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Abstract

The interface of higher programming languages to databases is quite error-
prone when SQL statements are passed as strings. In particular, this approach
does not provide any type safety to the programmer. On the other hand, ac-
cessing the database with specialized library functions can hardly provide the
conciseness of SQL while being readable and easy to use at the same time.
As the inclusion of different domain specific languages (DSLs) has to deal with
similar problems, the functional logic programming language Curry provides a
preprocessor to translate embedded statements of DSLs into pure Curry code
before compilation. This approach meets both requirements: the statements
keep their conciseness without having a negative impact on type safety.

This thesis presents a compiler, translating SQL statements into Curry code,
as an enhancement for the preprocessor. To provide a large set of SQL expres-
sions, an existing database library was extended.
Furthermore, an abstraction is proposed and implemented that allows the total
avoidance of foreign keys in SQL statements and thus, provides an even more
intuitive formulation of SQL queries.
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Chapter 1

Motivation

The use of (relational) databases is indispensable in today’s software systems.
Especially web-based platforms have to deal with a large amount of data which
has to be held permanently and reliably outside the main memory.
From a programmer’s point of view, it is important that the employed pro-
gramming language supports an easy-to-use database interface. In general,
there are several requirements which seem to be contradictory at first sight.
The queries are to be formulated in a concise, but still readable way, like an
inclusion of SQL statements as strings would provide it. At the same time,
it is preferable to make use of the specific features provided by the used pro-
gramming language, e.g., type safety, which can better be achieved with a
specialized library. Another valued advantage of library functions is the obvia-
tion of invalid and perhaps manipulative requests (e.g., SQL injections) which,
once passed to the server, would end up in runtime errors or unwanted results.

A preprocessor combines all mentioned requirements and advantages. The
query is formulated in SQL-syntax, embedded in the program and translated
into the underlying programming language before compilation so that there is
no need to resign language features.

This thesis provides the integration of SQL into the functional logic program-
ming language Curry, applying the preprocessor approach. A corresponding
preprocessing tool, currypp, was developed in [15] and can be easily extended
for our purpose by implementing a compiler for SQL statements.
The currently used practice to access databases in Curry programs employs
persistent predicates as it is presented in [1]. Persistent predicates exploit the
logical paradigms of Curry, they are stored externally and their defining facts
can change over time [8]. The main disadvantage of this approach is that
complex queries are not performed directly on the database level. Instead, all
entries of the given table are loaded into the program and thereafter filtered
according to the presented criteria, resulting in a huge overhead of traffic. The
CDBI library (Curry Database Interface) developed in [16] was a start to work
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1. Motivation

on this problem.
This thesis also evaluates and increases the functionality of the interface (CDBI)
to obtain the possibility to use a larger subset of SQL from inside a Curry pro-
gram. Doing so, special attention is paid to type safety and the reduction of
traffic. The developed SQL compiler will finally translate SQL statements into
functions provided by the CBDI library and, thus, a new database interface for
the Curry language can be presented fulfilling high requirements w.r.t. safety
and usability.

Additionally, an approach of abstracting foreign keys is presented which is
based on entity-relationship (ER) models and constitutes an extension of pure
SQL. This abstraction level is a further development of the ideas of ER-based
database programming described in [1] and implemented with the erd2curry-
tool, which will be partly described in chapter 4.

The following function gives an early example of the intended inclusion of SQL
and the proposed abstraction.

sqlExample :: IO (SQLResult [String ])

sqlExample = ‘‘sql Select s.name

From Student As s

Inner Join Result As r

On Satisfies s has_a r;’’

All parts will be explained in later chapters.

The remainder of this thesis is structured as follows: part II introduces the
fundamentals, as there are the Curry programming language, the Structured
Query Language (SQL) and compiler design in general. Furthermore, the
Curry Database Interface and the tools currypp and erd2curry are explained
briefly.
Part III represents the main part of the thesis. Chapter 6 outlines the require-
ments and specification of the integration. The extensions of the CDBI library
are presented in chapter 7, before the design and implementation of the SQL
compiler is discussed in chapter 8.
The last part (IV) summarizes the results and analyses potential prospects.
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Chapter 2

Curry

Curry is a universal multi-paradigm declarative programming language, devel-
oped for research, teaching and application of functional logic languages.
Declarative languages differ from imperative languages mainly by the level of
abstraction employed. While the former describe the properties of a problem
and its solution, the latter define how the problem can be solved. Declarative
languages offer the principle of referential transparency, which means that the
result of a computation is independent of the point in time it is evaluated, but
just dependent of the terms that define it. This is possible due to the absence
of side effects.
As a multi-paradigm declarative language as described in [9] and [10], Curry
combines typical functional with logical paradigms and also provides the pos-
sibility of constraint programming. While functional languages are based on
the lambda-calculus and feature e.g., higher-order functions and a static type
system, logical languages rest upon predicate logic and provide e.g., logical
variables, non-deterministic search and computation with incomplete informa-
tion.
The following sections give an overview of the language itself as well as a small
insight into the applied evaluation strategy. A more detailed description can
be found in [13]. Since a basic familiarity with the Haskell programming lan-
guage is assumed here and the Curry syntax is very similar to the syntax of
Haskell, more importance is attached to the differences and the features rather
particular for functional logic programming.

2.1 Programs

A Curry program is built of data type and function definitions. Since Curry
is a strongly typed language and uses a polymorphic Hindley/Milner-like type
system, most general types of functions can be reconstructed during compi-
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lation via a type inference mechanism. Data declarations in Curry have the
following general format:

data T α1...αn = C1τ11...τ1m | ... | Ckτk1...τkl

where T is the type constructor, C1,.., Ck are data constructors, αi are called
type variables and τij are types themselves. As an example we give an alter-
native definition of lists:

data List a = Empty | Cons a (List a)

Curry also allows type synonyms:

type T α1...αn = τ

where the new type constructor T is a synonym for type τ .
Function definitions in Curry have the general from:

f t1...tn = e

where f is the function name, t1, ..., tn are data terms and e is an expression.
Each function can be defined by several such rules. Definitions can also contain
guards, i.e., the specified expression, ei, is just executed in case the condition
ci is fulfilled:

f t1...tn | c1 = e1

...

| cn = en

The following example defines the append operation using the alternative list
structure:

append :: List a -> List a -> List a

append Empty list2 = list2

append (Cons e list1) list2 = Cons e (append list1 list2)

Constructors for lists and the append operation are already predefined in Curry
as [], (:) and ++ respectively and will be used in the remainder of this
chapter.

The next subsections discuss the main differences of functional logic program-
ming to pure functional programming, which are free variables, constraints,
non-deterministic operations and encapsulated search.

Constraints

Curry provides the possibility to solve equational constraints, which are de-
noted by the =:= operator (see listing 2.1 for an example). Equational con-
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2.1. Programs 2. Curry

straints appear in conditions and have type Success, which has to be clearly
distinguished from test equality (==) of type Bool. The former require strict
equality and are solved by calculating a unifier for both sides of the equation
so that the variables can be bound to the same ground data term. In contrast,
in a term like x == y the values of both variables are expected to be known
otherwise the execution will be suspended. In addition, test equality can have
two different outcomes namely True and False, while equational constraints
evaluate to Success if a corresponding unifier and therefore a binding can be
found, and fail otherwise. This is sufficient because values in unsatisfied con-
straints will not be bound to the variables to generate a result later on, hence
they can be discarded. The following sections clarify this proceeding.
Constraints of type Success can be combined by the &-operator:
& :: Success -> Success -> Success.
A trivial constraint which is always satisfied is denoted by success.

Free variables

Free variables are unbound variables that can be used to generate solutions.
They are declared using the keyword free and have the same scope as local
declarations. Computations with free variables provide a way to compute not
only the result of an expression, but also the parameters which let the result
become true. Listing 2.1 shows three functions all of them calculating all
possible prefixes of a given list using free variables. Note that free variables
can be declared in two different ways either using the keyword where (on right-
hand-sides) or the keyword let. As the third function shows, free variables
can also be anonymous if they are not needed elsewhere.

prefixOf :: [a] -> [a]

prefixOf xs | ys ++ zs =:= xs = ys where ys, zs free

prefixOf1 :: [a] -> [a]

prefixOf1 xs | let zs free in ys ++ zs =:= xs = ys

where ys free

prefixOf2 :: [a] -> [a]

prefixOf2 xs | ys ++ _ =:= xs = ys where ys free

Listing 2.1: Free variables

These functions will generate all possible solutions for the equation specified
in the constraint, e.g.,

> prefixOf [1,2,3]

[]

[1]

[1,2]
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2. Curry 2.1. Programs

[1,2,3]

The values are found by binding the free variables to all possible constructor-
terms. This is explained in more detail in section 2.2.

Non-deterministic operations

As seen in the above example, Curry supports non-determinism, i.e., functions
can gain more then one fitting result, returning different results in different
calls. Another way to achieve this behaviour is by overlapping rules. E.g., the
function singletonList in listing 2.2 returns non-deterministically a member
of a given list as a single-element list and the list itself in case it is empty.

singletonList :: [a] -> [a]

singletonList [] = []

singletonList (x:_) = [x]

singletonList (_:xs) = singletonList xs

Listing 2.2: Overlapping rules

For each non-empty list the second and the third rule apply and thus, all
elements are retrieved recursively:

> singletonList [1,2,3]

[1]

[2]

[3]

[]

In addition, Curry’s special operator ? provides an easy manner to introduce
non-determinism. It is defined as follows:

(?) :: a -> a -> a

_ ? y = y

x ? _ = x

and returns non-deterministically one of its arguments. This allows a reformu-
lation of the above function:

singletonList ’ [] = []

singletonList ’ (x:xs) = [x] ? singletonList ’ xs

Attention has to be paid when using non-determinism in IO-operations. Like
in Haskell these are implemented using a monadic structure which is seen as
the ”outside world” and each single IO-action signifies a modification to this
world. To keep the principle of referential transparency it can not be allowed
to maintain two versions of the outside world at any moment, so that non-
determinism inside IO-operations is not supported.
Curry provides different approaches to handle this problem. One of them is the
use of set functions [11], i.e., each function f : τ1 → ... → τn → τ is assigned
a corresponding set function fs : τ1 → ...τn → 2τ which represents the possible
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values as a multiset and is evaluated on demand. As an example consider the
following set function for the above defined function singletonList:

singletonSet :: [a] -> [[a]]

singletonSet xs = sortValues (set1 singletonList xs)

where sortValues returns all computed values as an ordered list:

> singletonSet [1,2]

[[] ,[1] ,[2]]

The advantage of this approach is that it is clearly defined which non-determinism
is encapsulated, namely, the one of the associated function and not the one
possibly appearing in its arguments. Thus, the function call

singletonSet (prefixOf [1,2])

is still non-deterministic and returns the values:

[[]]

[[] ,[1]]

[[] ,[1] ,[2]]

2.2 Evaluation strategy

The evaluation strategy is just outlined roughly here. We will explain briefly
the most important theoretical terms. For a formal description and corre-
sponding proofs see [9] and [10].

Definitions of functions and constructors in Curry programs have to be con-
structor based, i.e., the pattern on the left-hand side of any rule must not con-
tain function calls, but just constructors and variables. This is an important
requirement for efficient evaluation strategies. Terms are evaluated non-strict.
Non-deterministic operations employ a call-time-choice semantic, which basi-
cally means that the value of a non-deterministic function call is computed
exactly once even if it is referenced several times afterwards. For an example,
consider the following function, which duplicates a list and concatenates it to
the original:

doubleList :: [a] -> [a]

doubleList xs = xs++xs

and the call

> doubleList (prefixOf [1,2])

[]

[1,1]

[1,2,1,2]

As can be easily seen, the non-deterministic argument is just evaluated once,
otherwise results as [1,2,1] would also be possible. As this behaviour was
not explicitly exploited for this thesis, we will not give further details.

11



2. Curry 2.2. Evaluation strategy

or'' x y

or'' True y or'' False y

True or'' False True or'' False False

FalseTrue

Figure 2.1: definitional tree for function or’’

The strategy that mainly characterizes the evaluation of Curry programs is
Weakly Needed Narrowing. Narrowing combines term rewriting known from
functional programming with unification and therefore instantiation of vari-
ables as known from logical programming languages, i.e., to enable term rewrit-
ing logical variables first have to be bound to values (constructor terms).
Since this implies that all possible values have to be tried, the strategy is re-
fined by further requirements leading to Needed Narrowing. This evaluation
is lazy, just considering variables at positions that are necessary to obtain a
result. Therefore, it can only be performed on operations that are inductively
sequential. For these operations it is, informally said, always defined which ar-
gument is needed. For instance, consider the two alternative implementations
of the logical operator or in listing 2.3. The first one provides two fitting rules
for or’ True True so that it is undefined which argument has to be evaluated
first in a call like or’ x y. The second implementation requires the first ar-
gument to be evaluated in first place to choose a subsequent rule. Thus, the
second function definition is inductively sequential and deterministic.

or ’ :: Bool -> Bool -> Bool

or ’ True _ = True

or ’ _ True = True

or ’ False False = False

or ’’ :: Bool -> Bool -> Bool

or ’’ True _ = True

or ’’ False True = True

or ’’ False False = False

Listing 2.3: Different implementations of the logical operator or

Inductively sequential function definitions can also be represented by a defini-
tional tree in which each rule appears exactly once. Such a tree is depicted in
figure 2.1 for the above defined function or”. Needed Narrowing is shown to be
sound, complete and minimal (w.r.t. the number of solutions) and successful
derivations can not be found in less steps than done by this strategy [12].
So far we excluded overlapping rules introduced above in listing 2.2. Because
their definitions are not inductively sequential, there is more than one possible
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rule to apply and more than one possible argument to evaluate in first place.
To cope with that problem, the strategy was extended to Weakly Needed Nar-
rowing, which non-deterministically chooses one of the possible rules.

Three more terms have to be mentioned when talking about the evaluation
strategy of Curry. The first one is the concept of shared variables, i.e., a
variable is just evaluated once and the computed value is referenced in sub-
sequent occurrences of the same variable. This is important for efficiency
reasons and conforms with the applied concept of call-time-choice in case of
non-deterministic operations.
The second concept is residuation, which means the suspension of operation
as long as a referenced variable is unbound. This strategy is employed for
external function calls (e.g., to the arithmetic ’+’- operation).
At last Curry provides functional patterns to write more efficient and read-
able code. A functional pattern is a function reference on the left-hand side
of a rule which was excluded earlier by the requirement of constructor based
terms. Therefore those patterns are replaced on demand by the constructor
terms they represent. An example is given by the following partially defined
function, which returns the last argument of an non-empty list:

last :: [a] -> a

last (xs++[e]) = e

2.3 Implementation

As Curry provides some features from functional languages as well as from
logic programming languages, there also exist two different implementations.
The first one, PAKCS - The Portland Aachen Kiel Curry System 1, provides a
translation into Prolog. This approach is quite simple to implement and bene-
fits from the increasingly efficient implementations of Prolog and the availabil-
ity of constraint solvers in most Prolog implementations. The disadvantage
is that such a translation is determined to use Prologs backtracking strategy,
which delimits the implementation of search strategies.
The second approach, presented in [2], describes the translation into Haskell
programs, which is implemented in KiCS(2) - The Kiel Curry System 2. This
implementation can easily provide different search strategies and exploits the
efficiency of Haskell in purely functional program parts. A special effort had
to be made on the representation of non-determinism.
Both approaches provide an interactive environment for evaluations.
The integration of SQL developed in this thesis can also be used with both
implementations.

1see http://www-ps.informatik.uni-kiel.de/currywiki/start
2see http://www-ps.informatik.uni-kiel.de/kics2/

13





Chapter 3

Structured Query Language

The Structured Query Language (SQL) is a well-known database language to
interact with relational databases. It is based on the mathematical theory
of the relational model. The first version of SQL was developed in 1974/75
at IBM. Since 1983 the language passed an enduring standardization process,
SQL:2003 being the most current result. Despite of this effort there are a lot
of varying dialects since different products implement different subsets of the
standard, but none of them provides the entire set of statements. In addition,
most dialects are still based on the former version SQL-92 [17].
This thesis will also provide a kind of its own dialect, which is restricted by
the database software SQLite3 presented at the end of this chapter and the
database library CDBI, which is described in the following chapter. The next
two sections give a short introduction to all supported statements. A complete
overview can be found in appendix C.

3.1 Relational Model

The relational model as description technique for a database structure and the
relational algebra to formulate requests on it was first published in [5]. The
main terms applied to describe the structure of a database with help of the re-
lational model are ”relation”, ”tuple” and ”attribute”, which are often referred
to as table, row and column respectively when talking about SQL. Operators
on the data model were always defined as taking one or more relations as input
and generating exactly one output relation. Originally the following operators
were presented:

• restrict: restriction of a relation to tuples that fulfill a certain condition

• project: restriction to certain attributes contained in the resulting re-
lation

15



3. Structured Query Language 3.2. SQL Statements

• product: cartesian product of two relations

• intersect, union, difference: set operations (notice that a relation
in sense of the relational algebra is seen as a set of tuples without dupli-
cates and order)

• Join: combination of two relations depending on the value(s) of one or
more attribute

As claimed in [6], not all of the precise mathematical definitions and assump-
tions are considered in implementations of SQL.

3.2 SQL Statements

The large amount of SQL statements can be divided into three groups:

• Data Definition Language (DDL) - manipulation of the database struc-
ture as creating or deleting tables

• Data Manipulation Language (DML) - statements to query and change
contents

• Data Control Language (DCL) - modifications on data security and user
privileges

The remainder of this thesis concentrates exclusively on the DML, all sup-
ported statements are presented below. The resemblance to the mathematical
definitions above should be easily noticeable. The next chapter will clarify
why a support of DDL statements is not necessary.

We want to demonstrate the different types of SQL statements with the help
of a little exemplary database. It consists of a table named Student with four
columns and three entries (rows) and a second table named Result with three
columns and five entries.

Key Name Firstname Age

1 Muster Max 18
2 Maier Anna 25
3 Schulz Tom 20

Key StudentKey Grade

1 1 1.3
2 2 3.7
3 2 5.0
4 1 2.0
5 3 1.0

Table 3.1: database example: Student table (l) and Result table (r)
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3.2. SQL Statements 3. Structured Query Language

Select statement

The Select statement is used to read a specified subset of data from the
database.

Select Firstname , Name From Student;

represents a project operation and results in the following relation:

(Max , Muster)

(Anna , Maier)

(Tom , Schultz)

A equivalent to the restrict operation is given by:

Select * From Student Where Age = 20;

The result is just one row from the exemplary database:

(3, Schultz , Tom , 20)

An exemplary join operation is given by the following statement:

Select s.Name , r.Grade From Student As s

Inner Join Result As r

On s.Key = r.StudentKey;

It returns tuples of the student’s name and the retrieved grade:

(Muster ,1.3)

(Muster , 2.0)

(Maier , 3.7)

(Maier , 5.0)

(Schultz , 1.0)

The keyword As defines alias names for tables to identify column names un-
ambiguously. This is even more important when using the product operation
on two instances of the same table:

Select s1.Name , s2.Name From Student As s1 , Student As s2;

This query returns the cartesian product of all student names:

(Muster , Muster) (Muster , Maier) (Muster , Schultz)

(Maier , Muster) (Maier , Maier) (Maier , Schultz)

(Schultz , Muster) (Schultz , Maier) (Schultz , Schultz)

An exemplary set operation is used in the following statement:

Select Firstname From Student Where Age > 20

Union

Select Firstname From Student Where Age < 20;

which returns the two corresponding names:

(Anna)

(Max)

An arbitrary combination of all operations is possible.
There are also some additional supported operators that have been defined in
later extensions of the relational model, among them aggregation functions as
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3. Structured Query Language 3.2. SQL Statements

Sum or Avg, Group-by, Having and Order-by. The last one is not actually
a relational operator in particular, because it returns an ordered sequence
instead of an unordered set [6]. The example below demonstrates the use of
these operators:

Select s.Firstname , Avg(r.Grade)

From Student As s Inner Join Result As r

On s.Key = r.StudentKey

Group By s.Name

Having Avg(r.Grade)

Order By s.Firstname;

Group-by assembles rows that hold the same value for the given column while
Having can express conditions, particularly aggregations, on these groups. Ag-
gregation functions used as projection return just one value for a set(group) of
rows, without a Group-by clause even just one value for all rows in the table.
So the example above returns the following result:

(Anna , 4.35)

(Max , 1.65)

(Tom , 1.0)

Insert, Update and Delete statement

The operations Insert, Update and Delete modify the content of database
tables. Thus, they are not directly based on relational algebra, but on a
relational assignment operator. The theory will be omitted here, but can be
found in [6]. We will just demonstrate the basic syntax using the above defined
exemplary database:

Insert Into Result (Key , StudentKey , Grade)

Values (6, 2, 1.7);

Update Student Set Firstname = ’Tim’, Age = 21

Where Name = ’Schultz ’;

Delete From Result Where Grade = 5.0;

Insert statements write one or more rows to the given table. In case of left
out null-values the list of columns is mandatory to clarify which columns the
values refer to.
Update statements are able to change one or more columns of the given table.
Which rows are affected is specified by an optional condition.
The Delete statement erases all rows of the given table that fulfill the optional
condition.
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3.2. SQL Statements 3. Structured Query Language

Conditions

This sections gives a few details about the conditions used in Select, Update
and Delete statements. Conditions can be simple binary comparison opera-
tions between two columns, values or value and column. Each condition can
be combined with another one by using the logical operators And and Or. In
addition the following operators can be contained:

• val1 Between val2 And val3 is the same as val1 >= val2 And val1

<= val3

• val In set tests whether value val is member of the set

• Exists subquery models the existential quantifier, evaluates to ”True”
if the subquery (shortened Select statement) returns at least one row

• Is Null, Not Null check whether a column contains a null-value or not
respectively

Null-values play a complicated role because they are not compatible with the
two-valued-logic applied by the relational model. That is why the later imple-
mentation presented in part III prohibits them in combination with any but
the last two operators.
As already mentioned, the standard provides much more possibilities to express
conditions.

Transactions

To provide an interface equipped for multi-user environments, the implemented
SQL dialect also supports transactional statements. Transactions guarantee a
set of properties, which are often referred to as ACID: atomicity, consistency,
isolation and durability. Atomicity ensures that either all parts of a transaction
are performed or none of them is. In case any part of the transaction fails,
the complete transaction fails. Consistency guarantees that the state of the
database before and after an transaction is valid. Isolation assures that the
state of a transaction is not visible to other operations until the changes are
committed. Durability requires that committed changes are saved persistently.

The following transactional statements are supported:

• Begin - indicates the start of a transaction

• Commit - concludes a transaction and writes changes to the database in
case all actions were finished successfully
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• Rollback - returns to the state before the start of the transaction, all
changes are discarded

3.3 SQLite

SQLite1 is not only a dialect of SQL but also a lightweight and free database
software. Working on a single disk file, it is independent of a server component
and can be directly embedded into the application.
SQLite3 implements most of the SQL-92-standard. As it is so far the only
database software supported by the CDBI library, explained in the next chap-
ter, it sometimes limited but often influenced the SQL-dialect implemented in
this thesis. However, an extension of CDBI with another dialect and database
software is not restricted by the implemented compiler since the library func-
tions allow an independent intermediate representation of SQL statements.

1https://sqlite.org/index.html
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Chapter 4

Curry-Tools

This chapter introduces all tools and specialized libraries written in Curry that
are used in this thesis or were enhanced during the implementation.
The first section describes the preprocessor currypp, followed by the tool
erd2curry, which translates entity-relationship diagrams to Curry programs.
The last two sections introduce the CDBI library and the AbstractCurry li-
brary respectively.

4.1 CurryPP

currypp is a preprocessor for domain specific languages (DSLs) embedded into
Curry programs, which was developed in [15]. So far it allows the integration
of regular expressions, formatted printing, XML and HTML expressions. The
compiler developed in this thesis provides an enhancement for SQL statements.
Expressions in domain specific languages can be embedded into the Curry code
using the following syntax:

‘‘langtag expression ’’

where langtag is a language tag (e.g., ”regex” for a regular expression) that
specifies which DSL is used. Language tag and expression have to be sur-
rounded by at least two accent graphs at the beginning and two single quotes at
the end. Any single quote or accent grave inside the expression itself increases
the number of surrounding quotes and accents by one. Between the initiating
accents and the language tag no white space, newline or tab is allowed, though
the language tag can be followed by any amount of those characters. Any
term inside the expression surrounded by <> in case of regular expressions
and formatted printing or {} in case of XML and HTML is interpreted as pure
Curry code and is left unchanged.
To give a concrete example the following regular expression embedded in a
Curry function checks whether a passed string contains the word ”curry”/
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”Curry”:

checkCurry :: String -> Bool

checkCurry s = s ‘‘regex [a-zA-Z]*(c|C)urry[a-zA-Z]*’’

The expression is translated by the preprocessor into the match function and
data types provided by the RegExp library available in both Curry implemen-
tations and thus, into pure Curry code:

checkCurry :: String -> Bool

checkCurry s =

s ‘match ‘ ([Star

([ Bracket [Right ((’a’),(’z’)),

Right ((’A’),(’Z’))]]) ,

Xor ([ Literal (’c’)])

([ Literal (’C’)]),

Literal (’u’),

Literal (’r’),

Literal (’r’),

Literal (’y’),

Star ([ Bracket [Right ((’a’),(’z’)),

Right ((’A’),(’Z ’))]])])

currypp is provided by the current version of PAKCS as well as KiCS2 and
can be invoked by the following command:
currypp org-filename input-file output-file [options]

The option --foreigncode starts the translation of embedded foreign code
found in the input file and saves the translation as the output file. Option -o

stores the result also in a file named org-filename.currypp.
It is important to mention that the input file is allowed to include snippets of
any supported DSL at the same time beside parts of pure Curry code (which
is not altered). The pieces of different languages are separated, preprocessed
and joined again afterwards as shown in figure 4.1. This procedure makes it
easy to extend the preprocessor and hence, support further DSLs.

During the development of the preprocessor a parser monad was implemented
providing a profound basis for further translators. It is basically given by the
data structure PM shown in listing 4.1 and combines a monad for errors (PR)
with a monad for warnings (WM). A parser monad (PM) is parameterized over the
result type. At any time it can contain a list of warnings and either a result or
a list of errors. Each error and each warning is defined by its position (actually
the position of the piece of integrated code) and a message. A position is given
by the name of the file, an absolute position (counting every character), line
and column number.

-- parser monad

type PM a = WM (PR a)

-- warning monad

data WM a = WM a [Warning]

type Warning = (Pos ,String)
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Curry with DSL
expressions

Code Integration Parser

Curry Curry Html

HTML Parser

Curry Curry

Combinator

pure
Curry

RegExp Parser

RegExp

Figure 4.1: Workflow of the currypp tool. (This figure is mainly taken from [15].)

-- error monad

data PR a = OK a | Errors [PError]

data PError = PError Pos String

-- position

data Pos = Pos Filename Absolute Line Column

Listing 4.1: data type definition for Parser Monad

Several methods to access and modify an instance of the monad are provided.
To ensure that surrounding code starts at the same line as before the prepro-
cessing, each compiler has to provide a single line translation of the integrated
code. In case the original embedded expression was placed over more than one
line, the corresponding amount of newlines are inserted in order to keep the
structure of the surrounding code.

To extend the preprocessor, a simple interface has to be implemented:

parse :: Pos -> String -> IO (PM String)

The method parse takes the position of the chunk of integrated code and the
expression itself as a string and returns a parser monad of type string, which
contains either the result i.e., pure Curry code as a string, or a list of errors.
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4.2 erd2curry

The tool erd2curry, which is also available in all Curry implementations, was
introduced in [1]. It is aimed at translating entity-relationship-models (ER-
models), as they were discussed in [3], into Curry programs.
The graphical notation of an ER-model is given by an entity-relationship-
diagram, which consists of entities specified by a name, attributes and relations
to other entities, which are constrained by cardinalities. Figure 4.2 shows an
exemplary model of a university, which will be used in any further example in
this thesis.
To represent an ER-model in Curry the data type ERD is employed:

data ERD = ERD String [Entity] [Relationship]

data Entity = Entity String [Attribute]

data Attribute = Attribute String Domain Key Null

data Key = NoKey | PKey | Unique

type Null = Bool

data Domain = IntDom (Maybe Int)

| FloatDom (Maybe Float)

| CharDom (Maybe Char)

| StringDom (Maybe String)

| BoolDom (Maybe Bool)

| DateDom (Maybe ClockTime)

| KeyDom String

| UserDefined String (Maybe String)

data Relationship = Relationship String [REnd]

data REnd = REnd String String Cardinality

data Cardinality = Exactly Int

| Between Int MaxValue

data MaxValue = Max Int | Infinite

The mapping with the information given in the diagram should be straightfor-
ward. A relationship is given by its bidirectional name and its two ends, which
are represented by the name of the entity, the unidirectional relation name and
the cardinality which is either a range or an exact number. Attributes consist
of a name, a domain, a flag whether they are a primary key, no key or unique
and another flag indicating whether they can be set to NULL or not.
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However, the translation finally performed by the erd2curry tool is a little
bit more subtle. It is split into three steps. The first one consists of the direct
transformation of the diagram into the ERD data type introduced in the listing
above. The result is stored in a file named <model name> ERDT.term. The
tool can be called directly with a model represented as an ERD term (in this
case this first step will be omitted) or with the XML-representation as pro-
duced by the Umbrello UML Modeller (note, that this last option is no longer
actively supported).
The second step is the one which is important for the later described CDBI
library as well as for the tools developed in this thesis, so it is explained in
more detail. The aim is to modify the model in a way, that it can be directly
mapped to the finally needed database tables including their columns (i.e., the
relations and attributes in a relational model). In case of entities it is a simple
process: each entity represents a table, its attributes represent the columns
and an additional integer value is added as primary key to provide a unique
access scheme.
Relationships have to be translated in a different way depending on their car-
dinality. The following relationships have to be considered:

• (1,1):(0,1)-relationship: a foreign key column is introduced into the
second entity, referencing the key of the first entity, null-values are not
allowed, the new attribute has to be Unique

• (0,1):(0,1)-relationship: a foreign key column is introduced into the
second entity, referencing the key of the first entity, null-values are al-
lowed, the new attribute has to be Unique

• (0,1):(1,n)-relationship, (n > 1): a foreign key column is introduced
into the second entity, referencing the key of the first entity, null-values
are allowed

• (1,1):(0,n)-relationship, (n > 1): a foreign key column is introduced
into the second entity, referencing the key of the first entity, null-values
are not allowed

• (0,m):(0,n)-relationship, (m,n > 1): a new entity is introduced
containing two foreign key columns which are referencing the keys of
both participating entities, the relationship itself is replaced by two new
(1,1):(0,n)-relationships

Relationships with a minimum of more than 0 on both sides are not supported.
To clarify this procedure listing 4.2 shows a partial result for the ER-diagram in
figure 4.2. While the entity Result is modified by the (0,n):(1,1)-relationships
”Taking” and ”Resulting”, the (0,m):(0,n)-relationship ”Participation” is trans-
lated into a new entity and two new relationships replacing the old one.

25



4. Curry-Tools 4.2. erd2curry

Entity "Result"

[Attribute "Key" (IntDom Nothing) PKey False ,

Attribute "Attempt" (IntDom Nothing) NoKey False ,

Attribute "Grade" (FloatDom Nothing) NoKey True ,

Attribute "Points" (IntDom Nothing) NoKey True ,

Attribute "StudentTakingKey"

(KeyDom "Student")

NoKey

False ,

Attribute "ExamResultingKey"

(KeyDom "Exam")

NoKey

False]

Entity "Participation"

[Attribute "StudentParticipationKey"

(KeyDom "Student")

PKey

False ,

Attribute "LectureParticipationKey"

(KeyDom "Lecture")

PKey

False]

Relationship ""

[REnd "Student" [] (Exactly 1),

REnd "Participation" "participates"

(Between 0 Infinite)],

Relationship ""

[REnd "Lecture" [] (Exactly 1),

REnd "Participation" "participated_by"

(Between 0 Infinite )]

Listing 4.2: exemplary translation by erd2curry

It is important to notice that the added attributes are always named according
to the same pattern: <referenced entity><relationship name>”Key”.
Another detail important to mention is that the relationships themselves stay
part of the ERD-term even after the successful translation (except the replaced
m-to-n relationships).
The third step performed by erd2curry is the generation of Curry code as
used by the former database library [8]. Thus, this step is unessential for this
thesis and will be omitted.
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4.3 CDBI

CDBI, Curry Database Interface, was developed in [16]. It provides the access
to an SQLite3-database via library functions. Despite the fact that all data is
stored as strings at the database level, the interface assures type safety to the
programmer.
Just as the approach in [8], CDBI is based on the erd2curry tool and thus,
on a data model provided as an ER model. But while the former approach
makes use of dynamic predicates as explained in Chapter 1, the recent library
generates its own data types from the ERD-representation.

Calls to library functions are internally translated into an SQL statement,
which is then executed on an SQLite3 database instance. At the highest level
the following operations on database tables are currently available:

• selection of complete rows of one or more tables (using cross joins) with
conditions and Order-by clause

• insertion of new rows

• update of one or more columns of a special row (identified by its key) or
several rows (selected by a given condition)

• deletion of rows identified by a condition

• execution of statements using a transaction including an automatic roll-
back in case of an error

Since it is based on the erd2curry tool, the interface does not provide any
operations to modify the data model.
All data types necessary to use the interface with any database in particular
are generated by parsing the ERD term that was issued by erd2curry.
The project is organized in the following modules:

• CDBI.ER: main module, provides the high-level operations mentioned
above

• CDBI.Criteria: provides data types and functions to express conditions

• CDBI.Connection: low-level module organizing the connection to the
database

• CDBI.Description: contains the definition of data types that have to
be generated for each entity in the used model

• ERD2CDBI: translation module: takes a transformed ERD-term and gen-
erates all needed data types according to the format given by the De-

scription-module; additionally sets up the database
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Translation of ERD-terms

The translation performed by the ERD2CDBI-module ignores the relationships
in an ERD-term and only considers the entities. Each entity is lifted to a
data type assembled by the types of its columns. For each such data type an
EntityDescription is generated, whose general declaration is shown below.

data EntityDescription a = ED String

[SQLType]

(a -> [SQLValue ])

([ SQLValue] -> a)

An EntityDescription contains the name of the entity, a list of column types
and two conversion functions. The type SQLValue is a disjunction of all types
that can appear as column types according to ERD-terms except the user-
defined type which is not supported. SQLType serves as an identifier to express
which data type the user expects. Both are used for a proper type-string-
conversion, that has to be performed when reading from or writing to the
database. The first conversion function is used for preparing an entity for
writing-operations, the second one generates an entity out of the data read
from the database. Columns that can contain null-values have to be translated
with a Maybe type at this stage.
An example for the entity Student is given in Listing 4.3.

data Student = Student StudentID

Int

String

String

String

(Maybe Int)

data StudentID = StudentID Int

studentDescription :: EntityDescription Student

studentDescription =

ED "Student"

[SQLTypeInt , SQLTypeInt , SQLTypeString ,

SQLTypeString , SQLTypeString , SQLTypeInt]

(\( Student (StudentID key) matNum name firstName email age)

-> [SQLInt key , SQLInt matNum , SQLString name ,

SQLString firstName , SQLString email ,

(sqlIntOrNull age)])

(\[ SQLInt key , SQLInt matNum , SQLString name ,

SQLString firstName , SQLString email , age] ->

Student (StudentID key) matNum name

firstName email (intOrNothing age))

Listing 4.3: generated data for Student entity

Additionally every column is translated applying the pattern:

<entity name >"Column"<column name > :: Column a
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where a is the column type. The data type Column a provides the name of
the column and the table for a later translation to SQL.
All generated data is saved in a file named CDBI<name of ERD>.curry.

Type safety

When working with complete entities, the data types introduced in the last
section already provide good type safety. Nevertheless, this requirement has to
be assured in a different way when expressing conditions e.g., the comparison of
a constant value with a column of a certain type. For instance, the constraint
Age > 18 is represented in CDBI as:

((col studentColumnAge) .>. (int 18))

The constructor function for the greater-than operation is defined by

(.>.) :: Value a -> Value a -> Constraint

Thus, type safety is ensured as both, column and constant value, have to be
of type Value a.

data Value a = Val SQLValue | Col (Column a) Int

The integer value is used for renaming.
Type safe constructor functions are provided for columns and all types of
constant values :

col :: Column a -> Value a

colNum :: Column a -> Int -> Value a

int :: Int -> Value Int

string ...

Internally all operators are converted to type CValue, to avoid that constraints
themselves have to be parameterized:

type CValue = Value ()

data Constraint

= IsNull CValue

| IsNotNull CValue

| BinaryRel RelOp CValue CValue

| ...

More details can be found in [16] and in Chapter 7 where the extensions to
the interface are described.

Formulating queries

To demonstrate the use of CDBI, an example is given corresponding to the
SQL request

Select * From Student Where Age > 18 Order By name Desc;
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i.e., the selection of all students who are older than 18 ordered by their names
in descending alphabetical order.

example :: IO (Result [Student ])

example = do

conn <- connectSQLite "Uni.db"

result <- getEntries studentDescription

(Criteria

((col studentColumnAge) .>. (int 18))

[descOrder studentColumnName ]) conn

return result

As can be seen the result is encapsulated by:
type Result a = Either Error a

which also allows the return of specific errors (described by data type Error)
instead of the result. Return type
type DBAction a = Connection -> IO (Result a)

is assigned to all operations at the highest level to enable a monadic combi-
nation of several requests. Connection provides access to the database via a
Handle.
To enforce a cross join of two or more tables their descriptions have to be
combined:

data CombinedDescription a =

CD [(Table , Int , [SQLType ])]

([ SQLValue] -> a)

(a -> [[ SQLValue ]])

The structure and functionality is similar to the one of EntityDescription.
As an example we join the tables Student and Result using the corresponding
constructor function:

combineDescriptions :: EntityDescription a ->

Int ->

EntityDescription b ->

Int ->

(a -> b -> c) ->

(c -> (a, b)) ->

CombinedDescription c

studentResultCD =

combineDescriptions studentDescription 0

resultDescription 0

(\e1 e2 -> (e1,e2))

id

Other kinds of joins are not yet supported.

We end this section with a closer look at the condition. It is mainly described
by the type

data Criteria = Criteria Constraint [Option]
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where the list of options represents the Order-by clause and Constraint is a
data type representing all operations for conditions discussed in chapter 3. An
exemplary constraint was already described in the last section.

4.4 AbstractCurry

AbstractCurry is a library for meta-programming in Curry. It provides func-
tions and data types to define Curry expressions dynamically by another Curry
program. The use of the library functions prevents simple errors like a forgot-
ten parenthesis which easily occur when building up a program by the concate-
nation of strings. A pretty printing function for each part of an abstract Curry
program is also provided. This is especially important since Curry applies the
same layout rule as known from Haskell, so that the correct indentation is
crucial. The pretty printing is based on a linear-time algorithm proposed in
[4] so that it is also faster than pure string concatenation.
As compilers, by definition, have high requirements on the syntactical correct-
ness of the output program, the AbstractCurry libraries were applied for the
code generation. The ERD2CDBI-module presented in the last section was also
rewritten now using these libraries.
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Figure 4.2: entity-relationship-diagram of a university
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Chapter 5

Compiler

Generally said, compilers, also called translators, are programs that translate
programs written in the one programming language into another language.
This chapter outlines the structure, the essential parts and data structures of
a compiler and takes a closer look at the theory behind some of the properties.
The translation can be divided into the following phases:

1. lexical analysis

2. syntactic analysis

3. semantic analysis

4. intermediate code generation

5. optimization

6. code generation

In case of the compiler developed in this thesis stages 4 and 5 were not neces-
sary and therefore omitted.
Stages 1-4 are known as the front end of the compiler and are independent of
the target language, stage 5 and 6 form the back end.
A basic knowledge about different types of grammars and their annotation is
assumed in the following sections and thus, just the most important terms are
recalled.
All definitions and explanation in this chapter are based on [7] and [14].
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5.1 Scanner

The lexical analysis is performed by the part of the compiler named scanner.
Its input is a list of characters (or more general a string), which is processed
character by character and finally transformed into a list of tokens. Tokens
are data terms representing the main components of a programming language
as identifiers, operators, keywords and constants.
Scanners work on regular grammars, i.e., type 3 of the Chomsky hierarchy, so
that their rules can be described by a deterministic finite automaton (DFA).
Regular grammars are easy to understand and implement but quite limited in
their expressive power, so that a scanner is not able to recognize the syntax of
a program. Thus, normally no errors are thrown during lexical analysis, but
lexical errors are often tried to recover.

5.2 Parser

The syntactic analysis is performed by a parser, which is based on a context-
free-grammar.

5.1 Definition (Context-free grammar)
A context-free grammar G is given by G = (N, T, S, P ) where

• T is a set of terminal symbols

• N is a set of non-terminals

• S ∈ N is the start symbol

• P is a set of production rules, that follow the pattern: A → β1...βn ,
where A ∈ N, βi ∈ (N ∪ T ), n ≥ 0 and β1...βn is called a sentential form.

Taking the list of token as input, an abstract syntax tree (AST) is generated
as output.
Two approaches in parser design are distinguished: bottom-up- and top-down-
parser. The latter one is applied for the developed compiler, so it will be
described in more detail.

Abstract Syntax Tree

An abstract syntax tree is a data structure generated during the parsing stage
and used in all subsequent stages of the compilation process. Each stage is
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not only allowed to read, but also to modify and extend the AST. Thus, the
syntax tree can also present semantic information of the program.
Furthermore, as the name indicates, the syntax is presented in an abstract
way, i.e., information that was important for the syntactic analysis, but is not
for the semantic analysis, can be omitted.

Recursive Descent LL(1) Parser

Recursive descent parsers are the basic form of the top-down-approach, in-
dicating the process of recursively adding child nodes (descendants) to the
current node of the AST by applying grammatical rules. The term LL(1) de-
notes left-to-right parsing using left most derivation and 1-symbol look ahead.
To enable LL(1) parsing, i.e., to ensure that 1-symbol look ahead is sufficient
to choose the correct rule, the grammar has to satisfy some requirements. To
formulate them we need the following definitions:

5.2 Definition (Start)
For w ∈ T ∗ and a context-free grammar G = (N, T, S, P )

start(w) =

{
w if | w |< 1

u if w = uv and | u |= 1

is called start of w and indicates the first terminal symbol of the word w or w
itself, in case it is the empty word ε.

5.3 Definition (First set)
Let G = (N, T, S, P ) be a context-free grammar and α ∈ (N ∪ T )∗ a sentence.
Then the first set of α, i.e., all initial terminal symbols of sentential forms
derived from α, are given by:

First(α) = {start(w) | α −→∗ w ∈ T ∗}

5.4 Definition (Follow set)
Let G = (N, T, S, P ) be a context-free grammar and A ∈ N . Then the Follow
set of A, i.e., the set of terminals that can follow A in a sentential form, is
defined by:

Follow(A) = {w ∈ T | S −→∗ uAv and w ∈ First(v)}

Finally a constructive definition for the LL(1)-property can be given.

5.5 Definition (LL(1))
Let G = (N, T, S, P ) be a context-free grammar, A −→ β, A −→ γ ∈ P ,
β 6= γ.
G is LL(1)
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1. in case ε /∈ First(β): if First(β) ∩ First(γ) = ∅

2. in case ε ∈ First(β): if Follow(A) ∩ First(γ) = ∅

This definition directly implies that a LL(1)-grammar always has to be unam-
biguous and without left-recursion. Such a grammar is given for the supported
subset of SQL in appendix C.

Semantic Actions

Semantic actions are performed during the construction of the syntax tree. The
concept is based on the idea that each node has a semantic meaning, which can
be composed by processing the other nodes in the syntax tree. Accordingly
two kinds of semantic attributes can be distinguished:

• synthesized attributes: nodes consume information from their child-
nodes and provide it to their parent-node

• inherited attributes: nodes consume information from their parent-node
and their left-siblings, and provide it to their child-nodes and right-sibling

Error management

Error management is very important to develop user-friendly compilers. There
are two kinds of strategies: error repair and error recovery. While the former
tries to modify the already parsed or the still unparsed input the latter one
simply sets the parser to a later position of the input to continue the parsing
process. Neither of these alternatives is immune to produce even more errors
by correcting or skipping one. With both methods detailed error messages
have to be returned.
LL(1)-parsers are very suitable for a good error management cause the token
that can follow or replace an erroneous one is necessarily given by the grammar.
It is a good practice to limit the error management during syntactic analysis
to syntactic errors and leave the semantic issues to later stages. This is for two
reasons. The first one is to maintain the modular structure of the compiler.
The second one is to save resources, i.e., the next stage of the compiler is just
initiated in case the former one was free of errors. In detail: after an erroneous
syntactic analysis the compilation is aborted. Thus, no semantic errors caused
by an already reported syntactic error are thrown.
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5.3 Semantic Analysis

This stage is working on the AST constructed by the parser. What exactly
is done during the semantic analysis depends on the source language and the
requirements. Typical tasks are type checking and verification of declarations.

Symbol table

A symbol table is another data structure that can be read and modified dur-
ing various stages of the front end except lexical analysis. It is presented here
because its most extensive use will be made during the semantic analysis. The
symbol table saves information which cannot be efficiently provided by the
AST.
Symbol tables bind names to any type of attributes that are important for
the compilation process, e.g., data types or in case of SQL also pseudonyms.
Those names and attributes are normally referenced and declared in different
parts of the program, which is why an AST is not suitable for this type of
information.
A symbol table is usually implemented by a data structure that provides effi-
cient access to key-value-pairs. Furthermore, it has to be able to model a scope
concept w.r.t. the visibility of names applied by most programming languages.

5.4 Code generation

After a successful semantic analysis the AST is assumed to contain any infor-
mation needed for the translation. The complexity and the requirements for
this stage surely heavily depend on the target language. The organisation of
memory at runtime and the allocation of registers are just some examples of
tasks that can be performed at this stage. The final output is the program in
the target language.
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Chapter 6

Concept and Specification

The fundamental idea of this thesis is to provide a possibility to integrate
SQL statements directly into Curry programs as shown in the following two
examples of a Select statement and an Update statement with embedded
Curry expression:

select :: SQLResult [(String , (Maybe Float ))])

select =

do

result <- ‘‘sql Select Distinct s.Name , r.Grade

From Student As s, Result As r

Where Satisfies s has_a r

And r.Grade < 2.0;’’

return result

update :: String -> Int -> IO (SQLResult ())

update mail age =

‘‘sql Update Student

Set Email = {mail}, Age = {age}

Where (Name like "M%" And Firstname like "A%");’’

The itemization below lists briefly the most important requirements for this
integration. Details are explained in the remainder of this chapter.

• No loss of type safety: An SQL statement does not provide any
type information and all data is stored as string values at the database
level. However, when integrating SQL into Curry, each value has to be
represented by the correct type inside the Curry program. In addition,
it should not be allowed to compare different types, e.g., an integer value
to a string column, in conditions. Furthermore, insertion and update of
entities and columns have to be restricted to the correct argument types.

• Prevent later compilation or runtime errors: SQL statements al-
ways refer to a certain data model. It has to be assured that tables and
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columns referenced in the statement are defined in the model. Further-
more, the syntax of the statement has to be checked before execution to
detect possible errors at an early stage. Special effort has to be made
regarding the usage of null-values and key columns.

• Support the functional logic programming style: Specialized func-
tions provided by the CDBI library can also be used as an SQL statement,
e.g., an update function for complete entities, which is explained below.

• Using a standard SQL notation for a high grade of usability:
The query language can be used in its pure format. There is no need to
study the use of library functions or any additional syntax.

• Offer a high abstraction level regarding foreign keys: This re-
quirement needs a more profound explanation which is provided further
below.

As seen in chapter 1 the preprocessing approach is a suitable method to achieve
all of these goals. The integrated SQL statement has to be translated into type-
safe (CDBI) library functions before the compilation of the complete Curry
program. During the translation process, types and consistency with the data
model have to be checked as far as possible so that the majority of errors is
already found during preprocessing the file and not just during the compilation
of the generated code. This reduces the amount of time and effort spent for
failed compilation attempts. Meaningful error messages are to be generated.
An error recovery management has to be applied to reach a high degree of
usability. Warnings are to be emitted in any situation that can easily lead
to an error, for instance, differing notation of data model elements or missing
type information.
The integration is to be based on ER-models. Thus, the data model has to
be processed beforehand in order to provide all information needed for the
mentioned analysis concerning types and consistency to the preprocessor.

The CDBI library provides some functions which are motivated by the func-
tional logic programming style, e.g., an update function which allows to pass
a complete entity (i.e., an instance of the data type) instead of assignments.
The corresponding row is then fetched by its key, all changed values are up-
dated and the entity is inserted again. It is desirable that the applied SQL
dialect understood by the preprocessor supports such functionality as well. An
example is shown below:

updEntity :: Student -> IO (SQLResult ())

updEntity student = ‘‘sql Update Student Set {student};’’

Furthermore, the integration of expressions of Curry code into the SQL state-
ment ought to be possible at least for constant values and complete entities,
as can be seen above. This allows the use of parameters and enables a more
dynamic programming. Even more dynamic queries that permit, e.g., to pass
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a complete condition clause as a string parameter, are not possible due to the
preprocessor’s architecture. Passing complete condition clauses as Curry ex-
pressions will not be implemented in this version of the preprocessor. It would
be possible to support this feature in later versions, but we will also see in
later chapters that the use of embedded expressions hampers the realization
of type errors during preprocessing.

To avoid additional learning effort and confusion due to uncommon notation,
a very common format of SQL is to be implemented. The applied dialect is
mainly influenced by SQLite, which presents a quite relaxed handling of nota-
tion issues. However, for the implemented compiler an intermediate interpre-
tation has to be chosen with safety and usability in mind. In detail: Keywords
have to be completely case-insensitive. Names and pseudonyms have to be
case-insensitive, but a warning is to be generated in case the notation differs
from the original notation given in the referenced data model. In addition, the
use of pseudonyms should be optional as long as column names are unambigu-
ous.
For the sake of usability, redundant writing effort has to be prevented. There-
fore the applied dialect ought to support abbreviatory notations for the insert
statement, i.e., leaving out null-values and also key values which are auto in-
crementing.
Furthermore, the following transactional statements are to be provided: Begin,
Commit, Rollback and InTransaction, a counterpart to the CDBI-function
runInTransaction, which automatically invokes a Rollback in case of error
and a Commit otherwise.
A concatenation of several statements should also be possible. In this case the
result of the last one is to be returned.

A supplemental facilitation will be provided by an abstraction of foreign keys
which allows to completely avoid the reference of the corresponding columns
without influencing the expressive power. Instead of formulating complicated
constraints using automatically generated foreign key columns, it is then pos-
sible to use relationship names that were defined in the ER-model by the user
himself.
A review of the entity-relationship-diagram introduced in figure 4.2 clari-
fies why this is especially desirable when working with Curry and the tool
erd2curry. Figure 6.1 shows the n-to-1 relationship between Student and
Result. As we have already seen earlier, the foreign key columns are auto-
matically generated and inserted by the erd2curry-tool, always following the
same naming pattern. Thus, in this case a foreign key column called Stu-

dentTakingKey would be inserted into the Result entity. To connect both
entities in a query written in SQL (e.g., to formulate a join condition), it is
necessary to reference this generated column, forcing the user to gain a certain
knowledge about the internal procedures of the applied tool. The abstraction
proposed by this thesis aims at making use of the elements the user already has
defined in his data model instead of forcing him to use additional ones. The
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Student Result

MatNum
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Points(1,1)

(0..n)
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Figure 6.1: Relationship between Student and Result
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MatNum
Name
Firstname
Email
Age

Lecture

Title
Topic(0..n)

(0..n)Participation

+participated

+participated_by

Figure 6.2: m-to-n-relationship between Student and Lecture

presented approach exploits the given relationship names, in this case has -

a or belongs to, and introduces the new keyword Satisfies to formulate
corresponding conditions. Instead of the former query using foreign keys:

Select * From Student As s

Inner Join Result As r

On s.Key = r.StudentTakingKey;

the user is now free to write one of the following:

Select * From Student As s

Inner Join Result As r

On Satisfies s has_a r;

Select * From Student As s

Inner Join Result As r

On Satisfies r belongs_to s;

which is also more intuitive. Note that the constraint requires the unidirec-
tional relationship name and that the order of first entity, relationship and
second entity has to be correct and cannot be altered.
The abstraction is an even greater relief regarding m-to-n relationships, whose
translation results in automatically generated auxiliary entities. Figure 6.2
shows the relationship Participation between Student and Lecture. As
seen before it is lifted to an additional entity containing two foreign keys which
subsequently have to be used to connect Student and Lecture in SQL queries:

Select s.*
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From Student As s, Lecture As l

Where Exists

(Select * From Participation As p

Where s.Key = p.StudentParticipationKey

And l.Key = p.LectureParticipationKey );

The proposed abstraction allows to replace the Exists constraint using one
of the three connecting relationship names since all of them can be seen as
bidirectional:

... Where Satisfies s participated l;

... Where Satisfies l participated_by s;

... Where Satisfies s Participation l;

... Where Satisfies l Participation s;

The introduced Satisfies constraint can be placed wherever foreign keys can
be used, i.e., beside join conditions and Where clauses as shown above, in
Having clauses and Case expressions. Of course usual foreign key expressions
also have to be supported and understood by the preprocessor.

To meet the requirements of type safety and a common SQL dialect, the CDBI
library has to be extended in several points, too. The next chapter explains
the implementation details of these enhancements. Chapter 8 describes the
implementation of the compiler. Its integration into the preprocessor currypp
is outlined in chapter 9.
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Chapter 7

CDBI-Enhancements

To provide the scope of a common SQL dialect in a type safe way as outlined
in the last chapter, it is necessary to extend the CDBI libraries. The required
enhancements can be divided into four main parts:

• ensure type safety regarding keys and foreign keys in conditions

• define the auto increment property for primary keys

• provide the possibility to formulate more complex Select statements, in
particular, to select single columns

• improve usability in connection with the preprocessor

A main requirement for all enhancements is to maintain the type safety and
to keep the traffic low, i.e., to load as little data as possible into the program
(in fact just the data that was requested). In addition, the interface to the
user is to be enhanced, but not completely changed, so that all extensions can
be used intuitively in case the user is already familiar with the first version of
CDBI.
This chapter describes the implementation of the above points in more detail.
Keep in mind that all enhancements are made with regard to their use in
combination with the later presented compiler.

7.1 Type safety regarding keys

Keys and foreign keys, although described by their own ID-types inside an
entity definition, are represented as integer columns when used in conditions.
That allows to compare a (foreign) key column with any integer column:
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conn <- connectSQLite "Uni.db"

result <- getEntries resultDescription

(Criteria

((col resultColumnStudentTakingKey)

.=. (col resultColumnPoints )))

conn

This is obviously an absurd request but therefore demonstrates the possible
abuse of foreign keys quite well. However, it can be easily avoided by assigning
an appropriate and unique type to each key.
The infix operator .=. is defined as constructor function for the equal-
operation to ensure that just values and columns of the same type are com-
pared (as well as the other infix operators). Hence, to avoid that (foreign)
key columns can be compared to any integer column, it is necessary to declare
(foreign) key columns with their own ID-type as it is already done in the en-
tity declaration. Accordingly the type of column StudentTakingKey in table
Result has to be changed as follows:

-- former declaration

resultColumnStudentTakingKey :: Column Int

-- changed declaration

resultColumnStudentTakingKey :: Column (StudentID)

data StudentID = StudentID Int

Now the above request results in a type error, because an integer column cannot
be compared to a column of type StudentID. However, with this restriction
we also hamper the comparison of key columns and constant values. Thus, for
each ID-type a corresponding function has to be defined dynamically which
makes use of the newly defined function idVal:

idVal :: Int -> Value _

idVal i = Val (SQLInt i)

studentID :: StudentID -> Value StudentID

studentID (StudentID key) = idVal key

Using these functions constraints like the following are possible:

(between (col studentColumnKey)

(studentID (StudentID 1))

(studentID (StudentID 4)))

which corresponds to the SQL constraint

Student.Key Between 1 And 4

As can be seen, the idVal-function can easily be abused to declare an integer
value as any type that can be expressed by an SQLValue. To avoid such
a usage the function must not be exported by the module interface finally
provided to the user, but only to the generated module containing the data
declarations representing the data model. This module finally exports the
generated constructor functions as e.g., studentID.
All the changes have to be implemented in the ERD2CDBI-module as this is
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where the type declarations of the data model are generated. Only the idVal-
function is defined in the Criteria-module.

7.2 Auto incrementing keys

As a further requirement the manual modification of keys is to be minimized.
The current version of the libraries allows the insertion of arbitrary key values,
which could provoke errors at runtime, e.g., in case a key value is not unique.
At the library level this problem can be solved by defining all primary keys
as auto incrementing and modifying the insertion function in order to support
this feature.
As seen in chapter 4, the primary key of each entity was added during the
transformation process by the erd2curry-tool. Thus, its modification by the
user should also be inhibited as far as possible. The use of the auto increment
property avoids the insertion of arbitrary key values, instead the currently
highest value is fetched and incremented by one.
Using sqlite, this property has to be invoked by declaring each key as integer
primary key during the database creation process and set the key value to null
when inserting a new entity.
While the first part is achieved by another minor change to the ERD2CDBI-
module, the second part demands a modification of the conversion function in
each EntityDescription. The following shows the corresponding function for
the entity Lecturer:

--inserting given key values

(\( Lecturer (LecturerID key) name firstname) ->

[SQLInt key , SQLString name , SQLString firstname ])

--using auto incremented keys:

(\( Lecturer _ name firstname) ->

[SQLNull , SQLString name , SQLString firstname ])

The values given by the entity are prepared for insertion by converting them
to an instance of type SQLValue. The parameter for the key column is now
ignored and replaced by SQLNull.
A problem arises from a particular update function provided by CDBI. When
passing an entity to this function, the corresponding database row is fetched
(identified by its key), changed and inserted again - using the same key. To keep
this functionality, each EntityDescription has to provide both conversion
functions defined above. Thus, the type declaration of EntityDescription

has to be changed as follows:

data EntityDescription a = ED String

[SQLType]

(a -> [SQLValue ])

--for insertion

(a -> [SQLValue ])
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([ SQLValue] -> a)

The same functionality is available for CombinedDescriptions. Thus, the
corresponding add-on was made here as well:

data CombinedDescription a = CD [(Table , Int , [SQLType ])]

([ SQLValue] -> a)

(a -> [[ SQLValue ]])

--for insertion

(a -> [[ SQLValue ]])

Accordingly, the constructor function combineDescriptions was adjusted to
match the changed definition.

7.3 Complex Select statements

So far the library just allows the selection of complete table rows specified
by a condition and an Order-by clause. To provide more complex Select

statements, the library is extended with data types and functions to express:

• the selection of single columns, i.e., the project operation as specified
in the relational model

• a Group-by clause and a Having clause

• aggregation functions Sum, Avg, Count, Max, Min

• set operations Union, Intersect, Except

• an Inner Join operation

• the specifiers Distinct and All

• a Limit clause

This section first explains the implementation of the project operation. Fur-
ther below, the remaining operations are introduced, arising problems with
the existing data types are demonstrated and solved. Finally, we define new
functions for the selection of different numbers of columns from an arbitrary
number of tables which provide the possibility to use all operations described
above.

To implement the selection of single columns the data type ColumnDescrip-

tion was introduced:

data ColumnDescription a = ColDesc String

SQLType

(a -> SQLValue)

(SQLValue -> a)
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It is in structure and functionality equivalent to EntityDescription providing
the complete column name, the expected type and two conversion functions
for insertion and selection respectively. The definition of the Description-
type for each individual column is also generated by the ERD2CDBI-module.
An example is given below for the key column of table Lecturer:

lecturerKeyColDesc :: ColumnDescription LecturerID

lecturerKeyColDesc =

ColDesc "\" Lecturer \".\" Key\""

SQLTypeInt

(\( LecturerID key) -> (SQLInt key))

(\( SQLInt key) -> (LecturerID key))

Besides a column name, SQL allows a case expression and the use of aggrega-
tion functions in the Select clause, i.e., the part of the statement following the
Select keyword. To express all three options in Curry, we define the following
data type:

data ColumnSingleCollection a =

ResultColumnDescription (ColumnDescription a)

Int

String

| Case Condition (CValue , CValue) (CaseVal a)

It can represent either a column given by its ColumnDescription, an alias as
integer value and an aggregation function, which can also be the identity, or
a Case expression. The latter is composed of a condition, a tuple of values
(for the then-branch and for the else-branch respectively) and an instance of
the data type CaseVal, which consists of the SQLType and the corresponding
conversion function. Note that both branches in the Case expression have to
be of the same type, which is ensured by the exported constructor function:

caseThen :: Condition ->

Value a ->

Value a ->

(CaseVal a) ->

ColumnSingleCollection a

The data type CaseVal was introduced to ensure that an SQLType is combined
with the correct conversion function and is defined as follows:

type CaseVal a = (SQLType , (SQLValue -> a))

The definition itself is not exported but a constructor for each valid combina-
tion, e.g., for type string:

caseResultString :: CaseVal String

caseResultString = (SQLTypeString , getStringValue)

getStringValue :: SQLValue -> String

getStringValue (SQLString str) = str

Now we can express the SQL projection:

Case When Student.Age < 20 Then "Young" Else "Old" End
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in Curry:

caseThen (condition (lessThan (colNum studentColumnAge 0)

(int 20)))

(string "Young")

(string "Old")

caseResultString ))

The constructor function for the ColumnSingleCollection has to ensure the
correct result type when using an aggregation function. For instance, applying
the function Count on a column of arbitrary type, the result type always has
to be an integer value. Therefore the constructor function count returns a
tuple of a string (representing name and specifier) and a ColumnDescription

for a pseudo integer column:

singleCol :: ColumnDescription a ->

Int ->

(ColumnDescription a -> Fun b) ->

ColumnSingleCollection b

type Fun a = (String , ColumnDescription a)

count :: Specifier -> ColumnDescription _ -> Fun Int

Based on the ColumnSingleCollection, we define data types that represent
up to five columns, which are at least tuples, triple etc. of ColumnSingleCol-
lection all accessible via corresponding constructor functions and called ac-
cordingly ColumnTupleCollection etc. Thus, the projection on two columns
with aggregation:

... Student.Name , Count(Result.Points )...

can be expressed in Curry as follows:

tupleCol (singleCol studentNameColDesc 0 none)

(singleCol resultPointsColDesc 0 (count All))

The next step is to provide data types for the remaining operations. For
specifiers, set operations and joins this is straightforward:

data Specifier = Distinct | All

data SetOp = Union | Intersect | Except

data Join = Cross

| Inner Constraint

However, an enhancement by set operators leads to a problem with the former
definition of the Criteria data type:

data Criteria = Criteria Constraint [Option]

As the condition clause is explicitly connected with the Order-by clause, the
definition contradicts the overall structure of a Select statement shown in
listing 7.1.
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selectStatement ::= selectHead { setOperator selectHead }

[ orderByClause ]

[ limitClause ]

selectHead ::= selectClause fromClause [ WHERE condition ]

[ groupByClause [ havingClause ]]

Listing 7.1: structure of Select statement in EBNF

Thus, it was changed to:

data Criteria = Criteria Constraint (Maybe GroupBy)

The list of options representing the Order-by clause was completely removed,
because it has to be ensured that an Order-by clause as well as the Limit

term can only appear once in the whole statement, while a Group-by clause
is allowed to appear in each single selectHead. I.e., we want to allow the
following query:

(Select s.Name From Student As s

Union

Select l.Name From Lecturer As l)

Order By s.Name Limit 5;

However, queries as the one below have to be excluded:

(Select s.Name From Student As s

Order By s.Name Limit 5)

Union

(Select l.Name From Lecturer As l

Order By l.name Limit 2);

This query is syntactically incorrect but was allowed by the former definition
of the Criteria datatype.
To change this, the Order-by clause and the Limit clause were moved to
every single selection function provided by the main module. For instance, the
signature of the function getColumn, selecting one single column, is given by:

getColumn :: [SetOp] -> --set operation

[SingleColumnSelect a] -> -- contains

-- Group -by

[Option] -> -- order -by -clause

Maybe Int -> -- limit -clause

DBAction [a]

The type SingleColumnSelect corresponds to the selectHead in listing 7.1
and thus, contains amongst others condition, Group-by and Having clause.
This is explained in more detail further below. As a list of SingleColumnSe-
lects is allowed, these parts of the statement can appear several times. The
list of Option, representing the Order-by clause, and the integer value, repre-
senting the Limit clause, can just appear once.
This structure allows to express only the first, correct statement given above:
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getColumn [Union]

[SingleCS All

(singleCol studentNameColDesc 0 none)

(TC studentTable 0 Nothing)

(Criteria None Nothing) ,

SingleCS All

(singleCol lecturerNameColDesc 0 none)

(TC lecturerTable 0 Nothing)

(Criteria None Nothing )]

[ascOrder (lecturerColumnFirstname 0)]

(Just 3))

Before explaining the data types to represent a selectHead for different num-
bers of columns, we take a closer look at the definition of a Group-by clause:

data GroupBy = GroupBy CValue GroupByTail

data GroupByTail = Having Condition

| GBT CValue GroupByTail

| NoHave

data Condition = Con Constraint

| Fun String Specifier Constraint

| HAnd [Condition]

| HOr [Condition]

| Neg Condition

The data type GroupBy contains the first column the result is grouped by. The
type GroupByTail recursively defines further columns, a Having condition or
just no tail at all. To support aggregation functions in the Having clause a
separate condition type is defined, which internally uses the Constraint type
also applied in the Where clause.
The aggregation functions inside the Having clause have to be implemented
using different data types than those we have already seen in the last section.
While there is no need for type conversion, it still has to be ensured that both
parts of the condition, which can be column, aggregation result or constant
value have suitable types. The functions Sum and Avg can just be applied on
numerical column types and Avg always has to be compared to a floating point
number, while Count always generates an integer value. This is achieved by
constructor functions like the following one for the average of integer columns:

avgIntCol :: Specifier ->

Value Int ->

Value Float ->

(Value () -> Value () -> Constraint) ->

Condition

avgIntCol spec c v op =

(Fun "Avg" spec (op (toCValue c) (toCValue v)))
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Parameter op can be any binary operator defined in the CDBI.Criteria-
module. This way, already implemented functionality can be reused and the
same level of type safety is guaranteed. Similar functions for the rest of sup-
ported aggregations are shown in appendix B. Using the implemented func-
tions, it is now possible to express the following example in Curry:

... Group By Student.Name

Having Avg(Result.Points) > 80.0 ...

groupBy (colNum studentColumnName 0)

(having (condition

(avgIntCol All

(colNum resultColumnPoints 0)

(float 80.0)

greaterThan )))

The last step necessary to provide complex Select statements in a uniform
and manageable way is a data structure to describe the selectHead. The type
SingleColumnSelect used above is defined as follows:

data SingleColumnSelect a =

SingleCS Specifier

(ColumnSingleCollection a)

TableClause

Criteria

data TableClause = TC Table Int (Maybe (Join ,TableClause ))

As the selectHead demands, it includes specifier, columns or Case expressions,
tables and joins and Where clause inclusive Group-by clause and Having clause.
For the selection of two, three, four and five columns corresponding types are
provided.
The data type TableClause was defined to ensure that at least one table is
specified and that the appropriate number of joins is given in case of two or
more tables. Its structure is kept close to the SQL grammar (see appendix C).
Finally, selection functions similar to the getColumn-function shown above are
defined for each supported number of columns.

All data types and functions for the description of complex Select statements
are defined in the new CDBI.QueryTypes-module. Only the new selection func-
tions are part of the main module and the ColumnDescription type is defined
in CDBI.Description. An overview of all additionally exported functions and
types can be found in appendix B. More complex examples, which make use
of the presented extensions are given in appendix D.

Despite of all the extensions made to the interface there are still some limita-
tions for the formulation of Select queries:

• the selection is limited to five columns from an arbitrary number of tables
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• the combination of ∗ and set operators is not supported

• the subquery inside the Exists constraint is limited to the selection of all
columns (∗) of exactly one table without Order-by clause, Limit clause
and set operators.

• Case expressions do not allow key values in neither of their branches

7.4 The executable erd2cdbi

The first version of the module ERD2CDBI generated data types needed for the
use of the library by parsing a given ERD term. Furthermore, a new, empty
database was set up, every time the main function of the module was applied.
The following extensions and changes were made to this module:

• a separate information file for the parser is generated containing proper-
ties of the data model

• the creation of the database is optional to enable working with existent
databases

Furthermore, erd2cdbi became a stand-alone executable and is now part of
the Curry distributions.

The information about the data model that is needed during the parsing pro-
cess has to be in a different format than the one for the library. The data
structure applied for this task is not part of the tool itself and is therefore
described in the next chapter. Nevertheless, it has been decided to include
the generation of the parser information into the erd2cdbi-tool to avoid an
additional step for the user. This approach also prevents consistency problems
because the use of the same ERD term in both transformations is ensured.

The extensions require some additional parameters for the invocation of the
tool. Beside the path to the .term-file which contains the ERD term, it is
necessary to pass the absolute path to the database. As the creation of the
database is now optional, the option ’-db’ has to be used to invoke it. Of course
there is a risk of using a database that doesn‘t correspond to the applied data
model and thus, leads to runtime errors. However, the possibility of working
on existent databases, e.g., shared ones or databases that were created with
the former dynamic-predicate-approach, weights much more.
To give an example, the call

erd2cdbi "Uni_ERDT.term" "~/Uni.db" -db

produces three output files:
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• the file Uni CDBI.curry (formerly CDBIUni.curry) contains the data
types for the libraries with all changes discussed above

• the file Uni SQLCode.info contains the information about the data model
readable for the compiler

• an empty database Uni.db created according to the given ERD term (noth-
ing was changed here) in the home directory

More details about the installation and usage of erd2cdbi can be found in
appendix A.
For the generation of the parser information file it is important to mention that
the part of the ERD-term specifying the relationships is no longer skipped,
but parsed to provide information about the type of each relationship. The
concrete structure used for the info file is described in chapter 8.2.

7.5 Modifications to CDBI.Connection

The following two small modifications/extensions were just made to facilitate
the use of the library especially in connection with the preprocessor.
First, Result, the result type of requests defined in the CDBI.Connection-
module was renamed to SQLResult:
type SQLResult a = Either DBError a

to prevent a collision with a potential type called Result, which is frequently
used in different situation as e.g., in our exemplary data model. For the same
reason Error was renamed to DBError.
As an extension the function runWithDB was defined. Taking the path to
the database and the query as DBAction, it returns the result as usual as IO

(SQLResult a), making use of the always same structure required to pass a
query to the database:

runWithDB :: String -> DBAction a -> IO (SQLResult a)

runWithDB dbname dbaction = do

conn <- connectSQLite dbname

result <- dbaction conn

disconnect conn

return result

This function will be used for the translation of all types of embedded SQL
statements. Thus, it provides a unique interface and guarantees the always
same return type IO (SQLResult a) for an embedded SQL statement.
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Chapter 8

SQL-Curry-Translation

This chapter discusses the implementation of the SQL-Curry-compiler. The
first section roughly outlines the structure of the project. The second section
explains the implementation details of each compiler module.

8.1 Structure

For the preprocessing of SQL statements the tool currypp, presented in chap-
ter 4, has to be extended by a compiler for SQL. To meet all requirements
w.r.t. type safety and functional scope outlined in chapter 6, the CDBI library
and the erd2cdbi tool were extended as described in the previous chapter. In
particular, the tool was enhanced by the generation of the parser information
file, which is needed during the compilation process. Figure 8.1 shows the
interaction of the different parts of the project. Light blue components rep-
resent existing parts and generated files of the preprocessor currypp. Purple
components depict the extended CDBI project. The red coloured components,
the SQL compiler and the information file, were developed in this thesis and
are explained in detail in this chapter.

The developed compiler for SQL statements into Curry code is designed modu-
larly, following the structure presented in chapter 5. Below the specific function
of each stage is explained briefly, outlining the complete parsing process. A
graphical overview of the compiler structure is given in figure 8.2.

SQLConverter

The SQLConverter implements the interface for the preprocessor and thus,
represents the main module of the compiler and organizes the compilation
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Figure 8.1: Integration of the SQL compiler into currypp

process. All phases are called in the correct order. In case of errors at a
certain stage, the process is aborted, so that no time is wasted on a statement
that is already marked as erroneous.
Furthermore, the module provides a function to read the parser information
file, which contains the following information about the data model:

• the path to the corresponding database and the name of the module
containing the CDBI data types for the corresponding data model

• the kind of relationship for each relation identified by its name and the
names of the involved entities

• for each column name a flag whether null values are allowed or not

• for each table name its original notation and all column names

• the type for each column name

Functions to interpret this information are implemented in a separate module
called SQLParserInfoType.
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SQLScanner

This module executes the lexical analysis, i.e., it translates the string repre-
senting the SQL statement into a list of token which were especially defined for
the supported subset of SQL statements and are defined in the module SQL-

Token. No errors are thrown at this stage. Characters that are not supported,
are marked as such, but still passed to the next stage.

SQLParser

The parser module converts the list of token into an abstract syntax tree -
SQLAst, which is defined for the supported subset of SQL. This AST is a
specialized structure that can contain for each node all information needed
in subsequent stages particularly in the last translation stage. The following
phases complete the information in each node.
The parser implements the syntactical analysis, hence, errors are only thrown
in case the grammatical rules were not followed. An error recovery manage-
ment is applied, so that the parsing process is not necessarily stopped in case
of a broken rule. Internally the parsing procedures make use of the monadic
data types defined in the SQLParserTypes-module.

SQLNamer

The module SQLNamer represents the first stage of the semantic analysis. With
the help of a specialized symbol table the pseudonyms for data tables are
resolved and replaced by the full table name. Exploiting this process, references
for each table are counted and the numerical alias used in CDBI functions is
set for each table and column reference accordingly.
Errors are thrown in case a table pseudonym cannot be resolved. This happens
in case the pseudonym was defined but not used, the pseudonym was defined
for more than one table, in case of typing errors or if the pseudonym was not
defined or is not visible.
Warnings are generated for pseudonyms that are used in different notations
within the same query.

SQLConsistency

This module performs the consistency check, i.e., all referenced table, column
and relationship names have to be part of the data model. Special effort is
made to prepare Insert statements for the later translation. As this type of
statements can contain several optional parts, as e.g., a list of columns and
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left-out null-values, its usage has to be checked very carefully. The mentioned
optional parts are added to the statement to provide complete information and
a uniform structure to subsequent stages. Details and examples can be found
in the next section.
Furthermore, this module ensures that the later explained foreign key state-
ment is just used in Select statements, but not in conditions for Update and
Delete statements as this would result in an undefined relationship.
Moreover, it is ensured that null-values are not used in conditions instead of
the predefined functions Is Null and Not Null as this is generally forbidden
by the SQL standard and therefore an consistency issue.
Errors are thrown in case one of the above transformations can not be applied
or one of the mentioned conditions is not complied. Warnings are generated
if the notation of tables, columns or relationships differs from the notation in
the data model.

SQLTyper

This module provides a first basic level of type safety. Types can be checked
in all expressions with at least one column reference and for constant values.
Thus, type errors are already thrown during preprocessing and not just during
the compilation of the resulting file. Regarding embedded expressions of Curry
code inside the SQL statement, type safety can not be guaranteed at this stage,
instead the type is deduced from contextual information and a warning is gen-
erated. The comparison of two embedded expressions is not allowed because
no contextual information about the type of the expressions is available.
Furthermore, it is ensured that key columns cannot be updated and that null
values are not used in branches of case expressions as this would generate type
errors later on.

SQLTranslator

The final stage of the preprocessing is the translation of the AST into Curry
code. The only errors thrown during this phase are due to limitations of
CDBI (presented in section 7.3). As maybe those limitations will be eliminated
in later versions of CDBI, the design of the compiler allows to reduce the
dependence on the interface to this last module.
Another limitation is indicated by the translator module: the selection of
complete tables (i.e., all columns of a table) is limited for now to a maximum
of three tables. A higher number of tables is supported by the CDBI library
and the translator can be easily extended in case a higher number is found to
be necessary.

The presented modular structure can be enhanced by further modules, which
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Figure 8.2: Structure of the implemented SQL compiler

can also be placed in between the existing ones. However, it is not allowed to
skip one of the above modules or to rearrange their ordering, because nearly
each stage is dependent on the information processed by former ones.

8.2 Implementation

This section describes the implementation of the SQL compiler devoting a
subsection to each module that was introduced above. We start with an addi-
tional section to specify the terms used in the following explanations, followed
by another one describing how to provide information about the data model
to the compiler.
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8.2.1 Notation

To avoid confusion, some terms used in the subsequent sections have to be
clarified.
In the following ”preprocessor” always refers to the currypp tool. ”Compiler”
describes the implemented project as a whole, while each single module is re-
ferred to by its name (this includes the ”translator”).
Parts of the Select statement are often referred to by the names used to spec-
ify the grammar that can be found in appendix C.
The term ”parser information” is used for an instance of the data type Parser-
Info explained in the next section, not for the file which is primarily passed
to the compiler. The latter is always referenced to explicitly as a file.
Furthermore, we have to distinguish ”embedded expressions” which refers to an
SQL statement as a whole and ”embedded Curry expressions” that describes
a term of Curry inside an SQL statement.

8.2.2 Information about the data model

To implement the consistency and type check in later phases all required infor-
mation about the used data model has to be fetched from the corresponding
ERD term. As this implies that the information differs completely depending
on which data model and therefore which database is used, a possibility to
provide this information dynamically for each call of the preprocessor is re-
quired. That is achieved by generating a file named ERDName SQLCode.info

(applying the erd2cdbi-tool), which is then passed to the compiler. Thus, a
specified format is needed to provide the information in a (machine-)readable
way. The following data type definition is applied for this task:

data ParserInfo =

PInfo (String , String)

RelationTypes

NullableFlags

AttributeLists

AttributeTypes

The first component is a pair of strings. The first one specifies the absolute
path to the database and is later used to build up a connection. The second
string is the name of the CDBI module containing the corresponding data
types used by the interface. This is required by the AbstractCurry-libraries
as they demand qualified names for function calls and types.
The second component is a type synonym for a list, mapping each relationship
to its type. A relationship is specified by a triple containing name of the first
entity, unidirectional name of the relationship and name of the second entity:

type RelationTypes = [(( String , String , String),

RelationType )]
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Figure 8.3: Relationship between Student and Result

The data type RelationType is defined as follows:

data RelationType = MtoN String

| NtoOne String

| OnetoN String

The string parameter identifies the bidirectional name of the relation which is
used for the denomination of the foreign key column by erd2curry and thus,
also by CDBI. To clarify this, figure 8.3 shows a small part of the ER-diagram
already introduced in chapter 4.2. For the shown relationship the following
tuples will be included into the parser information:

...

(("Student", "has_a", "Result"), (OnetoN "Taking")),

(("Result", "belongs_to", "Student"), (NtoOne "Taking")),

...

Accordingly the column that is inserted into the table Result by erd2curry

is called studentTakingKey. With the help of the different constructors e.g.,
OnetoN and NtoOne it is explicitly defined which entity was extended with the
foreign key. This is an important requirement for the abstraction of foreign
key constraints.
Since an m-to-n-relationship as shown in figure 8.4 has no direction by defini-
tion, four tuples are generated, which can be used interchangeably:

...

(("Student", "participates", "Lecture"),

(MtoN "Participation")),

(("Student", "participation", "Lecture"),

(MtoN "Participation")),

(("Lecture", "participated_by","Student"),

(MtoN "Participation")),

(("Lecture", "participation", "Student"),

(MtoN "Participation")) ,...

Examining the declaration of RelationType more in detail, one might notice
that not exactly the same categorization of relationships is made as done by
erd2curry. This has an easy explanation: At the preprocessing level there is
no need to distinguish between foreign key columns that allow null values and
those that do not, as this is already handled by the underlying functions of the
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Figure 8.4: m-to-n-Relationship between Student and Lecture

CDBI library. Furthermore, as done by erd2curry before, cyclic relationships
are also excluded by the erd2cdbi generation tool.

Returning to the data type ParserInfo, there are three more components to
explain. The next one is also a list of tuples, which maps each column name
to a boolean flag which declares if this column can contain null values or not.

type NullableFlags = [(String , Bool)]

The fourth component maps each table name, completely written in lower-
case, to a tuple containing the original notation of the table name and a list
of the corresponding column names.

type AttributeLists = [(String ,(String , [String ]))]

The final list of tuples maps each column name to its type, which is also given
as a string.

type AttributeTypes = [(String , String )]

The type of (foreign) key columns is specified as the name of the referenced
table, e.g.:

("resultStudentTakingKey", "Student")

For a simpler access to the information, the module SQLParserInfoType was
defined, which beside the above data definition contains functions, that return
each part of the ParserInfo-type (except the database name and the name
of the CDBI module) as a FiniteMap (FM). Since a relationship is definitely
defined only by the combination of all three names (two entity names and the
relationship name), a nested FiniteMap structure was chosen for this part of
the information and a fast access is provided via an adapted lookup function.
Finally the following interface to the ParserInfo type is implemented by the
SQLParserInfoType module:

dbName :: ParserInfo -> String

cdbiModule :: ParserInfo -> String

getRelations :: ParserInfo -> RelationFM

getNullables :: ParserInfo -> NullableFM

getAttrList :: ParserInfo -> AttributesFM

getTypes :: ParserInfo -> AttrTypeFM

lookupRel :: (String , String , String) ->
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RelationFM ->

Maybe (RelationType , String)

type NullableFM = FM String Bool

type AttributesFM = FM String (String , [String ])

type AttrTypeFM = FM String String

type RelationFM = FM String

(FM String

[(String , RelationType )])

The lookupRel-function returns the original notation of the relationship and
its type as a tuple.

8.2.3 SQLConverter

As the main module the SQLConverter implements the interface to the pre-
processor, i.e., provides a function:

parse :: Pos -> String -> IO (PM String)

For the compilation of SQL statements an additional parameter for the parser
information is required, so that the signature is extended to:

parse :: Either String ParserInfo ->

Pos ->

String ->

IO (PM String)

Instead of the successfully read parser information an error message can also
be passed e.g., in case the file could not be found.
The SQLConverter calls each of the subsequent modules with the correspond-
ing part of the information, i.e., the AttrTypeFM is passed to the type checker,
the path to the database to the translation module and the remaining compo-
nents to the consistency check.
The result returned from each stage is checked for errors before the next stage
is called. If the former one returned without errors, the next compilation phase
is invoked, otherwise the process is aborted.
Furthermore, the module provides the read function for the parser information
file:

readParserInfo :: String -> IO (Either String ParserInfo)

which for a given file name returns an instance of the ParserInfo type or an
error message. It is called by the preprocessor before the compiler is invoked
for any statement in particular to avoid that the same file is read several times.
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8.2.4 Lexical Analysis

The SQLScanner module was implemented straight forward following the ex-
planation in chapter 5. The exported function

scan :: String -> [Token]

reads the string parameter character by character and transforms it into a list
of Token, defined in the corresponding module. The DFA in figure 8.5 depicts
the behaviour of this function. The module also provides a toString-function
that is used for the creation of error messages during the following syntactic
analysis.
Constant values are already separated into the supported data types: Int,
Float, Bool, Date, Char and String. It is important to mention that the
notation of string constants is not changed. Embedded Curry expressions
have to be surrounded by {} to be noticed as such, the value between the
curly brackets is not altered during preprocessing.
The only token that needs closer examination is the one for the keyword TABLE.
As DDL statements are not supported, there is actually no use for it. However,
in later phases ”table” is used internally as default alias for tables that no
pseudonym is defined for, so it has to be prohibited as intended alias. This
is achieved by the token for TABLE. While all other pseudonyms are read as
string constant (and not even noticed to be a pseudonym) occurrences of the
string ”table” will be replaced by the corresponding token and thus, can be
treated differently in later stages.

8.2.5 Syntactic Analysis

The syntactic analysis is based on the grammar given in appendix C, which
satisfies the LL(1) property defined in chapter 5. Thus, the recursive descent
technique is applied to perform this stage of the compilation process, which is
implemented in the SQLParser-module.

SQLAst

To parse the list of token and return the statement as an abstract syntax tree a
corresponding tree data structure was defined in the module SQLAst. The data
type is kept close to the grammar but was extended with information needed
in subsequent phases. To give some examples, we will have a closer look at the
nodes for a column reference, for tables and for the newly introduced foreign
key constraint.

data ColumnRef = Column Tab String Type Bool Int

data Tab = Unique String | Def [String]

data Type = I | B | F | C | S | D
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| Key String

| Entity String

| Unknown

data Table = Table String String Int

data Condition = FK (String ,Int) AbsRel (String ,Int)

| ...

The node representing a column reference provides the following information:
the table, which is given by a child node explained below, its name, its type, a
flag to indicate whether it can contain null-values and an integer value, which
represents the numerical alias used for calls to CDBI functions (CDBI-alias
in the following). Note that not all parameters are set during the syntactic
analysis. As we have no information about the type, the nullable property
or the correct CDBI-alias at this stage, these arguments are for now set to
their default values as there are: Unknown, False and 0 respectively. In case a
pseudonym is given for the column a Unique-instance is created for the Tab-
node, the string value is set to the pseudonym for now and is replaced in later
phases by the table name. If no pseudonym is given, a default instance is
created which at this stage just contains an empty list and is later replaced
by a list of all table names no alias was defined for, before it can finally be
replaced by a Unique-instance.
The data type for column types (and also for embedded expressions) can ei-
ther be one of the basic types given in the last section, a primary or foreign
key (carrying the referenced table as a string argument), an entity type (also
carrying the corresponding table name) or a default value used to indicate that
the type is not yet known.

The table node provides two fields of type string, the first one for the name,
the second one for the alias defined or the default alias ”table”. The integer
argument saves the CDBI-alias.

The foreign key constraint is just one alternative of a condition node. It is
given by two tuples representing the tables/entities by a name or pseudonym
and an integer value which is used for the CDBI-alias later on. The data type
AbsRel is similar to the definition of RelationType given in section 8.2.2 with
the only difference that a constructor for a default value is provided (NotSpec
String), because at this stage we have no information about the type, but
just the name of the relationship.

A sequence of statements is represented as a list of independent abstract syntax
trees.

To provide a graphical example, the syntax tree of the following Select state-
ment is shown in figure 8.6.
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Figure 8.6: examplary AST for Select statement

Select s.Name , r.Grade , Count( Distinct r.Grade)

From Student As s Inner Join Result As r On

Satisfies s has_a r

Group By s.Name

Having Count(Distinct r.Grade) > 1;

SQLParserTypes

The syntactic analysis is the first stage that makes extensive use of the monadic
structure PM defined in currypp and already introduced briefly in chapter 4.
A small extension was made to the corresponding modules ParseMonad and
ParseError with the functions:

combinePMs :: (a -> b -> c) -> PM a -> PM b -> PM c

combinePRs :: (a -> b -> c) -> PR a -> PR b -> PR c

combinePMs corresponds to a combination of the lift and the bind function of
the ParseMonad if both PMs contain a result:

combinePMs ’ f p1 p2 =

bindPM (liftPM f p1) (\g -> (liftPM g p2))

Just in case that both monads contain errors the new function keeps the errors
of both PMs instead of ignoring the second one. This behaviour is important
for a good error management.
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For the parsing of SQL statements the ParseMonad was further encapsulated
by the type SPM defined in the SQLParserTypes-module:

data SPM a = SPM Pos (PM a) [Token]

It consists of the position of the integrated code needed to generate errors, the
current result or errors as PM and the remaining list of tokens to parse. The
empty counterpart is given by:

data EmptySPM = ESPM Pos [Token]

By combining both to a function, a data type was defined, which allows to pass
the list of token top-down, while the resulting abstract syntax tree is finally
constructed bottom up:

type SPMParser a = EmptySPM -> SPM a

An extensive interface is provided for this type including functions like

-- returns flag whether the list of token is empty or not

hasToken :: EmptySPM -> Bool

-- returns first token - partially defined

headToken :: EmptySPM -> Token

-- cuts first token if there is one

continue :: EmptySPM -> EmptySPM

to assure modularity and keep the parser independent of internal changes of
the SPM type.
Furthermore, we provide the following functions

-- return function of a SPMParser

initializeSPM :: a -> SPMParser a

liftSPM :: (a -> b) -> SPMParser a -> SPMParser b

bindSPM :: SPMParser a ->

(a -> SPMParser b) ->

SPMParser b

to enable the use as a monadic data structure.
The interface also provides terminal parsers and corresponding combinators:

terminal :: Token -> EmptySPM -> Either EmptySPM (SPM _)

(.∼>.) :: (EmptySPM -> Either EmptySPM (SPM a)) ->

SPMParser a ->

SPMParser a

(.<∼.) :: SPMParser a ->

(EmptySPM -> Either EmptySPM (SPM a)) ->

SPMParser a

Both combinators ignore the result of the terminal parser and return an Emp-

tySPM in case of success. The (. ∼> .) combinator does not even invoke the
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second parser if it failed, which is a useful behaviour. Ignoring a part of a
statement in case the leading keyword is missing or wrong, often prevents
from introducing subsequent errors and helps to reset the parser. Another
important combinator is given by:

combineSPMs :: (a -> b -> c) ->

SPMParser a ->

SPMParser b ->

SPMParser c

The function is used to join two child nodes and create the parent node. At
the same time it ensures that warnings as well as errors from both parsers are
joined and passed upwards. To achieve this it makes use of the above described
function combinePMs.

Error Management

An error recovery approach was implemented with the objective to parse as
many parts of a statement as possible despite of encountering errors and to
provide meaningful error messages for all errors that were found.
Thus, two functions for a parser to return with an error are defined. The first
one takes an error message as argument, the second one is predefined for an
unexpected empty list of token:

parseError :: String -> SPMParser _

emptyTkErr :: SPMParser _

Furthermore, the following functions serve to reset the parser. They drop
tokens from the list until either encountering the given token or one of the
tokens in the passed list respectively. The passed list of token is normally
the follow set of the parsed non-terminal. Both functions stop in case of a
semicolon.

proceedWith :: Token -> EmptySPM -> EmptySPM

proceedWithOneOf :: [Token] -> EmptySPM -> EmptySPM

An alternative terminal parser was defined which in case of an error continues
with the next token that is member of the passed list (follow set).

terminalOrProc :: Token ->

[Token] ->

EmptySPM ->

Either EmptySPM (SPM _)

As described above the (. ∼> .) operator and the combineSPMs function al-
ready provide the correct behaviour with respect to the error management.
The bind function still has to be modified to cope with the requirements. Its
previous definition would abort the process in case the first parser results in
an error as there is no value to pass to the second parser. Thus, it is necessary
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to provide a default value which can be passed instead and to bind the errors
to the result of the second parsing function.

bindDefSPM :: SPMParser a ->

a -> -- default result of first parser

(a -> SPMParser b) ->

[Token] -> --follow set of first parser

SPMParser b

In case of an error the second parsing function is invoked with the next token
which also appears in the passed follow set. The default element used instead
of an result is ignored when both parsing functions are combined afterwards.
The original bind function is also enhanced by a list of tokens representing the
follow set which is used to reset the parser in case of error:

bindSPM :: SPMParser a ->

(a -> SPMParser b) ->

[Token] ->

SPMParser b

With this set of functions it is now possible to parse an incorrect statement
nearly completely despite of the encountered errors and to collect all error
messages.

The Parsing Process

As we use a LL(1)-grammar, it is sufficient to check the next token to invoke
the correct subsequent parsing procedure in any situation. A corresponding
parsing function is provided for each deducible rule and has always the same
basic structure:

parseNT1 :: SPMParser NodeNT1

parseNT1 espm

| hasToken espm =

case headToken espm of

Token1 -> parseToken1Rule (continue espm)

Token2 -> initializeSPM NodeNT1 espm

.

.

_ -> parseError "message"

(proceedWith tok espm)

| otherwise = emptyTkErr espm

parseTokenNRule is a pseudonym for any combination of parsing functions.
This way the syntax tree is build bottom-up. Each parsing function generates
child nodes returning them to its caller. Thus, the syntax tree itself can finally
be seen as a synthesized semantic attribute.
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8.2.6 Semantic Analysis

The semantic analysis is divided into three phases: the resolution of pseudonyms,
the consistency check and the type check. All phases work on the abstract
syntax tree build by the parser and enhance the nodes representing columns,
tables or values with information which is finally needed for the translation
process.
The implementation details of each stage are explained below.

Namer and Symbol table

The resolution of table pseudonyms is implemented by the SQLNamer-module,
which makes use of a customized symbol table that is described initially.
For efficiency reasons the symbol table is based on the data type Finite Map

(FM) and has the following structure:

data Symboltable a b = ST ((FM String a),(FM String b))

(Maybe (Symboltable a b))

It combines two different Finite Maps and can contain another symbol table
itself to implement a scope concept. The symbol table used in the SQLNamer

is instantiated with parameter types as shown below

type AliasSymTab = Symboltable [(String ,String , Int)] Int

The first FM serves to map a pseudonym as string to a list of triples containing
the table name, the pseudonym in its original notation w.r.t. lower- and upper-
case letters and the numerical alias that is later used for the translation to
CDBI-functions. The second FM keeps track of how often a table name was
referenced in the same statement to compute the correct numerical alias and
thus, maps the table name to an integer value. Both key arguments are written
completely in lower case letters to support case insensitivity.

As it is the meaning of aliases to identify table names throughout a whole
statement, the latter FM must not support scopes and is just left unchanged
when entering or leaving a scope. The former FM needs to implement a scope
concept to properly translate Exists constraints. Consider the following state-
ment:

Select s.Name , l.Title

From Student As s

Where Exists (Select *

From Participation As p , Lecture As l

Where p.StudentParticipationKey = s.Key

And p.LectureParticipationKey = l.Key);

This query is invalid as the pseudonym l for the entity Lecture is not visible
outside of the Exists constraint. With a scope concept for the mapping of
pseudonyms to table names this error is easily realized because pseudonym l
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is mapped to entity Lecture in the inner scope of the Exists constraint, but
remains undefined when it is used in the Select clause of the outer scope.
At the same time, it is ensured that the pseudonym s for the Student entity
defined in the outer scope is visible in the inner scope too. Nevertheless,
another pseudonym s defined in the inner scope would overwrite the binding
to the Student entity as the following query demonstrates:

Select s.Name , r.Points

From Student As s, Result As r

Where s.Key = r.StudentTakingKey

And Exists (Select *

From Exam As s

Where r.ExamResultingKey = s.Key);

While the expression s.Key inside the Exists constraint refers to the Exam

table, the one used in the Where clause refers to the Student table.

Another important case to consider are compound Select statements. The
general naming process for a statement with two selectHeads 1 is illustrated
by figure 8.7. It is important to process every branch of the Select statement,
i.e., each selectHead, with a new symbol table as the bindings are totally
independent of each other.
In a first pass through the From clause all bindings are collected and inserted
into the symbol table. In detail: the current numerical alias is fetched from
the second FM and inserted into the first one together with the referenced
table name and the literal alias, using the notation given by the user. The
same literal alias in lower case notation is used as key. The numerical alias is
incremented and inserted again into the second FM.
The resulting symbol table is passed to all subsequent parts of the Select

statement except the Order-by clause, so that the pseudonyms replacing the
table names in front of column references can be resolved. The alias is looked
up in the first FM, which at this stage allows to check for different notations
and to throw an error in case the alias can not be matched with any table
name. The pseudonyms used in the foreign key constraint are replaced as
well. Finally the symbol tables of all branches are joined, overwriting identical
bindings with the latest value. This joined table is used to resolve pseudonyms
in the Order-by clause, which means that an alias that is used in this part has
to be unique in the complete statement.
The use of pseudonyms in SQL is optional as long as the column names are
unambiguous. Thus, the following query is totally correct:

Select Name , Points From Student , Result;

It selects the column ”Name” from the table Student and column ”Points”
from table Result. However, using the table names themselves to specify
column names is also possible:

Select Student.Name , Lecturer.Name From Student , Lecturer;

1see listing 7.1 for further explanation
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compound select
statement

selectHead selectHead

new symbol table

filled symbol tablefilled symbol table

fetch bindings fetch bindings

select-
clause

select-
clause

from-
clause

from-
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where-
clause

where-
clause

group-
by

group-
by

provide  bindings provide  bindings

new scope

joined symbol table

exists-
constraint

order-by-
clause

combine bindings

new symbol table

Figure 8.7: Naming process for a compound Select statement. Blue fields signify
parts of the Select statements, grey fields state of the symbol table.

Hence, it is necessary to treat table names without a pseudonym definition
differently. Since it is unknown at the moment of insertion into the symbol
table whether the table name is used in column references or not, it has to
be inserted twice with different keys: the table name itself and the default
alias ”table”. As explained earlier ”table” is not a valid alias when defined
explicitly so it can be used without any limitations for this purpose. This is
also the only occasion where additional bindings for an already existing alias
are allowed. This results in the following key - value pairs for the last example:

("table", [("Student", "table", 0),

("Lecturer", "table", 0)])

("student", [("Student", "Student" ,0)])

("lecturer", [("Lecturer", "Lecturer", 0)])

Since columns that are not specified by an alias are also marked with the
default ”table”, all table names that are available without an alias in the same
statement can be easily fetched from the symbol table and inserted into the
column node. Thus, the column reference Points in the above example would
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be represented by the following node before and after the naming stage:

-- before

Column (Def ["table"]) "Points" Unknown False 0

--after

Column (Def ["Student","Result"]) "Points" Unknown False 0

The numerical alias was also set, but stays 0 in this example. The remaining
two parameters still contain their default values and are set in subsequent
phases. Which table finally contains the column (if any) is checked during the
next stage.
The last example demonstrates the process in case an alias was defined and
clarifies how it is ensured that once defined, a pseudonym has to be used.
Consider the queries:

Select Name From Student As S;

Select s.Name From Student As S;

The following key-value pair is inserted into the symbol table for both queries:

("s", [("Student", "S", 0)])

However, in the first request the column node for ”Name” is marked with the
default alias and thus, can not be matched with the Student table. An error is
returned and the compilation process is aborted. In case of the second request,
the column node contains the correct alias, which is then replaced by the table
name:

--before

Column (Unique "s") "Name" Unknown False 0

--after

Column (Unique "Student") "Name" Unknown False 0

Another restriction that has to be guaranteed is the unambiguousness of table
names, i.e., queries as

Select Name , Name From Student Cross Join Student;

are not valid. This is ensured by restricting the insertion of identical pseudonyms
into the symbol table or rather, of identical table names into the list of tables
matched to the default alias. An error during the filling of the symbol table
leads to an immediate abortion of the compilation process.

Finally the correct numerical aliases have to be saved in the corresponding
table node to provide it to later phases. To demonstrate this, consider the
following query:

Select s1.name , s2.name From Student As s1 , student As s2

Where s1.age /= s2.age;

The table nodes after the naming stage are listed below.

Table "Student" "s1" 0

Table "student" "s2" 1
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The remaining statements Update, Delete and Insert can just contain one
single table without an alias, so all work to ensure the correct column - table
mapping for those statements is already done.

Consistency Check

To check the consistency with the data model, it is obviously necessary to make
extensive use of the passed parser information instance. The main function
of the consistency module extracts the data about nullable attributes, rela-
tionship types and the attribute lists, which is than passed to the subsequent
functions where needed.
It is important to distinguish two Finite Maps of type

FM String (String , [String ])

The first one is retrieved from the parser information file containing all ta-
ble names and corresponding column names of the data model. The second
one is build up at the beginning of the consistency check for each statement,
containing just the table names and corresponding column names that were
referenced so far in this particular statement. Therefore it is important that
in Select statements the From clause is treated before the other parts of the
statement, as well as the table reference in the remaining statement types.

In this section we will focus on the more complex issues of the consistency
check, which are the treatment of the foreign key constraint, the preparation
of Insert statements for further compilation and how a unique table affiliation
is found for columns that are still marked as default at the beginning of this
stage. The check of column and table names is a rather trivial task so that it
is not explained in more detail.

For a proper translation in later modules it is essential to infer the correct
relationship type for relations referenced in the foreign key constraints. This
can be done by a simple call to the lookupRel-function provided by the SQL-

ParserInfoType-module. To provide case insensitivity, first of all the correct
notation of both entity names has to be fetched from the created FM. Subse-
quently the relationship type is retrieved, checked for notation differences and
inserted into the condition node including the original notation of all elements.
The modification of the condition node is demonstrated with the following ex-
ample:

Select s.Name , r.Name From STUDENT As s, Result As r

Where Satisfies s has_a r;

Considering the above statement, this is the corresponding condition node
before and after the consistency stage:

--before

FK ("STUDENT", 0) (NotSpec "has_a") ("Result", 0)
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--after

FK ("Student", 0) (AOneToN "Taking") ("Result", 0)

Note that this transformation is a consistency issue and is not concerned with
the type check of the next stage since a wrong or non-existent relationship
(type) would result in an incorrect translation, not in a type error.

The Insert statement has to be checked and prepared very carefully to provide
later compilation errors. First of all, we recall the overall structure of an
Insert statement:

INSERT INTO tablename columnlist

VALUES valuelists;

The list of columns is optional if each given value list contains values for all
columns of the table. Furthermore, it is allowed to leave out null-values in the
value lists. Additionally, the SQL dialect implemented in this thesis allows to
skip the value for the key column because it is set automatically. These relaxed
grammatical rules can be a huge source of errors when applied incorrectly. The
process to detect those errors is explained considering the example below:

Insert Into Student (MatNum , Name , Firstname , Email)

Values (6828, "Krone", "Julia", "jkr@mail.de");

Note that we left out the key value and the value for column age, which is
allowed to be Null. Before the consistency check the statement is represented
by the following syntax tree:

Insert

(Table "Student" "table" 0)

[( Column (Unique "Student") "MatNum" Unknown False 0),

(Column (Unique "Student") "Name" Unknown False 0),

(Column (Unique "Student") "Firstname" Unknown False 0),

(Column (Unique "Student") "Email" Unknown False 0)]

[[( IntExp 6828) , (StringExp "Krone"),

(StringExp "Julia"), (StringExp "jkr@mail.de")]]

Initially the number of given values has to be equal to the number of columns.
If this requirement is fulfilled, the existence and notation of the column names
is checked. To prepare the statement for translation, null-values have to be
inserted where they are required. Therefore the list of columns given is com-
pared to the list of column names fetched from the parser information for the
corresponding table name. A list of integer values is generated indicating the
indices where null-values have to be inserted. In case a value is missing for a
column which cannot contain null-values, an error is thrown and the process
is aborted. Otherwise null-values and default key values are inserted and the
statement is finally checked completely to detect explicitly given null-values
in illegal positions. Afterwards the above syntax tree is completed as shown
below, now containing all column references with a set nullable-flag and an
explicit value for each column:
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Insert

(Table "Student" "table" 0)

[( Column (Unique "Student") "Key" Unknown False 0),

(Column (Unique "Student") "MatNum" Unknown False 0),

(Column (Unique "Student") "Name" Unknown False 0),

(Column (Unique "Student") "Firstname" Unknown False 0),

(Column (Unique "Student") "Email" Unknown False 0),

(Column (Unique "Student") "Age" Unknown True 0)]

[[( KeyExp "Student" 42), (IntExp 6828) ,

(StringExp "Krone"), (StringExp "Julia"),

(StringExp "jkr@mail.de"), AbsNull ]]

The last transformation that is to be described in this section, is the allocation
of an unique table reference to columns marked as default. Therefore we will
recall the above exemplary statement:

Select Name , Points From Student , Result;

and the resulting column nodes:

Column (Def ["Student","Result"]) "Points" Unknown False 0

Column (Def ["Student","Result"]) "Name" Unknown False 0

To determine which of the tables contains the corresponding column (if any),
the list of columns for each table is retrieved from the map built at the be-
ginning of this stage. All names of tables that contain the column name are
collected. In case more than one table name is obtained the column reference
is ambiguous and an error is returned. The statement is also erroneous if no
table name is obtained, because that means no appropriate table was refer-
enced. If exactly one table name is obtained, it is set as unique reference in
the corresponding column node:

-- data fetched from the parser information module

("result", ("Result",

["Key", "Attempt", "Grade", "Points",

"StudentTakingKey", "ExamResultingKey"]))

("student", ("Student",

["Key", "MatNum", "Name", "Firstname",

"Email", "Age"]))

-- changed column nodes

Column (Unique "Result") "Points" Unknown False 0

Column (Unique "Student") "Name" Unknown False 0

Note that the nullable-flag is not set in this case as the translation of columns
that can contain null-values does not differ from those that cannot in any
statement except the Insert statement.
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Type Check

This stage is divided into two sub-phases. In the first step the AST is enhanced
with type attributes retrieved from the parser information. The second phase
verifies the correct usage to prevent later type errors. The type information is
also very important for the code generation.

The first phase is a simple top-down tree-traversal. Each column node is
modified by the following function:

typColumnRef :: Pos ->

AttrTypeFM ->

ColumnRef ->

PM ColumnRef

The passed FM contains the type for every column name specified in the data
model. So the type can be retrieved and inserted into the column node, which
is then returned.

The core functionality of the second stage is given by the following three com-
parisons of different nodes:

• comparison of two values

• comparison of a value and a column

• comparison of two columns

When examining the definition of the value node:

data Value = Emb String Type

| IntExp Int

| KeyExp String Int --table name and value

| FloatExp Float

| StringExp String

| DateExp CalendarTime

| BoolExp Bool

| CharExp Char

| AbsNull

there stand out three instances which need special treatment: embedded Curry
expressions, key expressions (also key columns) and null-values.

If an embedded Curry expression is compared to a column, it is assumed to
have the same type as the column. Thus, its type attribute is set and a warning
is generated. There is no possibility to identify the type of the embedded
Curry expression definitely, it can just be inferred by contextual information
and demonstrates the limitations of a type check during preprocessing. As an
example we consider the following condition:
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... Where Student.Age < {x}...

x is an embedded Curry variable. So far the column and the embedded Curry
expression are represented by the following nodes respectively:

(Column (Unique "Student") "Age" I True 0)

(Emb "x" Unknown)

Although we have no further information about x, the type attribute will be
changed from Unknown to I, which represents an integer value.
As a consequence an embedded Curry expression cannot be compared to an-
other embedded Curry expression, since no contextual information is available.
Embedded Curry expressions can also appear in Update and Insert state-
ments representing complete entities. In this case the type is inferred from
the table name and a warning is generated as well. For instance, the Update

statement

Update Student Set {student };

is represented by the following simple abstract syntax tree after the type in-
ference:

UpdateEntity (Table "Student" "table" 0)

(Emb "student" (Entity "Student"))

In a comparison of two key columns both columns have to reference the same
table in order to be accepted. Note that key values are integer expressions up
to this stage, only when compared to a key column the contextual information
is used here too and the value is modified to represent a key expression. Each
key expression holds beside the actual value the referenced table name which
is used for the translation. This way there is no need to differentiate between
primary keys and foreign keys at the abstract syntax tree level. The condition
below gives an example:

... Where Student.Key = 1...

After the first phase of the type check, column and value are represented by
the following two nodes:

(Column (Unique "Student") "Key" (Key "Student") False 0)

(IntExpr 1)

After the second type checking phase the node representing the integer expres-
sion is replaced by:

(KeyExp "Student" 1)

Other constant values as e.g., floating point numbers, lead to an error.

Null values are not accepted at all in condition clauses and case expressions.
Their appearance always results in an error.

For all remaining value types the comparisons above return successfully in case
both expressions are of the same type and throw a type error otherwise.
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The description given so far works fine for conditions and case expressions.
However, the Insert and the Update statement require some additional treat-
ment.
First of all null-values are cause no problems in Insert statements once they
passed the consistency check, i.e., the comparison functions explained above
do not apply here. The same occurs with key expressions which were explicitly
set during the last stage.
In case of an Update statement a main requirement for the preprocessor was to
prevent the explicit manipulation of key columns. This can be easily achieved
at the type checking stage, i.e., a reference of a key column as part of an
assignment provokes an error.

The last expressions that need special attention are aggregation functions in
Select clauses as well as in Having clauses. In the former case it has to be
ensured that the functions Sum and Avg are only applied to numerical columns.
In the latter case the comparison value has to be checked too, i.e., it has to be
matched against a default floating-point value in case of the Avg-function and
against a default integer value in case of the Count function.

8.2.7 Code Generation

The last phase of the implemented SQL compiler is the code generation. This
section describes only the most important parts in detail, which are:

• the translation of the foreign key constraint

• using type information for a translation into type safe functions

• using the nullable-flag and type information for the translation of the
Insert statement

• the translation of transactional statements

The translation of the remaining statement parts uses the same techniques
as described below and thus, can be deduced from the given examples and
explanation.

Foreign Key Constraints

The main idea behind the foreign key abstraction was to use relationship names
instead of generated column names. As the underlying library does not sup-
port such an abstraction, the given relationship names have to be resolved
and replaced by corresponding foreign key columns. Beside the name of the
relation, the type of the relationship is an essential information as it implies in
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which entity the foreign key was inserted. With the help of this knowledge it
is finally possible to reconstruct the name of the foreign key and connect both
entities with an ordinary constraint using column names.
This process is demonstrated for the already known example:

Select s.Name , r.Points

From Student As s Inner Join Result As r

On Satisfies s has_a r;

At the beginning of the translation phase the constraint is represented by the
node:

FK ("Student", 0) (AOneToN "Taking") ("Result", 0)

As the relationship is of type 1-to-n in reading direction, it can be inferred
that the foreign key was inserted into the Result table. Following the naming
scheme, it is called: ”StudentTakingKey”. Applying additionally the naming
convention of CDBI the foreign key column has the name: resultColumnStu-
dentTakingKey. This results in the following translation:

Select s.Name , r.Points

From Student As s Inner Join Result As r

On s.Key = r.StudentTakingKey;

While the translation of n-to-1 relationships does only differ in the location of
the foreign key, m-to-n relationships are converted into an Exists constraint.
The second example demonstrates the differences:

Select s.Name , l.Title

From Student As s Inner Join Lecture As l

On Satisfies s participated l;

FK ("Student", 0) (AMToN "Participation") ("Lecture", 0)

In case of an m-to-n relationship the information given in the abstract syn-
tax tree already implies that an additional entity called ”Participation” was
created with two foreign keys namely ”StudentParticipationKey” and ”Lec-
tureParticipationKey”. So we reformulate the above query as follows:

Select s.Name , l.Title

From Student As s, Lecture As l

Where Exists (Select *

From Participation As p

Where p.StudentParticipationKey = s.Key

And p.LectureParticipationKey = l.Key);

The formulation of the Exists constraint in CDBI-functions is shown below:
(Exists participationTable 0

( And [((col participationColumnStudentParticipationKey)

.=. (colNum studentColumnKey 0)),

((col participationColumnLectureParticipationKey)

.=. (colNum lectureColumnKey 0))] ))
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Type-safe functions

As seen before, the type inference on embedded Curry expressions is a task
that can only be solved insufficiently during preprocessing. The requirements
of the translation stage now show the exigence of this inference.
Embedded Curry expressions are allowed in two situations: as complete entities
in Update and Insert statements and as constant values in assignments and
condition clauses. In the latter case the type of the expression was inferred
from the type of the column included in the same assignment or the same
condition. Since the functions of the CDBI interface provide definitive type
safety, each value or column that is part of a condition has to be converted
into the type Value a. A specific constructor function is provided for each
supported type, e.g.,

string :: String -> Value String

Thus, to provide a correct translation, the type information has to be used to
choose the adequate constructor function. For instance, the constraint

... Where Student.Age < {x}..

selects all students younger than the value of a dynamically passed variable x.
During the type checking, the type of x was set to I indicating an integer, as
this is the type of column Age. Thus, the following translation is generated:

... (( colNum studentColumnAge 0) .<. (int x))...

For constant values that were already matched with corresponding constructors
during the lexical analysis the translation is obvious:

... Where Student.Name = "Krone"...

-- node for the constant value:

(VarStr "Krone")

--translated to:

...(( colNum studentColumnName 0) .=. (string "Krone"))...

In case of complete entities the type was inferred from the given table name.
For instance, in

update1 :: Student -> IO ( SQLResult ())

update1 student = ‘‘sql Update Student Set {student};’’

the type of variable student is set to type (Entity "Student"), which is
finally needed to address the correct entity description:

update1 :: Student -> IO ( SQLResult ())

update1 student =

... updateEntry (student) studentDescription

Insert statement

The CDBI function which represents the Insert operation has the following
signature:
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saveEntry :: a -> EntityDescription a -> DBAction ()

Thus, the list of values given in an Insert statement has to be converted
into the corresponding entity type a. The nullable-flag which was set for all
columns referenced in Insert statements during the consistency check, is now
required for a proper translation. Consider the following statement:

Insert Into Student

Values (8,6828,"Julia","Krone","julia@mail.de" ,26);

As seen in the last section, the abstract syntax tree was already enhanced by
the information that the integer value 8 at the beginning has to be a key value
and that the integer value 26 at the end corresponds to the column Age, which
can contain null-values. The CDBI library uses Maybe types to cope with null-
values, so the information inferred during the semantic analysis is now used to
provide the translation below:

let entry = Student (StudentID 42)

6828

"Julia"

"Krone"

"julia@mail.de"

(Just 26)

in saveEntry entry studentDescription

Recall that the integer 42 is the default value for keys and replaced in any case
since the key columns are defined as auto incrementing.

Transactional statements

As the transactional statements Begin, Commit, and Rollback require no com-
plex syntactic nor semantic analysis, they were not mentioned up to this stage.
Nevertheless their translation differs from the rest of the statements as the cor-
responding CDBI-functions do not return an SQLResult, but simply an IO()-
type. Since there should be a unique interface to all translated statements
to facilitate the inclusion into larger programs, the translation enhances the
statement by an empty result:

--SQL -Transaction -Statement:

Commit

--Translation:

(\c -> (commit c) >> (return (Right ())))

where c is a Connection. Now the return type was changed to SQLResult(),
which also enables a concatenation with other statements.
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Putting it together

The translated SQL statement is finally passed to the runWithDB-function in-
troduced in chapter 7 together with the database path, which was fetched from
the parser information. A small example is given by the complete translation
of the above update statement:

update1 :: Student -> IO ( SQLResult ())

update1 student =

runWithDB

"Uni.db"

(updateEntry (student) studentDescription)

The layout of this example was changed to a more readable format.
More complex statements and their translation can be found in appendix D.

Another requirement for the translation is to hold the specification of currypp
concerning the layout. To ensure that error messages are assigned to the cor-
rect line, the layout of the complete file must not change due to preprocessing.
Thus, the translated code is not allowed to take more than a single line.
This requires a slight modification of the translation obtained by the pretty-
printing-function for AbstractCurry-expressions, which formats the code ac-
cording to the Curry layout rules. Line feed characters are replaced by a space
character and indentation is removed completely.

Statements in a sequence as well as statements in a transaction are connected
by the operator

(>+) :: DBAction a -> DBAction b -> DBAction b

(defined in the CDBI.Connection-module), which just returns the result of the
last statement and ignores the former ones.
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Integration into currypp

Finally the implemented compiler has to be integrated into the currypp exe-
cutable. As figure 8.1 shows, the project connects the preprocessor with the
CDBI library. Hence, the integration requires two modifications:

1. the parser information file has to be passed to the SQL compiler via the
preprocessor

2. a language tag for SQL has to be introduced

Thus, the main module of currypp was altered to support an additional ar-
gument indicating the name of the parser information file. It can be passed
using the following notation:

--model:<file name >

The parameter is optional, i.e., in case no SQL statement is included into the
preprocessed file it can be left out without causing any problems. However, in
case the argument is given the file has to exist and must contain an instance
of the data type ParserInfo, which was described in section 8.2.3. Otherwise
it is replaced by an empty string.
A complete and correct call to the currypp-tool with an input-file containing
SQL code is given by:

currypp org -filename

input -file

output -file

--foreigncode

--model:<file name >

The file name is passed as a string to the Translator-module of the currypp

project, where the read-function of the SQLConverter is called. It is important
to read the information file before the original program is separated into chunks
of integrated and pure Curry code. Otherwise the same file would be read
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several times, once for each SQL language tag, which is obviously inefficient.
The read parser information instance is then passed to the parse function
which represents the interface between the currypp-tool and the compiler and
is discussed in 8.2.3. This last step is also shown in the listing below.

The language tag ”sql” can be introduced by an easy extension of the function
parsers in the Translator-module:

parsers :: Maybe Langtag ->

Either String ParserInfo ->

LangParser

parsers = maybe iden pars

where

iden _ _ s = return $ cleanPM s

pars :: Langtag ->

Either String ParserInfo ->

LangParser

pars l model p =

case l of

"sql" -> case model of

Left err -> (\_ -> return $ throwPM

p

err)

_ -> SQLParser.parse model p

.

.

.

"regex" -> RegexParser.parse p

_ -> (\_ -> return $ throwPM

p

("Bad langtag: "++l))

In case the parsers-function is called with language tag ”sql” the parameter
for the parser information is checked and an error is thrown in case the file
contained the wrong data type. Otherwise the SQL-compiler is invoked. If the
.info file generated by the erd2cdbi tool (see 7.4) is used, there should be no
compatibility problems.
Note that the compiler is called for each SQL language tag separately. A single
tag can be followed by an arbitrary amount of SQL statements as long as they
are separated by semicolons.
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Chapter 10

Summary

An SQL compiler for the functional logic programming language Curry was
introduced, which serves as an extension for the preprocessor currypp pre-
sented in [15]. Furthermore, some enhancement for the database library CDBI
were implemented that improve the type safety and the expressive power re-
garding Select statements. Included into the preprocessor, the implemented
project provides the possibility to include SQL statements directly into a Curry
program. Thus, database queries can be written applying a concise and well-
known syntax, while at the same time type safety and a functional logic pro-
gramming style can be maintained.
In addition, the presented SQL dialect offers a new abstraction for foreign key
constraints making use of the relationships that were defined by the entity-
relationship-diagram. This abstraction can be a large facilitation to the user
as it avoids the reference of foreign key columns in SQL statements. Thus, a
deeper knowledge about the used generation tools, as e.g., erd2curry, is no
longer necessary.

Usability was an important requirement for the design of the implemented SQL
dialect, the compiler and the corresponding tools. Thus, a very common dialect
was implemented. Case-insensitivity is provided, but a basic safety level is still
kept by warning the user in case of differing notations. Furthermore, an error
recovery approach was implemented for the parsing stage and the modular
design of the compiler supports the detection of errors in early stages of the
preprocessing process (in particular before the compilation of the preprocessed
file). A supplemental option also enables the use of existent, maybe shared,
databases.

The compiler was tested with the data model of a university presented in chap-
ter 4. All kinds of supported statements could be processed with satisfactory
results. The supported part of the DML finally includes Select, Insert,

Delete, Update and transactional statements. The behaviour in case of er-
roneous queries was also tested extensively.
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With the presented functional range, the created database interface features
a good alternative to the currently used library applying dynamic predicates.
The underlying enhanced CDBI library reduces the traffic while providing
larger expressive power and type safety. Due to the preprocessor extension
even complex queries can now be written with concise SQL statements.
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Prospect

Although the presented database interface, composed by the SQL compiler
as part of the preprocessor, the CDBI library and the erd2cdbi-tool, already
provide a relatively large scope of operation, future work can highly improve
the project in both: safety and function volume.

As seen in chapter 8.2, the type inference on embedded Curry expressions
is currently based on contextual information. This can be a source of error,
which stays undetected until the compilation of the translated file. It would
be desirable to ensure complete type safety including embedded Curry expres-
sions already at the stage of preprocessing in later versions of the compiler.
Therefore it would be necessary to extend currypp, so that beside the chunk
of integrated code, also the type information is passed to the SQL compiler.
Obviously, this raises further questions, e.g., how the type information can be
obtained in case of local definitions, before it is computed by the type infer-
ence mechanism of the Curry system. The following example demonstrates
the problem:

func :: IO (SQLResult ())

func =

let name = callFuncToGetName

in ‘‘sql Delete From Student Where Name = {name};’’

An easy solution would be to demand the type information explicitly from the
user, which is undesirable. This approach reduces usability since it hampers
the inclusion of SQL expressions into Curry code as normal functions.
Once a satisfactory solution is found, it is possible to provide more dynamic
queries and allow e.g., complete condition clauses as embedded Curry expres-
sions, which would require extensions concerning the consistency check.

Another improvement could be the inclusion of the erd2curry transforma-
tion into erd2cdbi to reduce the actions necessary to invoke the tool. The
erd2cdbi tool should also be enhanced by a function which ensures the con-
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sistency of a given, already existent database with the applied data model.
This is even more important as providing the name of the wrong database to
the erd2cdbi-tool would not result in compilation but in run time errors.

Not least, the CDBI library is still expandable to support more SQL expres-
sions, the current limitations listed in chapter 7 have to be mentioned here.
The support of another database software could also be a useful enhancement
of the interface. Furthermore, [16] noted some more possible improvements
concerning the allowed types of values and the possible error kinds which were
not yet implemented. In this context a support of the user-defined type pro-
posed by erd2curry is also imaginable.
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Installation and Usage

This section explains the installation process and the usage of the preprocessor
for embedded SQL statements on a Linux machine. For Windows the process
might differ. An installed Curry compiler, preferably KiCS2, is assumed. It is
also possible to use PAKCS for the installation but this has currently a nega-
tive impact on the runtime of the compiler
First of all, the preprocessor has to be installed. The recent version containing
the extension for SQL is currently available here 1, but will be included in later
versions of both Curry implementations.
Since the translated version of SQL statements is dependent on the CDBI li-
brary, the tool erd2cdbi has to be installed too. Currently the source code can
be downloaded here 2, but the tool is also already included in PAKCS (version
1.13.1 or higher) and KiCS2 (version 0.4.1 or higher), so the installation of a
current version of the Curry implementation suffices.

Download the extended preprocessor version using the link given below.
To install the project from the source code, first change to the SqlCurryPP
directory. The Makefile is configured for the use of KiCS2. For the use of
PAKCS uncomment line 12 and comment line 13. Then run make.

Next change to your projects main directory and run erd2cdbi:

erd2cdbi <ERDName_ERDT.term >

<absolute path to the database/dbName.db >

[-db]

The first parameter represents the name of the file containing the ERD-term of
the data model in use. Make sure to use the transformed version of the ERD-
term as generated by erd2curry (see chapter 4.2). The second parameter has
to be the absolute path to the database in case it is already existent or to the
directory where to create it otherwise. In either case the name of the database

1https://git-ps.informatik.uni-kiel.de/theses/2015-jkr-ma/trees/master/SqlCurryPP
2https://git-ps.informatik.uni-kiel.de/theses/2015-jkr-ma/trees/master/erd2cdbi
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has to be given. The last parameter is optional, if provided, a new empty
database is created otherwise a database corresponding the given ERD-term
is expected in the specified directory and with the given name.

Two files will be created in the current directory. A curry-file with the name
ERDName CDBI.curry containing the data types for CDBI and a file named
ERDName SQLCode.info which contains the information needed during the
translation process.
Include the module ERDName CDBI.curry into the program you want to pre-
process. Note that it is also necessary to include the module CDBI.ER to use
the interface.
To translate the embedded expressions now run the preprocessor:

currypp <org -filename >

<input -file >

<output -file >

--foreigncode

--model:ERDName_SQLCode.info

The option --foreigncode invokes the translation process, the --model option
is followed by the .info-file that was created by erd2cdbi and specifies which
data model to use for the translation of SQL statements. In case the pre-
processing was successful the output file can now be used as any other Curry
module.

With the inclusion of compiler directives like the following one at the beginning
of the file containing embedded foreign code it is also possible to load the
program directly with PAKCS or KiCS2.

{-# OPTIONS_CYMAKE -F --pgmF=currypp

--optF=--foreigncode

--optF=--model:Uni_SQLCode.info #-}
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CDBI Extensions - Overview

This section lists all exported data types and functions that were changed
or added to the CDBI library ordered by modules. The original comments
are given for new data types and functions whereas for changed data just the
modified part is described.

Module CDBI.Description

--- Datatype representing columns for selection.

--- This datatype has to be distinguished from type Column

--- which is just for definition of conditions.

data ColumnDescription a = ColDesc String

SQLType

(a -> SQLValue)

(SQLValue -> a)

--- A second conversion function was inserted converting

--- the key value always to SQLNull to ensure

--- that keys are auto incrementing.

data EntityDescription a = ED String

[SQLType]

(a -> [SQLValue ])

--for insertion

(a -> [SQLValue ])

([ SQLValue] -> a)

--- A second conversion function was inserted converting

--- the key value always to SQLNull to ensure

--- that keys are auto incrementing.

data CombinedDescription a = CD [(Table , Int , [SQLType ])]

([ SQLValue] -> a)

(a -> [[ SQLValue ]])
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-- for insertion

(a -> [[ SQLValue ]])

Module CDBI.Criteria

--- Instead of a list of Options the Criteria type

--- does contain the group -by -clause now

data Criteria = Criteria Constraint (Maybe GroupBy)

--- specifier for queries

data Specifier = Distinct | All

--- data type to represent group -by statement

data GroupBy = GroupBy CValue GroupByTail

--- subtype for additional columns or

--- having -Clause in group -by statement

data GroupByTail = Having Condition

| GBT CValue GroupByTail

| NoHave

--- data type for conditions inside a having -clause

data Condition = Con Constraint

| Fun String Specifier Constraint

| HAnd [Condition]

| HOr [Condition]

| Neg Condition

--- Constructor for Values of ID -types

idVal :: Int -> Value _

---Constructor for the group -by -clause

groupBy :: Value a -> GroupByTail -> GroupBy

--- Constructor to specifiy more than one

--- column for group -by

groupByCol :: Value a -> GroupByTail -> GroupByTail

---Constructor for simple having condition

having :: Condition -> GroupByTail

--- Constructor for empty having -Clause

noHave :: GroupByTail

---Constructor for Condition with just a simple Constraint

condition :: Constraint -> Condition
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---Constructor for aggregation function sum for

---columns of type Int having -clauses.

sumIntCol :: Specifier ->

Value Int ->

Value Int ->

(Value () -> Value () -> Constraint) ->

Condition

--- Constructor for aggregation function sum for

--- columns of type float in having -clauses.

sumFloatCol :: Specifier ->

Value Float ->

Value Float ->

(Value () -> Value () -> Constraint) ->

Condition

--- Constructor for aggregation function avg for

--- columns of type Int in having -clauses.

avgIntCol :: Specifier ->

Value Int ->

Value Float ->

(Value () -> Value () -> Constraint) ->

Condition

--- Constructor for aggregation function avg for

--- columns of type float in having -clauses.

avgFloatCol :: Specifier ->

Value Float ->

Value Float ->

(Value () -> Value () -> Constraint) ->

Condition

---Constructor for aggregation function count

---in having -clauses.

countCol :: Specifier ->

Value _ ->

Value Int ->

(Value () -> Value () -> Constraint) ->

Condition

--- Constructor for aggregation function min

--- in having -clauses.

minCol :: Specifier ->

Value a ->

Value a ->

(Value () -> Value () -> Constraint) ->

Condition
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--- Constructor for aggregation function max

--- in having -clauses.

maxCol :: Specifier ->

Value a ->

Value a ->

(Value () -> Value () -> Constraint) ->

Condition

Module CDBI.QueryTypes

---datatype for set operations

data SetOp = Union | Intersect | Except

--- datatype for joins

data Join = Cross | Inner Constraint

--- Constructor for inner join

innerJoin :: Constraint -> Join

--- Constructor for cross join

crossJoin :: Join

--- data structure to represent a table -clause

--- (tables and joins) in a way that at least

--- one table has to be specified

data TableClause = TC Table Int (Maybe (Join ,TableClause ))

--- Constructor function for expression:

--- CASE WHEN condition THEN val1 ELSE val2 END.

--- It does only work for the same type in then

--- and else branch.

caseThen :: Condition ->

Value a ->

Value a ->

(CaseVal a) ->

ColumnSingleCollection a

--- Constructor function for ColumnSingleCollection.

singleCol :: ColumnDescription a ->

Int ->

(ColumnDescription a -> Fun b) ->

ColumnSingleCollection b

---Constructor function for ColumnTupleCollection.

tupleCol :: ColumnSingleCollection a ->

ColumnSingleCollection b ->
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ColumnTupleCollection a b

---Constructor function for ColumnTripleCollection.

tripleCol :: ColumnSingleCollection a

-> ColumnSingleCollection b

-> ColumnSingleCollection c

-> ColumnTripleCollection a b c

---Constructor function for ColumnFourTupleCollection.

fourCol :: ColumnSingleCollection a

-> ColumnSingleCollection b

-> ColumnSingleCollection c

-> ColumnSingleCollection d

-> ColumnFourTupleCollection a b c d

---Constructor function for ColumnFiveTupleCollection.

fiveCol :: ColumnSingleCollection a

-> ColumnSingleCollection b

-> ColumnSingleCollection c

-> ColumnSingleCollection d

-> ColumnSingleCollection e

-> ColumnFiveTupleCollection a b c d e

--- Data type to describe all parts of a select -query

--- except set operators order -by and limit

--- (selecthead) for a single column.

data SingleColumnSelect a =

SingleCS Specifier

(ColumnSingleCollection a)

TableClause

Criteria

--- Data type to describe all parts of a select -query

--- except set operators order -by and limit

--- (selecthead) for two columns.

data TupleColumnSelect a b =

TupleCS Specifier

(ColumnTupleCollection a b)

TableClause

Criteria

--- Data type to describe all parts of a select -query

--- except set operators order -by and limit

--- (selecthead) for three columns.

data TripleColumnSelect a b c =

TripleCS Specifier

(ColumnTripleCollection a b c)

TableClause
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Criteria

--- Data type to describe all parts of a select -query

--- except set operators order -by and limit

--- (selecthead) for a four columns.

data FourColumnSelect a b c d =

FourCS Specifier

(ColumnFourTupleCollection a b c d)

TableClause

Criteria

--- Data type to describe all parts of a select -query

--- except set operators order -by and limit

--- (selecthead) for five columns.

data FiveColumnSelect a b c d e =

FiveCS Specifier

(ColumnFiveTupleCollection a b c d e)

TableClause

Criteria

--- Constructor for aggregation function sum

--- in select -clauses.

--- A pseudo -ColumnSingleCollection of type

--- float is created for correct return type.

sum :: Specifier -> ColumnDescription _ -> Fun Float

--- Constructor for aggregation function avg

--- in select -clauses.

--- A pseudo -ColumnSingleCollection of type

--- float is created for correct return type.

avg :: Specifier -> ColumnDescription _ -> Fun Float

--- Constructor for aggregation function count

--- in select -clauses.

--- A pseudo -ColumnSingleCollection of type

--- float is created for correct return type.

count :: Specifier -> ColumnDescription _ -> Fun Int

--- Constructor for aggregation function min

-- in select -clauses.

minV :: ColumnDescription a -> Fun a

--- Constructor for aggregation function max

-- in select -clauses.

maxV :: ColumnDescription a -> Fun a

--- Constructor function in case no aggregation

-- function is specified.
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none :: ColumnDescription a -> Fun a

---Constructor for CaseVal of type Int

caseResultInt :: CaseVal Int

---Constructor for CaseVal of type Float

caseResultFloat :: CaseVal Float

---Constructor for CaseVal of type String

caseResultString :: CaseVal String

---Constructor for CaseVal of type Date

caseResultDate :: CaseVal Time.ClockTime

---Constructor for CaseVal of type Bool

caseResultBool :: CaseVal Bool

---Constructor for CaseVal of type Char

caseResultChar :: CaseVal Char

Module CDBI.ER

--- specifier , group -by -clause and limit -clause were added

getEntries :: Specifier ->

EntityDescription a ->

Criteria ->

[Option] ->

Maybe Int ->

DBAction [a]

--- Gets a single Column from the database.

getColumn :: [SetOp] ->

[SingleColumnSelect a] ->

[Option] ->

Maybe Int ->

DBAction [a]

--- Gets two Columns from the database.

getColumnTuple :: [SetOp] ->

[TupleColumnSelect a b] ->

[Option] ->

Maybe Int ->

DBAction [(a,b)]

--- Gets three Columns from the database.

getColumnTriple :: [SetOp] ->

[TripleColumnSelect a b c] ->
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[Option] ->

Maybe Int ->

DBAction [(a,b,c)]

--- Gets four Columns from the database.

getColumnFourTuple :: [SetOp]

-> [FourColumnSelect a b c d]

-> [Option]

-> Maybe Int

-> DBAction [(a,b,c,d)]

--- Gets five Columns from the database.

getColumnFiveTuple :: [SetOp]

-> [FiveColumnSelect a b c d e]

-> [Option]

-> Maybe Int

-> DBAction [(a,b,c,d,e)]

--- specifier , group -by -clause and limit -clause were added

getEntriesCombined :: Specifier ->

CombinedDescription a ->

[Join] ->

Criteria ->

[Option] ->

Maybe Int ->

DBAction [a]
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Grammar

This section shows the supported part of SQL in EBNF. The grammar fulfills
the LL(1) property and was influenced by the grammar given in [17] and the
SQLite-dialect 1.

--------------type of statements --------------------------------

statement ::= queryStatement | transactionStatement

queryStatement ::= ( deleteStatement

| insertStatement

| selectStatement

| updateStatement )

’;’

------------- transaction -------------------------------------

transactionStatement ::= (BEGIN

|IN TRANSACTION ’(’ queryStatement

{ queryStatement }’)’

|COMMIT

|ROLLBACK ) ’;’

-------------- delete ------------------------------------------

deleteStatement ::= DELETE FROM tableSpecification

[ WHERE condition ]

-------------insert -------------------------------------------

insertStatement ::= INSERT INTO tableSpecification

insertSpecification

insertSpecification ::= [’(’ columnNameList ’)’ ] valuesClause

valuesClause ::= VALUES valueList

1https://sqlite.org/lang.html
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------------update --------------------------------------------

updateStatement ::= UPDATE tableSpecification

SET (columnAssignment {’,’ columnAssignment}

[ WHERE condition ]

| embeddedCurryExpression )

columnAssignment ::= columnName ’=’ literal

-------------select statement ---------------------------------

selectStatement ::= selectHead { setOperator selectHead }

[ orderByClause ]

[ limitClause ]

selectHead ::= selectClause fromClause

[ WHERE condition ]

[ groupByClause [ havingClause ]]

setOperator ::= UNION | INTERSECT | EXCEPT

selectClause ::= SELECT [( DISTINCT | ALL )]

( selectElementList | ’*’ )

selectElementList ::= selectElement { ’,’ selectElement }

selectElement ::= [ tableIdentifier ’.’ ] columnName

| aggregation

| caseExpression

aggregation ::= function ’(’ [ DISTINCT ] columnReference ’)’

caseExpression ::= CASE WHEN condition THEN operand

ELSE operand END

function ::= COUNT | MIN | MAX | AVG | SUM

fromClause ::= FROM tableReference { ’,’ tableReference }

groupByClause ::= GROUP BY columnList

havingClause ::= HAVING conditionWithAggregation

orderByClause ::= ORDER BY columnReference [ sortDirection ]

{’,’ columnReference

[ sortDirection ] }

sortDirection ::= ASC | DESC

limitClause = LIMIT integerExpression

-------------common elements -----------------------------------

columnList ::= columnReference { ’,’ columnReference }
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columnReference ::= [ tableIdentifier ’.’ ] columnName

columnNameList ::= columnName { ’,’ columnName}

tableReference ::= tableSpecification [ AS tablePseudonym ]

[ joinSpecification ]

tableSpecification ::= tableName

condition ::= operand operatorExpression

[logicalOperator condition]

| EXISTS subquery [logicalOperator condition]

| NOT condition

| ’(’ condition ’)’

| satConstraint [logicalOperator condition]

operand ::= columnReference

| literal

subquery ::= ’(’ selectStatement ’)’

operatorExpression ::= IS NULL

| NOT NULL

| binaryOperator operand

| IN setSpecification

| BETWEEN operand operand

| LIKE quotes pattern quotes

setSpecification ::= literalList

binaryOperator ::= ’>’| ’<’ | ’>=’ | ’<=’ | ’=’ | ’!=’

logicalOperator ::= AND | OR

conditionWithAggregation ::=

aggregation [logicalOperator disaggregation]

| ’(’ conditionWithAggregation ’)’

| operand operatorExpression

[logicalOperator conditionWithAggregation]

| NOT conditionWithAggregation

| EXISTS subquery

[logicalOperator conditionWithAggregation]

| satConstraint

[logicalOperator conditionWithAggregation]

aggregation ::= function ’(’(ALL | DISTINCT) columnReference ’)’

binaryOperator

operand

satConstraint ::= SATISFIES tablePseudonym

relation

tablePseudonym

joinSpecification ::= joinType tableSpecification

[ AS tablePseudonym ]
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[ joinCondition ]

[ joinSpecification ]

joinType ::= CROSS JOIN | INNER JOIN

joinCondition ::= ON condition

-------------identifier and datatypes -------------------------

valueList ::= ( embeddedCurryExpression | literalList )

{’,’ ( embeddedCurryExpression | literalList )}

literalList ::= ’(’ literal { ’,’ literal } ’)’

literal ::= numericalLiteral

| quotes alphaNumericalLiteral quotes

| dateLiteral

| booleanLiteral

| embeddedCurryExpression

| NULL

numericalLiteral ::= integerExpression

|floatExpression

integerExpression ::= [ - ] digit { digit }

floatExpression := [ - ] digit { digit } ’.’ digit { digit }

alphaNumericalLiteral ::= character { character }

character ::= digit | letter

dateLiteral ::= year ’:’ month ’:’ day ’:’

hours ’:’ minutes ’:’ seconds

month ::= digit digit

day ::= digit digit

hours ::= digit digit

minutes ::= digit digit

seconds ::= digit digit

year ::= digit digit digit digit

booleanLiteral ::= TRUE | FALSE

embeddedCurryExpression ::= ’{’ curryExpression ’}’

pattern ::= ( character | specialCharacter )

{( character | specialCharacter )}

specialCharacter ::= ’%’ | ’_’

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

letter ::= (a...z) | (A...Z)

tableIdentifier ::= tablePseudonym | tableName

columnName ::= letter [alphanumericalLiteral]
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tableName ::= letter [alphanumericalLiteral]

tablePseudonym ::= letter

relation ::= letter [[ alphanumericalLiteral] | ’_’ ]

quotes ::= (’"’|’’’)
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Examples

This section shows some exemplary SQL queries and their translation. the two
Select statements demonstrate some of the new features of the CDBI library
and the abstraction of foreign keys by the use of relations. Furthermore, we
give less complex examples of an Insert and an Update statement which also
demonstrate the usage of embedded Curry expressions. For readability reasons
the layout of the translation is modified.

The following request selects the name of students ordered alphabetically, the
average of all points achieved in any exam (given in table result) and the
number of exams the student has participated in:

example1 :: IO (SQLResult [(String , Float , Int)])

example1 = ‘‘sql Select s.name , Avg(r.Points), Count(r.Points)

From Student As s Inner Join Result As r

On Satisfies s has_a r

Group By s.name

Having Count(r.Points) > 1 Order By s.name;’’

This query will be translated to:

example1 :: IO (SQLResult [(String , Float , Int)])

example1 =

runWithDB

"Uni.db"

(getColumnTriple

[]

[TripleCS

All

(tripleCol

(singleCol studentNameColDesc 0 none)

(singleCol resultPointsColDesc 0 (avg All))

(singleCol resultPointsColDesc 0 (count All)))

(TC studentTable

0

(Just
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(innerJoin

(equal (colNum studentColumnKey 0)

(colNum resultColumnStudentTakingKey 0))

,TC resultTable 0 Nothing )))

(Criteria None

(Just (groupBy

(colNum studentColumnName 0)

(having

(countCol

All

(colNum resultColumnPoints 0)

(int 1)

greaterThan )))))]

[ascOrder (colNum studentColumnName 0)]

Nothing)

The second request joins all names and first names of students and lecturers
ordered by their first name and returns the first three rows:

example2 :: IO( SQLResult [(String , String )])

example2 = ‘‘sql Select Distinct Firstname , Name From Student

Union

Select Distinct Firstname , Name From Lecturer

Order By Firstname Asc

Limit 3;’’

It is translated to:

example2 :: IO( SQLResult [(String , String )])

example2 =

runWithDB

"Uni.db"

(getColumnTuple

[Union]

[TupleCS

Distinct

(tupleCol

(singleCol studentFirstnameColDesc 0 none)

(singleCol studentNameColDesc 0 none))

(TC studentTable 0 Nothing)

(Criteria None Nothing)

,TupleCS

Distinct

(tupleCol

(singleCol lecturerFirstnameColDesc 0 none)

(singleCol lecturerNameColDesc 0 none))

(TC lecturerTable 0 Nothing)

(Criteria None Nothing )]

[ascOrder (colNum lecturerColumnFirstname 0)]

(Just 3))

The statement below inserts two entities into the database,the first one given
as embedded Curry expression, the second one given as list of values.
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insertEx :: Student -> IO (SQLResult ())

insertEx student1 =

‘‘sql Insert Into Student

Values

{student1}

,(8, 6828, "Julia", "Krone", "julia@mail.de", 26);’’

insertEx :: Student -> IO (SQLResult ())

insertEx student1 =

runWithDB

"Uni.db"

(saveMultipleEntries [student1

,Student (StudentID 42)

6828

"Julia"

"Krone"

"julia@mail.de"

(Just 26)]

studentDescription )

The last example updates the column ”Age” in the Student table dependent
on the value of an embedded Curry expression.

updateEx :: Int -> Int -> IO (SQLResult ())

updateEx x y =

‘‘sql Update Student Set Age = 20 Where Age < {1+x+6*y};’’

updateEx :: Int -> Int -> IO (SQLResult ())

updateEx x y =

runWithDB

"Uni.db"

(updateEntries studentDescription

[colVal studentColumnAge (int 20)]

(lessThan (colNum studentColumnAge 0)

(int (1+x+6*y))))
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