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              Monadic Parser Combinators 

 

 

 

Abstract 

In functional programming, the parser can be written as a traditional 

recursive-descent parser using functions. Alternatively, one may use the monad 

style to set up the parser or attribute grammars. 

In this paper, we will discuss about the meaning of monad and functional 

programming (is declared in [Kar98]) to provide functional parsers (is declared 

in [HM96]). 

 

1  Introduction 

Functional programming languages such as Haskell are eminent tools for 

defining interpreters and compilers. Program representations, in the form of 

abstract syntax trees (AST) are naturally defined used recursive data type 

declarations. Semantic operations are furthermore specified using features of a 

functional language such as patterns and equations and compositionality is in 

turn guaranteed in terms of lazy evaluation. The definitions of a scanner can be 

done very naturally by using the operations of the built in string type. The parser 

itself can be written as a traditional recursive-descent parser using Haskell 

functions, or alternatively, one may use the monad style to set up the parser or 

attribute grammars.  
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It was realised early on (Wadler, 1990) that parsers form an instance of a 

monad, an algebraic structure from mathematics that has proved useful for 

addressing a number of computational problems. As well as being interesting 

from a mathematical point of view, recognising the monadic nature of parsers 

also brings practical benefits. For example, using a monadic sequencing 

combinator (or higher order functions) for parsers avoids the messy 

manipulation of nested tuples of results present in earlier work. Moreover, using 

monad comprehension notation makes parsers more compact and easier to 

read. 

Construction of parsers for programming languages actually belong to one 

of the main stream applications of functional programming languages, since the 

application domain is itself purely functional: a parser is simply a function from 

text input to object code, which can be split up in intermediate compilation steps 

(functions) working on intermediate representations. The intermediate 

representation is conveniently represented in terms of a number of Haskell 

sum-of-product types, and the compilation steps can be elegantly expressed as 

functions, using features of the functional language such as equations, patterns, 

higher order functions etc. 

In the area of tool integration, parser construction, or say lexical analysis, 

is frequently needed. Many CASE tools communicate with their environment by 

writing some text output to a file or to some interprocess communication 

medium. With a functional language at hand it becomes, compared to traditional 

technologies such as C combined with Lex and Yacc, very simple to write 

lexical analysers or parsers that peeks into the output generated by one tool, to 

extract information that will be needed by second tool. 

 

2  Functional Kernel 

Functional programming languages are recognized to have several nice 

properties. The notation offered is very close to that used in mathematics, and 

the semantic is well defined in terms of its foundation in lambda calculus 

[Bar84]. Moreover, functional languages are characterized by offering a 

powerful polymorphic type system, a useful module system, functions as first 
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class values, equational definition of functions using patterns and automatic 

garbage collection of values. Lazy functional languages add concepts such as 

evaluation of function parameters on need, which in turn form the basis for more 

speculative styles of problem solving based on e.g. infinite data structures. 

Haskell [HPW92] introduces classes and inheritance providing additional 

abstraction features almost similar to an objected style, with the limitation that 

binding is static and not dynamic as in an object oriented language. 

 

2.1  Pure Functional Programming 

Pure functional programming is a style of programming which consists 

entirely of the definition and application of functions [BW88, FH88, Wad92]. 

Unlike imperative languages there are no side-effects caused by the evaluation 

of expressions: the value of an expression is consequently independent of the 

context in which the expression occurs [Pey87]. 

The concept of referential transparency makes functional programs more 

applicable to rigorous, formal reasoning. Program transformations can more 

easily be performed on functional programs than an imperative one due to the 

absence of side-effects in functional programs. Furthermore, since functional 

programs are written in an equational style, it is possible to make the programs 

subject to proofs. 

In addition, functional programming languages offer a range of powerful 

concepts at a high level of abstraction which makes them good vehicles for 

system development in a formal setting: 

• A strong but flexible type system with static typing. 

• Type inference, i.e. the ability of the system to infer the most general type of 

a value. 

• Polymorphic functions and polymorphic data types. 

• User defined algebraic datatypes. 

• Powerful and predefined list type where lists can be defined using list 

comprehensions. 

• Higher order functions, i.e. functions as first class values that take other 

functions as parameters or return functions as values. 
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• Equational definition of functions using pattern matching. 

• User defined infix operators. 

• Automatic memory allocation and de-allocation (garbage collection). 

• And finally, a comprehensive set of predefined types and functions. 

Some of these features are also offered, in one form or another, by 

modern imperative or object oriented languages. However, functional 

programming languages typically have more refined syntax than other 

languages and provide powerful features for abstraction which leads to 

programs being easier to write resembles mathematics more closely than 

imperative ones. 

 Functional programs therefore tend to be much shorter than programs 

written in imperative languages, although of course there is no guarantee that 

this will actually be the case. 

Most functional languages are quite similar to each other. The major 

semantic distinction is the evaluation order of functions arguments which 

causes a classification of functional programming languages into two main 

categories. 

Call by value: Eagerly evaluated languages evaluate the arguments to a 

function before the function is called. Standard ML (SML for short) [MTH90, 

Pau96, Bos95], Lisp [Ste90] and OPAL [DFG+94] are all eagerly evaluated 

languages. 

Call by need: Lazily evaluated languages postpone the evaluation of an 

argument until its value is actually required in the body of a function. Clean 

[AP95], Miranda [Tur85], and Haskell [Hud2000, HPW92, PHA+, HPA+97, 

HPF97] are all lazily evaluated. 

 

3  Monads and Computations 

There have been several attempts [Gor92] over the last decades to extend 

a functional language with I/O and state, comprising approaches such as the 

direct style to I/O, streams, continuation passing style, global state and monads. 
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3.1  Monad 

Imperative functional programming has its theoretical foundation in the 

monadic style of representing side effecting computations. Using monads, one 

may define the meaning of control flow operators of imperative programming 

languages, in particular those related to abnormal flow of control such as 

exceptions and goto’s in a style that comes close to the continuation passing 

style used in specifying the formal semantics of imperative languages. Monads 

therefore bridge the gap between practical programming on one hand and 

formal specification technique on the other. The application area for monads 

does however go far beyond that of describing flow of control for sequential 

languages. 

A monad m a is an abstract data type m of computations delivering a 

value of type a. The monad is represented in terms of triple (m, return, >>=) 

defined by a type constructor m a and a pair of polymorphic functions: return is 

the computation for returning a value of type a whereas (>>=) takes the role of 

sequential composition. The operator (>>=) combines a computation of type m 

a with a continuation function of type a -> m b to achieve a computation of type 

m b. In a composition c>>=f, c is executed first and the resulting value v is then 

passed to the continuation function f. The resulting computation is denoted by 

the expression (f v). 

The type of two operators are defined as: 

return    ::   a -> m a 

                   ( >>= )  ::  m a -> ( a -> m b ) -> m b 

 

The monadic approach to I/O is based on structures from category theory 

[Wad90, Wad94, PW93], and can be used to represent computations. 

As an example, in Haskell, the type IO a  is a monad used for I/O. A 

computation of type IO a  is a computation that will perform some side effecting 

I/O operations behind the scene. The visible effect of the computation is to 

return a value of type a, or eventually, fail with an error. 
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Now consider two functions: function readNum for reading a natural 

number from input and function printNum for displaying the value of each 

expression entered into the interpreter : 

readNum  :: IO Int 

printNum  :: Int -> IO () 

 

And suppose we want to write a main program for reading a number from input 

and computing its factorial that will be written to standard output, as follows: 

main ::  IO () 

main =  readNum  >>=  \v  ->  printNum ( fac v ) 

 

We can write this main program with do notation. The do notation is 

actually shorthand for use of the monadic operators. Using do notation it will be 

possible to write imperative functional programs involving assignment 

statements, sequencing of actions and compound actions in a style that is very 

close to the way it is usually done in traditional imperative languages: 

main   ::  IO () 

main  =  do 

        v  <-  readLn 

        print  (fac v) 

 

The symbol (<- ) serves as a single assignment operator to accept patterns on 

the right hand side. 

 

       4   Functional Parsers 

G.Hutton and E.Meijer have provided a step-by-step tutorial on the 

monadic approach to building functional parsers and to explain some of the 

benefits that result from exploiting monads. Therefore we will use their papers 

to define a type for parsers, three primitive parsers, and two primitive 

combinators for building larger parsers. 
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4.1 The Type of Parsers 

At the first, we need to define a parser as a function, which takes a string 

of characters as input and yields some kind of syntax tree as result: 

   

 

 

 

 

Since, a parser might not consume all of its input string, we must return 

the unconsumed suffix of the input string too. We know also that a parser might 

fail on its input and some times the parsers are ambiguous i.e. they can 

produce more than one tree for one input string. Thus, the result of a parser 

must be a list of consumed and unconsumed of the input string: 

type Parser a = String -> [ ( a  , String ) ] 

 

As an example, we consider a parser that is defined with the grammatical 

structure to recognize a list of x and is an ambiguous grammar: 

P -> P x P  |  ε      =>    L(P) = { ε, x, xx, … } 

 

This parser can be defined as a functional parser with the type of our 

defined parser. If for example, we give difference strings to this parser then a 

list of consumed and unconsumed of input string will be as follows: 

 input  : “xx”    =>    output : [(Tree1 ”xx” , “” ), (Tree2 “xx” , “”)] 

       where:  

           Tree1”xx” :   P -> PxP -> xP -> xPxP -> xxP -> xx 

           Tree2”xx” :   P -> PxP -> PxPxP -> xPxP -> xxP -> xx 

 input  : “xy”    =>    output : [(Tree1”x”,”y”)] 

       where:  

Argument 

a 

Result   

tree 

 

tree = parser (a) 
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           Tree1”x” :    P -> PxP -> xP -> x 

 

This type of parser is used in paper of Hutton and Meijer to define a 

functional parser. 

 

4.1.1 Primitive Parsers 

Now we know how the type of our parser is. But we must declare some 

functions to have different parser combinators. The first primitive parser is 

result v that takes an input string inp and returns the list [(v,inp)]. It succeeds 

without consuming any of the input string, and returns the single result v : 

result   ::  a -> Parser a 

result v = \ inp -> [ ( v , inp ) ] 

 

We can compare this parser with the grammatical structure: 

P -> ε 

 

The second primitive parser is zero that always fails, regardless of the 

input string : 

zero :: Parser a 

zero = \ inp -> [] 

 

That means, for every input string, the result of zero is an empty list. 

The final primitive parser is item, which successfully consumes the first 

character if the input string is non-empty, and fails otherwise: 

item :: Parser Char 

item = \ inp -> case inp of  

                           []       ->  [] 

                          (x:xs) ->  [(x,xs)]  
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As an example, if the string “aab” is an input for the defined parser, then 

parser item will return [(‘a’,”ab”)] as result and parser result will have another 

list [(“”,”aab”)] , but parser zero fails. 

 

4.1.2 Parser Combinators 

The three primitive parsers are not very useful in themselves. Thus Hutton 

and Meijer decided to use some operators, like to sequence and choice, to 

combine parsers. 

 

4.1.2.1 Sequence  

In non-monadic accounts of combinators, sequencing of parsers was 

usually captured by a combinator, when it applies one parser after another 

parser, with the results from the two parsers being combined as pairs: 

 seq          :: Parser a -> Parser b -> Parser (a,b) 

 p `seq` q  = \ inp -> [ ((v,w),inp’’)   |   (v,inp’)  <- p inp  

                                                       ,   (w,inp’’) <- q inp’ ] 

 

The right hand side of sign |  means: if parser p takes input string inp, then 

the consumed input as a tree together with the unconsumed input string will be 

return in a list of pair. Each pair is declared as (v,inp’). After that, parser q takes 

inp’ as input and returns a list of pair with the consumed part of inp’ as a tree 

and unconsumed part of inp’. One element of this list is (w,inp”). Finally, 

combinator seq returns a combination between two results value v , w that is a 

list of [((v,w) , inp”)]. 

 

But, in practice, using seq leads to parsers with nested tuples as results, 

which are messy to manipulate. 

The problem of nested tuples can be avoided by adopting a monadic 

sequencing combinator bind, which integrates the sequencing of parsers with 

the processing of their result value: 
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bind        :: Parser a -> (a -> Parser b) -> Parser b 

p `bind` f = \inp -> concat [ f v inp’  |  (v,inp’) <- p inp ]  

 

Combinator bind defined above has two inputs, a parser and a parser 

abstraction. First of all, the parser p applies to the input string and gives a result 

that is a list of (value, string) pairs [section 4.1]. Now function f applies to all of 

the values and returns a parser. The new parser is a list of concatenated lists. 

Since the result of a parser is available for processing by the next parser, 

the bind combinator avoids the problem of nested tuples of results. 

For example, the seq combinator can be defined by: 

seq :: Parser a -> Parser b -> Parser (a,b) 

p  `seq`  q  =  p  `bind`  \x  -> 

                     q  `bind`  \y  ->    

                     result (x,y)  

 

That means: apply parser p and denote its result value x, then apply 

parser q and denote its result value y, and finally combine all the result into a 

single value by applying function seq. ( But,in practice bind can not be defined 

in terms of seq.) 

And in grammatical structure, if for example we declare a list of a that 

followed with a list of b : 

S  -> P Q 

P  -> a P  |  ε 

Q  -> b Q  |  ε 

 

The result of parser S will be a concatenation of two lists. Thus for an input 

string like to “aab”, the parser will return a concatenation between strings of two 

lists that is [((“a”,””),”ab”),((“aa”,”b”),””), ((“aa”,””),”b”), ((““,””),”aab”)]. 

With bind combinator, we can define some different and useful parsers. 

As an example we define a combinator sat that takes a Boolean valued function 

as a predicate and yields a parser that consumes a single character if it satisfies 
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the predicate and fails otherwise. For this approach we use our simple parsers: 

parser item, that consumes a single character unconditionally and parser zero 

that is defined for returning an empty list, when parser fails: 

sat    ::  (Char -> Bool)  -> Parser Char 

sat p =  item  `bind`  \x  ->  if p x  then  result x 

                                                    else  zero 

 

In this declarated combinator, if the input string is empty or first letter of 

input is not a character, then parser item fails by zero, otherwise, it will return a 

list of value and unconsumed string by result. 

Using sat, we can define parsers for specific characters, single digits, 

lower-case letters and upper-case letters: 

char     ::  Char  ->  Parser  Char 

char x  =  sat ( \y  ->  x == y ) 

 

digit  ::  Parser  Char 

digit  =  sat ( \x  -> ‘0’ <=  &&  x <= ‘9’ ) 

 

lower  ::  Parser  Char 

lower  =  sat ( \x  -> ‘a’ <= x  &&  x <= ‘z’ ) 

        

upper  ::  Parser Char 

upper  =  sat ( \x -> ‘A’ <= x  &&  x<= ‘Z’ ) 

 

For example, we can use bind combinator to return a string with two 

characters:  

lower  `bind`  \x  ->  

lower  `bind`  \y  -> 

result [ x,y ] 
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Applying this parser to the string “abcd” succeeds with the result [(“ab” , 

“cd”)] but it fails with the result [ ] when “aBcd” is the input, because the second 

letter ‘B’ can not be consumed by the second lower parser. 

Since the length of the string to be parsed can not be predicted, in general 

we will need a recursive parser. We know every recursive function must be 

terminated, thus a choice operator will help us to decide between parsing a 

single letter and recursing, or parsing nothing further and terminating. 

 

4.1.2.2  Choice 

A suitable choice combinator for parsers is defined as plus: 

plus          ::  Parser a  -> Parser a  -> Parser a 

p `plus` q  =  \inp  ->  ( p  inp  ++  q  inp ) 

 

Combinator plus takes two parsers as input that both of them apply to the 

same input string. Each parser p or q has a list as result that will be 

concatenated to form a single result list. But there is a problem, if the first parser 

accepts the input string then the second parser will be applied to the same 

input, even though it is guaranteed to fail. That means, we need an extra run-

time for processing the second parser. While, if the first parser succeeds on the 

input string, we have the result and combinator must be terminated. Because of 

that, we define a new choice (+++) which terminates with the first success: 

(+++)      ::  Parser a  -> Parser a  -> Parser a 

p +++ q  =  first (p `plus` q) 

first         ::  Parser a  -> Parser a 

first p      = \inp   -> case  p inp  of 

                                     []       ->  [] 

                                    (x:xs) ->  [x] 
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The parser first p returns only the first result (if any). That means, using 

first we have defined a deterministic version (+++) of the standard choice 

combinator  for parsers. 

As an example, if parser P recognizes a list of character ‘a’ and parser Q 

recognizes a list of character ‘b’, we can combine parser P and Q to define a 

new parser that returns a list of ‘a’ or a list of ‘b’ : 

S  ->  P  |  Q      =>    s = p `plus` q 

P  ->  a P  |  a    =>    p = ((char ‘a’)  `seq`  p)  `plus` ( char ‘a’) 

Q  ->  b Q  |  b   =>    q = ((char ‘b’ )  ‘seq’  q) `plus` ( char ‘b’) 

 

Now we can combine our earlier defined parsers and combinators to 

define larger parsers. As an example, a parser that accepts letter and 

recognizes a word (strings of letters):  

letter  ::  Parser  Char 

letter  =  lower  `plus`  upper 

 

word  ::  Parser  String 

word  =  neWord  `plus`  result “” 

                where 

                         neWord = letter  `bind`  \x   -> 

                                         word  `bind`  \xs -> 

                                         result ( x : xs ) 

 

4.1.3  Parsers and Monads 

We have seen in section 3.1that a monad is a type constructor with two 

operations return and >>= . And we have said in section 4.1 that functional 

parsers have a Parser type constructor. Thus, parsers form a monad.  

Hutton and Meijer have compared a parser with the monad type 

constructor. Thus, the following operations can be introduced for the parser type 

constructor (they have used operation result as operation return and operation 

bind as operation >>= ): 



 16

result  ::  a  -> Parser a 

bind    :: Parser  a  -> ( a -> Parser b )  -> Parser b  

 

With this definition, we can say, our defined parser is a monadic parser. 

 

5  Lexical analyzer 

Traditionally, first every input string will be passed through a lexical 

analyser (scanner) that breaks the string into a sequence of tokens. And after 

that, it will be parsed by a syntax analyser (parser). 

Spaces, newlines, tabs and comments will be removed by scanner and 

identifiers and also keywords will be distinguished. But using parser 

combinators, we don’t need a separate scanner. Only with writing some 

combinators, we can add a scanner within the main parser. 

 

6  Conclusions 

Now, with the primitive parsers and combining the primitive combinators, 

we can write a lager parser to recognize every input string. But, what is the 

advantages and imitations in the monadic parser combinators: 

 

 

6.1  Imitations 

An important restriction on most existing combinator parser is that they are 

unable to deal with left-recursion [LM2001]. But in practice, grammars are often 

left-recursive. Fortunately, every left-recursive grammar can be written into a 

right-recursive one. 

In practice, a parser combinator refers a list of successes as result, since 

the parser combinator protects ambiguous grammars. It doesn’t matter whether 
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that the list contains zero, one or many elements. They are all valid answers. 

But it makes it hard to give a good error message.  

That means, another problem is error-reporting. A good parser’s error 

message contains the position of the error in the input and also the cause of the 

error. Beside error reporting, the parser might try to correct the error. But 

unfortunately, current parser combinators (nondeterministic) are not very good 

at reporting errors. However, even when we restrict ourselves to non-

ambiguous grammars, it is hard to report an error since the parsers can always 

look arbitrary far ahead in the input (they are LL(∞)) and it becomes hard to 

decide what the error message should be.  

Because of that, Leijen and Meijer in Parsec [LM2001] restricted 

themselves to deterministic predictive parsers with limited lookahead, for 

example LL(1) parser ( but, most grammars are not LL(1) and even require 

arbitrary lookahead).  

They consider that a parser has either Consumed input or returns a value 

without consuming input (Empty). The return value is either a single result and 

the remaining input (Ok a String), or a parse error (Error). Thus, they have 

defined a new parser type constructor with error message, as follows: 

type Parser  a  =  String  -> Consumes a 

data Consumed  a  =  Consumed (Reply  a)  |   Empty (Reply a) 

data Reply  a  =  Ok a String  |  Error 

 

For example, the first primitive parser result that has been defined in 

section 4.1.1 can be written with this method: 

result  v  =  \inp -> Empty (Ok  v  inp) 

 

The result succeeds immediately without consuming any input string, hence it 

returns the Empty alternative. 
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6.2  Advantages 

So far we have seen one advantage of recognising the monadic nature of 

parsers: the monadic sequencing combinator bind handles better than the 

traditional sequencing combinator seq.  

Another advantage of the monadic approach, namely that monad 

comprehension syntax can be used to make parsers more compact and easier 

to read. For example, earlier we have defined a sat combinator as follows: 

sat      ::  (Char -> Bool) -> Parser Char 

sat   p = item  `bind`  \x  -> 

               If  p  x  then  result  x  else  zero 

 

Gofer [Jon94] provides a special notation for defining parsers of this 

shape, allowing them to be expressed in the following, more appealing form: 

sat     ::  (Char -> Bool)  ->  Parser Char 

sat  p =  [x  |   x <- item , p  x] 

 

In fact, this notation is not specific to parsers, but can be used with any 

monad [Jon95]. There is another notation that can be used to make monadic 

programs easier to read. This notation is defined in [JSL94] and is named as do 

notation:  

sat      ::  (Char -> Bool)  ->  Parser Char 

sat  p  =  do  {  x <- item  ;  if (p x)  ;  result x  } 
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7  A Simple Parser 

To illustrate the monadic parser combinators, we write a simple parser to 

define a language as follows: 

L(S) = { a n b n c n  |  n є Z  } 

That means, this language can accept only a list of three characters a, b and c, 

when the number of these characters are equal and when they have a 

sequential relationship between themselves. A simple context-free grammatical 

structure of this language can be written as follows: 

           S -> A B C 

           A -> a A    |  ε 

           B -> b B    |  ε 

           C -> c C    |  ε 

 

To write a monadic parser, we must use our defined type parser and 

primitive parsers, which are defined in section 4. 

Since this language needs to recognize three charactes a, b and c , 

combinator sat and char will help us to complete one part of program. 

sat            :: (Char -> Bool)  ->  Parser Char 

sat    p     =  item  `bind`   \x -> 

                         if  p x  then  result x  else  zero 

char         :: Char       ->  Parser Char 

char   x      =  sat ( \y   ->  x == y )   

 

To define the number of characters in the input string we need a recursive 

function. Function count takes a parser, applies it n times and returns the 

parser result as output :     

count          :: Parser a -> Parser Int 

count   p     = ( p          `bind`    \_   -> 

                       count  p `bind`   \n   -> 

                                                 result (n+1) )  `plus`  (result 0) 
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If the input string of parser p has no character, then the output of count will be 

result 0, but if it has n character, the output will be parser result  n. 

Now we must define our grammatical structure as a function. Function s is 

written for grammatical structure of nonterminal S. The output of this function is 

True, when the number of three character equal is i.e. na=nb=nc  : 

s        ::  Parser Bool 

s        =  count (char 'a')   `bind`   \na   -> 

              count (char 'b')   `bind`   \nb   -> 

              count (char 'c')   `bind`   \nc   -> 

                                                     result ((na==nb) && (na==nc)) 

 

We can define a function to check the input string with the defined 

language (function startParser): 

 startParser             :: Parser a   ->  String  ->  Maybe a 

startParser  p  str   =  find (p  str) 

         where    find  []                = Nothing 

                      find  ((r , "") : _ ) = Just r 

                     find   (( _ : res))  = find  res  

 

Function find will take the result of parser p (that is a list) to check the situation 

of the list. If the result of p is an empty list, this means that the input string is not 

a member of the language (Nothing). But if the list is non-empty, the input 

string can be produced by grammar, but either the number of characters a, b 

and c are equal (Just True) or are not equal (Just False). 

The results of simple defined parser for difference inputs are : 

Input :     “”               =>      output :    Just  True 

Input :     “ab”           =>      output :    Just  False 

Input :     “aabbcc”    =>      output :    Just  True 

Input :     “abbcca”    =>      output :    Nothing 

 

 

To show the difference between monadic and non-monadic combinators 

sequence that is defined in section 4.1.2.1.  We change the function count to 

produce parser result that returns a list of characters (count2): 
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                  count2      ::  Parser Char  ->  Parser String 

                  count2  p  = (p                `bind`   \c  -> 

        count2   p   `bind`   \cs  -> 

                                       result (c:cs))  `plus`  (result"") 

 

Now we try to write two difference function for nonterminal S with monadic 

sequence bind and non-monadic sequence seq (section 4.1.2.1):  

s1    ::   Parser String 

s1   =   ( count2 (char  'a'))  `bind`   \na -> 

           ( count2 (char  'b'))  `bind`   \nb ->     

          ( count2 (char  'c') ) `bind`   \nc  -> 

                                                      result(na++nb++nc) 

 

 

s2    ::  Parser ((String,String ), String) 

s2   =  (count2 (char  'a'))  `seq` 

          (count2 (char  'b'))  `seq` 

         (count2 (char  'c')) 

 

 

The results of the two parser functions s1 and s2 with different input 

string will show us the problem of nested-tuples: 

Input : “”      => output  (s1) :  [("","")]          

 

Input : “”      => output  (s2) :  [((("",""),""),"")]                                         

 

Input : “ab”  => output  (s1) :  [("ab",""),("a","b"),("","ab")] 

 

Input : “ab”  => output  (s2) :           

    [((("a","b"),""),""),((("a",""),""),"b"),((("",""),""),"ab")]   

 

Input : “aabbcc” =>  output (s1) :   

    [("aabbcc",""),("aabbc","c"),("aabb","cc"),("aab","bcc"),("aa","bbcc"),("a"," 

    abbcc"),("","aabbcc")]    
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Input : “aabbcc” =>  output (s2) :   

     [((("aa","bb"),"cc"),""),((("aa","bb"),"c"),"c"),((("aa","bb"),""),"cc"),(((" 

     aa","b"),""),"bcc"),((("aa",""),""),"bbcc"),((("a",""),""),"abbcc"),((("","") 

     ,""),"aabbcc")]     

 

Input : “abbcca” =>  output (s1) :  

     [("abbcc","a"),("abbc","ca"),("abb","cca"),("ab","bcca"),("a","bbcca"),("","a 

     bbcca")]    

 

Input : “abbcca” =>  output (s2) :  

     [((("a","bb"),"cc"),"a"),((("a","bb"),"c"),"ca"),((("a","bb"),""),"cca"),(((" 

     a","b"),""),"bcca"),((("a",""),""),"bbcca"),((("",""),""),"abbcca")]     

 

 

This shows that the result of non-monadic style parser is more difficult to 

process due to the nested tuple structure. 
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