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verfasst und keine anderen als die angebenen Quellen und Hilfsmittel verwendet

habe.

Kiel, den



ii



Contents

1 Introduction 1

1.1 Declarative Debugging . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Declarative Debugging by Strict Evaluation . . . . . . . . . . 5

1.3 Lazy Call-By-Value Evaluation . . . . . . . . . . . . . . . . . 7

1.4 The Structure of This Work . . . . . . . . . . . . . . . . . . . 8

2 On Recursion 9

2.1 Recursive Declarations and Evaluation Order . . . . . . . . . 9

2.2 The Non-locality of Non-sequentiality . . . . . . . . . . . . . 10

2.3 Cyclic references . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Removing Recursion . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Natural Semantics 19

3.1 A Natural Semantics for Lazy Evaluation . . . . . . . . . . . 19

3.2 What Oracles Must Contain . . . . . . . . . . . . . . . . . . . 24

3.3 Encoding the Program Structure in Identifiers . . . . . . . . . 25

3.4 Language λ?! . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Non-strict Oracle Creation . . . . . . . . . . . . . . . . . . . . 30

3.6 Lazy Call-by-Value Evaluation . . . . . . . . . . . . . . . . . 38

3.7 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . 41

4 Implementation of Oracle Generation 55

4.1 Implementing Oracles as Lists . . . . . . . . . . . . . . . . . . 55

4.2 Instrumenting Haskell Code . . . . . . . . . . . . . . . . . . . 57

4.3 Transforming Cyclic Declarations . . . . . . . . . . . . . . . . 60

4.4 A Small Example . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Debugging by Asking the Oracle 67

5.1 Lazy Call-by-Value Evaluation . . . . . . . . . . . . . . . . . 67

5.2 Transforming Cyclic Declarations . . . . . . . . . . . . . . . . 71

5.3 Adding Debugging Functionality . . . . . . . . . . . . . . . . 73

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

iii



iv CONTENTS

6 Conclusion 79

6.1 Practical Experiences . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 84

A Lisp-like Declarations 87

B Reference Implementation 91

B.1 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.2 Implementation of State Monad . . . . . . . . . . . . . . . . . 105
B.3 Oracle Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C Contents of the Supplemental CD-ROM 109



List of Figures

1.1 Evaluation dependence tree . . . . . . . . . . . . . . . . . . . 4

3.1 Natural semantics for lazy evaluation . . . . . . . . . . . . . . 22
3.2 Modified natural semantics for lazy evaluation . . . . . . . . . 26
3.3 Example of lazy evaluation . . . . . . . . . . . . . . . . . . . 27
3.4 Syntax of language λ?! . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Rules for non-strict oracle creation . . . . . . . . . . . . . . . 32
3.6 Example of non-strict oracle creation . . . . . . . . . . . . . . 33
3.7 Rules for Lazy Call-by-Value evaluation . . . . . . . . . . . . 39
3.8 Example of Lazy Call-by-Value evaluation . . . . . . . . . . . 40

5.1 Translation scheme for Lazy Call-by-Value evaluation . . . . 71

6.1 Example program . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



vi LIST OF FIGURES



Chapter 1

Introduction

The debugging of programs written in non-strict functional languages re-
quires sophisticated techniques that go beyond simple observation of pro-
gram states, as it is common practice in the debugging of imperative pro-
grams. One approach, called declarative debugging, has been successfully
taken in several debuggers for declarative programming languages: The de-
pendencies between intermediate values are displayed, so that the origin of
wrong results can be located.

Often declarative debuggers collect data by tracing all computations,
allowing the collected data to be analyzed after the program has terminated.
But memorizing all intermediate results can lead to big data structures.
As an example, the Haskell debugger HAT [Sparud and Runciman, 1997]
often saves megabytes of data to temporary disk files, which can slow down
debugging noticably.

In [Braßel et al., 2007], a different approach is developed: Instead of
collecting all intermediate values, it is only recorded which intermediate
values have to be evaluated and which of them can be skipped. For the
resulting data structure the name oracle has been coined.

With this information at hand, the non-strict program can be evaluated a
second time in strict evaluation order. But strict evaluation order resembles
the dependency between intermediate values very closely: Declarative de-
bugging techniques can be utilised without the need to collect intermediate
values beforehand.

This thesis contributes a new formal model which leads to more effi-
cient implementations than the one from [Braßel et al., 2007]. Based on this
model, it describes how the creation of oracles as well as the oracle-directed
debugging of functional programs can be implemented by program transfor-
mations. It also treats the yet-unresolved issue of how circular declarations
fit into this context.

1
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1.1 Declarative Debugging

In this chapter the following small Haskell program will be used to demon-
strate some aspects of debugging declarative programs:

length ( : xs) = length xs
length [ ] = 0

take n (x : xs) = x : take (n − 1) xs
take 0 = [ ]

main = length (take 2 [1, 2, 3])

When main is evaluated, the value 0 is returned, although one would expect
the value 2. In this example, the error is easy to spot: In the definition of
function length the first alternative should be

length ( : xs) = 1 + length xs

In order to find errors in a larger program the user may be required to
observe the evaluation of the program. One way of tracing the execution of
a program is to print out every function call together with its arguments at
the time when it is evaluated.

By tracing the non-strict evaluation of main this way, the following list
of function calls is displayed:

length
take 2 [1, 2, 3]
length
take 1 [2, 3]
length
take 0 [3]
length [ ]

In current implementations of functional languages there is usually no way to
reconstruct the source code of yet unevaluated expressions, so-called thunks,
from their compiled representation. Therefore, some placeholder has to be
displayed instead of an unevaluated thunk. Here the convention to represent
unevaluated thunks by an underscore “ ” is followed.

When function length is called, it forces the evaluation of its argument, so
that in the next step the expression take 2 [1, 2, 3] is evaluated. Due to the
lazy order of evaluation only the first node of the resulting list is computed,
whereas the tail of the list is returned as a suspended evaluation of the
expression take 1 [2, 3]. Then function length is called recursively with the
unevaluated list tail as its argument, again forcing a call to function take.
After returning from function take, function length is called again, forcing a
third call to function take .
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Tracing the actual order of evaluation can give valuable insight into the
run-time behavior of a non-strict functional program. It can also help in find-
ing the cause of run-time errors. For Haskell programs the GHCi Debugger,
which is part of current versions of the Haskell interpreter GHCi, is able to
visualize the non-strict evaluation of Haskell programs [Marlow et al., 2007].

However, when one tries to find out why some program returns a wrong
result, this approach shows two major disadvantages:

• The call sequence does not reflect the structure of the source code, as
can be seen from the example: Conceptually, the value of the expres-
sion take 2 [1, 2, 3] is computed, and then function length is applied to
this value. But in the call sequence the focus of attention repeatedly
switches between the functions length and take.

• Often functions are applied to unevaluated arguments, whose evalu-
ation will be forced when the function is applied. As a consequence,
these arguments show up as unevaluated thunks in the execution trace,
although the resulting value depends on their values: In the example
there is no way to distinguish between the different calls to function
length.

The technique of declarative debugging (also called algorithmic debug-
ging) does not show these disadvantages. Recent declarative debuggers for
non-strict functional languages collect data while the program is evaluated
and produce an evaluation dependence tree (EDT) from the collected data.
This EDT can then be analyzed by debugging tools after the program has
terminated [Nilsson and Sparud, 1997].

In an EDT every node corresponds to a function call. It contains the
function name, the arguments and the resulting value of the function call.
When another function is called in the evaluation of that function, the cor-
responding EDT node will be a child node of the current EDT node.

Using EDTs for declarative debugging is an offline debugging technique:
First a modified version of the program is run. It behaves like the unmodified
program, but in the background it collects information about the function
calls and their results. Then the user can search the resulting EDT for the
function call that has caused the error.

Evaluating the example program results in the EDT shown in figure 1.1
on the following page. By inspecting it in a systematic way the error can
easily be found:

1. The function call and the resulting value of the root node are displayed
to the user. The expression length (take 2 [1, 2, 3]) should evaluate to
2, but the actual result is 0. Therefore, either the root node or some
of its children contain a bug.
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length (take 2 [1, 2, 3])  0

nnnnnnnnnnnnnn

MMMMMMMMMMMM

take 2 [1, 2, 3] [1, 2] length [1, 2] 0

take 1 [2, 3] [2] length [2] 0

take 0 [3] [ ] length [ ] 0

Figure 1.1: Evaluation dependence tree

2. In order to decide whether the root node or one of its children is the
source of the program error, the computation represented by the first
child node is inspected; it corresponds to the expression take 2 [1, 2, 3]
together with the correct result [1, 2]. Thus, the program error cannot
be caused by this function call.

3. The other child node is inspected: The value of length [1, 2] should
be 2, but it is actually 0. Therefore, either this node or some of its
children is the source of the program error.

4. Again, we move to the child node of the current EDT node in order
to decide whether the current node or some of its children give rise to
the error: The function call length [2] incorrectly evaluates to 0.

5. The only child node of the current nodecorresponds to the expression
length [ ], which yields the correct result 0.

6. Therefore, we go back to the node corresponding to the expression
length [2]. We have excluded every other possibility, and so we know
that the error came directly from the program rule

length ( : xs) = length xs ,

which has determined the value of length [2].

This algorithm has been implemented in the Haskell debugger Freja. The
Haskell debugger HAT uses a similar approach. It records the whole eval-
uation history in a so-called redex trail, from which the EDT can be re-
constructed [Sparud and Runciman, 1997]. For a brief introduction to Freja
and HAT see [Chitil et al., 2001].

All these implementations have in common that they need to record
every function application, including all intermediate results. The collected
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data can amount to megabytes or even gigabytes of information for larger
programs.

1.2 Declarative Debugging by Strict Evaluation

In [Braßel et al., 2007] another approach is taken: Declarative programs are
executed in strict evaluation order, overcoming the need to record large
intermediate data structures.

Evaluating the example program expression in strict order gives the fol-
lowing trace:

take 2 [1, 2, 3]
take 1 [2, 3]

take 0 [3]
length [1, 2]

length [1]
length [ ]

In this trace the calls to subcomputations are indented, reflecting the struc-
ture of the function call graph. One can see that the disadvantages of tracing
non-strict program executions don’t arise here:

• The trace resembles the Evaluation Dependency Tree much closer than
the non-strict evaluation trace.

• When a function is called, its arguments are already evaluated.

Using strict evaluation, Declarative Debugging works similar to the EDT-
based approach described above. The only difference is that some subex-
pressions have to be re-evaluated, because the results of subfunction calls are
not cached: After the user has rated the result of function main as wrong,
both the computation of take 2 [1, 2, 3] and length [1, 2] has to be repeated,
so that the user can decide whether one of them has caused the error: Time
is traded for space by replacing the need to create huge intermediate data
structures with the need to re-evaluate parts of the program.1

Switching from lazy to strict evaluation also makes it easier to utilise
other debugging techniques. For example, stack traces that resemble the
call structure of a program can easily be derived from the system state;
under lazy evaluation this requires additional bookkeeping.

1Obviously, improvents of the run-time behaviour can be achieved by skipping the
debugging of trusted subfunctions (e.g. library functions), or by memorizing the results
of selected subcomputations. These options require only minor changes to the debugging
algorithm, so we won’t discuss them here.
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The Problem

There are programs that can be reduced to normal forms under a non-strict
evaluation order, but not under a strict evaluation order. The sources of
this problem can be divided into four groups:

Laziness. It is well-known that there are expressions that can be reduced
to a normal form under a non-strict evaluation regime, but not under
strict evaluation: There are expressions that have no normal form at
all, because their evaluation does not terminate or provokes a run-
time error. If such an expression is passed as parameter or bound
to an identifier, but not used in the following evaluation, then strict
evaluation will fail, although non-strict evaluation might have led to a
normal form.

Infinite data structures. In non-strict functional languages infinite data
structures like the Haskell list [1 . . ] can be defined; only the parts that
are actually needed will be created at run-time. In the context of this
work infinite data structures can be seen as a special case of laziness:
At some point unfolding the data structure has to stop in order to
avoid non-termination.

Unspecified order of evaluation. In non-strict functional languages the
order of evaluation is not specified, so switching to strict evaluation
order will not influence the resulting value. But in some cases it is not
possible to evaluate an expression in strict order: For mutually recur-
sive declarations it is not defined what a “strict” order of evaluation
would be. Single recursion can also require non-strict evaluation, as
the Haskell expression

let x = [1, 2, length x ] in sum x

witnesses. It will turn out that recursive declarations are the only
source of this problem.

Cyclic data structures. In non-strict programming languages recursive
declarations can be used to create cyclic data structures. For example,
the Haskell expression

let ones = 1 : ones in ones

will be evaluated to a cyclic list in many implementations of the lan-
guage Haskell. From the user’s point of view this cyclic list can be seen
as an infinite list where every list node contains the number one. In
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strict functional languages cyclic data structures can not be defined;2

they can only be approximated by finite lists of arbitrary size.

Chapter 2 discusses how strict evaluation can be made possible even in the
presence of recursive declarations. A solution of the problem of unneccessary
evaluation is sketched in the next section.

1.3 Lazy Call-By-Value Evaluation

Under a non-strict evaluation order, the evaluation of subexpressions may
be skipped if the value of the whole expression does not depend on them. If a
subexpression has no normal form, then it even has to be skipped; otherwise
the whole evaluation will fail.

Under a lazy evaluation strategy, unneeded subexpressions are skipped
automatically. But when a strict evaluation strategy is used, it must be
known beforehand whether the evaluation of a subexpression will terminate.
Because of the well-known fact that the termination of a program cannot
always be determined a priori, the only general way to find out which subex-
pressions have to be skipped is to evaluate the whole expression in non-strict
order.

In [Braßel et al., 2007] it is shown how this approach can be put into
practice. In their work, a declarative program is executed twice:

1. The program is evaluated under a lazy evaluation order. In doing so, a
list of truthvalues, the so-called oracle, is created. Every entry relates
to a redex that occurs in the evaluation of the main expression. Its
value shows whether the redex has to be evaluated or not.

The list entries are ordered with respect to the strict evaluation order,
so that the entries can be accessed efficiently when the program is
executed in strict order.

2. The program is executed in strict order, consuming the oracle list
elementwise: depending on the value of the current entry, the next
redex is either evaluated or replaced by a placeholder value.

The list of oracle entries is implemented as a list of natural numbers, using a
simple form of run-length encoding: an entry n stands for n entries of value
true, followed by one entry of value false . In the following example only the
values of a and b are needed to calculate the value of the whole expression:

2Strict functional languages like Scheme or SML offer imperative extensions that can
be used to create cyclic structures by modifying the program state. In this work we refrain
from introducing stateful operations into otherwise purely functional programs — with the
exception of a small implementation specific detail in chapter 4.
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let a = 1 + 1 -- true
in let b = a + 2 -- true

in let c = c + 3 -- false
in b

The resulting oracle is encoded as a one-elemented list [2] that encodes the
list of Boolean values true, true , false.

This way the problem of laziness and infinite data structures is solved.
What remains to be solved is the problem of unspecified evaluation order
and cyclic data structures.

1.4 The Structure of This Work

Chapter 2 discusses how recursive declarations can be dealt with in the
context of Lazy Call-by-Value evaluation.

In Chapter 3 a natural semantics for Lazy Call-by-Value-Evaluation as
well as for the non-strict creation of oracles is presented.

Chapter 4 discusses how the semantics of non-strict oracle creation can
be implemented in an efficient way.

In Chapter 5 it is investigated how non-strict declarative programs have
to be transformed into strict programs, so that they can be run by Lazy
Call-by-Value evaluation.

Chapter 6 gives a summary of the practical experiences that have been
made in the progress of this work and summarizes the achieved results.



Chapter 2

On Recursion

2.1 Recursive Declarations and Evaluation Order

One difference between strict and non-strict evaluation is that under a non-
strict reduction strategy the order of evaluation is determined at run-time,
whereas under a strict reduction strategy the order of evaluation is fixed.
The following Haskell expression can be reduced to a normal form under a
non-strict evaluation strategy, but not under a strict evaluation strategy:

let x = let y = length x
in [1, 2, y ]

in sum x

A non-strict evaluator will defer the evaluation of y and build up the list
[1, 2, y ] first. Then it will determine the value of y by counting the elements
of this list without touching the actual value of its elements. After calculat-
ing the length of the list it will use the values of the list elements to calculate
their sum.

A strict evaluator will fail to evaluate this expression: Since function
length is strict in its argument, the value of x is needed in order to determine
the value of y . But strict evaluation order requires that the value of y is
computed before the list [1, 2, y ] is returned as a result.

The problem of unspecified evaluation order can only arise from recursive
declarations. The reason is that in the absence of recursive declarations, the
values of the declarations an expression refers to cannot refer to this expres-
sion itself. Thus, their values can always be obtained before the expression
is evaluated.

Nevertheless the example above can be transformed to an equivalent
expression that may be evaluated in sequential order: using a least fixed
point combinator fix of type (a → a)→ a, it can be rewritten as

let x = fix ((λy → [1, 2, y ]) ◦ length) in sum x

9
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In the untyped lambda-calculus, the fixed point combinator fix can be de-
fined by a non-recursive function, so that this expression is perfectly non-
recursive. But it is still not possible to evaluate it in strict order: the
application of fix will not terminate, trying to build up an infinite data
structure. In fact, we have replaced a cyclic data structure with an infinite
data structure.

In the context of this work, this is not problematic: Lazy Call-by-Value
evaluation makes it possible to evaluate programs that contain infinite data
structures in strict evaluation order.

2.2 The Non-locality of Non-sequentiality

Non-sequentiality can only arise from recursive declarations, so one might
hope for some evaluation strategy that allows non-recursive functions to be
evaluated sequentially, delaying only right hand sides of recursive declara-
tions.

But the following example1 shows that such a strategy does not exist;
the non-sequentiality introduced by a recursive declaration is propagated to
the functions which are called in that declaration:

two :: Int → Int → (Int , Int)
two x y = (x ∗ x , y + y)

g z = let (a, b) = two z a in b
h z = let (a, b) = two b z in a

In both functions g and h the function two is part of a circular depenency:

• In function g the second argument of the call to function two depends
on the first component of the result of this call. Therefore, the first
component has to be evaluated first and then fed back to the function
as its second argument.

• In function h the first argument depends on the second component of
the result. Therefore, the second component has to be evaluated first
and then fed back to the function as its first argument.

This shows that in the presence of recursive declarations even seemingly
sequential functions need to be evaluated in non-strict evaluation order.

Nevertheless, for each of the functions g and h a specific order in which
function two has to be evaluated can be found. The following example shows
that this is not possible in general. It is a variation of the previous example,
in which the order of evaluation is determined by the argument p of function
kt , so that the evaluation of two has to be scheduled dynamically:

1The examples in this section are taken from [Schauser and Goldstein, 1995].
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kt p z = let (a, b, c) = if p then (y , z , x ) else (z , x , y)
(y , x ) = two b a

in c

g z = kt True z
h z = kt False z

In the following variation, non-sequentiality arises from the use of higher-
order functions; there is not even an explicit conditional expression that
indicates the need for dynamic scheduling:

f1 x y z = (y , z , x )
f2 x y z = (z , x , y)

kt2 f z = let (a, b, c) = f x y z
(y , x ) = two b a

in c

g z = kt2 f1 z
h z = kt2 f2 z

These examples show that

1. even the presence of one single recursive declaration can influence the
evaluation order of other, seemingly unrelated parts of a program, and

2. there is no general way to determine the order of evaluation at compile
time.

Therefore, Lazy Call-by-Value evaluation requires that recursive declarations
are replaced by non-recursive declarations.

2.3 Cyclic references

It is possible to replace recursive declarations by non-recursive declarations,
for example by using a least fixed point operator fix . But for two reasons it is
not satisfying to model every recursively defined value by the application of
a fixed point combinator: First, for every recursively defined value the strict
evaluator must know how deep the combinator fix has to be unfolded until
the reapplication may stop. This information has to be provided beforehand.
Second, unfolding these declarations costs a lot of computing resources.

As a consequence, we allow cyclic references under two circumstances:

1. The value that is recursively referred to is used only in a non-strict way,
so that the whole expression can be reduced to a weak head normal
form before the actual value of the reference is known.2

One example of this is the expression

2This is similar to the letrec construct of the programming language Scheme and to
the way the operator mfix allows to introduce monadic value recursion in Haskell.
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let x = [1, 2, length x ] in x

2. The value that is recursively referred to does not need to be evaluated,
because it is already in weak head normal form. This particularly holds
for definitions of constructor terms and λ-abstractions.

Examples of this are the recursive data declaration

let ones = 1 : ones in ones

and the recursive function declaration

let fac n = if n ≡ 0 then 1 else n ∗ fac (n − 1) in...

This restricted form of cyclic references does not introduce the problem
of unspecified evaluation order. The reason is that a recursively referred to
variable does not impose restrictions on the evaluation order

• when it is used only in a non-strict way, because it does not need to
be evaluated in order to calculate the whole expression, or

• when it is in weak head normal form, because it is already evaluated.

In this work the term strict evaluation is also used for this modified form of
strict evaluation.

2.4 Removing Recursion

According to [Jones, 1987], the semantics of recursive declarations can be
explained by the equation

let x = e1 in e2 ≡ let x = fix (λx → e1) in e2

where fix is a least fixed point combinator, i.e. it obeys the rule

fix f ≡ f (fix f ).

Since we allow for recursive function declarations in our extended version of
strict evaluation, fix can easily be defined by

fix f = f (fix f )

It is obvious that this definition of fix satisfies the above rule. Therefore,
any single recursive declaration can be transformed into an equivalent non-
recursive declaration. But in Haskell a recursive declaration may define more
than one variable, so that the values of these variables mutually depend on
each other. A mutually recursive declaration has the form:
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let x1 = e1

x2 = e2

...
xn = en

in e

The expressions e1, ..., en may refer to the variables x1, ..., xn , so that the
declaration cannot easily be broken into smaller declarations. . An easy way
to remove mutual recursion is to make the definition of one variable local to
the definitions of the other variables and the body of the let-expression:

let x2 = let x1 = e1 in e2

...
xn = let x1 = e1 in en

in let x1 = e1

in e

By subsequently applying this transformation one can replace every mutu-
ally recursive declaration by a single recursive declaration, which can be
evaluated the way described above. Therefore, the presence of mutually
recursion does not prohibit a program from being evaluated in strict order.

This transformation introduces inefficiencies by duplicating code, so in
practice other ways of turning mutual recursive declarations into single re-
cursive declarations are desirable.

Efficient removal of mutually recursive declarations

In order to survey different methods of transforming mutual recursion into
single recursion, the following Haskell expression is used as an example:

let p = length r
q = p : q
r = [p, head q , s ]
s = head q + p

in sum r

The dependency graph of this expression shows that each of the variables p,
q , r and s depends on the other variables recursively, so it is impossible to
break the declaration into two or more nested declarations:

q r
s

p
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In this graph an arrow from a node a to a node b means that variable a is
referred to by the definition of variable b.

In [Braßel et al., 2007], a more efficient method of turning a mutually
recursive declaration into an equivalent declaration of a single variable is
sketched: instead of defining n variables, a tuple with n components is de-
fined, so that each component of that tuple contains the value of one of the
variables. Then the values of the variables can be accessed by decompos-
ing the tuple via a case-expression. Applying this transformation to the
example expression results in the following single recursive expression:

let rec = let p′ = case rec of (p, , , )→ p
in let q ′ = case rec of ( , q , , )→ q
in let r ′ = case rec of ( , , r , )→ r
in let s ′ = case rec of ( , , , s)→ s

in let p = length r ′

in let q = p′ : q ′

in let r = [p′, head q ′, s ′ ]
in let s = head q ′ + p′

in (p, q , r , s)
in let r = case rec of ( , , r , )→ r

in sum r

In this expression one can spot at least two sources of inefficiency:

• In the declaration of r , the right hand side refers to the variables p′

and q ′, although r could have been defined in terms of the variables p
and q . In the presence of recursive definitions this does not influence
the run-time behavior. But if recursive declarations are modelled as
least fixed points that are approximated by successively unfolding some
function, then accessing the values of p′ or q ′ will force the evaluation
of rec, which in turn will force another step of unfolding.

This one step of unfolding is saved when the right hand side of the
definition of r is changed to

[p, head q , s ′ ]

• The definitions of q and s refer to p′, although they could as well refer
to p. This will not avoid any unfolding steps of rec, because rec still
has to be scrutinized in order to retrieve the value of q ′.

But after changing the definitions of p, q and r , the first component
of tuple rec will not be needed at all!

By applying these optimizations the following expression is obtained:

let rec = let q ′ = case rec of (q , , )→ q
in let r ′ = case rec of ( , r , )→ r
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in let s ′ = case rec of ( , , s)→ s
in let p = length r ′

in let q = p : q ′

in let r = [p, head q , s ′ ]
in let s = head q + p

in (q , r , s)
in let r = case rec of ( , r , )→ r

in sum r

But this is still not optimal: If we had initially chosen to define s before r ,
then for the same reason the third component of rec would not be needed,
too. This demonstrates that there is a dependency between the applicability
of these optimizations and the order in which the variables are defined.

Instead of trying to find an order that allows for maximal optimization,
we look for a minimal set of variables that has to be fed back to the recursive
declaration via the tuple rec. In other words, we have to find a set of vertices
that can be removed from the dependency graph of a recursive declaration,
so that the remaining graph contains no cycles. In graph theory such a set
of vertices is called a feedback vertex set, and the problem of finding small
feedback vertex sets is well investigated [Festa et al., 1999].

Definition (Feedback vertex set). W is called a feedback vertex set of a
directed graph (V, E), if W ⊆ V and (V \W, E ∩ (V \W ×V \W )) acyclic.

In the above example {q, r} is a feedback vertex set:

q r
s

p

Splitting q and r into “sources” q ′, r ′ and “sinks” q , r leads to a cycle-free
dependency graph:

r’ p

q’

q

r

s

Now the example expression can be transformed to the following code:
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let rec = let q ′ = case rec of (q , )→ q
in let r ′ = case rec of ( , r)→ r

in let p = length r ′

in let q = p : q ′

in let s = head q + p
in let r = [p, head q , s ]

in (q , r)
in let r = case rec of ( , r)→ r

in sum r

Finding Good Feedback Sets

Unfortunately, finding a minimal feedback vertex set is anNP -hard problem.
But in addition to the size of feedback sets there are other criterions that
influence the efficiency of the transformed program.

If an identifier that is not part of the feedback set is used in the body of
the declaration, then it has to be declared twice: once on the right hand side
and once in the body of the transformed declaration. Therefore, identifiers
that the body of the declaration refers to should be selected for feedback
sets with higher prioritiy than others.

The following example demonstrates that the efficiency of this transfor-
mation also depends on whether the defined values refer to each other in a
strict or non-strict way:3

conditional example p
= let a = if p then bb else 3

b = if p then 4 else aa
aa = a + 5
bb = b + 6

in a + b

The dependency graph of this declaration forms a circle; without knowing
the value of p it is not possible to decide whether the value of a depends on
the value of bb or whether the value of b depends on the value of a. Thus, the
dependency graph of this declaration does not give any hint which identifiers
to choose for the feedback set:

bb

a aa

b

The only observable difference between the identifiers is that a and b are
referred to by the body of the declaration. Therefore, a reasonable heuristics

3This example is taken from [Traub, 1991]
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that decides only on the basis of the dependency graph will select either {a }
or {b} as a feedback set. If it decides in favor of {a }, then the expression
is translated to the following code:4

conditional example p
= let a = let aa = a + 5

in let b = if p then 4 else aa
in let bb = b + 6

in if p then bb else 3
in let aa = a + 5

in let b = if p then 4 else aa
in a + b

Independent from the value of p, the value of a is always needed, so that
the relatively big recursive declaration of a will always be evaluated. But
when selecting {aa } as the feedback set, the expression may be transformed
to the following code:

conditional example p
= let aa = let b = if p then 4 else aa

in let bb = b + 6
in let a = if p then bb else 3

in a + 5
in let b = if p then 4 else aa

in let bb = b + 6
in let a = if p then bb else 3

in a + b

Now it depends on p whether the big recursive declaration of aa is evaluated:
it is only needed when p has the value True. Thus, the second version is
more efficient when p has the value False .

The example shows that it can be a bad choice to select identifiers that
are strictly referred to by other declarations as members of feedback sets;
knowing the strictness of the right hand sides may lead to more efficient
translations.

Finding Feedback Vertex Sets: Algorithm

Deriving strictness information from programs or implementing sophisti-
cated graph algorithms is beyond the scope of this work, so we restrict
ourselves to a simple heuristics. We start by selecting one identifier that has
the highest priority with respect to the following list of criterions:

1. If the right hand side of a declaration depends recursively on itself,
then it is added to the feedback set with highest priority. It will be

4The results for feedback set {b} are symmetrical.
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added to the feedback set in any case; by adding it early it gets the
chance to break other circles before they cause other identifers to be
added to the feedback set.

2. If a vertex is not part of any circle, then it will never be selected as
a feedback vertex. If the corresponding identifier is referred to by the
body of the declaration, then this choice will lead to unnecessary code
duplication.

Another option would be to add identifiers that are referred to by
the body to the feedback set, regardless of whether they are part of
any circles. It has to be tested which option leads to more efficient
programs.

3. From the remaining declarations the one with the highest number of
references to other identifiers is selected. This is the heuristic part of
the algorithm: The more references a declaration has, the more circles
it can be expected to be a part of.

4. If two vertices have the same number of references, then the ones that
are used by the body of the declaration have priority over the others:
When we don’t know how to minimize the feedback set further, we try
to minimize code duplication.

After an identifier is selected, the corresponding vertex is removed from the
dependdency graph. If the selected identifer is referred to by the body of
the declaration, then the declaration is added to the body. After that we
continue to select the next vertex from the remaining graph.

An implementation of this algorithm can be found in the reference im-
plementation in Appendix B.1 on page 96.

2.5 Summary

Recursive declarations have to be avoided, because they cannot be evaluated
in strict order. There are two exceptions from this rule: (mutually) recursive
declarations whose right hand sides are already in weak head normal form,
and recursive declarations that refer to themselves in a non-strict way.

Before a program can be debugged by Lazy Call-by-Value evaluation, all
declarations have to be transformed into non-recursive declarations and —
possibly mutually recursive — function declarations and constructor terms.

With the technique described above, mutually recursive declarations can
be transformed into single recursive ones. Then the recursion can be elimi-
nated, for example by the use of a least fixed point combinator.



Chapter 3

Natural Semantics of Lazy

Call-by-Value Evaluation

In this chapter a natural semantics for Lazy Call-by-Value evaluation as
well as for the non-strict calculation of oracles is developed. On the basis
of John Launchbury’s natural semantics for lazy evaluation it is discussed
which pieces of information have to be collected in oracles. Then two variants
of the semantics for lazy evaluation are presented — one for the calculation
of oracles and one for oracle-directed strict evaluation —, and it is proved
that the latter will always be able to calculate the same result as the former.

3.1 A Natural Semantics for Lazy Evaluation

In [Launchbury, 1993] a natural semantics for lazy evaluation is presented.
It provides an accurate model for the sharing of program terms, so that it
is well suited to explain the actual run-time behaviour of lazy functional
languages. In [Sestoft, 1997], this semantics is modified in order to make it
more suitable for mechanical evaluation. This modified semantics will serve
as a reference which assures that the semantics for oracle creation models
lazy evaluation properly.

Identifiers. There are two disjoint sets of identifiers: Program variables
may occur in expressions provided by the user, whereas heap pointers are
only introduced by the evaluation machinery. The set of program variables
is denoted by X; the set of heap pointers is denoted by V. At this time no
assumptions about the sets X and V are made except that they are disjoint
and contain an infinite number of elements.

Expressions. The set E of expressions is inductively defined, so that an
expression is

19



20 CHAPTER 3. NATURAL SEMANTICS

• an identifier v ∈ X ∪V,

• an abstraction λx.e, where x ∈ X and e ∈ E,

• an application e v, where e ∈ E and v ∈ X ∪V,

• a potentially mutually recursive declaration let xn = en in e, where
e ∈ E and xi ∈ X, ei ∈ E for every i ∈ {1, . . . , n},

• a constructor term C v1 . . . vn, where C is a constructor name, n ∈ N
is the arity of the constructor, and v1, . . . , vn ∈ X ∪V, or

• a case expression case e of Cn xn,kn
7→ an with ai ∈ E, different

constructor names C1, . . . , Cn and xi,1, . . . , xi,ki
∈ X for every i ∈

{1, . . . , n}.1

We will use parentheses to disambiguate between the abstraction λx.e v,
which is equivalent to λx.(e v), and the application (λx.e) v.2,

Here and in the following, we abbreviate sequences α1, . . . , αn by the
notation αn.

Weak head normal forms. An expression is said to be in weak head
normal form iff it is either a lambda abstraction or a constructor term.
Whether an expression e is in weak head normal form is denoted by the
predicate whnf(e).

Used heap pointers. The function V : E → 2V indicates, which heap
pointers occur in an expression. It is defined by:

V(v) ≡

{

{v} if v ∈ V
∅ if v ∈ X

V(λx.e) ≡ V(e)
V(e v) ≡ V(e) ∪ V(v)
V(let xn = en in e) ≡ V(e) ∪

⋃n
i=1 V(ei)

V(C v1 . . . vn) ≡
⋃n
i=1 V(vi)

V(case e of Cn xn,kn
7→ an) ≡ V(e) ∪

⋃n
i=1 V(ai)

1The constructor names must be different in order to avoid non-determinism; if two
patterns would have the same constructor name and the same number of arguments, then
it would be unclear which of them has to be selected.

2The semantics will rule out the application of constructor terms, so we do not
need to disambiguate between a constructor term C v1 . . . vn+1 and an application
(C v1 . . . vn) vn+1
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Substitution. As in [Sestoft, 1997], the substitution e[v/x] of a heap
pointer v for all free occurrences of a program identifier x in an expression
e is defined as follows:

y[v/x] ≡

{

v if x = y

y otherwise
for any identifier y ∈ X ∪V

(λy.e)[v/x] ≡

{

λx.e if x = y

λy.e[v/x] otherwise

(e w)[v/x] ≡ e[v/x] w[v/x]

(let xn = en in e)[v/x] ≡

{

let xn = en in e if ∃i : x = xi

let xn = en[v/x] in e[v/x] otherwise

C v1 . . . vn ≡ C v1[v/x] . . . vn[v/x]

(case e of Cn xn,kn
7→ an)[v/x]

≡ case e[v/x] of Cn xn,kn
7→ a′n

where a′i =

{

ai if ∃j : x = xi,j

ai[v/x] otherwise
for every i ∈ {1, . . . , n}

We abbreviate the simultaneous substitution e[v1/x1][v2/x2] . . . [vn/xn] of
distinct program identifiers x1, . . . , xn with heap pointers v1, . . . , vn by writ-
ing e[vn/xn].

Heaps. A heap is a mapping from heap pointers to expressions. The set
of heaps is defined as the set of partial functions from V to E:H := {Γ|Γ ⊆ V→ E}
Configurations. A configuration is a tuple (Γ, e) that consists of a heap
Γ ∈ H and an expression e ∈ E. The heap identifiers that occur in the
expression e are interpreted as pointers to values bound on heap Γ.3

Judgments. For every A ⊆ V the relation ⇓A⊆ (H × E) × (H × E) is
defined in terms of the inference rules given in Figure 3.1 on the following
page; the judgment

(Γ, e) ⇓A (∆, e′)

says that evaluating expression e in a heap Γ will yield the expression e′,
together with a heap ∆.

The parameter A is only used to decide whether a variable name is fresh
in the current context; if an identifier v ∈ V occurs in the parameter A of
some judgment, then v is considered as non-fresh in the derivation tree of
that judgment.

3Allowing heap pointers to occur on the left hand sides of declarations, a configuration
({(vn, en)) can be seen as equivalent to an expression let vn = en in e.
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Const
whnf(e)

(Γ, e) ⇓A (Γ, e)

App
(Γ, f) ⇓A (∆, λx.e) ∧ (∆, e[v/x]) ⇓A R

(Γ, f v) ⇓A R

Var
(v, e) ∈ Γ ∧ (Γ \ {(v, e)}, e) ⇓A∪{v} (∆, e′)

(Γ, v) ⇓A (∆ ∪ {(v, f)}, e′)

Case

i ∈ {1, . . . , n} ∧

(Γ, e) ⇓A (∆, Ci vki
) ∧ (∆, ai[vki

(xi,ki
]) ⇓A R

(Γ, case e of Cn xn,kn
7→ an) ⇓A R

Let(∗)

∀j ∈ {1, . . . , n} : e′j = ej [vn/xn]

(Γ ∪ {(vn, e′n)}, e[vn/xn]) ⇓A R

(Γ, let xn = en in e) ⇓A R

(*) In rule Let, the variables v1, . . . , vn must be fresh and distinct heap
pointers: vi ∈ V \ (A ∪ dom Γ) must hold for every i ∈ {1, . . . , n}.

Figure 3.1: Natural semantics for lazy evaluation

To evaluate an expression e to a configuration (∆, e′) means to prove
that

(∅, e) ⇓∅ (∆, e′).

Semantic Rules for Lazy Evaluation

The revised semantics presented in [Sestoft, 1997] differs from the semantics
of [Launchbury, 1993] in two respects:

• In Launchbury’s semantics, fresh identifiers are introduced when an ex-
pression is copied from the heap, whereas in Sestoft’s revised semantics
a fresh identifier is introduced whenever a new binding is created on
the heap.

• Sestoft’s semantics also formalizes when a variable can be considered
as fresh.

The rules for lazy evaluation shown in Figure 3.1 are taken from the revised
semantics for lazy evaluation of [Sestoft, 1997], with rules for constructor
terms and case-expressions added as suggested in [Launchbury, 1993]:
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Const. This rule combines the rule Lam of the revised semantics — which
is identical to rule Lambda of Launchbury’s semantics — with rule Con-
structors from Launchbury’s extended semantics. It states that a con-
stant value, i.e. a value that is already in weak head normal form, is
returned immediately without changing the heap.

App. This rule is identical to rule Application of Launchbury’s semantics
and rule App of Sestoft’s semantics. The evaluation of an application
f v starts by evaluating function f in heap Γ to a head normal form,
obtaining a modified heap ∆. This evaluation must return an abstraction
as its result. In the body of that abstraction, the formal parameter is
then replaced by the argument. The resulting expression is evaluated
in the context of the modified heap, producing a configuration R, which
will be returned as result.

Var. This rule follows Sestoft’s revised semantics. In Launchbury’s seman-
tics this rule was the place to introduce new identifiers, but in Sestoft’s
semantics new identifiers are introduced when values are bound on the
heap.

When an identifer v is evaluated, the corresponding value is fetched from
heap Γ. Then the binding (v, e) is removed from Γ, so that self-referential
computations will fail instead of looping forever. Now this value is eval-
uated in the heap Γ \ {(v, e)}, returning a configuration (∆, e′). Finally,
the resulting value e′ is bound in the resulting heap ∆, and e′ together
with heap ∆ ∪ {v, e′} is returned as result.

In the evaluation of e, the identifier v is added to set A in order to
prohibit subcompotations from re-introducing the temporarily removed
variable v into the heap.

Case. This rule is taken from Launchbury’s extended semantics. The eval-
uation of an expression case e of Cn xn,kn

7→ an requires two subcom-
putations: First, the expression e is evaluated to a constructor term
C v1 . . . vn. Then a pattern Ci x1 . . . xn is selected from the list of alter-
natives that matches the resulting constructor term. Then the identifiers
x1 . . . xn are replaced by v1 . . . vn in the right hand side of this alterna-
tive, and finally the resulting expression is evaluated to a configuration
that is returned as the overall result.

Let. This rule follows Sestoft’s revised semantics. When a mutually recursive
binding letxn = en in e is evaluated, the identifiers x1 . . . xn are replaced
by fresh and distinct heap pointers v1, . . . , vn in the expressions e1, . . . , en
as well as in the body expression e. Then the body expression is evaluated
in a heap that consists of the original heap together with the renamed
expressions e1, . . . , en bound to the identifiers v1, . . . , vn.
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An identifier is considered as fresh if it does not occur in A and no value
is bound to it in the current heap.

3.2 What Oracles Must Contain

An oracle contains information about which redexes are needed and which
redexes have to be skipped. It controls the runtime behavior by deciding
whether the next redex will be evaluated or replaced by some placeholder
value. This costs computing resources at run-time, so it is preferable to
reduce the number of oracle entries to a minimum.

An inspection of the semantics presented in [Braßel et al., 2007] reveals
some inefficiencies: When a case expression case e of ... is evaluated, an
oracle entry for expression e is created, indicating whether the value of e
is needed. But at this point it is already clear that e must be evaluated in
order to select an alternative. This inefficiency comes from their choice to
create oracle entries for every redex.

In this work we follow another approach by asking: If the value of an
expression is needed, then which of its subexpressions have to be evaluated?

If it is known that the value of a subexpression is always required, then
its evaluation can always be forced; only subexpressions that are not always
needed have to be controlled by the oracle.

Identifiers. Whether the value bound to a heap pointer is needed or not
is controlled at the place where it is introduced by a let-declaration;
keeping track of the use of heap pointers would duplicate this work.
Therefore, no oracle entries are needed for identifers.

Abstractions. The subexpression e of an abstraction λx.e is not evalu-
ated at all; when the abstraction is applied to an argument, a fresh
copy of e is evaluated in place of the application. Thus, there are no
subexpressions whose evaluation needs to be supervised by the oracle.

Applications. When an application f v is evaluated, the value of function
f is always needed. The argument v may be needed or not, depending
on f , but the evaluation of the expression bound to v is controlled at
the place where the heap pointer v is introduced. Thus, there are no
optional steps in the evaluation of abstractions; no oracle entries are
needed for it.

Constructor terms. All components of a constructor term are identifiers,
whose evaluation is already tracked at the place where they are defined.
Therefore, no oracle entries are needed to control the evaluation of
constructor terms.

Case expressions. In an expression case e of Cn xn,kn
7→ en there are

no optional evaluation steps: First e has to be evaluated, so that an
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alternative i can be chosen. Then only the ith right hand side ei has
to be evaluated. Thus, there are no optional evaluation steps and no
oracle entries are needed to control the evaluation.

Let bindings. Four cases have to be distinguished:

1. An expression let xn = en in e where all right hand sides ei ,
i ∈ {1, . . . , n}, are in weak head normal form. Then the only
subexpression that has to be evaluated is the body expression e.
But the value of e is needed in any case, so there are no optional
evaluation steps.

2. An expression let x = y in e, where y is an identifier with
x 6= y. Since y is an identifier, there are no oracle entries needed
to control the evaluation.4

3. An expression let x = e1 in e2 where e1 does not refer to x , is not
an identifier and not in weak head normal form. The value bound
to x may be needed or not in the evaluation of e2, so an oracle
entry is needed to control whether e1 has to be evaluated. The
value of e2 is alway needed, so no further oracle entry is required.

4. As discussed in Chapter 2, all other declarations have to be trans-
formed to one of the former cases.

These considerations lead to the following strategy:

• If the right hand side of a single non-recursive declaration is not in
weak head normal form, then it needs to be controlled by an oracle
entry.

• Declarations that define only constants do not need to be controlled
by the oracle.

• Other declarations have to be transformed to one of the former types.

3.3 Encoding the Program Structure in Identifiers

We develop the semantics for non-strict oracle creation in two steps. In the
first step we specify the way new identifiers are invented. Then in Section 3.4
we add the facility to create oracles to the semantics.

We fix heap pointers to be sequences of letters from an infinite alphabetA: V := A∗

4Another justification is that this expression is equivalent to the expression ((λx .e) y),
for which no oracle entries are needed.
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Const
whnf(e)

(I, Γ, e) ⇓p (I, Γ, e)

App
(I, Γ, f) ⇓p (J, ∆, λx.e) ∧ (J, ∆, e[v/x]) ⇓p R

(I, Γ, f v) ⇓p R

Var
(v, e) ∈ Γ ∧ (∅, Γ \ {(v, e)}, e) ⇓v (J, ∆, e′)

(I, Γ, v) ⇓p (I, ∆ ∪ {(v, e′)}, e′)

Case

i ∈ {1, . . . , n} ∧

(I, Γ, e) ⇓p (J, ∆, Ci vki
) ∧ (J, ∆, ai[vn/xn]) ⇓p R

(I, Γ, case e of Cn xn,kn
7→ an) ⇓p R

Let(∗)

∀j ∈ {1, . . . , n} : e′j = ej [p · vn/xn]

(I ∪ {vn}, Γ ∪ {(p · vn, e′n)}, e[vn/xn]) ⇓p R

(I, Γ, let xn = en in e) ⇓p R

(*) In rule Let, the variables v1, . . . , vn must be distinct elements of A
that do not occur in I.

Figure 3.2: Modified natural semantics for lazy evaluation

In contrast to the semantics of lazy evaluation, a configuration is a 3-tuple
(I, Γ, e). Like before, it contains a heap Γ and an expression e. As an
additional element, it contains a set I ⊆ A of the letters that already occur
as suffixes of heap pointers.

The relation ⇓A is replaced by a relation ⇓p that takes a sequence
p ∈ A∗ as its parameter. It is defined in terms of the inference rules given in
Figure 3.2. Parameter p is called the thunk prefix. When a new identifiers is
needed in the evaluation of a judgment (I, Γ, e) ⇓p (J, ∆, e′), it is composed
of the thunk prefix p and an element of A that is not an element of I. To
evaluate an expression e to a configuration (I, ∆, e′) means to prove that

(∅, ∅, e) ⇓ǫ (I, ∆, e′).

As an example, consider the following expression:

let p = let q = let r = case p of Cons a b → b
in Cons r s

s = True
in Cons q s

in case p of Cons a b → a
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(∅, ∅, let ... in Cons q s)

Constp̃
[

({ q̃, s̃}, Q ∪ S , Cons p̃q̃ p̃s̃)

({ q̃, s̃}, Q ∪ S , Cons p̃q̃ p̃s̃)

({ p̃}, Q ∪ P ′ ∪ S , Cons p̃q̃ p̃s̃)

V
ar

ǫ



















({ p̃}, Q ∪ P ′ ∪ S , p̃q̃)

L
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(∅, P ′ ∪ S , let ... in Cons r p̃s̃)

Constp̃q̃
[

({ r̃}, P ′ ∪R ∪ S, Cons p̃q̃r̃ p̃s̃)

({ r̃}, P ′ ∪R ∪ S, Cons p̃q̃r̃ p̃s̃)

({ p̃}, P ′ ∪ Q ′ ∪ R ∪ S , Cons p̃q̃r̃ p̃s̃)
({ p̃}, P ′ ∪ Q ′ ∪ R ∪ S , Cons p̃q̃r̃ p̃s̃)

({ p̃}, P ′ ∪ Q ′ ∪ R ∪ S , Cons p̃q̃r̃ p̃s̃)

P = {(p̃, let ... in Cons q s)} P ′ = {(p̃,Cons p̃q̃ p̃s̃)}
Q = {(p̃q̃, let ... in Cons r s)} Q ′ = {(p̃q̃,Cons p̃q̃r̃ p̃s̃)}
R = {(p̃q̃r̃, case p̃ of Cons a b → b)}
S = {(p̃s̃,True)}

Figure 3.3: Example of lazy evaluation

For the purpose of demonstration, we fix set A:A := {x̃ | x ∈ X}
Figure 3.3 shows the evaluation of this expression. It starts with the initial

configuration (∅, ∅, let ... in case p of Cons a b → a). First, rule Let is
applied to it. A new heap pointer p̃ is invented and substituted for p in the
whole expression. Then the right hand side let ... in Cons q s is bound to
p̃, and p̃ is added to the set of used letters.

Then as a subcompution the body expression case p̃ of Cons a b → a is
evaluated by rule Case. This in turn has two subcomputations: The first one
evaluates the expression p̃, the second one evaluates the selected alternative.

Both subcomputations are applications of rule Var. The first one fetches
the expression bound to p̃ from the heap and evaluates it by applying rule
Let. In this evaluation, the binding of p̃ is removed from the heap, the thunk
prefix consists of the variable name p̃, and the set of used letters is set to ∅.
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A new heap pointer has to be invented by appending an unused letter
to the thunk prefix. We choose the letter p̃q̃ in order to keep the result
similar to the initial expression, yielding a new heap pointer p̃q̃. Then this
pointer is substituted for q in the right hand sides as well as in the body
of the declaration. In the same way, a new heap pointer p̃s̃ is invented and
substituted for s, and the right hand sides are bound to p̃q̃ and p̃s̃ on the
heap.

Now the body expression Cons p̃q̃ p̃s̃ is evaluated by rule Const, which
simply returns the unchanged configuration as its result, so that it is also
returned by rule Let. Rule Var restores the values of the set of used letters
and binds the resulting expression of its subcomputation to p̃.

After that, one alternative of the case expression is selected, the iden-
tifiers a and b are substituted with p̃q̃ and p̃s̃ in the right hand side of
the alternative, and the resulting expression p̃q̃ is evaluated, again by an
application of rule Var.

As result, the evaluation returns the expression Cons p̃q̃r̃ p̃s̃, together
with the following heap:

{(p̃, Cons p̃q̃ p̃s̃),
(p̃q̃, Cons p̃q̃r̃ p̃s̃),
(p̃q̃r̃, case p̃ of Cons a b → b),
(p̃s̃, True)}

By grouping heap entries whose names have a common prefix, an expres-
sion that resembles the structure of the original expression can easily be
reconstructed:5

let p = let q = let r = case p̃ of Cons a b → b
in Cons (p̃q̃r̃) (p̃s̃)

s = True
in Cons (p̃q̃) (p̃s̃)

in Cons (p̃q̃r̃) (p̃s̃)

3.4 Language λ
?!

The considerations in Section 3.2 have shown that strict declarations of
functions and constants have to be evaluated in a different way than non-
strict value declarations. Therefore, we modify the expression syntax, so
that declarations of the form

let xn = en in e

5This reconstructed expression contains heap ointers. Therefore, it cannot be fed back
into the interpreter; for that the invention and substitution of identifiers would have to be
defined in a slightly different way.
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are replaced by two more restricted forms of declarations:

Strict declarations. A mutually recursive let binding let! xn = en in e,
where all e1, . . . , en are in weak head normal form.

Non-strict declarations A non-strict, non-recursive let binding let? x =
e1 in e2.

6

This modification does not reduce expressiveness: As shown in Chapter 2,
every declaration letxn = en in e can be expressed by the newly introduced
strict and non-strict declarations.

The set V of heap pointers is now defined as the union of two disjoint
sets:

• The set N∗ of thunk identifiers. A thunk identifier is a finite sequence
of natural numbers. It refers to an unevaluated thunk or to the result
of its evaluation.

• The set VC of constant identifiers. They may only refer to constant
values, i. e. to constructor terms or abstractions. A constant identifier
xt:c consists of a program identifier x ∈ X, a thunk identifier t ∈ N∗

and an additional index c ∈ N. The set VC is defined byVC := {xt:c | t ∈ N∗, c ∈ N}.
As before, the sets X and V are assumed to be disjoint.

The resulting set of expressions is called E, and the resulting language
is referred to as λ?!. Figure 3.4 on the following page summarizes language
λ?!.

Substitution. Additional rules for substitution and for function V have
to be provided for the newly introduced expressions:

(let? y = e1 in e2)[v/x] ≡

{

let? y = e1 in e2[v/x] if x = y

let? y = e1[v/x] in e2[v/x] otherwise

(let! xn = en in e)[v/x] ≡

{

let! xn = en in e if ∃i : x = xi

let! xn = en[v/x] in e[v/x] otherwise

V(let? x = e1 in e2) ≡ V(e1) ∪ V(e2)

V(let! xn = en in e) ≡ V(e) ∪
⋃n
i=1 V(ei)

6Since non-strict declarations are non-recursive, replacing an expression let x =
e1 in e2 näıvely with let

? x = e1 in e2 may lead to errors if x occurs free in e1. In-
stead, the recursive declaration has to be transformed into a function declaration or into
a non-recursive data declaration, for example via the techniques suggested in Section 2.4
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Identifiers

Program identifiers X
Heap pointers V := N∗ ∪VC

Constant identifiers VC := {xt:c | t ∈ N∗, c ∈ N}.
Thunk identifiers N∗X and V are pairwise disjoint

Expressions

Variable x
Abstraction λx.e
Application e v

Strict declaration∗ let! xn = en in e

Non-strict declaration let? x = e1 in e2
Constructor term C v1 . . . vn
Case expression case e of Cn xn,kn

7→ en

(*) where all e1 . . . , en are in weak head normal form

Figure 3.4: Syntax of language λ?!

We call an expression that may be provided by the user an initial ex-
pression. The only required property of initial expressions is that they do
not contain heap pointers. Otherwise these heap pointers might collide with
heap pointers that are introduced by the evaluation machinery.

Definition (Initial expression). An expression e ∈ E is called an initial
expression, iff V(e) = ∅.

3.5 Non-strict Oracle Creation

Oracles. An oracle is a set of thunk pointers. It contains pointers to the
thunks whose values were needed in an evaluation.

Configurations. In contrast to the last section, a configuration is now a
4-tuple (t, c, Γ, e) ∈ N×N×H×E. Like before, it contains a heap Γ and
an expression e. The set that previously indicated the used variable names
is now replaced by two counters: The thunk counter t is used to create
unique thunk identifiers, and the constant counter c is used to create unique
constant identifiers. This way the non-deterministic choice of variable names
is replaced by a completely deterministic mechanism.
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Judgments. Like before, a judgment L ⇓p, γ R relates a configuration L
to the result of its evaluation R. It is parameterized with a thunk prefix
p ∈ N∗ and an oracle γ ⊆ N∗. In the derivation tree a judgment inherits the
thunk prefix from its parent judgments. Together with the thunk counter
of the left configuration the thunk prefix is used to create unique thunk
identifiers. The oracle is synthesized from the child judgments. It collects
the names of the thunks that were needed in the evaluation.

To evaluate an expression e to a configuration (t′, c′, ∆, e′) means to
prove that

(0, 0, ∅, e) ⇓ǫ, ω (t′, c′, ∆, e′)

for a set ω ⊆ N∗. Then the set ω is the oracle that can be used to direct
the Lazy Call-by-Value evaluation of e.

For a configuration C = (t, c, Γ, e), we write H(C) for the heap Γ and
E(C) for the expression e. Also, for a judgmentL ⇓p, γ R, we writeO(L ⇓p, γ
R) for the oracle γ.

Figure 3.5 on the next page shows the rules for non-strict oracle creation.
Due to the newly introduced distinction between strict and non-strict bind-
ings, rules Var and Let of the semantics of lazy evaluation are each split into
two rules. Rule Var is now split into the rules VarStrictL and VarLazyL,
whereas rule Let is split into the rules LetStrictL and LetLazyL.

ConstL. Like the previos rule Const, this rule does not change the configu-
ration. It returns the empty set as its oracle, because it does not evaluate
any heap-bound thunks.

AppL, CaseL. In these rules both subcomputations may change the thunk
counter. The resulting oracle is the union of the oracles of both subcom-
putations.

VarStrictL. In contrast to the previous rule Var, the value fetched from the
heap is known to be in weak head normal form. This value is simply
returned; no other components of the configuration are changed, and no
oracle entries are emitted.

VarLazyL. Like the previous rule Var, this rule handles the evaluation of
non-strict heap entries. In contrast to rule Var, it adds the name of the
currently evaluated variable to the oracle.

The evaluation of the heap entry takes place with the thunk prefix set to
the thunk pointer v and the thunk counter and constant counter set to
0; this way the heap pointers created in the evaluation appear next to v
when the heap entries are sorted in lexicographic order.

LetStrictL. This rule binds constant values on the heap. It synthesizes new
constant pointers from the current constant counter, heap counter and
thunk prefix. Then it increments the constant couunter and enhances the
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ConstL
whnf(e)

(t, c, Γ, e) ⇓p,∅ (t, c, Γ, e)

AppL

(t, c, Γ, f) ⇓p, γ (t′, c′, ∆, λx.e)
∧ (t′, c′, ∆, e[v/x]) ⇓p, δ R

(t, c, Γ, f v) ⇓p, γ∪δ R

VarStrictL
v ∈ VC ∧ (v, e) ∈ Γ

(t, c, Γ, v) ⇓p, ∅ (t, c, Γ, e)

VarLazyL

v ∈ N∗ ∧ (v, e) ∈ Γ
∧ (0, 0, Γ \ {(v, e)}, e) ⇓v, γ (t′, c′, ∆, e′)

(t, c, Γ, v) ⇓p, γ∪{v} (t, c, ∆ ∪ {(v, e′)}, e′)

CaseL

1 6 i 6 n ∧ (t, c, Γ, e) ⇓p, γ (t′, c′, ∆, Ci vki
)

∧ (t′, c′, ∆, ai[vki
/xi,ki

]) ⇓p, δ R

(t, c, Γ, case e of Cn xn,kn
7→ an) ⇓p, γ∪δ R

LetStrictL

∀i ∈ {1, . . . , n} : vi = (xi)p·t:(c+1) ∧ e′i = ei[vn/xn]

∧ (t, c+ 1, Γ ∪ {(vn, e′n)}, e[vn/xn]) ⇓p, γ R

(t, c, Γ, let! xn = en in e) ⇓p, γ R

LetLazyL
(t+ 1, 0, (Γ ∪ {(p · t, e1)}, e2[p · t/x]) ⇓p, γ R

(t, c, Γ, let? x = e1 in e2) ⇓p, γ R

Figure 3.5: Rules for non-strict oracle creation

heap by binding the right hand sides to these constant pointers, allowing
for recursive references like the previous rule Let. Finally, it evaluates
the body of the declaration.

LetLazyL. This rule handles non-strict declarations. Like rule LetStrictL,
it synthesizes a new unique name for the variable and binds the expres-
sion to that identifier on the heap. It substitutes all free occurrences
of x with v in expression e2 and evaluates the resulting expression to a
configuration that is returned as the result of rule LetLazyL.

The main difference to rule LetStrictL is that the newly created identifier
is a thunk pointer, and that the bound value cannot refer to itself.

The example from page 26 has to be translated to the following λ?!
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ConstL0,∅

[

(1, 0, Q ∪ S ,
Cons 00 s00:1)

(1, 0, Q ∪ S , Cons 00 s00:1)
(1, 0, Q ∪ S , Cons 00 s00:1)

(1, 0, Q ∪ P ′ ∪ S , Cons 00 s00:1)
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(0, 0, P ′ ∪ S , let? ... in Cons r s00:1)

ConstL00,∅

[

(0, 0, P ′ ∪R ∪ S,
Cons 000 s00:1)

(0, 0, P ′ ∪R ∪ S, Cons 000 s00:1)
(1, 0, P ′ ∪ Q ′ ∪ R ∪ S , Cons 000 s00:1)

(1, 0, P ′ ∪ Q ′ ∪ R ∪ S , Cons 000 s00:1)
(1, 0, P ′ ∪ Q ′ ∪ R ∪ S , Cons 000 s00:1)

P = {(0, let! ... in let? ... in Cons q s)} P ′ = {(0,Cons 00 s00:1)}

Q = {(00, let? ... in Cons r s)} Q ′ = {(00,Cons 000 s00:1)}
R = {(000, case 0 of Cons a b → b)}
S = {(s00:1,True)}

Figure 3.6: Example of non-strict oracle creation

expression, before an oracle can be calculated for it:

let? p = let! s = True

in let? q = let? r = case p of Cons a b → b
in Cons r s

in Cons q s
in case p of Cons a b → a

Figure 3.6 shows the non-strict oracle creation for this expression. As its
result it returns the expression Cons 000 s00:1 together with the the oracle
set {0, 00} and the following heap:

{(0, Cons 00 s00:1),
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(00, Cons 000 s00:1),
(000, case 0 of Cons a b → b),
(s00:1,True)}

In order to relate the subcomputations of non-strict oracle creation to
the subcomputations of Lazy Call-by-Value evaluation, the notion of current
positions is introduced. On these positions the order 4 is defined. In Ob-
servation 8 on page 41 we will see that the current position is monotonically
increasing in the course of a Lazy Call-by-Value evaluation. For every thunk
pointer p and every constant counter c the set Vp:c denotes those identifiers
that Lazy Call-by-Value evaluation may have bound on the heap when the
current position (p, c) is reached.

Definition. The current position of a judgment (t, c, Γ, e) ⇓p, ω C is the
tuple (p · t, c). Analogously, for a judgment (t, c, Γ, e) ↓p, ω D the current
position is the tuple (p · t, c).

Definition. The relation 4 is the lexicographic order on N∗ ×N, i.e. for
every s, t ∈ N∗, b, c ∈ N there is

(s, b) 4 (t, c) :⇐⇒ s <N∗ t ∨ (s = t ∧ b 6 c)

where <N∗ is the strict lexicographic order on N∗.
For every t ∈ N∗, c ∈ N the set Vt:c is defined byVt:c := {xs:b ∈ VC | (s, b) 4 (t, c)} ∪ {s ∈ N∗ | s <N∗ t}

For every identifier v ∈ N∗ there is Vv := Vt:∞, and for every identifier
w = xt:c ∈ VC there is Vw := Vt:c.

It can be seen that the final thunk counter of a computation is always
greater or equal to its initial thunk counter, and that the constant counter
is only decreased when the thunk counter is increased:

Observation 1. If the judgment (t, c, Γ, e) ⇓p, γ (t′, c′, ∆, e′) holds, then

1. (p · t, c) 4 (p · t′, c′),

2. if e is a strict or non-strict declaration, then (p · t, c) 6= (p · t′, c′), and

3. Vp·t:c ⊆ Vp·t′:c′.

Proof. The first observation can easily be verified by induction over the
derivation of (t, c, Γ, e) ⇓p, γ (t′, c′, ∆, e′).

Rule LetStrictL as well as rule LetLazyL advances the current position
before its subcomputation. The first observation holds for this subcompu-
tation, so the second observation follows.

The third observation follows directly from the first.
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Although lazy evaluation is a deterministic evaluation strategy, the se-
mantics for lazy evaluation of Figure 3.1 as well as of Figure 3.2 are non-
deterministic in the choice of variable names. In non-strict oracle creation,
identifiers are created in a deterministic way; the result of a computation as
well as the intermediate steps are determined by the initial configuration:

Observation 2.

1. For every judgment P ⇓p, γ Q there is at most one derivation tree.

2. For every configuration P there is at most one configuration Q, such
that P ⇓p, γ Q.

Proof. There is no configuration for which two different rules are applicable,
and none of the rules allows for non-deterministic choice.

We will prove properties of judgments by induction over the structure of
their derivation trees. For this we define a partial order on judgments that
resembles their causal dependency:

Definition (Derivation tree). A binary relation ⋐ over judgments is defined,
such that for all judgments I, J the statement I ⋐ J holds iff the derivation
tree of I is a strict subtree of the derivation tree of J . If I ⋐ J then I is
called a subcomputation of J .

For every judgment I, the set D(I) is defined to be the set of I’s subcom-
putations:

D(I) := {J | J ⋐ I}

For every initial expression a with (0, 0, ∅, a) ⇓ǫ, ω C for some oracle ω
and some configuration C, there is

D(a) := D((0, 0, ∅, a) ⇓ǫ, ω C)

The partial order (D(I),⋐) is called the derivation tree of I. The dual
order (D(a),⋑) of (D(I),⋐) is called the reversed derivation tree of I.

The following observation formalizes the fact that the oracle of a judg-
ment contains the oracle entries that were collected by the subcomputations
of that judgment:

Observation 3. For judgments I, J with J ⋐ I there is O(J) ⊆ O(I).

Proof. By induction over the reversed deriavation tree (D(I),⋑).

Base case: Trivial, since O(I) ⊆ O(I).

Inductive step: If the proposition holds for some judgment J ∈ D(I), then
the oracles of its premises are subsets of O(J) and thereby of O(I).
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Another important property of the semantics is that every returned ex-
pression is in weak head normal form, and that expressions which already
are in weak head normal form are not changed in the evaluation:

Observation 4. For every judgment L ⇓p, γ R there is

1. whnf(E(R)).

2. whnf(E(L)) =⇒ E(L) = E(R).

Proof.

1. By induction over the derivation tree (D(L ⇓p, γ R),⋐): For rule
ConstL the resulting expression is obviously in weak head normal form.
For rule VarStrictL the resulting expression is also in weak head normal
form; only expressions that are in weak head normal form are bound
to constant pointers, so that the value fetched from the heap must be
in weak head normal form. Every other rule returns an expression that
is the result of a subcomputation.

2. If E(L) is in weak head normal form, then the only applicable rule is
rule ConstL. But if L ⇓p, γ R holds by rule ConstL, then E(L) = E(R)
also holds.

The following observation states that every oracle entry corresponds to
the evaluation of a thunk:

Observation 5. If the judgment S ⇓p, γ T holds, then for every v ∈ γ the
derivation tree of S ⇓p, γ T contains a judgment (0, 0, L, l) ⇓v, δ (t, c, R, r)
such that (v, r) ∈ H(T ).

Proof. By induction over the derivation tree (D(S ⇓p, γ T ),⋐), distinguish-
ing the rules by which the judgment holds:

Rule ConstL, VarStrictL. Trivial, since γ = ∅.

Rules AppL, CaseL, LetStrictL, LetLazyL. The oracle γ is the union of the
oracles of the current judgment’s subcomputations. Therefore, every el-
ement of γ is contained in the oracle set of at least one subcomputation.
The induction hypothesis states that the derivation tree of this subcom-
putation contains a judgment (0, 0, L, l) ⇓v, δ (t, c, R, r), which is also
contained in the derivation tree of S ⇓p, γ T .
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Rule VarLazyL. Every element of γ is either contained in the oracle of the
subcomputation — then the proposition holds by induction —, or it is
equal to E(S). Then the judgment (0, 0, L, l) ⇓v, δ (t, c, R, r) is the
premise of the current judgment.

If there are no right hand sides of non-strict declaration that are already
in weak head normal forms, then this observation together with Observa-
tion 4 implies that the oracle of a computation consists of the thunk pointers
that refer to weak head normal forms on the resulting heap. Formally, if an
expression a contains no subexpression let? x = e1 in e2 with whnf(e1), then
there is

(0, 0, ∅, a) ⇓ǫ, ω C =⇒ ω = {v | (v, e) ∈ H(C) ∧ whnf(e)}

If the non-strict declaration of constants is ruled out, then there is no need
to calculate the oracle explicitly; it can be reconstructed from the resulting
heap. But in practice it can be useful to declare constructor terms in a non-
strict way, because then the user can see which parts of a data structure are
actually needed.

If a thunk pointer occurs in a computation, then all its prefixes — ex-
cept ǫ — will also occur in the resulting heap. The following observation
formalizes this:

Observation 6. Let a be an initial expression with (0, 0, ∅, a) ⇓ǫ, ω Z for
some configuration Z. Then for every v ∈ domH(Z) there is

{p ∈ N+ | q ∈ N∗ ∧ p · q = T (v)} ⊆ domH(Z)

with T (v) =

{

v if v ∈ N∗

p if v = xp:c ∈ VC
for every v ∈ V

Proof. If H(Z) contains an entry (v, e′), then an entry (v, e) must have been
added by a judgment L ⇓p, γ R that holds by rule LetLazyL or by rule
LetStrictL, such that there is i ∈ N with p · i = T (v). Now there is either
p = ǫ, or the thunk prefix has been set to p in the evaluation of the identifier
p by another application of rule VarLazyL. But then p will also be contained
in domH(Z). From this the proposition follows by induction.

The following observation states that every judgment that evaluates a
declaration has a distict current position.

Observation 7. For an initial expression a, every judgments L ⇓p, γ R ∈
D(a), for which E(L) is a strict or non-strict declaration, has a distinct
current positions.
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Proof. By induction over the derivation tree (D(a),⋐), distinguishing the
rules by which the judgment hold:

Rules ConstL, VarStrictL. These rules have no subcomputations, their left
expression is not a declaration, and they leave the current position un-
changed.

Rules AppL, CaseL. Each rule has two subcomputations. If the left hand
side of the first subcomputation contains no declaration, then the ob-
servation holds by induction for the first subcomputation. Otherwise,
Observation 1 implies that the current position of the second subcom-
putation is greater that the current position of the first, so that the
observation holds by induction.

Rule VarLazyL. This rule evaluates a thunk bound to a thunk pointer p. In
its subcomputation it sets the current position to (p · 0, 0). The thunk
cannot refer to itself, and it is updated with a result, for which Obser-
vation 4 states that it is in weak head normal form, so that the current
position can only be set to (p · 0, 0) once.

All its subcomputations have either a current position (q, c), so that p is
a prefix of q, or they are subcomputations of another application of rule
VarLazyL.

Rules LetStrictL, LetLazyL. These rules advance the current position, so
that subsequent declarations have another position.

3.6 Lazy Call-by-Value Evaluation

The semantics for Lazy Call-by-Value evaluation is kept as similar as possible
to the semantics of non-strict oracle creation. The main difference is that
no unevaluated thunks are created on the heap. Instead, all declarations are
evaluated at binding time. For this the oracle is inherited from the root of
the derivation tree, and the right hand sides of non-strict declarations are
either evaluated or discarded at binding-time, depending on the oracle.

Configurations. Like before, a configuration is a 4-tuple (t, c, Γ, e) ∈N×N×H×E that consists of a thunk counter t, a const counter c, a heap
Γ and an expression e.

Judgments. A judgment (t, c, Γ, e) ↓p, ω (t′, c′, ∆, e′) relates a config-
uration (t, c, Γ, e) to the result of its evaluation (t′, c′, ∆, e′). Like the
judgments of non-strict oracle creation, it contains a thunk prefix p ∈ N∗
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ConstS
whnf(e)

(t, c, Γ, e) ↓p, ω (t, c, Γ, e)

AppS

(t, c, Γ, f) ↓p, ω (t′, c′, ∆, λx.e)
∧ (t′, c′, ∆, e[v/x]) ↓p, ω R

(t, c, Γ, f v) ↓p, ω R

VarS
(v, e) ∈ Γ

(t, c, Γ, v) ↓p, ω (t, c, Γ, e)

CaseS

i ∈ {1, . . . , n} ∧ (t, c, Γ, e) ↓p, ω (t′, c′, ∆, Ci vki
)

∧ (t′, c′, ∆, ai[vn/xn]) ↓p, ω R

(t, c, Γ, case e of Cn xn,kn
7→ an) ↓p, ω R

LetStrictS

∀i ∈ {1, . . . , n} : vi = (xi)p·t:(c+1) ∧ e′i = ei[vn/xn]

∧ (t, c+ 1, Γ ∪ {(vn, e′n)}, e[vn/xn]) ↓p, ω R

(t, c, Γ, let! xn = en in e) ↓p, ω R

LetEvalS

p · t ∈ ω ∧ (0, 0, Γ, e1) ↓p·t, ω (t′, c′, ∆, e′1)
∧ (t+ 1, 0, (∆ ∪ {(p · t, e′1)}, e2[p · t/x]) ↓p, ω R

(t, c, Γ, let? x = e1 in e2) ↓p, ω R

LetSkipS
p · t 6∈ ω ∧ (t+ 1, 0, Γ, e2[p · t/x]) ↓p, ω R

(t, c, Γ, let? x = e1 in e2) ↓p, ω R

Figure 3.7: Rules for Lazy Call-by-Value evaluation

and an oracle ω ⊆ N∗. The difference is that both the thunk prefix p and
the oracle γ are inherited from the parent judgment.

To evaluate a program p to a configuration (t′, c′, ∆, q) directed by an
oracle ω means to prove that

(0, 0, ∅, p) ↓ǫ, ω (t′, c′, ∆, q).

Figure 3.7 shows the derivation rules for Lazy Call-by-Value evaluation:

ConstS , AppS , CaseS ,LetStrictS . These rules are the same as the respective
rules for non-strict oracle creation. The only difference is that the oracle
is not synthesized from the subcomputations, but inherited from the root
of the derivation tree.



40 CHAPTER 3. NATURAL SEMANTICS

L
et

E
va

lS

ǫ











































































(0, 0, ∅, let? ... in case p of Cons a b → a)

L
et

S
tr

ic
tS

0



































(0, 0, ∅, let! ... in let? ... in Cons q s)

L
et

E
va

lS
0

























(0, 1, S, let? ... in Cons q s)

L
et

S
ki

p
S

00









(0, 1, S, let? ... in Cons r s00:1)

ConstL00

[

(1, 0, S, Cons 000 s00:1)

(1, 0, S, Cons 000 s00:1)

ConstS0

[

(1, 0, Q ∪ S , Cons 00 s00:1)

(1, 0, Q ∪ S , Cons 00 s00:1)
(1, 0, Q ∪ S , Cons 00 s00:1)
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(1, 0, P ∪ Q ∪ S , case 0 of Cons a b → a)

VarSǫ

[

(1, 0, P ∪ Q ∪ S , 0)

(1, 0, P ∪ Q ∪ S , Cons 00 s00:1)

VarSǫ

[

(1, 0, P ∪ Q ∪ S , 00)

(1, 0, P ∪ Q ∪ S , Cons 000 s00:1)
(1, 0, P ∪ Q ∪ S , Cons 000 s00:1)

(1, 0, P ∪ Q ∪ S , Cons 000 s00:1)

P = {(0,Cons 00 s00:1)}
Q = {(00,Cons 000 s00:1)}
S = {(s00:1,True)}

Figure 3.8: Example of Lazy Call-by-Value evaluation

VarS . In this rule, rules VarStrictL and VarLazyL of the non-strict oracle
creation are merged. Since only weak head normal forms are bound on
the heap, there is no need to evaluate the expressions that are fetched
from the heap.

LetEvalS . This rule handles variable bindings that will be needed by sub-
sequent computations. For this it uses the information collected in the
inherited oracle. If the oracle contains the name of the identifier, then it
is known that the binding is needed.

LetSkipS. This rule handles variable bindings that are not needed by sub-
sequent computations. It simply increments the thunk counter i and
evaluates e2 in the unchanged heap Γ.

Figure 3.8 shows the Lazy Call-by-Value evaluation of the example ex-
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pression from page 33, together with the oracle {0, 00}. As in non-strict
oracle creation, the expression Cons 000 s00:1 is returned, but this time the
heap does not contain the unevaluated thunk bound to pointer 000:

{(0, Cons 00 s00:1),
(00, Cons 000 s00:1),
(s00:1,True)}

In the example evaluation it can be seen how the order of evaluation
differs from non-strict oracle creation: Now all right hand sides are evaluated
before they are bound on the heap, so that the current position increases
monotonically w.r.t. order 4 in the course of the evaluation. We fix this in
the following observation:

Observation 8. In the derivation of a judgment (t, c, Γ, e) ↓p, ω C, the
current position is monotonically increasing with respect to order 4.

Proof. Rules ConstS and VarS have no subcomputations and leave the
thunk counter and constant counter unchanged. For every other rule, the
inequality

(p · t, c) 4 (q · s, b) 4 (q · s′, b′) (*)

holds for every subcomputation (s, b, F, f) ↓q, ω (s′, b′, G, g) by induction
over the derivation tree.

Rule LetStrictS as well as rulle LetSkipS has exactly one judgment as its
premise, so that the observation follows directly from (*).

Only the premises of rules AppS, CaseS and LetEvalS contain more than
one subcompution. In all three rules, the resulting thunk counter and con-
stant counter of the first subcompution are equal to the initial thunk counter
and constant counter of the second subcompution. Thus, the observation
follows from (*).

3.7 Proof of Correctness

It remains to be shown that for every non-strict oracle creation there is a
Lazy Call-by-Value evaluation that computes the same result. Since only
needed values are bound on the heap, we can not expect the resulting heaps
to be the same; in the above example, the heap entry 000 was missing
in the resulting heap of the Lazy Call-by-Value evaluation. Therefore, we
consider both heaps as sufficiently equal if they contain the same bindings for
strictly-bound identifiers in VC and for thunk identifiers that were needed
to evaluate the program. Therefore, we regard the resulting configurations
as equivalent if

1. they contain the same expression, and
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2. the heap resulting from Lazy Call-by-Value evaluation is identical to
the heap resulting from non-strict oracle creation, restricted to VC∪ω.

The following diagram shows the correspondence that has to be shown:

(0, 0, ∅, a)
ǫ,ω

+3

��

(t, c, H, z)

��

(0, 0, ∅, a)
ǫ,ω

// (t, c, H|VC∪ω, z)

First, we show that non-strict oracle creation does not remove or change
thunks after they have been evaluated. Then we show that non-strict oracle
creation does not introduce heap pointers to values that are not yet bound
on the heap. From this we conclude that expressions may be evaluated as
soon as they are bound on the heap.

We start by introducing the notion of pre-heaps. If a heap Γ is a pre-heap
of a heap ∆, then the evaluated thunks contained in Γ are also contained in
∆. As it turns out, every heap that occurs in the non-strict oracle creation
is a pre-heap of the resulting heap.

Definition (Pre-heap). The relation E :⊆ H×H is defined by

Γ E ∆ :⇐⇒ ∀(v, e) ∈ Γ : whnf(e)⇒ (v, e) ∈ ∆

for all Γ, ∆ ∈ H. If Γ E ∆, then Γ is called a pre-heap of ∆.

Lemma 1. The relation E is a preorder on H.

Proof. We have to show that E is reflexive and transitive.

1. Reflexivity. Trivial, since for every heap Γ and every (v, e) ∈ Γ there
is whnf(e)⇒ (v, e) ∈ Γ

2. Transitivity. Let Γ, ∆ and Θ be heaps with Γ E ∆ and ∆ E Θ. If no
weak head normal forms are bound in Γ, then Γ E Θ holds trivially.
Otherwise choose (v, e) ∈ Γ with whnf(e). Then Γ E ∆ implies that
(v, e) ∈ ∆. Since whnf(e) holds, ∆ E Θ implies that (v, e) ∈ Θ.

The following two lemmata state that in a judgment L ⇓p, γ R the left
heap H(L) is always a pre-heap of the right heap H(R), and the resulting
heap of every subcomputation is a pre-heap of the right heap H(R). This
implies that in a computation every intermediate heap is a pre-heap of the
final heap.

Lemma 2. If L ⇓p, γ R, then H(L) E H(R).
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Proof. By induction over the derivation tree (D(L ⇓p, γ R),⋐), distingush-
ing between the rules by which the judgment holds:

Rules ConstL, VarStrictL. Since E is reflexive, H(L) E H(R) follows from
H(L) = H(R).

Rules AppL, CaseL. After applying the induction hypothesis to the sub-
computations, H(L) E H(R) follows from the transitivity of E.

Rule VarLazyL Assume that (t, c, Γ, v) ⇓p, γ∪{v} (t, c, ∆ ∪ {(v, e′)}, e′)

holds by rule VarLazyL. Then there is an expression e, such that (v, e) ∈
Γ and the judgment (0, 0, Γ \ {(v, e)}, e) ⇓v, γ (t′, c′, ∆, e′) is a premise
of the current judgment.

Now Γ \ {(v, e)} E ∆ holds by the induction hypothesis.

Since the subcomputation can only introduce fresh identifiers, v is not
bound in ∆, so that ∆ E ∆ ∪ {(v, e′)} also holds. It follows that Γ \
{(v, e)} E ∆ ∪ {(v, e′)} holds by the transitivity of E.

Observation 4 states that e = e′ or not whnf(e), so that Γ E ∆∪{(v, e′)}
also holds.

Rule LetStrictL. If the judgment (t, c, Γ, let! xn = en in e) ⇓p, γ T holds

by rule LetStrictL, then (t, c+ 1, Γ∪ {(vn, e′n)}, e[vn/xn]) ⇓p, γ T holds

with vi = (xi)p·t:(c+1) and e′i = ei[vn/xn] for every i ∈ {1, . . . , n}.

Then Γ E Γ∪{(vn, e′n)} holds, because all v1, . . . , vn are fresh identifiers,
, and Γ ∪ {(vn, e′n)} E H(T ) holds by the induction hypothesis, so that
Γ E H(T ) follows from the transitivity of E.

Rule LetLazyL. If (t, c, Γ, let? x = e1 in e2) ⇓p, γ T holds by rule LetLazyL,
then (t+ 1, 0, Γ ∪ {(p · t, e1)}, e2[p · t/x]) ⇓p, γ T holds.

Γ E Γ ∪ {(p · t, e1)} holds, because p · t is a fresh identifier, and Γ ∪
{(p · t, e1)} E H(T ) holds by the induction hypothesis, so that Γ E H(T )
follows from the transitivity of E.

The next lemma shows that the resulting heap of a subcomputation is
always a pre-heap of the overall computation. Intuitively, this is clear, every
rule except rule VarLazyL returns the resulting heap of a subcomputation,
and rule VarLazyL only adds an entry to it.

Lemma 3. Assume that the judgment A ⇓q, δ Z holds. Then for every
judgment L ⇓p, γ R in its derivation tree there is H(R) E H(Z).

Proof. By induction over the reversed derivation tree (D(A ⇓ǫ, ω Z),⋑).
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Base case: If L ⇓p, γ R is the root of the derivation tree, thenH(R) = H(Z),
so that the proposition follows by the reflexivity of E.

Inductive step: Assuming that H(R) E H(Z) holds for a judgment L ⇓p, γ
R, it is shown that the proposition also holds for the judgments that
occcur in its premise. We distinguish the rules by which L ⇓p, γ R
holds:

Rules ConstL, VarStrictL The premise of these rules contain no judg-
ments.

Rules AppL, CaseL Each rule contains two judgments P ⇓p,α Q and
S ⇓p, β T as its premise, for which H(T ) = H(R) and H(Q) = H(S)
holds. Therefore, the proposition holds for the second premise, and
H(S) E H(Z) follows by Lemma 2.

Rule VarLazyL This rule has one judgment P ⇓v, α Q as its premise.
There is H(Q) ⊆ H(R), so that H(Q) E H(R). Since E is transitive,
there is also H(Q) E H(Z).

Rules LetStrictL, LetLazyL Each rule has one judgment P ⇓v, α Q as its
premise, for which H(Q) = H(R) holds. Therefore, H(Q) E H(Z)
holds by the induction hypothesis.

Now it is easy to see that every heap that occurs in a computation is a
pre-heap of that computation’s final heap:

Corollary 4. Let a be an initial expression, with (0, 0, ∅, a) ⇓ǫ, ω C for
some configuration C. Then for every judgment L ⇓p, γ R ∈ D(a) in its
derivation tree there is

1. H(R) E H(C).

2. H(L) E H(C).

Proof. Direct consequence of Lemma 3 and Lemma 2.

Relation ⊏ draws the connection between the derivation trees of a non-
strict oracle creation and the corresponding Lazy Call-by-Value evaluation.
Consider the following expression:

case (let? x = (let! t = True in t) in S x ) of S y → y

Under lazy evaluation, the value of x is forced after the alternative of the
case expression has been selected; under Lazy Call-by-Value evaluation the
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value of x is calculated before the body S x is returned:

True

��

True

��

let! ... in t

��

let? ... in S x
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A let! ... in t
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let? ... in S x

��

case ... of ... case ... of ...

Under Lazy Call-by-Value evaluation, the evaluation of x is a subcomputa-
tion of its declaration. Relation ⊏ adds this connection to relation ⋐, so
that their union ⋖ combines the structure of the lazy derivation with the
structure of the Lazy Call-by-Value derivation:
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⊐
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case ... of ... True

This makes it possible to relate the two evaluation strategies to each other
in the central Lemma 10.

Definition. The relations ⊏ and ⋖ over judgments are defined, such that
for all judgments P ⇓p·i, δ Q and R ⇓p, γ S with i ∈ N the statement

P ⇓p·i, δ Q ⊏ R ⇓p, γ S

holds iff E(R) not in weak head normal form, and for all judgments I and
J there is

I ⋖ J :⇐⇒ I ⋐ J ∨ I ⊏ J.

Lemma 5. Let a be an initial expression with (0, 0, ∅, a) ⇓ǫ, ω C for some
oracle ω and some configuration C.

Then ⋖ is a well-founded relation over D(a).

Proof. On D(a) the relations ⋐ and ⊏ are finite and circle-free. Therefore,
we have to show that their union ⋖ is also circle-free on D(a). Since ⋐ is
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transitive on D(a), it is sufficient to show that there are no judgments I,
J ∈ D(a) with J ⋐ I and I ⊏ J . This is shown by contradiction.

Assume that there are judgments I := P ⇓p·i, δ Q, J := R ⇓p, γ S in
D(a) with i ∈ N, such that J ⋐ I and I ⊏ J .

The only rule that can change the thunk prefix is rule VarLazyL. In this
rulethe expression to be evaluated is a thunk pointer; this thunk pointer will
be used as thunk prefix in the rule’ premise. Therefore, that judgment I
has thunk prefix p · i implies that there is an application of rule VarLazyL

A ⇓b, α B with I ⋐ A ⇓b, α B and E(A) = p · i, which sets the thunk prefix
to p · i in its subcomputation.

It is impossible that p = ǫ, because no rule can set the thunk prefix of
its subcomputation to ǫ if the rule itself does not have the thunk prefix ǫ.
But there is J ⋐ I with O(I) 6= ǫ. Therefore, judgment J can only have
thunk prefix p if there is a judgment C ⇓d, β D with J ⋐ C ⇓d, β D and
E(C) = p. Thus, there is:

J ⋐ C ⇓d, β D ⋐ I ⋐ A ⇓b, α B

We have to distinguish two cases:

1. There is (p, e) ∈ H(P ) with whnf(e). Then J holds by rule ConstL

and is a direct premise of C ⇓d, β D. But there is whnf(H(R)), which
contradicts the assumption I ⊏ J .

2. There is no (p, e) ∈ H(P ) with whnf(e). Since E(A) = p · i, H(A)
contains a binding of p · i. Thus, a judgment K with thunk prefix p
must have defined p·i before the judgment A ⇓b, α B could be derived.
For that, another judgment must already have started the evaluation
of p, so that p could become the thunk prefix of K.

Since there is no (p, e) ∈ H(P ) with whnf(e) there is

• judgment I is a subcomputation of the evaluation of p, and

• judgment C ⇓d, β D with E(C) = p implies that p is defined a
second time by a subcomputation of I.

This is a contradiction, because every heap pointer can only be intro-
duced once.

The predicate B is needed to assure that a configuration contains only
backwards references, i.e. that the expression only refers to identifiers that
are already defined in the heap, and that every heap entry v refers only to
identifiers in Vv:
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Definition. For every thunk prefix p ∈ N∗ the predicate Bp on configurations
is defined by

Bp((t, c, Γ, e)) :⇐⇒ V(e) ⊆ Vp·t:c ∧ ∀(v, g) ∈ Γ : V(g) ⊆ Vv

Lemma 6. For every judgment S ⇓p, γ T there is

Bp(S) =⇒ Bp(T )

Proof. By induction over the derivation tree (D(S ⇓p, γ T ),⋐), distinguish-
ing the rules by which the judgment holds:

Rule ConstL. Since S = T , the proposition holds trivially.

Rule AppL. If the judgment (t, c, Γ, f v) ⇓p, γ∪δ T holds by rule AppL, then
(t, c, Γ, f) ⇓p, γ (t′, c′, ∆, λx.e) and (t′, c′, ∆, e[v/x]) ⇓p, δ T .

If Bp((t, c, Γ, f v)), then V(f) ⊆ V(f v) implies Bp((t, c, Γ, f)), and
Bp((t

′, c′, ∆, λx.e)) follows by the induction hypothesis.

Observation 1 on page 34 states that Vp·t:c ⊆ Vp·t′:c′ , so there is v ∈Vp·t:c ⊆ Vp·t′:c′, there is V(e[v/x]) ⊆ V(e) ∪ {v} ⊆ Vp·t′:c′ .

Therefore, Bp((t
′, c′, ∆, e[v/x])) also holds, and Bp(T ) follows by the

induction hypothesis.

Rule VarStrictL. If (t, c, Γ, v) ⇓p, γ (t, c, Γ, e) holds by rule VarStrictL,
then (v, e) ∈ Γ. If Bp((t, c, Γ, v)), then v ∈ VN∗:c implies that V(e) ⊆Vv ⊆ Vp·t:c, and therefore Bp((t, c, Γ, e)) holds.

Rule VarLazyL. If I := (t, c, Γ, v) ⇓p, γ∪{v} (t′, c′, ∆ ∪ {(v, e′)}, e′) holds

by rule VarLazyL, then (v, e) ∈ Γ and J := (0, 0, Γ \ {(v, e)}, e) ⇓v, γ
(t′, c′, ∆, e′) holds as its premise.

If Bp((t, c, Γ, v)), then v ∈ VN∗:c implies that V(e) ⊆ Vv ⊆ Vv·0:0,
and therefore Bv((0, 0, Γ \ {(v, e)}, e)). With the induction hypothesis
Bv((t

′, c′, ∆, e′)) follows.

It remains to show that Vv·t′:c′ ⊆ Vp·t:c.

Since v ∈ Vp·t:c, there must be v <N∗ p · t.

Assume that Vv·t′:c′ 6⊆ Vp·t:c. Then there must be (p · t, c) 4 (v · t′, c′).
This together with v <N∗ p · t implies that there is an i ∈ N, such
that v · i = p and i < t′. But then I ⊏ J holds. Since the latter is a
subcomputation of the former, there is I⋖J and J⋖I, which contradicts
Lemma 5.

Rule CaseL. If the judgment (t, c, Γ, case e of Cn xn,kn
7→ an) ⇓p, γ∪δ T

holds by rule CaseL, then there is i ∈ {1, . . . , n}, such that the judgments
(t, c, Γ, e) ⇓p, γ (t′, c′, ∆, Ci vki

) and (t′, c′, ∆, ai[vn/xn]) ⇓p, δ T hold.
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If Bp((t, c, Γ, case e of Cn xn,kn
7→ an)), then Bp((t, c, Γ, e)) and by the

induction hypothesis it follows that Bp((t
′, c′, ∆, Ci vki

)).

Since V(ai) ⊆ Vp·t:c ⊆ Vp·t′:c′ and {v1, . . . , vki
} ⊆ Vp·t′:c′ , there is

V(ai[vn/xn]) ⊆ Vp·t′:c′ . It follows that Bp((t
′, c′, ∆, ai[vn/xn])), so that

Bp(T ) follows by the induction hypothesis.

Rule LetStrictL. If the judgment (t, c, Γ, let! xn = en in e) ⇓p, γ T holds

by rule LetStrictL, then (t, c+ 1, Γ∪ {(vn, e′n)}, e[vn/xn]) ⇓p, γ T holds

with vi = (xi)p·t:(c+1) and e′i = ei[vn/xn] for every i ∈ {1, . . . , n}.

If Bp((t, c, Γ, let! xn = en in e)), then {v1, . . . , vn} ⊆ Vp·t:(c+1), so that

V(e′i) ⊆ Vp·t:c ∪ {v1, . . . , vn} ⊆ Vp·t:(c+1)

for every i ∈ {1, . . . , n}. This implies

Bp((t, c+ 1, Γ ∪ {(vn, e′n)}, e[vn/xn])),

so that Bp(T ) follows by the induction hypothesis.

Rule LetLazyL. If (t, c, Γ, let? x = e1 in e2) ⇓p, γ T holds by rule LetLazyL,
then (t+ 1, 0, Γ ∪ {(p · t, e1)}, e2[p · t/x]) ⇓p, γ T holds.

If Bp((t, c, Γ, let? x = e1 in e2)), then p · t ∈ Vp·(t+1):0 implies that
V(e2[p · t/x]) ⊆ Vp·(t+1):0.

It follows that Bp((t + 1, 0, Γ ∪ {(p · t, e1)}, e2[p · t/x])), so that Bp(T )
follows by the induction hypothesis.

Lemma 7. Assume that the judgment A ⇓q, δ Z holds with Bp(A). Then
for every judgment L ⇓p, γ R in its derivation tree there is Bp(L).

Proof. By induction over the reversed derivation tree (D(A ⇓q, δ Z),⋑).

Base case: For the judgment A ⇓q, δ Z the proposition holds by assumption.

Inductive step: Assuming that the proposition holds for a judgment, it has
to be shown that it also holds for the judgments that occcur in its
premise.

Rules ConstL, VarStrictL There are no judgments in the premises of
these rules.

Rule AppL. If the judgment (t, c, Γ, f v) ⇓p, γ∪δ R holds by rule AppL,
then (t, c, Γ, f) ⇓p, γ (t′, c′, ∆, λx.e) and (t′, c′, ∆, e[v/x]) ⇓p, δ R
hold as its premise.
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By the induction hypothesis there is Bp((t, c, Γ, f v)). This implies
V(f) ⊆ Vp·t:c, so that Bp((t, c, Γ, f)) holds. By Lemma 6 it fol-
lows that Bp((t

′, c′, ∆, λx.e)). Since v ∈ Vp·t:c ⊆ Vp·t′:c′ , there is
V(e[v/x]) ⊆ V(e) ∪ {v} ⊆ Vp·t′:c′, so that Bp((t

′, c′, ∆, e[v/x])) also
holds.

Rule VarLazyL. If the judgment (t, c, Γ, v) ⇓p, γ∪{v} R holds by rule

VarLazyL, then there is (v, e) ∈ Γ, such that the judgment (0, 0, Γ \
{(v, e)}, e) ⇓v, γ U holds as its premise for some configuration U .

By the induction hypothesis there is Bp((t, c, Γ, v)). Since V(e) ⊆Vv ⊆ Vv·0:0, there is also Bp((0, 0, Γ \ {(v, e)}, e)).

Rule LetStrictL. If the judgment (t, c, Γ, let! xn = en ine) ⇓p, γ R holds
by rule LetStrictL, then as its premise the judgment (t, c + 1, Γ ∪
{(vn, e′n)}, e[vn/xn]) ⇓p, γ R holds with vi = (xi)p·t:(c+1) and e′i =

ei[vn/xn] for every i ∈ {1, . . . , n}. Now Bp((t, c, Γ, let! xn = en in e))
follows by the induction hypothesis.

Since vi ∈ Vp·t:(c+1) and V(e′i) ⊆ Vp·t:(c+1) for every i ∈ {1, . . . , n},

there is Bp((t, c+ 1, Γ ∪ {(vn, e′n)}, e[vn/xn])).

Rule LetLazyL. If the judgment (t, c, Γ, let? x = e1 in e2) ⇓p, γ R holds
by rule LetLazyL, then the judgment (t+ 1, 0, (Γ∪ {(p · t, e1)}, e2[p ·
t/x]) ⇓p, γ R holds as its premise. By the induction hypothesis
Bp((t, c, Γ, let? x = e1 in e2)) follows.

Since p · t ∈ Vp·(t+1):0 and V(e1) ⊆ Vp·(t+1):0, there is Bp((t+1, 0, Γ∪
{(p · t, e1)}, e2[p · t/x])).

Corollary 8. Let a be an initial expression with (0, 0, ∅, a) ⇓ǫ, ω Z for
some configuration Z and oracle ω. Then for every judgment L ⇓p, γ R in
D(a) there is Bp(L) and Bp(R).

Proof. There is V(a) = ∅, so that Bǫ((0, 0, ∅, a)) holds vacuously, and the
proposition is a direct consequence of Lemma 6 and Lemma 7.

The following lemma states that no evaluation can introduce “forward-
references” to heap pointers that are not yet defined:

Lemma 9. For every judgment (t, c, Γ, e) ⇓p, γ (t′, c′, ∆, e′) there is

Bp((t, c, Γ, e)) =⇒ dom∆ \ domΓ ⊆ Vp·t′:c′

Proof. By induction over the derivation tree (D(a),⋐).

Rule ConstL, VarStrictL Since ∆ \ Γ = ∅, the proposition holds trivially.

Rule AppL, CaseL. With Observation 1 and Lemma 6 the proposition fol-
lows directly from induction hypothesis.
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Rule VarLazyL. If the judgment

I := (t, c, Γ, v) ⇓p, γ∪{v} (t, c, ∆ ∪ {(v, e′)}, e′)

holds by rule VarLazyL, then (v, e) ∈ Γ and the judgment

J := (0, 0, Γ \ {(v, e)}, e) ⇓v, γ (t′, c′, ∆, e′)

holds as its premise.

The induction hypothesis states that dom∆\dom(Γ\{(v, e)}) ⊆ Vv·t′:c′ .
Since v ∈ Vv·t′:c′ , there is also dom(∆ ∪ {(v, e′)}) \ domΓ ⊆ Vv·t′:c′

Lemma 7 together with Lemma 6 states that Bv((t
′, c′, ∆, e′)), and so

v ∈ Vp·t:c.

There is no i ∈ N, such that v · i = p, because then J ⋐ I and I ⊏ J
would hold simultaneously, which would contradict Lemma 5.

Therefore, (v · t′, c′) 4 (p · t, c) holds, which implies Vv·t′:c′ ⊆ Vp·t:c, so
that the second proposition holds.

Rule LetStrictL. If (t, c, Γ, let! xn = en in e) ⇓p, γ (t′, c′, ∆, e′) holds by

rule LetStrictL, then (t, c+1, Γ∪{(vn, e′n)}, e[vn/xn]) ⇓p, γ (t′, c′, ∆, e′)

holds with vi = (xi)p·t:(c+1) and e′i = ei[vn/xn] for all i ∈ {1, . . . , n}.

The induction hypothesis states that dom∆ \ dom(Γ ∪ {(vn, e′n)}) ⊆Vp·t′:c′ , and so the proposition follows from {v1, . . . , vn} ⊆ Vp·t′:c′.

Rule LetLazyL. If (t, c, Γ, let? x = e1 in e2) ⇓p, γ T holds by rule LetLazyL,
then (t+ 1, 0, Γ ∪ {(p · t, e1)}, e2[p · t/x]) ⇓p, γ T holds.

The induction hypothesis states that dom∆ \ dom(Γ ∪ {(p · t, e1)}) ⊆Vp·t′:c′ , and so the proposition follows from p · t ∈ Vp·t′:c′ .

For a heap H, an oracle ω and a current position (p · t, c) the heap Hω
p:c

contains those definitions (v, e) ∈ H, for which

1. v ∈ Vp:c holds, so that they can be defined by Lazy Call-by-Value
evaluation before the current position (p · t, c) is reached, and

2. v is a constant pointer or v is contained in the oracle ω, so that Hω
p:c

does not contain unneeded, unevaluated thunks.

Definition. For every heap H ∈ H, every p ∈ N∗, c ∈ N and every oracle
ω ⊆ N∗ there is

Hω
p:c :=

{

(v, e) | (v, e) ∈ H ∧ v ∈ ω ∪VC ∧ v ∈ Vp:c

}
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With this definition, we can formulate the central theorem that relates
non-strict oracle creation to Lazy Call-by-Value evaluation. It states that
every judgment in a non-strict evaluation has a corresponding judgment in
the respective Lazy Call-by-Value evaluation. The following diagram shows
this correspondence:

(t, c, Γ, e)
p,γ

+3

��

(t′, c′, ∆, e′)

��

(t, c, Hω
p·t:c, e) p,ω

// (t′, c′, Hω
p·t′:c′ , e

′)

Lemma 10. Let a be an initial expression with (0, 0, ∅, a) ⇓ǫ, ω Z for some
configuration Z with H(Z) = H. Then for all judgments (t, c, Γ, e) ⇓p, γ
(t′, c′, ∆, e′) ∈ D(a) the judgment (t, c, Hω

p·t:c, e) ↓p, ω (t′, c′, Hω
p·t′:c′ , e

′)
also holds.

Proof. By induction over the well-founded relation ⋖, distinguishing the
rules by which the judgment holds:

Rule ConstL. If (t, c, Γ, e) ⇓p, γ (t, c, Γ, e) holds by rule ConstL, then
whnf(e) and (t, c, Hω

p·t:c, e) ↓p, ω (t, c, Hω
p·t:c, e) trivially holds by rule

ConstS .

Rule AppL. If (t, c, Γ, f v) ⇓p,α (t′′, c′′, Θ, g) holds by rule AppL, then the
judgments (t, c, Γ, f) ⇓p, γ (t′, c′, ∆, λx.e) and (t′, c′, ∆, e[v/x]) ⇓p, δ
(t′′, c′′, Θ, g) hold as its premise for some oracles γ and δ with α = γ∪ δ.

Applying the induction hypothesis to these judgments
yields (t, c, Hω

p·t:c, f) ↓p, ω (t′, c′, Hω
p·t′:c′ , λx.e) as well as

(t′, c′, Hω
p·t′:c′ , e[v/x]) ↓p, ω (t′′, c′′, Hω

p·t′′:c′′ , g). From these

(t, c, Hω
p·t:c, f v) ↓p, ω (t′′, c′′, Hω

p·t′′:c′′ , g) follows by rule AppS .

Rule VarStrictL. If (t, c, Γ, v) ⇓p, γ (t, c, Γ, e) holds by rule VarStrictL,
then v ∈ VC and (v, e) ∈ Γ.

Corollary 4 states that Γ E H, so that (v, e) ∈ H follows from v ∈ VC .
Corollary 8 implies that v ∈ Vp·t:c, so that (v, e) ∈ Hω

p·t:c also holds.
Therefore, the judgment (t, c, Hω

p·t:c, v) ↓p, ω (t, c, Hω
p·t:c, e) follows by

rule VarS .

Rule VarLazyL. If (t, c, Γ, v) ⇓p, γ (t′, c′, ∆, e) holds by rule VarLazyL,
then v ∈ N∗, v ∈ γ and (v, e) ∈ ∆.

Corollary 4 states that ∆ E H holds, and whnf(e) follows from Obser-
vation 4; therefore (v, e) ∈ H holds.

Observation 3 states that v ∈ ω, and Lemma 7 states that v ∈Vp·t:c. Therefore, (v, e) ∈ Hω
p·t:c also holds, so that (t, c, Hω

p·t:c, v) ↓p, ω
(t, c, Hω

p·t:c, e) follows by rule VarS .
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Rule CaseL. If (t, c, Γ, case e of Cn xn,kn
7→ an) ⇓p,α (t′′, c′′, Θ, a′) holds

by rule CaseL, then there exists i ∈ {1, . . . , n}, such that (t, c, Γ, e) ⇓p, γ
(t′, c′, ∆, Ci vki

) and (t′, c′, ∆, ai[vn/xn]) ⇓p, δ (t′′, c′′, Θ, g) hold as its
premise for some oracles γ and δ with α = γ ∪ δ.

Applying the induction hypothesis to these judgments
yields (t, c, Hω

p·t:c, e) ↓p, ω (t′, c′, Hω
p·t′:c′ , Ci vki

) and

(t′, c′, Hω
p·t′:c′ , ai[vn/xn]) ↓p, ω (t′′, c′′, Hω

p·t′′:c′′ , a
′). The judgment

(t, c, Hω
p·t:c, case e of Cn xn,kn

7→ en) ↓p, ω (t′′, c′′, Hω
p·t′′:c′′ , a

′) follows

by rule CaseS .

Rule LetStrictL. If (t, c, Γ, let!xn = enine) ⇓p, γ (t′, c′, ∆, e′) holds by rule

LetStrictL, then (t, c + 1, Γ ∪ {(vn, e′n)}, e[vn/xn]) ⇓p, γ (t′, c′, ∆, e′)

holds as its premise, where vi = (xi)p·t:c and e′i = ei[vn/xn] for every
i ∈ {1, . . . , n}.

Applying the induction hypothesis yields (t, c +
1, Hω

p·t:c+1, e[vn/xn]) ↓p, ω (t′, c′, Hω
p·t′:c′ , e

′). Corollary 4 implies

that Γ ∪ {(vn, e′n)} E H, so there is Hω
p·t:c ∪ {(vn, e

′
n)} ⊆ H

ω
p·t:(c+1).

If there were other heap entries in Hω
p·t:(c+1) \H

ω
p·t:c than v1, . . . , vn, then

there would be another jugdment with the same current position. This
is ruled out by Observation 7, so all constant identifiers with suffix p · t:c
that are bound in H come from the current judgment.

Therefore, Hω
p·t:(c+1) = Hω

p·t:c ∪ {(vn, e
′
n)} holds. With that the judg-

ment (t, c+1, Hω
p·t:c∪{(vn, e

′
n)}, e[vn/xn]) ↓p, ω (t′, c′, Hω

p·t′:c′ , e
′) holds,

and (t, c, Hω
p·t:c, let

! xn = en in e) ↓p, ω (t′, c′, Hω
p·t′:c′ , f) follows by rule

LetStrictS .

Rule LetLazyL. If I := (t, c, Γ, let? x = e1 in e2) ⇓p, γ (t′′, c′′, Θ, g) holds
by rule LetLazyL, then (t + 1, 0, Γ, e2[p · t/x]) ⇓p, γ (t′′, c′′, Θ, g) holds
as its premise.

Applying the induction hypothesis yields

(t+ 1, 0, Hω
p·(t+1):c, e2[p · t/x]) ↓p, ω (t′′, c′′, Hω

p·t′′:c′′ , g) (*)

Now two cases have to be distinguished:

1. p ·t 6∈ ω. By Observation 6, heap H contains no thunk pointers with
prefix p · t and no constant pointers whose subscript has prefix p · t.

Also, Observation 7 implies that all constant identifiers with suffix p·
t:c that are bound inH come from the current judgment. Therefore,
Hω
p·t:c = Hω

p·(t+1):0 holds,so that (*) implies that (t+1, 0, Hω
p·t:c, e2[p·

t/x]) ↓p, ω (t′′, c′′, Hω
p·t′′:c′′ , g) holds.

From this (t, c, Hω
p·t:c, let

? x = e1 in e2) ↓p, ω (t′′, c′′, Hω
p·t′′:c′′ , g)

follows by rule LetSkip.
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2. p · t ∈ ω. Then Observation 5 states that there is a judgment
J := (0, 0, G, e1) ⇓p·t, δ (t′, c′, D, f) ∈ D(a). If whnf(e1), then the
judgment

(0, 0, Hω
p·t·0:0, e1) ↓p·t, ω (t′, c′, Hω

p·t·t′:c′ , f) (**)

holds by rule ConstS . Otherwise there is J ⊏ I and therefore J ⋖ I,
so that (**) holds by the induction hypothesis.

Corollary 8 states that V(e1) ⊆ Vp·t:c and no entry of Hω
p·t:c refers

to Hω
p·t·0:0 \H

ω
p·t:c. Therefore,

(0, 0, Hω
p·t·0:c, e1) ↓p·t, ω (t · t′, c′, Λ, f) (***)

with Λ = Hω
p·t·t′:c′ \ (Hω

p·t·0:0 \H
ω
p·t:c).

SinceHω
p·t·0:0\H

ω
p·t:c = {(p·t, f)} andHω

p·t·t′:c′∪{(p·t, f)} = Hω
p·(t+1):0,

there is Λ ∪ {(p · t, f)} = Hω
p·(t+1):0.

Thus, (*) states that

(t+ 1, 0, Hω
p·t·t′:c′ ∪ {(p · t, f)}, e2[p · t/x]) ↓p, ω (t′′, c′′, Hω

p·t′′:c′′ , g)
(****)

Finally, (t, c, Hω
p·t:c, let

? x = e1 in e2) ↓p, ω (t′′, c′′, Hω
p·t′′:c′′ , g) fol-

lows from (***) and (****) by rule LetEvalS

Now we have everything at hand to prove the correctness property from
the beginning of this section.

Theorem 11 (Correctness). For every initial expression a there is:

(0, 0, ∅, a) ⇓ǫ, ω (t, c, H, z) =⇒ (0, 0, ∅, a) ↓ǫ, ω (t, c, H|VC∪ω, z)

Proof. Assume that (0, 0, ∅, a) ⇓ǫ, ω (t, c, H, z) holds. Then Lemma 10
states that (0, 0, ∅, a) ↓ǫ, ω (t, c, Hω

p·t:c, z) also holds. Lemma 9 implies
that H|VC∪ω ⊆ Vp·t:c, and so Hω

p·t:c = H|VC∪ω. Therefore, (0, 0, ∅, a) ↓ǫ, ω
(t, c, H|VC∪ω, z) holds.
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Chapter 4

Implementation of Oracle

Generation

4.1 Implementing Oracles as Lists

In the semantic model presented in the last chapter, oracles are represented
by sets of sequences of natural numbers. A näıve implementation that actu-
ally uses such sets as oracles would be far too inefficient for the evaluation of
real-world programs. Therefore, another representation for oracles is needed.

In [Braßel et al., 2007] oracles are implemented as lists that contain or-
acle entries in the same order in which they are consumed by the strict
evaluator; it only needs to inspect the first list entry in order to decide
whether the next redex shall be skipped. Additionally, these lists are com-
pressed, so that they contain natural numbers instead of Boolean values: a
number n means that the next n redexes are needed, followed by one redex
that may be skipped.1

We will use the same representation for oracles, but due to the different
semantic model we have to find another way of creating oracle list.

First, we have to make sure, that the oracle sets of the semantic model
can indeed be represented as lists of Boolean values. For this we need the
notion of the current position, as defined in the last chapter. When oracles
are represented as sets, it represents the current oracle entry; when oracles
are represented by lists, it serves as a pointer to the current list node. For
an initial expression a with (0, 0, ∅, a) ⇓p, ω Z there is:

• Every element v ∈ ω is a thunk pointer in domH(Z): Only rule
VarLazyL can add an entry to the oracle, but then it also updates

1This compression scheme is efficient as long as the number of needed redexes is much
higher than the number of unneeded redexes. In comparison to [Braßel et al., 2007], the
semantics presented here can be expected to create oracles with fewer positive entries (cf.
Section 3.2 on page 24). Further investigation is needed to decide whether switching to
another compression scheme could gain some efficiency.

55
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the corresponding thunk in heap H(Z).

• Every thunk pointer in domH(Z) is introduced by an application of
rule LetLazyL, for which Theorem 10 on page 51 states that there is a
corresponding application of rule LetEvalSor LetSkipS in the Lazy Call-
by-Value derivation (0, 0, ∅, a) ↓p, ω Z ′. Thus, for every thunk pointer
p ∈ domH(Z) the Lazy Call-by-Value evaluator checks whether p is
also an element of ω.

• Observation 8 states that in the Lazy Call-by-Value evaluation the
current position is constantly increasing with respect to 4, so that the
thunk pointers in domH(Z) are checked in lexicographic order.

Thus, the oracle can be represented by a list of Boolean values. The nodes
of this list correspond to the thunk pointers in domH(Z), sorted in lexico-
graphic order. The value of a node that corresponds to a thunk pointer p
corresponds to the validity of the statement p ∈ γ.

Next, concrete operations that create and modify oracle lists have to be
derived from the semantics of non-strict oracle creation. An inspection of
the rules in figure 3.5 on page 32 reveals that:

1. Every judgment (t, c, Γ, e) ⇓p, γ (t′, c′, ∆, e′) allows its subcomputa-
tions to contribute entries to the resulting oracle set, but not to remove
any entries. Therefore, it is not necessary to synthesize an oracle set by
joining the oracle sets of the current judgments subcomputation. In-
stead, an oracle list can be calculated by letting the subcomputations
modify an initial oracle list.

2. Rule LetLazyL binds one thunk on the heap and leaves the oracle set
unchanged; the name of that binding is equal to the current position
of the judgment proven by rule LetLazyL.

Thus, whenever rule LetLazyL is applied, one entry has to be inserted
in the oracle list at the current position. This entry must contain
the Boolean value false , because at this time the oracle set does not
contain any entry that corresponds to the newly bound thunk.

No other rule adds bindings to the heap, so no other rule may add
entries to the oracle list.

3. Rule VarLazyL adds an entry to the oracle, so the corresponding entry
of the oracle list has to be set to the value true. Since no other rule
adds entries to the oracle set, no other rule may change entries of the
oracle list.

The element added to the oracle set is equal to the variable that is
being evaluated, which in turn is equal to the current position of the
judgment in the premise of rule VarLazyL.
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Thus, when the evaluation of a variable v starts the current position is
changed to v . Then the value of the current oracle entry is set to true
and the expression bound to v is evaluated. After that the current
position is set back to its previous value, and the result is returned.

4.2 Instrumenting Haskell Code

In order to implement this behavior as a source-to-source transformation of
Haskell programs, we have to make some design decisions:

• Oracle lists are implemented as doubly linked lists, so that nodes can
be efficiently inserted and removed at arbitrary positions.

• Oracle lists are represented by circular lists that contain an additional
start node. The end of an oracle list is linked to its start node, so that
no special treatment of list heads and tails needs to be implemented.

When a non-strict evaluation starts, the oracle consists of the start
node that is linked to itself. A consequence is that every oracle list
will contain an additional entry. It turns out that this entry is always
located at the end of the oracle list, where it can silently be ignored.

• The start node and the pointer to the current position of the oracle
list are implemented as mutable global states. This overcomes the
need to thread a pointer to the current node through the program by
handing it over as an argument. The downside is that special care
has to be taken when the instrumented program is optimized, or when
multiple instances of an instrumented program that are running in
parallel share the same set of global variables.2

• We let the current node pointer refer to the successor node of the
current position, so that new entries can be inserted without changing
the current position.

• Oracle lists are lists of natural numbers, where a number n stands for
n needed redexes, followed by one redex that may be skipped.

Interface

This functionality can be implemented in three side-effecting functions:

2In chapter 5 it is described how a program can be transformed into a monadic version
that maintains global state in a purely functional way. When the restrictions imposed
by the use of global variables become an issue, that method can easily be adapted to
non-strict oracle creation.
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• A parameterless function newOracleEntry that returns a pointer to
an oracle node. As a side effect it allocates a new oracle node and
inserts it into the oracle list between the current oracle node and its
predecessor. The returned value is a pointer to the newly created node:

current

��
x oo // y

=⇒ result

��

current

��
x oo // 0 oo // y

• A function enterRhs of type OraclePtr → OraclePtr . It sets the cur-
rent node pointer to the argument node a, adds 1 to the value of the
current node’s predecessor, and returns the previos value of the current
node pointer as its result:

a

��

current

��
x oo // y oo //____ z

=⇒ current

��

result

��
x+ 1 oo // y oo //_____ z

• A function leaveRhs that takes an oracle node pointer as argument and
returns the unit expression () as result. It unlinks the node pointed to
by the current oracle pointer from the oracle list and adds its value to
its predecessor. Then it sets the current oracle pointer to the argument
node a:

current

��

a

��
x oo // y oo //____ z

=⇒ current

��
x+ y oo //____ z

Additionally, a function initOracle is needed to initialize the start node and
the current oracle pointer, and a function opOracle is needed that reads the
values of the created oracle nodes, so that they can be used in the Lazy
Call-by-Value evaluation.

Transformations

Haskell programs can be instrumented with these functions, so that they
generate oracle lists as a side effect. Comparing the rules for lazy evaluation
given in Figure ?? on page ?? to the rules for non-strict oracle creation given
in Figure 3.1 on page 22 reveals that they differ only in the evaluation of let-
bound values and their declarations: The rules for non-strict oracle creation
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add oracle entries and increment the current position, but they compute the
same results as the rules for lazy evaluation. The other rules for the non-
strict oracle creation are identical to the rules for lazy evaluation, except
that they maintain oracle entries and the values that are used to invent new
identifiers. Thus, only variable declarations have to be instrumented and all
other program constructs can be left unchanged.

Strict declarations. For a declaration let x1 = e1 ...xn = en in e with all
e1 . . . en in weak head normal form, the lazy evaluation rule is identical to
the Lazy Call-by-Value rule for the corresponding λ?! declaration let! x1 =
e1 ... xn = en in e. Therefore, there is no need to transform this declaration;
we simply keep the original Haskell declaration, instrumenting only the right
hand sides e1 . . . en and the body expression e.

Non-strict declarations. A non-strict, non-recursive Haskell declaration

let x = e1 in e2

where x does not occur free in e1 is translated to the λ?! expression

let? x = e1 in e2.

When e1 is bound on the heap, an oracle entry has to be created by function
newOracleEntry . When the value bound to x is requested, the current
position is set to this oracle entry by function enterRhs , and the previous
value is saved as osave . Then expression e1 is evaluated. Finally, the current
position is set back to osave by function leaveRhs , and the result is returned.
This can be implemented by transforming the above declaration into the
following Haskell code:3

let ! o = newOracleEntry
in let x = let ! osave = enterRhs o

in let ! result = e1

in leaveRhs osave ‘seq ‘ result
in e2

Applications. In language λ?!, functions can only be applied to identifiers.
But in Haskell functions can be applied to all kinds of expressions. Thus,
before an application e1 e2 can be instrumented, it must be translated to an
expression

let x = e1 in e2 x

3We use bang patterns to indicate that the bound value e1 has to be reduced to weak
head normal forms, before the body e2 is evaluated; the expression let ! x = e1 in e2 is an
abbreviation for the Haskell expression let x = e1 in x ‘seq ‘ e2.
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with a fresh identifier x . After this expression is instrumented, the definition
of x can be inlined, so that the newly introduced identifier x is not needed
anymore:

let ! o = newOracleEntry
in e2 (let ! osave = enterRhs o

in let ! result = e1

in leaveRhs osave ‘seq ‘ result)

When applications are directly transformed from Haskell to this code, there
is no need to invent new identifiers.

4.3 Transforming Cyclic Declarations

In Chapter 2 it has been shown that there are situations where recursive
declarations have to be transformed into non-recursive declarations.

This section discusses several ways of transforming a Haskell expression

let x = e1 in e2

in which expression e1 refers to variable x into an expression without recur-
sive references to x .

Using a fixed point combinator

As mentioned in Chapter 2, a recursive declaration let x = e1 in e2 is
equivalent to the expression let x = fix (λx → e1) in e2, where fix is a least
fixed point combinator:

fix f = f (fix f )

One disadvantage of this approach is that a call to function fix is introduced
for every recursive declaration. Another disadvantantage is that there are
two declarations that have to be instrumented: one in function fix and one
in the transformed declaration.

Using self-application

A way to model recursive declarations without the help of a fixed point
combinator is to apply a function to itself; this way a recursive declaration
let x = e1 in e2 can be transformed into an entirely non-recursive declara-
tion:

let x ′ = λx ′ → let x = x ′ x ′ in e1

in let x = x ′ x ′

in e2
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This way the call to function fix is omitted, but now there are two declara-
tions that have to be instrumented per declaration.

There is also a pitfall: When a Haskell program is optimized, definitions
are inlined at the call site. In order to ensure termination of the compilation
process, the compiler has to know when to stop inlining recursively defined
functions inside their own definition. In Haskell, recursion always comes
from recursive let-expressions, because the type system of Haskell rules out
self-application of functions.

When a transformation like this introduces self-application at some com-
pilation stage, then recursion is no longer explicit in the subsequent opti-
misation process; if no special care is taken, the optimizer may run into an
endless loop. For example, the inlining mechanism of the Glasgow Haskell
Compiler as described in [Jones and Marlow, 1999] requires recursion to be
explicit.

Using a dummy parameter

Since we allow for recursive function declarations, there is no need to remove
recursive declarations entirely: it is sufficient to turn recursive data declara-
tions into recursive function declarations. This can be achieved by adding a
“dummy” parameter to the function definition. By using Haskell’s unit ex-
pression () as a dummy parameter, a recursive declaration let x = e1 in e2

can be transformed to the following expression:

let x ′ = λ()→ let x = x ′ ()
in e1

in let x = x ′ ()
in e2

Under some circumstances this approach turns out to be too simple: an op-
timizing Haskell compiler may remove the unneeded argument (), changing
the transformed expression back to the original form.4 Thus, special care
has to be taken when optimisations are applied after this transformation
step.

Using oracles as parameter

It turns out that there is a simple way to replace dummy parameters by
parameters that are actually needed. Instrumenting the above expression
results in the following code:

let x ′ = λ()→ let ! o = newOracleEntry
in let x = let ! osave = enterRhs o

in let ! result = x ′ ()

4This has been observed with GHC 6.8.2 with option -O2 turned on.
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in leaveRhs osave ‘seq ‘ result
in e1

in let ! o = newOracleEntry
in let x = let ! osave = enterRhs o

in let ! result = x ′ ()
in leaveRhs osave ‘seq ‘ result

in e2

It is easy to see that both declarations of variable x have identical right
hand sides; they can be abstracted out into a function x ′′ that takes an
oracle entry o as parameter. Doing so gives the following code:

let x ′′ = λo → let ! osave = enterRhs o
in let ! result = x ′ ()

in leaveRhs osave ‘seq ‘ result
x ′ = λ()→ let ! o = newOracleEntry

in let x = x ′′ o
in e1

in let ! o = newOracleEntry
in let x = x ′′ o

in e2

Now function x ′ is referred to only once, so the obvious thing to do is to
inline x ′ at its call site:

let x ′′ = λo → let ! osave = enterRhs o
in let ! result = let ! o = newOracleEntry

in let x = x ′′ o
in e1

in leaveRhs osave ‘seq ‘ result
in let ! o = newOracleEntry

in let x = x ′′ o
in e2

By two small refactorings we have overcome the need to invent dummy
parameters. Now every application of the recursive function uses distinct
oracle entries as its parameter, so that they cannot be turned back into a
recursive declaration. Compared to the previous attempts there is also less
code duplication: the only function that is called twice per declaration is
function newOracleEntry .

4.4 A Small Example

Consider the following Haskell expression:
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let succ x = S x
pred (S y) = y
x = Z
y = succ x

in pred (succ x )

By breaking up the recursive declaration as described in Chapter 2 and
transforming the resulting expression to language λ?! the following expres-
sion is obtained:

let! succ = λx .S x
pred = λx .case x of S y .y

in let! x = Z

in let? y = succ x
in pred (succ x )

Applying the transformation scheme described above results in the following
Haskell code:

let ! succ = λx → S x
! pred = λx → case x of S y → y

in let ! x = Z
in let ! o = newOracleEntry

in let y = let ! o′ = enterRhs o
in let ! result = succ x

in leaveRhs o′ ‘seq ‘ result
in let ! p = newOracleEntry

in pred (let ! p′ = enterRhs p
in let ! result = succ x

in leaveRhs p′ ‘seq ‘ result)

When the evaluation starts, the oracle contains only one node, the start
node. Initially, the current node pointer points to the start node:

current

��
start : 0
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Before y is bound on the heap the first call to newOracleEntry occurs. It
inserts one new node on the left side of the current node:5

current

��

o

��
start : 0 oo // 0

After y has been bound on the heap, function newOracleEntry is called a
second time. It creates an oracle entry that will keep track of the evaluation
of the argument of function pred . A pointer to that node is bound to p:

current

��

o

��

p

��
start : 0 oo // 0 oo // 0

Then function pred is called. It forces the evaluation of its argument, so
that function enterRhs is called with the node pointer p as its argument. It
makes p the current oracle node, increments the value of its left neighbour
and returns a pointer to the previously current oracle. which is bound to p′:

p’

��

o

��

current

��
start : 0 oo // 1 oo // 0

Finally, the expression leaveRhs p′ is evaluated. It removes the current list
node and restores the previus value of the current oracle pointer:

current

��

o

��
start : 0 oo // 1

5It may seem odd that the new node appears on the right side of the current node,
but in this situation the right side of the singular start node is also its left side, because
oracles are implemented as circular list.
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The resulting oracle list has two entries. They encode three Boolean values,
of which the last is an unused artefact coming from the additional start
node:

[0, 1] ∼= [False ,True,False ]

An implementation of the stateful oracle-manipulating functions can be
found in appendix B.3 on page 106.
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Chapter 5

Debugging by Asking the

Oracle

5.1 Lazy Call-by-Value Evaluation

In the non-strict oracle creation described in the last chapter a global state
is used to hold a pointer to the current oracle entry. But declarative debug-
ging by Lazy Call-by-Value evaluation requires that subexpressions can be
evaluated more than once, and the presence of mutable state may complicate
this. Therefore, it is preferable to avoid the use of global variables.

In Haskell it has become common practice to use monads for modelling
mutable state in a purely declarative way. A variant of this monad that
takes lists of integers as its state is formed by an operator ST on types
together with two functions return and bind :

type ST a = [Integer ]→ ([Integer ], a)

return :: a → ST a
return x = λs → (s, x )

(>>=) :: ST a → (a → ST a)→ ST a
x >>= f = λs → case x s of (s ′, v)→ f v s ′

In this monad, a value that has type a is represented by a function that has
type [Integer ]→ ([Integer ], a); this function takes a state as parameter and
returns a tuple containing the updated state and the value of type a.1

Two of the three monad laws will turn out to be useful for the purpose of
this section. They say that the following equations hold for all expressions
f and x :

return x >>= f = f x Left identity law
(m >>= f )>>= g = m >>= (λx → f x >>= g) Associativity law

1We use this explicit definition of a state monad, so that we can explore the potential
for program optimisations. In Haskell, one might simply reuse the existing implementation
in module Control .Monad .State .Strict .

67
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Monads can also be used to enforce a particular order of evaluation. In
[Wadler, 1990], a translation scheme is given that transforms an expression
into a monadic version that is evaluated in strict order. We will use this
translation scheme to enforce strict evaluation order.

For an expression e of type E we denote the result of “lifting” e into the
state monad by e∗. The lifted expression e∗ has type ST E ∗, where the
transformation of types is defined by the following rules:

K ∗ ≡ K if K is a base type
(U → V )∗ ≡ U ∗ → ST V ∗

(U ,V )∗ ≡ (U ∗,V ∗)

These rules transform an expression of type E into a monadic expression of
type ST E∗:2

x ∗ ≡ return x if x is an identifier
(λx → e)∗ ≡ return (λx → e∗)
(t u)∗ ≡ t∗ >>= λf → u∗ >>= f
(u, v)∗ ≡ u∗ >>= λx → v∗ >>= λy → return (x , y)

They can be used directly to transform identifiers and abstractions of lan-
guage λ?! into monadic Haskell expressions. But we still have to give rules for
strict and non-strict declarations, constructor terms and case expressions:

Applications. The translation rule for applications can be simplified: in
language λ?! functions are only applied to identifiers, so the left identity
law can always be applied:

(e x )∗ ≡ e∗ >>= λf → return x >>= f
= e∗ >>= λf → f x

This rule still contains an inefficiency: a newly introduced abstraction
λf → f x is handed over to the operator >>=. In order to avoid this, a
function funApp is introduced:

funApp :: ST (a → ST b)→ a → ST b
funApp e x = λs → case e s of (s ′, v)→ v x s ′

Now the transformation rule can be simplified to:

(e x )∗ ≡ funApp e∗ x

In some situations function funApp can even be replaced by plain
function application: If e∗ = return f for some expression f , then the

2In the original presentation, monad comprehensions the right hand sides are formu-
lated in terms of monad comprehensions.
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left identity law can be applied, yielding a simplified version of the
transformation rule:

(e x )∗ ≡ return f >>= λf → f x
= f x

Strict declarations. In a declaration let! xn = en in e all right hand sides
are in weak head normal form, i.e. they are constructor terms or
abstractions. Thus, for every ei there is a vi , such that e∗

i
= return vi .

We simply translate the above declaration to

let xn = vn in e∗

When this transformation is applied, the types of the right hand sides
change in the same way as the types of the variables that refer to
them, so that well-typedness is preserved. Strict evaluation order is
also preserved, because the defined values are already in weak head
normal form, so that only the body of the declaration needs to be
evaluated.

If e∗ = return v for some expression v , then this rule can be modified,
giving opportunities for simplifications in other rules:3

(let! xn = en in e)∗ ≡ return (let xn = e∗n in v)

Non-strict declarations. A declaration let? x = e1 in e2 is equivalent to
the expression (λx → e2) e1, whose lifted form is

e∗1 >>= λx → e∗2

Lazy Call-by-Value evaluation lets the oracle decide whether non-strict
declarations bind a value on the heap or not: If the current oracle entry
is a positive number, then this number is decreased by one, the value
to be bound is calculated and bound on the heap, and finally the body
of the declaration is evaluated (cp. section 4.1). If the current oracle
entry has value zero, then this entry is removed from the oracle, the
value to be bound is not calculated but replaced by some placeholder
value, and finally the body of the declaration is evaluated.

3When the modified rule is applied to the right hand side of a non-strict declaration,
then the resulting expression will create an unevaluated thunk at run-time. Creating
unevalated thunks violates the principle of strict evaluation. But this thunk will contain
only nested strict let-bindings around a constructor term, abstraction or identifier. Thus,
we make the — somewhat questionable — choice not to consider the binding of constant
values as “real work” and allow this optimisation nevertheless.
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Function optional inspects and modifies the current oracle entry and
decides whether its argument is evaluated or replaced by a placeholder
value underscore :

underscore = ⊥

optional :: ST a → ST a
optional (0 : orc) = return underscore orc
optional x (n : orc) = x (n − 1 : orc)

This function is used to instrument the lifted versions of non-strict
declarations, so that they follow the Lazy Call-by-Value semantics:

(let? x = e1 in e2 )∗ ≡ optional e∗1 >>= λx → e∗2

If e∗1 = return v holds for some expression v , then there is an opportu-
nity to apply the left identity law,4 yielding an optimized translation
rule. For this we introduce a function optionalApp that takes values
of type a and a → ST a as its parameter:

optionalApp :: a → (a → ST b)→ ST b
optionalApp q (0 : orc) = q underscore orc
optionalApp p q (n : orc) = q p (n − 1 : orc)

The function call optionalApp p q is equivalent to the expression
optional (return p) >>= q , so that an optimized transformation rule
can be given:

(let? x = e1 in e2 )∗ ≡ optionalApp v (λx → e∗2 )

Constructor terms. The rule for constructor terms is a simplified variant
of the rule for tuples. If u and v are indentifiers, then lifting the
tuple (u, v) leads to the expression return u >>= λx → return v >>=
λy → return (x , y). By applying the left identity rule twice, this
expression is transformed to the expression return (u, v). In language
λ?!, all components of constructor terms are identifiers, so we translate
arbitrary constructor terms the same way:

(C v1 . . . vn)
∗ ≡ return (C v1 . . . vn)

Case expressions. The rule for case expressions is straightforward:

(case u of Cn xn,kn
7→ an)∗ ≡ u∗ >>= λv → case v of Cn xn,kn

7→ a∗
n

4This opportunity is rare, because we have decided not to allow constructors, abstrac-
tions and identifiers on the right hand side of non-strict declarations; it will only occur
after the optimized rule for strict declarations has been applied to e1.
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x ∗ ≡ return x if x is an identifier
(λx.e)∗ ≡ return (λx → e∗)

(t u)∗ ≡

{

v u if t∗ = return v

funApp t∗ u otherwise

(let! xn = en in e)∗ ≡

{

return (let xn = vn in v∗) if e∗ = v

let xn = vn in e∗ otherwise

where e∗n = return vn

(let? x = e1 in e2)
∗ ≡

{

optionalApp v (λx → e∗2 ) if e∗1 = return v

optional e∗1 >>= e∗2 otherwise

(C v1 . . . vn)
∗ ≡ return (C v1 . . . vn)

(case u of Cn xn,kn
7→ an )∗

≡

{

case v of Cn xn,kn
7→ a∗

n if u∗ = v

u∗ >>= λv → case v of Cn xn,kn
7→ a∗

n otherwise

Figure 5.1: Translation scheme for Lazy Call-by-Value evaluation

If u∗ = return v for some expression v , then this rule can be simplified
by applying the left identity law:

(case u of Cn xn,kn
7→ an)∗

≡ return v >>= λv → case v of Cn xn,kn
7→ a∗

n

= case v of Cn xn,kn
7→ a∗

n

If all right hand sides are identifiers, abstractions or constructor terms,
then a similar optimisation rule as the one for strict declarations can
be introduced. We refrain from that, because this optimisation may
cause thunks to be created that contain unevaluated case-expressions.

Figure 5.1 shows the translation scheme for monadic Lazy Call-by-Value
evaluation.

5.2 Transforming Cyclic Declarations

In the implementation of non-strict oracle creation, cyclic data declarations
were eliminated by turning them into cyclic function declarations; then these
functions were instrumented with the capability to create oracle lists (cp.
section 4.3 on page 60). When implementing Lazy Call-by-Value evaluation,
care must be taken that cyclic data declarations are transformed the same
way; otherwise creation and consumption of oracle list may get out of sync.
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Therefore, an expression of the form let x = e1 in e2, with x free in e1

and e1 not in weak head normal form, is first transformed into the following
expression:

let! x ′ = λ()→ let? x = x ′ () in e1

in let? x = x ′ () in e2

Then the transformation scheme is applied to this expression:

let x ′ = λ()→ optional (x ′ ())>>= (λx → e∗1 )
in optional (x ′ ())>>= (λx → e∗2 )

Code duplication is removed by abstracting out optional (x ′ ()) into a func-
tion r and inlining x ′ there:

let r = optional (r >>= (λx → e∗1 ))
in r >>= (λx → e∗2 )

Inlining function optional and turning the abstraction λx → e∗1 into a locally
defined function yields the following expression:

let r (0 : orc) = return underscore orc
r (n : orc) = (r >>= f ) (n − 1 : orc)
f x = e∗1

in r >>= (λx → e∗2 )

Now it can be seen that the function call r (n : orc) is equivalent to the
expression

(((return underscore >>= f )>>= ...f )>>= f ) orc

where f is applied n times to return underscore . By repeated application of
the associativity law this expression is transformed to

(return underscore >>= (λx → f x >>= ...(λx → f x >>= f ))) orc

Using this insight, the expression can be rewritten as follows:

let r 0 x = return x
r n x = f x >>= r (n − 1)
f x = e∗1

inλ(n : orc)→ (r n underscore >>= λx → e∗2 ) orc

Finally, inlining >>= yields an end-recursive expression:

let r 0 x s = (s, x )
r n x s = case f x s of (s ′, v)→ r (n − 1) v s ′
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f x = e∗1
inλ(n : orc)→ (r n underscore >>= λx → e∗2 ) orc

We abstract out a function fixBind that takes the expressions λx → e∗1 and
λx → e∗2 as parameters:

fixBind :: (a → ST a)→ (a → ST b)→ ST b
fixBind p q (n : orc)

= let r 0 x s = (s, x )
r n x s = case p x s of (s ′, v)→ r (n − 1) v s ′

in (r n underscore >>= q) orc

With the help of this function the translated non-strict recursive declaration
becomes considerably smaller:

fixBind (λx → e∗1 ) (λx → e∗2 )

5.3 Adding Debugging Functionality

This section describes how declarative debugging facilities can be added to
a program that has been translated to the monadic form shown above. It is
based on previous work published in [Braßel and Siegel, 2007].

In order to use the monadic implementation of Lazy Call-by-Value eval-
uation for declarative debugging, four modifications have to be made to the
transformed program:

1. The monad has to be extended, so that it is able to hold user-provided
information about the correctness of subexpressions and to cancel the
evaluation when the bug is located.

2. Function declarations have to be instrumented, so that the user can
inspect the values resulting from their application.

3. Every data type has to be enhanced by a value underscore , that is
used as a placeholder for skipped evaluations.

4. In order to display function arguments and results, functions that dis-
play program values in a user-friendly way have to be derived from the
datatypes of the program to be debugged.

Implementation of Placeholder Values

Unneeded values whose evaluation is skipped are replaced by a placeholder
value “ ” (underscore). Since the evaluation of expressions of any type may
be skipped, a way of extending arbitrary data types with the special value
underscore has to be found. How this can be done depends on several
circumstances
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• In the Curry compiler kics every algebraic data type is extended with
an Or -constructor that models nondeterministic values. This mecha-
nism is easy to extend, so that it also adds a nullary constructor that
represents the value underscore .

The drawback of this method is that every data type has to changed; all
functions that use primitive data types like — for example — integers
have to be changed.

• In a bytecode interpreter, the expression error "underscore" can be
used for the value underscore . Under Lazy Call-by-Value evaluation
no unevaluated thunks are created, so no unevaluted values except
underscore will occur. A primitive operator has been added to the
bytecode interpreter that checks whether an expression is evaluated
or not. It can be used to distinguish between underscore and other
values.

The drawback of this method is that it depends on low-level details of
a specific interpreter, so that it can not be used with other interpreters
or compilers.

This has been implemeneted in the bytecode interpreter of the Essen-
tial Haskell Compiler (EHC).

• In [Braßel and Siegel, 2007], underscore is an expression whose evalu-
ation throws a run-time exception. Since only unneeded values that
are never accessed are replaced by underscore , the run-time exception
is only thrown when the debugger tries to print out a value. Then the
printing routine can catch the exception and display an underscore
instead of the value.

• In the reference implementation in Appendix B.1 the value ⊥ is used
for underscore . It is evaluated to the value Blackhole that stands for
self-referential definitions. This value can easily be detected by the
printing routine.

Displaying Data

In the debugging of a program, arguments and results of function application
must be displayed to the user. To use Haskell’s type class Show for this has
two disadvantages:

• It rules out implementing the placeholder value underscore by an
exception-throwing expression, so that a special constructor has to
be provided for every data type. But this is not possible for primitive
data types.
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• More flexible ways of displaying data may be needed, for example for
pruning big or even circular data structures.

Therefore, a data type Term and a type class ShowTerm are introduced:

data Term = Term String [Term ] | Underscore

class ShowTerm a where

showCons :: a → Term

The constructor Term represents constructor terms, whereas the constructor
Underscore represents the placeholder value that stands for unused expres-
sions. Function showCons converts an expression into a printable Term.
Now every data type can be made an instance of a class ShowTerm . For the
data type Maybe the instance declaration would be:

instance ShowTerm a ⇒ ShowTerm Maybe a where

showCons Nothing = Term "Nothing" [ ]
showCons (Just x ) = Term "Just" [showCons x ]

The drawback of this method is that an instance declaration has to be
introduced for every data type and that the types of all function arguments
have to be constrained to the type class ShowTerm .

For the EHC bytecode interpreter the need to introduce a type class
ShowTerm has been circumvented by implementing function showCons as a
primitive operator of the bytecode interpreter. The drawback of this method
is that the constructor names have to be derived from the constructor num-
bers used in the interpreter. It turned out that this was not possible, because
the constructors are enumerated per type, so that additional type informa-
tion would be needed to distinguish between the constructors. But provid-
ing such information for polymorphic function arguments is exactly what
the type class ShowTerm does. As a consequence, function showCons only
displays constructor numbers instead of names.

A Debugging Monad

In the following it is assumed that the state monad maintaining the oracle
list and the function that are used to lift programs into it are defined by
through Haskell standard library functions:

type DebugM a = State [Integer ] a

optional :: DebugM a → DebugM a
optional x = do (n : orc)← get

if n ≡ 0 then put orc >> return underscore
else put (n − 1 : orc)>> x

optionalApp :: DebugM a → (a → DebugM b)→ DebugM b
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optionalApp x f = optional (return x )>>= f

fixBind :: (a → DebugM a)→ (a → DebugM b)→ DebugM b
fixBind p q = do n : orc ← get

put orc
r n underscore >>= q

where r 0 x = return x
r n x = p x >>= r (n − 1)

The definition of DebugM can easily be exchanged by the following defini-
tion. This makes it possible to execute IO actions or to cancel the debugging
session, yielding a value of type BugReport as result:

type DebugM a = StateT [Integer ] (ErrorT BugReport IO) a

We don’t define the type BugReport here. It is intended to hold the same
kind of information that nodes of an Evaluation Dependence Tree hold.

Instrumenting Functions

Function traceFunCall implements the debugging functionality. It has the
following type signature:

traceFunCall :: ShowTerm a ⇒ Term → DebugM a → DebugM a

The first argument is a displayable constructor term that represents the
function name and parameters. The second argument is the lifted function
body. When a bug is found, this function returns a value of type BugReport ;
otherwise it returns the result of the function call together with the rest of
the oracle list.

In order to instrument a program with debugging functionality, the lifted
right hand side of every function declaration is wrapped in a call to function
traceFunCall . For example, a function declaration

twice :: (a → a)→ a → a
twice = λf → λx → f (f x )

is transformed into the following function declaration:

twice :: (a → DebugM a)→ DebugM (a → DebugM a)
twice = λf → return

(λx → traceFunCall
(Term "twice" [showTerm f , showTerm x ])
(optional (f x )>>= f ))

In Haskell, an n-ary function can be seen as a unary function that returns an
(n−1)-ary function as result. Thus, function twice could also be transformed
to this function:
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twice :: (a → DebugM a)→ DebugM (a → DebugM a)
twice = λf → traceFunCall

(Term "twice" [showTerm f ])
(return (λx → optional (f x )>>= f ))

But then the resulting value would always be a function that cannot be
displayed by the debugger. Therefore, the call to traceFunCall should be
’pushed’ inside as many abstractions as possible.

It is yet unclear how nested function declarations like the following should
be treated:

f :: Int → Int → Int
f = λx → let y = x + x

inλz → y + z

If traceFunCall is pushed inside the inner abstraction, then the computation
of y appears to be outside of function f ; if traceFunCall is only pushed inside
the outer abstraction, then a function is displayed as the result of function
f , which is less informative than the resulting integer value.

A pragmatic solution is to lambda-lift the inner abstraction to the outer
level:

f :: Int → Int → Int
f = λx → let y = x + x

in f ′ y

f ′ = λy → λz → x + y

In this work, the practical experiences were made with the intermediate
core language of the York Haskell Compiler. It allows for lambda abstrac-
tions, but in the compilation from Haskell to YHC Core all abstractions are
automatically lifted to the top level, so that the problem does not occur.

5.4 Summary

With the techniques presented in this chapter, a declarative debugger that
uses the principle of Lazy Call-by-Value evaluation can be implemented. A
formal translation scheme for the monadic implementation of this evaluation
strategy is provided; it is based on a provably correct translation scheme
published in [Wadler, 1990], and it transforms cyclic declarations into end-
recursive functions, which can be evaluated efficiently.

It is described how monadic Lazy Call-by-Value programs can be in-
strumented with declarative debugging facilities. This has previously been
implemented in the Kiel Curry System (KiCS). In [Braßel and Siegel, 2007],
the implementation is described in more detail.
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Chapter 6

Conclusion

6.1 Practical Experiences

In the first two months of my work on this diploma thesis I have worked
at the Department of Information and Computing Sciences of the Utrecht
University. My goal was to implement a debugger that is based on the
concept of Lazy Call-by-Value evaluation for the Essential Haskell Compiler
(EHC), that is being developed there. I succeeded only partly, due to the
following problems:

First, some design decisions, that were taken with efficient compilation
of Haskell programs in mind, turned out to be disadvantageous for the task
of writing a debugger frontend. One example is the enumeration scheme
for constructors, that made it difficult to relate the binary representation of
constructor terms to their textual representation.

Second, much effort had gone into the development of the type-checking
frontend and the code-generating backend of EHC, whereas the intermediate
representation — a core language similar to an applied lambda calculus —
was only used to translate code to the next compilation stage; I was the
first one who actually implemented transformations for the intermediate
representation. In doing so, I stumbled over problems that could not be
foreseen: For example, adding new function declarations to the intermediate
core representation turned out to be too difficult.

Finally, reacting to those problems would have required more time and
a more mature concept of the implementation than I had at that time.

Implementation of Natural Semantics

A prototype implementation of the semantics developed in Chapter 3 has
been developed. It uses the algorithm developed in Chapter 2 for remov-
ing recursive declarations. It is a straightforward implementation of the
semantic rules from Figure 3.5 on page 32 and Figure 3.7 on page 39.
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Thereby it has been shown that the semantic model is suitable to calcu-
late oracle sets for arbitrary programs and that the resulting oracle sets can
indeed be used to direct Lazy Call-by-Value evaluation.

Reference Implementation

A reference implementation of non-strict oracle creation and Lazy Call-by-
Value evaluation has been developed. It is based on the core language of
the York Haskell Compiler (YHC) [Golubovsky et al., 2007]: Haskell pro-
grams are compiled to YHC Core programs by the compiler YHC. Then the
resulting Core program is read in by the reference implementation.

The implementation of non-strict oracle creation follows Chapter 4 on
page 55. YHC Core programs are instrumented with calls to the low-level
functions newOracleEntry , enterRhs and leaveRhs that manipulate ora-
cle lists as described there. The resulting programs are interpreted by a
simple interpreter that uses the semantics of lazy evaluation presented in
[Sestoft, 1997]. The low-level functions are implemented in the language C
and called by the interpreter via Haskell’s foreign function interface.

The implementation of Lazy Call-by-Value evaluation follows Chapter 5
on page 67. The loaded Core program is transformed into a monadic version
as described there. The implementation of the monad is then linked to the
transformed program, and the reslting program is evaluated by the same
interpreter as the program that has created the oracle.

The reference implementation is written in the language Haskell. It can
be found in Appendix B on page 91.

Efficiency

In most cases, the semantics presented in this work calculates smaller oracle
lists that the semantics of [Braßel et al., 2007]. As an example, consider the
program in Figure 6.1 on the facing page. When it is evaluated using their
semantics, the oracle list

[3, 0, 1, 0, 0, 18 ]

is obtained. This means that under Lazy Call-by-Value evaluation the oracle
will have to be checked 24 times. But with the semantics presented in this
thesis, the resulting oracle list is

[0, 5, 0, 0, 6],

so that the oracle is only checked 16 times: For this example, the run-time
overhead is reduced by one third.
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data Nat = Z | S Nat
data List a = Nil | Cons a (List a)

length Nil = Z
length (Cons b) = S (length b)

take Z = Nil
take (S x ) (Cons a b) = Cons a (take x b)
take (S ) Nil = Nil

fib = fib

fibs x = Cons (fib x ) (fibs (S x ))

mainexpr = isTwo (length (take (S (S Z )) (fibs Z )))

isTwo (S (S Z )) = True
isTwo = False

Figure 6.1: Example program

6.2 Results

This thesis makes several contributions that go beyond the work published
in [Braßel et al., 2007] and [Braßel and Siegel, 2007]:

• A novel way of formalizing the semantics of Lazy Call-by-Value eval-
uation has been developed. It leads to smaller oracle lists than the
previous approach of [Braßel et al., 2007].

• This semantic model has been proved correct and verified by imple-
menting it directly in Haskell.

• It has been shown that recursive declarations have to be ruled out in
order to evaluate programs by the Lazy Call-by-Value strategy.

• Also, a method to eliminate recursive declarations in an efficient way
has been suggested. It has also been implemented for the core lan-
guages of the Utrecht Haskell Compiler and for the core language of
the York Haskell Compiler.

• Non-strict oracle creation has been implemented by a program trans-
formation that adds calls to primitive stateful operations to a declar-
ative program. Due to the simplified semantic model, the primitive
functions turned out to be smaller and simpler than the functions
needed in [Braßel et al., 2007].

• Lazy Call-by-Value evaluation has been implemented by a program
transformation that transforms a declarative program into a monadic
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declarative program. This monadic program is evaluated in strict order
and maintains a global state in a purely functional way.

For this transformation formal rules were systematically derived from
transformation rules given in [Wadler, 1990].

• The implementation of elimination of mutual recursion, non-strict or-
acle creation and Lazy Call-by-Value evaluation has been integrated
in a prototype interpreter, showing that they fit together.

6.3 Future Work

• The reference implementation is merely a proof of concept. It is not
designed for efficiency, and it cannot handle primitive data types; a
debugger that applies the results of this paper to a sufficient subset of
Haskell still has to be written.

• This work is only concerned with debugging purely functional pro-
grams. The debugger described in [Braßel and Siegel, 2007] is able to
debug interactive programs by providing a virtual I/O environment in
which input from the user or from the file system is simulated: When
the oracle is calculated all interactions are recorded, so that they can
be replayed at debugging time.

It is desirable for a debugging tool to support I/O actions, so a similar
approach could be taken here.

• The suggested method of removing mutually recursive declarations has
to be tested for efficiency. Due to the shortcomings of the reference
implementation no meaningful results can be given yet.

• The semantic model can be extended with strict and recursive decla-
rations, like the letrec-construct of the programming languages Lisp
and Scheme. An extension of the semantic model is suggested in Ap-
pendix A.

• As shown in Section 2.4, the algorithm that removes mutual recur-
siven could benefit from the availability of strictness information. Also,
strictness information could be used to replace non-strict declarations
by the letrec-like construct sketched in Appendix A, so that the size
of oracle lists is reduced further.

It still has to be investigated, how much efficiency can be gained by
deriving strictness information from the program to be debugged.

The debugger for the functional logic programming language Curry pre-
sented in [Braßel and Siegel, 2007] has been integrated into the Kiel Curry
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System. Since then it has turned out to be useful in the debugging of func-
tional logic programs.

Probably the easiest way to put the results of this work into practice is
to apply them to this existing debugger.
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Appendix A

Extending the Semantics

with Lisp-like Declarations

The programming languages Lisp and Scheme extend the strict evaluation
model with recursive declarations as described in Section 2.3: The right
hand sides of a mutually recursive declaration are evaluated before the body
of the declaration. They may refer to each other, but in their evaluation
they are not bound on the heap, so they cannot access the concrete values
of the variables that are being defined.

Modified Semantics

This kind of delarations can be supported by modifying the semantics for
non-strict oracle creation and Lazy Call-by-Value evaluation: First, the
requirement that in a strict declaration let! xn = en in e all right hand
sides e1, . . . , en must be in weak head normal form is dropped. Then rule
LetStrictL is replaced by the following rule:

∀i ∈ {1, . . . , n} : vi = xt:(c+1)

∀i ∈ {1, . . . , n} : (ti−1, ci−1, Γi−1, ei[vn/xn]) ⇓p, γi
(ti, ci, Γi, e

′
i)

(tn, cn, Γn ∪ {(vn, e′n)}, e[vn/xn]) ⇓p, γ (t′, c′, ∆, e′)

(t0, c0, Γ0, let
! xn = en in e) ⇓p,

Sn
j=1

γj∪γ (t′, c′, ∆, e′)

It differs from the previous rule LetStrictL in that it evaluates the right hand
sides, before it binds them on the heap. Rule LetStrictS has to be modified
analogously:

∀i ∈ {1, . . . , n} : vi = xt:(c+1)

∀i ∈ {1, . . . , n} : (ti−1, ci−1, Γi−1, ei[vn/xn]) ↓p, ω (ti, ci, Γi, e
′
i)

(tn, cn, Γn ∪ {(vn, e′n)}, e[vn/xn]) ↓p, ω (t′, c′, ∆, e′)

(t0, c0, Γ0, let
! xn = en in e) ↓p, ω (t′, c′, ∆, e′)
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Efficiency

Reconsider the example expression from page 33. It contains three non-strict
declarations. In the Lazy Call-by-Value evaluation of that expression, one
non-strict declaration is skipped by rule LetSkipS , and two are evaluated by
rule LetEvalS .

If strictness information is available for this expression, then two non-
strict declarations can be turned into strict ones: In order to reduce the
expression to a weak head normal form, the value of p as well as the value
of q will always be required. Thus, they do not need to be controlled by the
oracle, so that their declarations can be replaced by the newly-introduced
Lisp-like declarations:

let! p = let! s = True

in let! q = let? r = case p of Cons a b → b
in Cons r s

in Cons q s
in case p of Cons a b → a

Now, only one oracle entry needs to be checked in the evaluation of this
expression; instead of the oracle list [2], the oracle list [0] is computed.

Cyclic Declarations

In Chapter 2 we were not able to give a strict evaluation strategy that
makes it possible to evaluate the following Haskell expression in sequential
evaluation order:

let x = let y = length x
in [1, 2, y ]

in sum x

We had to remove the cyclic data dependence entirely; either by introducing
a least fixed point combinator, or by turning the data declaration into a
function declaration. But now Lisp-like declarations allow us to transform
this expression into an equivalent expression that can be evaluated in strict
order, although it contains a cyclic data declaration.

It is still not possible to evaluate the above expression directly, because
x refers to itself in a strict way. To overcome this problem, we transform
the expression into the following, equivalent expression:

let x = fix ((λy → [1, 2, y ]) ◦ length) in sum x

By ’unrolling’ the fixed point, this expression can again be transformed into
an equivalent expression:

let x = (λy → [1, 2, y ]) (fix (length ◦ (λy → [1, 2, y ]))) in sum x
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Now this expression can be rewritten as a recursive declaration, so that the
fixed point combinator is no longer needed:

let y = let x = [1, 2, y ]
in length x

in sum [1, 2, y ]

Assuming that function length is defined and there is also support for inte-
gers, the Haskell expression can be translated to the following λ?! expression:

let! y = let! x = [1, 2, y ]
in length x

in sum [1, 2, y ]

At the cost of some code duplication, we have obtained an expression that
can be evaluated in sequential order: The elements of list [1, 2, y ] can be
counted without knowing the value of y . When the length of the list has
been calculated and bound to the identifier y , another list [1, 2, y ] can be
created and summed up.

In short, we have rewritten a recursive declaration as the least fixed
point µφ◦ψ of a composed function φ ◦ ψ, where φ is non-strict. Then we
have unrolled this fixed point, exploiting the fact that µφ◦ψ = φ(µψ◦φ) for
monotonous functions φ, ψ. Since φ is not strict in its argument, ψ ◦ φ
is also non-strict, and the fixed point µψ◦φ can be rewritten as a recursive
declaration.

Conclusion

In order to gain efficiency from Lisp-like declarations, strictness information
must be available. Otherwise the transformations sketched above can not
be applied safely. Also, the strictness of a function cannot be determined
beforehand in general, so that there will remain cases where recursive data
declarations will have to be eliminated as described in Chapter 2.

Nevertheless, deriving strictness information from declarative programs
is common practice, and if it is known statically that the value of a non-strict
declaration is needed, then an oracle entry can be saved by turning the dec-
laration into Lisp-like declaration. Therefore, enhancing the semantics with
Lisp-like declarations can increase run-time efficiency even in the presence
of simple forms of strictness analysis.
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Appendix B

Reference Implementation

B.1 Interpreter

{-# LANGUAGE ForeignFunctionInterface #-}
module Main (main) where

import Foreign .Ptr
import System .Environment (getArgs)
import Control .Monad .Fix (mfix )
import Control .Monad
import Data.IORef
import Data.Maybe
import Yhc.Core
import Data.Function (on)
import Data.Maybe
import Data.Graph
import Data.List

The functions for manipulating oracles are implemented in the language
C (see section B.3 on page 106). They are called via Haskell’s foreign func-
tion interface. Since oracles are not accessed directly by the interpreter, they
are simply defined as values of type Ptr ().

type Oracle = Ptr ()

foreign import ccall initOracle :: IO ()
foreign import ccall newOracleEntry :: IO Oracle
foreign import ccall enterRhs :: Oracle → IO Oracle
foreign import ccall leaveRhs :: Oracle → IO ()
foreign import ccall popOracle :: IO Int

Function mapSnd applies a function to the second component of every
list element.

91



92 APPENDIX B. REFERENCE IMPLEMENTATION

mapSnd :: (a → b)→ [(c, a)]→ [(c, b)]
mapSnd f = map (λ(l , r)→ (l , f r))

Simplified Core Expression Syntax

Data type Expr implements a core language that is even simpler than the
core language of the York Haskell Compiler. The differences are that there
are only unary applications and abstractions, that there is no distinction be-
tween function names and the names of local variables, and that constructor
terms are always saturated:

type Ident = String
type CIdent = String

type Bind = (Ident ,Expr )

data Expr = Var{varId :: Ident }
| Abs Ident Expr
| App Expr Ident
| Let [Bind ] Expr
| Con CIdent [Ident ]
| Case Expr [(CorePat ,Expr )]
| Literal CoreLit

Function isVar tests whether an expression is an identifier. Function whnf
follows the definition of the predicate whnf in chapter 3. Function allWhnf
tests if all right hand sides in a list of bindings are in weak head normal
form.

isVar :: Expr → Bool
isVar (Var ) = True
isVar = False

whnf :: Expr → Bool
whnf (Con ) = True
whnf (Abs ) = True
whnf = False

allWhnf :: [Bind ]→ Bool
allWhnf = all (whnf ◦ snd)

Function fvs returns a list containing the identifiers that occur free in an
expression.

fvs :: Expr → [Ident ]
fvs expr = case expr of
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Var v → [v ]
Abs x e → delete x (fvs e)
App f x → union (fvs f ) [x ]
Let bs e → foldr letFvs (fvs e) bs \\map fst bs
Con xs → nub xs
Case e as → foldr altFvs (fvs e) as
Literal → [ ]
where

letFvs ( , e) vs = union (fvs e) vs
altFvs (p, e) vs = (fvs e \\ pvars p) ‘union ‘ vs
pvars (PatCon vs) = vs
pvars = [ ]

Function isRecursive checks whether the right hand side of a binding refers
to that binding in a recursive way.

isRecursive :: Bind → Bool
isRecursive (x , e) = x ∈ fvs e

Traversal of Expression Trees

Function mapExpr applies a function f to the direct subexpressions of expr .
Function postOrder uses mapExpr to apply a function f to all subexpressions
(including the whole expression) in post-order.

mapExpr :: (Expr → Expr)→ Expr → Expr
mapExpr f expr

= case expr of

Abs x e → Abs x (f e)
App e x → App (f e) x
Let bs e → Let (mapSnd f bs) (f e)
Case e as → Case (f e) (mapSnd f as)

→ expr

postOrder :: (Expr → Expr )→ Expr → Expr
postOrder fun expr = fun (mapExpr (postOrder fun) expr )

Loading Core files

Function loadCoreExpr loads a .yca- or .ycr-file and returns a declaration
that defines all top-level declarations of the loaded file and has mainexpr as
its body.

loadCoreExpr :: FilePath → Expr → IO Expr
loadCoreExpr filename mainexpr
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= do core ← loadCore filename
let binds = [(x , foldr Abs (toExpr body) args)

| CoreFunc x args body ← coreFuncs core ]
return (Let binds mainexpr )

Function toExpr transform an expression of type CoreExpr into an ex-
pression of type Expr .

It is assumed that all constructor terms are saturated,i.e. that every
constructor of arity n is wrapped in an application of n arguments. Core
files created by yhc seem to satisfy this condition.

toExpr :: CoreExpr → Expr
toExpr expr

= case expr of

CoreCon c → Con c [ ]
CoreVar v → Var v
CoreFun v → Var v
CoreApp (CoreCon c) as
| null bs ′ → con
| otherwise → Let bs ′ con
where

con = Con c (map fst bs)
bs = zipWith foo [1 . . ] (map toExpr as)
bs ′ = filter (¬ ◦ isVar ◦ snd) bs
foo :: Int → Expr → (Ident ,Expr )
foo (Var v) = (v ,Var v)
foo n e = ("_v" ++ show n, e)

CoreApp f as → mkApp (toExpr f ) (map toExpr as)
CoreLam xs e → foldr Abs (toExpr e) xs
CoreCase e as → Case (toExpr e) (mapSnd toExpr as)
CorePos e → toExpr e
CoreLet bs e → Let (mapSnd toExpr bs) (toExpr e)
CoreLit l → Literal l

Helper Functions

Function mkApp creates nested applications from a list of arguments. It
transforms the arguments of applications into let-bound values if necessary.

mkApp :: Expr → [Expr ]→ Expr
mkApp f as = foldl app f as

where

app e (Var x ) = App e x
app e x = Let [("_x", x )] (App e "_x")
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The function call mkSeq e1 e2 creates an expression that is equivalent to
the Haskell expression e1 ‘seq ‘ e2 . It (ab)uses Case expressions to force the
evaluatiuon of e1 .

mkSeq :: Expr → Expr → Expr
mkSeq e1 e2 = Case e1 [(PatDefault , e2 )]

Some self-explaining helper functions:

mkFunapp :: Ident → [Expr ]→ Expr
mkFunapp f xs = mkApp (Var f ) xs

mkLet ,mkLetstrict :: String → Expr → Expr → Expr

mkLet x e1 e2 = Let [(x , e1 )] e2

mkLetstrict x e1 e2 = mkLet x e1 (mkSeq (Var x ) e2 )

The type FvsNode stands for a single node in a dependency graph. It
contains the binding, i.e. the identifier and the right hand side, as well as a
list of the identifiers the right hand side refers to.

Function depGraph turns a list of bindings into a dependency graph.
Function sortSccs calculates a list of strongly connected components with

the help of the library function stronglyConnCompR . In contrast to the list
of SCCs returned from this function, the list of SCCs returned by sortSccs
is in reversed order. This is required, beacuase we start to process nested
declarations at the innermost binding.

type FvsNode = (Bind , Ident , [Ident ])

depGraph :: [Bind ]→ [FvsNode ]
depGraph = map (λ(x , e)→ ((x , e), x , fvs e))

sortSccs :: [FvsNode ]→ [SCC FvsNode ]
sortSccs = reverse ◦ stronglyConnCompR

Breaking Declarations into Binding Groups

Function splitLets breaks a declaration into their smallest binding groups.

splitLets :: Expr → Expr
splitLets expr

= case mapExpr splitLets expr of

Let bs e
→ let fvsGraph = depGraph bs

sccs = stronglyConnComp fvsGraph
bs ′ = map flattenSCC sccs
in foldr Let e bs ′

e → e
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Remove mutual recursion

Function rmMutualRecursion turns a mutually recursive data declaration (a
letrec with more than one binding that contain at least one non-whnf right
hand side) into a single recursive declaration.

rmMutualRecursion :: Expr → Expr
rmMutualRecursion (Let bs body)
| ¬ (allWhnf bs) ∧ length bs > 1
= let fvsGraph = depGraph bs

sccs = sortSccs fvsGraph
(body ′, bound , fbs)

= partitionBinds (fvs body) sccs (body ,mkTuple fbs , [ ])
in mkSingleLet body ′ bound fbs

rmMutualRecursion e = e

Function partitionBinds takes the following arguments: A list of identi-
fier that occur in the body of the declaration, a sorted list of strongy con-
nected components, a 3-tuple consising of the body of the declaration, a tu-
ple expression that contains the feedback variables, and the list of identifiers
that are already added to the feedback set. It returns an updated version of
that 3-tuple, in which the body expression is ’surrounded’ by declarations
of identifiers that the body refers to, the tuple expression is ’surrounded’ by
declarations that are needed to define the feedback vriables, and the set of
feedback identifiers is the complete feedback set:

partitionBinds :: [Ident ]→ [SCC FvsNode ]
→ (Expr ,Expr , [Ident ])
→ (Expr ,Expr , [Ident ])

When there is no binding left in a strongly connected component, then move
to the next SCC:

partitionBinds pull (CyclicSCC [ ] : ds) part
= partitionBinds pull ds part

If the next SCC is cyclic, then pick the best candidate for the feedback
set and remove it from the SCC. The rest of the SCC breaks into smaller
SCCs that are sorted and added to the remaining list of SCCs. The selected
candidate is added to the feedback set, and its declaration is added to the
tuple expression:

partitionBinds pull (CyclicSCC d : ds) (body , bound , fbs)
= let (b, d ′) = pickFbNode pull d

sccs = sortSccs d ′ ++ ds
in partitionBinds pull sccs (body ,Let [b ] bound , fst b : fbs)
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If the next SCC is acyclic, then it is not added to the feedback set. Instead,
its declaration is added to the tuple expression. Depending on whether it
is needed in the body expression, its declaration is also added to the body
expression:

partitionBinds pull (AcyclicSCC ((x , e), , r) : ds) (body , bound , fbs)
= partitionBinds pull ′ ds (body ′,mkLet x e bound , fbs)
where (body ′, pull ′)
| x ∈ pull = (mkLet x e body , r ‘union ‘ pull)
| otherwise = (body , pull)

When there are no more declarations to be processed, the 3-tuple is returned
as result:

partitionBinds pull [ ] part
= part

Function pickFbNode picks the best candidate from a SCC. Irs choice de-
pends not only on the SCC, but also on whether the candidate is referred
to by the body expression:

pickFbNode :: [Ident ]→ [FvsNode ]→ (Bind , [FvsNode ])
pickFbNode pull defs = (b, d)

where

ds = [x | ( , x , )← defs ]
(b, y , ) = maximumBy (compare ‘on ‘ weight pull ds) defs
d = [n | n@( , x , )← defs, x 6≡ y ]

Function weight estimates the usefulness odf adding an identifier to the
feedback set. It uses the fact, that tuples are sorted in exicographic order
by default. An identifier is rated on whether it

1. has a recursive reference to itself,

2. has a high number of references to other identifiers in the same SCC,
or

3. is referred to by the body expression.

weight :: [Ident ]→ [Ident ]→ FvsNode → (Bool , Int ,Bool )
weight pull defs ( , x , fv) = (recursive, length incoming , pulled)

where recursive = x ∈ fv
incoming = fv ‘intersect ‘ defs
pulled = x ∈ pull

Function mkSingleLet takes the body expression, the tuple expression
and the list of feedback idnetifiers. It creates a single recursive declaration
from them. For example, the function call
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mkSingkeLet body bound ["x", "y"]

returns a declaration

let rec = let x = case rec of Tuple2 x y → x
in let y = case rec of Tuple2 x y → y

in bound
in let x = case rec of Tuple2 x y → x

in let y = case rec of Tuple2 x y → y
in body

mkSingleLet :: Expr → Expr → [Ident ]→ Expr
mkSingleLet body bound [v ]

= mkLet v bound body
mkSingleLet body bound fbs

= mkLet recname bound ′ body ′

where

body ′ = mkFbSelectors body
bound ′ = mkFbSelectors bound
mkFbSelectors b = foldr mkSelector b fbs
mkSelector v b = mkLet v (mkSel (Var recname) v fbs) b
recname = "rec"

mkTuple :: [Ident ]→ Expr
mkTuple [e ] = Var e
mkTuple es = Con (mkTupleConstr $ length es) es

mkTupleConstr :: Int → CIdent
mkTupleConstr arity = "Tuple"++ show arity

mkSel :: Expr → Ident → [Ident ]→ Expr
mkSel e v vs = Case e [(pat ,Var v)]

where pat = PatCon tcon vs
tcon = mkTupleConstr (length vs)

Instrument Code for Oracle Creation

It is assumed that the right hand sides of declarations with more than one
binding are in weak head normal form.
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instrument :: Expr → Expr
instrument e@(Let [(x , e1 )] e2 )
| whnf e1 = e
| isRecursive (x , e1 ) = instrRecLet x e1 e2
| isVar e1 = e
| otherwise = instrLet x e1 e2

instrument e = e

instrLet :: String → Expr → Expr → Expr
instrLet x e1 e2

= withNewEntry (mkLet x (withOracle e1 ) e2 )

instrRecLet :: String → Expr → Expr → Expr
instrRecLet x e1 e2

= mkLetstrict x ′ body $ withNewEntry $ letXXo e2
where x ′ = x ++ "’"

body = Abs "o" (withOracle (withNewEntry (letXXo e1 )))
letXXo = mkLet x (mkFunapp x ′ [Var "o"])

Functions withNewEntry and withOracle add calls to the primitive functions
newOracleEntry , enterRhs and leaveRhs to an expression:

withNewEntry e ≡ let ! o = newOracleEntry
in e

withOracle e ≡ let ! osave = enterRhs o
in let ! result = e

in leaveRhs ‘seq ‘ result

withNewEntry :: Expr → Expr
withNewEntry = mkLetstrict "o" (Var "newOracleEntry")

withOracle :: Expr → Expr
withOracle r = enterAndSave strictLet

where

strictLet = mkLetstrict "result" r leaveWithResult
leaveWithResult = leaveDef ‘mkSeq ‘ Var "result"

leaveDef = mkFunapp "leaveRhs" [Var "o_save"]
enterAndSave = mkLetstrict "o_save" callRhs
callRhs = mkFunapp "enterRhs" [Var "o"]

Lift code into state monad

Function liftToST implements the lifting of Core expression into the Lazy
Call-by-Value monad via the translation scheme from figure 5.1 on page 71.
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In order to avoid name-clashes with Prelude functions, the function return
is called unit here, and the operator >>= is now a function bind :

liftToMonad :: Expr → Expr
liftToMonad = either mkRet id ◦ liftToST

where mkRet e = mkFunapp "Lcbv;unit" [e ]

The data type Either is used to distinguish between values that are
returned by function bind and monadic expressions that are already lifted
into the state monad. The expression Left x stands for unit x , and the
expression Right x stands for x :

liftToST :: Expr → Either Expr Expr

liftToST (Var v) = Left (Var v)
liftToST (Abs x e)

= Left (Abs x (liftToMonad e))
liftToST (App f x )

= case liftToST f of

Left f ′ → Right (App f ′ x )
Right f ′ → Right (mkFunapp "Lcbv;funApp" [f ′,Var x ])

liftToST (Let bs e)
| allWhnf bs
= case liftToST e of

Left e ′ → Left (Let bs ′ e ′)
Right e ′ → Right (Let bs ′ e ′)
where bs ′ = mapSnd liftToVal bs

liftToST (Let [(x , r)] b)
| isRecursive (x , r)
= Right (mkFunapp "Lcbv;fixBind" [Abs x $ liftToMonad r , b ′ ])
| isVar r
= Right (App b ′ (varId r))
| otherwise
= case liftToST r of

Left r ′ → Right (mkFunapp "Lcbv;optionalApp" [r ′, b ′ ])
Right r ′ → Right (mkFunapp "Lcbv;optionalBind" [r ′, b ′ ])

where

b ′ = Abs x (liftToMonad b)
liftToST (Let )

= error $ "internal error: mutual recursion in liftToST"

liftToST (Con c xs)
= Left (Con c xs)

liftToST (Case e as)
= let as ′ = mapSnd liftToMonad as

in case liftToST e of

Left e ′ → Right (Case e ′ as ′)
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Right e ′ → let args = [e ′,Abs "e" (Case (Var "e") as ′)]
in Right (mkFunapp "Lcbv;bind" args)

liftToST (Literal l)
= Left (Literal l)

liftToVal :: Expr → Expr
liftToVal expr

= case liftToST expr of

Left e → e
Right → error "internal error in liftToVal"

Interpreter

Data type Value models closures and the possible results of their evalua-
tion. The constructor Blackhole stands for the value ⊥. It results from the
evaluation of self-referential expressions like let x = x in x :

data Value = Closure Env Expr
| Constr String [Thunk ]
| Oracle{getOracle :: Oracle }
| Lit{getLit :: CoreLit }
| Blackhole

Environments are simple lists of pairs:

type Env = [(String ,Thunk )]

A thunk is an updateable pointer to a result value:

type Thunk = IORef Value

Function evaluate evaluates an expression in an empty environment and
return a Value as result. The definition of Prelude;⊥ has to be added here,
because every identifier that occurs as a parameter is looked u, even if the
corresponding thunk is never evaluated:

evaluate :: [Thunk ]→ Expr → IO Value
evaluate args expr

= do undef ← newIORef Blackhole
eval args [("Prelude;undefined", undef )] expr

Function eval takes a argument stack, an environment and an expression
and returns the result of its evaluation:

eval :: [Thunk ]→ Env → Expr → IO Value
eval stack env expr



102 APPENDIX B. REFERENCE IMPLEMENTATION

= case expr of

Con c xs
→ return (Constr c (map (lookupVar env) xs ++ stack))

Var vn → evalVar stack vn
App c a → eval (lookupVar env a : stack) env c
Abs x c → case stack of

[ ] → return (Closure env $ Abs x c)
(s : ss)→ eval ss ((x , s) : env) c

Case c alts → eval [ ] env c >>= match alts
Let bs c → do env ′ ← bindAll bs

eval stack env ′ c
Literal l
| null stack → return (Lit l)
| otherwise → error ("tried to apply literal"++ show l)

where

evalVar [t ] "Prelude;Prelude.Int;Prelude.Enum;pred"
= evalThunk t >>= return ◦ Lit ◦ decrement ◦ getLit

evalVar [ ] "newOracleEntry"
= fmap Oracle newOracleEntry

evalVar [t ] "enterRhs"
= do v ← evalThunk t

o ← enterRhs (getOracle v)
return (Oracle o)

evalVar [t ] "leaveRhs"
= do v ← evalThunk t

leaveRhs (getOracle v)
return (Constr "()" [ ])

evalVar s x = evalThunk (lookupVar env x )>>= evalValue s

lookupVar e x = fromMaybe
(error $ "free variable: " ++ x )
(x ‘lookup‘ e)

bindAll bs = mfix (λenv ′ → foldM (insertRef env ′) env bs)
where

insertRef env ′ env ′′ (x , e)
= do r ← newIORef (Closure env ′ e)

return ((x , r) : env ′′)

match ((PatDefault , rhs) : )
= eval stack env rhs

match ((PatCon pn xs, rhs) : ) (Constr cn as)
| cn ≡ pn ∧ length as ≡ length xs
= eval stack (zip xs as ++ env) rhs

match ((PatLit l , rhs) : ) (Lit l ′)
| l ≡ l ′
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= eval stack env rhs
match ( : alts) v

= match alts v
match [ ]

= error "no match"

decrement (CoreInt n) = CoreInt (n − 1)
decrement v = error $ "cannot decrement"++ show v

Function evalThunk evaluates the contents of a thunk and updates it with
the result:

evalThunk :: Thunk → IO Value
evalThunk thunk = do val ← readIORef thunk

writeIORef thunk Blackhole
val ′ ← evalValue [ ] val
writeIORef thunk val ′

return val ′

Function evalValue takes an argument stack and a Value. If the value is
aclosure, then this closure is evaluated, and the result is applied to the
arguments from the argument stack. If the value is a constructor term, then
the arguments are appended to it as additional components. If argument
stack is ampty and the value is neither a closure nor a constructor, then
the value is returned unchanged. Otherwise the evaluation will stop with a
runtime error.

evalValue :: [Thunk ]→ Value → IO Value
evalValue s (Closure e c) = eval s e c
evalValue s (Constr c as) = return (Constr c $ as ++ s)
evalValue [ ] v = return v
evalValue = error "tried to apply non-function"

Function valueToString turns a Value into a textual representation.

valueToString :: Int → Value → IO String
valueToString level val

= case val of

Closure (Abs )
→ return "<FUN>"

Closure
→ return ("<THUNK>")

Constr "Prelude;:" [car , cdr ]
→ do car ′ ← (readIORef >=> valueToString 1) car

cdr ′ ← (readIORef >=> valueToString 1) cdr
return (car ′ ++ " : " ++ cdr ′)
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Constr c [ ]
→ return (stripPrelude c)

Constr c as
→ do as ′ ← mapM (readIORef >=> valueToString 2) as

return $ mkBraces 1 $ ppConstr (stripPrelude c) as ′

Oracle
→ return "<ORACLE>"

Blackhole
→ return "undefined"

Lit l → return (show $ CoreLit l)
where

ppConstr c as
= intercalate " " (c : as)

stripPrelude c = fromMaybe c (stripPrefix "Prelude;" c)
mkBraces l s
| l < level = ’(’ : s ++ ")"

| otherwise = s

Function popList turns the current oracle into a list, so that t can be used
for Lazy Call-by-Value evaluation.

popList :: Thunk → IO Thunk
popList t = popOracle >>= consOracle

where consOracle (−1) = return t
consOracle n = do

v ← newIORef (Lit (CoreInt n))
l ← newIORef (Constr "Prelude;:" [v , t ])
popList l

Function main loads a program and evaluates it.

main :: IO ()
main = do

args ← getArgs
let (corePath ,mainexpr )

= case args of

[f , e ] | ’;’ ∈ e → (f , e)
| otherwise → (f , "Main;"++ e)

→ error "usage: lcbv-inter file.yca mainexpr"

coreexpr ← loadCoreExpr corePath (Var mainexpr )
let withSplitLets = postOrder splitLets coreexpr

withoutMutual = postOrder rmMutualRecursion withSplitLets
transformed = postOrder instrument withoutMutual

putStrLn "\n{- ** Result of lazy evaluation ** -}\n"

initOracle
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val ← evaluate [ ] transformed
valstring ← valueToString 0 val
putStrLn valstring
let lcbvexpr = liftToMonad withoutMutual
putStrLn "\n{- ** Oracle ** -}\n"

nil ← newIORef (Constr "Prelude;[]" [ ])
oracle ← popList nil
orcstr ← readIORef oracle >>= valueToString 0
putStrLn orcstr
let runLcbvApp = (mkFunapp "Lcbv;runLcbv" [ lcbvexpr ])
lcbvexpr ′ ← loadCoreExpr "Lcbv.ycr" runLcbvApp
putStrLn "\n{- ** Result of LCBV evaluation ** -}\n"

lcbvval ← evaluate [oracle ] lcbvexpr ′

lcbvvalstring ← valueToString 0 lcbvval
putStrLn lcbvvalstring

B.2 Implementation of State Monad

module Lcbv where

type ST a = [Int ]→ ([Int ], a)

unit :: a → ST a
unit x s = (s, x )

bind :: ST a → (a → ST b)→ ST b
bind x f s = case x s of

(s ′, v)→ f v s ′

funApp :: ST (a → ST b)→ a → ST b
funApp t u s = case t s of

(s ′, v)→ v u s ′

optionalBind :: ST a → (a → ST b)→ ST b
optionalBind p q orc

= case orc of

0 : o → q ⊥ o
n : o → case p (pred n : o) of

(s ′, v)→ q v s ′

→ ⊥
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optionalApp :: a → (a → ST b)→ ST b
optionalApp p q orc

= case orc of

0 : o → q ⊥ o
n : o → q p (pred n : o)
→ ⊥

fixBind :: (a → ST a)→ (a → ST b)→ ST b
fixBind p q orc

= case orc of

n : o → let r :: Int → a → [Int ]→ ([Int ], a)
r 0 x s = (s, x )
r n x s = case p x s of

(s ′, v)→ r (pred n) v s ′

in (bind (r n ⊥) q) o
→ ⊥

runLcbv :: ST a → [Int ]→ a
runLcbv e o = case e o of

( , e ′)→ e ′

B.3 Oracle Creation

The following C code implements the functions for oracle creation described
in section 4.2 on page 57.

1 #include <s t d l i b . h>

typedef struct Oracle {
struct Oracle ∗ l a s t ,∗ next ;
int count ;

6 } ∗OraclePtr ;

stat ic struct Oracle startNode ;
stat ic OraclePtr cu r r en t ;

11 void i n i tO r a c l e (void ) {
cu r r en t = startNode . next

= startNode . l a s t = &startNode ;
startNode . count = 0 ;

}
16
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OraclePtr newOracleEntry (void ) {
OraclePtr o ;
i f ( ( o = malloc ( s izeof ∗ o ) ) == 0)

e x i t (EXIT FAILURE) ;
21 o −> l a s t = current−>l a s t ;

o −> next = cur r en t ;
o −> count = 0 ;
current−>l a s t−>next = o ;
current−>l a s t = o ;

26 return o ;
}

OraclePtr enterRhs ( OraclePtr o ) {
OraclePtr saved = cur r en t ;

31 o−>l a s t−>count++;
cu r r en t = o ;
return saved ;

}

36 void leaveRhs ( OraclePtr saved ) {
OraclePtr o = cur r en t ;
cu r r en t = saved ;
o−>l a s t−>count += o−>count ;
o−>l a s t−>next = o−>next ;

41 o−>next−>l a s t = o−>l a s t ;
f r e e ( o ) ;

}

int popOracle (void ) {
46 OraclePtr l = startNode . l a s t ;

int c = l−>count ;
i f ( l == &startNode ) {

startNode . count = −1;
} else {

51 startNode . l a s t = l −> l a s t ;
l−>l a s t−>next = &startNode ;
f r e e ( l ) ;

}
return c ;

56 }
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Appendix C

Contents of the

Supplemental CD-ROM

The supplemental CD-ROM contains the the reference implementation as
well as the source files of this thesis:

File README

A short explanation of the disk’s contents.

File DiplomaThesis.ps

This thesis in PostScript format.

Directory TeXSource

The source files of this document in LATEX format. To create the docu-
ment DiplomaThesis from it, enter the directory and type make at the
command prompt. The following tools are required:

• The preprocessor lhs2TeX is used to format embedded Haskell code.

• GNU make and the LATEX building system rubber are used to coor-
dinate the calls to latex, bibtex etc..

• The graph layouting program dot and the PostScript tool ps2eps
are used for some illustrations.

Directory Implementation

The Haskell source files of the reference implementations. To create the
executable programs lcbv-interpreter and core-interpreter from it,
enter the directory and type make at the command prompt. The Haskell
build system cabal is used to coordinate the build process, and the
Haskell library yhccore is required. It has been tested with GHC-6.8.3
and yhccore-0.9.

File lcbv-interpreter

The implementation of the semantics from Chapter 3 as an executable

109
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program. It is compiled by GHC-6.8.3 on an x86 Linux system with
glibc-2.7.

File core-interpreter

The implementation from Appendix B as an executable program. It is
compiled by GHC-6.8.3 on an x86 Linux system with glibc-2.7.

Directory Implementation/Examples

Some small examples that can be used to test the interpreters. For an
example program Test.hs, typing make Test.yca on the command line
lets the York Haskell Compiler create a YHC Core file from it.

Then the YHC Core file can be evaluates by typing core-interpreter

Test.yca mainexpr or lcbv-interpreter Test.yca mainexpr, where
mainexpr is the name of the declaration to be evaluated.


