose, we have to de�ne the omposition

of denotations whih an be done by extending the additive omposition � of answers

to the orresponding operation on denotations. } : Den � Den ! Den is de�ned

as (Æ}Æ

0

)(t) � = (Æ(t) �) � (Æ

0

(t) �). Now, the meaning of a (non-empty) program is

obtained by adding the denotations assigned to the rules ontained in the program:

P[[f�g [R℄℄ Æ = R[[�℄℄ Æ } P[[R℄℄ Æ.

9



A rewrite rule is an evaluation omponent of the program. If a rule l! r applies

(with uni�er �) to an (instantiated) term �(t), then, to evaluate �(t), just evaluate

�(r):

6

R[[l ! r℄℄ Æ t � = if � = fail _ �(t) 2 V then  

?

else (G[[�(r

0

)℄℄ Æ (� Æ �))#

Var(�)

where l

0

! r

0

= ren(l ! r;Var(�) [ Var(t)) and � = unif(�(t); l

0

)

The meaning of a goal or term is given as a funtion that, for some denotation

Æ of the program and aumulated partial solution �, yields the answer funtion for

this goal. However, in lazy languages, we are not interested in a total evaluation

of the arguments of a given funtion symbol. Sine the arguments in the left-hand

sides of rules are at onstrutor terms or variables (see Setion 4.3), we evaluate the

expressions up to head normal form in order to apply some rule. Therefore, when a

goal is a head normal form, we stop the (lazy) evaluation: G[[t℄℄ Æ � = t 7! f�g if t is

a variable or a onstrutor-rooted term.

If the goal is an operation-rooted term f(t), then a rule diretly applies and we

use the denotation of the program to obtain the meaning of the goal: G[[f(t)℄℄ Æ � =

Æ(f(t)) �.

If the goal is a ase expression ase(s;�), we may need some evaluation of the

seletion argument s. In this ase, we evaluate s up to a hnf, thus obtaining the

answer  

s

= G[[s℄℄ Æ �. Next, we apply the denotation of the program to the ase

expression with s replaed by all its possible evaluations s

0

2 �( 

s

):

G[[ase(s;�)℄℄ Æ � = �

s

0

2 �( 

s

)

�

0

2  

s

(s

0

)

(Æ(ase(s

0

;�)) (�

0

Æ �))#

var(�)

As usual, the denotation Æ

0

of a program is de�ned as the least �xpoint

7

of the

de�ning equations, i.e., Æ

0

= �x P[[R [ E℄℄ where R ontains the rewrite rules for

operations and ase funtions and E is the set of equality rules of the given signature.

Now, we an diretly obtain the meaning of a given equation e by means of the

funtion G[[ ℄℄ as follows:  = G[[e℄℄ Æ

0

�, where � is the identity substitution with

Dom(�) = Var(e). We an also obtain the result  of the omplete evaluation of

a given term t as follows: let  

0

= G[[X � t℄℄ Æ

0

�, where X is a fresh variable

and � is the identity substitution with Dom(�) = Var(t) [ fXg. If  

0

=  

?

, then

 =  

?

. Otherwise,  

0

must be a unique answer of the form true 7! f�

1

fX 7!

t

1

g; : : : ; �

n

fX 7! t

n

g; : : :g, sine equalities an only be derived to the onstant true.

Then  = t

1

7! f�

1

g � � � � � t

n

7! f�

n

g � � � �.

5.3 Properties of the semanti funtions

The following proposition allows us to express a solution � obtained from the evalu-

ation of either an operation rooted term or a ase expression with evaluated seletion

6

ren(s;W ) denotes the renaming of s so that the new variant of s has no variables in ommon

with W . By introduing a total ordering on V , it is easy to de�ne ren as a funtion.

7

We onsider the standard ordering in the domains, e.g., � is the least element in sets and

funtions are ordered pointwise on their domains.
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argument, as a ombination of the �rst mgu � used to narrow the term and the answer

whih orresponds to the evaluation of the rhs instantiated by �.

Proposition 5.2 Let t be either an operation rooted term t = f(t) or t = ase(s;�)

where s is a hnf suh that there is a variant �

�

: l

0

! r

0

of a rule whih an be

applied to t with mgu �. Let � be the set of all of suh uni�ers. Let  = G[[t℄℄ Æ �

with Var(�) = Var(t) and  

0

�

= G[[�(r

0

)℄℄ Æ �

0

with Var(�

0

) = Var(�(r

0

)). Then

 = �

�2�

(� /  

0

�

)#

Var(t)

.

Roughly speaking, the following proposition amounts to say that we an express a

solution � of a ase expression ase(s;�) with a non evaluated seletion argument s

as a ombination of the solutions � of the evaluation s

0

of s and the answers orres-

ponding to the partially evaluated goal ase(s

0

;�).

Proposition 5.3 Let t = ase(s;�), where s is not a hnf. Let �

s

suh that Var(�

s

) =

Var(s). Then

 = G[[ase(s;�)℄℄ Æ � = �

s

0

2 �( 

0

s

)

� 2  

0

s

(s

0

)

(� /  

�

)#

Var(�)

where  

0

s

=G[[s℄℄ Æ �

s

,  

�

= G[[�(ase(s

0

;�))℄℄ Æ �

0

, Var(�

0

) = Var(�(ase(s

0

;�))).

These propositions express the ompositional behavior of the semanti evaluations.

Note the similarities with the result shown in Proposition 3.5 for the operational

setting.

The main result of the paper is given now. It expresses that the semanti de�nition

reets the operational behavior of the needed narrowing strategy.

Theorem 5.4 (Adequay of the semantis w.r.t. needed narrowing)

Let R = (�; R) be an indutively sequential TRS and R

0

= (� [ �



; R

0

[ R



) be the

ase version of R. Let t 2 T (�; V ) and t

0

2 HNF

�

. Let � be the identity substitution

with Dom(�) = Var(t). If  = G[[t℄℄ Æ �, then

t

N

;

�

�

t

0

, �#

Var(t)

2  (t

0

):

6 Conlusions and further work

We have presented a denotational semantis for lazy funtional logi languages based

on the needed narrowing strategy. Our semantis is the �rst denotational de�nition

of needed narrowing.

Some abstrat interpretation frameworks reinfore the use of denotational se-

mantis as the formal basis for data-ow program analysis by giving an intermediate

meta-language able to ouh the program as a set of semanti equations [10, 12℄. In

this way, a given analysis an be de�ned as a partiular interpretation of the lan-

guage. Therefore, this is a reusable framework for program analysis. We plan to

apply this kind of strategy for the analysis of funtional logi programs based on

needed narrowing strategy.
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