
Compatibility Criteria for Java Packages

Yannick Welsch
welsch@cs.uni-kl.de

Software Technology Group
University of Kaiserslautern

14.04.2009

In this talk, I analyze the interface evolution of Java packages regarding
compatibility. I want to determine the criteria for a Java package implemen-
tation to be substitutable for another one in all possible contexts, leading to a
program satisfying the typing rules and context conditions.

Although the Java Language Specification defines properties for binary com-
patibility, this notion is not as strong as source compatibility. In fact, source
compatibility implies binary compatibility, but not vice versa. For example,
introducing a new field with the same name as an existing field, in a subclass of
the class containing the existing field declaration, does not break binary com-
patibility with preexisting binaries. However, at the source code level, this may
lead to source incompatibility (type error). A new declaration is added, chang-
ing the meaning of a name in an unchanged part of the source code, while
the preexisting binary for that unchanged part of the source code retains the
fully-qualified, previous meaning of the name.

The two following topics can be addressed by giving criteria for source com-
patibility. Consider a setting where a library implementer develops a new version
of the library. By respecting the compatibility criteria, he can ensure that the
new version of his library will still compile with existing client code. Another
far more complex topic is the following one. To define a notion of behavioral
equivalence of two package implementations, a notion of compatibility is needed
as only compatible package implementations can lead to identical behavior.

In an attempt to specify the criteria for package compatibility, I have for-
malized a Java subset in the spirit of Classic Java, enhanced by packages and
access modifiers. The compatibility criteria I give are directly derived from the
typing rules and context conditions.

As byproduct of my research on compatibility criteria, I was able to find a
bug in the Eclipse Java compiler regarding overriding of methods across package
boundaries.


