

 Seminar

Monadic Parser Combinators

Tutor: Prof.Dr.Michael Hanus

 Author: Parissa H.Sadeghi

 Date: May 2004

Christian-Albrechts-Universität zu Kiel

 2

Contents

 Abstract 3

 1 Introduction 3

 2 Functional Kernel 4

 2.1 Pure Functional Programming 5

 3 Monads and Computations 6

 3.1 Monad 7

 4 Functional Parsers 8

 4.1 The Type of Parsers 9

 4.1.1 Primitive Parsers 10

 4.1.2 Parser Combinators 11

 4.1.2.1 Sequence 11

 4.1.2.2 Choice 14

 4.1.3 Parsers and Monads 15

 5 Lexical analyzer 16

 6 Conclusions 16

 6.1 Imitations 16

 6.2 Advantages 18

 7 A Simple Parser 19

 8 References 23

 3

 Monadic Parser Combinators

Abstract

In functional programming, the parser can be written as a traditional

recursive-descent parser using functions. Alternatively, one may use the monad

style to set up the parser or attribute grammars.

In this paper, we will discuss about the meaning of monad and functional

programming (is declared in [Kar98]) to provide functional parsers (is declared

in [HM96]).

1 Introduction

Functional programming languages such as Haskell are eminent tools for

defining interpreters and compilers. Program representations, in the form of

abstract syntax trees (AST) are naturally defined used recursive data type

declarations. Semantic operations are furthermore specified using features of a

functional language such as patterns and equations and compositionality is in

turn guaranteed in terms of lazy evaluation. The definitions of a scanner can be

done very naturally by using the operations of the built in string type. The parser

itself can be written as a traditional recursive-descent parser using Haskell

functions, or alternatively, one may use the monad style to set up the parser or

attribute grammars.

 4

It was realised early on (Wadler, 1990) that parsers form an instance of a

monad, an algebraic structure from mathematics that has proved useful for

addressing a number of computational problems. As well as being interesting

from a mathematical point of view, recognising the monadic nature of parsers

also brings practical benefits. For example, using a monadic sequencing

combinator (or higher order functions) for parsers avoids the messy

manipulation of nested tuples of results present in earlier work. Moreover, using

monad comprehension notation makes parsers more compact and easier to

read.

Construction of parsers for programming languages actually belong to one

of the main stream applications of functional programming languages, since the

application domain is itself purely functional: a parser is simply a function from

text input to object code, which can be split up in intermediate compilation steps

(functions) working on intermediate representations. The intermediate

representation is conveniently represented in terms of a number of Haskell

sum-of-product types, and the compilation steps can be elegantly expressed as

functions, using features of the functional language such as equations, patterns,

higher order functions etc.

In the area of tool integration, parser construction, or say lexical analysis,

is frequently needed. Many CASE tools communicate with their environment by

writing some text output to a file or to some interprocess communication

medium. With a functional language at hand it becomes, compared to traditional

technologies such as C combined with Lex and Yacc, very simple to write

lexical analysers or parsers that peeks into the output generated by one tool, to

extract information that will be needed by second tool.

2 Functional Kernel

Functional programming languages are recognized to have several nice

properties. The notation offered is very close to that used in mathematics, and

the semantic is well defined in terms of its foundation in lambda calculus

[Bar84]. Moreover, functional languages are characterized by offering a

powerful polymorphic type system, a useful module system, functions as first

 5

class values, equational definition of functions using patterns and automatic

garbage collection of values. Lazy functional languages add concepts such as

evaluation of function parameters on need, which in turn form the basis for more

speculative styles of problem solving based on e.g. infinite data structures.

Haskell [HPW92] introduces classes and inheritance providing additional

abstraction features almost similar to an objected style, with the limitation that

binding is static and not dynamic as in an object oriented language.

2.1 Pure Functional Programming

Pure functional programming is a style of programming which consists

entirely of the definition and application of functions [BW88, FH88, Wad92].

Unlike imperative languages there are no side-effects caused by the evaluation

of expressions: the value of an expression is consequently independent of the

context in which the expression occurs [Pey87].

The concept of referential transparency makes functional programs more

applicable to rigorous, formal reasoning. Program transformations can more

easily be performed on functional programs than an imperative one due to the

absence of side-effects in functional programs. Furthermore, since functional

programs are written in an equational style, it is possible to make the programs

subject to proofs.

In addition, functional programming languages offer a range of powerful

concepts at a high level of abstraction which makes them good vehicles for

system development in a formal setting:

• A strong but flexible type system with static typing.

• Type inference, i.e. the ability of the system to infer the most general type of

a value.

• Polymorphic functions and polymorphic data types.

• User defined algebraic datatypes.

• Powerful and predefined list type where lists can be defined using list

comprehensions.

• Higher order functions, i.e. functions as first class values that take other

functions as parameters or return functions as values.

 6

• Equational definition of functions using pattern matching.

• User defined infix operators.

• Automatic memory allocation and de-allocation (garbage collection).

• And finally, a comprehensive set of predefined types and functions.

Some of these features are also offered, in one form or another, by

modern imperative or object oriented languages. However, functional

programming languages typically have more refined syntax than other

languages and provide powerful features for abstraction which leads to

programs being easier to write resembles mathematics more closely than

imperative ones.

 Functional programs therefore tend to be much shorter than programs

written in imperative languages, although of course there is no guarantee that

this will actually be the case.

Most functional languages are quite similar to each other. The major

semantic distinction is the evaluation order of functions arguments which

causes a classification of functional programming languages into two main

categories.

Call by value: Eagerly evaluated languages evaluate the arguments to a

function before the function is called. Standard ML (SML for short) [MTH90,

Pau96, Bos95], Lisp [Ste90] and OPAL [DFG+94] are all eagerly evaluated

languages.

Call by need: Lazily evaluated languages postpone the evaluation of an

argument until its value is actually required in the body of a function. Clean

[AP95], Miranda [Tur85], and Haskell [Hud2000, HPW92, PHA+, HPA+97,

HPF97] are all lazily evaluated.

3 Monads and Computations

There have been several attempts [Gor92] over the last decades to extend

a functional language with I/O and state, comprising approaches such as the

direct style to I/O, streams, continuation passing style, global state and monads.

 7

3.1 Monad

Imperative functional programming has its theoretical foundation in the

monadic style of representing side effecting computations. Using monads, one

may define the meaning of control flow operators of imperative programming

languages, in particular those related to abnormal flow of control such as

exceptions and goto’s in a style that comes close to the continuation passing

style used in specifying the formal semantics of imperative languages. Monads

therefore bridge the gap between practical programming on one hand and

formal specification technique on the other. The application area for monads

does however go far beyond that of describing flow of control for sequential

languages.

A monad m a is an abstract data type m of computations delivering a

value of type a. The monad is represented in terms of triple (m, return, >>=)

defined by a type constructor m a and a pair of polymorphic functions: return is

the computation for returning a value of type a whereas (>>=) takes the role of

sequential composition. The operator (>>=) combines a computation of type m

a with a continuation function of type a -> m b to achieve a computation of type

m b. In a composition c>>=f, c is executed first and the resulting value v is then

passed to the continuation function f. The resulting computation is denoted by

the expression (f v).

The type of two operators are defined as:

return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

The monadic approach to I/O is based on structures from category theory

[Wad90, Wad94, PW93], and can be used to represent computations.

As an example, in Haskell, the type IO a is a monad used for I/O. A

computation of type IO a is a computation that will perform some side effecting

I/O operations behind the scene. The visible effect of the computation is to

return a value of type a, or eventually, fail with an error.

 8

Now consider two functions: function readNum for reading a natural

number from input and function printNum for displaying the value of each

expression entered into the interpreter :

readNum :: IO Int

printNum :: Int -> IO ()

And suppose we want to write a main program for reading a number from input

and computing its factorial that will be written to standard output, as follows:

main :: IO ()

main = readNum >>= \v -> printNum (fac v)

We can write this main program with do notation. The do notation is

actually shorthand for use of the monadic operators. Using do notation it will be

possible to write imperative functional programs involving assignment

statements, sequencing of actions and compound actions in a style that is very

close to the way it is usually done in traditional imperative languages:

main :: IO ()

main = do

 v <- readLn

 print (fac v)

The symbol (<-) serves as a single assignment operator to accept patterns on

the right hand side.

 4 Functional Parsers

G.Hutton and E.Meijer have provided a step-by-step tutorial on the

monadic approach to building functional parsers and to explain some of the

benefits that result from exploiting monads. Therefore we will use their papers

to define a type for parsers, three primitive parsers, and two primitive

combinators for building larger parsers.

 9

4.1 The Type of Parsers

At the first, we need to define a parser as a function, which takes a string

of characters as input and yields some kind of syntax tree as result:

Since, a parser might not consume all of its input string, we must return

the unconsumed suffix of the input string too. We know also that a parser might

fail on its input and some times the parsers are ambiguous i.e. they can

produce more than one tree for one input string. Thus, the result of a parser

must be a list of consumed and unconsumed of the input string:

type Parser a = String -> [(a , String)]

As an example, we consider a parser that is defined with the grammatical

structure to recognize a list of x and is an ambiguous grammar:

P -> P x P | ε => L(P) = { ε, x, xx, … }

This parser can be defined as a functional parser with the type of our

defined parser. If for example, we give difference strings to this parser then a

list of consumed and unconsumed of input string will be as follows:

 input : “xx” => output : [(Tree1 ”xx” , “”), (Tree2 “xx” , “”)]

 where:

 Tree1”xx” : P -> PxP -> xP -> xPxP -> xxP -> xx

 Tree2”xx” : P -> PxP -> PxPxP -> xPxP -> xxP -> xx

 input : “xy” => output : [(Tree1”x”,”y”)]

 where:

Argument

a

Result

tree

tree = parser (a)

 10

 Tree1”x” : P -> PxP -> xP -> x

This type of parser is used in paper of Hutton and Meijer to define a

functional parser.

4.1.1 Primitive Parsers

Now we know how the type of our parser is. But we must declare some

functions to have different parser combinators. The first primitive parser is

result v that takes an input string inp and returns the list [(v,inp)]. It succeeds

without consuming any of the input string, and returns the single result v :

result :: a -> Parser a

result v = \ inp -> [(v , inp)]

We can compare this parser with the grammatical structure:

P -> ε

The second primitive parser is zero that always fails, regardless of the

input string :

zero :: Parser a

zero = \ inp -> []

That means, for every input string, the result of zero is an empty list.

The final primitive parser is item, which successfully consumes the first

character if the input string is non-empty, and fails otherwise:

item :: Parser Char

item = \ inp -> case inp of

 [] -> []

 (x:xs) -> [(x,xs)]

 11

As an example, if the string “aab” is an input for the defined parser, then

parser item will return [(‘a’,”ab”)] as result and parser result will have another

list [(“”,”aab”)] , but parser zero fails.

4.1.2 Parser Combinators

The three primitive parsers are not very useful in themselves. Thus Hutton

and Meijer decided to use some operators, like to sequence and choice, to

combine parsers.

4.1.2.1 Sequence

In non-monadic accounts of combinators, sequencing of parsers was

usually captured by a combinator, when it applies one parser after another

parser, with the results from the two parsers being combined as pairs:

 seq :: Parser a -> Parser b -> Parser (a,b)

 p `seq` q = \ inp -> [((v,w),inp’’) | (v,inp’) <- p inp

 , (w,inp’’) <- q inp’]

The right hand side of sign | means: if parser p takes input string inp, then

the consumed input as a tree together with the unconsumed input string will be

return in a list of pair. Each pair is declared as (v,inp’). After that, parser q takes

inp’ as input and returns a list of pair with the consumed part of inp’ as a tree

and unconsumed part of inp’. One element of this list is (w,inp”). Finally,

combinator seq returns a combination between two results value v , w that is a

list of [((v,w) , inp”)].

But, in practice, using seq leads to parsers with nested tuples as results,

which are messy to manipulate.

The problem of nested tuples can be avoided by adopting a monadic

sequencing combinator bind, which integrates the sequencing of parsers with

the processing of their result value:

 12

bind :: Parser a -> (a -> Parser b) -> Parser b

p `bind` f = \inp -> concat [f v inp’ | (v,inp’) <- p inp]

Combinator bind defined above has two inputs, a parser and a parser

abstraction. First of all, the parser p applies to the input string and gives a result

that is a list of (value, string) pairs [section 4.1]. Now function f applies to all of

the values and returns a parser. The new parser is a list of concatenated lists.

Since the result of a parser is available for processing by the next parser,

the bind combinator avoids the problem of nested tuples of results.

For example, the seq combinator can be defined by:

seq :: Parser a -> Parser b -> Parser (a,b)

p `seq` q = p `bind` \x ->

 q `bind` \y ->

 result (x,y)

That means: apply parser p and denote its result value x, then apply

parser q and denote its result value y, and finally combine all the result into a

single value by applying function seq. (But,in practice bind can not be defined

in terms of seq.)

And in grammatical structure, if for example we declare a list of a that

followed with a list of b :

S -> P Q

P -> a P | ε

Q -> b Q | ε

The result of parser S will be a concatenation of two lists. Thus for an input

string like to “aab”, the parser will return a concatenation between strings of two

lists that is [((“a”,””),”ab”),((“aa”,”b”),””), ((“aa”,””),”b”), ((““,””),”aab”)].

With bind combinator, we can define some different and useful parsers.

As an example we define a combinator sat that takes a Boolean valued function

as a predicate and yields a parser that consumes a single character if it satisfies

 13

the predicate and fails otherwise. For this approach we use our simple parsers:

parser item, that consumes a single character unconditionally and parser zero

that is defined for returning an empty list, when parser fails:

sat :: (Char -> Bool) -> Parser Char

sat p = item `bind` \x -> if p x then result x

 else zero

In this declarated combinator, if the input string is empty or first letter of

input is not a character, then parser item fails by zero, otherwise, it will return a

list of value and unconsumed string by result.

Using sat, we can define parsers for specific characters, single digits,

lower-case letters and upper-case letters:

char :: Char -> Parser Char

char x = sat (\y -> x == y)

digit :: Parser Char

digit = sat (\x -> ‘0’ <= && x <= ‘9’)

lower :: Parser Char

lower = sat (\x -> ‘a’ <= x && x <= ‘z’)

upper :: Parser Char

upper = sat (\x -> ‘A’ <= x && x<= ‘Z’)

For example, we can use bind combinator to return a string with two

characters:

lower `bind` \x ->

lower `bind` \y ->

result [x,y]

 14

Applying this parser to the string “abcd” succeeds with the result [(“ab” ,

“cd”)] but it fails with the result [] when “aBcd” is the input, because the second

letter ‘B’ can not be consumed by the second lower parser.

Since the length of the string to be parsed can not be predicted, in general

we will need a recursive parser. We know every recursive function must be

terminated, thus a choice operator will help us to decide between parsing a

single letter and recursing, or parsing nothing further and terminating.

4.1.2.2 Choice

A suitable choice combinator for parsers is defined as plus:

plus :: Parser a -> Parser a -> Parser a

p `plus` q = \inp -> (p inp ++ q inp)

Combinator plus takes two parsers as input that both of them apply to the

same input string. Each parser p or q has a list as result that will be

concatenated to form a single result list. But there is a problem, if the first parser

accepts the input string then the second parser will be applied to the same

input, even though it is guaranteed to fail. That means, we need an extra run-

time for processing the second parser. While, if the first parser succeeds on the

input string, we have the result and combinator must be terminated. Because of

that, we define a new choice (+++) which terminates with the first success:

(+++) :: Parser a -> Parser a -> Parser a

p +++ q = first (p `plus` q)

first :: Parser a -> Parser a

first p = \inp -> case p inp of

 [] -> []

 (x:xs) -> [x]

 15

The parser first p returns only the first result (if any). That means, using

first we have defined a deterministic version (+++) of the standard choice

combinator for parsers.

As an example, if parser P recognizes a list of character ‘a’ and parser Q

recognizes a list of character ‘b’, we can combine parser P and Q to define a

new parser that returns a list of ‘a’ or a list of ‘b’ :

S -> P | Q => s = p `plus` q

P -> a P | a => p = ((char ‘a’) `seq` p) `plus` (char ‘a’)

Q -> b Q | b => q = ((char ‘b’) ‘seq’ q) `plus` (char ‘b’)

Now we can combine our earlier defined parsers and combinators to

define larger parsers. As an example, a parser that accepts letter and

recognizes a word (strings of letters):

letter :: Parser Char

letter = lower `plus` upper

word :: Parser String

word = neWord `plus` result “”

 where

 neWord = letter `bind` \x ->

 word `bind` \xs ->

 result (x : xs)

4.1.3 Parsers and Monads

We have seen in section 3.1that a monad is a type constructor with two

operations return and >>= . And we have said in section 4.1 that functional

parsers have a Parser type constructor. Thus, parsers form a monad.

Hutton and Meijer have compared a parser with the monad type

constructor. Thus, the following operations can be introduced for the parser type

constructor (they have used operation result as operation return and operation

bind as operation >>=):

 16

result :: a -> Parser a

bind :: Parser a -> (a -> Parser b) -> Parser b

With this definition, we can say, our defined parser is a monadic parser.

5 Lexical analyzer

Traditionally, first every input string will be passed through a lexical

analyser (scanner) that breaks the string into a sequence of tokens. And after

that, it will be parsed by a syntax analyser (parser).

Spaces, newlines, tabs and comments will be removed by scanner and

identifiers and also keywords will be distinguished. But using parser

combinators, we don’t need a separate scanner. Only with writing some

combinators, we can add a scanner within the main parser.

6 Conclusions

Now, with the primitive parsers and combining the primitive combinators,

we can write a lager parser to recognize every input string. But, what is the

advantages and imitations in the monadic parser combinators:

6.1 Imitations

An important restriction on most existing combinator parser is that they are

unable to deal with left-recursion [LM2001]. But in practice, grammars are often

left-recursive. Fortunately, every left-recursive grammar can be written into a

right-recursive one.

In practice, a parser combinator refers a list of successes as result, since

the parser combinator protects ambiguous grammars. It doesn’t matter whether

 17

that the list contains zero, one or many elements. They are all valid answers.

But it makes it hard to give a good error message.

That means, another problem is error-reporting. A good parser’s error

message contains the position of the error in the input and also the cause of the

error. Beside error reporting, the parser might try to correct the error. But

unfortunately, current parser combinators (nondeterministic) are not very good

at reporting errors. However, even when we restrict ourselves to non-

ambiguous grammars, it is hard to report an error since the parsers can always

look arbitrary far ahead in the input (they are LL(∞)) and it becomes hard to

decide what the error message should be.

Because of that, Leijen and Meijer in Parsec [LM2001] restricted

themselves to deterministic predictive parsers with limited lookahead, for

example LL(1) parser (but, most grammars are not LL(1) and even require

arbitrary lookahead).

They consider that a parser has either Consumed input or returns a value

without consuming input (Empty). The return value is either a single result and

the remaining input (Ok a String), or a parse error (Error). Thus, they have

defined a new parser type constructor with error message, as follows:

type Parser a = String -> Consumes a

data Consumed a = Consumed (Reply a) | Empty (Reply a)

data Reply a = Ok a String | Error

For example, the first primitive parser result that has been defined in

section 4.1.1 can be written with this method:

result v = \inp -> Empty (Ok v inp)

The result succeeds immediately without consuming any input string, hence it

returns the Empty alternative.

 18

6.2 Advantages

So far we have seen one advantage of recognising the monadic nature of

parsers: the monadic sequencing combinator bind handles better than the

traditional sequencing combinator seq.

Another advantage of the monadic approach, namely that monad

comprehension syntax can be used to make parsers more compact and easier

to read. For example, earlier we have defined a sat combinator as follows:

sat :: (Char -> Bool) -> Parser Char

sat p = item `bind` \x ->

 If p x then result x else zero

Gofer [Jon94] provides a special notation for defining parsers of this

shape, allowing them to be expressed in the following, more appealing form:

sat :: (Char -> Bool) -> Parser Char

sat p = [x | x <- item , p x]

In fact, this notation is not specific to parsers, but can be used with any

monad [Jon95]. There is another notation that can be used to make monadic

programs easier to read. This notation is defined in [JSL94] and is named as do

notation:

sat :: (Char -> Bool) -> Parser Char

sat p = do { x <- item ; if (p x) ; result x }

 19

7 A Simple Parser

To illustrate the monadic parser combinators, we write a simple parser to

define a language as follows:

L(S) = { a n b n c n | n є Z }

That means, this language can accept only a list of three characters a, b and c,

when the number of these characters are equal and when they have a

sequential relationship between themselves. A simple context-free grammatical

structure of this language can be written as follows:

 S -> A B C

 A -> a A | ε

 B -> b B | ε

 C -> c C | ε

To write a monadic parser, we must use our defined type parser and

primitive parsers, which are defined in section 4.

Since this language needs to recognize three charactes a, b and c ,

combinator sat and char will help us to complete one part of program.

sat :: (Char -> Bool) -> Parser Char

sat p = item `bind` \x ->

 if p x then result x else zero

char :: Char -> Parser Char

char x = sat (\y -> x == y)

To define the number of characters in the input string we need a recursive

function. Function count takes a parser, applies it n times and returns the

parser result as output :

count :: Parser a -> Parser Int

count p = (p `bind` _ ->

 count p `bind` \n ->

 result (n+1)) `plus` (result 0)

 20

If the input string of parser p has no character, then the output of count will be

result 0, but if it has n character, the output will be parser result n.

Now we must define our grammatical structure as a function. Function s is

written for grammatical structure of nonterminal S. The output of this function is

True, when the number of three character equal is i.e. na=nb=nc :

s :: Parser Bool

s = count (char 'a') `bind` \na ->

 count (char 'b') `bind` \nb ->

 count (char 'c') `bind` \nc ->

 result ((na==nb) && (na==nc))

We can define a function to check the input string with the defined

language (function startParser):

 startParser :: Parser a -> String -> Maybe a

startParser p str = find (p str)

 where find [] = Nothing

 find ((r , "") : _) = Just r

 find ((_ : res)) = find res

Function find will take the result of parser p (that is a list) to check the situation

of the list. If the result of p is an empty list, this means that the input string is not

a member of the language (Nothing). But if the list is non-empty, the input

string can be produced by grammar, but either the number of characters a, b

and c are equal (Just True) or are not equal (Just False).

The results of simple defined parser for difference inputs are :

Input : “” => output : Just True

Input : “ab” => output : Just False

Input : “aabbcc” => output : Just True

Input : “abbcca” => output : Nothing

To show the difference between monadic and non-monadic combinators

sequence that is defined in section 4.1.2.1. We change the function count to

produce parser result that returns a list of characters (count2):

 21

 count2 :: Parser Char -> Parser String

 count2 p = (p `bind` \c ->

 count2 p `bind` \cs ->

 result (c:cs)) `plus` (result"")

Now we try to write two difference function for nonterminal S with monadic

sequence bind and non-monadic sequence seq (section 4.1.2.1):

s1 :: Parser String

s1 = (count2 (char 'a')) `bind` \na ->

 (count2 (char 'b')) `bind` \nb ->

 (count2 (char 'c')) `bind` \nc ->

 result(na++nb++nc)

s2 :: Parser ((String,String), String)

s2 = (count2 (char 'a')) `seq`

 (count2 (char 'b')) `seq`

 (count2 (char 'c'))

The results of the two parser functions s1 and s2 with different input

string will show us the problem of nested-tuples:

Input : “” => output (s1) : [("","")]

Input : “” => output (s2) : [((("",""),""),"")]

Input : “ab” => output (s1) : [("ab",""),("a","b"),("","ab")]

Input : “ab” => output (s2) :

 [((("a","b"),""),""),((("a",""),""),"b"),((("",""),""),"ab")]

Input : “aabbcc” => output (s1) :

 [("aabbcc",""),("aabbc","c"),("aabb","cc"),("aab","bcc"),("aa","bbcc"),("a","

 abbcc"),("","aabbcc")]

 22

Input : “aabbcc” => output (s2) :

 [((("aa","bb"),"cc"),""),((("aa","bb"),"c"),"c"),((("aa","bb"),""),"cc"),((("

 aa","b"),""),"bcc"),((("aa",""),""),"bbcc"),((("a",""),""),"abbcc"),((("","")

 ,""),"aabbcc")]

Input : “abbcca” => output (s1) :

 [("abbcc","a"),("abbc","ca"),("abb","cca"),("ab","bcca"),("a","bbcca"),("","a

 bbcca")]

Input : “abbcca” => output (s2) :

 [((("a","bb"),"cc"),"a"),((("a","bb"),"c"),"ca"),((("a","bb"),""),"cca"),((("

 a","b"),""),"bcca"),((("a",""),""),"bbcca"),((("",""),""),"abbcca")]

This shows that the result of non-monadic style parser is more difficult to

process due to the nested tuple structure.

 23

8 References

[AP95] P. Achten and R. Plasmeier. The Ins and Outs of Clean I/O. Journal of
Functional Programming, 1995.

[Bar84] H. P. Barendregt. The Lambda Calculus – Its Syntax and Semantics.
North Halland, 1984.

[Bos93] R. Bosworth. APractical Course in Functional Programming Using ML. 1995.

[BW88] B. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall,
1988.

[DFG+94] K. Didrich, A. Fett, C. Gerke, W. Grieskamp, and P. Pepper. OPAL: Design
and Implementation of an Algebraic Programming Language. In J.
Gutknecht, editor, Programming Languages and System Architectures,
volume 782 of Lecture Notes Computer Science. Springer Verlag, March
1994.

[FH88] A. J. Field and P.G. Harrison. Functional Programming. Addison Wesley,
1988.

[Gor92] A.D.Gordon. Functional Programming and Input/Output. PhD thesis,
Computer Laboratory, University of Combrige, England, 1992.

[HM96] G. Hutton and E.Meijer. Monadic Parser Combinators. Appears as technical
report NOTTCS-TR-96-4, Department of Computer Science, University of
Nottingham, 1996.

 [HPA+97] K. Hammond, J. Peterson, L. Augustsson, J. Fasel, A. D. Gordon, S. Peyton
Jones, and A. Reid. Standard Libraries for the Haskell Programming
Language, Version 1.4, April 1997.

[HPF97] P. Hudak, J. Peterson, and J. H. Fasel. A Gentle Introduction to Haskell –
Version 1.4 - , March 1997.

[HPW92] P.Hudak, S. L. Peyton Jones, and P. Wadler. Report on the Programming
Language Haskell – a non strict purely functional language, version 1.2.
ACM SIGPLAN notices, 1992.

[Hud2000] P. Hudak. The Haskell School of Expression, Learning Functional
Programming Through Multimedia. 2000.

 24

[Jon94] Jones and P. Mark. Gofer 2.30a release notes. Unpublished
manuscript.1994.

[Jon95] Jones and P. Mark. A system of constructor classes: overloading and
implicit higher-order polymorphism. Journal of Functional Programming,
1995.

[JSL94] Jones, P. Simon, and J. Launchbury. State in Haskell. University of Glasgow.
1994.

[Kar98] Einar W. Karlsen. Tool Integration In A Functional Programming Language.
M. Gogolla, H. -J. Kreowski, B. Krieg-Brückner, J. Peleska, B. –H.
Schlingloff, H. Szczerbicka (Series Editors), 1998.

[LM2001] D. Leijen and E. Meijer. Parsec: Direct Style Monadic Parser Combinators
For The Real World. October, 2001.

[MTH90] R. Milner, M. Tofte, and R.Harper. The Definition of Standard ML. MIT
Press, 1990.

[Pau96] L. C. Paulson.ML for the Working Programmer. Cambrige University Press,
2. edition, 1996.

[PHA+97] J. Peterson, K. Hammond, L. Augustsson, B. Boutel, W. Burton, J. Fasel, A.
D. Gordon, J. Hughes, P. Hudak, T. Johnsson, M. Jones, E. Meijer, S.
Peyton Jones, A. Reid, and P. Wadler. Report on the Programming
Languages Haskell, Version 1.4, January 1, 1997.

[PW93] S. Peyton Jones and P. Wadler. Imperative Funczional Programming. In
Proc. 20th ACM Symposium on Principles of Functional Programming, 1993.

[Ste90] G. L. (Jr) Steele. Common Lisp the Language. Digital Press, 2 edition, 1990.

[Tur85] D. A. Turner. Miranda: A non-strict Functional Language with Polymorphic
Types. In Proceedings of the IFIP International Conference on Functional
Programming Languages and Computer Architecture, volume 201 of Lecture
Notes in Computer Science. Springer Verlag, 1985.

[Wad90] P. Wadler. Comprehending Monads. In ACM Conference on Lisp and
Functional Programming, 1990.

[Wad92] P. Wadler. The essence of Functional Programming. In ACM Principles of
Programming Languages, 1992.

 25

[Wad94] P. Wadler. Monads and Composable Continuations. Lisp and Symbolic
Computation. January 1994.

 26

