
Extending an Eclipse-Plugin
for Curry by Features for

Program Analysis,
Type-Checking
and Debugging

Lennart Spitzner

Master’s Thesis
submitted in March 2014

Christian-Albrechts-Universität zu Kiel
Institut für Informatik

Arbeitsgruppe für Programmiersprachen und Übersetzerkonstruktion

Advised by: Prof. Dr. Michael Hanus

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

Abstract

This work is a continuation of the work of Marian Palkus on an Integrated Devel-
opment Environment (IDE) for the declarative programming language Curry.

The existing IDE was extended by adding features that provide the Curry pro-
grammer with more and better direct feedback about the validity of his or her
source-code. This includes the capabilities to annotate compile-time errors in the
source-code and to detect and display a large portion of type errors without even
invoking the Curry interpreter. The Curry Analysis Server System (CASS) is a
flexible tool for analyzing declarative programs. Access to this tool from the IDE
had already been planned and partially implemented; This work advances on that
and provides a functional, albeit simple, user interface for CASS in the IDE.

Another focus was the integration of debugging facilities into the IDE. There exist
several approaches to debugging declarative languages with needed narrowing such
as Curry. For the IDE, we implement observational debugging, where the user
can choose expressions to observe at run-time. To allow future extensions of this
functionality, a generic interface for expression debuggers was added.

4

Contents

1 Introduction 9

1.1 Motivation . 9

1.1.1 Curry . 10

1.1.2 Basis: Thesis by Marian Palkus 10

1.2 Similar Software . 11

1.3 Goals . 11

2 Foundations and Technologies 13

2.1 Curry . 13

2.1.1 Basic Structure of Curry Programs 13

2.1.2 Logical Aspects of Curry . 15

2.1.3 Ecosystem for Curry . 16

2.1.4 Debugging in Curry . 17

2.2 Eclipse IDE . 18

2.2.1 Source Files, Projects and Workspaces 18

2.2.2 More Terminology: Projects, Plugins, and Features 19

2.2.3 Plugin Details and Extension Points 20

2.2.4 User-Interface Concepts . 23

2.2.5 Building and Launching . 24

2.3 Xtext . 25

2.3.1 Static Structure of an Xtext Project 26

2.3.2 Generation Workflow . 26

2.3.3 Google Guice . 27

2.3.4 The Xtext Grammar File . 29

2.4 CASS . 30

2.5 COOSy . 31

2.6 Scala . 32

5

Contents

3 Old and New Features 35

3.1 Existing Features . 35

3.1.1 Basic IDE features . 35

3.1.2 Syntax Checking . 36

3.1.3 Linking and Scoping . 37

3.1.4 GUI elements . 37

3.1.5 Curry Analysis . 38

3.2 New Features . 39

3.2.1 Curry Analysis . 39

3.2.2 Curry Console and Error Annotations 40

3.2.3 Typechecking/Typeinference 41

3.2.4 Debugging . 42

4 Implementation 45

4.1 Structure of the Project . 45

4.2 The Analysis View . 46

4.3 The Curry Console and Error Marking 47

4.4 Type Checking . 50

4.4.1 The Type Cache . 51

4.4.2 Type Cache Data Structure . 53

4.4.3 Control Flow and Code Structure of the Type Checking . . . 54

4.4.4 The Type Inference Implementation 56

4.5 Debugging . 68

4.5.1 Basic Process of the Debugging in the IDE 69

4.5.2 Additional Potential Issues and Design Decisions 70

4.5.3 Code Structure and Control Flow for Debugging 71

4.5.4 The Expression Debugger Interface 72

4.5.5 Expression Debugger Implementations 78

4.6 Overview of Changes . 81

4.6.1 The Project’s Structure . 81

4.6.2 Other Changes not mentioned yet 82

6

Contents

5 Experiences 87

5.1 Scala . 87

5.1.1 Interaction between Scala and Xtext 87

5.1.2 Interaction between Scala and Java 89

5.1.3 Interaction between Scala and Eclipse 91

5.1.4 General Observations about Scala 91

5.2 Eclipse and Xtext . 92

5.3 Guice Dependency Injection Framework 95

5.4 Miscellaneous Hints for Future Developers 96

6 Known Problems and Future Work 99

6.1 Functional Deficiencies and Bugs . 99

6.1.1 The Curry Grammar . 99

6.1.2 Syntax Error-Messages . 99

6.1.3 The Modified Token Stream . 100

6.1.4 Typechecking . 100

6.2 User Interface . 101

6.2.1 Curry Analysis View . 101

6.2.2 The Explorer . 102

6.2.3 Interoperability with other languages 102

6.3 Testing . 102

6.4 Future Work . 102

6.4.1 Better Usability for CASS . 102

6.4.2 Integration of the Debugging Module in the IDE’s Feature . . 103

6.4.3 Ideas for New Debuggers . 103

7 Conclusion 105

Bibliography 107

A Glossary/Definitions 111

7

Contents

B Framework and Library Versions 113

B.1 Eclipse and its Plugins . 113

B.2 Curry Compilers and Tools . 113

B.3 Miscellaneous . 113

C User Guide 115

C.1 Plugin Installation and Basic Setup . 115

C.2 Creating a Hello-World-Curry-Project 116

C.3 Launching a Project . 116

C.4 Typechecking and Analyses . 117

C.5 Using the Debuggers . 118

C.5.1 Traces . 119

C.5.2 Observations . 119

D Plugin Development Guide 121

D.1 Setting up the Eclipse IDE . 121

D.2 Opening the Curry IDE Projects . 122

D.3 Building the Curry IDE . 122

D.4 Running the Curry IDE directly . 123

D.5 Deploying the Curry IDE . 123

E Project Structure 125

E.1 project de.kiel.uni.informatik.ps.curry.CurryIDE 125

E.2 project de.kiel.uni.informatik.ps.curry.CurryIDE.ui 126

E.3 project
de.kiel.uni.informatik.ps.curry.CurryIDE.uinonxtext 126

F The Debugging Code Curry Implementation 129

G A Curry Module containing Test Cases for Type Errors 131

8

Chapter 1

Introduction

1.1 Motivation

Multiple criteria must be met to make a programming language successful. The
most obvious one is of course the language itself: It must be consistent, must
not be too complex and it must not be too far from familiar grounds as to be
understandable to new programmers. Yet it also needs to add something new
and worthwhile in comparison to existing languages, for otherwise the effort of
switching to a new language would be too large.

The declarative programming language Curry is an effort to combine two grand
classes of programming languages:

Ź functional programming languages, represented by Haskell, providing a high-
level style of programming and a strong static type system that enforces that all
functions are pure, i.e. free of side-effects.

Ź logical programming languages, represented by Prolog, featuring a declarative
approach, where a program consists of a series of logical rules, and the execution
is a query containing free variables. The language then searches for possible
assignments of these variables that can be deduced from the rules.

Another criterion for the success of a language is the amount of existing code in
the language and of features already implemented. Does the language have a
standard library containing common functionality, and frameworks that provide
generic solutions to specific types of problems? If such basics were to be missing,
the workload of the application programmer increases significantly. Also, there is
the risk that multiple implementations of such basics are produced instead, non of
which feature-complete or properly maintained.

But what is the meaning of “success” for a language? The main metric would
be usage: How much code is being produced in the language. So the ease of

9

Chapter 1. Introduction

producing new code is detrimental for the success, and this is what this work
belongs to: the tooling support that enables the programmer to write, analyze and
debug code.

Integrated Development Environments (IDEs) are one main part of modern software
development. Compared to a simple text editor they add programming (and
programming language) specific functionality to provide centralized access to the
tools provided with the programming language and to give the programmer fast
feedback about the static validity of his code. For example, one basic feature of and
IDE is syntax checking of source-code without invoking an interpreter or compiler.
This way, the programmer can quickly detect a large part of possible compilation
errors.

1.1.1 Curry

Curry is a general purpose functional logic programming language, i.e. it aims to
combine both the functional and the logical programming paradigms. It is based
(especially for the functional aspects) on the programming language Haskell: Both
Curry’s syntax and its type system are only slight modifications of Haskell’s. Curry
is strongly statically typed and features type inference to automatically derive types.
From logic programming, Curry inherits non-deterministic operations, constraint
programming and logical variables. The evaluation strategy employed by Curry is
needed narrowing that corresponds to Haskell’s lazy evaluation extended to the logical
aspects of Curry. Curry is standardized in the Curry Report [Mic12] (sometimes
shortened to just “report”).

We will describe the language and its ecosystem in more detail in Section 2.1.

1.1.2 Basis: Thesis by Marian Palkus

This work is based on the work of Marian Palkus, who produced a plugin for
the Eclipse IDE as his diploma thesis [Pal12]. This plugin, shortly named Curry
IDE, uses the language framework Xtext to add Curry-specific features to the basic
Eclipse IDE. These features include syntax highlighting, syntax checking and the
ability to define library settings. Xtext also supports a certain class of semantic
checking: cross-referencing of the objects in the source code; this was implemented
as well.

10

1.2. Similar Software

We will use the phrase “Palkus IDE” to refer to our predecessor’s final version of
the IDE, in contrast to any features that were added to the IDE as part of this thesis.

1.2 Similar Software

Emacs is a general purpose extensible editor that can be used for program de-
velopment. For this editor there exists an extension (called mode) that provides
Curry-specific features, most notably syntax highlighting and the ability to search
for the declaration of any objects in the current module. It is also possible to open
a system shell in Emacs and run the compiler in that; hence after making edits, the
programmer can, with a few keystrokes, switch to the console and recompile the
program.

For Haskell, many different IDEs exist. For several editors (Vim, Emacs, KDevelop)
there are extensions providing language-specific syntax highlighting; KDevelop
also features certain project management options. Leksah is an IDE specifically for
Haskell (and written in Haskell) that incorporates several more advanced features
including debugging support, continuous recompilation, and type checking for
sections of code.

There also exists an Eclipse plugin for Haskell: EclipseFP supports syntax and
error/warning highlighting, import management, test support and the integration
of several external tools (compiler, debugger, static style checker).

1.3 Goals

In general terms, the goal of this thesis is to improve the functionality of the
Curry IDE, both by fixing/finishing the existing setup and by adding certain new
features. The external static program analysis tool CASS had been integrated into
the Palkus IDE, but this work had not been completed because CASS still had been
in development at the time. So a first task was to complete this work and make
CASS accessible from within the IDE.

A second goal is to add better feedback to the Curry programmer about the validity
of the source-code. Currently, the IDE checks and displays only the syntactic
validity. This can be improved by taking advantage of Curry’s static type system:
Type errors should be detected and annotated in the IDE. The IDE is not a complete
Curry compiler and certain semantic compile-time errors will not be detected.

11

Chapter 1. Introduction

Hence, in addition to type-checking, the IDE should be able to parse the output of
the Curry compiler and annotate the errors in the editor.

Finally, we would like to include debugging functionality in the IDE. We will
describe possible approaches to debugging in functional logic languages in the
next chapter. Our goal is to add support for observational debugging to the IDE, i.e.
the ability to trace the evaluation (and optionally, the resulting value) of specific
expressions in the program at run-time.

12

Chapter 2

Foundations and Technologies

2.1 Curry

2.1.1 Basic Structure of Curry Programs

The structure and syntax of Curry programs is for the most part equivalent to
Haskell’s. A program consists of one more modules. Each module is defined in
a separate file and has an identifier that corresponds to its position in the file
system, e.g. a module Data.List would be defined in the file “Data/List.curry”.
Thus, modules are structured as a tree. The modules can import other modules in
order to make their elements accessible. As its core, a module contains a list with1:

Ź type synonyms such as
type String = [Char] - read: a List of Characters is called “String”

Ź data declarations:

data Tree a = Leaf a -- a Tree over a type a is either a leaf,

| Node (Tree a) a (Tree a) -- or a binary node

-- with two sub-nodes.

Ź function declarations:
plusOne = (+) 1

The definition of a function consists of an optional type-signature plus one or more
equations. We could, for example, add a type signature to the function above:

-- type-signature:

plusOne :: Int -> Int -- plusOne takes an integer as parameter

-- and returns an integer.

1technically, this enumeration misses fixity declarations which were omitted for brevity.

13

Chapter 2. Foundations and Technologies

-- exactly one equation (in this case):

plusOne = (+) 1 -- We partially apply the (+) operator.

-- (+) :: Int -> Int -> Int

-- That is, providing the first parameter yields

-- the remaining type Int -> Int

Equations have a left- and a right-hand-side, e.g.

plusOne︸ ︷︷ ︸
left-hand-side

= (+) 1︸ ︷︷ ︸
right-hand-side

By using pattern matching, we can return different expressions depending on the
parameters of the function:

sumTree :: Tree Int -> Int -- Take a tree with Int as value

-- and return an Int.

sumTree (Leaf x) = x

sumTree (Node left x right) = (sumTree left) + x + (sumTree right)

Guard-expressions can be used to add further limit which equations will be used:

abs x | x<0 = -x

| x>=0 = x

The right-hand-side of an equation can contain several different syntactical con-
structs. The most important are:

Ź if-then-else:
if x==0 then "x is zero" else "x is non-zero"

Ź pattern-matching:

case x of

(Leaf _) -> "x is a leaf-node"

(Node _ _ _) -> "x has child-nodes"

Ź local variable bindings using let:
let x = 3 in x*x -- will evaluate to 9

Ź and the do-notation that is used for expressing side-effects (in the IO-Monad):

do

name <- getLine

putStrLn ("your name is: " ++ name)

14

2.1. Curry

One important property of the grammar is that the indentation of source-code
determines its structure. For example, for the do-notation, any statement that would
start at the same indentation as name <- getLine would belong to the do-block

2.1.2 Logical Aspects of Curry

The first important difference to Haskell is that operations can be non-deterministic,
i.e. they can return multiple results (or none). For example, the ? operator
non-deterministically returns one of its parameters; it could be defined as:

(?) :: a -> a -> a

x ? _ = x -- first equation
_ ? y = y -- second equation

In Haskell, the first equation would always be used, because it does not contain
any restrictions on its parameters. Therefore the second would never be used and
thus would be superfluous. But in Curry, both equations can return a result.

Using this operator, we can for example define

coin = 0 ? 1

which would evaluate non-deterministically to both 0 and 1.

In non-logical functional languages, functions have a clearly defined direction
of information: You cannot use the return value of a function unless you have
provided actual values for its parameters. This means for example that you can
not express the question “given a value v, what parameter do I have to provide to
the given function f so that f i = v?” in Haskell code. Logical variables remove this
restriction: It is possible to name, and consequently use, unknown values. In Curry
we could write:

answer | f i =:= v = i where i free

As this definition might be strange to parse for anyone not familiar in Curry,
Figure 2.1 describes the structure and semantics.

answer | f i =:= v = i where i free

answer, provided that: f (i) evaluates to the same is i. (we need to label
ground data term as v free variables a such.)

Figure 2.1. A semantic translation of the code for answer

15

Chapter 2. Foundations and Technologies

=:= is an operator of type a -> a -> Success that defines an equality constraint. The
difference to the equality operator == is, that the parameters may contain unbound,
free variables. The type Success represents no real values, but expresses the result
of constraints.

As a more concrete example, we can retrieve possible values of free variables by
just stating the constraint at the Curry command-line. When we enter

[1, 2] ++ xs =:= [1, 2, 3, 4] where xs free

the system will bind xs to [3, 4].

2.1.3 Ecosystem for Curry

There exist multiple different compilers for Curry, the main ones are:

Ź PAKCS [web:pakcs]: the Portland Aachen Kiel Curry System, targeting the logic
language Prolog,

Ź KiCS2 [web:kics2]: Kiel Curry System 2, targeting Haskell,

Ź mcc [web:mcc]: the Münster Curry Compiler, targeting C.

See [web:curryimpls] for a more complete listing of implementations. For this
project, we restrict the support to the first two compilers, KiCS2 and PAKCS. These
two provide the same additional tooling that is used by the Curry IDE, namely the
Curry Analysis Server System (CASS) [HS14] and the Curry Object Observation System
(COOSy) [Bra+04]. The former provides static analyses about Curry programs and
is, in the IDE, both made available to the user and used directly to retrieve type
information. The latter is a debugging tool which can be accessed from the IDE as
well.

Just like in Haskell, Curry has a standard module called “Prelude” which is
imported by default even without a corresponding import statement. In addition to
that module, both compilers provide a number of libraries. In this context, we call a
module a library, if it provides common functionality or utilities for some topic and
if it is usable in different applications. Example libraries are the List module, which
contains some useful operations on lists, or the Socket module, which contains
methods for network programming. A few libraries contain compiler-specific
implementations and are only available for one compiler, but most are, with the
same interface, available in both compilers.

16

2.1. Curry

2.1.4 Debugging in Curry

The Eclipse IDE was initially created for Java, and the core concepts for debugging
in the IDE are aimed at imperative languages as a consequence. But, as Bernard
James Pope put it:

The traditional debugging technique of examining the program execu-
tion step-by-step, popular with imperative languages, is less suitable for
Haskell because its unorthodox evaluation strategy is difficult to relate
to the structure of the original program source code. [Pop06]

Which is also true for Curry, having a similar evaluation strategy with lazyness.
For this reason, declarative languages use a different approach, called algorithmic
debugging or declarative debugging. The core concept of this type of debugging is to
log the flow of execution at run-time, allowing the programmer to observe which
sub-expressions were evaluated or what value they evaluated to. The generated
data is called execution tree. The amount of data can be rather large, and to isolate
a problem, it is common that the debugger asks the programmer, who is called
the “oracle” a series of questions about specific computations and their result, for
example allowing the programmer to state “this result is correct”, “this result is
wrong” or “I do not know”. [CS09]

For Curry, the compiler kics (not kics2) has integrated such a debugger, called Believe
in Oracles.

A slightly different approach is represented by the Curry Object Observation System,
which uses the same approach as the tool HOOD for Haskell [web:hood]: the
programmer can select specific expressions in the source code (by inserting an
observe function call). The evaluation of the expression and its sub-expressions is
logged, so that the exact steps (what parts of the expression were evaluated, and to
what values), can be seen afterwards.

It is also possible to use more basic ways of debugging in Curry: For example,
the function trace from the library Unsafe can be used to print something as a
side-effect whenever a certain expression is evaluated. In imperative programming,
this approach might be called “printf-debugging”.

17

Chapter 2. Foundations and Technologies

2.2 Eclipse IDE

Eclipse is an integrated development environment (IDE) written in Java. It was
originally developed by IBM, became open source in 2001, and is being controlled
by the independent Eclipse Foundation since 2004 [web:eclwiki]. While initially
being developed as an IDE for Java, it is now designed in a modular fashion
that allows the underlying system to not only be used for different languages,
but also for non-IDE software. Main example for the latter is IBM Notes 8 and
9, which provides business collaboration functionality (email, calendars, contact
management).

The core concept that allow Eclipse’s flexibility are components. For Eclipse, these
building blocks are often called plugins; applications consist of a number of compo-
nents. Components can depend on, and consequently access, other components.
To allow continuous upgrade of software, components have specific versions.

For the Eclipse IDE, the contained components can be roughly partitioned into a
few groups. At the base stands the Eclipse Rich Client Platform (Eclipse RCP), which
is based on the Java Runtime Environment and provides application-independent
functionality, e.g. the graphical user-interface toolkit swt. Also, Eclipse RCP
contains an implementation of the OSGi framework specification [web:osgi], which
manages the composition and interaction of different plugins.

On top of Eclipse RCP, the IDE Platform contains the plugins that form the language-
independent base for the IDE the term Eclipse commonly refers to. Furthermore,
the Eclipse SDK contains a wide variety of tools used by different plugins. [ML05,
p. 3-25]

2.2.1 Source Files, Projects and Workspaces

On a basic level, a project is a directory on the file-system that contains source files
(for some arbitrary language) and/or configurations (such as xml files). As such,
projects are a means to provide structure to elements that implement a certain
functionality. Example projects would be a Java application, that consists of a tree
of classes, one of which is the main class of the executable; or a feature project,
which is a project containing basically only one configuration file naming the plugin
projects that constitute the feature.

In many cases, multiple projects are semantically connected or even function as
a unit. To allow the user to work on multiple projects at once, Eclipse uses the

18

2.2. Eclipse IDE

Java Development Tools Curry IDE

| | | |

| /--+------------/ |

Eclipse SDK | |

| | | /-------------/

| IDE Platform

| |

Eclipse RCP

|

(Java Runtime)

Figure 2.2. Component Groups and Dependencies in Eclipse

concept of a workspace. A workspace contains a list of projects. On the file system,
the workspace is a directory that contains the description of the contained projects,
plus any workspace-specific configurations that the user can make. Projects can be
located inside the workspace directory, but they can also be external projects; in the
latter case, the workspace contains just a reference to the actual project directory.

When the Eclipse IDE is started, the user has to choose the workspace directory
that will be opened. That means that exactly one workspace is opened at a time.
File-system locks prevent the same workspace to be opened by different Eclipse
instances at the same time.

If a project has specific contents, we call it a “foo-project”. For example we might
call a project containing a java executable “Java project”.

It should be noted that the git repository for this thesis contains the project di-
rectories, not the workspace directory. To start developing, these projects must
be imported into a separately created workspace. The details are described in
Appendix D.

2.2.2 More Terminology: Projects, Plugins, and Features

The term plugin is has multiple meanings in the context of the Eclipse IDE. We
would commonly call the Curry IDE a plugin for Eclipse. Yet, the correct technically
term for the complete collection of extensions that form the Curry IDE is feature.
A feature can bundle multiple plugins, or rather: multiple plugin projects. For

19

Chapter 2. Foundations and Technologies

example, the Curry IDE feature (currently) consists of three plugin projects.

Each plugin project has a file plugin.xml in its root directory that describes the
plugin’s properties such as the version, its dependencies and both usage and
provision of extension points. The feature is declared in a separate project as well,
which contains a feature.xml.

Assuming that we have a finished feature project and a number of plugin projects,
there still is one more step necessary in order to allow an Eclipse user to install the
feature in the IDE: We need an update site, which contains the compiled packages
for one or more features. When installing new features, the user can choose an
update site. Eclipse then downloads the information about available features, and
then the use can choose specific features to install. In many cases, these update
sites will be online, for example the “plugin” for Scala can be installed from
http://download.scala-ide.org/sdk/e38/scala210/stable/site.

In our case, there is an update site, but we will use the update site as a local
resource.

2.2.3 Plugin Details and Extension Points

Extension points are the interface that connect different plugins. By defining a new
extension point, a plugin allows future customization. By using existing extension
points (i.e. by providing implementations for some specific extension point), a
plugin can add new implementations or configurations.

Lets consider a basic, yet abstract, example:

We are programming a plugin A and want to allow future customization of
feature X. To realize that, we statically define an extension point X, with a
suitable interface. At run-time, we request a list of implementations for X from
the extension registry, and use one or more of these.

For this example, the extension point will contain two items: One configuration
value of type String and one of class-type (represented by the class’s full name)
extending a specified interface.

“Using” in this context could simply mean that we read some values from the
extension definition. the extension point could, however, also contain some fields

20

2.2. Eclipse IDE

that are Java classes (or some other means of obtaining instances of some interface
at run-time); then, we could instantiate and call methods on these classes. This way,
extension points are the entry points, control-flow-wise, into new plugins.

plugin-project A

+ XInterface.java // Java interface used

| *-------------------------------* // in the extension

| | public interface XInterface { |

| | public void foo(); |

| | } |

| *-------------------------------*
+ plugin.xml // the extension "declaration"

| *--*
| | ... |

| | <extension-point id="X" schema="X.exsd"> |

| | ... |

| *--*
+ X.exsd - XML schema file // the extension "definition"

defines a schema with the following members:

myConfigString: String

myConfigImpl: String, must be the

qualified name of a class

implementing XInterface

Figure 2.3. The static setup of project A, that provides extension point X

21

Chapter 2. Foundations and Technologies

plugin-project B

+ XImplementation.java // the implementation

| *------------------------------*
| | public class XImplementation |

| | implements XInterface { | // note that A.XInterface is

| | public void foo() { | // known

| | ... |

| | } |

| | } |

| *------------------------------*
+ plugin.xml // registration of

-- // the implementation

| ... |

| <extension point="X"> | // not "extension-point" (!)

| <myConfigString value="hello, world"> |

| <myConfigClass class="XImplementation" |

| ... |

--

Figure 2.4. The static setup of project B, that implements extension point X

To extend the functionality of A for X, we would add an extension for X into
a new project B. Assuming that plugin B is installed, the extension registry
will list the respective entry under X at run-time. Furthermore, when A calls
method in this implementation of X, B’s code will be called.

For this example, the static setup, i.e. the files involved and what they contain,
is shown in Figures 2.3 and 2.4. For the schema file we summed up the contents,
because actual the notation (which uses xml) is too long. Note that project B has
a dependency to project A, as the XImplementation implements the XInterface.

To give an example of the events at run-time (Figure 2.5), we assume that
by some undefined means the control flow is in plugin A (e.g. because it
implements one of the extensions provided by Eclipse). In plugin A, we use
Eclipse’s extension registry to retrieve the list of implementers for extension point
X, and use the first one (with [0]). First we read the String property, then, we
request an instance of the class property, and call a method on that instance.

22

2.2. Eclipse IDE

A implementation: B.XImplementation :ExtensionRegistry

getImplementations("X")[0].getValue("myConfigString")

“hello, world”

getImplementations("X")[0].getValue("myConfigClass")

construction

implementation

foo()

Figure 2.5. The run-time events involving the extension point X

In most cases, we will use existing extension points (e.g. the ones provided by
Eclipse or by Xtext). In those cases, our code will contain only the items described
in project B, as the extension point is provided externally.

2.2.4 User-Interface Concepts

Typically, the interface of the IDE will show multiple sub-windows, each with some
specific functionality. These are called views and can be re-sized and re-arranged
freely. Typical views are:

Ź The project explorer provides a structured view of the workspace contents, i.e. a
list of projects and the folders and files inside.

Ź The editor contains a tabbed list of editors for specific files. Depending on the
type of file, this can be a simple text editor, a more advanced text editor with
language-specific features such as highlighting, a custom form with editable
elements or a some form of custom graphical editor.

For the Curry IDE, the Java/Scala source code will be shown in an advanced
text editor; the project’s manifest2 is presented as a series of forms.

2right click a project in the project explorer, plug-in tools, open manifest

23

Chapter 2. Foundations and Technologies

Ź The Problems view shows warnings and errors regarding the files in the project.
For example when a Java file contains syntax errors, the error will be both
highlighted in the editor window and listed in the Problems view.

Ź The Console view integrates a terminal into the IDE. Using this view, the pro-
grammer can access various command-line applications, such as the Scala REPL.

Ź The Outline provides a structured summarization of the contents of the editor
window which is currently active. For example, for a Java class, it might contain
nodes for the imports, the data members, and the public and private member
functions in the class.

Some of these tools are language specific or task-specific. A view for displaying
Javadoc is only usable for Java; Debugging utilities such as a view showing variables
and their current value are connected to the task of debugging. For this reason,
the Eclipse IDE has perspectives that define a list of relevant views as well as the
arrangement of these views. One view is active at a time, and the user can switch
freely between them. Apart from views, certain other elements of the user-interface,
for example the elements of context menus, can be configured to be specific to a
certain perspective.

Typical perspectives are the Java perspective (used when editing Java code) or the
Debug perspective (which contains the common tools for debugging imperative
programs). For the Curry IDE, Marian Palkus introduced the Curry perspective
which contains any Curry-specific views.

2.2.5 Building and Launching

The topic of launches is relevant in two instances: Firstly, when developing the
Curry IDE, we launch the plugin; secondly, the user of the Curry IDE launches
Curry programs from the Curry IDE. There are different kinds of launches: Launch-
ing a Curry program (which opens a Curry console) is different from launching a
Java application for debugging. For this reason, launches have two parameters:

Ź A specific launch configuration: Launch configurations have a type, e.g. MWE2
workflow or Curry Application, that will determine what is launched. Additionally,
the launch configuration can contain settings that define details about the launch,
e.g. the run-time options or the Main-class to use for a Java application.

24

2.3. Xtext

Ź The launch mode: Typical modes are run and debug. Launch configurations
may be able to handle different modes; for example in Curry the same launch
configuration will work for the run and debug modes; in both cases opening a
console but in slightly different ways (behind the scenes) to make debugging
possible.

From the user’s perspective, in the workflow of a launch, the mode is chosen first:
For example, the context menu on a project might contain the sub-menus launch
as and run as. When using the configurations dialog in these menus, the list will
be sorted by configuration type, and then contain the concrete configurations. Of
course, there are shortcuts to this process; for example the user-interface contains
run- and debug-buttons in the toolbar which will re-execute the last launch, i.e. the
run button will execute the last launch configuration in run mode.

By using Eclipse’s extensions, it is possible to define both new modes and new
configuration types. As we already mentioned, the latter is used to implement
launching of Curry programs.

2.3 Xtext

Xtext [web:xtext] is an open-source framework for Eclipse for the integration of new
languages into the IDE. It uses the parser-generator ANTLR [web:antlr] to create a
parser from the grammar of the new language, and includes by default features
like syntax checking and syntax coloring. This functionality can be customized for
adding custom features such as:

Ź content assist: Provides code completions to the user of the editor;

Ź validations: In addition to the syntax checking done by the parser, custom
semantic checks on the resulting syntax tree can be implemented;

Ź code formatting: automatic formatting of the source files

The syntax tree generated by the parser is represented as Java objects, the corre-
sponding classes are automatically generated from the underlying grammar using
the Eclipse Modeling Framework (EMF).

25

Chapter 2. Foundations and Technologies

2.3.1 Static Structure of an Xtext Project

By default, an Xtext project consists of four projects; we will assume that the main
name is “foo”:

foo core language implementation, such as the grammar definition and
semantic checks

foo.ui user interface, such as the contentassist implementation and the project
outline

foo.tests test code
foo.sdk the feature project that bundles the other three; no sourcecode

The first two projects have a number of predefined packages; the corresponding
class files are separated into multiple directories: Firstly, there is the usual src
directory, secondly there is src-gen. The foo project contains a third folder xtend-

gen. The main idea of this separation is that the src folder contains code written
by the plugin’s developer, while the other folders contain auto-generated code
that should not be modified by the programmer (as it will be overwritten when
building the project). Under certain circumstances, for example when deleting
certain modules or just after creating a new project, empty classes will be generated
in the src folder, but they will not be automatically modified if they exist (which
might be confusing at first).

2.3.2 Generation Workflow

For many simpler projects, creating the usable, compiled package is as simple as
compiling and bundling all the java files in the source directory. For Xtext, the
process is more complex, because it involves automatically generating source code
at multiple places:

Ź the parser is generated from the grammar using ANTLR (ANTLR produces java
code),

Ź the language model, i.e. the classes representing our syntax tree, are generated
from grammar using EMF,

Ź Xtext supports a dialect of Java called Xtend [web:xtend], that supports certain
features like macros, lambdas and operator overloading which are not present
in Java. This dialect is compiled to Java. In the Curry IDE, we do not (actively)
use this dialect, though.

26

2.3. Xtext

To manage the code generation, Xtext uses the Modeling Workflow Engine 2 (MWE2).
The core project will contain a .mwe2 file that describes which code is generated.
Depending on the features that the IDE should support, certain elements, called
fragments can be inserted or omitted. Example fragments are the parser generator
or the quickfix provider.
This workflow must be explicitly executed by the plugin’s developer, i.e. it is not
part of the Eclipse project build process. But unless the workflow or the grammar
file changes, it is not necessary to re-run the workflow. For the details of how to
completely rebuild the plugin, see Appendix D.

2.3.3 Google Guice

Xtext uses the dependency injection framework Google Guice [web:gguice] to manage
the dependencies between the different classes.

One simple example to understand what dependency injection does:

To allow customization, we define an interface MyInterface. In class Foo we
need an implementation of said interface. Without dependency injection we
have two options:

Ź Foo’s constructor takes a parameter of type MyInterface.

Ź Foo instantiates a given implementation of MyInterface.

Both options have the same disadvantage: We need to statically resolve the
dependency, i.e. connect an implementation of MyInterface, either directly in Foo

or indirectly when constructing Foo.

Dependency injection separates the dependency resolution from the implemen-
tation (in this case, from Foo). We can write:

class Foo {

@Inject

private MyInterface providedImplementation;

}

where the semantics of the @Inject-annotation basically is “Guice, provide
me, at run-time, with an implementation of MyInterface”. Then, in a separate

27

Chapter 2. Foundations and Technologies

location (and independently from Foo), we define the dependency resolution,
i.e. we tell Guice what implementation to use for which interface.

In the case of Xtext, the dependencies are resolved for the core- and the ui-projects
in the RuntimeModule and UiModule classes. (For the Curry IDE, in the file Cur-

ryRuntimeModule.java and CurryUiModule.java). These files are inspected using
reflection to find the different bind... methods; each bind method defines the
implementation to use for a certain interface.

It is also possible to directly inject classes (not interfaces); in this case, it is not
necessary to define a binding.

We can use:

class Foo {..}

class Bar {

@Inject

private Foo foo;

}

On its own, this might seem useless; we could just as well omit the @Inject-
annotation. But we can use the @Singleton-annotation to change the semantics:
When Foo is annotated with it, only one instance will be created3, even if we inject
Foo in multiple places or create multiple instances of Bar.

When we write:

@Singleton

class Foo {..}

class Bar {

@Inject

private Foo foo;

}

3technically, one instance per injector; see [web:ggsngltn]

28

2.3. Xtext

class Baz {

@Inject

private Foo foo;

}

Then the same instance of Foo will be injected into instances of Bar and Baz at
run-time.

When injecting, Guice will work recursively: If the injected class contains @Inject-
annotations, those will be injected as well.

if Foo from above contains any @Inject’ed members, they will be injected as
well when constructing Bar or Baz.

In the Curry IDE, any classes that make use of injection are created directly or
indirectly from extension points. In these cases, the extension point definition will
contain an indirection (using a so-called ExecutableExtensionFactory) that triggers
the injection. If the user would want to use injection for manually created instances,
he could request an injector from the plugin’s configuration classes and apply it.

2.3.4 The Xtext Grammar File

The core project contains a .xtext file (here: Curry.xtext) that defines the grammar
of the language. This file has the purpose of

1. defining the language being recognized by the parser;

2. specifying how the syntax tree is created, i.e. what is the name and what are the
members of the different classes representing the syntax tree nodes;

3. separating the lexer and the parser (both of which are created from this file);

4. defining reference relationships between identifiers in the language. In many lan-
guages, identifiers can be defined at one place, and then used in a certain scope.
Xtext supports a way of resolving these references as part of the parsing, creating
effectively a syntax graph instead of a syntax tree. The blog at [web:xtextrefs]
explains this functionality and its syntax in more detail.

29

Chapter 2. Foundations and Technologies

The grammar file contains a list of rules that are similar to EBNF rules, but with
certain additional annotations to allow these additions.

The rule for signatures in Curry IDE’s grammar is

Signature:

{Signature} functions=FunctionNames ’::’ type=TypeExpr;

To understand this rule, it might be useful to compare this to the corresponding
pure EBNF:

Signature ::= FunctionNames ’::’ TypeExpr;

The additions in the Xtext grammar define how the Java interface (and its
members) generated for each rule are called. In this case, the generated interface
looks like this:

public interface Signature extends FunctionDeclaration {

FunctionNames getFunctions(); // FunctionNames and TypeExpr are other

TypeExpr getType(); // interfaces representing the subnodes.

}

I do not want to go into further details of the grammar file, as the grammar was
not the focus of this thesis (even though it was modified in a few places). One
property of the grammar is worth mentioning, though: Rules that contained non-
zero lookahead, i.e. rules with multiple alternatives that could start with the same
terminal, seemed to cause problems. Certain rules, like the different list literals ([],
[a], [a,b] [a..b], [a,b..c]), are a bit more complex for that reason.

2.4 CASS

The Curry Analysis Server System (CASS) is a tool for the static analysis of Curry pro-
grams. CASS is generic: Various kinds of analyses (groundness, non-determinism,
demanded arguments) can be integrated. In order to analyze larger applications
consisting of dozens or hundreds of modules, CASS supports a modular and
incremental analysis of programs. [web:cass; HS14]

There are multiple ways of accessing the tool’s functionality:

30

2.5. COOSy

Ź In batch mode, using command-line parameters to trigger specific analyses, and
showing the results to the user in the console;

Ź In API mode, where the tool is used as a library in a Curry program;

Ź In server mode, using TCP sockets and a simple communication protocol.

When using CASS, the Curry IDE uses the third possibility.

2.5 COOSy

The Curry Object Observation System is a tool for observational debugging Curry
programs. Currently, the tool only works with the pakcs compiler. It consists of a
library that will be imported by the program being to be debugged, and a viewing
tool, i.e. simple user interface displaying the observations. [web:coosy; Bra+04]

Observing an expression in the sense of COOSy means following the evaluation of
that expression. Because of the lazyness in Curry, only parts of the expression might
ever get evaluated. The important property of COOSy is that it does not force the
evaluation of the expression, while still showing the values of any sub-expressions
that are evaluated.

For example, when observing, using COOSy, the infinite list [1..] in the
expression

print $ take 3 $ [1..]

the observation view will show 1:2:3:_, the underscore denoting that the rest-
list was not evaluated. If we had used some form of printing to observe the
expression, the observation would have to print the infinite list and would not
terminate.

When running the program containing observations, the evaluation of the relevant
expressions will produce a series of messages that are written to files in a newly
created directory COOSYLOGS. The viewing tool will read and interpret these files to
show the observations to the user. See Appendix C.5.2 on how to use observations.

Because Curry has no type classes, it is currently necessary to add a form of typing
information when adding observations.

31

Chapter 2. Foundations and Technologies

For example the code of the observation added in the example above would be:

print $ take $ observe (oList oInt) "infinte list" [1..]

oList and oInt are functions describing how the debugging for the respective
types works, and [1..] is a list of Ints. The string literal serves as an identifier
for this observation.

Note that, judging by the program’s semantics, the observe function acts as the
identity on its third argument. The need for information on the type the observed
expression will be important when adding observations as part of an automated
process (which we implemented in the IDE).

2.6 Scala

Scala [web:scala] is a statically typed, object-oriented and functional programming
language with a close relationship to Java. It compiles to Java bytecode and
therefore runs on the JVM, and Scala and Java code can interoperate, i.e. Java
libraries and classes can be used in Scala, and vice-versa. Scala is an acronym for
“scalable language”, meaning that it can grow with the programmer and his/her
needs. [OSV08]

For a Java programmer, Scala may be initially seen and used as “a Java without
semicolons”, as the general project structure and syntax of the files is similar:
Packages, their definition, imports, and the general form of class definitions with
curly braces are all almost unchanged. But Scala both adds constructs from
functional programming and tries to improve in object-oriented aspects.

The main features from functional programming are:

Ź First class functions and anonymous functions;

Ź Type inference - but naturally there are limits for the inference for a type system
with an object-oriented nature with classes and inheritance;

Ź Algebraic data types and pattern matching;

Ź Support of tail recursion;

32

2.6. Scala

Ź Immutability: for example, for many data structures, both mutable and im-
mutable variants exist.

To manage builds, Scala provides the Scala build tool (sbt), that supports incremental
rebuilding. This tool is used by Eclipse when building Scala projects.

33

Chapter 3

Old and New Features

In this chapter, we would like to give an overview of the features we implemented.
Being based on somebody else’s work, it is important to keep track of which
features were already implemented before we started our work and which features
are actually new. Consequently, the next subsection will highlight the previously
existing features; after that the new features will be described.

3.1 Existing Features

3.1.1 Basic IDE features

Being implemented as a plugin for Eclipse, the Curry IDE does provide all the
standard features of Eclipse that are not specific to a programming language. This
includes:

Ź a graphical user-interface with customisable tool-bars and multiple sub-windows
that can be freely rearranged. Sub-windows for specific purposes are called
views.

Ź a project explorer is a view providing an overview of the file-system directory
structure of the project; in the case of Curry this project folder will probably
contain a src (source) sub-folder containing all the Curry modules that constitute
an application or library.

Ź one or multiple tabbed editor windows can be opened to view and modify the
project’s resources. In the case of Curry, the resources are Curry modules, so the
editors are text editors.

Ź The “problems” view with the purpose of listing errors and warnings in the
project’s resources. For example, syntax errors would be listed in this view.

35

Chapter 3. Old and New Features

When editing, Eclipse does also provide expectable basic editing functionalities like

Ź a editing history, i.e. the ability to undo and redo changes (shortcut: ctrl-z).

Ź searching and replacing, both for single documents and project-wide (or even
workspace-wide, where the workspace contains a set of projects that the user
currently works on).

Ź bookmarks that allow the user to add personal notes in his files

Now let us have a look at the features specific for Curry, which were added by
Marian Palkus:

3.1.2 Syntax Checking

The Curry IDE executes a syntax check for all opened Curry source files (Figure 3.1).
This syntax check does not use any external tool (i.e. any existing Curry inter-
preter/compiler). The advantage of having a separate implementation of the parser
is that this check is lightweight and can be executed in the background while the
user edits, giving him/her instant1 feedback about such errors.

Figure 3.1. Screenshot of the syntax error representation. Visible are two views: At the
top is the editor view containing the code with the syntax error (by hovering over the
underlined text the pop-up was opened, displaying the error message). At the bottom, the
Problems view lists any errors or warnings in the opened projects.

Because the IDE has access to the syntax information, certain features are available
in the source editor:

1where instant means “in less than a second”

36

3.1. Existing Features

Ź Basic syntactic highlighting: For keywords and operators, the user can choose
highlighting colors. However, this highlighting is rather basic, as it only uses
lexical information at the moment; also it does not distinguish comments and
literal in the code.

Ź Code folding: Sections of code belonging to the same syntactic construct (for
example a function and its whole body) can be folded into one line. This might
be helpful when examining large source files (or files with large functions).

3.1.3 Linking and Scoping

The Curry IDE does not execute a full static program validation (i.e. it is possible
to write Curry modules which pass all checks of the Curry IDE but which still will
not compile using an actual interpreter/compiler). However, it also does more than
just syntax checking: it does check the cross-referencing (the linking) of identifiers
acknowledging the visibility of the referenced symbols in the code. Figure 3.2
shows such an error, where we mistakenly used the identifier i instead of n.

Figure 3.2. Example of a cross-referencing error

3.1.4 GUI elements

One Curry-specific view, the Curry Project Explorer (Figure 3.3) was added to Eclipse.
It is intended to replace the default, language agnostic project explorer provided
by Eclipse. The Curry Project Explorer contains two configuration items:

1. the Curry standard library path. It should be defined so that the module files
from the standard library can be found and so the corresponding symbols can
be resolved.

2. the external paths option, which defines a list of paths with external2 Curry
2external meaning “belonging neither to the standard library nor to this project”

37

Chapter 3. Old and New Features

(a) The Curry Explorer, added by
Marian Palkus

(b) as a comparison, the default
Project Explorer provided by the
Eclipse IDE

Figure 3.3. the Curry Explorer

modules that can be used in this project.

Also, the interface includes two “wizards”, i.e. dialogs with the purpose of creating
new resources (projects or modules).

In order to execute the Curry program from Eclipse, an “external tools” config-
uration template was added. This can (in theory3) be used to start the external
Curry interpreter in a console view. This console view would then be usable like a
terminal window running an instance of the interpreter.

Unfortunately, the Curry Project Explorer is unfinished and provides, as it is, no
real benefit over using the default project explorer. The main problem is that
certain error conditions are not handled properly, so the user is presented some
indecipherable message.

3.1.5 Curry Analysis

One external tool that was planned to be accessible from the IDE is the Curry Anal-
ysis Server System (CASS) which provides static program analyses (see Section 2.4
for a more detailed description). This tool was still being developed while our
predecessor worked on his thesis. As a consequence, the integration of this tool

3I personally did not manage to find the correct preconditions to actually launch the interpreter
in a console window

38

3.2. New Features

is not complete. While from the users point of view, the Curry Analysis Server
System was not usable at all, behind the scenes a lot of the work had indeed already
been done. A menu point containing the different options of analyses was already
prepared; however, it was not visible because the connection to the analysis server
was not configured yet. The logic to request a specific analysis and to receive the
result was implemented as well.

Apart from the connectivity problem, the only feature missing was some form of
output of the result to the user.

3.2 New Features

3.2.1 Curry Analysis

Both aforementioned problems preventing the user from actually using CASS were
resolved. Firstly, the connection to the analysis server was implemented. If the
analysis server is running, the user can right-click elements in the Curry module’s
editor. The context menu which is displayed will now contain one item for the
analyses. Using the sub-menu, the user is able to select a specific analysis, which
is then executed externally. Secondly, a functional, albeit simple, output for the
results of all analyses was added to the user interface. This output is called the
Curry Analysis View.

A sample workflow for using CASS from Eclipse is:

1. The user starts the CASS executable (the “analysis server”);

2. The user starts the Curry IDE (Eclipse plus the Curry plugins);

3. The user opens a Curry module;

4. The user opens the context menu on some element of the module, and selects a
specific analysis;

5. The analysis is executed externally;

6. The results of the analysis are retrieved by Eclipse and displayed to the user in
the Curry Analysis View.

From time to time the user might forget to start the analysis server before starting
Eclipse. In such a case the analyses of course are not available. In such cases, the

39

Chapter 3. Old and New Features

menu entry for analyses now is not removed, but grayed out instead, which is
more consistent and after all should be more clear to the user. Figure 3.5 shows the
context menu for the two cases, i.e. if the analysis server is available and if not.

3.2.2 Curry Console and Error Annotations

As described by our predecessor, the development process involves both an editor
and an interpreter/compiler, and a good amount of switching between the two.
For two reasons this remains true even with the Curry IDE:

1. There are certain kinds of compile-time checks that are not implemented in
the IDE. So (even) if there are no problems detected by the IDE, the user will
inevitably need to make use of an actual compiler/interpreter.

2. While successful compilation is often a positive hint, this does not guarantee the
program does what was intended. To check that, the user needs to execute the
program (or parts thereof), and he consequently needs the compiler/interpreter.

The existing “external tools configuration” in combination with the console view
were supposed to address this requirement. The respective code was to a large part
rewritten to make this feature more usable and stable. The resulting changes and
additions can be summarized as follows:

(a) with running CASS, showing the choice of analyses (b) when CASS is not running

Figure 3.5. the Curry Analysis Context Menu

40

3.2. New Features

1. In the Palkus IDE, the launch configuration for Curry used the “external tools”
launch mode. This was changed; the run and debug modes are used instead of
external tools. This change is intended to improve usability: On the one hand,
“run/debug” is easier to access in the default Eclipse interface. On the other
hand, run configurations are generally 4 used to execute the code being edited
in Eclipse.

2. The configuration items (the run-time command to use for the launch, among
other things) remain mostly unchanged.

3. The console view remains unchanged from the user’s perspective. However,
there is an additional feature:

4. All output from the Curry interpreter is analyzed. Compilation errors are
detected and parsed; specifically the position (file and line number) of each error
is determined. This information then is used to add a “problem marker” to the
respective document.

3.2.3 Typechecking/Typeinference

Fast feedback about compile-time errors in the source-code is an essential part
of any IDE. The obvious way to improve the IDE in that respect is to enlarge
the number of classes of errors being checked. Typeinference is an interesting
candidate: It had previously not been implemented at all in the Curry IDE and,
assuming that the programmer is familiar with Curry and avoids most syntax
errors, type errors will probably form the largest group of (compile-time) errors
encountered.

Because the amount of work for (re)implementing5 the full typeinference algorithm
is rather large, a compromise was made between the two goals: On the one hand
to detect as many of the common type errors in the IDE, while on the other hand
keeping the size and complexity of the implementation manageable. So for certain
cases the IDE will “miss” type errors. While there are false negatives, false positives
are avoided, i.e. the IDE will only in very few cases report errors if the source
code in its current state does in fact compile without a problem. The details about
which errors are detected are difficult to explain without a closer look about the

4The plugins for Java, Scala and C++ use run/debug to launch projects, not external tools.
5reimplementing, because the full typeinference algorithm is already implemented in the existing

compilers

41

Chapter 3. Old and New Features

implementation, which is described in Section 4.4; the specific conditions that can
lead to false positives are described in Section 4.4.1.

When a type error is detected, an error marker is added to the respective resource.
The marker contains a description of the error, just like a corresponding message
from the compiler would. The IDE uses a custom implementation to check for type
errors. We tried to implement the algorithm in such a way that the error messages
are understandable and provide as much information as possible to the user. Still,
the messages might be slightly less understandable than the output of the compiler
(especially for certain complex cases).

Apart from checking for errors, the typeinference implementation was used to add
one new utility: The user can select any expression in the edited program and infer
its type. For this purpose, a new view, titled “inferred types”, was added to the
user-interface.

3.2.4 Debugging

Even when a program compiles without any errors, it might not do what the
programmer expected. To remove such deficiencies, the programmer has to debug
the program. In rare cases the programmer might be able to fix the bug just by
looking at the source-code again, but in general it is really helpful to analyze the
details of what exactly is happening at run-time. The IDE can provide to the
programmer debugging tools with the purpose of gathering data at run-time.

The Curry IDE was extended by a group of features that allow the programmer
to trace and observe the run-time evaluation of arbitrary expressions in the Curry
program6. From the user’s point of view there are three additional features, which
will be introduced in detail:

1. Curry debugpoints determine the expressions to be debugged. The IDE’s interface
contains a new view to manage debugpoints.

2. A specialized implementation of the Curry launch configuration for the debug-
mode

3. the Curry Trace Debugging view displays the results of debugging (when using
trace or traceValue (see below) as the debugpoint’s type)

6See chapter 2.1.4 for a general introduction about debugging in Curry

42

3.2. New Features

Debugpoints are the equivalent of breakpoints known from imperative debugging.
A breakpoint typically consists of a location (usually a file and line number) and
certain modifiers that describe the action if the breakpoint is reached at run-time.
Similarly a debugpoint consists of a reference to an expression in the source-code
(i.e. the location) and the type of expression debugger that will be executed when the
expression is evaluated at run-time. Considering the similarities between the two,
it might seem straightforward to reuse the existing functionality for breakpoints
being provided in Eclipse. Unfortunately, the two types are incompatible, because
breakpoints refer to lines in the source-code, whereas debugpoints refer to expressions.
The Curry DebugPoints view was added to the interface. It contains a list of
debugpoints for the opened projects. Debugpoints are persistent, i.e. closing and
reopening Eclipse will not clear the list. To add a new debugpoint, the user can
select an expression in the source code and use the corresponding item in the
context menu. In the list, the user can change the type of debugpoint. At the
moment, there are four types:

1. null: does not do anything. This type exists as a minimal example for the IDE’s
programmer; it is not supposed to be useful to the IDE’s user.

2. trace: notifies the user each time the resp. expression is evaluated, but does not
capture the value in any way.

3. trace with value: notifies the user each time the resp. expression is evaluated
and prints the value of the expression. Note that printing the value can cause
additional evaluation of sub-expressions. See figure 3.7 for an example.

4. observation of evaluation: using the external debugging tool COOSy, all evalua-
tions of the resp. expressions and its sub-expressions can be captured.

A specialized debug launch is added to the Curry IDE. Just like the normal
launch, this launch opens a console window running an interpreter. The difference
is that the interpreter will run a separate environment containing a modified
version of all the Curry source files in the project. Each debugpoint causes some
modification to the source code to implement the specific behavior. While behind
the scenes, the debug launch does the additional preparations described above, the
only difference to the user should be the feedback from the debugpoints7.

7There are a few special cases where a difference is noticeable: If the program does not compile,
the error message might be different when using debug launch. When “escaping” from the interpreter

43

Chapter 3. Old and New Features

debugPrint :: String -> a -> a

debugPrint ident x = unsafePerformIO $ do

putStrLn (ident ++ " " ++ show x)

return x

main = print $ take 3 $ debugPrint "longList" [1..1000]

Figure 3.7. debugPrint is a simple implementation of a basic debugging function that acts
as the identity, but as a side-effect (using unsafePerformIO) prints the value of its second
parameter. While without the debugging function, only the first three items in the list
would be evaluated, the show function will evaluate the complete list. One can imagine that
this is undesirable, especially considering that the list might be not just large, but infinite.

To display the results of the trace debuggers (both with and without value), the
Curry Trace Debugging view was added to the interface. This view contains the
chronological list of traces encountered during run-time.

There is no output integrated into the IDE for the observation debugpoint type.
Instead, the user must open the external tool COOSy. The process for this is briefly
described in Appendix C.5.2; the COOSy GUI is introduced in [Bra+04]. Also,
it should be noted that the implementation of the debugpoint types provides a
generic interface so that new types can be embedded easily in the future.

to the system shell, for example using “:!pwd”, the user can observe the changed environment. This
trick can be used to display the modified source-code, too.

44

Chapter 4

Implementation

4.1 Structure of the Project

Comparing the high-level structure of the source code my predecessor passed on
to me and the current version, there are some significant changes. This affects
the implementation of all of the features; therefore we would like to describe the
structure now. There are six Eclipse projects. These are:

CurryIDE1

source code

core Xtext implementation
CurryIDE.ui user interface Xtext functionality
CurryIDE.uinonxtext non-Xtext user interface functionality
CurryIDE.tests test-code
CurryIDE.sdk

formal project
description

bundles the other projects into a feature
project

the update site project allows the feature to be installed in
Eclipse

Because of the way the Eclipse builder works, dependencies between projects
must form an acyclic graph. the order of the projects in the table reflects this
to some degree: all dependencies go from lower to upper projects. The project
CurryIDE.uinonxtext is new and contains source code that is not connected to
Xtext directly. An example would be the implementation of the launch and the
Curry console, as these two use Eclipse’s extension points, not those of Xtext. The
reasoning behind the changes to the structure is given in Section 4.6.1; a more
detailed listing of the projects and their packages is in Appendix E.

1the complete name is de.kiel.uni.informatik.ps.curry.CurryIDE; the prefixes were omitted for brevity

45

Chapter 4. Implementation

4.2 The Analysis View

In order to make the infrastructure provided by Palkus for the Curry Analysis
Server System (CASS) available to the user, we can identify three separate modifi-
cations or additions.

The first change was to fix the connection to the analysis server. The TCP port
used when connecting to the server is read from the .curryanalysis.port file in the
user’s home directory. This file will be created by the server as soon as the server is
started. A second problem was the lifetime of the connection: The analysis server
previously closed the connection after each handled request, while the Curry IDE
(i.e. the CurryAnalysisToolClient) expected the connection to stay open for further
requests. This caused the analysis integration to fail after the first request, which
always was the request for listing all available analysis types, done automatically at
the start of Eclipse. This problem was fixed not by modification of the Curry IDE,
but by modifying the implementation of the analysis server, which can now handle
an arbitrary number requests in the same TCP session.

The next fix was a minor one: The identifier describing the extension point for
visualizations contained spaces, which was not valid, because the identifier is used
as an element name in an XML schema definition, and XML elements must not
contain spaces [web:w3xml]. Removing the whitespace fixed this problem and
finally it is possible to add implementations of the visualization extension point.

One simple visualization was added to the IDE. This visualization uses a text-box
containing the string(s) returned from the analysis server as the output. This
implementation was connected to the text format provided by CASS. The other two
formats, CurryTerm and XML have no visualization yet. If the user chooses these
other formats, the output will remain empty (except for the “success” message
noting that the analysis request has finished successfully).

The current implementation is still far from perfect, we can identify multiple
defects:

Ź The output is logically structured only by the requests; There is no option to
show all analysis results for a specific function or to update older requests. There
would be multiple options for increasing the flexibility of the user interface.

Ź It is bad that the user can access output types that do not actually have an
visualization.

46

4.3. The Curry Console and Error Marking

Ź When choosing the output type for a visualization, the options are grouped by
the format used to transfer the information from CASS to the visualization. This
format is irrelevant to the user.

For the latter points, we would make one suggestion: The interface for visual-
izations should be modified so that the visualization specifies its input format.
Previously, the user would choose in this order:

1. the type of analysis to perform,

2. the type of format (text, CurryTerm or XML),

3. the specific visualization.

With the modified interface, it would be possible to simplify this process to choosing

1. the type of analysis to perform,

2. a visualization

where the visualization would internally uses one of the formats.

Two more points are noteworthy. Firstly, the changes to the code structure (or
rather: the project structure) affect the analysis code. The major difference is
that there is no separate project containing the interface and the extension point
anymore. These changes are explained in more detail in Section 4.6.1. Secondly,
the analysis system is now also used to implement type checking: For this purpose,
a new type of analysis was added, called “TypePrinter”. This new analysis simply
prints the types of the functions defined at top level in the module. It is used to
retrieve the typing information. For the details, see Section 4.4.

4.3 The Curry Console and Error Marking

The relevant packages are

Ź de.kiel.uni.informatik.ps.curry.uinonxtext.launch

Ź de.kiel.uni.informatik.ps.curry.uinonxtext.curryconsole

The Curry console is opened by launching the current project. When the user
launches the project, the basic internal control flow is as follows:

47

Chapter 4. Implementation

Ź the launch shortcut2 determines the launch configuration to use3 and starts the
launch delegate.

Ź the launch delegate4 uses the information from the launch configuration to build
the complete command and executes it in a separate process. The environment
variables for this process are set according to both the system defaults and the
project setting for additional library paths. This process is handed over to the
CurryConsole class that handles the corresponding in- and output.

Ź the CurryConsole class handles both the in- and output between external process
and the user, and the extraction of errors.

The last step (the CurryConsole class) is the most interesting, as it implements the
extraction of errors from the output. It should be noted that this class does not
implement the view for the user-interface; for that purpose, the generic console
plugin provided in Eclipse is used. The interface provided by both the external
process and the console plugin are streams. Consequently, if extracting the errors
was not required, it would be sufficient to start threads that simply forward data
from one stream to the other.

In order to implement recognition of errors, the output stream from the external
process needs to be parsed. Effectively, there are now two consumers for the data
in that stream: The output to the user (via the console plugin) and the extractor
that parses the data and reacts to error messages. For this purpose, a thread
was implemented5 that forwards a stream to multiple destinations. This splitting
is implemented with one specific property: The data is gathered (cached) and
forwarded in chunks, based on a timeout. To understand what exactly happens
and why it is necessary, we need to consider the nature of the external process.

The interpreter started in the console is an interactive session, i.e. the user can
repeatedly enter expressions to be evaluated6. While this is pleasant to the user, it
has one consequence when reading the output: The program does not end after
one command, so there is no defined end of the output, and one can not directly
tell when the output of one command ends and the output of the next starts. If
there are errors, the complete output always terminates with the string

2launch.CurryConsoleLaunchShortcut
3if the user selects a specific launch configuration, this step can be omitted
4launch.CurryConsoleLaunchDelegate
5curryconsole.StreamTimeoutChunkedSplitterThread
6or executed, in the case of IO-actions

48

4.3. The Curry Console and Error Marking

ERROR occurred during parsing!

But that does not help as there might not be any error, so waiting for that specific
string is not an option. Fortunately, there is a simple time-based heuristics that
seems to work perfectly fine: Consider all output that happens in the same time-
frame as one block, and break blocks when there is no new output during a certain
(small) amount of time7.

These chunks are then processed in a custom output-stream that parses each
chunk and adds the necessary markers to the sources8. For the parsing, a regular
expression is used to retrieve the file name, the line number, and the message.

I have described how markers are added, but it is necessary to remove them as
well, when the corresponding error no longer applies. The interpreter prints a
message for each module it compiles, regardless of whether any errors occur. This
allows a straightforward implementation: Whenever a Curry module is compiled,
all markers for that module are deleted. After that, the new errors (if any) are
considered and new markers are created.

7the value used in the source code is 10 milliseconds - too small to be noticeable to the user
8curryconsole.PakcsParserChunkOutputStream and curryconsole.PakcsOutputParser

49

Chapter 4. Implementation

4.4 Type Checking

When the user invokes the compiler for a Curry program, the compilation might
fail with one or more type errors. Because these errors can happen rather often, it
is the aim of this implementation to provide faster feedback about typing errors
to the programmer. One obvious approach would be to automatically call the
compiler regularly in the background. While this would certainly satisfy all our
needs (it would catch all compile-time problems, not only type errors), there are
two reasons to re-implement type-inference / type-checking to some degree: On
the one hand, calling the compiler every few seconds (continues checking would
result in such a rate while editing) could cause noticeable CPU load. But more
importantly, other features in the IDE require more detailed type information than
the existing external tools can provide at the moment9.

However, by using the analysis framework (see Section 4.2) it is possible to retrieve
type information of all top-level functions. This means that we can simplify the
(re)implementation of the type inference algorithm: In module-scope, we can use
the externally provided information and just check the types. Local to functions,
the full type inference is implemented, based on inference algorithm as described
in [Damas/Milner 82]. One thing to note is that user-given type signatures for
a function provide global type information without the need to call the analysis
framework. However, we do not want to depend solely on the user’s signatures for
our functionality.

The external analysis framework has one notable property: It does only work if its
input (the source code) compiles without error. Without further tricks we would
have no access to global type information exactly in the cases where there are any
errors that we want to detect. To solve the problem, the typing information needs to
be cached. Which raises the question of how to operate the cache: Firstly, when do
we try to refresh the information, i.e. when and how often do we call the analysis
framework? Secondly, how long the information in the cache is valid? If the body
of a function is modified, the type previously inferred might no longer apply, and
keeping it in the cache could result in false reports of type errors. Our goal is to
avoid any such false positives, so we need to invalidate certain parts of the cache.

9the observational debugger must know the type of the expression being observed

50

4.4. Type Checking

4.4.1 The Type Cache

It seems inefficient to call the analysis framework each time we execute a check (i.e.
roughly every few seconds when editing) in the hopes of finding a snapshot where
the program actually compiles. The probability of success is low, as a program
rarely is valid in the middle of editing, and there is a computational cost to starting
the analysis so frequently. There is one event that happens less frequently and
which has a higher probability that the code compiles without error: When the
user saves the source code in the IDE. This event10 is used to trigger the refreshing
of the global type information data.
The next question is when to remove type signatures from the type cache. When
a method body changes, the type retrieved at the last update may no longer be
correct. Let us look at one simple example:

foo = True

-- to be changed to

-- foo = ’a’

bar = foo

-- type depends on type of foo

baz = foo==bar

Now, we make three assumptions: Firstly, that the user saved the document and
the type cache was updated using the external analysis tool. The cache contains (at
least) the following type signatures:

foo :: Boolean

bar :: Boolean

baz :: Boolean

Prelude.(==) :: a -> a -> Boolean

10technically, the build event in Eclipse is used. But when the option build automatically is enabled,
which it is by default, each save triggers a build.

51

Chapter 4. Implementation

Secondly, that the user modifies the body of foo as described in the source comment.
And thirdly, that the user has not saved the document again, i.e. the cache has not
been updated yet.

Note that the modified code is still type correct; the types of foo and bar have
changed, but that does not cause any problem in baz. The local type inference
would return Char as type of the body. If the cache still contained foo :: Boolean,
the IDE would report exactly one (false) type error, as the type checking algorithm
would make the assertion of the signature and the inferred type to be equal. There
would be no type error in baz, because the type inference algorithm would only
use the type signatures from the cache.

To eliminate the false error, the signature for the changed function, foo, is removed,
unless the signature is annotated in the source code. The type check would no
longer report an error for foo, because there is no signature to compare the inferred
type against. And for both bar and baz, this change does not create problems: If an
global variable has no entry in the type cache, its type is supposed to be unknown,
and treated as arbitrary.

The cache, however, does contain one outdated piece of information: the signature
for bar. While this does not cause any problem in given code, it is easy to imagine
a modification to baz where it does cause a problem:

baz = bar==’b’

Remember that the type cache still contains the signature bar :: Boolean, because
the body of bar never got modified. Consequently, the type inference algorithm
reports a type error, because the type of (==) necessitates that the type of bar be
equal to Char. To avoid this kind of error, more type signatures would need to
be deleted on any modification. One strategy would be to recursively delete the
signatures11 of all functions that contain a reference to the modified function from
the type cache. While such a “brutal” method would indeed eliminate any false
errors, it might often eliminate any errors: The recursive deletion might include
large parts of the program, effectively clearing the type cache and making most
of the type checking useless. For this reason, the implementation does not delete
recursively, even if there are certain special cases where false errors will be reported.
If the user suspects that the IDE reports a false error, he/she can save the program
and trigger an update of the type cache, so that any false information is replaced.

11again, if any signature is provided by the user, no deletion or further recursion is necessary, but
we focus on the “worst” case that there are no signatures provided in the source.

52

4.4. Type Checking

4.4.2 Type Cache Data Structure

Generally, a workspace can contain more than one project. Because different projects
do not share a namespace, there must be separate type caches in order to prevent
name clashes. Therefore the data structure is a map from project identifier to
project-specific type cache data. This project-specific cache is a map from qualified
Curry identifier (i.e. the function) to a structure containing:

Ź a type representation,

Ź a hash of the relevant source code

To detect whether a function was modified, a hash of the source code section
corresponding to the function is used. When a single function is changed, the offset
of more than one function in the same file might change, but the hashes of other
functions are not affected.

To understand what is meant by the phrase relevant in the above definition, let us
look at an example: Figure 4.1 contains a the complete source belonging to one
function. In this case, a type signature is present which annotates the type of the
function, regardless of what we might infer for the function (in this example, there
is a type error, but the signature does not care). Because changes to the body are
irrelevant for the cache, the relevant source code is just the type signature. Therefore,
fixing the type error in the equation 1 does not affect the cache.

fib :: Int -> Int -- signature

fib 0 = ’1’ -- equation 1, containing minor mistake

fib 1 = 1 -- equation 2

fib n = fib (n-1) + fib (n-2) -- equation 3

Figure 4.1. Grammatically, a function can have more than one relevant node in the syntax
tree: In this example, it has four. Because a signature is present, we want the type
Int -> Int to be used in the cache, ignoring the type error in the first equation. Unless the
signature is changed, the type does not change.

On the other hand, if no type signature was present, any equation can have an
influence on the type. See Figure 4.2 for an example. Consequently, here the
relevant source code is the hash over all equations of the function. This way, any
change to any equation is considered a potential change of the type.

53

Chapter 4. Implementation

Modifications to the type cache of a project are always done per-module. To go
below that, i.e. to make updates per-function, is hard to implement: A function
can comprise of more than one node in the syntax tree; also, the signature does not
even need to be placed close to the respective equations. Because hashes are used
to detect changes, this decision is not inefficient either.

foo 0 = (+0) -- this equation could be omitted, but

-- it would change the type of the function.

foo n = id

Figure 4.2. Int -> Int -> Int or a -> b -> b?

The type cache is saved persistently, so when the program starts, the cache can be
loaded and does not need to be updated by calling the external analysis tool. If
a project is in a state where it does not compile successfully, any type errors are
preserved even after restarting the IDE. The persistent data is currently written out
every time the cache is updated successfully (and read when Eclipse is started, of
course).

4.4.3 Control Flow and Code Structure of the Type Checking

Altogether, the implementation of the type inference/type checking mechanism
involves six packages in two projects (CurryIDE and CurryIDE.uinonxtext). This
distribution is caused by the different ways the classes are being accessed; for
example the cache is written on a build event, while it is read in the type inference
algorithm every few seconds. Whilst the build event is a user interface event, the
type inference algorithm does not belong to the user interface code. Furthermore,
the structure is determined by the dependency restrictions between the projects:
It is not possible to access the ui project from the CurryIDE project. The resulting
groups are:

1. types/* in CurryIDE

2. type-check/* in CurryIDE

3. typing/TypeCache.scala in CurryIDE.uinonxtext

4. BuildCheck.java in CurryIDE.uinonxtext

54

4.4. Type Checking

5. validation/CurryJavaValidator.java in CurryIDE

6. typeinferrer/* in CurryIDE.uinonxtext

item 1 contains the classes for representing Curry types and some basic utilities,
including a parser for types.

The type-inference/checking algorithm and some extra types needed for the algo-
rithm are defined in item 2; it also contains the core cache data structure.

TypeCache.scala (item 3) manages some aspect of persistence for the type cache. It
provides methods to load and store the data and automatically loads the data at
start-up, using the IStartup extension point in Eclipse.

To fill the cache, BuildCheck.java (item 4) implements the IXtextBuilderParticipant
extension point provided by Xtext. Whenever a build is executed, the build method
is executed. For each module modified since the last build, the external Curry
analysis is used to retrieve the types of all top-level functions (assuming there are
no errors in the source). The cache is then filled with that data.

The CurryJavaValidator (item 5) is provided by Xtext to allow the plugin developer
to add custom validations to the IDE. These checks are executed whenever a Curry
source file modified and it is possible to add error markers when any problems are
detected. Two validations are used to implement type checking:

Ź method dropDirtyTypeCacheInfo: Whenever a module is modified, the types of
top-level functions that are removed from the cache (using hashes as described
in the previous chapter).

Ź method checkFunctionType: For each modified top-level equation, the type
inference algorithm (item 2) is executed (using the type cache for the respective
project) to check for type errors. If an error is found, a new error marker is
created. Markers are automatically deleted when a new check returns without
any problems.

The two classes in (item 6) implement the typing functionality for the user, and
provide the respective UI-elements. When the user selects an expression and uses
the corresponding context menu item, the execute method of the ExpressionTypeIn-
ferrer class is executed. It uses the type inference algorithm (item 2), applied to the
surrounding function, to determine the type of the selected expression. This type
is displayed to the user using the InferredTypeView.

55

Chapter 4. Implementation

4.4.4 The Type Inference Implementation

Our description will be divided into two parts: The first part will describe the
general process of the type inference. The second part will focus on type error
messages: With certain small modifications to the algorithm described in the first
part we can add additional information to the messages returned in the case of
type errors. An example for additional information is positioning, such as “at
Main.curry:22.13”.

The implementation is based on the algorithm as described in [Han13, p. 51-
55]. Its aim is to derive a (most general) type for the function (and of all its
sub-expressions) so that the result is type correct. As input, the algorithm uses
the syntax tree of a single function and the type signatures of any top level
functions used in that function. The output is either an error or a mapping from
all (sub)expressions in the respective function to types. The referenced algorithm
applies to simplified language with the grammar (EBNF):

function = identifier pattern* [’|’ expr] ’=’ expr

pattern = identifier

| ’(’ identifier pattern ’)’

expr = identifier

| ’(’ expr expr ’)’

| ’(’ ’if’ expr ’then’ expr ’else’ expr ’)’

| ’(’ expr infixOp expr ’)’

| ’(’ λidentifier Ñ expr ’)’

where infixOp is some rule for infix operators and identifier is a non-terminal for
identifiers. The algorithm then consists of the following steps:

1. Create initial expression/type pairs:

For a function l p0 . . . pn | c = r create the pairs

l p0 . . . pn :: a

r :: a

c :: BoolOrSuccess

and omit the last pair if there is no guard, i.e. for l = r. We use a special type
BoolOrSuccess internally to express the cases were both Bool and Success would
be valid.

56

4.4. Type Checking

2. Transform the expression/type pairs: Replace

Ź (e1 e2) :: τ by e1 :: a Ñ τ, e2 :: a (where a is a new type variable),

Ź (if e1 then e2 else e3) :: τ by e1 :: Bool, e2 :: τ, e3 :: τ,

Ź (e1 ˝ e2) :: τ by e1 :: a, e2 :: b, o :: a Ñ b Ñ τ (a, b new type variables)
(where ˝ is an infix operator)

Ź (\x Ñ e) :: τ by x :: a, e :: b, τ
.
= a Ñ b︸ ︷︷ ︸

type equation

(a, b new type variables)

Ź f :: τ by τ
.
= σ(τ1)

if f has a known type @a1 . . . an : τ1 and

σ = {a1 ÞÑ b1, . . . , an ÞÑ bn}

where b1, . . . bn are new type variables.

The result of the transformation contains both a set of expression/type pairs
and a set of type equations.

3. Transform pairs to type equations:

In the result of the last step, all pairs are of the form x :: τ (where x is an
identifier). For any two pairs x :: τ1 and x :: τ2 create the type equation τ1

.
= τ2.

For the next step, the input is the union of the type equations created in the last
two steps.

4. Solve the system of type equations, i.e. find a “most general unifier” σ, i.e. a
mapping from type variables to types. We define:

Ź A substitution σ is called unifier for a system of equations E if @l .
= r P E :

σ(l) = σ(r). We apply σ on type expressions by canonical expansion.

Ź A substitution σ is called most general unifier (mgu) for a system of equations
E if for any unifier σ1 for E there exists a substitution ϕ with σ1 = ϕ ˝ σ (where
(ϕ ˝ σ) (τ) = ϕ(σ(τ)))

To find the mgu, we apply the following transformations rules, as described
in [MM82], to our system of type equations:

57

Chapter 4. Implementation

Decomposition:
{k s1 . . . sn

.
= k t1 . . . tn}Y E

{s1
.
= t1, . . . , sn

.
= tn}Y E

k type constructor

Clash:
{k s1 . . . sn

.
= k1 t1 . . . tm}Y E
fail

k ‰ k1 type construc-
tors

Elimination:
{x .

= x}Y E
E

x type variable

Swap:
{k t1 . . . tn

.
= x}Y E

{x .
= k t1 . . . tn}Y E

x type variable

Replace:
{x .

= τ}Y E
{x .

= τ}Y σ (E)
x type variable, occur-
ring in E but not in τ,
σ = {x ÞÑ τ}

Occur check:
{x .

= τ}Y E
fail

x type variable, x ‰ τ,
x occurring in τ

If no more rules can be applied, the result is either fail or a set of equations
which represents an mgu.

Let us retrace these steps in a simple example: We consider the function

f = \x -> x + 1

1.

f :: a

λx´ ą x + 1 :: a

2.

λx´ ą x + 1 :: a ñ x :: b

x + 1 :: c

a .
= b Ñ c

x + 1 :: c ñ x :: d

1 :: e

58

4.4. Type Checking

+ :: d Ñ e Ñ c

+ :: d Ñ e Ñ c ñ d Ñ e Ñ c .
= IntÑ IntÑ Int

1 :: e ñ e .
= Int

We can visualize the expression/type pairs:

a︷︸︸︷
f =

a︷ ︸︸ ︷
λ x︸︷︷︸

b

Ñ x︸︷︷︸
d

+ 1︸︷︷︸
e︸ ︷︷ ︸

c

3. The final pairs are:

f :: a

x :: b

x :: d

resulting in one more equation: b .
= d.

4. The mgu is calculated for
{a .

= b Ñ c, d Ñ e Ñ c .
= IntÑ IntÑ Int, b .

= d}.

It returns (successfully) with the mgu
{d .

= Int, e .
= Int, c .

= Int, b .
= Int, a .

= IntÑ Int}.

This algorithm for the simplified language can be extended to work with all the
syntactical features of Curry. The corresponding modifications only affect steps 1
and 2. Because Curry has a more complex grammar for expressions, the number of
cases to differentiate in step 2 is rather large and we will not formally describe the
process for each case here, as they do not contain anything fundamentally new.

Still, we would like to highlight a few key differences between the abstract algorithm
and the actual implementation:

Ź The input consists of the syntax tree for a function plus all known types of top
level functions. References in the syntax tree (e.g. from the use of a variable
to its introduction) are already resolved, which simplifies the introduction of
syntactical features that allow shadowing, i.e. the use of the same variable
identifier in different scopes.

59

Chapter 4. Implementation

Ź When creating new type variables, the mapping from expression to type variable
is saved separately. This mapping can be used together with the mgu to
determine the actual derived type of any part of an expression. This is used
when the user requests the type of an arbitrary expression.

Ź The steps one through three of the algorithm are handled by a single recursive
descent into the syntax tree. Step two essentially is a recursive procedure on its
own, and the other two steps can be executed “on the fly”: We can introduce
new type variables for sub-expressions as soon as we first refer to them, and
create the respective type equations as soon as both sides of the equation are
known.

Three classes12 form the core of the inference implementation. The FunctionType-

Check class contains the code to create the type equations, i.e. the methods that
recursively descent into the syntax tree, dispatching over the different types of
nodes encountered. Type equations are added to the EquationBuilder. When the
set of equations is complete, the EquationSolver computes the mgu. The Function-

TypeCheck class contains two public methods: One with the purpose of checking
the equations (used when validating the modules), and one for retrieving the type
of a specific expression (used at the user’s request).

To motivate the changes to the implementation as described so far, we look at
the output in the case that the inference fails: It returns no information about what
failed and where. Trivial modifications could add minimal information that could
be expressed like:

type error: clash between Int and [] in the equation Int==[Char]

Such a message would be better than just “type error!”, but it might still be rather
cryptic to the user, as there is no information about the origin of that type equation
or any positioning of the relevant types in the source code. In order to actually help
the user in the case of an error, we need to modify the algorithm so that we can
create proper error messages. The implementation adds three types of information
to enrich the messages:

1. Positioning of the relevant sections in the source code,

12all classes can be found in de.kiel.uni.informatik.ps.curry.typecheck

60

4.4. Type Checking

2. The type constructors “above” the type that caused the error,

3. The direction: the distinction between what type was expected and what type
was found.

To illustrate point number two, let us consider an example error message13:

Type error: expected [Char] but found [Int] at Main.curry:23:9

Without the surrounding type, the error would be expected Char, found Int. That
is, for any type constructed with a type constructor, the algorithm prints the
complete type, even if internally the error occurred for some sub-type. Note that
there is an exception for the function type, i.e. the type constructor (->). This
strategy (i.e. to include any surrounding constructors other than (->)) seemed to
produce reasonable results that neither were too small (like Char vs Int) nor too
broad, like if the complete type signature of the function was used in the error.

In the basic algorithm, a type equation consisted of two type expressions. A type
expression is either a type variable or a type constructor with a (possibly empty)
list of type expressions as parameters (See Figure 4.3). You can think of a type
expression as a tree, where each non-leaf node is some constructor, and each leaf
node is either a type variable or a nullary type constructor.

EBNF for type expressions:

typeexpr ::= typevar

| "(" typecons typeexpr* ")" ;

where typevar describes type variables, and typecons contains (Ñ), the list type
constructor [], tuple type constructors ((), (,) . . .) and any custom type

constructors like Boolean or Maybe.
Figure 4.3. a formal description of simple type expressions

In our implementation, we need additional data, and we add it at each node in this
tree. This additional information consists of three values:

Ź an (optional) position, describing the location of the expression linked to this
type expression in the source code.

13This message was created as an illustration; in the IDE, the error is shown slightly differently.
Inter alia, the position is conveyed by the placing of the error marker, not in the message itself.

61

Chapter 4. Implementation

Ź a optional “context-type”, referencing a “surrounding” expression. For example,
the type variable v1 might link to [v1]. This information is used to print “[Char]
is not [Integer]” instead of “Char is not Integer” in the error messages.

Ź a three-value flag called “expectedness” that is used for the direction, i.e. for
making the distinction expected-vs-found. The three values are expected, neutral
or found.

These additions result in the modified EBNF shown in 4.4.

EBNF for enriched type expressions:

typeexpr ::= typevar ["at" position] ["in" typeexpr] ["+"|"-"]

| "(" typecons typeexpr* ")" ["at" position] ["in" typeexpr] ["+"|"-"] ;

where we use + for expected types and - for found types, and position is some
representation of a position in the source code (e.g. line, column and file name).

The other non-terminals are used as above.
Figure 4.4. a formal description of enriched type expressions

For a better understanding of the semantics of these members, we will start at one
possible end of the process: The creation of the type error messages. There are two
transformation rules that can result in a failure. A clash is the first possibility, the
second is a failed occurs check. The latter is the simpler case; we print the two types
and, if available, we mention the position of one of the sides in the output.

For a type clash, the first step is to inspect the context-types for both sides of
the relevant type equation. Taking into account the way the context-types are
constructed, we know that either both sides have context-types, or both have none.
We also know that no context-type has a context-type. If present, the respective
context-types replace the types at both sides in the rest of the procedure, otherwise,
the sides remain unchanged. Because context-types do not have context-types,
no recursion is necessary. Next, we consider the position values of both sides. If
neither has a position value, the output will just use the position of the function
equation. If exactly one side has a position value, this one is used in the output.
If both have a position value, we use the innermost (i.e. more specific), rightmost
position. As the last step, we compare the expectedness flags of both sides. Let
us call the “more expected” type expression t+, the “more found” expression t´.
Then, the error message will be “Expected t+, found t´”. If the expectedness is
equal, the output will just be “t1 is not t2”.

62

4.4. Type Checking

For the function

foo = sum "abc" -- sum :: [Int] -> Int

At some point during the calculation of the mgu, the type equation
τ1︷ ︸︸ ︷

[Int] +
.
=

τ2︷ ︸︸ ︷
[Char] at p1 (4.4.1)

is encountered. This equation will subsequently be de-composited into the
equation

Int in τ1
.
= Char in τ2 (4.4.2)

which will cause the actual fail. When creating the error message, the first
step is to check for context-type, so we switch to the equation τ1

.
= τ2, i.e. to

(Equation 4.4.1). The position p1 will be used for in the output. Then, the
expectedness is compared, creating the final message along the lines of

“at p1: expected [Int], but found [Char]”.

So how do we arrive at either expected, neutral or found? When constructing the
set of type equations, we define initial values, which may be modified during the
calculation of the mgu. It might be noted at this point that only two transformations
rules during the calculation of the mgu add new equations: Decomposition and
replace. For swap, we can swap the complete enriched type expressions.

For the position member, the initial value for any type variable is the position of the
corresponding (syntactic) expression. For the nodes in the type expression that are
not type variables, we do not set a position, but this does not matter as there will
always be equations binding these expressions to single type variables (which have
a position). When a type variable is replaced by a different expression in the replace
step of the mgu calculation, the positioning of the replacement is set to the position
of the replaced variable, unless it was set already. The context-type is initially not
set; it will be set during the decomposition step of the calculation of the mgu.

63

Chapter 4. Implementation

In the example above, this happens between (Equation 4.4.1) and (Equa-
tion 4.4.2). The decomposition changes the nodes of the type expression:

Intñ Int in τ1 and Charñ Char in τ2

As discussed before, the context-type is not set when decompositing type arrows.
The only thing to consider is that we do not want context-types to have context-
types. We enforce this property by making the transitive step before we assign, i.e.
if type b has context-type c, and we want to assign b as the context-type (of some
type a), we assign c instead.

The default value for the expectedness flag is neutral. Only in three cases it is set
differently:

Ź At top level, when creating the type equation connecting the left hand and
the right hand sides of an equation, set the variable for the right hand side
expression to found,

Ź For any function type a Ñ b created when compiling the type equations, set the
parameter (in this case, a) to found,

Ź Set any Bool type created (and not “imported” as a part of a known type
signature), e.g. for the condition in if . . . then . . . else . . . , to expected.

The reasoning behind these rules will be explained later, but first we would like to
give an example and show how the expectedness is transformed.

We consider the function

foo :: Int

foo = ’a’ -- can you spot the type error? ...

We are only interested in the expectedness flag, so we annotate only that one in
the next type expressions. We write t+ for a expected type expression and t´ for
a found one. The equations created for foo would be:

a = Int a is a type variable connected to foo

64

4.4. Type Checking

a = b´ b is the type variable for the right hand side of the equation

b = Char

We could see this as a chain, i.e. Int = a, a = b´, b = Char.

The idea is that the expectedness flag provides a direction over this chain; in this case
the right hand side of one of the equations is found and consequently the direction
is “left is more expected”. When transforming the type equations, the replace steps
will make these chains shorter and shorter. Now, we dictate one property for any
transformations, particularly for the replace steps:

Ź Any transformation must retain the expectedness-direction over any (implicitly
given) chain in the set of type equations

Following this rule, for the example the result would be either Int+ = Char or
Int = Char´. In both cases the error message is “Expected Int, but found Char”
(because Int is the more expected type) and this is the error message we want.

In the implementation, the only step being affected by this rule is the replace step,
as it recalculates the flag for newly created nodes. We will not explain the exact
algorithm that calculates the new expectedness flag, for two reasons: It would
require a large case discrimination (what is the flag for the replacing variable? the
replaced variable? the replacing expression?). Secondly, while we did not find
counter-examples for our algorithm yet, the type-checking functionality is not even
supposed to be perfect - it is intended to be a heuristics. What matters in the end is
whether the Curry compiler detects type errors or not.

Note that internally, the implementation does not explicitly create chains. Also,
chains do not need to be decomposed to be considered as such, i.e. we can imagine a
chain a = b, [b] = [c+], c = d that connects a and d with a specific direction. This
is important because we do no restrict the order of transformations.

65

Chapter 4. Implementation

Let us consider a second example where we can observe the effect of the
expectedness flag inserted at arrow types:

foo :: Int -> Bool

foo = ...

bar = foo ’a’

When inferring the type for bar, the following equations are created:

a = b´ a is connected to bar

b is connected to the right hand side of the equation

c = d´ Ñ b c is connected to foo

c = Int Ñ Bool the type cache provides a signature for foo

d = Char

After decomposing the type arrows, we can see a chain yet again: Int = d´,
d = Char, which is processed to either Int´ = Char or to Int = Char+. Either
way, the error message would be “expected Int, but found Char”. Note that the
expectedness flag in the first equation does not have any effect in this example.

Now that we know how the expectedness is used and transformed, it is hopefully
easier to understand the rules for setting the flag initially: Setting the flag defines
the expectedness direction over any chains that involve the respective variable. Let
us consider the rule for parameters in type arrows of type arrows more closely,
using an application with annotated type bindings:

a︷ ︸︸ ︷
g︸︷︷︸
b

x︸︷︷︸
c

where g and x are arbitrary sub-expressions.

For this, we would create the equation b = c´ Ñ a, i.e. the type variable for the
parameter is set to found. For both c and b, the algorithm will create certain other
equations. Lets assume that simplifications result in equations b = τ1 Ñ _ and
c = τ2. These equations form a chain between τ1 and τ2, and the found flag we
introduced will define the direction: τ1 is the more expected one. This is what we
want, because τ2 represents the type inferred for the actual parameter, while τ1 is

66

4.4. Type Checking

the type expected by inspecting the type of g. The same line of reasoning can be
used to construct the other two rules.

There is one case where this implementation seems to not produce the desired
results:

foo :: a -> a -> a

foo = ...

bar = foo 42 ’x’

The type signature of foo stipulates that the two parameters must have the same
type. One might hope for an error message along the lines of “Expected Int, but
found Char, at ’x’” (or vice versa for 42). Yet, this implementation will only print
“Int is not Char”. The reason is that the both expressions relevant for the error have
the same level in respect to the structure of the type equations. The chain of type
equations between Int and Char would contain two found flags, on different sides
of equations. As a result, the total expectedness relation is neutral. This could be
seen as a deficit of the implementation, but it is sensible: We can not really tell
whether the first parameter or the second has the wrong type. A suggestion would
be to have a new type of error message for this case, containing both positions and
types in the error message. However, this is incompatible with the way Eclipse
handles error markers (which have exactly one position), so this suggestion could
not be implemented.

Appendix G is a Curry module containing a set of functions featuring different
types of type errors. This file can be used to test the messages produced in the
different cases.

67

Chapter 4. Implementation

4.5 Debugging

In order to explain what the implementation of the debugging features provided in
the Curry IDE does, we would like to start with the user’s perspective, and contrast
the workflow of debugging with and without the IDE’s features.

Not using the features, the programmer would have to modify the source code
in order to insert some debugging function, like trace, at some expression he
is interested in. The trace method has one parameter (a string) that serves as
identification. When the programmer executes the modified program and the
relevant expression being evaluated, the trace function would print some kind of
note, including the identifier, to the console. The programmer would have to look
for this kind of output. If there was more than a few traces, he/she might even
have to make some mental effort to connect the identifier to the correct expression
(if there are multiple traces present).

Using the debugging features, this process is somewhat simplified for the pro-
grammer. Firstly, we separate the actual program (i.e. the source code) and the
formal description of what to debug (i.e. a list of debugpoints). To add a trace,
the programmer does not modify the source code, but instead selects the wanted
expression in the editor and adds a new debugpoint for that expression. The next
difference is that the user does not need to specify an identifier. Lets assume that
like above, there is one expression being “traced”. When the programmer executes
a debugging launch in the IDE, and the respective expression is being evaluated,
the IDE would add an item to the Curry Trace Debugging view. This item would be
internally connected to the respective expression, and the user can just double click
it to retrieve that information.

We can summarize the features in the following points:

Ź Automation:

Ź Adding debugpoints is just a few clicks;

Ź The IDE handles logical connection from debugging output to debugpoints;

Ź (for observations:) The parameter describing the type of the observed expres-
sion is automatically generated.

Ź Separation of Concerns:

Ź There is no need to modify the original source;

68

4.5. Debugging

Ź The original program’s output is not mixed with debugging output anymore.

The implementation had one other focus, still: extensibility. It is possible to add
new types of debuggers using Eclipse’s plugin extension interface; this interface
will be described in Section 4.5.4
The shortest description of how the implementation works would be: It does the
same the programmer (as described above), but it hides it from the user of the IDE.
We have two issues to address before we can continue.
At least behind the scenes we do need to modify the code in order to insert
commands like trace for every debugpoint. But we do want both to hide this from
the user and be able to undo any changes made. The obvious solution is to make
a copy, and modify only one version. For this, a hidden folder is used that will
contain a complete but modified copy of the project (with all its files).
The second issue is that the commands like trace provided by the Curry library
print their debugging output to the console. This is inconvenient as we do want
that information in the IDE, i.e. we would have to parse the output in the IDE.
To avoid that, the debugpoints use new versions of these commands that print to
a TCP stream instead. In Eclipse, our plugin starts a TCP server that listens to
incoming messages and dispatches them. For example in the case of trace, the
output is added to the Curry Trace Debugging view.
With these basic issues being handled, we can describe the full internal process
used for debugging.

4.5.1 Basic Process of the Debugging in the IDE

Debugpoints are the core of all debugging functionality. They are connected to
expressions in the Curry module (instead of line numbers, like normal breakpoints
would be). The user can add and modify debugpoints. Debugpoints have a type
that specifies what kind of expression debugger is to be used. This is the point where
the extensibility comes into play: Using Eclipse’s extension interface, new types
of expression debuggers can be added at a later time. Debugpoints internally
also have an identifier that will be used to connect debugging output back to the
respective debugpoint.
When the user starts a debugging run, the following steps are executed:

Ź All files in the directory of the project are copied to the hidden debugging
copy folder. If an expression is connected to the debugpoint, it is not copied

69

Chapter 4. Implementation

directly, but modified in order to insert some specific debugging code. The exact
modification is controlled by the expression debugger. The debugpoint’s identifier
will serve as a parameter to the debugging code.

Ź A TCP server is started that accepts and handles incoming debugging messages.

Ź Like for a normal launch, a console window is opened in the IDE, containing a
Curry REPL. The difference is the current directory: It is set to be the hidden copy
folder instead of the project’s root. This way, the compiler (and consequently,
the user) will use the modified sources.

Ź Each message received by the TCP server starts with the identifier of the debug-
point. This way, the message can be forwarded to the debugpoint (and further,
to the expression debugger) to handle the message (and in most cases, display
the message to the user in some way).

Note that it is possible to query the current directory from the debugging console,
e.g. by executing the command !pwd14. This breaks the illusion to the user, but it is
not avoidable.

4.5.2 Additional Potential Issues and Design Decisions

The first question is how to make a modified copy of the source code. To the
authors best knowledge, Xtext does not provide any method of printing a modified
syntax tree to a file. Luckily, the syntax tree nodes contain the string in the original
input corresponding to that node. Therefore we can traverse over the syntax tree,
print the strings for all leaf nodes and obtain a copy of the original module. To
modify specific expressions, we can insert custom strings into the output when the
respective node in the syntax tree is reached during the traversal.

Another thing to note is that apart from the modifications to the expressions, we
need to add the imports for the modules containing the debugging functions,
e.g. the modified trace method that prints its output to the TCP stream. This is
implemented just like the other modifications: When we reach the module node in
the syntax tree, the respective imports are added. There is one slight deficit in the
current implementation: The insertions add a new line containing a non-indented
import statement. But actually, the layouting of Curry allows all statements in a

14the exclamation mark can be used to execute a system command; here the pwd (print working
directory) command is used.

70

4.5. Debugging

module to be indented. The problem is, that they all need to be at the same level,
and the inserted import statement could break that rule. On the other hand, in all
existing Curry modules, the elements of the module are not indented. Still, to be
conforming with the official Curry report, this needs fixing.

In addition the to last point, the imported modules must be accessible to the
compiler, i.e. the folder containing the respective module(s) must be added to the
Curry library path that can be configured in the IDE. This must be done manually
at the moment.

A last question is when to refresh the modified copy. Problems might occur in
multiple scenarios:

Ź One debugging console is opened, and the user starts a second debugging
console in parallel;

Ź While one debugging console is open, the source code is modified;

Ź While one debugging console is open, the user modifies the list of debugpoints.

Unfortunately, it is not possible to make a “life update” while a program is running.
Therefore, this implementation simply restricts the refreshes: The debugging copy
is never refreshed while any debugging console is opened, i.e. the user needs to
close any debugging console before updates occur. There is still the possibility that
the user deletes the debugpoints while a program is debugged with that debugpoint
being active. To prevent problems, all debugpoint identifiers are globally unique
(i.e. they are not reused in any way) and the implementation just drops debugging
messages where the identifier is no longer valid.

4.5.3 Code Structure and Control Flow for Debugging

Four packages contain the source code for the implementation of the debugging
features (all in the project CurryIDE.uinonxtext and in the package
de.kiel.uni.informatik.ps.curry.uinonxtext):

1. launch/CurryConsoleLaunchDelegate.scala

The delegate that handles launches in both the debugging mode and the normal
mode. Some special logic is used to handle the debugging launch.

71

Chapter 4. Implementation

2. debug/*

The main package for the debugging implementation.

3. debug/iface/*

Contains the two classes of the interface for expression debuggers.

4. debug/impl/*

Contains the implementations of the expression debugger interface which are
provided already.

There are three entry points (control-flow-wise) into the debugging package: The
first is the modification of the list of debugpoints, the second the debugging launch,
and the third the TCP server handling the debugging messages.
The list of debugpoints is internally represented using the DebugPoints class. The
DebugPointView is the UI element containing the list of debugpoints; it handles the
respective user input. When adding new debugpoints by selecting an expression in
the editor and using the context menu, the AddTraceHandler class is invoked.
When a debugging launch is executed, the CurryConsoleLaunchDelegate computes
the necessary environment information (e.g. the command to execute and the
path environment variable). Then, it forwards the request to the CurryDebugCopy-

Synchronizer that checks if there are opened debugging consoles present. If there
are, a dialog lets the user decide what exactly to do. In the default case, when
there are no open debugging consoles, the debugging copy is refreshed using the
ProjectDebugCopyHandler. Then, the console is opened.
The TCP server for debugging messages, implemented in CurryDebugSocketServer,
is started with Eclipse, so there is no need to explicitly start it when launching
in debugging mode. When it receives messages, it will extract the debugpoint
identifier from the message and use the ExpressionDebuggerRegistry to map this
identifier to the debugpoint. The debugpoint updates a hit-count and then forwards
the message to its expression debugger implementation. What exactly happens
with the message further on depends on the type of expression debugger (i.e. for
trace the handling is different than for traceValue).

4.5.4 The Expression Debugger Interface

A debugpoint is connected to an expression. Generally, we want something to
happen when this expression is evaluated at run-time. We can think of multiple

72

4.5. Debugging

different “something”s:

Ź trace: We want only to know that the expression was evaluated.

Ź traceValue: Like trace, but we also want to know what the expression evaluates
to.

Ź observe: We want to follow the exact control flow of the evaluation of this
expression and its parts.

But this list is certainly not complete. The expression debugger interface is intro-
duced to allow for future additions to the list. For any behavior we want, e.g. for
trace, traceValue and observe, we can define implementations of this interface. Using
Eclipse’s extension mechanism, these implementations can be added as separate
projects (or even: as separate plugins). Any implementations present in the Eclipse
installation will be available to the user when he/she selects the type of expression
debugger to use for a debugpoint.

The Curry IDE currently has implementations for the trace, traveValue and observe,
and one “null”-implementation that does nothing and is mostly supposed to serve
as a minimal example of an implementation for developers.

The interface consists of two classes: IExpressionDebuggerFactory and IExpression-

Debugger. We will refer to these with factory and debugger, respectively. The factory
is used to obtain instances of the debuggers. When debugging, there is one instance
of a debugger connected to each debugpoint. On the other hand, the factory is
not connected to any specific debugpoint, but describes this type of expression
debugger in general.

The two interfaces are:

The getTypeName method returns an identifier for each type of expression debugger.
The method in the debugger is just a duplicate and must return the same value
as the factory it was created with. When the user selects the type of expression
debugger to use for a debugpoint, these identifiers will be used.

The createExpressionDebugger method gives the factory its name: This method is
used to create debugger instances. These instances will be connected to specific
debugpoints.

The debugging code inserted by any expression debugger may refer to custom
debugging functions from its own modules. These modules must be imported in
any module that contains the respective inserted function. To simplify things, we

73

Chapter 4. Implementation

IExpressionDebuggerFactory

getTypeName(): String

getNecessaryImports(): Set<String>

createExpressionDebugger(): IExpressionDebugger

debuggingRefreshNotification(project: IProject): void

IExpressionDebugger

getTypeName(): String

printCode(debugExprNode: INode,

debugExprType: Type,

outputStream: OutputStream,

curryStreamWriterFunction: String,

printer: CurryPrinter): void

addOutput(s: String,

debugPoint: DebugPoint): void

Figure 4.5. interface members

just add all imports everywhere, regardless of whether they are actually necessary.
For this, each expression debugger factory specifies a list of required imports using
the getNecessaryImports method. When making a debugging copy of the code, the
imports of all available expression debugger factories will be collected and then
inserted to all modules.

When the user stops one debugging run and starts a new one, we would like to
enable some form of feedback to the user so he/she can separate the last run’s
debugging output from the current output. However, the output is handled by the
expression debuggers, so there is no way of uniformly adding such a separation.
Instead, the debuggingRefreshNotification is used to notify all the expression
debugger factories when a new debugging run is started. The factory can then
either directly add some feedback to the expression debugger’s output or notify its
debugger instances.

The two remaining methods in the debugger are printCode and addOutput. The
latter is called for every debugging message the TCP server receives for this
debugpoint. It is responsible to forward this information to the user in some way.
The first parameter is the message (that was passed to the the output method in the
inserted debugging code). The exact data flow of these messages will be described
in more detail further below.

74

4.5. Debugging

IDE :DebugPoint “DP1” :Expression Debugger

createDebuggingCopy()

printExpr(1+41)

printExpr(DP1, 1+41)

Debugging CopyDebugging Copy control flow when a debugging copy is created

Figure 4.6. Sequence diagrams for the data flow when debugging using traces, part A

When creating the debugging copy of the source code, the expression debugger
determines what debugging code to insert around the debugpoint’s expression,
using the printCode method. When the TCP server receives messages, they are first
forwarded to the debugpoint and then to the expression debugger instance using
the addOutput method. The semantics of the five parameters are not self-explanatory
and will be explained below.

To understand the data flow of the debugging messages, let us devise the process
at one simple example. Assume there is one debugpoint with identifier “Debug-
Point1” and type traceValue connected to the expression 41+1. As a first idea, when
modifying the code, we could replace that expression by:

(unsafePerformIO $ do

let x = (41+1)

sendToEclipse "DebugPoint1" (print x)

return x

)

The function unsafePerformIO :: IO a -> a is from the Curry library Unsafe; it
performs an IO-Action outside of the IO-monad. It is considered unsafe, as it
allows the programmer to embed side-effects into pure functions. We have to use it
here, because sending a message to Eclipse is a side-effect (an IO-Action); and we

75

Chapter 4. Implementation

TCP server Modified Code IDE :DebugPoint “DP1” :Expr. Deb.

start

start

"DP1", “42”
forwardMessage("DP1", “42”)

addOutput(“42”)

addOutput(“42”)

Runtime EventsRuntime Events Data flow of the trace message

Figure 4.7. Sequence diagrams for the data flow when debugging using traces, part B

want to be able to insert this debugging code anywhere (i.e.: even in non-IO-code).
sendToEclipse is some function that connects to the TCP server and transmits the
debugpoint’s identifier plus a message. The message would in this case contain the
value of 41+1 after evaluation.

Note how we use parentheses both around the whole expression and the expression
being traced. Because we insert additional code, the safe course of action is to
insert these everywhere to prevent any problems (and the generated code will not
be read by the user, either). In the following code snippets, some of the additional
parentheses will be omitted for brevity.

Now consider what parts of this fragment are specific to this debugpoint: Only
"DebugPoint1" and 41+1. So in the printCode implementation for trace we might
use a code template along the lines of:

76

4.5. Debugging

unsafePerformIO $ do

let x = EXPRESSION

sendToEclipse IDENTIFIER (print x)

return x

For this, we would have to pass the debugpoint’s identifier to the expression
debugger. Figures 4.6 and 4.7 show the control flow for both the code modification
and the effect of the modification, i.e. the message forwarded back to the expression
debugger when this specific code part will be executed.

We can, however, make two observations which will motivate one small change:

Ź The sendToEclipse method will always be called with the identifier as the first
parameter.

Ź There is only one reasonable use for the identifier: As parameter of the sendToE-

clipse method.

And these statements are true independent of the type of expression debugger.
This motivates the use of a slightly different template:

unsafePerformIO $ do

let x = EXPRESSION

SEND-MESSAGE-TO-SELF (print x)

return x

That is, we simply encapsulate the partially applied (sendToEclipse @IDENTIFIER@)

and provide that as a parameter to the printCode function. SEND-MESSAGE-TO-SELF
has a semantic of “forward a message back to the expression debugger that printed
it”. This way, the expression debugger does not even need to know about the
details of identifying messages. In the interface, this parameter is called cur-

ryStreamWriterFunction (the fourth parameter).

We have to be aware of one possibility: debugpoints can be nested. For example,
we could also add a debugpoint just for 41 (in the expression 41+1 in the exam-
ple above). When copying the code, inserting modifications, there is a function
recursively descending into the syntax tree and calling the expression debugger’s
printCode function if the respective node is reached. Because of the possibility of
nesting, we need the control flow to return from printCode back to this recursive
process when we print the original expression in printCode. The sequence diagram

77

Chapter 4. Implementation

in Figure 4.8 shows how the control flow jumps between the CurryPrinter (the
class that manages the recursion) and two expression debuggers.

For the traceValue expression debugger, we considered the template for the replace-
ment:

unsafePerformIO $ do

let x = EXPRESSION

SEND-MESSAGE-TO-SELF (print x)

return x

Here, to print EXPRESSION, we need to return to the recursive process. This is the ob-
jective for the first and fifth parameter passed to printCode: The CurryPrinter class
implements the recursive descent, and will be called with the node as parameter to
print the expression.

Two parameters in the printCode method in the interface are not explained yet.
debugExprType contains the type of this debugger’s expression. It is currently only
used by the observe expression debugger implementation, which needs the type to
print corresponding code. outputStream is simply the output to be used - in the
default case, it will be a file-output-stream for the copied version of the module
containing the code being modified.

4.5.5 Expression Debugger Implementations

Internally, five expression debugger implementations exist, of which three are
useful to the user. These three are TraceDebugger, TraceValueDebugger and Observa-

tionDebuggerExternal. The ZeroDebugger is intended to be a minimal example for
developers that provides no output at all (i.e. it leaves its expression semantically
unmodified). The other unused implementation, ObservationDebuggerInternal, is
unfinished. We will have a closer look at these implementations.

TraceDebugger and TraceValueDebugger are very similar and they share the same
output view to display events. Both use the EclipseDebugWriter module that con-
tains the implementation of what we called sendToEclipse in the source fragments
above. Also, this module provides utility methods. Consequently, both imple-
mentations return the set {“EclipseDebugWriter”} from the getNecessaryImports()

method.

The code for the addOutput method in TraceValueDebugger is

@Override

78

4.5. Debugging

IDE :CurryPrinter :DebugPoint 2 :DebugPoint 1

print(root)

(some recursion into syntax tree)

printCode(1+41)

print(1+41)

printCode(41)

print(41)

Figure 4.8. sequence diagram when printing the modified source code for debugging
purposes, with two nested expression debuggers. The DebugPoints include the respective
expressions debuggers here (hiding an additional indirection); splitting those two up would
make the diagram unnecessarily complex.

public void addOutput(String s, Object debugpoint) {

traceView.addLine((DebugPoint) debugpoint, s);

}

That is, we simply forward the output to the GUI element (traceView) that was
created for this purpose. The view will show a list of the trace events, and the user
can double-click the items in the list to highlight the respective expression in the
source code. When a new debugging run is started, we simply add a placeholder
line in this view to separate old and new events. This is implemented by calling
the appropriate method in the debuggingRefreshNotification() implementation.

79

Chapter 4. Implementation

The body of the printCode method for the TraceValueDebugger is:

outputStream

.write(("traceValue " + curryStreamWriterFunction + " (")

.getBytes());

printer.printToStream(debugExprNode);

outputStream.write(")".getBytes());

First, we print the strings "traceValue ", curryStreamWriterFunction and "(". Then
we call the printer to print the expression being traced, and then we add the closing
parenthesis ")". Looking at the implementation of traceValue, the reader will be
able to see that this essentially is equal to the implementation discussed above.

Finally, we would like to explain why there are two implementations (one of which
unfinished) of the observation debugger. The difference between the two is the
output for the user: For the external variant, the native (external) GUI provided by
COOSy must be used to view the debugging output, while the internal variant was
intended to have a viewer integrated into the UI of Eclipse. The unfinished variant
contains modifications to the COOSy code that writes all output to the Eclipse TCP
stream, but it lacks any interpretation of this output and proper visualization in
Eclipse.

When using the external variant, the user must start the COOSy user interface by
executing the command :coosy in the debugging console.

80

4.6. Overview of Changes

4.6 Overview of Changes

4.6.1 The Project’s Structure

Xtext is the basis of the plugin, and repeating the description in Section 2.3.1,
by default an Xtext implementation consists of four Eclipse projects: foo, foo.sdk,
foo.test, and foo.ui (where “foo” is the project’s name). foo.sdk does not contain any
source code; it serves as a formal description that bundles the other Eclipse projects.
foo.test should contain only test code, so the remaining foo and foo.ui would contain
the true implementation of the plugin.

The work of our predecessor consisted of six Eclipse projects in total; the four
mentioned above plus an update site and the analysis project. The update site is, like
the .sdk, more of a formal necessity that allows the plugin to be installed in Eclipse.
The analysis project does contain the description of the interface for visualizations
of the results from the external CASS utility. Unfortunately, Marian Palkus did not
provide a reason for creating the separate analysis project in his thesis.

The structure of the project was changed in the following ways:

1. A new project called CurryIDE.uinonxtext was created that contains features not
connected to Xtext. All classes connected to Xtext remain in the CurryIDE.ui

project. The are two reason for this separation. Firstly, the implementations
needed by Xtext are semantically different from the additional features that
where added to the IDE and should be separated, just like UI and non-UI features
are separated. Secondly, Xtext establishes a rigid structure: It expects numerable
classes to be defined in specific packages, and changing the structure did not
seem possible (we tried, unsuccessfully, to find Xtext documentation about this
topic, and simply refactoring did not work). Without the possibility to group
packages, adding even more classes would lead to a confusing set up where it is
hard to find individual classes.

2. In continuation of the last item, certain packages were internally restructured
when moving them to CurryIDE.uinonxtext. The focus lay on grouping all classes
by the general feature they implement, avoiding unnecessary sub-packages.

3. Previously, the analysis visualization extension point together with the corre-
sponding interface were defined in its own project. This additional project was
removed and incorporated into the CurryIDE.uinonxtext project. The reason
for this integration is that the analysis visualization extension point is strongly

81

Chapter 4. Implementation

connected to analysis implementation, and there seemed to be no benefit from
using a separate project.

I personally can see one option where (additional) new projects might make
sense: For the implementations of both extension points provided in the Cur-
ryIDE. These two are the analysis visualization and the expression debugger
extension points. For both, the IDE currently contains at least one imple-
mentation, and these implementations currently reside in CurryIDE.uinonxtext.
However, as the implementations could be omitted without causing problems,
separate projects might be sensible.

A more detailed description of the projects and the contents of their packages can
be found in Appendix E.

4.6.2 Other Changes not mentioned yet

We have described the implementation of the main features that were added to
the IDE, but certain other noteworthy modifications to Palkus’ code have not been
mentioned yet. These are:

1. The Curry grammar used in the IDE was modified in multiple places.

Ź Previously, the parser generated from the grammar was only used to parse
complete modules. As part of the type-checking functionality, a parser for
type-expressions was required. It was possible to use the existing parser
for the respective rule in the grammar for this purpose, with one small
change: The annotation defining the so called hidden tokens was removed
from the Module rule and added globally instead. Hidden tokens are tokens
like whitespace that the parser will ignore. Without this change, the parser
for type-expressions would not ignore the hidden tokens and consequently
would fail in many cases where it should not.

Ź In some places the grammar was correct, but the syntax tree generated did
not contain all the information contained in the input. For example, one
alternative in the rule for patterns was:

{LiteralPattern} Literal

The way this is notated, the syntax-tree generated for the literal would be just
a leaf node LiteralPattern, without any parameters. But for the type-checking

82

4.6. Overview of Changes

implementation, we need access to the actual literal to determine its type.
Hence, this alternative was changed to:

{LiteralPattern} literal=Literal

Now, the node LiteralPattern would have a member called literal which
contains the actual literal. Changes such as this one were necessary in several
places.

Ź The grammar contained ambiguities in three cases. Notably, in one case in-
volving type-expressions the ambiguity was present in the Curry report [Mic12].
The corresponding grammar rules in the report were:

TypeExpr ::= SimpleTypeExpr [Ñ TypeExpr]

SimpleTypeExpr ::= QTypeConstrID SimpleTypeExpr1 . . . SimpleTypeExprn

| TypeVarId

| ()

| (TypeExpr1, . . . , TypeExprn)

| [TypeExpr]

| (TypeExpr)

The ambiguity arises from the recursion in the first alternative for Simple-

TypeExpr. Consider the input A B C. This is a valid type-expression with two

TypeExpr

SimpleTypeExpr

SimpleTypeExpr

QTypeConstrId

C

SimpleTypeExpr

QTypeConstrId

B

QTypeConstrID

A

TypeExpr

SimpleTypeExpr

SimpleTypeExpr

SimpleTypeExpr

QTypeConstrId

C

QTypeConstrId

B

QTypeConstrID

A

Figure 4.9. Productions for the type expression A B C in the unmodified grammar

83

Chapter 4. Implementation

productions, which are shown in Figure 4.9. This ambiguity is removed by
adding an additional rule in the following manner:

TypeExpr ::= TyConExpr [Ñ TypeExpr]

TyConExpr ::= QTypeConstrID SimpleTypeExpr1 . . . SimpleTypeExprn

| SimpleTypeExpr

SimpleTypeExpr ::= TypeVarId

| ()

| (TypeExpr1, . . . , TypeExprn)

| [TypeExpr]

| (TypeExpr)

It should be noted that the grammar, as implemented, still lacks certain features
described in the Curry report. Additionally, certain rule names deviate (some-
what unnecessarily) from the names of the rules in the report, which makes it
harder to compare the two.

2. Scala was integrated into the projects; many of the new features are implemented
in Scala, and even small parts of the existing code where refactored to scala in
order to clean the code up and to remove bugs. The reason for adding Scala
is its expressiveness. Scala allows for a functional programming style (using
pattern matching, for-expressions and anonymous functions) which allowed
for shorter and more easily maintained code. This was especially relevant for
implementing the type inference algorithm.

However, adding Scala did not come without its caveats and problems. These
are described in detail in Section 5.1.

3. The Curry Project Explorer implemented by Palkus is supposed to replace the
default project explorer provided by Eclipse. It was removed because it provides
(at least in its current state) no benefit to the usability of the project; rather, it even
lacks certain features. For example, the context menu does not provide certain
items such as “delete” and “rename”, and non-Curry files are not displayed
correctly in the directory tree. In general our suggestion is to use and extend
the existing explorer instead of creating a new one. For now, the Curry Project

84

4.6. Overview of Changes

Explorer is removed from the GUI by deleting the extension point connection,
but the respective source code was left in place.

85

Chapter 5

Experiences

In this chapter we will describe our experience with the tools used in the devel-
opment of the Curry IDE, and give some hints that hopefully save some time for
future developers or maintainers.

Generally, the things that work well are not noticed; only when something breaks it
calls for our attention. Hence, this chapter may involuntarily sound rather negative,
because it will focus on the things that did not work as expected. This is not the
intended message; all in all we are happy with the tools used.

5.1 Scala

Our initial reasoning for adding Scala to the plugin was that it allowed for a
much shorter and more concise implementation of the type inference algorithm,
which is functional in nature. Looking at the actual implementation, it is apparent
that the functional features such as first class functions, abstract data types and
pattern matching were indeed used frequently. And Scala was also used in several
other places including the code implementing the Curry console and parts of the
debugging functionality.

Unfortunately, there was a surprisingly large amount of problems connected to the
use of Scala, even though the two languages interact just fine in theory.

5.1.1 Interaction between Scala and Xtext

Xtext is a Java and not a Scala project. Xtext (or its developers) expect all source
files to be either Java or Xtend (an extension of Java). When executing the MWE2
workflow to automatically generate code, the existing source files are analyzed. Our
guess is that this is necessary for example to configure the dependency injection
with google guice.

87

Chapter 5. Experiences

When adding Scala source files to a project, it is possible to reach a state, where,
even though there are no actual (compile-time) errors in the code, it is not possible
to actually build the project. The exact conditions for this scenario are:

Ź The project is completely “cleaned”, i.e. all compiled classes (for both Java and
Scala source files) are removed, as well as all the classes being automatically
generated as part of the MWE2 workflow.

Ź There is at least one Scala class that depends on any Java class that is to be
generated automatically by the MWE2 workflow.

An example for such a dependency is when we use any of the classes represent-
ing the Curry syntax tree from a Scala class.

Under these circumstances, the following cycle appears:

Ź The Scala compiler fails when encountering the missing dependency.

Ź The MWE2 workflow fails, because it can not handle the compilation error in
the Scala classes, and it can not parse the Scala class directly.

Note that the MWE2 workflow can handle compilation errors just fine, as long as
they happen in Java classes. Our guess is, that in these cases, the Java sources are
simply parsed, ignoring the semantic problems.

This problem was especially annoying because it will not be noticed unless the
exact preconditions are met - it even might have gone unnoticed until somebody
else checked out the project into a clean directory and tried to build it. Particularly:

Ź If there exist compilations (regardless of whether these are up-to-date) of the rel-
evant Scala sources, the MWE2 workflow will succeed (presumably by retrieving
all necessary information from said compilations).

Ź If the auto-generated sources do exist (even if not up-to-date), the Scala classes
may - under the right circumstances - compile without a problem.

Because this problem is inherent to the process of Xtext and MWE2, we decided not
to try to fix it or to apply any tricks (like committing the automatically generated
sources to our repository). Making the steps for building the system even more
complex would make it (even) harder for new maintainers to start working on the
system. Instead, we simply avoid the problem by not using Scala for any classes

88

5.1. Scala

that need a dependency on any automatically generated classes. In practice this
mostly means that Scala could not be used to examine the syntax tree for Curry
modules, those parts of the implementation were written in Java.

5.1.2 Interaction between Scala and Java

In most cases, the interaction between Scala and Java worked just fine; for example
accessing Java classes from Scala and vice versa caused no problems in general.
Yet, there are some problematic cases.

Ź The first problem is more of a nuisance, but still should be mentioned as it might
confuse a programmer new to the system: If the source code is modified and
contains errors, it is possible that the Scala compiler (or more precisely: the Scala
build tool, sbt) will crash, possibly causing a cascade of other errors. Fixing the
initial error will remove the problem, so the errors caused by the crash can be
ignored. Sometimes, the initial error might be hard to spot in the flood of error
messages, though.

Ź In one case, there was a weird problem when accessing a specific Java class (or
its methods) from Scala code. The methods are

PlatformUI.getworkbench()

PlatformUI.getActiveWorkbenchWindow()

Our workaround was to create a facade class 1 in Java that basically adds one
layer of indirection, which removed the problem.

Ź The type cache is saved persistently in order to retain the typing information
when Eclipse is closed and re-opened.
The type cache data structure is implemented in Scala, using Scala collection
classes such as scala.collection.mutable.Map as well as custom made classes
for the representation of types.

For some reason, deserialization failed when directly serializing this data struc-
ture. We tested the problem and observed:

Ź Java collection classes containing custom Scala classes, e.g.

java.util.LinkedList<MyScalaClass>

1uinonxtext.curryconsole.ScalaWorkaroundHelper

89

Chapter 5. Experiences

would deserialize without a problem.

Ź If no single custom Scala class was involved in the complete data structure
(but any number of classes from the Scala libraries), e.g.

scala.collection.immutable.HashMap[

Int,

scala.collection.immutable.List[MyJavaClass]]

then deserialization succeeded.

Ź otherwise, i.e. if a custom Scala class was used inside any Scala collection
class, the deserialization would fail, with some “class not found” error.

The solution for this problem is to transform any custom class into a tuple
(which is a class from the Scala library, and therefore causes no problem) before
serialization; and reverse the transformation after deserialization.

Ź Accessing Java classes from Scala was always possible without any prob-
lems. Sometimes, it is necessary to transform the collections into their Scala-
equivalents, but this is a simple step. In most cases, the reverse, i.e. accessing
Scala code from Java code, was unproblematic. Two things should be mentioned
though.

Firstly, to access Scala objects, a special syntax must be used. In Scala, classes can
have no static members; instead, classes can have a “companion object” which
is a singleton, i.e. it can not be instantiated and it has one static instance. Let
us assume we have one such object foo.Bar. To access this object from Java, we
need to write (see, for example, [web:objjs]):

import foo.Bar$;

[..]

foo.Bar$.MODULE$

[..]

Apart from looking a bit unusual, this works just fine.

Secondly, using Scala inner classes as part of a Java interface was not possible.
This problem materialized when defining the interface for expression debuggers.
The Scala class DebugPoints contains an inner class DebugPoint representing the
debugpoints the user can add and use for debugging purposes in the IDE. One
method in the interface for expression debuggers is supposed to be a DebugPoint,
but it was not possible to refer to this type. To solve this, we chose to use the

90

5.1. Scala

generic super-type Object from java as type of this parameter. This necessitates
type casting when using the parameter, but seemed to be the simplest solution.

5.1.3 Interaction between Scala and Eclipse

Apart from the single problem accessing the PlatformUI class from Scala, everything
worked fine when using Scala. When implementing extension points for the plugin,
it is no problem if the implementing class for some interface is written in Scala. We
should mention that, when editing the extensions definition for the plugin using
the corresponding user interface (in contrast to editing the file plugin.xml directly),
when using the dialog to define the class to use, Scala classes will not be listed.
In this case, the programmer can simply insert the qualified name of the class by
hand.

5.1.4 General Observations about Scala

A future developer might notice that even on current hardware, building the plugin
takes a good amount of time (a complete build takes half a minute, roughly, on
this machine). More importantly, small changes in the source code often require
a rebuild that takes more than a few seconds. We will not provide objective
measurements here, but our hypothesis is that scala caused a large increase in build
times. In an older version of the IDE’s source code that did not contain Scala yet,
the builds are almost instantaneous. The difference is large even when we consider
that the older version has less functionality.

One difference between Scala and Java has not been mentioned: Scala has no
checked exceptions. In Java, it is checked at compile time that checked exceptions
are either handled (by try .. catch) or forwarded to the caller (which must be
annotated with the throws declaration for the respective function). While Scala
has exceptions and it is possible to try .. catch, all exceptions are unchecked:
Functions do not have a throws declaration, and there is no compile-time error if
any type of exception is not caught. While this design decision is understandable,
there is a large risk that the programmer forgets to catch exceptions, as we noticed
when refactoring certain parts of the IDE’s code from Java to Scala.

91

Chapter 5. Experiences

5.2 Eclipse and Xtext

For the most part, Eclipse’s plugin interface is well designed and well documented.
It is possible to execute (and debug) the plugin from the IDE, which starts a
second Eclipse instance. Eclipse supports run-time code replacement, so that
changes become effective without restarting the second Eclipse instance running the
CurryIDE plugin. Provided that the the user has enough memory (We encountered
combined memory usage of up to 3GB), this allows for fast development iterations.

There exist, however, minor flaws which again can surprise the plugin’s developer,
and thus should be mentioned.

Ź One rather annoying problem appears when debugging the plugin. When
launching the plugin as an Eclipse application (which opens a second Eclipse
application), the process aborts randomly with an error.

"Launch Error: The application could not start.

Would you like to view the log?"

When this happens, the launch can simply be repeated; this second launch was
never observed to fail. The probability of this happening on the first try (after
the last successful launch) is roughly one third.

This problem might be connected to Xtext, and not Eclipse. Because it only
appeared for debugging (and not when the plugin is properly installed), we
decided to ignore it (as much as possible).

Ź In certain cases, it is necessary to refer to extensions2 from the source code.
One trivial example is when the provider of the extension wants to access the
corresponding implementations at run-time. In such cases, the extension’s
identifier (a string) must be used.

For example, to access the implementations we would use:

IConfigurationElement[] impls =

Platform

.getExtensionRegistry()

.getConfigurationElementsFor(id);

2see chapter 2.2.3

92

5.2. Eclipse and Xtext

where id might, for example, be

"de.kiel.uni.informatik.ps.CurryIde.expressiondebuggers"

Now, impl would contain a list of expression debugger implementations.

The programmer has to be rather careful with the identifiers of extensions, for
two reasons:

Ź When the identifier is wrong (i.e. a non-existing identifier, not just a different
one than expected, for example by a typo in the string), any access may fail
silently.

For example, when there is a typo in the identifier, and we execute:

IConfigurationElement[] impls =

Platform

.getExtensionRegistry()

.getConfigurationElementsFor(// note the typo vv

"de.kiel.uni.informatik.ps.CurryIde.expressiondebuggesr"

);

no exception is thrown, and impls is not null, but an empty array.

When handling custom markers, using a wrong identifier will even still create
a marker, just not of the correct type. This sort of issue is annoying to debug.

Ź Identifiers must be fully qualified, for some definition of fully qualified. For ex-
ample, when accessing the marker extension that has, in the plugin definition
(i.e. in the file plugin.xml), the identifier curry.debug, in the code, the string

"de.kiel.uni.informatik.ps.curry.CurryIDE.ui.curry.debug"

must be used. So the project’s qualified name must be prepended. It might be
a good idea to follow the advice in [ML05, p. 43] and to include the project’s
identifier in the extension’s identifier.

Ź In addition to the inherent unsafety of the identifiers for plugins, we observed
another unexpected behavior which we could not find documentation for. We
tried to incorporate our new views into the Show View menu in the Window tab of

93

Chapter 5. Experiences

the Eclipse IDE, so the views can be more easily opened. Even though this had
already been working for the Curry Project Explorer and the Curry Analysis View,
adding new views did not work. This seemed to depend on the identifiers we
used for the views; for example when we changed the id of the Curry Analysis
View (both in the definition and in the respective class), it was not available in
the Show View menu, but reverting the change resolved the problem. The issue
might be some kind of caching of the perspective in the workspace settings.

Ź To highlight debugpoints in the source code, our first idea was to use the
marker specialization used for Breakpoints3. As it turns out, this is a bad idea,
because the plugin that handles breakpoints in Eclipse expects all markers that
are a sub-type of breakpointMarker to be connected to an implementation of
IBreakpoint. Because we did not connect the markers to IBreakpoint, but to
debugpoints, exceptions would occur. Additionally, because we do not actively
use the Breakpoint functionality in the Curry IDE, these crashes would be
seemingly random.

The underlying problem is that the documentation for Eclipse does not prop-
erly point out which markers can be used as super-types, and under which
conditions.

Ź In context of markers, one might notice that markers are defined in the ui project,
not in uinonxtext, which is contrary to our guidelines, as the DebugPoints are
not related to Xtext and thus should be placed in uinonxtext. The reason for this
is that the marker simply will not work if we define it in uinonxtext. Our guess
is, that, given the way the extra project was added to the system, the new project
uinonxtext is not visible to the code creating the marker. If we could explain
the problem in more detail, we probably would be able to resolve the issue. We
chose the simpler alternative and moved the marker definition to the ui project.

Ź Eclipse provides examples/“wizards” for different extensions points. Unfor-
tunately, for many extension points, there are no examples; in other cases, the
examples use extension points which are actually deprecated. Even the “hello
world” example, which adds a button the UI which shows a dialog, uses the
ActionSet extension point which is deprecated.

3 org.eclipse.debug.core.breakpointMarker

94

5.3. Guice Dependency Injection Framework

5.3 Guice Dependency Injection Framework

Google Guice is very useful and easy to learn. There are a few items to note,
though. The first two relate to the interaction between Scala and Guice:

Ź When an new instance of a class containing @Inject annotations is created, the
Guice injector assigns some instances to the corresponding members. This means
that in Scala, all injected members must be assignable, i.e. they must be declared
as var, even though they should be treated as immutable after the injection.

Ź Scala’s objects are (non-lazy) singletons, i.e. they have exactly one static instance.
Because the injection of dependencies normally happens at construction, we can
not use the normal procedure when a Scala object contains @Inject-members.
In such cases, it is possible to manually inject the Scala objects by creating and
applying an injector in the start method of the CurryActivator class. 4

In chapter 2.3.3 we mentioned the @Singleton annotation. For any class with this
annotation, each injector creates only one instance of that class and uses it for all
injections5. An important consequence is that with multiple injectors, there can
be multiple instances of classes with this annotation, which might be surprising
considering the name “singleton”.

Extension-points can name classes that contain the corresponding implementation.
In such cases, the classes will be instantiated when the extension is needed. Without
any modifications, this instantiation would not execute injections for the new
instance. If the latter is desired, it is necessary to modify the entry referencing the
class, and prepend the project’s ExecutableExtensionFactory.

Instead of

de.kiel.uni.informatik.ps.curry.uinonxtext.debug.impl.TraceValueDebugger

we would write (as one long line)

de.kiel.uni.informatik.ps.curry.uinonxtext.ExecutableExtensionFactory:

de.kiel.uni.informatik.ps.curry.uinonxtext.debug.impl.TraceValueDebugger

4An example of this can be seen in the class de.kiel.uni.informatik.ps.lcurry.ui.LCurryActivator
5see https://google-guice.googlecode.com/git/javadoc/com/google/inject/Singleton.html

95

https://google-guice.googlecode.com/git/javadoc/com/google/inject/Singleton.html

Chapter 5. Experiences

This is easy to forget; the consequence will generally be a null-pointer-exception
when the non-injected member is accessed.

5.4 Miscellaneous Hints for Future Developers

Ź To manage our source code, the version control system git was used. When
working on the project, it is common to switch between different versions of the
source code (using git’s functionality, e.g. by switching to different branches or
commits, or by using the stash). In such cases it is necessary and important to
properly refresh Eclipse and rebuild the project.

The developer should be aware that the complete process consists of three steps:

1. The relevant projects must be refreshed in Eclipse, to make Eclipse aware that
the file system has changed and must be re-read. The easiest way to do this
is to select the projects in the package explorer and press F5.

2. The MWE2 workflow must be executed in order to refresh the automatically
generated sources in the project. In some cases, this step can be omitted.

3. The project must be re-built. Depending on the IDE’s settings, this step might
be executed automatically.

Ź It is possible to reach states where the Curry IDE either does not build or throws
exceptions at launch. In many cases, full cleans help.

In one instance, when we tried to refactor the ui project, an even worse situation
was encountered. The project would build without errors, but when launch-
ing the Curry IDE in debug mode, innumerable exceptions are thrown. The
corresponding stacktraces showed no direct involvement of the Curry IDE’s
code.

In that case, cleaning the project did not work. Switching to any other revision
using git did not help. Manually cleaning the project directory (by deleting
the directory and cloning the git repository again) did not help. Deleting the
workspace used by the Curry IDE did not help. Instead, it was necessary to
delete certain configuration items in the settings directory of the workspace that
holds the plugin’s projects. The exact steps to remove this problem are, assuming
that workspace is the directory of the workspace containing the plugin’s projects:

1. Close Eclipse;

96

5.4. Miscellaneous Hints for Future Developers

2. Delete the directory
workspace/.metadata/.plugins/org.eclipse.core.resources;
This step removes the problem; unfortunately it also removes all projects
from the workspace. Hence;

3. Re-import the projects of the Curry IDE (and any other that were present) to
the workspace.

Needless to say that debugging such a problem is annoying and time-consuming.
If the developer ever encounters any strange problems, especially after reverting
to a state that previously worked, he/she is strongly advised to create a second,
fresh workspace and import the projects into it in order to test if the workspace
settings are responsible.

Ź In most cases, imports can be automatically added adding new code to a class.
When accessing Scala objects though (using the foo$.MODULE$ notation), this
breaks. In such cases it is necessary to manually fix the list of imports; if
necessary, both foo and foo$ must be imported.

Ź In order to compare Palkus’ IDE with the current IDE, it is highly advised to
clone the git repository twice, and use two Eclipse workspaces, in order to avoid
all the problems arising from switching revisions.

Ź One topic in plugin-development is important but easily over-looked: Threads
in the Eclipse IDE. Often, large parts of the code are executed in the UI-thread,
so problems regarding thread-safety will not be noticed. But in general, Eclipse
does of course use multiple threads, and the code in plugins might run in
different threads. Additionally, certain operations are only allowed in the UI-
thread in Eclipse, which is important if code can be executed in a non-UI context.
While we kept this topic in mind, the Curry IDE might contain “silent” problems
connected to thread-safety.

97

Chapter 6

Known Problems and Future Work

6.1 Functional Deficiencies and Bugs

6.1.1 The Curry Grammar

In Section 4.6.2 we discussed certain changes to grammar used for Curry in the IDE,
and we mentioned that the names of the rules are inconsistent with the grammar
in the Curry report. This should be fixed to allow, as the next step, to complete
the grammar in the IDE. For example, record syntax is currently not supported;
additionally, new language elements such as type classes were recently introduced
and require certain changes to the grammar.

6.1.2 Syntax Error-Messages

The error messages created by the parser generated with ANTLR are rather hard
to understand in many cases. When describing the feature in Section 3.2.4 we used
the faulty code

answer = (6*(5+2)

which contains a superfluous parenthesis and produced a perfectly understandable
error message “expected ’)’” located at the end of the expression. But, if we removed
one set of parenthesis, i.e.

answer = 6*(5+2

then the error is placed at the *-operator with the message “mismatched input
’*’ expecting RULE_END_OF_LINE”. We are not certain if or how much these
messages can be improved while using the automatically generated parser, though.

99

Chapter 6. Known Problems and Future Work

6.1.3 The Modified Token Stream

In order to implement the layouting in Curry, Marian Palkus modifies the token
stream (i.e. the output from the lexer) and creates certain “virtual” tokens that
are used for correctly implementing the grammar. To implement the debugging,
we make a modified copy of the source-code, and (indirectly) print all the tokens
of the original source code. This revealed a bug: Certain virtual tokens are not
printed as empty strings; instead, a single character of the last token is repeated.
We tried but failed to find the cause of this problem; instead, we simply check for
these tokens and do not print them.

While this workaround seems to work (the printed code for debugging did not con-
tain syntax errors anymore), it can be observed in certain cases. For example, when
retrieving the type of expressions, the output will sometimes contain additional
characters. To properly address this problem, the underlying bug must be fixed.

6.1.4 Typechecking

Syntactic Features

The type-checking code is not completed for all syntactic features in Curry. For
example, certain notations for lists are not supported yet. In these cases, no type
equations are produced for the respective type-equations and consequently, type
errors might be missed. Also, the IDE will not be able to provide a result when the
user requests the type of a specific sub-expression.

Operator Precedence

There is another more important problem with type-checking: Operator precedence
is not properly implemented. The syntax tree generated in the IDE does not respect
operator precedence, because these precedences are dynamic in Curry. In the
Curry compilers, expressions are re-structured after parsing to create syntax trees
with correct precedence, but this step is not implemented in the Curry IDE. For
syntax-checking, this creates no problem, because any source is syntactically valid
exactly if the parser that ignores precedences succeeds.

However, for type-checking, we need the correct syntax tree, because we need to
apply the types of the operators in the correct order.

100

6.2. User Interface

The expression 1+2 == True is type correct, with the implicit structure (1+2)

== True. On the other hand, if we use wrong precedences, i.e. read it as 1 +

(2==True), then the expression is not type-correct.

The only way to fix this problem is to do the same as the Curry compilers, i.e. to
re-structure expressions after parsing according to the fixity-declarations.

Multiple Equations

If a function consists of multiple equations, the different equations are currently
not connected when doing type-checking. This does not matter if there is a type
signature, but if there is non, the different equations may each be consistent but
still not compatible. The latter case is not detected currently.

foo x = (x + 1) -- foo :: Int -> Int, (locally correct)

foo x = x ++ "a" -- foo :: String -> String, also locally correct

but we cannot unify Int->Int and String->String, so the complete function is
not type-correct. This is not detected in the IDE.

6.2 User Interface

6.2.1 Curry Analysis View

The user interface can be improved in several cases. One example is the Curry
Analysis View that is very basic at the moment. It might be useful to allow the results
to be sorted by the Curry function names, and marking the results as out-dated
if the respective code has changed (which might be hard to determine because
analysis might not be local).

101

Chapter 6. Known Problems and Future Work

6.2.2 The Explorer

We removed the Curry Project Explorer from the interface, because it was too buggy
in its presentation. Still, certain elements, like the wizards for Curry modules, are
not directly accessible in the default project explorer at the moment. While this
does not prevent the creation of new modules (the user can either access the wizard
via the menu bar, or simply create a .curry file), the usability of the project explorer
can certainly be improved.

6.2.3 Interoperability with other languages

The features of the Curry IDE are meant for Curry, but the user might want to have
an Eclipse installation that works for multiple languages. For example, we do not
want a Curry-specific context menu item when editing Java source-code.

To implement this, it is necessary to take the type of the file being edited into
account, as well as the opened perspective. When developing the Curry IDE, we did
not focus on such things, so in the future it should be tested if any Curry-specific
items in the interface are visible when they should not be.

6.3 Testing

While we are not proud of the fact, we feel obliged to admit that there is a distinctive
lack of testing of both the features we added to the IDE and of those our predecessor
introduced. However, it should be mentioned that many features that involve the
user-interface, are hard to test, because simple unit tests are not feasible.

6.4 Future Work

6.4.1 Better Usability for CASS

To improve the usability of the analysis integration, it should be possible to start the
analysis server from within the IDE. For this purpose, an external tools configuration
could be used. This addition could then also remove the necessity to restart
Eclipse to refresh the connection to the analysis server, as the connection could be
automatically refreshed when launching the external tool.

102

6.4. Future Work

6.4.2 Integration of the Debugging Module in the IDE’s Feature

Currently, the Curry library EclipseDebugWriter is not integrated directly in the
feature. Consequently, it must be distributed separately; and additionally, its path
must be added manually to a project before the debugging functionality will work.
It should be possible to automate these steps.

6.4.3 Ideas for New Debuggers

We have two ideas for new kinds of debuggers. The first idea is to improve the
existing debugger for observations. Currently, it is necessary to start an external
user-interface to display the results of this kind debugger. It would be nice if this
functionality was integrated directly into the IDE. This would require that the IDE
interprets and displays the data written by the COOSy library when debugging. As
we mentioned above, we started implementing this feature by slightly modifying
the COOSy library in order to use the debugging TCP stream as output, but we
can not display the results in the IDE yet.

A second idea is a truly new type of debugpoint, inspired by the imperative
breakpoint: It is possible to implement breakpoints in Curry, i.e. to interrupt the
execution of the program temporarily in order to inspect its state. While it would
not be possible to freely inspect any variables, the user could combine such a
functionality with observations in order to gather additional information about
the order of the evaluation of specific expressions. To implement this idea, the
debugging functions would not only send messages over TCP to Eclipse, but also
wait for a reply. The user can control when the reply will be sent, and thus controls
when the execution of the Curry program continues. Unfortunately, because
the TCP stream would be used in a different fashion than for the other types of
debuggers, this addition would require a slight change to the debugger interface.

103

Chapter 7

Conclusion

The Curry IDE plugin for the Eclipse IDE, originally programmed by Marian
Palkus, was extended by two important features: Type-checking and observational
debugging. For the latter, we introduced a extension point that allows future
additions. Furthermore, the IDE was improved in many aspects; we completed
the integration of the external program analysis tool CASS and allow the user to
launch the Curry compiler from within the IDE, parsing any error messages that
might occur.

Our work took more time than initially expected. First and foremost, we encoun-
tered various unexpectable and time-consuming issues when integrating Scala; in
hindsight – and in our opinion – the integration of Scala unfortunately was not
worth the effort. Secondly, we needed to get familiar with many different topics:
The existing code base, the Eclipse framework, the Xtext framework and details
about the Curry language, to name the major ones.

On the other hand, while there is a significant learning period, once we were
familiar with the Eclipse and Xtext frameworks, it was surprisingly easy to add
new functionality.

We achieved important steps towards better usability of the plugin by fixing bugs in
the interface and by bringing the user experience closer to the standard, as defined
by other plugins for major languages like Java, C++ or Scala. Examples for the
latter are the removal of the separate project explorer and the use of run/debug
modes for launching (instead of the external tool).

On the other hand, we also tried to improve the quality of the plugin’s source code
by restructuring the project and by refactoring or rewriting certain classes. We
hope that this, together with our description of the general working of plugins and
the specific structure of the project, will allow future maintainers to get started
quickly.

105

Bibliography

Literature

[Bra+04] B. Braßel et al. “Observing functional logic computations”. In:
Proc. of the Sixth International Symposium on Practical Aspects
of Declarative Languages (PADL’04). Springer LNCS 3057, 2004,
pp. 193–208.

[CS09] Diego Cheda and Josep Silva. “State of the practice in algorith-
mic debugging”. In: Electronic Notes in Theoretical Computer Sci-
ence 246 (2009). Proceedings of the 17th International Workshop
on Functional and (Constraint) Logic Programming (WFLP
2008), pp. 55–70. issn: 1571-0661. doi: http://dx.doi.org/10.1016/j.

entcs.2009.07.015. url: http://www.sciencedirect.com/science/article/pii/
S1571066109002370.

[Han13] Michael Hanus. Notizen zur Vorlesung: Deklarative Program-
miersprachen. 2012/2013.

[HS14] M. Hanus and F. Skrlac. “A modular and generic analysis
server system for functional logic programs”. In: Proc. of the
ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program
Manipulation (PEPM’14). ACM Press, 2014, pp. 181–188.

[Mic12] Hanus Michael. Curry: An Integrated Functional Logic Lan-
guage (Vers. 0.8.3). Available at http://www.curry- language.org.
2012.

[ML05] Jeff McAffer and Jean-Michel Lemieux. Eclipse Rich Client
Platform: Designing, Coding, and Packaging Java Applications.
Upper Saddle River, NJ: Addison-Wesley, 2005. isbn: 978-0-321-
33461-9.

[MM82] Alberto Martelli and Ugo Montanari. “An efficient unification
algorithm”. In: TRANSACTIONS ON PROGRAMMING LAN-
GUAGES AND SYSTEMS (TOPLAS) 4.2 (1982), pp. 258–282.

107

http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.07.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.07.015
http://www.sciencedirect.com/science/article/pii/S1571066109002370
http://www.sciencedirect.com/science/article/pii/S1571066109002370
http://www.curry-language.org

Bibliography

[OSV08] M. Odersky, L. Spoon, and B. Venners. Programming in Scala.
Artima, 2008. isbn: 9780981531601. url: http://books.google.de/

books?id=MFjNhTjeQKkC.

[Pal12] Marian Palkus. An Eclipse-Based Integrated Development En-
vironment for Curry. Diploma Thesis. 2012.

[Pop06] Bernard James Pope. A Declarative Debugger for Haskell. Doc-
toral Thesis. 2006.

Online Resources

[web:antlr] Terence Parr. ANother Tool for Language Recognition. url:
http://www.antlr.org/.

[web:cass] Michael Hanus. CASS: A Curry Analysis Server System. url:
http://www-ps.informatik.uni-kiel.de/currywiki/tools/cass (visited on
Mar. 20, 2014).

[web:coosy] Micheal Hanus. The Curry Object Observation System. url:
http://www.informatik.uni-kiel.de/~pakcs/COOSy/ (visited on Mar. 20,
2014).

[web:curryimpls] Michael Hanus. Implementations of Curry. url: http://www-

ps.informatik.uni-kiel.de/currywiki/implementations/overview (visited
on Mar. 20, 2014).

[web:eclwiki] FAQ Where did Eclipse come from? url: http://wiki.eclipse.org/
index.php?title=FAQ_Where_did_Eclipse_come_from? (visited on Feb. 27,
2014).

[web:ggsngltn] javadoc for com.google.inject.Singleton. url: https://google-guice.
googlecode.com/git/javadoc/com/google/inject/Singleton.html (visited
on Mar. 23, 2014).

[web:gguice] google-guice. url: http://code.google.com/p/google-guice/ (visited
on Mar. 23, 2014).

[web:hood] The Functional Programming Group. HOOD. url: http://www.

ittc.ku.edu/csdl/fpg/software/hood.html.

[web:kics2] Michael Hanus. KiCS2: Compiling Curry to Haskell. url: www-
ps.informatik.uni-kiel.de/kics2/ (visited on Mar. 23, 2014).

108

http://books.google.de/books?id=MFjNhTjeQKkC
http://books.google.de/books?id=MFjNhTjeQKkC
http://www.antlr.org/
http://www-ps.informatik.uni-kiel.de/currywiki/tools/cass
http://www.informatik.uni-kiel.de/~pakcs/COOSy/
http://www-ps.informatik.uni-kiel.de/currywiki/implementations/overview
http://www-ps.informatik.uni-kiel.de/currywiki/implementations/overview
http://wiki.eclipse.org/index.php?title=FAQ_Where_did_Eclipse_come_from?
http://wiki.eclipse.org/index.php?title=FAQ_Where_did_Eclipse_come_from?
https://google-guice.googlecode.com/git/javadoc/com/google/inject/Singleton.html
https://google-guice.googlecode.com/git/javadoc/com/google/inject/Singleton.html
http://code.google.com/p/google-guice/
http://www.ittc.ku.edu/csdl/fpg/software/hood.html
http://www.ittc.ku.edu/csdl/fpg/software/hood.html
www-ps.informatik.uni-kiel.de/kics2/
www-ps.informatik.uni-kiel.de/kics2/

Online Resources

[web:mcc] Wolfgang Lux. The Münster Curry Compiler. url: http://danae.
uni-muenster.de/~lux/curry/ (visited on Mar. 23, 2014).

[web:objjs] @marius @stevej and @lahosken. Java + Scala interoperability.
url: http://twitter.github.io/scala_school/java.html (visited on
Mar. 11, 2014).

[web:osgi] OSGi Alliance. url: http://osgi.org (visited on Mar. 23, 2014).

[web:pakcs] Michael Hanus. PAKCS: The Portland Aachen Kiel Curry Sys-
tem. url: http://www.informatik.uni- kiel.de/~pakcs/ (visited on
Mar. 23, 2014).

[web:scala] url: http://www.scala-lang.org/ (visited on Mar. 11, 2014).

[web:w3xml] World Wide Web Consortium. Extensible Markup Language
(XML) 1.0 (Fifth Edition). url: http://www.w3.org/TR/2008/REC-xml-

20081126/ (visited on Mar. 23, 2014).

[web:xtend] url: http://www.eclipse.org/xtend/ (visited on Mar. 12, 2014).

[web:xtext] url: http://www.eclipse.org/Xtext/ (visited on Mar. 12, 2014).

[web:xtextrefs] itemis Leipzig. Xtext Cross References and Scoping – an Overview.
url: http://blogs.itemis.de/leipzig/archives/776 (visited on Mar. 23,
2014).

109

http://danae.uni-muenster.de/~lux/curry/
http://danae.uni-muenster.de/~lux/curry/
http://twitter.github.io/scala_school/java.html
http://osgi.org
http://www.informatik.uni-kiel.de/~pakcs/
http://www.scala-lang.org/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.eclipse.org/xtend/
http://www.eclipse.org/Xtext/
http://blogs.itemis.de/leipzig/archives/776

Appendix A

Glossary/Definitions

REPL Read-Eval-Print-Loop - refers to an interactive command-line session of an
interpreter/compiler where the user can evaluate expressions or execute statements
of the respective language. The result is printed, and the the user can input a new
expression. In most cases, it is possible to load and use libraries in a REPL. On
the other hand, not all languages support the declaration of objects (e.g. functions)
that can be used in subsequent commands: The Scala compiler does support that,
but the interpreters for Haskell and Curry (i.e. Ghci, PAKCS and KICS2) do not.
Consequently, the syntax allowed in the REPL is only a subset of the respective
language, in those cases.

project Might informally refer to the whole Curry IDE, but has a specific formal
meaning when talking about projects in Eclipse, see Section 2.2.1.

plugin Just like the term project, the Curry IDE may informally be called a plugin,
but the term has specific meaning in Eclipse terminology, see Section 2.2.2: Eclipse
is a feature consisting of a number of plugins.

feature In Eclipse terminology, the additional “packages” that provide new function-
ality, such as the Curry IDE or the Scala IDE, are called features. See Section 2.2.2

MWE2 Modeling Workflow Engine 2 - one of the tools used by Xtext; used to manage
the automatic generation of source code, for example the parser generator. See
Section 2.3.2

EMF Eclipse Modeling Framework - used by Xtext to control the automatic genera-
tion of Java sources.

IDE Integrated Development Environment

EBNF Extended Backus-Naur Form - meta-language for the notation of context-free
grammars.

111

Appendix A. Glossary/Definitions

UI User Interface

GUI Graphical User Interface

API Application Programming Interface

xml Extensible Markup Language - a markup language both human-readable and
machine-readable. Used in various cases as the format for configurations in Eclipse.

build/builder In Eclipse, a build creates some form of product from the files in a
project. In most cases, a build will execute the compiler of the respective language
(and a linker, if necessary). For Curry, the builder updates the type cache, but does
not invoke the compiler.

lazyness lazy evaluation is an evaluation strategy which delays the evaluation
of expressions (i.e. it is non-strict) and avoids multiple evaluations of the same
expressions by sharing. Used by Haskell, and in a modified fashion (see needed
narrowing) by Curry.

needed narrowing The evaluation strategy used by Curry. This strategy, while
distinct from Haskell’s, can be called lazy because it is similarly non-strict and uses
sharing. Additionally, it defines how free variables are handled.

ANTLR ANother Tool for Language Recognition - The parser generator used by Xtext
and thus indirectly used when developing the Curry IDE.

perspective User-interface concept in Eclipse, used to describe a configuration of
language- or topic-specific elements (views). See Section 2.2.4

view Sub-window inside the Eclipse IDE. See Section 2.2.4

112

Appendix B

Framework and Library Versions

B.1 Eclipse and its Plugins

Eclipse IDE 4.3 (Kepler)
Eclipse SDK 2.0.0
Scala IDE 3.0.1
Xtext SDK 2.4.2
Xtend M2E extensions 2.4.2
MWE 2 language SDK 2.4.0

B.2 Curry Compilers and Tools

PAKCS 1.11.3
KICS2 0.3.0
SWI-Prolog 6.6.0 (used by PAKCS)
GHC 7.6.3 (used by KICS2)

B.3 Miscellaneous

Scala 2.10.2
Java 1.7.0
OpenJDK Runtime Environment 2.4.5 (64-Bit, IcedTea)

113

Appendix C

User Guide

C.1 Plugin Installation and Basic Setup

Preconditions: We expect that the user’s system has working installations of the
following software:

Ź A Curry compiler

Ź Java runtime

Ź The Eclipse IDE; he most basic package, i.e. “Eclipse Standard” from
https://www.eclipse.org/downloads/ should be sufficient.

We will further assume that the update site containing the Curry plugin feature is
available either locally or online.

The installation of the plugin consists of the following steps:

1. Start the Eclipse IDE. The user will have to choose a workspace to use. Even
though the workspace does not matter for installation (i.e., the installation will
not be workspace-local) the user might want to create a separate workspace for
Curry projects already.

2. In the Help menu, choose the option “Install new Software”.

3. Add the update site of the Curry plugin. In the dialog, choose the option local
and locate the update site folder (in the git repository, the folder is named
CurryIdeUpdateSiteBin). Of course, future maintainers might choose a different
location or use an archive.

4. Select the newly added update site. Select the plugin and press “next”.

5. Confirm everything.

115

https://www.eclipse.org/downloads/

Appendix C. User Guide

6. Restart Eclipse, for good measure. The plugin should now be installed.

7. A first step for configuring the Curry IDE is to define that Curry library settings.
This can be done in the Eclipse preferences, in the Curry item. You should enter
the lib directory in the user’s PAKCS or KICS2 installation.

The library can be assigned to Curry projects individually. The default library
will be used as the initial value when creating new Curry projects.

C.2 Creating a Hello-World-Curry-Project

For this and the following descriptions we will assume that the Curry plugin is
installed in the Eclipse IDE.

1. Create a new project. The respective wizard can be started via the menu
File/New/Curry Project. After this step, there should be a new, empty project in
the workspace.

2. Add a module to the project. Either select the project and use the menu
File/New/Curry Module to create the module Main or right-click the project and
create a file Main.curry

3. Open Main.curry and write

main = putStrLn "Hello, World!"

Note that syntax errors (if you make any) should be highlighted at this point.

If identifiers from the standard libraries (including Prelude) can not be resolved,
the project probably lacks appropriate Curry library settings. To fix this, first
make sure that Curry libraries are defined globally (as described at the end of
the last section); then, choose the Curry library from the project’s preferences
(in the Curry sub-item).

C.3 Launching a Project

To launch the sample program from the last section, you can either right-click
on the project or on a specific module, and select Run As/Curry Module from the

116

C.4. Typechecking and Analyses

context menu. This will automatically generate a new run configuration with the
default run-time-command set to “PAKCS”.

If a specific modules is selected when launching, this module will be loaded
automatically into the Curry compiler. Furthermore, this preference will be stored
in the launch configuration, so that future launches will load that module, unless a
different module is explicitly chosen. If no module was automatically loaded, the
user can load the module Main by typing “:l Main” in the Curry REPL.

The REPL will be opened in the console view. For our example, assuming that
module Main is loaded, we can execute the main function:

Main> main

Hello, World!

Main>

C.4 Typechecking and Analyses

CASS is used both to manually execute analyses and to retrieve typing information.
Consequently, the user must start the analysis server before starting the Eclipse
IDE, if he intends to use these features. Because typing-information is cached, type
checking might work to a certain degree if the analysis server is not running, but
in general (and especially for any functions that are newly added or modified),
type-checking will stop working.

To execute analyses, the context menu in the editor can be used, i.e. the user must
open a specific module and right-click in the editor view. “Curry Analyses” will be
one item in the context menu. When a specific function is selected, the specified
analysis will be executed for that function only; the output will contain only the
result. On the other hand, if no specific function was selected, the analysis will
encompass all elements of the current module. In that case, the output will list the
functions in the module and the result for each one.

Note that the type-checking functionality uses a type-cache that is only updated
when the project on project builds. Only the next type-check after the build will
use the updated cache. Consequently, sometimes two extra steps are necessary to
retrieve error messages:

117

Appendix C. User Guide

Assume, we add, without intermediate builds, the following lines:

a :: Int

a = "abc"

While editing, the type cache will not yet contain any information about a; the
type-error will not be recognized. To retrieve the error, we need to firstly save
the module (which will update the cache), and secondly make any change to
the module (which will trigger a new type-checking run).

C.5 Using the Debuggers

Precondition for any kind of debugging is that the program compiles, i.e. if the
compiler returns errors when starting in run-mode, the debug-mode will not work
either (and it might print weird errors).

To implement the debugging, the Curry IDE internally uses two libraries. The first
is called EclipseDebugWriter (see Appendix F) and contains some Eclipse-specific
utility functions for debugging. This library currently is not integrated into the
plugin itself, and must be installed separately (it is, however, in the git repository, in
the folder curry_src/eclipsedebugging). The second library is the Observe library
from the COOSy tool. It can be found in the sub-directory tools/coosy/ in both
the PAKCS and the KICS2 installation directory. The directory containing both
modules must be added as external paths; otherwise, the debugging-launch will not
work.

To add the external paths, choose the corresponding tab in the Curry preferences
of the Curry project that is to be debugged. Then, add the directory containing
EclipseDebugWriter.curry and the directory containing Observe.curry.

The IDE provides different kinds of debuggers, but the basic process of creating
the debugpoints and launching in debug-mode is the same:

1. Select an expression that you want to somehow trace or observe at run-time.

2. Right-click the selection, and, in the context menu, choose “add debugpoint for
selection”. This will open the the Curry Debugpoints view.

118

C.5. Using the Debuggers

3. Choose the type of debugger to use for the new debugpoint by using the
drop-down menu in the list of debugpoints.

4. Launch the Curry program in debug-mode; this will work the same way as the
run-mode, the only difference is to choose “Debug as” instead of “Run as”. This
will open a debugging console that works just as the normal console.

5. Execute any functions of your program. If any expression that has a correspond-
ing debugpoint is evaluated, some form of side-effect will trigger.

C.5.1 Traces

When the type of expression debugger is set to trace, the side-effect is a simple
notification in the Curry Trace Debugging view. On the other hand, if the type is
traceValue, the value of the respective expression will be evaluated by converting it
to a string (using show). This value will also be added to the list of events in the
Curry Trace Debugging view.

Note that it is possible to highlight the expression connected to any of the events in
the Trace Debugging view by double-clicking the line.

C.5.2 Observations

To view the observations recorded when using the observe type of debugger, the
user has to open the corresponding program. This can be done by typing “:coosy”
in the Curry REPL of the debugging session. In the tool, the user has to press the
“refresh” button to get the actual output.

119

Appendix D

Plugin Development Guide

D.1 Setting up the Eclipse IDE

To set up Eclipse in order to start developing on the Curry IDE plugin, certain
preconditions must be met. Firstly we assume that the same basic items as described
in the user guide are installed, i.e. a Curry compiler, the Java run-time and the
Eclipse IDE.

In addition to that, the development will require:

Ź The Scala binaries (from http://scala-lang.org/download/). We will assume that
Scala is set up in a way so that the Scala compiler is on the system PATH.

Ź A series of plugins in the Eclipse IDE:

The MWE 2 language SDK

We used the update site at http://download.eclipse.org/modeling/emf/emf/updates/releases/

Ź Scala IDE for Eclipse and Scala IDE for Eclipse dev support

We used the update site at http://download.scala-ide.org/sdk/e38/scala210/stable/site

Ź Xtext SDK and Xtend M2E extensions

Update site at http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/

It should be noted that it might be preferable not to install the Curry IDE plugin
in the installation of the Eclipse IDE that is used for development on the plugin,
because this might cause conflicts when debugging.

With this setup, it should be possible to create both Scala applications and use
Xtext. Next, we will see how the existing projects can be imported.

121

http://scala-lang.org/download/
http://download.eclipse.org/modeling/emf/emf/updates/releases/
http://download.scala-ide.org/sdk/e38/scala210/stable/site
http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/

Appendix D. Plugin Development Guide

D.2 Opening the Curry IDE Projects

The first step is to choose a workspace to use for the development on the plugin; we
recommend a separate workspace that will hold the various projects that constitute
the plugin.
We assume that the developer has cloned the git repository, or has access to the
source files (the folder containing the plugin’s projects). These projects must now
be imported into the workspace (in the menu File/Import). For development, we
will need the five projects

Ź de.kiel.uni.informatik.ps.curry.CurryIDE

Ź de.kiel.uni.informatik.ps.curry.CurryIDE.sdk

Ź de.kiel.uni.informatik.ps.curry.CurryIDE.tests

Ź de.kiel.uni.informatik.ps.curry.CurryIDE.ui

Ź de.kiel.uni.informatik.ps.curry.CurryIDE.uinonxtext

With the initial setup, there will be compilations error, because the auto-generated
sources are missing.

D.3 Building the Curry IDE

In general, a reasonable first step is to refresh all projects in the workspace, to ensure
that changes in the file-system are reflected in Eclipse’s caches.
The next step is to run the MWE2 workflow. This can be done by right-clicking
on the file GenerateCurry in the package de.kiel.uni.informatik.ps.curry in the
project CurryIDE and choosing Run As/MWE2 workflow.
When this step is finished, the project must be built. By default, a build will be
executed automatically; otherwise, it can be started in the project menu of the IDE.
When the build is complete, there should be no more errors in the plugin’s projects.
There will, however, be a considerable amount of warnings.
Note that it is possible, especially when modifying Scala source code, that the build
fails even though it should not. In such cases it often helped to execute a clean for
all projects after the workflow and before the build. However, it is important not to
start a clean while the workflow is executing, because the project is not properly
locked and thus this will lead to errors.

122

D.4. Running the Curry IDE directly

D.4 Running the Curry IDE directly

The plugin can be tested directly: While developing, it is not necessary to deploy
the plugin to test it, it can be launched from Eclipse, just like a custom application
(for example, in Java) can be launched. It is possible to either use run-mode or
debug-mode for these launches. To execute a launch, the user can right-click on
any of the plugin’s projects and choose Eclipse Application in the Run As or the
Debug As menu.

The launch will start a second instance of the Eclipse IDE. In the launch configura-
tion, the user can define the plugins that will be available in this IDE; depending
on the setup used in the “parent” instance, the develop might want to disable
certain features (because they are unnecessary in the Curry IDE and slow down
the launch). Keep in mind, however, that the Curry IDE does depend on various
other plugins that must not be removed.

When changing the source-code, a running instance of the plugin will be updated
by Eclipse. In the cases where this is not possible (e.g. when the structure has
changed too much), the user will be notified with a dialog.

D.5 Deploying the Curry IDE

Because we encountered several problems when deploying the project, we reverted
to a rather “conservative” approach. This means certain steps might be unnecessary,
but they certainly to not cause additional problems either.

1. Make sure that all plugin-projects compile successfully. To be absolutely certain,
the user might consider to re-execute the workflow and clean and rebuild the
projects.

2. In the CurryIdeUpdateSite, remove any contents but the site.xml file.

3. Open the site.xml. In the Site Map tab, remove any entries.

4. Then, create a new category with id and name “Curry”. To that category, add
the feature
de.kiel.uni.informatik.ps.curry.CurryIDE.sdk.

5. Click “Build All”

123

Appendix D. Plugin Development Guide

6. Next, export the update site. To do this, right-click the CurryUpdateSite project,
select export, and choose Deployable features in the Plug-in Development category.
As the output folder, we use the CurryUpdateSiteBin folder in the git reposi-
tory. In the options, it is imported to enable “Use class files compiled in the
workspace”. Now, execute the export.

7. The folder CurryUpdateSiteBin can now be used for installation in a separate
Eclipse installation.

It should be noted that the CurryUpdateSite (not Bin) is accessible as an update-site
itself. While installing the plugin is possible from this location as well, the plugin
did not function reliably (because of unknown problems locating Scala classes at
run-time).

124

Appendix E

Project Structure

E.1 project de.kiel.uni.informatik.ps.curry.CurryIDE

The core project that contains the specifications for Curry.

relative path contents

/ The Xtext grammar file, the configurations for the MWE2 work-
flow, google guice dependency injection and and basic plugin
configuration.

debug.printer The printer that converts the syntax tree back source-code, used
for debugging purposes. The IExpressionCodePrinter interface
is used in the interaction between the printer and expression
debuggers.

description* Resource descriptions are an Eclipse concept for identifying the
elements of a project. One example where this is relevant is
when an import-statement is mapped to the actual file contain-
ing that module.

formatting Theoretically used to define auto-formatting; practically empty
at the moment.

generator Theoretically used for automatic creation of resources (for ex-
ample: an empty module template); empty at the moment.

linking Manages the cross-referencing of items between multiple mod-
ules.

naming Creates qualified names for the elements of modules.
parser The modifications to the lexer necessary to handle Curry’s

layouting.
scoping Scopes are used when resolving the cross-references of iden-

tifiers. For example, a locally defined variable has a limited
scope.

125

Appendix E. Project Structure

relative path contents

typecheck The core of the type-checking functionality, plus relevant data
structures.

types The representation of the types in Curry, plus a parser to convert
strings to these types.

utils Miscellaneous helper functions
validation The manual validations (i.e.: in addition to the default Xtext

syntax-checking etc.) for Curry.
lcurry* a different parser for lcurry (literate curry) files.

E.2 project de.kiel.uni.informatik.ps.curry.CurryIDE.ui

Contains all Xtext-specific UI-elements. Depends on the CurryIDE project. Com-
pared to Palkus’ IDE, this project is nearly unmodified; hence, we refer to his
description of the contents: Appendix C.1.2 in [Pal12]

E.3 project
de.kiel.uni.informatik.ps.curry.CurryIDE.uinonxtext

Contains UI-elements and front-end-functionality that is not connected to Xtext.
Depends on both the CurryIDE and the CurryIDE.ui projects, but only uses one
single helper class of the latter.

relative path contents

/ Configuration of the plugin and for dependency injection;
furthermore, the Curry perspective is defined here, and the
BuildCheck class that handles the updating of the type-cache
whenever a Curry project is built.

analysis Several UI-elements for the analysis functionality and the im-
plementation of the back-end, i.e. the communication with the
analysis server.

analysis.iface The interface for the visualizations for analyses.
analysis.impl The class CurryAnalysisTextVisualization implements the in-

terface above and features a simple text-based output for anal-
yses.

126

E.3. project
de.kiel.uni.informatik.ps.curry.CurryIDE.uinonxtext

relative path contents

curryconsole The console class (and certain relevant utilities) that is used when
launching a Curry project (both for running and debugging).

debug Similar to the setup for analyses, this package contains the UI-
elements for the debugging functionality and the core implemen-
tation for handling debugpoints and for organizing the launch in
debug-mode. Also contains the TCP server which receives and
forwards the debugging output.

debug.iface The interface for expression-debuggers consisting of two classes.
debug.impl Six implementations of the expression-debugger interface; one

of which (ObservationDebuggerExternal) is unfinished and not
active, and one only an example (ZeroDebugger).

explorerview The Curry explorer view which we deactivated. This view is not
accessible by the Curry IDE’s user anymore. We retained the
respective classes to review its functionality.

launch The Curry launch configuration, including the respective UI
elements (the configuration’s forms).

preferences Both the global and the project-specific configuration for Curry.
typeinferrer The utility that allows the user to retrieve the type of any ex-

pression in the Curry code. Does not contain the type-inference
implementation.

typing Higher-level management of the type-cache functionality; han-
dles both the persistence of the type-cache and the mapping from
projects to their specific caches.

utils Some helper classes that are used in multiple places.

127

Appendix F

The Debugging Code Curry
Implementation

module EclipseDebugWriter where

import Unsafe(unsafePerformIO)

import IO(Handle, hPutStrLn, hFlush)

import Socket

import Global(Global, GlobalSpec(..), global, readGlobal)

debugPort = 25025

debugSocketHandleGlobal :: Global Handle

debugSocketHandleGlobal = global

(unsafePerformIO (connectToSocket "localhost" debugPort)) Temporary

-- message must not contain newlines

write :: String -> String -> IO ()

write logId message = do

handle <- readGlobal debugSocketHandleGlobal

-- if the user ignored the restriction, just send the first line.

hPutStrLn handle $ logId ++ " " ++ (takeWhile (\x -> x /= ’\n’) message)

hFlush handle

-- message must not contain newlines

genTrace :: (String -> IO ()) -> String -> a -> a

genTrace logWriter message x = unsafePerformIO $ do

logWriter message

return x

129

Appendix F. The Debugging Code Curry Implementation

traceValue :: (String -> IO ()) -> a -> a

traceValue logWriter x = unsafePerformIO $ do

logWriter (show x)

return x

130

Appendix G

A Curry Module containing Test Cases
for Type Errors

module TypeErrors where

-- contains some example functions having type errors.

-- purpose:

-- to test the type errors and inspect the exact

-- messages generated.

-- two sections:

-- 1) some common functions used later

-- 2) a set of outcommented sections, each containing one type error

-- if implemented

-- HELPER FUNCTIONS --

expectingInt :: Int -> Int

expectingInt x = x

expectingString :: String -> Int

expectingString = length

expectingTwice :: a -> a -> a

expectingTwice = const

exampleIntList :: [Int]

exampleIntList = [1,2,3,42]

131

Appendix G. A Curry Module containing Test Cases for Type Errors

exampleString = "Hello, World!"

applyFunction :: (a -> b) -> a -> b

applyFunction = id

-- TYPE ERROR EXAMPLES --

-- note that for certain cases, you will need to save the

-- document once and then modify it in some way to actually

-- get a type error message.

error1 :: Int

error1 = ’a’

error2 = expectingInt ’a’

error3 = expectingString exampleIntList

error4 = expectingString ’a’

error5 = expectingTwice 1 ’a’

error6 = expectingTwice ’a’ 1

error7 = if ’a’ then 1 else 2

error8 :: Int -> Char

error8 x = id x

error9 :: Int

error9 = applyFunction (\x -> ’a’)

132

	Introduction
	Motivation
	Curry
	Basis: Thesis by Marian Palkus

	Similar Software
	Goals

	Foundations and Technologies
	Curry
	Basic Structure of Curry Programs
	Logical Aspects of Curry
	Ecosystem for Curry
	Debugging in Curry

	Eclipse IDE
	Source Files, Projects and Workspaces
	More Terminology: Projects, Plugins, and Features
	Plugin Details and Extension Points
	User-Interface Concepts
	Building and Launching

	Xtext
	Static Structure of an Xtext Project
	Generation Workflow
	Google Guice
	The Xtext Grammar File

	CASS
	COOSy
	Scala

	Old and New Features
	Existing Features
	Basic IDE features
	Syntax Checking
	Linking and Scoping
	GUI elements
	Curry Analysis

	New Features
	Curry Analysis
	Curry Console and Error Annotations
	Typechecking/Typeinference
	Debugging

	Implementation
	Structure of the Project
	The Analysis View
	The Curry Console and Error Marking
	Type Checking
	The Type Cache
	Type Cache Data Structure
	Control Flow and Code Structure of the Type Checking
	The Type Inference Implementation

	Debugging
	Basic Process of the Debugging in the IDE
	Additional Potential Issues and Design Decisions
	Code Structure and Control Flow for Debugging
	The Expression Debugger Interface
	Expression Debugger Implementations

	Overview of Changes
	The Project's Structure
	Other Changes not mentioned yet

	Experiences
	Scala
	Interaction between Scala and Xtext
	Interaction between Scala and Java
	Interaction between Scala and Eclipse
	General Observations about Scala

	Eclipse and Xtext
	Guice Dependency Injection Framework
	Miscellaneous Hints for Future Developers

	Known Problems and Future Work
	Functional Deficiencies and Bugs
	The Curry Grammar
	Syntax Error-Messages
	The Modified Token Stream
	Typechecking

	User Interface
	Curry Analysis View
	The Explorer
	Interoperability with other languages

	Testing
	Future Work
	Better Usability for CASS
	Integration of the Debugging Module in the IDE's Feature
	Ideas for New Debuggers

	Conclusion
	Bibliography
	Glossary/Definitions
	Framework and Library Versions
	Eclipse and its Plugins
	Curry Compilers and Tools
	Miscellaneous

	User Guide
	Plugin Installation and Basic Setup
	Creating a Hello-World-Curry-Project
	Launching a Project
	Typechecking and Analyses
	Using the Debuggers
	Traces
	Observations

	Plugin Development Guide
	Setting up the Eclipse IDE
	Opening the Curry IDE Projects
	Building the Curry IDE
	Running the Curry IDE directly
	Deploying the Curry IDE

	Project Structure
	project de.kiel.uni.informatik.ps.curry.CurryIDE
	project de.kiel.uni.informatik.ps.curry.CurryIDE.ui
	project de.kiel.uni.informatik.ps.curry.CurryIDE.uinonxtext

	The Debugging Code Curry Implementation
	A Curry Module containing Test Cases for Type Errors

