
Integration of Funtional and Logi Programming

Mihael Hanus Herbert Kuhen

RWTH Aahen

�

In ACM Computing Surveys, Vol. 28, No. 2, 1996, pp. 306{308

During the last deade, many proposals have been made to ombine the most important delar-

ative programming paradigms, namely funtional and logi programming (see [2℄ for a survey).

Funtional logi languages o�er features from funtional programming (nested expressions, higher-

order funtions, lazy evaluation) and logi programming (logial variables, partial data strutures,

built-in searh). They subsume purely funtional languages as well as pure Prolog. An important

advantage of an integrated language is that it an help to bring the funtional and the logi pro-

gramming ommunities together, enabling them to share their developments and avoid a dupliation

of work on implementation tehniques, program analysis, program transformation, graphial user

interfaes, and many other tools. Moreover, this integration should lead to an inreased aeptane

of delarative programming in general.

Compared to purely funtional languages, funtional logi languages mainly provide a built-in

searh mehanism whih is apable of handling partial information. An expression ontaining logi

variables represents an arbitrarily large set of values. If the basi struture of suh an expression

allows to infer that there are no solutions no matter how the logi variables are bound, then a

whole subspae of the searh spae an be ignored (namely the subspae providing instantiations

of the logi variables). The purely funtional approah to searhing by (lazily) produing a list of

suesses [5℄ will onsider all values of this subspae one by one, sine an expression in a purely

funtional language represents only one value (regardless of the evaluation strategy!). Note that

a simulation of expressions ontaining logi variables by �-abstrations, e.g., a representation of

(ons X Y ) by �X:�Y:(ons X Y ) does not always work, sine this would �x the order in whih

the logi variables have to be bound. Moreover, in onstraint logi programming, an important

appliation domain of logi programming, logi variables are seldom bound to a distint value

but typially onstrained to smaller and smaller subsets of the entire domain. This inremental

onstraint solving is hard to desribe by funtional programs but a natural feature of funtional

logi languages.

Compared to purely logi languages, funtional logi languages provide more eÆient evaluation

mehanisms due to the (deterministi!) redution of funtional expressions. Thus, impure features

of Prolog to restrit the searh spae, like the ut operator, an be avoided. Moreover, a simulation

of higher-order funtions by the (impure) all prediate is no longer neessary, sine suh funtions

are diretly available. Further, lazy evaluation allows an elegant style of programming, inluding

the treatment of in�nite data strutures.

Unfortunately, funtional logi languages did not have the desired suess up to now. Reasons

for this are the lak of a \standard" funtional logi language and the fat that existing funtional

logi languages and their implementations are mainly experimental systems but not yet mature for

�

Informatik II, RWTH Aahen, D-52056 Aahen, Germany, fhanus,herbertg�informatik.rwth-aahen.de

1



real appliations. The development of a standard language is ompliated by the fat that there is

no agreement on the operational semantis. There are mainly two approahes, namely residuation

and narrowing.

Residuation is based on the idea to delay funtion alls until they are ready for deterministi

evaluation. Sine the residuation priniple evaluates funtion alls by deterministi redution steps,

nondeterministi searh must be expliitly enoded by prediates or disjuntions. The residuation

priniple is a reasonable integration of the funtional and the logi paradigm, sine it ombines

the deterministi redution of funtions with partial data strutures (logial variables). Moreover,

it allows onurrent omputation with synhronization on logial variables. Unfortunately, it is

inomplete, sine it is unable to ompute solutions if arguments of funtions are not suÆiently

instantiated during the omputation.

Narrowing is a ombination of uni�ation for parameter passing and redution as evaluation

mehanism. It is omplete in the sense of funtional programming (normal forms are omputed if

they exist) as well as logi programming (solutions are omputed if they exist). In order to get

an eÆient implementation, sophistiated narrowing strategies are required. The strategy needed

narrowing [1℄ interleaves the evaluation of demanded arguments and an indexing mehanism to

selet appliable rules. It is optimal w.r.t. the length of derivations and the number of omputed

solutions. This learly shows the advantages of integrating funtions into logi programs: by

transferring results from funtional programming to logi programming, we obtain better and, for

partiular lasses of programs, optimal evaluation strategies without loosing the searh failities.

De�ning funtions is not a burden to the programmer, sine most prediates of (logi) appliation

programs are funtions. Moreover, the knowledge about funtional dependenies an avoid use-

less omputations (of arguments whih are not needed) and inrease the number of deterministi

evaluation steps.

A future funtional logi language ould o�er a ombination of residuation and narrowing: if the

user does not restrit the appliability of a funtion, a omplete strategy will be used; however, the

user an add annotations whih allow to residuate for some arguments and/or to speify another

evaluation order.

The seond problem for the urrently low aeptane of funtional logi programming, namely

the toy harater of existing systems, has to be solved by inluding features whih are required

for programming serious appliations. This inludes a polymorphi type system, a module system,

and purely delarative I/O. One possible hoie for the latter is to use monadi I/O [6℄ like in

Haskell. This fores the main omputation thread to be a sequene of monad operations. Thus,

in a funtional logi setting, nondeterministi searh has to be enapsulated suh that unlimited

baktraking is exluded. One possibility for enapsulating searh has been proposed in Oz [4℄.

The user gets expliit aess to the searh spae as a data struture and an explore it step by step

in the desired diretion (e.g., depth-�rst). Frequently used searh strategies like depth-�rst and

breadth-�rst an be desribed by higher-order funtions and used by simply alling these funtions

with the problem as parameter. Enapsulated searh provides also ontrol over the explored searh

spae.

Another desirable feature is a full integration of higher-order funtions (inluding some sort of

higher-order uni�ation rather than their limited use as in purely funtional languages). \Higher-

order narrowing" is espeially onvenient for handling appliations where the notion of sope is

important, like formulae and programs (see [3℄ for referenes to suh appliations). Moreover,

2



impliations and expliit quanti�ers (as in �-Prolog [3℄) an be used to avoid (many) ourrenes of

the impure Prolog-features assert and retrat. While evaluating the suedent e of an impliation

(lause) e), the lause in the anteedent is added to the program.

Logi languages have the advantage that they an easily be extended by onstraint solving and

thus allow to use domain spei�, eÆient searh strategies. Sine funtional logi languages also

allow an easy integration of onstraint solvers, important appliation areas of logi programming

are also overed by suh integrated languages.

Existing implementations of funtional logi languages show that the integration need not ause

a (serious) performane penalty [2℄. If logi variables do not our in a program, the evaluation

is idential to funtional languages. Similarly, it is idential to logi languages if funtions are not

used, i.e., there is no overhead due to the presene of the additional features. On the ontrary, if

logi variables are used in ombination with funtions, the deterministi behavior of funtions is

used to inrease the eÆieny w.r.t. purely logi languages and the handling of partial information

enables more eÆient searh than in purely funtional languages.

Referenes

[1℄ S. Antoy, R. Ehahed, and M. Hanus. A needed narrowing strategy. In Pro. 21st ACM Symposium on

Priniples of Programming Languages, pages 268{279, Portland, 1994.

[2℄ M. Hanus. The integration of funtions into logi programming: From theory to pratie. Journal of

Logi Programming, 19&20:583{628, 1994.

[3℄ G. Nadathur and D. Miller. An overview of �Prolog. In Pro. 5th Conferene on Logi Programming &

5th Symposium on Logi Programming (Seattle), pages 810{827. MIT Press, 1988.

[4℄ G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Current Trends in Computer Siene.

Springer LNCS 1000, 1995.

[5℄ P. Wadler. How to replae failure by a list of suesses. In Funtional Programming and Computer

Arhiteture. Springer LNCS 201, 1985.

[6℄ P. Wadler. The essene of funtional programming. In Symposium on Priniples of Programming Lan-

guages, pages 1 { 14. ACM, 1992.

3


