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Abstract

Programmers are used to define unidirectional functions. However, many applications
are based on transformations between two data structures, e.g., synchronisation tasks
or maintenance between several data sources. Such applications are common cases for
bidirectional transformations, which are the core functions of bidirectional program-
ming languages. Bidirectional programs can be applied both forwards and backwards
and specify transformations and similar concepts in one program. In this thesis, we
evaluate existing approaches to use bidirectional transformations in an unidirectional
setting as well as approaches that define their own bidirectional languages to avoid
upcoming problems in existing languages. We also implement two suitable libraries
for bidirectional programming in the functional logic programming language Curry.
Furthermore, we make two case studies to test our implementations and investigate
further applications for bidirectional programming.
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1

Introduction

In the last 10 years, the topic of bidirectional programming has become of interest in
many areas of computer science. Broadly speaking, bidirectional transformations are
programs that run forwards and backwards. Most common applications are synchro-
nisation processes where two similar data structures maintain the same information
and need to be kept in sync as well as serialisation processes where two structures are
converted into each other.

A more general concept in the context of bidirectional transformations are lenses.
Instead of an one-to-one mapping, lenses provide a component to project and update
a given source. This concept arises from the area of databases, where we have a set
of data and make queries on that data. The query yields a so-called view – or table,
and we can make further modifications on that view. These modifications lead to an
out-dated set of data, which we want to update with respect to the modifications of
the view, again. The work of Foster et al. (2007) sets the trend for lenses in the field
of programming languages.

In general, a lens is a pair of functions that operate on two structures S and V ,
which are defined as follows. The value of type S represents the source of the lens,
and V is the type of the view.

get : S ! V

put : S ⇥ V ! S

1



1.1. Goals and Contributions 1 Introduction

In the context of lenses, we have a get function that describes the forward direction of
a lens and yields the view for a given source. The put function, which represents the
backward direction, describes the reversed situation, but needs an additional source
as argument. That is, given an original source, the put function produces an updated
source for a given view.

However, traditional unidirectional programming languages are not well-suited for
bidirectional transformations. The programmer has to maintain both functions – get
and put – individually. Recent work on bidirectional programming consists of new pro-
gramming languages that fit the requirements described above. In these languages, the
programmer does not define a transformation with two functions, but uses predefined
combinators to build more complex transformations. Furthermore, many approaches
are designed to let the user define only the get function, and then derive the corre-
sponding put function from that definition.

1.1 Goals and Contributions

The goal of this thesis is to explore the usage of a functional logic programming
language like Curry for bidirectional programming.

Recent approches make heavy usage of functional programming languages like Has-
kell or define their own functional language that fits a specific domain of bidirectional
programming, e.g. string data, tree data, or relations. Curry offers functional fea-
tures like higher-order functions, lazy evaluation, and algebraic data types, which
enable us to reuse most of the existing ideas for functional languages in the context
of bidirectional programming. Furthermore, Curry is a logic programming language
that automatically provides us with the ability to read function definitions forwards
and backwards. We can use logic features like free variables in combination with the
built-in search capabilities to define bidirectional transformations directly in Curry. In
particular, we pursue the following goals in this thesis.

• We want to evaluate the recent work in the area of bidirectional programming
that gives enough leeway for follow-up work, especially with regard to their
applicability to Curry. As the result of this evaluation, we intend to implement a
library for lenses that exploits Curry’s functional and logic features to gain new
insights of bidirectional transformations.
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1 Introduction 1.2. Structure

• As a logic programming language, Curry supports nondeterministic function def-
initions. Thus, we would like to investigate nondeterminism in combination with
lenses. Is a nondeterministic setting applicable in the context of bidirectional
programming? Do we need to rethink certain properties of lenses when we allow
nondeterministic get and put functions?

• On top of the implemented lens library, we want to examine useful applications
for lenses in practical examples. Recent work shows that lenses are highly ap-
plicable to field accessors for algebraic data types. Thus, we want to investigate
lenses for record type declarations in Curry.

1.2 Structure

The remainder of this thesis is structured as follows. Chapter 2 and Chapter 3 provide
preliminaries of this thesis. We give a short introduction to Curry, which we use for the
main implementation of the concepts presented in this thesis. Readers familiar with
Curry can skip this introduction and go right to Chapter 3. In Section 3.1, we give
a more detailed introduction of bidirectional programming and lenses in particular.
We discuss fundamental properties of lenses and the different kinds of lenses that are
defined in related work in Section 3.2.

In Chapter 4, we give a detailed insight into related work and different approaches
for bidirectional programming. We divide the chapter into two sections: Section 4.1
discusses combinatorial approaches, and Section 4.2 deals with related approaches that
use bidirectionalisation techniques.

Chapter 5 and Chapter 6 form the main part of this thesis. We begin with the
presentation of two implementations for lenses in Curry: a put-based combinatorial
approach in Section 5.1 and another simple put-based library that generates its corre-
sponding get function in Section 5.2. On top of the second implementation, we study
an application of lenses in Section 6.1, which unifies the specification of pretty-printers
and parsers into one lens definition. In Section 6.2, we propose a series of transfor-
mations to generate lenses as field accessors when defining record type declarations in
Curry.

Last but not least, we discuss emerging challenges with bidirectional programming
in Curry and conclude in Chapter 7.
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2

Introduction to Curry

“You want to seduce people into using your language.
The more it looks and behaves like something they know,
the more likely they are to use it.”

Simon Peyton Jones

The main implementations we present in this thesis are programmed with Curry. All
programs are compiled with KiCS21 – the most recent compiler for Curry, which com-
piles to Haskell, as presented by Braßel et al. (2011). We also use KiCS2’s interactive
environment to evaluate our examples.

Curry is a functional logic programming language similar to Haskell (Jones, 2002)
and created by an international development team to provide an environment, mostly
for research and teaching. In the following, we assume the reader is au fait with Haskell,
especially its syntax and its type system as well as general functional concepts like al-
gebraic data types, polymorphism, higher-order functions, and lazy evaluation. Hence,
we focus on features that are specific to Curry. Besides the mentioned functional fea-
tures, Curry also provides nondeterminism and free variables as typical characteristics
of logic programming languages.

In the remainder of this chapter, we will introduce these two logic features with a
series of examples. We add explanations to further features of Curry on demand as
they appear in the remainder of this thesis.

1In particular, we use KiCS2 version 0.3.1.
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2.1. Nondeterminism 2 Introduction to Curry

2.1 Nondeterminism

In Curry, we define a function with a set of rules. As an example, we define a function
to yield the first and the last element of a list, respectively, as follows.

head :: [a ] ! a

head (x : _) = x

last :: [a ] ! a

last [x ] = x

last ( : xs) = last xs

The definition of head works just fine in Curry and yields the first element of a
given list. However, we have to be more careful with overlapping rules in function
de-finitions. Instead of matching from top to bottom like in Haskell, Curry evaluates
each matching rule. Thus, the definition of last is nondeterministic, because a list with
one element matches the first and second rule. If we use last on an exemplary list, we
get, however, the desired result.

> last [1 . . 10]

10

In the last step of evaluating last , the expression last [10] matches both given rules.
In the case of the first rule, we can apply the right-hand side and yield 10 as result.
For the second rule, we make an additional function call to the remaining list. The
resulting expression last [ ] does, however, not match any rule and silently fails. Thus,
the expression last [10] evaluates to 10, because a failure does not yield any result.

This notion of failure is slightly different to errors in Haskell. For example, the ex-
pression head [ ] raises an error in Haskell. like ⇤ ⇤ ⇤Exception :Prelude.head :empty list ,
but in Curry the expression has no result, which is expressed with ! in the interactive
environment of KiCS2.

> head [ ]

!

We can use this kind of failure in our program as well by using failed :: a. failed is
a function defined Curry’s Prelude and has a polymorphic type. Thus, in the case of
head , we can make the following adjustments to fail for an empty list.

6



2 Introduction to Curry 2.1. Nondeterminism

head 0 :: [a ] ! a

head 0 [ ] = failed

head 0 (x : _) = x

As an additional example for overlapping rules, we define a function member that
nondeterministically yields an element of a given list. We can use an approach similar
to the implementation of last .

member :: [a ] ! a

member (x : _) = x

member ( : xs) = member xs

Instead of matching for a singleton list in the first rule, we match for all lists with
at least one element. Thus, we yield the head element of the list for each recursion
step.

>member "Curry"

’C’

’u’

’r’

’r’

’y’

Furthermore, Curry provides a special operator ? to introduce nondeterminism; this
choice operator yields one of its arguments nondeterministically.

(?) :: a ! a ! a

x ? = x

? y = y

With this operator at hand, we can rewrite our implementation of member without
using overlapping rules.

member 0 :: [a ] ! a

member 0 (x : xs) = x ?member 0 xs

member 00 :: [a ] ! a

member 00 = foldr1 (?)

7



2.2. Free Variables 2 Introduction to Curry

The first example unifies the original rules into one rule by using the choice operator.
Finally, we beautify this implementation and use foldr1 instead of an explicit recursive
definition in the second example.

2.2 Free Variables

The second logic feature of Curry that we want to discuss in greater detail is the
usage of free variables. Free variables are unbound variables that can be used as data
generators. For instance, assume that we have the first part of a list – [(), ()], and
want to generate the missing suffix to create the list [(), (), ()].

> [(), ()] ++ xs ⌘ [(), (), ()] where xs free

{xs = [ ]} False

{xs = [()]} True

{xs = (() : _ x3 : _ x4 )} False

The free variable xs is denoted as such with the keyword free and has the same
scope as locally defined functions. In order to evaluate the given expression, Curry’s
built-in search system generates a series of lists for xs. Similar to the evaluation of
a nondeterministic expression, we get a series of results. The first component of the
result is the binding of the occurring free variables – surrounded by curly brackets.
The evaluated expression is the second component. In our example, Curry generates a
series of lists starting with the empty list and stopping for lists that have three or more
elements. We do not go into further detail here, and postpone further explanations
about the built-in search to Section 7.2.1.

The important message to get across here is that we can use Curry’s built-in search
capabilities in combination with free variables to use generate-and-test methods in
function definitions. For example, we can give an additional implementation of last

by using free variables.

last 0 :: [a ] ! a

last 0 xs | ++ [y ] ⌘ xs = y

where y free

In this example, we use an anonymous free variable, declared with an underscore
“ ”. Anonymous free variables are a syntactical abbreviation for let x free in x . If

8



2 Introduction to Curry 2.2. Free Variables

we do not use the binding of the free variable in the remainder of our expression, we
can declare it anonymously. The idea of the implementation is to generate the given
list in two steps: an anonymous list for the prefix and a single element to concatenate
at the end of the list. Thus, we have the last element at our fingertips and can easily
yield it as result if the condition holds.

> last 0 [1 . . 5]

5
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3

About Lenses and Other
Bidirectional Transformations

“He who moves not forward goes backward.”

Johann Wolfgang von Goethe,
Herman and Dorothea

Many approaches in the context of data synchronisation and data transformation are
error-prone and cumbersome to maintain. Typical examples for such approaches are
widespread and can be found in several areas of computer science: printers and parsers
that harmonise in a meaningful way (see Section 6.1); connection between user inter-
faces and the underlying data (Meertens, 1998); serialisation or synchronisation pro-
cesses, e.g., transforming Safari’s bookmarks to be suitable for Firefox (Foster et al.,
2007). We believe that in many cases the application of bidirectional programming
avoids the problems mentioned and is more suitable than unidirectional programming.

In this chapter, we introduce the notion of bidirectional transformations and a more
general concept called lenses. The first section covers bidirectional programming and
its origin from databases. Furthermore, we discuss the basic functionality of bidi-
rectional transformations. In the subsequent section, we talk about a generalisation
named lenses. The most important part of this section involves the underlying laws
that apply to lenses as well as examples to get a better intuition of the usage of lenses.
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3.1. Bidirectional Programming 3 About Bidirectional Transformations

3.1 Bidirectional Programming

Problems that are based on bidirectional transformations are typically handled with
two separate functions. That is, one function maps the specific value to the abstract
representation and one function serves as the reverse, from the abstract value to the
concrete representation. This approach is rather error-prone and tedious to maintain
for two reason. Firstly, we have to keep the two functions in sync by hand in order
to guarantee correctness. Secondly, changes in one of the representations affect both
functions due to certain round-tripping rules that we introduce later. This unidirec-
tional programming mechanism is well-studied and many programmers are familiar
with this paradigm. In contrast, bidirectional programming is a new approach to a
specific domain of problems, which becomes more and more popular in different areas
of computer science. Software engineering, programming languages, databases and
graph transformations are some of the fields of computer science that currently par-
ticipate in research activities concerning bidirectional transformations. For a more
detailed introduction to the cross-discipline of bidirectional transformation, we recom-
mend the work of Czarnecki et al. (2009). In the remainder of this thesis, we focus
on bidirectional transformation from the perspective of the programming language
community.

So, what is the new, challenging feature of bidirectional programming keeping re-
searchers busy? A bidirectional transformation does not consist of two functions like
in the unidirectional way, but of one function that can be read both forwards and
backwards. We distinguish between a forward function get :: A ! B and a backward
function put :: B ! A; A is most commonly called the source and B is the view. The
naming convention originates from applications in databases. These two functions
form, in the easiest approach, a bijection between A to B and back. We visualise this
idea of two types and their corresponding transformation functions in Figure 3.1.

In the next section, we discuss a more general approach of bidirectional transfor-
mation called lenses. Lenses are one of the most popular abstractions in bidirectional
programming. A statement about the status quo of bidirectional programming is
postponed to Chapter 4 and Section 5.2, where we discuss several implementation ap-
proaches. Another good source for further reading is the paper by Foster et al. (2010),
which contrasts three different approaches of bidirectional programming.
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3 About Bidirectional Transformations 3.2. Lenses

Source Viewforward

backward

Figure 3.1.: Bijective relation between two types A and B

3.2 Lenses

Lenses describe bidirectional transformations, which originate from databases as in-
troduced by Bancilhon and Spyratos (1981). In the setting of lenses, the get function
describes a transformation from A to B . In most applications A is a product type,
and B is one component of that product. Thus, the get direction of a lens discards
information when projecting from A to B . The put function synchronises a given,
potentially updated, view with respect to the original source.

As an example, let us take a look at a bidirectional transformation with a pair
of String and Integer as the domain of the source, and String as the view’s do-
main. In order to define an appropriate get function, we need a get function of type
(String , Integer) ! String . In Haskell, or Curry, there already exists a function with
such a type, namely fst .

fstget :: (String , Integer) ! String

fstget (str , ) = str

Our function fstget yields the first component of a pair with no further changes or
adjustments to the value; this definition is equivalent to fst . The put function has the
type fstput :: (String , Integer) ! String ! (String , Integer); we define a function that
sets the first component of a pair with a given string without further ado.

fstput :: (String , Integer) ! String ! (String , Integer)

fstput ( , int) newStr = (newStr , int)

In order to see the get and put function of such a lens in action, we give two
exemplary expressions.

13



3.2. Lenses 3 About Bidirectional Transformations

> fstput ("foo", 42) "bar"

("bar", 42)

> fstget ("bar", 42)

"bar"

Moreover, a popular example from databases shows the general idea quite well: we
have a database with a data set S and a query that yields a table T matching the
given criteria. The query is the forward transformation get . In a second step, we
modify the resulting table, because we recognise a misspelled name field or suchlike,
which yields an updated table T 0. We definitely want to propagate the update back
to our database; this is where the put function comes into play. The put function
synchronises our changes of the view, T 0, with the original database set S .

Figure 3.2 illustrates the idea of an updated view – the red circle – that is synchro-
nised with its original source – the grey rectangle with the blue circle.

get

update

put

T

T'

S

S'

Figure 3.2.: Lenses in action: projecting a value with get and updating the original
source with put

Furthermore, the literature distinguishes between two categories of lenses: symmet-
ric and asymmetric lenses. The names asymmetric and symmetric describe the focus
on the given pair of source and view.

In a symmetric setting, each structure A and B contains information that is not
present in the other. We can update both structures, which leads to two put functions:
putl :: B ! A ! B to update B and a put function putr :: A ! B ! A to update A.

14



3 About Bidirectional Transformations 3.2. Lenses

In an asymmetric setting, we only consider changes of the view that will be prop-
agated back to the source; this restricted view implies that the given source does
not change in the meantime. In comparison to the bijective setting, the put func-
tion takes the initial source as argument to synchronise the updated view with that
source. This additional argument leads to a slight change in the type of the put func-
tion: put :: A ! B ! A. Our code example from above is a representative for an
asymmetric lens.

In the following, we will only examine asymmetric lenses. For a detailed introduction
to symmetric lenses, consider reading the work of Hofmann, Pierce, and Wagner (2011)
or the dissertation of Wagner (2014). A detailed listing of different properties that are
applicable for lenses can be studied in the work of Pacheco et al. (2013b).

3.2.1 PutGet Law

So far, we characterised lenses as a bidirectional transformation with an adapted put

function. It is important to note that lenses fulfil certain laws. The first two of three
laws that we discuss are also called round-tripping rules, because they state how get

and put interact when used consecutively. The first law states that if, using the same
lens, we put something in and extract it again, we get the same thing back.

get (put s v) = v (PutGet)

This law is called PutGet : we first put a new value in our source and then try to
get it out again.

In order to give an example, we use the lens definition of fstget and fstput from
above to check the PutGet law. We can show that the defined pair of fstget and fstput
behaves according to the law for every initial pair and additional string.

Proof. For all w, v and v

0, where (v, w) is of type (String , Integer) and v

0 is of type
String , it holds that fstget (fstput (v ,w) v 0) = v 0.

fstget (put (v ,w) v 0)

⌘ { definition of fstput }
fstget (v

0
,w)

⌘ { definition of fstget }
v 0

15



3.2. Lenses 3 About Bidirectional Transformations

3.2.2 GetPut Law

In addition to the PutGet law, lenses are also supposed to fulfil a second round-tripping
criterion. The GetPut law states that if we get a view out of a source and put it back
unmodified again, the source does not change at all, as if nothing happened. This law
can be interpreted as a stability property. That is, a lens is stable if nothing magical
happens during an update or a selection.

put s (get s) = s (GetPut)

Proof. With our example above, we obtain the following equation, where for all w and v

where (v, w) is of type (String , Integer), it holds that put (v ,w) (get (v ,w)) = (v ,w).

put (v ,w) (get (v ,w))

⌘ { definition of get }
put (v ,w) v

⌘ { definition of put }
(v ,w)

put

get

put

get

put

get

Figure 3.3.: PutGet Law (left) and GetPut Law (right)

In Figure 3.3, we illustrate both lens laws; the different colouring of the view distin-
guishes the original value of the view and the new updated value. In the pioneering

16



3 About Bidirectional Transformations 3.2. Lenses

work of Foster et al. (2007) in the topic of bidirectional programming and lenses, a
lens is called well-behaved if both laws, the GetPut and the PutGet law, hold.

3.2.3 Partial Lenses

More and more frameworks for bidirectional transformations and bidirectional pro-
gramming languages, respectively, endorse a weaker notion of the presented PutGet
and GetPut laws. In our current notion of the laws, we only consider total get and
total put functions. Most of the time we want, however, to be able to work with func-
tions that are not total. For example, the classical function head :: [a ] ! a to select
the first element of a list is only partial, because we cannot select an element for an
empty list. We can define a lens that uses head 0 as definition for its get direction. In
order to form a lens, we need a put function as well: the put direction replaces the
head element of the given list with a new element.

head 0 :: [a ] ! a

head 0 [ ] = error "head’: undefined for empty lists"

head 0 (x : xs) = x

replaceHead :: [a ] ! a ! [a ]

replaceHead [ ] y = [y ]

replaceHead ( : xs) y = y : xs

The given definition for the put direction is total, thus, we can observe the expected
behaviour. In the following, we make some test function calls to check if the given lens
definition is reasonable in regard to the lens laws.

> replaceHead [1, 2, 3, 4, 5] 42

[42, 2, 3, 4, 5]

> replaceHead [ ] 13

[13]

> head 0 (replaceHead [1, 2, 3, 4, 5] 10)

10

> replaceHead [1, 2, 3, 4] (head 0 [1, 2, 3, 4])

[1, 2, 3, 4]

17



3.2. Lenses 3 About Bidirectional Transformations

The first two test expressions show the behaviour of replaceHead ; it becomes ap-
parent that replaceHead never yields an empty list as result. Thus, the PutGet law
obviously holds for all possible values. The last expression is an example with a non-
empty lists, where the GetPut holds as well. However, the get direction of the just
defined lens, i.e. head 0, is not defined for empty lists. Thus, the given lens does not
fulfil the GetPut law for empty lists.

> replaceHead [ ] (head 0 [ ])

Main : UserException "head’: undefined for empty lists"

In order to use partial lenses like proposed by Pacheco et al. (2013b), we need to
adjust the lens laws by means of partiality. In the following, the condition (f x ) # is
satisfied if the function f yields a result for the argument x. We define the partial ver-
sion of PutGet and GetPut in terms of inference rules. That is, if the above condition
is not satisfied, the equation below does not need to be checked, and the rule trivially
holds.

(put s v) #
get (put s v) = v

(Partial-PutGet)

(get s) #
put s (get s) = s

(Partial-GetPut)

In our example, we check if head 0 is defined for the given source first.

> head 0 [ ]

Main : UserException "head’: undefined for empty lists"

Since this is not the case, we do not apply the put direction; the condition only needs
to be satisfied if the first application yields a valid result. Thus, the lens consisting of
head 0 and replaceHead is a valid lens with respect to the PutGet law and the Partial-
GetPut law.

As a second example, we define a lens with a put function that is similar to the
well-known function take :: Int ! [a ] ! [a ] and a corresponding get function, which
behaves like the function length :: [a ] ! Int in Haskell and Curry, respectively.

18



3 About Bidirectional Transformations 3.2. Lenses

take 0 [ ] = [ ]

take 0 (x : xs) n

| n ⌘ 0 = [ ]

| n > 0 = x : take 0 xs (n � 1)

| otherwise = error "take’: negative value"

length 0 [ ] = 0

length 0 (x : xs) = 1 + length 0 xs

As a minor adjustment, we define take 0 only on positive integer values to better
harmonise with length 0. Similar to before, we can observe that length 0 only yields
positive integer values as result, thus, the GetPut law holds trivially for non-empty
and empty lists.

> length 0 [1, 2, 3, 4]

4

> take 0 [1, 2, 3, 4, 5] 3

[1, 2, 3]

> take 0 [1, 2, 3, 4] (length 0 [1, 2, 3, 4])

[1, 2, 3, 4]

> take 0 [ ] (length 0 [ ])

[ ]

Due to the partial definition of take 0, the defined lens does not fulfil the PutGet law
as we can see from the following expressions.

> length 0 (take 0 [1, 2, 3] (�3))

"take’: negative value"

> take 0 [ ] (�1)

"take’: negative value"

Nevertheless, our second example is a valid lens with respect to GetPut and Partial-
PutGet.

3.2.4 PutPut Law

There is also a third lens law, which is called PutPut. A lens satisfies the PutPut law
if we run two consecutively put operations on a source with two different views, but
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3.2. Lenses 3 About Bidirectional Transformations

only the second put matters. We can formulate this law with the following equation.

put (put s v) v 0 = put s v 0 (PutPut)

Lenses that fulfil all three laws – GetPut, PutGet, and PutPut – are called very
well-behaved. The PutPut law, however, does not play an important role in most
applications, because the preconditions are too strong. That is, plenty of constructive
well-behaved lenses are not very well-behaved. For example, the last lens we defined
changes the source list dependent on the given view element. Thus, two consecutive
calls to the put function with different view values can yield a different result than the
second call alone.

> take 0 (take 0 [1, 2, 3, 4, 5] 1) 3

[1]

> take 0 [1, 2, 3, 4, 5] 3

[1, 2, 3]

> take 0 [1] 3

[1]

In the first expression, we start with the list [1, 2, 3, 4, 5], and reduce it to just the
first element, i.e., take 0 [1, 2, 3, 4, 5] 1 yields [1]. The second application of put reduces
the list to the first three elements; since the list only contains one element, we get
[1] as result again. The PutPut law states that two consecutive calls should have the
same effect as just the latter one. In our case, the second put application to the source
list [1, 2, 3, 4, 5] yields the first three elements, i.e. the resulting list is [1,2,3], which
differs from the result with consecutive put calls.

Nevertheless, the PutPut law can be applicable for a number of convenient lens def-
initions. For example, the lens consisting of head 0 and replaceHead obeys the PutPut
law. In the put direction, we replace the head of a given list; thus, for two consecutive
replaceHead actions, only the latter matters.

> replaceHead (replaceHead [1, 2, 3, 4] 13) 42

[42, 2, 3, 4]

> replaceHead [1, 2, 3, 4] 42

[42, 2, 3, 4]
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4

Different Implementation
Approaches

Bidirectional programming is a rising topic in the field of computer science, and many
different approaches exist to tackle the problem. These approaches come from different
disciplines of computer science such as databases, graph transformation, programming
languages, and GUI design. This chapter summarises the two main approaches and
highlights differences as well as some details.

The two main techniques to work with bidirectional transformations are combinato-
rial languages and bidirectionalisation. A combinatorial language is either defined as a
DSL in a general purpose programming language or as a new programming language,
and it provides a set of primitives, which the user combines to define more complex
structures. The core primitive is a set of (get , put) function pairs for different lenses.
The two aproaches differ in what must be defined by the programmer: either both
functions or one unidirectional function that is synthesised to a bidirectional one.

The remainder of this chapter introduces combinatorial and bidirectionalisation ap-
proaches for lenses. The former approach has two subcategories, because the im-
plementation can focus on defining either a get function or a put function; such a
subdivision was not investigated for the bidirectionalisation of lenses yet. In this con-
text, we discuss advantages and disadvantages of defining a get function and present
a first proposal by Fischer et al. (2014) to set the focus on the put function.
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4.1 Combinatorial Lenses

The first combinatorial technique is the pioneer work by Foster et al. (2007), who de-
signed a domain-specific programming language to define bidirectional transformations
on tree-structured data. Foster et al. formulate fundamental laws concerning lenses1,
combine these laws with the intuitive behaviour of lenses, and use fundamental tools
from domain theory to also define lenses by recursion. They lay the focus of their
language’s design on robustness and ease of use. That is, their language guarantees
well-behaved lens definitions and the totality of the primitive transformations with an
integrated type system. The underlying type system, and with that the type safety,
is the main contribution to the field of bidirectional programming. The authors state
close connections with topics from the database community. Lenses are a well-known
abstractions in databases concerning tables and queries: the work of Bancilhon and
Spyratos (1981) tackles problems concerning precision and continuity, and the property
of well-behaved lenses corresponds to ideas by Keller (1985).

4.1.1 Combinators for Tree-Structures

In their publication, Foster et al. define a handful of primitive lens combinators for
trees, and the combination of these primitive lenses results in a powerful abstraction to
describe transformations. The most important primitives are the composition, identity
and constant lenses. These definitions work on arbitrary data structures, whereas all
other combinators specialise on tree data structures only. The defined transformations
are closely related to tables and views from databases: a transformation maps a con-
crete structure into an abstract view, and a possibly modified abstract view together
with the original concrete structure maps to a modified concrete structure.

In the DSL, the user defines the forward transformation in a straightforward fashion,
whereas the backward transformation is the result of reading the definition backwards.

The following expression shows a tree with two labels, fst and snd , representing a
pair, which corresponds to a pair (42, "Hello World") in Curry.

aPair =

(

fst ! 42

, snd ! "Hello World"

)

1We already presented these laws in Section 3.2.1, in particular, PutGet, GetPut and PutPut.
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As an example, we define a lens that yields the first component of a pair – like the
one we defined above. Foster et al. use S , V as representation for a lens with a
source of type S and a view of type V .2 The corresponding get and put function of a
lens is defined as follows.

%: (S , V )⇥ S ! V (get function)

&: (S , V )⇥ (S, V ) ! S (put function)

They define a tree combinator filter p d to keep particular children of the tree. The
predicate p describes the set of names that we want to keep in the tree and d is a
default value for missing information in the put direction. In order to distinguish
between empty trees and empty sets, we represent the empty tree as { }. We define
the following expression to extract the first component of a given pair.

(filter {fst } { }) % aPair

= (filter {fst } { }) %
(

fst ! 42

, second ! "Hello World"

)

=
n

fst ! 42
o

As a second example, we use the put function of the same lens to change the first
component of our pair to 13.

(filter {fst } { }) & (aPair , 13)

= (filter {fst } { }) &
 (

fst ! 42

, snd ! "Hello World"

)

, 13

!

=

(

fst ! 13

, snd ! "Hello World"

)

The work of Foster et al. originates in the Harmony project3 (2006; 2006; 2003), a
generic framework to synchronise tree-structured data. One example used repeatedly
throughout their work is the synchronisation of different browser bookmarks, calen-
dar, and address book formats. They continued their work on lenses with a project
2In their pair, Foster et al. use C and V as representative for the concrete and abstract value,

respectively.
3https://alliance.seas.upenn.edu/~harmony/old/
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called Boomerang4 (2008) that focuses on string data instead of tree-structured data.
Their language is also used beyond their own research projects: the developer team
of Augeas5 uses the Boomerang language as a framework for their configuration API.
Both languages, Harmony and Boomerang, are based on a type system to guarantee
well-behaved and total lenses as well as a rich set of lens combinators to define powerful
transformations on tree structures and strings, respectively.

4.1.2 Preparation for Put-Based Combinators

Other combinatorial approaches for lenses exist, and they all focus on specifying a get
function. The appropriate put function is then propagated through the definition of the
used get-based combinators. For example, Pacheco and Cunha (2010) designed a point-
free DSL in Haskell, in which the programmer defines only the get transformations.
Fischer et al. (2012) are the first to push the usage of the put definition instead.
It seems quite obvious that both – the forward and the backward – function of a
bidirectional transformation can be used for bidirectionalisation. Nevertheless, so far,
the current techniques mostly pursue the idea of Foster et al.

In the work of Fischer et al., it becomes apparent that typical problems of get defi-
nitions are the ambiguity of the derived put functions. That is, in several cases there
exists more than one appropriate put function to correspond with the get definition.
These problems concerning ambiguity arise when the defined get function is not in-
jective; we will discuss this topic in more detail in Section 5.2. This ambiguity can
be eliminated when we define the put direction instead. Fischer et al. show that the
corresponding get function for a defined put function is unique if certain requirements
apply to the put function. They prepare their theorem with some transformations
on the PutGet and GetPut laws; instead of the classical representation, they express
their requirements based on just the put definition. Fischer et al. (2012) state that
the PutGet law can be reformulated as injectivity property of the put function. For
that purpose, let us recapitulate the PutGet law.

get (put s v) = v

4https://alliance.seas.upenn.edu/~harmony/
5http://augeas.net
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As a first step, we can express the equation in a more functional manner. The view
v occurs on both sides of the equation, so we can use ⌘-reduction to simplify the
equation.

get � put s = id (PutGet’)

The (�) operator defines function composition, that is, the equation PutGet’ says
that get is a left inverse for put s for all sources s. A function f :: A ! B is injective
if and only if there exists a function g :: B ! A such that g � f = (id :: A ! A). In
the PutGet’ equation above, we have the function put s ::V ! S that corresponds to
f and the counterpart get :: S ! V as the equivalent to g . The identity function in
the equation above is obviously of type id :: V ! V , because we ⌘-reduced the view
argument v :: V , thus, V must be the resulting type as well.

In the end, we can express the identity property of the first round-tripping rule
PutGet using just the put function. Thus, Fisher et al. demand put s to be injective
for all sources s.

s 0 2 put s v ^ s 0 2 put s v 0 ) v = v 0 (PutInj)

Similar to the ⌘-reduction for the PutGet law, we can rewrite the GetPut law as
well. It is a bit more complicated to rewrite the equation

put s (get s) = s

because of the two usages of the variable s. In order to simplify the equation, we need
to use a pair as argument; then, we can apply put to this argument. The resulting
argument is a function depending on s. The notion of using tuples instead of multiple
arguments and vice versa is called unccurrying and currying, respectively. In this case,
we need to apply the function uncurry :: (a ! b ! c) ! (a, b) ! c to the put :: S !
V ! S function in order to get a modified function put 0 = uncurry put :: (S ,V ) ! S

that takes a pair of S and V as its argument. With this auxiliary function at hand,
we can express a point-free version of the GetPut law.

put 0 � (�s ! (s, get s)) = id

For this equation, we can conclude that put 0, i.e., uncurry put , has a right inverse.
That is, put 0 is surjective for all sources S , because a function f ::A ! B is surjective
if and only if there exists a function g :: B ! A such that f � g = id :: B ! B holds.

8s 2 S 9s 0 2 S : put 0 (s 0, get s 0) = s (PutSurj)
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Actually, this equation only holds for total put functions, because the equation requires
to be fulfilled for all values s of the resulting type S . Fischer et al. formulate idem-
potence of �s ! put s v for all views v as an additional requirement for well-behaved
lenses.

s 0 2 put s v ) s 0 = put s 0 v (PutTwice)

In particular, PutTwice is a special case of the PutPut law.

4.1.3 Put-Based Combinators

Fischer et al. verified that there is only one get function for an arbitrary put function
that obeys PutInj and PutTwice6, and this get function can be determined with the
following equation.

get s = v , s = put s v (relation between get and put)

As a next step, Fischer et al. (2014) developed a put-based language in their sub-
sequent work. They present a general design of put-based languages as well as an
implementation of an embedded DSL for Haskell. The main idea of the put-based
language is to provide a handful of combinators. The language allows to define the
put function of a lens. The put function of a lens defines the synchronisation strategy
between a modified view and a given source. In order to provide a wide scope of such
strategies, the put-based language is based on functions with monadic effects. A lens
is represented as

type LensPG

0 m s v = Maybe s ! v ! m s,

where m denotes a monadic context. Depending on the given instance of the monad,
the programmer can influence the synchronisation behaviour. For example, we can
program with traditional lenses without monadic effects by using the Identity monad.

data Identity a = Identity {runIdentity :: a }

instance Monad Identity where

return valA = Identity valA

Identity valA>>= f = f valA

type LensPG s v = LensPG

0 Identity s v

6In later work of Hu et al. (2014) these both properties are called PutDetermination and PutStability

respectively
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The put-based language is built upon a handful of combinators, which are inspired
by the combinators of Foster et al., e.g., identity and constant lenses as well as
lenses for filter, composition, products, sums and conditionals. The language assures
well-behavedness by construction. All combinators, including composition, form well-
behaved lenses. Thus, the composition of predefined combinators form well-behaved
lenses as well. Additionally, the Haskell library provides functions to define custom
lenses. Due to the lack of static checks concerning well-behavedness, the user can use
the function checkGetPut and checkPutGet7 to check for the corresponding lens laws
at runtime. For simplicity reasons, we refrain from defining these check functions and
focus on the lens combinators instead.

We can rebuild the example given above in terms of the put-based language with a
predefined combinator called addfst that works on pairs.

addfst :: (Maybe (s1, v) ! v ! m s1) ! LensPG

0 m (s1, v) v

addfst f = checkGetPut put 0

where

put 0 :: LensPG

0 m (s1, v) v

put 0 s v = f s v >>= �s1 ! return (s1, v)

The lens addfst adds a second component to the current source to create a pair. The
first argument of addfst is a function to create the first component of the pair from
the given source and view. We can use this combinator to define a lens fstPG , which
projects a pair to its first component.

fstPG :: LensPG

0 m (s1, v) v

fstPG =

addfst (�s v ! maybe (fail "Undefined") (return � fst) s)

If there is no source available, we cannot do anything meaningful without losing
generality, thus, we just throw an error.8 Otherwise, we use fst to select the first
component of the given pair.

7In the associated paper, Fischer et al. use the name enforceGetPut instead.
8The function fail is part of the Monad type class, thus, we can implement a mechanism to catch

such errors.
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> get fstPG (42, "Hello World")

42

> put fstPG (42, "Hello World") 13

(13, "Hello World")

We will discuss the actual implementation in Section 5.1 in more detail, because
the Haskell library putlenses9, which implements the ideas of the presented paper by
Fischer et al. (2014), forms the basis of an implementation in Curry that we review
later.

4.2 Bidirectionalisation

Bidirectionalisation is the process of automatically transforming unidirectional func-
tions into bidirectional functions. In the following, we present two techniques to bidi-
rectionalise a unidirectional get function: the first technique syntactically derives a
put function for a given get function; the second technique takes a more semantic
approach to generate an appropriate put function at runtime. Both techniques have
their advantages and disadvantages. Hence, the authors also worked out a combined
approach, which yields results at least as good as either one of the two techniques. We
also give a short introduction for the combined approach.

4.2.1 Syntactic Bidirectionalisation

Matsuda et al. (2007) introduce a general first-order functional language called VDL.
Their language has two syntactical restrictions, which we have to keep in mind when
talking about derivable functions: the defined functions have to be affine and tree-
less. A function definition is affine if every variable on the left-hand side is used
at most once on the right-hand side of the definition; treeless characterises function
definitions without intermediate data structures. Nevertheless, VDL allows function
definitions using arbitrary algebraic data structures, e.g., lists and trees. The user
defines unidirectional get functions, and VDL automatically derives appropriate put
functions. The underlying derivation algorithm is based on a similar idea in the field
of databases, but follows a syntactical approach. As a first step, VDL derives a view
9http://hackage.haskell.org/package/putlenses
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complement function f

c : S ! (S \ V ) for a get10 function f : S ! V . The main
idea of the view complement function f

c is to preserve any information disregarded
by the original function f , such that f x and f

c
x are sufficient to reconstruct the

argument x. For instance, if we consider the function f : (A,B) ! A, f = fst , then
f

c : (A,B) ! B, f

c = snd serves as a valid view complement function.
Matsuda et al. require the view complement function f

c to be injective when paired
with the view function f ; a pair of X and Y is denoted with X4Y . That is, (f4f

c)

is injective for a get function f and its complement f

c. As the last step, an inverse
transformation is performed on the pair to obtain the put function. The following
equations illustrate the definitions given above.

f : S ! V (get function)

f

c : S ! V

0 (view complement function)

f 4 f

c : S ! (V ⇥ V

0), (tupled function)

(f 4 f

c) valS = (f valS , f c valS )

All in all, the put function can be derived if the paired function and its inverse can
be derived effectively.

put<f,fc>(s, v) = (f 4 f

c)�1(v , f c s) (derived put function)

In their paper, the authors give an algorithm to automatically derive a view comple-
ment function for a given get function.

There are two details that we did not examine so far: a determinism property for
the inverse transformation and further requirements for the complement function. The
inverse transformation is not guaranteed to be deterministic; it is possible to generate
equations with overlapping left-hand sides. In the case of nondeterministic programs,
a backtracking search becomes necessary. However, Voigtländer et al. (2010) state
that it would be preferable to obtain only deterministic programs. Furthermore, the
complement, which we derive in the first step, must be injective and minimal with
respect to a collapsing order, which needs to be defined. Fortunately, injectivity is
decidable in VDL, and the proposed algorithm is sound and complete.

10Matsuda et al. call get functions view functions instead.
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4.2.2 Semantic Bidirectionalisation

On the other hand, Voigtländer (2009) introduces an approach for semantic bidirec-
tionalisation using free theorems to prove consistency conditions. Voigtländer defines
a function b↵ :: (8a.[a ] ! [a ]) ! (8a.[a ] ! [a ] ! [a ]) in Haskell, whose first argu-
ment is a polymorphic get function and which yields the appropriate put function. The
acronym b↵ stands for bidirectionalisation for free, which is the title of the underlying
paper.

In contrast to the syntactic approach we studied before, the resulting put is a func-
tional value, which is semantically equivalent to a syntactically derived put function.
The advantage is that we have fewer language restrictions, because we can use Haskell
as our language of choice instead of a sublanguage. The b↵ function takes any Haskell
function of appropriate type as its argument. The b↵ function is defined on lists, but
the approach is also applicable for all data structures, which have shape and content,
i.e., which apply to the category of containers as defined by Abott et al. (2003).

The approach exploits the fact that the get function is polymorphic over its first
argument, i.e., the container’s element. We can assume that it does not depend on
any concrete element of its container, but only on positional information that are
independent of the elements’ value. The use of free theorems allows us to inspect the
effect of the get transformation without knowing about the explicit implementation.
That is, we can apply the get function to a specific list, e.g., integer values in ascending
order, and observe the positional information. In the following, we call such a specific
list template.

We show the internal behaviour of b↵ with an example. As underlying get function,
we use our typical example fst again. In order to fit the restrictions of b↵ , we adjust
fst to yield the head element as a singleton list.

get fst :: [a ] ! [a ]

get fst (x : _) = [x ]

In the following, we want to update a given source with a new view. We have a
source eitherValues = [Left 10,Left 12,Right True,Left 13], a list of ascending order
as template, and an updated view upd = [Right False ].
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The idea is to first construct a mapping between each element of the given list and
the template: each element of eitherValues is mapped with the corresponding element
of the template.

mapping :: [a ] ! [(Int , a)]

mapping = zip [0 . . ]

>mapping eitherValues

[(0,Left 10), (1,Left 12), (2,Right True), (3,Left 13)]

As a second step, we simulate the behaviour of the get function on the template list:
we apply the get function to the template. Then, each element of the resulting list is
mapped with the corresponding elements of the updated view upd .

mapping2 :: ([a ] ! [a ]) ! [Int ] ! [a ] ! [(Int , a)]

mapping2 getF is = zip (getF is)

>mapping2 (get fst [0, 1, 2, 3]) [Right False ]

-- zip [0] [Right False]
[(0,Right False)]

We combine both mappings with precedences to the second: if we find a value in
both mappings, we choose the one from the updated view. That is, the auxiliary
function union 0 combines the two lists accordingly.

mapping3 :: [(Int , a)] ! [(Int , a)] ! [(Int , a)]

mapping3 m1 m2 = union 0 m1 m2

>mapping3 [(0,Left 10), (1,Left 12), (2,Right True), (3,Left 13)]

[(0,Right False)]

[(0,Right False), (1,Left 12), (2,Right True), (3,Left 13)]

As last step, every element in the template is replaced by its associated value ac-
cording to the combined mapping. With all the ground prepared, we can define the
b↵ function given in the paper.
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b↵ :: (8a.[a ] ! [a ]) ! (8a.[a ] ! [a ] ! [a ])

b↵ get f s v = map (fromJust � flip lookup (mapping3 m1 m2)) m1

where

m1 = mapping s

m2 = mapping2 get f (map snd m1) v

> b↵ get fst eitherValues upd

[Right False,Left 12,Right True,Left 13]

Voigtländer also defines two additional functions, b↵ EQ and b↵ ORD , which use the
functions of the type classes Eq and Ord , respectively. In order to apply his approach
for a get function that duplicates elements, the defined mapping fails because of its
simple definition. In a more practical mapping, equivalent elements in the original
list need to map to the same element in the template. Thus, we need to compare the
elements within the list: the Eq type class comes into play. For the function b↵ Ord ,
the mapping needs a similar, but rather complicated and more technical adjustment
to allow the use of free theorems again.

As the major disadvantage, any get function that changes the shape of its elements
fails due to non-trackable updates. That is, the semantic approach is limited to get
functions that preserve the shape of the given list.

As an enhancement for semantic bidirectionalisation, Wang and Najd (2014) pre-
sented a generalisation that extends the range of get function to higher-order functions
that are not expressed by type classes or depend on different type classes than Eq and
Ord . Instead of three single functions, like in Voigtländer’s work, Wang and Najd
define a function that takes an observer function, which gives rise to equivalence prop-
erties of the elements, and an observer function for the template. The approach uses
these observer functions to build the mappings as in the original approach. These
mappings are called observation tables and generalise the explicit usage of different
functions for different type class dependencies.

As a second enhancement, Matsuda and Wang (2013a) introduce a type class to
extend the range of get functions to monomorphic transformations. The main idea is to
provide a type class PackM � ↵ µ to convert monomorphic functions into polymorphic
ones.

32



4 Different Implementation Approaches 4.2. Bidirectionalisation

class (Pack � ↵,Monad µ) ) PackM � ↵ µ where

liftO :: Eq � ) ([� ] ! �) ! [↵ ] ! µ �

class Pack � ↵ | ↵ ! � where

new :: � ! ↵

The type variable � represents the type of the concrete data structure, whereas ↵ is
the type of the abstracted value. The last type variable µ is the used monad, which
tracks the transformation on values of the concrete structure; these tracking data are
called observation histories. The additional type class Pack � ↵ constructs labels to
track information regarding the location of values within the concrete structure. In
short, the approach replaces monomorphic values in the definition of the get function,
which are, for example, used for comparisons with polymorphic values.

4.2.3 Combining Semantic and Syntactic Bidirectionalisation

It becomes apparent that both approaches have their pros and cons. Naturally,
Voigtländer et al. (2010) propose a combination of the semantic and the syntactic
bidirectionalisation. The combined approach uses each technique for its area of ex-
pertise: the semantic derivation for content updates and the syntactic derivation for
shape-changing transformations. The authors categorise the two techniques; whereas
the syntactic bidirectionalisation is used as black box, the semantic bidirectionalisa-
tion is similar to a glass box. That is, the semantic bidirectionalisation approach can
be more powerful if we refactor the transformation in order to plug-in a syntactic
technique; then, shape-changing transformations can be handled. The presented com-
bination is general enough to allow any syntactical approach to be plugged-in. This
generality is also the motivation to call it black-box: we do not know anything about
the actual derivation, but that it yields the wanted results. The overall idea and im-
plementation to plug-in a syntactical bidirectionalisation is discussed by Voigtländer
et al. (2013) in more detail.

As a minor drawback, the range of get definitions covered by the combined ap-
proach is limited by two factors: only affine and treeless functions are allowed because
of the usage of the syntactic bidirectionalisation, and we can only use polymorphic
functions to use the semantic bidirectionalisation technique. Fortunately, the pre-
sented enhancements and extensions to semantic bidirectionalisation do consort well
with the combined approach. That is, we can use the more general function b↵By in
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combination with specified observer functions for semantic bidirectionalisation or turn
monomorphic functions into polymorphic ones with the monadic extension to gain a
wider range of possible get functions. In the end, the combined approach performs
never worse than one of the two approaches by themselves. The semantic bidirection-
alisation on its own has difficulties in shape-changing update, but such updates are
covered with the combined approach. The syntactic approach operates on specialised
programs now, which can lead to better results.

In addition, the semantic bidirectionalisation uses free theorems also to prove consis-
tency conditions. We discussed the syntactical bidirectionalisation, which formulates
its derivation on the ground of the GetPut and PutGet law. In contrast, Voigtlän-
der proves, with the help of free theorems, for each of his function definitions – b↵ ,
b↵ EQ and b↵ ORD – that they obey the lens laws. That is, instead of a correctness-
by-construction approach, the laws are verified by hand.
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Lens Implementations in Curry

In this chapter, we discuss two implementations of lenses in the functional logic pro-
gramming language Curry. First, a combinatorial approach that focuses on the put
function. Second, a put-based implementation using Curry’s built-in search abilities.
We also present nondeterministic lenses, a conservative extension that arises naturally
in the setting of functional logic programming with Curry.

The first implementation is a combinatorial approach that is based on the Haskell
library putlenses introduced in Section 4.1. The original library is built on monadic
combinators that include a get and a put function, but the user only defines the put
direction of a lens when using this library. For the Curry implementation, we adapt
the underlying monadic approach by using Curry’s built-in nondeterminism as the
update strategy.

As the second implementation, we discuss a very simple library that does not use
the combinatorial approach, but builds lenses only with the help of a put definition. In
order to use lenses in the get direction, the library offers a general get function based on
the given put definition and the lens laws. We discuss a potential get-based approach
that follows the same idea as our implementation, argue about its disadvantages, and
present related work.

In the context of nondeterministic lenses, we present adapted versions of the classical
lens laws as well as a handful of lens definitions well-suited for a nondeterministic
setting.
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5.1 Combinatorial Lens Library

We discussed two different approaches on combinatorial frameworks for lenses in Sec-
tion 4.1 to provide an insight of recent implementations. The combinatorial library
for Curry is based on the approach of Fischer et al., who published the Haskell library
putlenses as a result of their work on lenses. In the remaining section, we discuss the
underlying implementation and give additional comments on its original counterpart.
Additionally, we present some of the most important combinators as representatives.
At last, we give some exemplary lens definitions to show the usage of the library and
the definition of classical lens examples with the available combinators.

5.1.1 Motivation

The simplest representation of lenses is a pair of functions: one function for the get
direction and one for the put direction. We can define such a data structure in Curry
in three different ways: as a data type declaration with its own constructor, as a
record type1, or as a type synonym. For simplicity, we define lenses with a simple type
synonym for a pair of get and put function.

type LensPair s v = (s ! v , s ! v ! s)

putPair :: LensPair s v ! s ! v ! s

putPair = snd

getPair :: LensPair s v ! s ! v

getPair = fst

In addition to the definition of a lens type, we can access the get and put component
of the pair with helper functions getPair and putPair , respectively. Next, we define a
simple lens with a pair of arbitrary type as source that projects its first component in
the get direction and updates the first component in the put direction. The update
does not effect the second component.

1We will not pursue the usage of record types here, but seize the concept in Section 6.2.
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fstPair :: LensPair (a, b) a

fstPair = (get 0, put 0)

where

get 0 :: (a, b) ! a

get 0 (x , ) = x

put 0 :: (a, b) ! a ! (a, b)

put 0 ( , y) z = (z , y)

The definition of this lens is straightforward, however, while we gain from simplicity,
we lose in accuracy and maintainability. First of all, the given definition does not
automatically form a well-behaved lens, because we did not consider the lens laws
yet.2 Second, if we modify one of the two functions, we have to make sure that the
other one still harmonises with our modifications. That is, we have to check the
lens definition manually with regard to consistency and validity. This circumstance is
error-prone and requires a high maintenance effort, because we do not only have to
check the lens property once after definition, but every time we modify one of the lens
components. As an example, let us make a slight modification to the put function
and define a lens fstInc, which, additionally, increments its first component in the put
direction.

fstInc :: LensPair (Int , a)

fstInc = (get 0, put 0)

where

get 0 (x , ) = x

put 0 ( , y) x = (x + 1, y)

We have made slight changes to the put function, which only affect the first compo-
nent. It would be interesting to check if the lens laws still hold after our modifications.

getPair fstInc (putPair fstInc (1, 2) 13)

> 14

putPair fstInc (1, 2) (getPair fstInc (1, 2))

> (2, 2)

2We know, however, from Section 3.2 that this exemplary lens definition is well-behaved.
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The first expression checks the behaviour of the PutGet law, which does not behave
as expected; the second expression behaves rather strangely with respect to the GetPut
law. A very simple change breaks both laws, because we forgot to consider both
functions. We can easily fix this bug by changing the right-hand side of the get
direction to x � 1. However, this simple approach is not satisfactory at all. First, it
does not feel bidirectional, because we still maintain two unidirectional functions in
disguise. Second, we want to check the lens laws neither every time we define a new
lens nor every time again we make changes to existing definitions.

5.1.2 Implementation

In order to provide a more user-friendly library with less maintenance effort, the library
needs a rich set of combinators that are already well-behaved. Then, the user builds
her own lenses with the help of these combinators without considering any laws, but
only with her implementation in mind.

In the following, we present a reimplementation of the Haskell library putlenses

in Curry. The original implementation provides a monadic interface to instantiate
different update strategies. Due to the lack of type classes in Curry, we cannot use
this approach, and we use the built-in nondeterminism instead. However, we can
approximate the desired behaviour by instantiating the monad with a list when using
the Haskell library.

data Lens s v = Lens (Maybe s ! v ! s) (s ! Maybe v)

put :: Lens s v ! Maybe s ! v ! s

put (Lens f ) = f

getM :: Lens s v ! s ! Maybe v

getM (Lens f ) = f

get :: Lens s v ! s ! v

get (Lens f ) s = case f s of

Just v ! v

Nothing ! error "get’: value is ‘Nothing‘"

In order to handle the problem of partial lens definitions, which we discussed in
Section 3.2.3, the given representation of lenses wraps a Maybe data type around the
view for the get function. That is, we can actually observe if the expression get s
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succeeds or fails. We could use Set Functions, introduced by Antoy and Hanus (2009),
to identify defined and undefined values, but we adhere to the original implementation
for simplicity reasons.3

Composition

Composition is the most valuable combinator, because it serves as a link between other
primitive combinators to define more complex lenses. The composition function takes
two lens functions that are well-suited and yields a specialised combination of these
lenses. Two lenses are well-suited for composition if the view of the first lens and the
source of the second lens have matching types.

(< . >) :: Lens s v ! Lens v w ! Lens s w

l1 < . > l2 = Lens putNew getNew

where

putNew ms@(Just s) w = put l1 ms (put l2 (getM l1 s) w)

putNew Nothing w = put l1 Nothing (put l2 Nothing w)

getNew s = getM l2 (get l1 s)

That is, in the get direction we can make two consecutive applications, i.e., the
composition of two get functions is just function composition. Given two get functions
– get l1 :: s ! v and get l2 :: v ! w – and a source of type s, we apply get l1 to yield a
view of type v . Then, we apply get l2 to the result, which yields a value of type w . This
application yields a new get function of type get l1+l2 :: s ! w . For the put direction,
we have to play a bit more with the available functions and take a closer look at their
type signatures. In addition to the get functions we discussed before, we have two put
functions, put l1 ::Maybe s ! v ! s and put l2 ::Maybe v ! w ! v , a source of type
s, and an updated view of type w . The resulting put function is supposed to be of
type put l1+l2 ::Maybe s ! w ! s. If there is no source available, i.e., the value of the
source is Nothing , we can apply the two put functions consecutively. put l2 is applied
to the source and the given view, and put l1 is applied to the resulting value as second
argument. In case of an available source, we have to set the inner structure first with
the given updated view. That is, we apply put l2 to the view of the given source and
the updated view. Here, the usage of Maybe to wrap the result of a put function comes
3Set Functions might behave unexpectedly for partially applied functions.
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in handy: we can easily make the distinction if a put function failed or not. As a last
step, the source is updated with the resulting inner structure from the previous step
using put l1 .

In the following, we present some primitive combinators more briefly than the pre-
vious description and emphasise examples of these combinators in action.

Basics: Identity and Filter

The identity combinator yields its source in the get direction and replaces its source
with the given view for the put function. This lens is restricted to sources and views
of the same type.

id :: Lens v v

id = Lens (\_v 0 ! v 0) Just

A similar, but maybe more feasible, combinator filters its source and view, respec-
tively, with regard to a specified predicate.

' :: (v ! Bool) ! Lens v v

' p = Lens get 0 put 0

where

get 0 s | p s = Just s

| otherwise = Nothing

put 0 v | p v = v

| otherwise = error "phi: predicate not fulfilled"

In particular, the put direction declines any updated view that does not fulfil the
given predicate. That is, we demand the update on the view to be valid. The get
function behaves as follows: if the given source fulfils the predicate, it yields that
source; otherwise a valid view for the given source does not exist, and the function
yields Nothing .

Products: Pairing and Unpairing

The second category of combinators covers products to build pairs and project com-
ponents of pairs. The first lens builds a pair in the put direction by injecting a value
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to the left of the view, and it projects the second component of the source in the get
direction.

addFst :: (Maybe (s1 , v) ! v ! s1 ) ! Lens (s1 , v) v

addFst f = Lens put 0 (Just � snd)
where

put 0 s v 0 = (f s v 0
, v 0)

The user constructs the injected value with a specified function, which takes a pos-
sible source and the updated view to yield a new first component. This specified
function is, however, not restricted to a specific range in order to fulfil the lens laws.
For instance, the following lens definition fstAndInc resets the first component of the
source pair with an updated view and, simultaneous, increments the second compo-
nent. We can define this lens by means of addSnd , the dual lens of addFst that
behaves like addFst , but injects a second component and projects the first component,
respectively.

fstAndInc :: Lens (Int , Int) Int

fstAndInc = addSnd inc

where

inc Nothing = error "fstAndInc: undefined source"

inc (Just ( , v)) = v + 1

Unfortunately, this lens does not fulfil the GetPut law. We observe that the given
implementation of addFst does not take any validation checks into account. In the
original implementation, Fischer et al. ensure well-behavedness by using an auxiliary
function enforceGetPut to resolve the irregularity. As a second option, they suggest to
adjust the implementation of the get function to yield ? for every source that does not
fulfil the GetPut law. For our implementation, we chose the latter solution, because
the manual correction increases the range of valid lenses, whereas the elimination
decreases the range and, thus, makes the lens less applicable.

The helper function enforceGetPut dynamically checks the behaviour of the given
lens; the get function stays untouched, but the function applies the get function to the
given source to check if the resulting value equals the current value.

41



5.1. Combinatorial Lens Library 5 Lens Implementations in Curry

enforceGetPut :: Lens a b ! Lens a b

enforceGetPut (Lens putL getL) = Lens put 0 getL

where

put 0 ms v = case ms of

Just v 0 | getL v 0 ⌘ Just v ! v 0

! putL

If the updated view is equal to the current view, we do not make any further
changes and yield the source; otherwise we apply the put function as usual. That
is, enforeGetPut yields the given source for an unchanged view according to the Get-
Put law, hence, forces the lens to be well-behaved. We rewrite the definition of addFst
as follows.

addFst :: (Maybe (s1 , v) ! v ! s1 ) ! Lens (s1 , v) v

addFst f = enforceGetPut (Lens put 0 (Just � snd))
where

put 0 s v 0 = (f s v 0
, v 0)

As counterpart to addFst and addSnd , we provide remFst and remSnd to destruct
the view pair by discarding the first and second component, respectively.

remFst :: (v ! v1 ) ! Lens v (v1 , v)

remFst f = Lens put 0 (�s ! Just (f s, s))

where

put 0 (v1 , v)

| f v ⌘ v1 = v

| otherwise = error "remFst: first and second value do not match"

For the definition of remFst , the given function creates the new first component
in the get direction, and the first component is discarded in the definition of the put
function. Additionally, we have to assure that the user-specified function applied to
the second component of the source yields the same value as the first value of the
source. Without this correction, the given lens definition would not fulfil the PutGet
law.
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Sums: Either Left or Right

In order to handle sum types like Either , we provide a lens that distinguishes between
a Left and a Right value. The lens injL injects the given updated view as a left value
and ignores the source; its counterpart injR injects a right value. In the get direction,
the function ignores a given left and right value, respectively.

injL :: Lens (Either v1 v2 ) v1

injL = Lens (const � Left) get 0

where

get 0 (Left v) = Just v

get 0 (Right ) = Nothing

injR :: Lens (Either v1 v2 ) v2

injR = Lens (\_v ! Right v) get 0

where

get 0 (Left ) = Nothing

get 0 (Right v) = Just v

Unlike addFst and remFst , the given lens definition and its dual do not need any
dynamic checks to ensure well-behavedness. These kind of lenses do not seem very
feasible at first sight, however, we will see some practical lens definitions in the next
section.

5.1.3 Usage and Examples

Although we gave the fundamental combinators of the library, we did not dive into
programming our own lenses so far. When defining lenses, the user has to build his
lens by composing the combinators of the library.

Example I: Starting with fst

As a first simple example, we define our running example, fst , by the means of addSnd .

fstcomb :: Lens (a, b) a

fstcomb = addSnd (�s ! maybe failed snd s)

If there is no source available, we cannot do anything meaningful without losing
generality – we could only yield the view instead. However, we do not want to restrict
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the types of source and view to match, thus, the lens fails if no source is available.
Otherwise, we simply select the second component of the given pair and add it to the
updated view to form a pair again. The usage of addSnd indicates that we inject the
value as second component, whereas the second component is reserved for the updated
view. Naturally, it follows that we can define snd as a lens as well: instead of addSnd
and snd , we use their duals addFst and fst .

What about the get direction? We have only discussed the update strategy of the
lens, i.e., the put direction. First of all, let us test the behaviour of fstcomb .

> put fstcomb (Just (1, "test")) 13

(13, "test")

> get fstcomb (13, "test")

13

The get as well as the put direction behaves as intended. We can observe that we do
not need to take the get direction into account when we define a new lens. The library
encourages the user to define his lenses by means of the put direction only. As we
discussed in Section 4.1.2, it may be more conventional and intuitive. Nevertheless,
the put functions that we defined for the library have a unique corresponding get
function, because all put functions comply with the requirements stated by Fischer et
al.

Example II: Lenses for Built-in Data Types

The library consists of several combinators that work on sums and products; but
what about built-in data types or user-defined structures? We use the idea that every
algebraic data type can be expressed by sums and products. For example, we can take
a look at the Maybe data type in Curry, which is a classical representative of a sum
type.

data Maybe a = Nothing | Just a

The Maybe data type has one constructor Nothing that represents a failure value,
and the Just constructor for valid values. We can easily rewrite this data type and
use sum types, i.e., Either , instead.
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type Maybe a = Either () a

nothing ::Maybe a

nothing = Left ()

just :: a ! Maybe a

just = Right

A failure value like Nothing can be represented with Left (), because () is the only
value of the Unit type; any other value can be represented with Right instead of Just .

As a second example, we discuss how to use the available combinators to build lenses
for lists. First of all, we need to think about a representation for lists by means of sum
or product types; for this, we recall the definition of lists in Curry.

data [a ] = [ ] | a : [a ]

Similar to the Maybe data type, we have one value that stands for itself and does
not hold any value: the empty list. In addition, the second constructor adds a new
element to the head of a list, that is, the binary constructor can be represented as a
product, i.e., with (, ). With this general structure in mind, we can represent lists as
combination of Either and (, ) as follows.

type List a = Either () (a, [a ])

empty :: List a

empty = Left ()

cons :: a ! [a ] ! List a

cons x xs = Right (x , xs)

In this representation, the list [1, 2, 3, 4] is rewritten as Right (1, [2, 3, 4]), and the
empty list, [ ], corresponds to Left ().

Every algebraic data type has a set of selectors to work with. In the following,
we define lenses equivalent to head and tail in the get direction. Up to this point,
we have withheld the information about another special combinator that builds an
isomorphism between two data representations.

isoLens :: (a ! b) ! (b ! a) ! Lens b a

isoLens f g = Lens (\_v ! f v) (�s ! Just (g s))
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The isoLens forms an isomorphism between two types a and b, where b is the
starting value, and a takes the role of the internal structure. The functions takes two
functions for transformations: from a to b and vice versa. In the get direction, we
transform the source into an internal structure, and we convert the updated structure
back again in the put direction. In order to provide selectors for lists, we have to define
such an isomorphism between the list data type and the rewritten structure based on
sums and products.

inList :: Lens [a ] (List a)

inList = isoLens inn out

where

inn = either (�() ! [ ]) (�(x , xs) ! x : xs)

out xs = case xs of

[ ] ! empty

y : ys ! cons y ys

The transformation functions follow naturally from the definition of List a, as above.
We can eliminate the wrapping Either by using injR and injL that unwrap the Left

and Right constructor, respectively, and yielding the containing value.

cons :: Lens [a ] (a, [a ])

cons = inList < . > injR

That is, for an exemplary list [1, 2, 3, 4], we can apply our lens cons to transform
the list into a pair of head element and remaining list or to replace the given list by a
new one.

> get 0 cons [1, 2, 3, 4]

(1, [2, 3, 4])

> put 0 cons (Just [1, 2, 3, 4]) (13, [ ])

[13]

> get 0 cons [ ]

"get’: value is ‘Nothing‘"

Unfortunately, we cannot transform the empty list into a representation that consists
only of products for two reasons. First, the used combinator injR only selects Right

values, and the empty list is represented as Left (). Second, product types are not
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suitable to model failure values like the empty list. The usage of injL instead of injR
is not feasible either: injL can only select Left values and fails otherwise. However,
this minor disadvantage does not affect the combinators that we want to define. The
functions head and tail are partial functions that only operate on non-empty lists; we
do not need to take the empty list into consideration to define our lenses.

The actual definition of changeHead and changeTail4 is rather simple: the cons

combinator splits the list into head and tail. Thus, we only need to choose between
the first and second component as a last step.

changeHead :: Lens [a ] a

changeHead = cons < . > keepSnd

keepSnd :: Lens (v , s1 ) v

keepSnd = addSnd (�s v 0 ! maybe (const failed) snd s)

changeTail :: Lens [a ] [a ]

changeTail = cons < . > keepFst

keepFst :: Lens (v , s1 ) v

keepFst = addFst (�s v 0 ! maybe (const failed) fst s)

Obviously, changeHead replaces the head of the list with a new element and leaves
the tail untouched with keepSnd and vice versa for changeTail . In the corresponding
get direction, we can access the head and tail of the list, respectively. The definition
of the auxiliary functions keepSnd and keepFst is analogue to the definition of fstcomb

given above.

> get 0 changeHead [1, 2, 3, 4]

1

> put 0 changeHead [1, 2, 3, 4] 13

[13, 2, 3, 4]

> get 0 changeTail [1, 2, 3, 4]

[2, 3, 4]

> put 0 changeTail [1, 2, 3, 4] [13, 14, 15]

[1, 13, 14, 15]

4The names conform to the functionality of their put function.
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Example III: User-defined Data Types

Users can follow the same approach to define lenses for self-defined data types. As an
example, we transform a data type with one constructor and several arguments into
a sum. Consider the simple data type Date with one constructor and two arguments
corresponding to a month and a day, respectively.

type Month = Int

type Day = Int

data Date = Date Month Day

We can easily transform this data type into a pair (Month,Day) with the lens

date :: Lens Date (Month,Day)

date = isoLens inn out

where

in (m, d) = Date m d

out (Date m d) = (m, d)

and provide selectors – day and month – to access the values in the get direction
and replace them with new values in the put direction.

month :: Lens Date Month

month = dateLens < . > keepSnd

day :: Lens Date Day

day = dateLens < . > keepFst

> put 0 month (Date 12 10) 10

Date 10 10

> get 0 day (Date 11 18)

18

We can observe from this simple example that, in addition to simple accessors, we
can add checks in order to restrict the range of valid values. In the case of a data
structure for dates, valid values range between Date 1 1 and Date 12 31 with a lot of
exceptions in between. We can modify the transformation functions of date easily to
shrink the range of valid dates.
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dateadvance :: Lens Date (Month,Day)

dateadvance = isoLens inn out

where

in (m, d) | check m d = Date m d

out (Date m d) | check m d = (m, d)

check m d = 0<m ^ m < 13 ^ 0< d ^ d < 32

Our modification still tolerates some invalide dates, e.g. Date 2 31, but for simplicity
reasons we leave further adjustments to the reader.

This schema can be used for all kinds of algebraic data types; we provide some more
examples in Appendix A.

5.2 Put-Lenses Library

In contradiction to most of the work in the area of bidirectional programming, Fischer
et al. set their focus on defining the put direction instead of a get function. With
this approach, they want to avoid a whole range of functions that are not suited for
the get direction because of the ambiguity of their corresponding put function. The
remainder of this section deals with a very simple implementation of a lens library in
Curry that sets its focus on the put functions as well. We also give some examples for
better comprehension. In order to motivate our approach, we start with a discussion
about the current state of the art and why we decided to focus on the put function
anyway.

5.2.1 Getting in the Way of Productive Results

As we have seen so far, most libraries and languages tackling the topic of bidirec-
tional programming define their language by means of the get direction. This view
on bidirectional programming arises from the way programmers are used to define
functions. Programmers are more familiar with defining a get function – a function
that selects information from a structure – rather than thinking about an appropriate
update strategy. Therefore, let us take a look at a very simple implementation of a
get-based approach.
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type Lensget s v = s ! v

getget :: Lensget s v ! s ! v

getget = id

We define a type synonym for lenses that is equivalent to the signature of a get
function, i.e., we represent lenses as their get function. This definition leads to a
straightforward implementation of a get function for lenses: we merely apply the given
lens to a given source. However, this implementation of lenses lacks information for the
put direction. As a quick reminder: we want to define a function putget that updates
a given source with a modified view with respect to the given lens. The given lens
is a function that projects some view from a given source. Thus, in contradiction to
our previous approach of a combinatorial language, here, the given lens has no further
information about the update strategy. All we know about the given lens is that it
needs to obey certain round-tripping laws to be well-behaved: GetPut and PutGet.
That is, we can define the put definition by means of the get definition with respect
to the PutGet law.

putget :: Lensget s v ! s ! v ! s

putget lens s v | getget s 0 ⌘ v = s 0

where s 0 free

In order to see this implementation in action, we take a look at our running example
in the setting of get-based lenses: we define fst by means of get-based lenses.

fstget :: Lensget (a, b) a

fstget (x , ) = x

This lens definition is very simple and constitutes a very familiar setting for the
programmer: we want to project the first component of a given pair. Thus, we ignore
the second component and simply yield the first component. If we run exemplary
function calls of getget and putget , we get more or less satisfactory results.

> getget fstget (1, 42)

1

> putget fstget (1, 42) 3

(3,_x1 )
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In the get direction, everything works as expected. Unfortunately, the put function
yields a free variable as its second component. This result leads to the realisation that
the get-based implementation is rather simple, not to say, too simple. If we use fstget in
the put direction, we loose the additional information of the source pair. The problem
arises from the definition of putget : we ignore the information about the original source,
and examine the updated view instead. After all, we do not have any information
about the second component of the given pair, because the definition of fstget takes
only the first component into consideration. In many cases, the discarded original
source leads to an ambiguous put function. In particular, the above implementation
is only applicable in case of injective get function: an injective function represents a
one-to-one mapping, it preserves distinctness. That is, there are no two elements of
the source domain that map to the same element in the codomain. In the case of our
example lens fstget , there are several source pairs that yield the same result; in fact,
every pair with the same first component yields the same view.

> getget fstget (1, 42)

1

> getget fstget (1, "Hello World")

1

> getget fstget (1,True)

1

The function fstget is not injective, which leads to an ambiguity issue and, hence,
to a non-constructive put function.

So, how do get-based lens definitions look like that are applicable to our implementa-
tion approach? As a main requirement, we need to define injective get functions. The
first observation, which we made in the context of the previous two lens definitions,
is that we cannot ignore any part of the given source without losing information of
the corresponding put function. Let us take a look at an injective get function that is
defined on pairs, with Ints as its first component, and an arbitrary type as its second
component.

incFstget :: LensGet (Int , b) (Int , b)

incFstget (x , y) = (x + 1, y)
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In the definition of the lens incFstget , we increment the first component and do not
touch the second one. In contrast to the previous lens definition, we do not ignore the
second component; it is still a part of the resulting view. That is, we have a lens that
maps pairs to pairs.

> get incFstget (1, "Hello World")

(2, ” Hello World 00)

> put incFstget (1, "Hello World") (2, "Haskell B. Curry")

(1, "Haskell B. Curry")

The behaviour of the lens is rather simple, but in this case it is injective. The aim
of this definition is to show that most get functions are not of real use for defining a
lens library for two reasons. First, they may be non-injective and, thus, do not have
a uniquely defined corresponding put function. Second, if the definition is injective,
its behaviour is rather simple and not very useful. We presented typical lenses like
headget and head fst , which are still very simple, but already do not comply with the
injectivity requirement.

In the end, the implementation of such a simple get-based is not promising; as a
short excursion, we discuss related work on get-based lens implementation and how
they approach the problem of ambiguity.

Excursion: Related Work on Get-Based Lenses

Most approaches try to build their bidirectional language with respect to a specific
application area, e.g., XML data, strings, or databases. However, in the following, we
discuss some approximations for a more general approach.

There are several existing ideas to overcome these limitations regarding ambiguity.
One of the most popular idea is to choose the best put function based on similarities
and differences between the original source and its potential update. The initial con-
cept was proposed by Meertens (1998), whose framework of constraint maintainers for
user interaction is sometimes called a pioneer work in the topic of bidirectional trans-
formations and lenses. In his work, he states that UI-transformations are supposed to
be as minimal as possible in respect to the given constraint. This approach aims to
be user-friendly: the results of the transformations are more comprehensible the more
they are related to the initial situation.
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More recently, Diskin et al. (2010, 2011a,b) follow this approach in their work about
delta lenses; they cover asymmetric as well as symmetric lenses. The general idea
is to distinguish between the computed delta and the effectively update propagation;
the get as well as the put function take the computed delta into consideration. The
computed delta helps to choose the best update strategy. Therefore, delta lenses
consist of a get and put function with a computed delta between original and updated
source as an additional argument. Diskin et al. develop a framework on the grounds
of algebraic theory. This idea of delta lenses is a conservative extension to the original
lens framework; that is, the framework can reproduce the behaviour of ordinary lenses.

Additionally, Barbosa et al. (2010) put the theory into practice: their development of
a new core language of matching lenses for strings can be seen as enhancement of their
domain-specific language Boomerang (see Section 4.1). The framework parametrises
lenses with respect to heuristics in order to calculate alignments. So-called chunks are
used to label each element of the source and to recognise these elements, when they are
modified with an updated view. As a drawback, the use of such one-to-one mappings
as alignment strategy leads to a positional alignment only. That is, every element of
the source needs to have a corresponding element in the view and vice versa; the focus
lies on the data and the original shape is ignored during alignment.

At this point, the work of Hofmann et al. (2012) and Pacheco et al. (2012, 2013a)
comes into play. The former approach develops a theory of edit lenses; the main dif-
ference to basic lenses is their focus on changes of structures similar to the idea behind
delta lenses. Edit lenses establish the connection between original and updated source;
an approach that does not allow any guessing, but has a strict rule to apply the re-
sulting alignment. Hofmann et al. describe these lenses with a standard mathematical
notion of monoids and monoid actions, where the former corresponds to the descrip-
tion of edits and the latter describes the actual application of such edits to the given
structure. Whereas Diskin et al. merely propose a theoretical framework for descrip-
tions of changes, Hofmann et al. introduce a more mature approach with additional
combinators, e.g., composition, sums, products etc., that give rise to brighter area of
application. Most recently, Wagner (2014) finished his dissertation about edit lenses
in a symmetric setting that gives rise to the latest developments in that area.

Pacheco et al. identified that positional updates are only reasonable for data align-
ment, but shape alignment needs to be considered separately. Their approach tackles
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the problem of positional alignment and introduces an explicit separation of shape and
data. In their paper, they describe a point-free delta lens language in a dependent type
setting, which is based on their early work of point-free lenses (2010). They distinguish
between horizontal and vertical deltas: the former describes an update, where source
and view values are of different types; the latter is a special case that describes updates
for values of the same type. Pacheco et al. criticise the lack of shape alignments in re-
lated work on lenses. Recent approaches focus on aligning the data of source and view,
but fail to establish a convenient mapping of both shapes. This positional alignment
leads to less predictable updates regarding insertion and deletion of elements, which
either are not detected or effect only the end positions of the underlying structure,
e.g. new elements are inserted at the end of a list. Thus, the main effort of Pacheco
and colleagues’ work are recursion patterns for horizontal delta lenses, which introduce
shape alignments for combinators like fold and unfold.

In this thesis, we do not investigate additional measurement techniques or applicable
restrictions to avoid ambiguous put functions. Instead, we focus on the put direction
of lens definitions and search for an applicable get direction.

5.2.2 Putting it Straight

Fischer et al. (2012) are the first to push lens definitions by means of the put function
instead in order to eschew the unavoidable ambiguity of the get function. Curry’s built-
in search capabilities form a fruitful ground for a bidirectional library that focuses on
one direction and calculates the corresponding function for the other direction.

The pivot of the library is a very simple definition to represent lenses by means of
the put direction as well as its selectors putput and getput to use a given lens in the
put and get direction, respectively.

type Lensput s v = s ! v ! s

putput :: Lensput s v ! s ! v ! s

putput = id

getput :: Lensput s v ! s ! v

getput lens s | putput lens s v ⌘ s = v

where v free
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The idea of the definition of getput is symmetric to putget from the get-based ap-
proach above. In this case, we use the PutGet law to define the requirements for an
appropriate get function for a given lens definition. That is, Curry searches for an
updated view that yields the given source, when we call the lens in the put direction
with that source and the updated view.

As usual, we define a lens to project the first component of a pair. Actually, in the
setting of a put-based lens library, we want to define a lens to set the first component
of a pair.

fstput :: Lensput (a, b) a

fstput ( , y) z = (z , y)

However, this lens definition is supposed to be equivalent to other examples of fst
in the setting of lenses. Since we have already defined the update strategy in the put
direction, we have to check if the get direction actually yields the first component of
the given pair.

> putput fstput (1, 2) 13

(13, 2)

> getput fstput (13, 2)

13

Clearly, the get direction works as expected – but how exactly does Curry evaluate
this expression? In order to further examine the question, we take a closer look at the
evaluation steps of the expression getput fstput (13, 2).

getput fstput (13, 2)

⌘ { (1) evaluate getput ; replace guard with if-then-else expression }
if putput fstput (13, 2) v

0 ⌘ (13, 2) then v 0
else failed

where v 0 free

⌘ { (2) evaluate (sub put put) to id and apply id it the given arguments }
if fstput (13, 2) v

0 ⌘ (13, 2) then v 0
else failed

where v 0 free

⌘ { (3) evaluate fstput (13, 2) v
0 to (v 0

, 2); v 0 is still not bound yet }
if (v 0

, 2) ⌘ (13, 2) then v 0
else failed

where v 0 free

⌘ { (4) in order to evaluate (⌘), the free variable is bound to 13 }
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{ replace each occurrence of v 0 with 13 }
if (13, 2) ⌘ (13, 2) then 13 else failed

⌘ { (5) evaluate the if-condition to True }
if True then 13 else failed

⌘ { (6) }
13

The definition of getput introduces a free variable that is bound in the process and
represents the value that the function yields as a result. The most important evaluation
takes place at step 4, where the operator (⌘) forces its left argument to be evaluated to
reduce the whole conditional expression to a boolean value. The left argument consists
of the free variable, which is then bound to the appropriate value that evaluates the
condition to True. In this case, the expression (v 0

, 2) ⌘ (13, 2) evaluates to True if
both expressions can be reduced to the same value. The second components of the
two pairs are already equivalent, thus, the free variable v 0 needs to be bound to the
first component of the right pair, i.e., 13. More precisely, Curry generates a series of
numbers that fail the condition before the variable is finally bound to 13 – we discuss
Curry’s built-in search capabilities in further detail in Section 7.2.1.

The most important function the library contains is the composition operator for
lenses. As before, we define (< . >)put as composition of two lenses l1 :: Lensput a b

and l2 :: Lensput b c to gain a resulting lens of type Lensput a c.

(< . >)put :: Lensput a b ! Lensput b c ! Lensput a c

(< . >)put lAB lBC sA vC = putput lAB sA sB

where sB = putput lBC (getput lAB sA) vC

In order to see the composition operator in action, we need a second lens to connect
two lenses in series. We first define an algebraic data type for a contact, like in an
address book. The contact consists of an address and information about the contact’s
name, i.e., its first and last name.

type Name = (String ,String)

type Address = String

data Contact = Contact Name Address
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name :: Lensput Contact Name

name (Contact address) newName = Contact newName address

address :: Lensput Contact Address

address (Contact name ) newAddress = Contact name newAddress

Additionally, we have two lenses to operate on the algebraic type Contact : one
selector to change and project the name, the other one for the address. The first lens,
name, yields the name of a contact, which is represented as a pair. We define a lens
that operates directly on the first name of a contact by composing name with fstput .

firstName :: Lensput Contact String

firstName = nameLens < . > fstput

We define exemplary values of type Contact and use both selectors to project as
well as to change the name and address.

contact1 = Contact ("Bob", "Dylan") "Folkstreet 13"

contact2 = Contact name1 "Howard Lane 21"

name1 = ("Haskell", "Curry")

> getput name contact2

("Haskell", "Curry")

> putput name contact1 name1

Contact ("Haskell", "Curry") "Folkstreet 13"

> getput address contact1

"Folkstreet 13"

> putput address contact1 "Folk Street 39"

Contact ("Bob", "Dylan") "Folkstreet 39"

Furthermore, we apply the composed lens to contact2 to change only the first name
and set it to "Haskell B.". We can also project the first name of contact1 with the
composed lens.

> putput firstName contact2 "Haskell B."

Contact ("Haskell B.", "Curry") "Howard Lane 21"

> getput firstName contact1

"Bob"
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5.2.3 What About Well-Behavedness?

Up to now, we have not discussed any requirements for the definition of lenses in order
to guarantee well-behavedness. The attentive reader may remember the two important
laws: GetPut and PutGet. As we already use the underlying equation of the GetPut
law, the definition of put-based lenses in our library guarantees to fulfil the GetPut law.
Unfortunately, we cannot make any guarantees in case of the PutGet law. Instead,
we provide an additional library to test properties like PutGet and GetPut. In the
case of put-based lenses, we can express the requirements for well-behavedness with
the put function only. We have already discussed this modification in Section 4.1.2
and introduced the laws PutInj and PutTwice.

The implementation of our testing library is built on an old version of EasyCheck5.
EasyCheck is a lightweight library for specification-based testing in Curry implemented
by Christiansen and Fischer (2008).6 In a nutshell, the library provides functions to
define specifications and tests theses specifications by enumerating possible values that
obey the given type dependencies. In case of an error, the library provides the tested
value that contravenes the given specification as well as the false result.

We had to make some adjustments to the implementation, because the latest version
of the EasyCheck was written for KiCS – a predecessor of the currently used and
maintained KiCS2 compiler. These adjustments cover mostly the renaming of used
libraries and reimplementing modules that are not part of the KiCS2 contribution
anymore.

We provide a library LensCheck with a set of testing functions to check several prop-
erties of user-defined lenses. First of all, the library consists of functions checkGetPut

and checkPutGet to test the traditional two round-tripping rules and an additional test-
ing function checkPutPut for the PutPut law. For the purpose of put-based properties
– as proposed by Fischer et al. – the library provides testing functions checkPutDet

and checkPutStab. In addition, all five properties can be tested in the context of lists
with a specifically defined version, e.g., checkListGetPut and checkListPutDet .7

5http://www-ps.informatik.uni-kiel.de/currywiki/tools/easycheck
6The implementation of EasyCheck is highly motivated by the work of Hughes and Claessen (2000),

who introduced QuickCheck. QuickCheck is a testing library for Haskell, which has achieved a
very good reputation in the Haskell community and is still excessively used.

7We include a function for this special case, because it is explicitly recommended in the paper of
Fischer et al. to use an additional function to exclude the empty list as value.
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Unfortunately, our lens library does not prevent the user to define inaccurate lenses.
The only guarantee the library gives is in the context of PutGet. Additional properties
have to be checked manually by the user in order to prevent misbehaved lens definitions.

5.3 Nondeterministic Lenses

Due to our choice to use Curry as programming language, we want to investigate
the applicability of lenses in a nondeterministic context. Let us use the setting of
contacts from the previous section as example. Instead of changing the underlying
data structure to a list of addresses, we model the possibility of several addresses
nondeterministically.

contactSample :: Contact

contactSample = Contact ("John", "Sample") address1

address1 :: Address

address1 = "Any Street 213"

address1 = "Working Avenue 17"

That is, we have two rules for the definition of John’s address: one rule for his home
address and one to contact him at work. If we execute contactSample in the interactive
environment of KiCS2, we get the following two results.

> contactSample

Contact ("John", "Sample") "Any Street 213"

Contact ("John", "Sample") "Working Avenue 17"

As a consequence, we also get two results if we use the lens address to project the
address of contactSample. However, the put direction does not behave nondetermin-
istically, because we ignore the current address. Note, we use get and put as selector
and update function of lenses, respectively, instead of the subscripted variant of the
previous section.

> get address person1

"Any Street 213"

"Working Avenue 17"

> put address person1 "Sesame Street 123"

Contact ("John", "Sample") "Sesame Street 123"
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The order of the nondeterministic results depends on the order of the definition’s
rules. The the first rule of address1 defines the private and the second rule the working
address, thus, leading to the order when evaluating contactSample.

Note, address is not a lens definition with a nondeterministic get function, but
the nondeterministic behaviour is introduced by the definition of address1 . We use
address1 in our exemplary expressions to gain nondeterministic results in the get
direction, but deterministic values for the put function.8

As an example for a nondeterministic put function, we modify our definition of
fstAndIncput given in Section 5.1.2. The modified version increments the second com-
ponent or yields the old value; the first component is updated by the given new value
as before.

fstAndIncput :: Lens (a, Int) a

fstAndIncput ( , i) y = (y , i + 1 ? i)

The following exemplary expressions show the behaviour of fstAndIncput . Whereas
the get direction of our lens definition is deterministic, the put function behaves non-
deterministically.

> get fstAndIncput ("Super Mario", 2)

"Super Mario"

> put fstAndIncput ("Super Mario", 3) "Luigi"

("Luigi", 4)

("Luigi", 3)

5.3.1 Extended Laws

The attentive reader might wonder why we use a lens definition that we explicitly
exposed as incorrect before. Consequently, the question arises of how this nonde-
terministic behaviour interacts with well-behavedness and the lens laws, respectively.
Therefore, we discuss the definition of laws for nondeterministic lenses.

As a reminder, we recapitulate the lens laws.

8However, we give a lens with a nondeterministic get function in the next subsection.
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get (put s v) = v (PutGet)

put s (get s) = s (GetPut)

put (put s v) v 0 = put s v 0 (PutPut)

The main idea of the adapted laws is to change the semantics of the equational oper-
ator instead of modifying the equation itself. In a nondeterministic setting, expressions
evaluate to a set of results rather than one result as in a functional or imperative con-
text. This notion of expressions gives rise to a modified notion of the equivalence of
two expressions. In the context of nondeterministic lenses, we interpret the equational
operator in terms of sets. In particular, we want the smaller set to be a subset of
the greater one. We can specify the lens laws in a nondeterministic context with the
following equations, which are also applicable for singleton sets, i.e., for deterministic
values.

v ✓ get (put s v) (PutGet-Nondet)

s ✓ put s (get s) (GetPut-Nondet)

For the PutGet law, we demand the value that we put into the source to be one
of the elements that we can get out of the modified source. We can state a similar
requirement for GetPut: if we get a value out of a source and put it back again, the
resulting set of sources should at least contain the initial source.

We can define a similar equation for the PutPut law, but do not check the law for
our examples above. Instead, we postpone a detailed example for the PutPut law to
the next subsection.

put s v 0 ✓ put (put s v) v 0 (PutPut-Nondet)

With the first two equations in mind, we can check the lens definitions given above.
We start with address, the lens definition with a nondeterministic get direction. In
case of the GetPut law, the modified view of the put action is a nondeterministic
value. Thus, the put action yields a nondeterministic result as well. Fortunately, the
resulting set is a superset of the modified view.
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put address person1 (get address person1 )

⌘
{Contact ("John.", "Sample") "Working Avenue 17"

,Contact ("John.", "Sample") "Any Street 213"}
◆
{Contact ("John.", "Sample") "Working Avenue 17"

,Contact ("John.", "Sample") "Any Street 213"}
⌘
person1

For a nondeterministic address entry, the PutGet law holds even with the old seman-
tics, because the put direction yields a deterministic result regardless of the address’s
value. The new semantics holds trivially, because we work only on singletons.

get address (put address "Sesame Street 123")

⌘
{"Sesame Street 123"}
◆
{"Sesame Street 123"}

Next, we take a look at our example with a nondeterministic put function. In case
of the GetPut law, the inner function call of get is deterministic and yields the first
component of the given pair. Then, the put function yields two results nondeterminis-
tically: one pair with the original second component and one pair with an incremented
second component. Remember,we increment the second component on every update
in the deterministic version of fstInc; thus, leading to a violation of te GetPut law.
However, the nondeterministic version is well-behaved with respect to the modified
lens laws.

put fstInc ("Super Mario", 2) (get fstInc ("Super Mario", 2))

⌘
{("Super Mario", 3), ("Super Mario", 2)}
◆
("Super Mario", 2)

At last, we need to check the PutGet law. The get function is applied to the resulting
set of the put action leading to a nondeterministic result. The put action yields two
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results with the same first component, thus, leading to the same two results in the
get direction.9 Obviously, the modified view is a subset of the resulting set, which
contains the modified view twice.

get fstInc (put fstInc ("Super Mario", 2) "Luigi")

⌘
{"Luigi", "Luigi"}
◆
{"Luigi"}

5.3.2 Productive Nondeterministic Lenses

We motivate the usage of nondeterministic lenses with three additional examples.
Furthermore, we want test the PutPut law for one of these examples.

In the previous subsection, we defined lenses with a nondeterministic put and get
function, respectively. Our next example behaves nondeterministically in both direc-
tions.

replace :: Lens [a ] a

replace (x : xs) y = y : xs ? x : replace xs y

We define replace to nondeterministically replace an element of a given list with
a new value. This example is based on the implementation of insert , which is most
commonly used to define a nondeterministic function to produce all permutations of
a list. However, insert is not an applicable example, because the get function fails
for every input value. We take a quick look at the implementation to figure out why
insert is not suitable as a lens.

insert :: Lens [a ] a

insert [ ] y = [y ]

insert (x : xs) y = y : x : xs ? x : putInsert x ys

We nondeterministically insert a value at every possible position of the list. However,
the insertion of an element becomes a problem when we search for a corresponding get
9In the notion of sets, we can eliminate duplicates, but the elimination is not required to fulfil the

equations of the current example.
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function. For the get direction, we have to evaluate the following expression to find a
corresponding result.

insert s v ⌘ s where v free

That is, we search for an element to insert to the list, such that we get the original
list. In order to get the original list, we cannot change the given list at all. Thus, there
is no element to insert and no suitable result for this expression to be true.

For our example, we use replace instead of insert to avoid this problem. As men-
tioned in the beginning, replace is nondeterministic in the get as well as in the put
direction. We nondeterministically get an element of the list if we use replace in the
get direction; the put direction replaces a given element nondeterministically. The
nondeterministic behaviour leads to the following results for exemplary expressions.

> get replace [1 . . 3]

1

2

3

> put replace [1 . . 3] 5

[5, 2, 3]

[1, 5, 3]

[1, 2, 5]

If we check the PutPut law for replace, we get highly nondeterministic results. The
first application of put yields nondeterministic values and a consecutive call to put is
applied to all these results. That is, for a list with n elements, two consecutive put
actions yield n

2 results. For our examples, we use rather small lists to reduce the
number of results.

> put replace (put replace [1, 2] 4) 5

[5, 2]

[4, 5]

[5, 4]

[1, 5]

For the PutPut law, we stated that the set of running two consecutive put actions
should at least contain the set of the second put action. In our example, the PutPut
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law is fulfilled, because [5, 2] and [1, 5] are part of the results. In particular, the
PutPut law does not require any result of the first put action to be in the set as well.
If we take a look at our example again, we can see that the intermediate results of the
first put action – [4, 2] and [1, 4] – are not part of the result.

Moreover, the usage of nondeterministic lenses gives rise to functions that cannot be
defined in a deterministic setting. For instance, we would have to change the definition
of replace as follows.

replace 0 :: [a ] ! a ! [ [a ] ]

replace 0 [ ] = [ ]

replace 0 (x : xs) y = y : xs :map (x :) (replace 0 xs y)

As a consequence, the type of the modified implementation is not applicable for
lenses – the first argument and the result have to be of the same type.

Our second example of nondeterministic lenses is the definition of a pretty-printer
with a corresponding parser in the get direction. We introduce this concept of so-
called printer-parsers in detail in Section 6.1. A lens for pretty-printers consists of a
get function for parsing, and put function for pretty-printing. The get function can be
nondeterministic to model traditional parser structures with a list of results. That is,
when we parse a string, we yield all corresponding results nondeterministically.

Later, we introduce printer-parsers with a handful of examples on arithmetic ex-
pressions with prefix notation. We decided to use prefix notation, because the corre-
sponding definitions are simple and easy to follow. The string representation of these
arithmetic expression are, however, not ambiguous and yield a deterministic result for
the parsing direction. Therefore, we want to use an example for arithmetic expressions
with infix notation in advance to provide another nondeterministic lens definition.

The following example uses arithmetic expressions that are defined as follows.

data Expr = BinOp Op Expr Expr

| Num Int

data Op = Plus | Mult | Div | Minus

Let us assume that we have a lens ppExpr 0 to parse and pretty-print arithmetic
expressions in infix notation. Then, we can use the nondeterministic behaviour of the
parsing direction to yield all possible results. For example, a simple expression with a
binary operator can be parsed in two ways: (1) we only parse the first argument as an
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identifier; (2) we parse the string as an expression with binary operator, thus, parsing
both arguments as identifiers with the operator in the middle.

> get ppExpr 0 "1 + 2"

((BinOp Plus (Num 1) (Num 2)), "")

((Num 1), " + 2")

Obviously, the number of possible parsing results increases with the size of the
arithmetic expression. For an expression with two binary operators, we have three
possible parsing results.

> get ppExpr 0 "1 - 2 * 3"

((BinOp Minus (Num 1) (BinOp Mult (Num 2) (Num 3))), "")

((BinOp Minus (Num 1) (Num 2)), " * 3")

((Num 1), " - 2 * 3")

However, we can disambiguate the expression by adding parentheses resulting in a
deterministic parsing result.

> get ppExpr 0 "(1 - 2) * 3"

((BinOp Mult (BinOp Minus (Num 1) (Num 2)) (Num 3)), "")

In Appendix B, we present the implementation of ppExpr 0 and make additional
comments about the problems we ran into. All in all, our definition of a printer-
parser and similar ideas given in Section 6.1 are prime examples for the usage of
nondeterministic lenses.
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Case Studies

In this chapter, we discuss two case studies for the application of lenses. First, an
implementation of a library for pretty-printing and parsing. Second, a theoretical
concept to generate lenses from record data types to manipulate a particular record
field.

The first case study uses our put-based lens library to unify the definition of a
pretty-printer and parser: a printer-parser. That is, we discuss three different im-
plementations of data structures and lenses for a pretty-printer with a corresponding
parser in the get direction. We start off with a simple lens definition without further
data structures to model the printer-parser. Then, we give two additional approaches
to solve emerging problems and disadvantages of the naive implementation. More-
over, we discuss related work and conclude the section with an evaluation of these
approaches and the applicability of lenses for these approaches.

Secondly, we propose to generate lenses for record data types. A similar idea is al-
ready integrated in Haskell with the extension OverloadedRecordFields1. First, we take
a look at the current usage of record syntax in Curry to motivate our proposal. Record
syntax in Curry is similar to the concept in Haskell, but uses a special record selector
in combination with labels instead of a function to project a particular field. Second,
we give the definition of the underlying transformations to generate the appropriate
lenses for a record data type.

1https://ghc.haskell.org/trac/ghc/wiki/Records/OverloadedRecordFields
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6.1 Case Study I - Bidirectional Printer-Parser

Pretty-printers and parsers are well-studied fields in computer science and take an
important role in the design of programming languages. In order to prove a program-
ming language’s expressiveness, the implementation of a printer or parser library is
a very popular example. Printers and parsers are also represented in processes that
include reading and updating data from files. For example, measurements of experi-
ments in the field of biology are often tracked in CSV files. In order to analyse these
results, we read the CSV data from the files, manipulate them and write the results
back to another file. Whereas parsers specify the format of the CSV data at hand and
yield an editable structure in the source language, printers write the results back in a
valid format. We observe that printers and parsers should fulfil certain round-tripping
rules: we want to print the data in a valid format, such that data can be reread again
by the parser. This observation leads to the following equation for a data structure
value :: a and associated functions parsea for parsing and printa for printing, which
are parametrised over the specific data structure.

parsea (printa value) = value (Print-Parse)

We might also consider the inverse round-tripping rule and demand that if we parse a
string and print it again, we get the original string as result. The following equation
postulates this round-tripping rule.

printa (parsea str) = str (Parse-Print)

In certain scenarios, the Parse-Print rule is a desirable requirement. For example, if we
choose a format for the data that is unambiguous, both round-tripping rules together
form the requirements for a correct implementation. Show and Read instances for
data structures in Haskell often form these round-tripping rules as well. On the other
hand, in many scenarios regarding data acquisition, users handle data manipulation,
update, and sometimes even input manually. Especially in the field of programming
languages, users write the code that the parser consumes. Therefore, most program-
ming languages allow redundancies like spaces and parentheses, so that a parsed data
structure corresponds to more than one string representation.
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In the following, we present different approaches to combine the definition of pretty-
printers and parsers into one function. We can achieve this combination in the setting
of lenses: we define a lens for pretty-printing in the put and parsing in get direction.
In addition, we provide a handful of combinators to simplify the definition of such
printer-parser for arbitrary data structures.

All approaches have the same interface of combinators, and define a lens of type
Lens String (a,String). The underlying lens implementation is the put-based lens
library presented in Section 5.2. We provide the following set of combinators, where
X stands for the used type of the printer-parser that varies with the different imple-
mentations:

• (<>) :: X a ! X b ! X (a, b)

• (< | >) :: X a ! X a ! X a

• digit :: X Int

• charP :: (Char ! Bool) ! X Char

• space :: X ()

As the running example for each implementation we use a standard example in the
context of parsers as well as printers: arithmetic expressions. We use the following
definition of an algebraic data type for arithmetic expressions.

data Expr = BinOp Op Expr Expr

| Num Int

data Op = Plus | Mult | Div | Minus

6.1.1 Printer-Parser

The first implementation that we present is based on a lens definition that pretty-prints
a data structure in the put direction, and parses a string into that data structure in
the get direction.

The lens has the form type PPrinter a = Lens String (a,String). Remember, the
extended type signature of PPrinter a corresponds to String ! (a,String) ! String .
The first argument is the input string, the second argument is a pair consisting of
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the actual data type that we want to print and parse, and a remaining string. This
representation2 is most commonly used for pretty-printers to achieve a linear run-time
subject to the resulting pretty-printed string. With this lens definition at hand, we can
define two functions pParse :: PPrinter a ! String ! a and pPrint :: PPrinter a !
a ! String .3 Both functions are parametrised over a printer-parser lens; they run this
lens with the given string in the get direction and with the given data structure in put
direction, respectively.

pParse :: PPrinter a ! String ! a

pParse pp str = maybe err fst (find ((⌘ "") � snd) values)
where

values = getND pp str

err = error "no complete parse"

pPrint :: PPrinter a ! a ! String

pPrint pp val· = pp "" (val·, "")

The definition of pParse first collects all results of the given printer-parser running
in the get direction by using getND . The auxiliary getND uses Set Functions to yield
a list of results instead of nondeterministic results. pParse chooses the first pair of the
resulting list that has no remaining string, i.e., a result with a complete parse, and
yields the parsed value. If there are no complete parses, we throw an error.

The function pPrint applies the given printer-parser to the empty string as first
argument to trigger a pretty-print.

Primitives

As first primitive printer-parser, we define digit :: PPrinter Int that pretty-prints a
digit in the put- and parses a digit in the get-direction.

digit :: PPrinter Int

digit (d , str 0) | 0 6 d ^ d 6 9 = show d ++ str 0

We ignore the given string, replace it with the representation of the given digit, and
add the remaining string at the end of the resulting string. Since the type of the data
2a slightly different one, but still equivalent
3Note: the additional "p" stands for "pretty".
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is not restricted to digits only, we include a check if the range of the given integer
value is between 0 and 9.

The primitive charP prints and parses only characters that fulfil a given predicate.
We can easily define a combinator that prints and parses a space character by means
of charP .

charP :: (Char ! Bool) ! PPrinter Char

charP p (c, str 0) | p c = c : str 0

space 0 :: PPrinter Char

space 0 = charP (⌘ ’ ’)

In order to define more meaningful printer-parsers, e.g., for the arithmetic expres-
sion we introduced earlier, we need combinators to compose primitives. The first
composition combinator builds a pair from two given printer-parsers.

(<>) :: PPrinter a ! PPrinter b ! PPrinter (a, b)

(pA<> pB) str ((expr1 , expr2 ), str 0) = pA str (expr1 ,newString)

where

newString = pB str (expr2 , str 0)

In order to get a better understanding of this composition, we expand the type
of the result, i.e., PPrinter (a, b) becomes String ! ((a, b),String) ! String . This
observation leads to the four given arguments: the two printer-parsers, the given string
and a pair of data structures paired with the remaining string. We can compose these
two printer-parsers to achieve a meaningful consecutive execution. First, we apply the
second printer-parser pB to produce a new string. Then, the resulting string is used as
remaining string in the application of the other printer-parser pA. This construction
works straightforward, because the given string is just replaced with the pretty-printed
result in the definition of the primitives.

Furthermore, we provide a combinator to pretty-print one of two alternatives. That
is, we have two printer-parsers at hand and run the second one only if the first one
fails.

(< | >) :: PPrinter a ! PPrinter a ! PPrinter a

(pA1 < | > pA2 ) str pair = case isEmpty (set2 pA1 str pair) of

True ! pA2 str pair

False ! pA1 str pair
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In this case, we use Set Functions to reason about a possibly failing replace-parser.
That is, if the first replace-parser does not yield any result when applied to the appro-
priate arguments, i.e., the list of all results is empty, we run the second one instead.

Parsing and Printing Arithmetic Expressions in Prefix Notation

Next, we define the appropriate printer-parsers for the data structure of arithmetic
expressions given above. In order to define a printer-parser for our data structure
Expr , we need to cover both representations of the definition: an expression can be a
number, or a composition of two expressions with a binary operator. For the purpose of
simplicity, we implement the pretty-print of an arithmetic expression in prefix notation.

ppExpr :: PPrinter Expr

ppExpr str (Num v , str 0) = digit str (v , str 0)

ppExpr str (BinOp op e1 e2 , str 0) =

((ppOp <> ppExpr)<> ppExpr) str (((op, e1 ), e2 ), str 0)

In the case of a given Num-constructor, we use the primitive digit and, thus, limit the
identifiers of the arithmetic expressions to integer values between 0 and 9.4 The rule
for a binary operator looks a bit more complicated. However, the rule follows naturally
from the definition of the data type. At first, we print the given operator followed by
both of its arguments. The arguments of a binary operator are arithmetic expressions,
thus, we print the arguments in a recursive manner. Due the two consecutive uses of
the composition combinator, (<>), the data have to be provided in form of a nested
pair. The inner pair consists of the operator and the first arithmetic expression. Then,
this pair is injected as the first component of the outer pair because of the second usage
of (<>). The part of the second component of this outer pair is assigned to the second
argument of the binary operator. In order to test this lens definition, we need to define
the printer-parser for operators of type Op first.

4We make this limitation due to simplicity reasons, we could easily write a version that prints an
Int value instead.
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ppOp :: PPrinter Op

ppOp str (op, str 0) = charP isOp str (fromJust opStr , str 0)

where

opStr = lookup op [(Plus , ’+’), (Minus, ’-’), (Mult , ’*’), (Div , ’/’)]

isOp :: Char ! Bool

isOp c = c 2 "+*-/"

We use the obvious symbols as string representatives for the arithmetic operators.
Note, we use fromJust5 from the Maybe library that unwraps the Just constructor from
the given value.

With these lens definitions at hand, we can use the dedicated function pPrint to see
the pretty-printed version of an exemplary arithmetic expression.

> pPrint ppExpr (Num 3)

"3"

> pPrint ppExpr (BinOp Plus (Num 2) (Num 3))

"+23"

Unfortunately, we were a bit careless when we defined the string representation of
an expression with a binary operator. The resulting string is not pretty at all. The
upside is that the parser already works very well. In the following examples, we use
pParse to reconstruct the expression from the string representation.

> pParse ppExpr "+23"

(BinOp Plus (Num 2) (Num 3))

> pParse ppExpr "42"

Main : UserException "no complete parse"

Evaluation terminated with non � zero status 1

In the first expression, we gain the original expression when parsing "+23" as ex-
pected. Due to the restricted representation of numeric identifier as digits, each digit
of the string "23" is parsed as an argument of the binary operator Plus . Because of
this restriction, we cannot, however, parse a numeric value like "42". Hence, the last
5
fromJust ::Maybe a ! a

fromJust (Just v) = v

fromJust Nothing = error "Maybe.fromJust: Nothing"
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expression pParse ppExpr "42" fails with the remark that the given string cannot be
parsed completely. Without investigating this failing expression in too much detail,
we can take a quick look at the parsing result. The type of ppExpr is PPrinter Expr ,
that is, the function ppExpr is a lens function. For that reason, we can use ppExpr

in get and put direction. As mentioned before, whereas the put direction corresponds
to a pretty-print, we can parse a string into a value of type Expr when using the get
direction of the lens definition.

> get ppExpr "42"

(Num 4, "2")

In this case, the expression get ppExpr "42" is of type (Expr ,String) and yields
the parsed value and the remaining string. Remember, the definition of pParse dis-
tinguishes if the resulting remaining string is the empty string or not. In case of
a non-empty string, the parse could not be completed and the function throws an
exception.

Pretty Arithmetic Expressions

In order to continue on pretty-printing arithmetic expression, we have to rewrite the
second rule of ppExpr ’s definition. Obviously, a pretty representation of arithmetic
expression needs a space character between each token. For the purpose of adding
space to the string representation, we integrate the function space 0 into our definition
of ppExpr from above. In the end, we add a space after the binary operator and the
first argument of that operator.

ppExpr str (BinOp op e1 e2 , str 0) =

((ppOp <> space 0)<> (ppExpr <> space 0)

<> ppExpr) str ((((op, ), (e1 , )), e2 ), str 0)

Unfortunately, due to the integration of space and the related increased usage of the
composition combinator, this definition looks rather cumbersome and complicated. In
particular, the spaces that we added are ignored in the data that are given in form of
a deeply nested pair. The definition above uses an anonymous free variable, which is
bound to a space character when actually calling this function. The variable is bound
to a space, because a space is the only valid value, such that the space 0 function yields
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a result. Instead of using an anonymous free variable, we can explicitly assign space
characters as arguments.

In the case of an injected prettiness factor like additional spaces, it would be con-
venient to provide a combinator to ignore a printer-parser’s result. Those additional
adjustments regarding the printed string occur mostly in the context of composition.
Thus, we define two additional composition functions to ignore the printer-parser to
the right and to the left, respectively. We can implement such a combinator by means
of (<>).

(<<<) :: PPrinter a ! PPrinter () ! PPrinter a

(pA <<< pB) str (expr , str 0) = (pA<> pB) str ((expr , ()), str 0)

(>>>) :: PPrinter () ! PPrinter b ! PPrinter b

(pA >>> pB) str (expr , str 0) = (pA<> pB) str (((), expr), str 0)

Unfortunately, we need to restrict the type of the ignored result to the unit type.
We have to make up a value to pass to (<>) as first and second argument, respec-
tively. Since we cannot always devise a suitable value for any type, we restrict these
combinators to use unit only. The unit type has only one valid value, thus, we can
always pass along () as argument.

In order to use these combinators in our definition of ppExpr , we have to implement
a space printer-parser of type PPrinter ().

space :: PPrinter ()

space ((), str 0) = " "+ str 0

Fortunately, the definition is straightforward: we ignore the given string and pattern
match on the unit value in order to produce a space in front of the remaining string,
which is given as part of the input pair.

Last but not least, we can integrate the newly defined functions in our definition of
ppExpr to enhance the readability.

ppExpr str (BinOp op e1 e2 , str 0) =

((ppOp <<< space)<> (ppExpr <<< space)

<> ppExpr) str (((op, e1 ), e2 ), str 0)

In order to assure that our reimplementation produces prettier string representa-
tions, we run our examples from above again. Furthermore, the string representations
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are supposed to be parsable as well. Thus, we also give some examples for parsing
valid string representations of arithmetic expressions as well as some cases, where our
parser does not yield a completely parsed string.

> pPrint ppExpr (BinOp Plus (Num 2) (Num 3))

"+ 2 3"

> pParse ppExpr "+ 2 3"

BinOp Plus (Num 2) (Num 3)

> pParse ppExpr "+ + 2 3 4"

BinOp Plus (BinOp Plus (Num 2) (Num 3)) (Num 4)

> get ppExpr "+ 2 34"

(BinOp Plus (Num 2) (Num 3), "4")

> get ppExpr "+ 23 4"

-- no result

The second and third example show a successful parse for a simple and a nested
arithmetic expression, respectively. In the forth expression, we reuse the example
from above that has a number with two digits as second argument for Plus , thus,
leading to a remaining string. Note, the parse does not fail completely: the prefix
"+ 2 3" is parsed correctly and the parser yields BinOp Plus (Num 2) (Num 3) as
resulting expression. In contrast, the last example fails completely and has no result.
The given string "+ 23 4" does not consist of a valid prefix to yield a partial result
with a remaining string.

Multiple Spaces

As a main disadvantage of this approach, we cannot ignore redundant parts in the
parsing direction. If these redundancies do not appear in the pretty-printer’s definition,
we do have no option to parse them anyway. We have already mentioned an original
precedent in the introduction of this section: optional spaces as delimiter between
tokens. In order to make this case more clear, we define a printer-parser for one or
more spaces.

spaces1 0 :: PPrinter [()]

spaces1 0 str (x : xs, str 0) =

(space <> spaces 0) str ((x , xs), str 0)
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spaces 0 str ([ ], str) = str 0

spaces 0 str (x : xs, str 0) =

space str (x , "") ++ spaces 0 str (x , str 0)

The function spaces1 0 pretty-prints a series of spaces depending on the length of
the given list, which cannot be empty. In contrast, the auxiliary function spaces 0 can
pretty-print zero or many spaces. For the parsing direction, we want both functions to
parse a series of spaces. A generalisation of these functions comes in handy to parse a
series of characters or strings of the same category and to pretty-print a list of elements
respectively. For that purpose, we define a generalised version many1 and many that
takes a printer-parser as argument and applies it to each element of a given list.

many :: PPrinter a ! PPrinter [a ]

many ([ ], str 0) = str 0

many pp str (x : xs, str 0) = (pp <>many pp) str ((x , xs), str 0)

many1 :: PPrinter a ! PPrinter [a ]

many1 pp str (x : xs, str 0) = (pp <>many pp) str ((x , xs), str 0)

With this definition at hand, we can define a modified version of spaces.

spaces :: PPrinter [()]

spaces = many1 space

Next, we integrate the additional trailing spaces into our printer-parser for arith-
metic expressions. This integration implicates to change the usage of (<<<) and
(>>>) to the traditional composition operator again. We can only ignore data of
type unit, but spaces expects a list of unit.

ppExprSpaces :: PPrinter Expr

ppExprSpaces str (BinOp op e1 e2 , str 0) =

((ppOp <> spaces)<> (ppExprSpaces <> spaces)

<> ppExprSpaces) str (((opSpaces, e1Spaces), e2 ), str 0)

where

opSpaces = (op, )

e1Spaces = (e1 , )

ppExprSpaces str (Num v , str 0) = digit str (v , str 0)
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Since we do not care about the number of trailing spaces after an operator and
its expressions, respectively, we use an anonymous free variable as input. This free
variable can be bound to any number of unit elements in order to parse all occurring
spaces. As a first example, we can parse trailing spaces after the binary operator as
well as a pretty-printed version.

> pParse ppExprSpaces "+ 1 2"

(BinOp Plus (Num 1) (Num 2), "")

> pParse ppExprSpaces "+ 3 4"

(BinOp Plus (Num 1) (Num 2), "")

Fortunately, the integration of redundant spaces works like a charm.

The Downside

However, there is a downside to this solution. In the beginning we said that we cannot
parse redundancies that are not included in the printer-parser’s definition. In our case,
we have added these redundancies and, thus, can parse them in a convenient way. This
observation leads to the question: how does this integration effect the pretty-printing
of the arithmetic expression? In the pretty-printed version of an arithmetic expression,
we do not allow any leading and trailing spaces. Let us test the behaviour by pretty-
printing the expression from above.

> pPrint ppExprSpaces (BinOp Plus (Num 1) (Num 2)

"+ 1 2"

"+ 1 2"

"+ 1 2"

"+ 1 2"
...

Unfortunately, this expression does not terminate, but yields all possible versions of
string representatives. Possible versions include a different number of trailing space
after the operator and the first argument of that operator. This unsatisfactory result
arises from the use of the free variables in the definition of ppExprSpaces. We cannot set
the number of used spaces to one; the free variable is instantiated nondeterministically
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to a suitable value. In our case, [()] is not the only suitable value, any list of unit
values fits the specification of the pretty-printer.

The work of Foster et al. (2008) sounds promising as a solution to our problem.
They introduce quotient lenses, well-behaved bidirectional transformations that allow
the programmer to specify equivalence relations on the data he wants process. The
authors integrated an implementation of quotient lenses to the Boomerang language.
However, we did not have the time to implement a mature version of our own quotient
lenses in the context of our study case.

As a second disadvantage, the definitions for the pretty-printer have to be more
sophisticated than usual. The printer and parser definitions are connected, that is,
typical restrictions known from parser constructions need to be considered. In our
example, we defined a string representation for arithmetic expression in prefix nota-
tion, but with infix operators, we have to avoid left-recursion in the definitions. This
modification leads to a more complex definition of the printer-parsers that bears a
resemblance to a typical parser for arithmetic expression with infix operators. For
the interested reader, we give the implementation for arithmetic expressions with infix
operators as well as some examples for pretty-printing and parsing in Appendix B.

6.1.2 Replace-Parser

In a second approach, we want to tackle the disadvantages of printer-parsers concerning
redundancies and optional parsing rules. These disadvantages arise from the opera-
tional, state-free approach of our first implementation. The design of printer-parsers
provides the definition of pretty-printers and implicates a corresponding parser. Un-
fortunately, the corresponding parser is only suited for the pretty-printed string rep-
resentation. In the previous subsection, we gave an unsatisfactory definition to parse
a variable amount of spaces. The defined lens can be used in the parsing direction,
but behaves heavily nondeterministic when pretty-printing a value. One cause of the
problem is that we cannot reason about single steps of the underlying parser without
changing the semantics of the pretty-printer. Therefore, we want to discuss another
implementation that has more information about intermediate results. In order to
achieve this additional information, we change the underlying data structure in con-
trast to the printer-parser. Because of the changed data structure, we can also adjust
the semantics and add an inspection of the given input string. Instead of replacing the
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input string completely, we want to perform a layout preserving replacement. The new
implementation provides a function replaceParse ::PReplace a ! RPLens a that takes
a specification of a so-called replace-parser and yields a lens function. The resulting
lens has the same type as our printer-parser.

type RPLens a = Lens String (a,String)

We can use this lens function in the common way using get and put . The get function
for a RPLens corresponds to a parsing action like before and in the put direction we
replace a given string and try to preserve its layout. If the given string is empty or
does not fulfil the replace-parser’s specification, we pretty-print the data structure at
hand. As an example: we have an arithmetic expression with more than one space as
delimiter for its arguments and update only the second argument.

> put (replaceParse rpExpr) "+ 3 2" (BinOp Plus (Num 1) (Num 2), "")

"+ 1 2"

The result of our replace-parser assures that the layout of the given string is pre-
served. On the other hand, we can parse the resulting string with the replace-parser
again and, hopefully, regain the original value of the arithmetic expression.

> get (replaceParse rpExpr) "+ 1 2"

(BinOp Plus (Num 1) (Num 2), "")

Indeed, the parsing direction works like a charm and ignores the redundant spaces.
As mentioned above, if the given string is empty, the replace-parser prints the given
value in its prettiest version, i.e., as specified in the lens definition of rpExpr . The
second argument of the pair represents a remaining string as in the previous version.
We can use this component to add a generic string at the end.

> put (replaceParse rpExpr) "" (BinOp Mult (Num 3) (Num 7), "")

"* 7 2"

> put (replaceParse rpExpr) "" (BinOp Mult (Num 3) (Num 7), " test123")

"* 7 2 test123"
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Implementation of Primitives

In the following, we take a closer look at the underlying implementation. At first, we
want to discuss the used data structure that tracks the intermediate result of a replace-
ment and pretty-print, respectively. We called this data structure the specification of
a replace-parser above.

type PReplace a = String ! (a,String) ! Res String

data Res a = New a

| Replaced a

We can observe that the used data structure is a variant of the RPLens that wraps
the resulting string into a new data structure. This new data structure gives informa-
tion about an action in put direction. If the resulting string is wrapped with the New

constructor, the replace-parser performed a pretty-print on the given value. Otherwise,
the value was pretty-printed with respect to the underlying layout of the given string.
In order to give an example, we get the following results for a primitive combinator
charP :: (Char ! Bool) ! PReplace () based on the given string.

> charP isDigit "1" (’5’, "")

Replaced "5"

> charP isDigit "a" (’5’, "")

New "5"

> charP isDigit "12" (’5’, "")

New "5"

In these examples, we want to replace a digit character with ’5’. The first example
succeeds with a replacement, because the given string consists of a digit as well. In
the second and third exemplary expression, we ignore the input, because it does not
harmonise with the given specification and pretty-print the given value.

For the purpose of clarification, we start with the implementation of charP as first
primitive combinator for replace-parsers. We replace the input and pretty-print the
value for two cases: if the input string is empty, or if the input does not fulfil the given
predicate.
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charP :: (Char ! Bool) ! PReplace Char

charP p input (v ,new) = case input of

"" ! New (v : new)

! char 0 input new

where

char 0 (c0 : str 0) rest

| p c0 ^ (null str 0 _ rest ⌘ str 0) = Replaced rest

| otherwise = New (v : rest)

In particular, we check the predicate on the first character of the input string, and
restrict the remaining input to be empty or to be equal to the given remaining string
str 0. That is, if we want to replace a digit with another digit and the input string
consists of two digits, the specification is not fulfilled and we pretty-print the value.
However, for an identical remaining string, the replace-parser can perform a replace-
ment, indicated by the usage of the Replaced constructor. We give two additional
examples to clarify this circumstance.

> charP isDigit "41" (’5’, "")

New "5"

> charP isDigit "41" (’5’, "1")

Replaced "51"

With the help of charP , we can define a series of additional primitives. In the
examples, we used charP to replace and pretty-print a digit; we can enhance this
expression to be applicable for actual Int values. In addition, we can define a primitive
to handle a space.

digit :: PReplace Int

digit str (d , str 0)

| 0 6 d ^ d 6 9 = (charP isDigit) str (intToDigit d , str 0)

space :: PReplace ()

space str ((), str 0) = charP (⌘ ’ ’) str (’ ’, str 0)

We use the auxiliary function intToDigit :: Int ! Char from the Char library that
converts an integer value to a character. The condition 0 6 d ^ d 6 9 guarantees that
no integer value greater than 9 is converted into a character.
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Composition

Moreover, we want to compose several primitives to build new replace-parsers. For
that purpose, we introduce the composition combinator (<>), and its descendants
(<<<) and (>>>) in order to ignore the left and right result, respectively.

(<>) :: PReplace a ! PReplace b ! PReplace (a, b)

(pA<> pB) str ((expr1 , expr2 ), str 0)

| null str = pA str (expr1 , unwrap (pB str (expr2 , str 0)))

| str ⌘ str1 ++ str2 =

(strict pA) str1 (expr1 , unwrap ((strict pB) str2 (expr2 , str 0)))

where str1 , str2 free

When composing two replace-parsers, we split the input string into two parts. We
take advantage of the logic features of Curry and split the input string nondetermin-
istically. This idea is adopted from the general approach of the Parser library6 in
Curry that is based on functional-logic parsers as presented by Caballero and Lòpez-
Fraguas (1999). In case of an empty input string, we run the first replace-parser on
its corresponding value and its part of the input. As remaining string, we provide
the result of the second replace-parser that works on its part of the input string and
the given remaining string. That is, we concatenate the results of both parsers and
add the remaining string at the end. Because of the constructor wrapped around the
resulting string, we use the auxiliary function unwrap to access the containing string.

unwrap :: Res a ! a

unwrap (New v) = v

unwrap (Replaced v) = v

As an important part of the second case, we use the function strict to ensure that
the given replace-parser performs a replacement.

strict :: PReplace a ! PReplace a

strict pReplace str pair = case pReplace str pair of

New ! failed

res ! res

6http://www-ps.informatik.uni-kiel.de/kics2/lib/CDOC/Parser.html
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We want to guarantee that both replace-parsers perform a replacement on their
dedicated input string. Otherwise, the resulting string could be a combination of a
layout-preserving and pretty-printed variant of the given value. In our implementation,
the composition fails if one of the given replace-parsers fails to replace its value for
the given input. In particular, the definition behaves nondeterministically and tries
every combination of two substrings that can be combined to the input string. As
a convenient side-effect, the usage of strict guarantees that an empty substring fails
for both replace-parsers. The strict function fails for every value constructed with
the New constructor and an empty string as input causes most primitives to perform
a pretty-print. Thus, these primitives yield a string wrapped in a New constructor.
In the case of an empty input string, we apply both replace-parsers in series without
using the strict version.

Furthermore, the implementation of (<<<) and (>>>) is straightforward, and the
same as for the printer-parser, but with an adapted type signature.

(<<<) :: PReplace a ! PReplace () ! PReplace a

(pA <<< pB) str (e, str 0) = (pA<> pB) str ((e, ()), str 0)

(>>>) :: PReplace () ! PReplace b ! PReplace b

(pA >>> pB) str (e, str 0) = (pA<> pB) str (((), e), str 0)

Arithmetic Expressions Revisited

In order to compare this approach with our previous implementation of printer-parsers,
we define a replace-parser for arithmetic expressions.

rpExpr :: PReplace Expr

rpExpr str (BinOp op e1 e2 , str 0) =

((rpOp <<< spaces)<> (rpExpr <<< spaces)

<> rpExpr) str (((op, e1 ), e2 ), str 0)

rpExpr str (Num v , str 0) = digit str (v , str 0)

The definition of a replace-parser for arithmetic expressions has a high resemblance
to our version for printer-parsers. This resemblance arises from the usage of the same
set of primitives and combinators that can be used to define more complex function
definitions. The only difference is that we use spaces here. Because of the underlying
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data structure of this approach, we can finally implement primitives to parse optional
redundancies in the parsing direction without interfering with the pretty-printer.

The following code shows the implementation of spaces that pretty-prints exactly
one space, but can parse and replace several spaces.

spaces :: PReplace ()

spaces input = case input of

"" ! space ""

! (space >>> spaces 0) input

where

spaces 0 input 0 ((), str 0) = case input 0 of

"" ! pure input 0 ((), str 0)

! (space >>> spaces 0) input 0 ((), str 0)

In case of an empty input string, we pretty-print one space. Otherwise, we read or
replace as much spaces as possible until the input string is empty. If the input string
is finally empty, the first rule of the local function spaces 0 is used to add the remaining
string to the end of the resulting string. Here, we use the auxiliary function pure that
ignores its input string as well as its value, and yields the remaining string as a result
of a replacement. That is, the resulting string is wrapped in the Replaced constructor
and pure always succeeds to replace a given input string.

pure :: PReplace a

pure ( , str 0) = Replaced str 0

This implementation differs from the one given for the printer-parser. Using a
primitive like many and a free variable in the implementation of rpExpr does not lead
to success either, because of the introduced nondeterminism. Nevertheless, the idea of
this implementation is not applicable for the printer-parser, because we take advantage
of the implementation of (>>>). In the replace-parser’s version of (>>>), we actually
consume the input string. Thus, we actually reach the point where we stop producing
or reading spaces. In case of printer-parsers, the input string is ignored completely,
hence, leading to a failing parsing action on every input string.

Last but not least, we use the same implementation to handle the operators of
an arithmetic expression like for the printer-parser. In fact, if it were not for the
delimiting spaces, we could have used the exact same implementation as before, but
using a different type signature.
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Poor Performance

The more interesting part is the behaviour of our given implementation for replace-
parsers. We have already seen a handful of examples as a motivation for the idea of
replace-parsers in the beginning of this subsection. Nonetheless, we want to give some
more examples to highlight the improvement in contrast to the previous implementa-
tion.

> put (replaceParse rpExpr) "+ 1 2" (BinOp Mult (Num 3) (Num 4), "")

"* 3 4"

> get (replaceParse rpExpr) "+ 1 2"

(BinOp Plus (Num 1) (Num 2)), "")

Unfortunately, this approach comes with some disadvantages, too. The second ex-
ample indicates a performance problem due to the string splitting on combinators
like (<>),(<<<) and (>>>). Collectively, there are four redundant spaces to con-
sume when replacing the given string with a new value. We introduce an additional
combinator, (<<<), that splits the input string into two parts for each space. The
longer the input string and the more composition combinators we use, the more split-
ting combinations arise and the number of splits increases, respectively. That is, the
nondeterministic search for a suitable splitting increases fast and causes a bad perfor-
mance. This performance issue affects the parsing direction as well as the get direction
in case of a replacement.

In the following, we show a series of graphs to illustrate the performance issue.7

Both graphs have the same labels: the x-axis represents the number of combinators
used in an expression; the y-axis indicates the execution time of an expression. In
Figure 6.1, we show the execution time of a replacement action for an increasing
number of combinators. The behaviour of the graph indicates an exponential growth.
In order to investigate this hypothesis, we used a logarithmic scale for the execution
time in Figure 6.2. Indeed, the adjusted graph shows a linear growth, which indicates
an overall exponential runtime with respect to the number of combinators.

We also measured the performance for a parsing action and, unfortunately, the
results are even worse. The results are illustrated with a logarithmic scale in Figure 6.3;
7We tested the performance with KiCS2 and the +time flag; the testing device was a MacBook Air

with Mac OS 10.9.4 as operation system, 4 GB memory, and a 1.8 GHz Intel Core i5 as processor.
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the runtime of a parsing action behaves highly exponential as well. Parsing a string
with our library performs bad, because the get function guesses the resulting value –
the arithmetic expression. Thus, the performance depends on the size of the arithmetic
expression and of the number of possible values of each component. For example, the
operator data type has four possible constructors; each of this constructor is tested in
order to find the corresponding arithmetic expression for a given string.
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Figure 6.1.: Performance of replacing for increasing number of combinators

However, the pretty-printer still performs quite well for large expression terms.

> put (replaceParse rpExpr)

""

(BinOp Mult (BinOp Plus

(BinOp Plus

(BinOp Plus (Num 3) (Num 1))

(BinOp Minus (Num 7) (Num 3)))

(BinOp Div (Num 8) (Num 2)))

(BinOp Minus (Num 3) (Num 1)), "")

"* + + + 3 1 - 7 3 / 8 2 - 3 1"
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Figure 6.2.: Performance of replacing for increasing number of combinators with
logarithmic scale

The expression consists of thirty combinators, has three levels of nesting for recursive
calls, and executes in 2 milliseconds. In comparison to the get direction, we validate
the execution time as a good result.

Ace In The Hole

Although we do not prioritise a good performance, we take a last try on implement-
ing a replace-parser. Instead of a functional-logic approach that makes heavy use of
nondeterminism, we change our underlying implementation to aim for a more func-
tional approach. The weak point of our first implementation was the composition
combinator. When composing two replace-parsers, we make a guess on how to split
the input string, such that both replace-parsers yield appropriate results. In the func-
tional approach, the first parser yields a remaining string that is used as input for the
second parser. Our parsing result has the same representation: the result of the get
direction is (a,String). However, we cannot effectively use this result for the defini-
tion of a replace-parser, because of the underlying put-based lenses. Hence, we need
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Figure 6.3.: Performance of parsing for increasing number of combinators with log-
arithmic scale

to find a convenient representation for the underlying data structure in order to use
intermediate results for the parsing direction as well.

type PReplace a = String ! (a,String) ! (String ,String ,String)

We choose a triple as result of our replace-parser. The first component represents the
string of a successful replacement or pretty-print, whereas the other two components
are remaining strings. We distinguish between the remaining input string that has
not been consumed yet as the second component, and, lastly, the remaining string to
concatenate at the end of the resulting string.

As a first representative example, we define a primitive to handle a char that fulfils
a given predicate, again.

charP :: (Char ! Bool) ! PReplace Char

charP "" (e, str 0) = ([e ], "", str 0)

charP p (c : cs) (e, str 0)

| p c = ([e ], cs, str 0)
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For an empty input string, we pretty-print the given char value – the pretty-printed
result is the first component of the triple. In case of a replacement, we consume the
first character if the predicate holds, and remember the remaining input in the second
component. The given remaining string is transfered as the third component of the
triple.

With this technique at hand, we can define a more convenient composition combi-
nator that does not rely on nondeterminism.

(<>) :: PReplace a ! PReplace b ! PReplace (a, b)

(pA<> pB) input ((e1 , e2 ), str 0) = case input of

"" ! (res1 , str2 , str1 0 ++ str2 0)

! if null str1 ^ (res2 , str 0, str2 0) 6⌘ pure str1 (e2 , str1 0)

then failed

else (res1 , str2 , str1 0 ++ str2 0)

where

(res1 , str1 , str1 0) = pA input (e1 , res2 )

(res2 , str2 , str2 0) = pB str1 (e2 , str 0)

The general idea of the combinator is as before: we apply the first replace-parser
on the input string, the corresponding value, and the result of the second parser.
The important difference is that we can actually use the remaining string of the first
replace-parser as argument for the second one. Unfortunately, we lose performance by
concatenating both remaining strings for the resulting tuple. However, this concatena-
tion is rather a technicality than a huge problem. The additional check on a non-empty
string can be seen as an equivalent to the usage of strict in the previous implementa-
tion. When composing two replace-parsers, we want to make sure that both actually
consume any input. However, there is one exception: if the given replace-parser does
not care about its input, we do not want the composition to fail. Therefore, we use
pure – a primitive replace-parser that succeeds on every input – to handle the special
case of a non-consuming replace-parser.

In order to use the definition of rpExpr that we have given above, we still need to
define spaces. The key for a modified definition of spaces is a combination of pure and
the alternative combinator (< | >). In Curry, we can define the alternative combinator
using the choice operator, and nondeterministically choose one of the given replace-
parsers.
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(< | >) :: PReplace a ! PReplace a ! PReplace a

(pA < | > ) "" = pA ""

(pA < | > pB) input@( : _) = (pA ? pB) input

In order to restrict the nondeterministic behaviour to the parsing direction and a
replacement action, we simply apply only the first replace-parser for an empty string.
That is, pretty-printing is still deterministic, and does not introduce a choice between
the two given replace-parsers. In the end, we can define spaces as follows.

spaces :: PReplace ()

spaces input = case input of

"" ! space ""

! ((space >>> spaces 0)) input

where

spaces 0 :: PReplace ()

spaces 0 input 0 ((), str 0) = case input 0 of

"" ! pure "" ((), str 0)

! ((space >>> spaces 0) < | > pure) input 0 ((), str 0)

The definition of spaces 0 benefits from the combination of the alternative combinator
and pure. This combination allows us to consume an arbitrary number of spaces, and
stop whenever the space parser fails. We also stop if the input string becomes empty,
and yield a result to express a successful consumption.

Due to the actual consumption of the input string, we achieve better results for
the performance. In Figure 6.4, we show the measured execution time for the same
expressions that we ran for the previous implementation. The results include two
additional test expressions in order to show that the expected runtime with respect to
the number of used combinators is nearly linear.

6.1.3 Conclusion and Similar Approaches

In this section we presented the usage of lenses for a new approach to specify printers
and parsers in one definition. The resulting performance is still in need of improvement,
but the implementation is sufficient for a first prototype. This approach is a big selling
point for nondeterministic lenses. The nondeterministic parsing direction helps us to
achieve a meaningful lens definition in both the get and the put direction.
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Figure 6.4.: Performance of replacing for an increasing number of combinators

Several papers dealing with bidirectional programming mention the usage of lenses
to unify the definition of printers and parsers. However, there is only one actual
implementation that realises this specification with the help of lenses. The approach
is followed by Zaytsev (2014) and Zaytsev and Bagge (2014), respectively. The first
publication is a conglomerate of case studies in the field of bidirectionalisation that
also includes a section about printers and parsers. The second publication focuses on
parsing and unparsing, in which the authors illustrate a so-called megamodel of parsing.
This megamodel includes all different artefacts, and the corresponding mappings of
one artefact to another. As a result of this investigation, the authors apply different
bidirectionalisation techniques in order to implement parsing and unparsing in the
meta-programming language Rascal (2011). The mappings include similar features
that are available in our implementation: layout-preservation, parsing, unparsing, and
redundancies in the parsing direction. In addition, the authors discuss a feature to
automatically correct misspellings and likewise parse errors.

Other related work includes the idea of Rendel and Ostermann (2010), who propose
a new interface to describe parsers and pretty-printers in a single program. They pro-
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vide a type class Syntax � that includes common parser functions like empty , pure,
(< $ >), (< ⇤ >), and (< | >). Due to the usage of pretty-printers, the composi-
tion combinator, (< ⇤ >), forms a pair instead of using the traditional composition
semantic of parsers – like in our implementation. In order to define parsers and pretty-
printers, the programmer defines an instance for the Syntax typeclass. In the end, the
implemented instance decides if the combinator behaves like a pretty-printer, or a
parser. This approach has similarities to using a pair of functions to represent lenses:
we still have to define and maintain both sides of the implementation. Thus, we see an
advantage of our implementation in comparison to the idea of Rendel and Ostermann.

Last but not least, we want to mention the publication of Matsuda and Wang
(2013b), who introduce a FlipPr, a program transformation system that can be used to
define pretty-printers and gain a corresponding parser. FlipPr produces a parser for a
context free grammar that is consistent with the given definition of the pretty-printer.
Their advantage in comparison to bidirectional approaches is that they can outsource
their parsing algorithms to parser generators and reuse efficient implementations of
exisiting pretty-printer libraries. In particular, FlipPr is implemented in Haskell and
reuses Wadler’s existing implementation of pretty-printers, additionally, they make use
of happy8 as the parser generator.

6.2 Case Study II - Lenses for Records

This section gives an overview about record syntax in Curry and a draft proposal for a
possible improvement concerning lenses. First, we discuss the current implementation
of records in KiCS2 that covers the general idea, and some insights of the transfor-
mations that take place during compilation. As a second step, we take a closer look
at these transformations, and the usage of records. The similarity of the challenges
connected to records and the use-cases for lenses leads to the idea to translate record
fields into lenses. In the last subsection, we sketch the transformations from record
type declarations into corresponding lens definitions.

8http://www.haskell.org/happy/
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6.2.1 Record Syntax in Curry

In the current KiCS2 implementation (2014), we can define types similar to data type
declarations as records in Haskell. In the remainder of this section, we call these
definitions record types. As an exemplary definition of a record types, we define a
data structure with two fields named Person. A Person has a first and a last name,
both are represented as Strings. Fields of the same type can be grouped like in the
following example.

type Person = {first , last :: String }
type Contact = {person :: Person, street :: String }

At first, the compiler desugars record declarations to data type definitions. The value
constructor’s name is identical to the name of the record type and this constructor
takes as many arguments as fields exist in the record declarations.

data Person = Person String String

data Contact = Contact Person String

Furthermore, the field name accessors are labels that are only known in combination
with special syntactical constructs, which are :> and :=. That is, we can define a value
of type Person with record notation, where := is used to assign a field to a value within
record construction and :> is an accessor that we can use to get a value out of a record.

aPerson :: Person

aPerson = {first := "Bob", last := "Dylan"}

> aPerson :> first

"Bob"

> aPerson :> last

"Dylan"

Record updates are also possible; in order to update a given record type Person with
fields first and last , we use another special syntax operator, { := | }, to annotate
which record value, and which record fields of a record we want to change.

appendToFirst :: Person ! Person

appendToFirst person = {first := value ++ "1" | person }
where value = person :> first
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The construction without the pipe operator looks like a normal record definition. In
combination with the pipe, we can update a record value that is given to the right of
the operator. In the example, we have a record value with two fields, but only one field
is explicitly set to the left of the pipe operator. Record updates allow the programmer
to only write down the fields to be updated for a given record; all other fields remain
unchanged.

The usage of records can be very helpful and elegant, but has its downsides as well.
In contrast to Haskell, the fields first and last of the Person type are not functions,
but syntactical constructs called labels. The advantage of these labels is that the name
spaces of function names and labels are disjoint. That is, we can define functions first
and person without interfering with our existing record fields.

first :: Person ! String

first p = p :> first

person :: Contact ! Person

person c = c :> person

We postpone an example that highlights one of the disadvantages of labels in com-
parison with functions to the next subsection.

6.2.2 Step by Step: From Records to Lenses

In order to examine records a little bit further, let us define more complex record field
accessors for nested record definitions. For example, the record type Contact contains
a field person of type Person, which is also a record type itself with fields first and
last , both of type String .

Getting There is Half the Fun

We can define a function getFirstForContact that takes a value of type Contact as
argument and yields a String as result. The resulting string is the first name of the
person of the given contact, i.e., we first access the field person and use the resulting
record type Person to access the field first .

getFirstForContact :: Contact ! String

getFirstForContact contact = contact :> person :> first
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The definition of this function looks straightforward and quite compositional, but
since person and first are not real functions but labels, i.e., special syntactical con-
structs, we cannot compose these accessors like in Haskell. In order to make this point
more clear, we define a second version getFirstForContact 0, which is defined with the
help of the functions first and person that we defined earlier.

getFirstForContact 0 :: Contact ! String

getFirstForContact 0 = first � person

In Curry, we cannot apply well-known simplification mechanisms, e.g., eta-reduction,
or point-free style, for record accessors.

Set Your Records Straight

In a second step, we define a function to change the value of a field in a given record.
Thus, we define a function setFirstForContact , which takes a Contact and a String as
arguments in order to change the first name of the person within that contact.

setFirstForContact :: Contact ! String ! Contact

setFirstForContact contact name =

{person := {first := name | contact :> person } | contact }

For this function definition, we need to update two record values: the person within
the given contact, and the first name of that person. Therefore, we need to access
the value of the field person of the given contact, i.e., contact :> person, in order to
modify the first field. The resulting modified value of type Person is the new value of
the person field for the given contact. As the record gets more and more nested, the
more complex is the update mechanism. Similar as for the selection function, we take
a try to simplify the update function as well. First, we define two auxiliary functions
first 0 and person 0 that update the field corresponding to their names for a given value
of type Person and Contact , respectively.

first 0 :: Person ! String ! Person

first 0 p new = {first := new | p}

person 0 :: Contact ! Person ! Contact

person 0 c new = {person := new | c}
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With the help of the selection functions person and first to access the person within a
contact and the first name of a person, respectively, we can redefine the setter function
above.

setFirstForContact 0 :: Contact ! String ! Contact

setFirstForContact 0 c new = person 0 (person c) (first 0 (first (person c)) new)

The new version of the nested setter functions looks a little bit less complicated,
but it seems time-consuming to define all these auxiliary functions for all record types
that we define in a program. Thus, as a next step, we try to generalise the defined get
and set function to work for all record types.

Make You a Lens for a Greater Good

We define a function get :: (rec ! recField) ! rec ! recField , where rec is a record
type and recField is the type of a field of that record.

type Get a b = a ! b

get ::Get a b ! a ! b

get getF value = getF value

As we have seen above, it is easy to compose getters for nested record values; with
the new defined get function, we can access a field of a record value as follows9.

personGet ::Get Contact Person

personGet c = c :> person

firstGet ::Get Person String

firstGet p = p :> first

aContact :: Contact

aContact = {person := aPerson, street := "Folkstreet 1969"}

> get personGet aContact

Person "Bob" "Dylan"

> get (firstGet � personGet) aContact

"Bob"

9As we stated before, KiCS2 translates a record type into a data type declaration, that is, the REPL
uses this translated data type when printing a record value.
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For a generalised setter function, we define set :: (rec ! recField ! rec) ! rec !
recField ! rec and we use the type variables, again, as descriptive names.

type Set a b = a ! b ! a

set :: Set a b ! a ! b ! a

set setF value new = setF value new

When revising the setter function for the nested record value, we come to the con-
clusion that we cannot compose two setters in the same smooth way as the getters.
Let us try to define a combinator (< . >) :: Set a b ! Set b c ! Set a c anyway that
takes two setter functions and yields a new, combined setter.

(< . >) :: Set a b ! Set b c ! Set a c

(fAB < . > fBC ) valA valC =

let newB = fBC valB valC

valB = ?
in fAB valA newB

The second setter function fBC :: b ! c ! b yields a value of type b, which is the
same type the first setter function fAB :: a ! b ! a takes as its second argument.
That is, we can combine the given value valA :: a, and the result of the first setter to
get a new value newB :: b. The setter function fBC takes a value of type b and one of
type c as its arguments. We have valC ::c as an argument, so the only missing piece is
a value of type b. The two setter function alone cannot be combined in a meaningful
way; we need the corresponding getter function getAB ::a ! b to fill the missing piece.
Thus, we add another argument to complete the definition.

(< . >) :: (Get a b,Set a b) ! Set b c ! Set a c

((getAB , setAB)< . > setBC ) valA valC =

let newB = setBC valB valC

valB = getAB valA

in setAB valA newB

With the new definition of the combinator, we change the first name of a contact as
before, but, in addition, we gain a general mechanism to change any field of a record.
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personSet :: Set Contact Person

personSet c newP = {person := newP | c}

firstSet :: Set Person String

firstSet p newF = {first := newF | p}

> set ((personGet , personSet)< . > firstSet) aContact "Bobby"

Contact (Person "Bobby" "Dylan") "Folkstreet 1969"

In the last step, we change the second argument to match the type of the first: we
take two pairs, where the first component is a getter and the second component is a
setter function. This change leads to a resulting type of pairs as well. That is, we can
define both compositions of getter and setter functions in one combinator. In the end,
we get the following definition of (< . >).

(< . >) :: (Get a b,Set a b) ! (Get b c,Set b c) ! (Get a c,Set a c)

((getAB , setAB)< . > (getBC , setBC )) = (getAC , setAC )

where

getAC = getBC � getAB
setAC valA = setAB valA � setBC (getAB valA)

The attentive reader may recognise the structure: it looks exactly like our primitive
lens definitions from Section 5.1.1. This observation leads to the idea of a new trans-
formation of record declarations in Curry, which we discuss in the next subsection.

6.2.3 Record Transformation

Instead of introducing special syntactical constructs like rec :> recField to select, and
{recField := newValue | rec} to update a record field for a given record, we use lenses
as a general mechanism. As a bonus, nested record updates gain a general combinator
to change a deep nested record field more easily.

In order to give a better insight about this idea, we first give the Curry code we
want to generate.

type Contact = {person :: Person, street :: String }
type Person = {first , last :: String }
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-- generated code
data Contact = Contact Person String

data Person = Person String String

person :: (Contact ! Person,Contact ! Person ! Contact)

person = (personGet , personSet)

where

personGet (Contact p ) = p

personSet (Contact s) newP = Contact newP s

first :: (Person ! String ,Person ! String ! Person)

first = (firstGet ,firstSet)

where

firstGet (Person f ) = f

firstSet (Person l) newF = Person newF l

As a first observation, we can rewrite the type signature of person to highlight the
similarity to the definitions above; we generalise this type signature again and define
a type synonym Lens a b for a less verbose type signature in future code examples.

-- person :: (Contact -> Person, Contact -> Person -> Contact)
-- person :: (Get Contact Person, Set Contact Person)

person :: Lens Contact Person

type Lens a b = (Get a b,Set a b)

Next, we examine the generated code a bit more. As in the current transformation
of record types, we generate a data type declaration corresponding to the record type:
one value constructor with the same name as the record type, and each field of the
record type as an argument of the value constructor. The arrangement of arguments
is adopted from the record declaration; in the process, we desugar grouped fields and
write every pair of fields and type declaration consecutively. In the following, we call
the desugared version of a record type flattened. For example, the record type

type Complicated = {first , second :: Int

, onO↵ :: Bool

, text1 , text2 , text3 :: String }

can be easily flattened to the following record type declaration.

100



6 Case Studies 6.2. Case Study II - Lenses for Records

type Person = {first :: Int

, second :: Int

, onO↵ :: Bool

, text1 :: String

, text2 :: String

, text3 :: String }

We resign to give a general approach to flatten a record type, because it is rather
technical to write down, and of little help. Hence, in the following we use flattened
record types to simplify the transformation without losing expressiveness. For a given
record type declaration type Rec ↵1 . . . ↵n = {f1 :: ⌧1, . . . , fk :: ⌧k }, we get the
following transformation rule.

Transformation 1.
⌧1 . . . ⌧k , ↵1 . . . ↵n 2 ⇥ Rec 62 ⇥ Rec 62  

(⇥, ) : type Rec ↵1 . . . ↵n =

8

>

<

>

:

f1 :: ⌧1

, . . .

, fk :: ⌧m

9

>

=

>

;

 data Rec ↵1 . . . ↵n =

Rec ⌧1 · · · ⌧k

As a precondition for this transformation rule, we demand that the types, which we
use in the record definition, are known types of the given environment. We denote
the set of known types as ⇥. Furthermore, since the name of the defined record type
is used as the name for the generated data type and constructor, the name has to
be unique in the given environment as well. That is, Rec is neither allowed to be an
element of the set of types ⇥ nor an element of the set of constructors  .

Transformation 2.

f1, . . . , fk 62 � type Lens a b = (a ! b, a ! b ! a)

� : type Rec ↵1 . . . ↵n =

8

>

<

>

:

f1 :: ⌧1

, . . .

, fk :: ⌧k

9

>

=

>

;

 

f1 :: Lens (Rec ↵1 . . . ↵n) ⌧1

f1 = (fget1 , fset1)

where (⇤)
...

fk :: Lens (Rec ↵1 . . . ↵n) ⌧k

fk = (fgetk , fsetk )

where (⇤)
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fgeti (Rec · · · vali · · · ) = vali (⇤)

fseti (Rec val1 · · · valk ) valnew = Rec val1 · · · vali�1 valnew vali+1 · · · valk (⇤)

The second transformation generates the corresponding lens function for every field
of a given record. We demand all record field names to be unique in the given envi-
ronment: functions with the same name are not allowed. Therefore, we introduce �
as the set of all function names. If any record field is an element of �, the precon-
dition is not fulfilled, thus, the transformation cannot be pursued and fails. In order
to make the derivation rule more readable, we introduce a type synonym for lenses
type Lens a b = (a ! b, a ! b ! a) for further usage, but we do not generate
the lens type synonym in our record transformation for simplicity reasons. For every
record field fi , we generate a lens fi in two steps: first, we define two local functions
fgeti and fseti . Second, we combine these functions to a pair of getter and setter
function and gain a lens definition.
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7

Conclusion

“We can only see a short distance ahead, but we can see
plenty there that needs to be done.”

Alan Turing

We want to conclude this thesis with a summary of our work, the highlights of our
accomplished results, and an outlook on future work. Upcoming challenges include
further research on Curry’s built-in search component, and further improvements of our
lens implementation. Additionally, we propose the integration of lenses in the KiCS2
compiler in the context of record type declarations as well as the reimplementation of
the WUI1 library.

7.1 Summary and Results

This thesis addresses the topic of bidirectional programming and lenses in particular.
Even though this topic has been investigated in great detail in the past, we gain a new
view on lenses by using a functional logic programming language like Curry.

Related approaches concentrate on defining a new infrastructure that fits bidirec-
tional programming perfectly – programming languages like Boomerang and VDL – or
targets a specific domain – lenses for relations, strings, or trees. In this thesis, we do
not create a new programming language, but use Curry and leverage its capabilities

1http://www-ps.informatik.uni-kiel.de/kics2/lib/CDOC/WUI.html
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regarding nondeterminism, and the built-in search to gain a new bidirectionalisation
approach for lenses. Due to its similarities to Haskell, our approach in Curry affords a
familiar setting for programmers of both languages. Furthermore, we can have a wide
range of lens definitions that are not limited to a specific context, but use all facets of
the underlying language, e.g., algebraic data types, higher-order functions, recursion,
and also existing libraries.

There also exists promising and well-studied work on bidirectionalisation techniques
for get-based lenses that can be used in Haskell. In this thesis, we decided not to
follow this traditional approach, but adopt the idea of put-based lenses. Whereas
the get-based approach lacks an unique bidirectionalisation of a suitable put function,
we have the possibility to formulate a sophisticated update strategy in the put-based
approach. We have implemented two libraries for put-based lenses: one library pursues
a combinatorial approach; the other library follows the idea of bidirectionalisation in
the broadest sense and generates a corresponding get function on the fly. Though
the combinatorial approach guarantees well-behavedness of the underlying lenses, we
prefer the usage of the second library for two reasons. Firstly, we are not limited to
use a predefined set of combinators. Secondly, we had a hard time to get our head
around defining more complex lenses with the predefined combinators; the adopted
interface was not very intuitive to use in practice.

Moreover, we developed a new notion of nondeterministic lenses and adopted the
existing lens laws to be suitable for a nondeterministic setting. In our opinion, nonde-
terministic lenses enhance the application of bidirectional programming to new areas
that were not applicable before. We implemented prototypical lenses to unify the
specification of pretty-printers and parsers. On top of these printer-parsers, we de-
veloped lenses to facilitate a layout-preserving replacement for a given pretty-printer
specification.

Another well-suited application for lenses are record type declarations. We proposed
a concept for transforming record type declarations in Curry into a set of lenses. We
define a lens for each field of the given record to provide a selector, and an update
function by using get and put, respectively.

As a side-product of testing our implementation, we reactivated the testing frame-
work EasyTest. We developed our own testing interface for lens laws to generate
testing values based on EasyTest as well as an automated test generator.
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7.2 Future Directions

We have several topics for future work in mind. Firstly, due to our heavy usage of
Curry’s built-in search, we ran into some complications for function definitions that
are too strict. These complications are not lens-specific, but a general problem worth
investigating. Secondly, we discuss future work in the context of lenses that include
enhancements, and further applications.

7.2.1 Strictness Problems When Searching For Solutions

During the testing phase of our put-based lens libraries, we ran into complications due
to Curry’s internal structure of integer values in combination with lists. We can isolate
these complications to a general problem with the built-in search: we cannot guess an
argument of a function that evaluates in a strict manner, i.e., the argument needs
to be evaluated completely and no information about the result can be propagated
beforehand.

In this subsection, we give a detailed insight of Curry’s built-in search capabilities
with an example that needs to guess a list with a specific length. We also present two
approaches to solve the upcoming problem. Both approaches try to harmonise the
combination of inter values and lists. The first approach uses an alternative structure
for lists; the second approach uses an alternative structure for integer values. However,
we think it would be an interesting topic of its own to investigate function definitions
that are too strict to be applicable for the built-in search component.

In the following, we work with the put-based lens library that we presented in
Section 5.2. As a quick reminder: we have the following interface for put-based lenses
that generate a corresponding get-function.

type Lens a b = a ! b ! a

put :: Lens a b ! a ! b ! a

put lens s v = lens s v

get :: Lens a b ! a ! b

get lens s | put s v ⌘ s = v

where v free
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In order to compare our lenses with related approaches, we want to define equivalent
lenses to the ones presented by Voigtländer (2009). We pick putHalve as exemplary
lens definition, which is defined as follows.

putHalve :: [a ] ! [a ] ! [a ]

putHalve xs xs 0 | length xs 0 ⌘ n = xs 0 ++ drop n xs

where n = length xs ‘div ‘ 2

putHalve takes two lists – a source list and a view list – and concatenates the second
list with the second half of the first list. Valid view lists have half the length of the
source list, if otherwise, the function yields failed , i.e., no result is produced.

In the following, our goal is to generate a get function for putHalve. The desired get

function is equivalent to the following definition of halve.

halve :: [a ] ! [a ]

halve xs = take (length xs ‘div ‘ 2) xs

With the help of our interface, we can derive a corresponding get function by simply
calling get with putHalve and our source value.

getHalve = get putHalve

Unfortunately, this easy task evolved into a long investigation of Curry’s built-in
search mechanism as well as the internal representation of integer values, and the
interaction of integer values with lists.

The Problem

First of all, a function call like getHalve [(), ()] does not terminate. The problem is
the combination of the internal representation of lists and integer values; they do not
harmonise well. This effect is triggered by the usage of length. The free variable v in
the definition of get corresponds to xs 0 in the definition of putHalve, i.e., the system
guesses values for xs 0. In order to be more precise, the system needs to guess lists of
type () for xs 0 and checks if their length is the same as length [(), ()] ‘div ‘ 2. We can
evalute the expression getHalve [(), ()] as follows.

getHalve [(), ()]

⌘ get putHalve [(), ()]

⌘ putHalve [(), ()] v ⌘ [(), ()] where v free
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⌘ putHalve [(), ()] v | length v ⌘ n = v ++ drop n [(), ()]

where n = length [(), ()] ‘div ‘ 2

⌘ putHalve [(), ()] v | length v ⌘ n = v ++ drop n [(), ()]

where n = 1

⌘ putHalve [(), ()] v | length v ⌘ 1 = v ++ [(), ()]

In order to focus on the cause of the problem, we reduce our definition of putHalve
to this explicte example of a list with two elements.

putHalveSimple :: [a ] ! [a ]

putHalveSimple xs 0 | length xs 0 ⌘ 1 = xs 0 ++ drop 1 [(), ()]

If we evaluate an expression with a free variable, e.g., putHalveSimple v where v free,
Curry’s built-in search component converts integer value to its internal representation.
In particular, Curry uses binary numbers as representation for integer values, plus ad-
ditional information about the algebraic sign to represent negative values, positive
values, and 0. The data structure Nat defines constructors for binary numbers and
BinInt is the overall representation, wrapping the binary numbers.

data BinInt = Neg Nat | Zero | Pos Nat

data Nat = IHi | O Nat | I Nat

If we replace the usage of integer values in our defintiion of putHalveSimple with the
internal representation of BinInt , we end up with the following function.

putHalveSimple :: [a ] ! [a ]

putHalveSimple xs 0 | length xs 0 ⌘ Pos IHi = xs 0 ++ drop 1 [(), ()]

length 0 :: [a ] ! BinInt

length 0 [ ] = Zero

length 0 (x : xs) = inc (length 0 xs)

Additionally, we use a function length 0 that computes the length of a given list using
BinInt as well. The auxiliary function inc increments a BinInt value.

inc :: BinInt ! BinInt 1

inc Zero = Pos IHi 2

inc (Pos n) = Pos (succ n) 3

inc (Neg IHi) = Zero 4

inc (Neg (O n)) = Neg (pred (O n)) 5

inc (Neg (I n)) = Neg (O n) 6
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Guessing a List with a Specific Length

So, how do the evaluation steps look like when we want to compute the length of a
list?

We can directly compute the result for an empty list, but for a non-empty list
we build a sequence of inc-operations, e.g., inc (inc Zero) for a two-valued list,
inc (inc (inc Zero)) for a three-valued list etc. In order to take this investigation
one step ahead, we need to look at the definition of inc, where only lines 2 and 3 are
of further interest. We give the evaluation of zero to two consecutive inc function calls
in Figure 7.1.

(1)
Zero ⌘ Pos IHi 1

⌘ False 2

(2)
inc (Zero) ⌘ Pos IHi 3

⌘ Pos IHi ⌘ Pos IHi 4

⌘ True 5

(3)

inc (inc Zero) ⌘ Pos IHi 6

⌘ inc (Pos IHi) ⌘ Pos IHi 7

⌘ Pos (succ IHi) ⌘ Pos IHi 8

⌘ Pos (O IHi) ⌘ Pos IHi 9

⌘ False 10

Figure 7.1.: Evaluation of inc for an increasing number of function calls

The attentive reader may have already noticed that the definition of inc is strict
and does not propagate its constructor. The successor function on binary numbers,
succ, is also strict. Hence, in the current implementation with integer values, the list
that Curry guesses is evaluated completely due to the usage of length. The length

function evaluates the whole list to determine its length; this leads to the construction
of lists with increasing length when using a free variable. The built-in search for free
variables in KiCS2 can be translated in nested injections of ?-operations, where every
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constructor of the given type is a possible guess and arguments of constructors are
also free variables. For every free variable of type [a ] both constructors are possible
values, therefore, both expressions are introduced with the ?-operator. We illustrate
the built-in search of our example in Figure 7.2.

length 0 v ⌘ Pos IHi where v free 1

⌘ length 0 ([ ] ? _x2 : xs) ⌘ Pos IHi where _x2 , xs free 2

⌘ (length 0 [ ] ? length _x2 : xs) ⌘ Pos IHi where _x2 , xs free 3

⌘ length 0 [ ] ⌘ Pos IHi ? length 0 _x2 : xs ⌘ Pos IHi where _x2 , xs free 4

⌘ Zero ⌘ Pos IHi ? length _x2 : xs ⌘ Pos IHi where _x2 , xs free 5

⌘ False ? length 0 _x2 : xs ⌘ Pos IHi where _x2 , xs free 6

⌘ False ? inc (length 0 xs) ⌘ Pos IHi where xs free 7

⌘ False ? inc (length 0 [ ] ? length 0 _x4 : ys) ⌘ Pos IHi where _x4 , ys free 8

⌘ False ? inc length 0 [ ] ⌘ Pos IHi ? inc (length 0 _x4 : ys) ⌘ Pos IHi 9

where _x4 , ys free 10

⌘ . . . 11

Figure 7.2.: Guessing a list with length one

The built-in search collects all possible values and works henceforth with a set of
values, i.e., every list of the resulting set is used for further function calls. For our
example, we get the following results in the interactive environment of KiCS2.

> length 0 v ⌘ Pos IHi where v free

{v = [ ]} False

{v = [_x2 ]} True

{v = [_x2 ,_x4 ]} False
...

In summary, the internal structure for lists and numbers do not harmonise well, we
cannot guess the length of a list. Unfortunately, the length function cannot be imple-
mented in a way that is sufficient to propagate a constructor, because it is problematic
to map the empty list to a value of type Nat . How can we solve the problem that
putHalve and putHalveSimple, respectively, does not terminate?
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Approach One: Peano Numbers

As a first attempt, we use an alternative data structure with an unary representation
for integer values: peano numbers.

data Peano = Zero

| S Peano

Peano numbers are represented with a constructor for Zero and a successor con-
structor S Peano. The corresponding length function, lengthPeano, introduces an
S -constructor for every element of the list and yields Zero for an empty list.

lengthPeano [ ] = Z

lengthPeano (x : xs) = S (lengthPeano xs)

Let us take a look at the simplified implementation of putHalvePeano that uses
peano numbers instead of integer values.

putHalvePeano :: [a ] ! [a ]

putHalvePeano xs 0 | lengthPeano xs 0 ⌘ S Z = xs 0 ++ [()]

We evaluate the the expression lengthPeano v ⌘ S Z where v free in Figure 7.3.
The actual evaluation of the given expression yields the following result in KiCS2’s
interactive environment.

> lengthPeano v ⌘ S Z where v free

{v = [ ]} False

{v = [_x3 ]} True

{v = (_x3 : _ x4 : _ x5 )} False

For this implementation, the evaluation terminates after three steps. The get di-
rection of putHalve also yields convenient results: the expanded version of the get
direction yields the successful binding; the actual function getHalve yields only the
resulting value as desired.

> putHalve [(), ()] v ⌘ [(), ()] where v free

v = [()]} True

> getHalve [(), ()]

[()]
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lengthPeano v ⌘ S Z where v free 1

⌘ lengthPeano ([ ] ? _x3 : xs) ⌘ S Z where _x3 , xs free 2

⌘ (lengthPeano [ ] ? lengthPeano (_x3 : xs)) ⌘ S Z where _x3 , xs free 3

⌘ lengthPeano [ ] ⌘ S Z ? lengthPeano (_x3 : xs) ⌘ S Z where _x3 , xs free 4

⌘ Z ⌘ S Z ? S (lengthPeano xs) ⌘ S Z where xs free 5

⌘ Z ⌘ S Z ? lengthPeano xs ⌘ Z where xs free 6

⌘ False ? lengthPeano [ ] ? lengthPeano (_x4 : _ x5 ) ⌘ Z 7

where _x4 ,_x5 free 8

⌘ False ? lengthPeano [ ] ⌘ Z ? lengthPeano (_x4 : _ x5 ) ⌘ Z 9

where _x4 ,_x5 free 10

⌘ False ? Z ⌘ Z ? S (lengthPeano _x5 ) ⌘ Z where _x5 free 11

⌘ False ? True ? False 12

Figure 7.3.: Guessing a list with length one with peano numbers

The main difference to the first implementation is that lengthPeano can propagate
the constructor of the underlying data structure – S or Z – to the front of the remain-
ing evaluation. As the guessed list grows, the newly introduced ?-operators occur only
as the argument of an S -constructor. This construction finally leads to a terminat-
ing search, because once we overreach the number of S -constructors, the remaining
argument of that constructor is not evaluated anymore. Lines 12-13 of the example in
Figure 7.3 show that no further guesses for free variables are necessary, because the
partial evaluation of S n can never be evaluated to Z . Hence, the expression S n ⌘ Z

evaluates to False and the evaluation of the whole expression terminates.

Approach Two: Binary Lists

The second approach is to choose an alternative representation for lists. In particular,
we are interested in a representation that behaves well with the internal BinInt data
structure. Therefore, we use the following definition of binary lists.

data L a = LIHi a | LO (L (a, a)) | LI (L (a, a)) a

data BinaryList a = Empty | NonEmpty (L a)
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We define a data structure for non-empty lists that corresponds to binary numbers.
LIHi a is a list with one element, LO (L (a, a)) represents a list with at least two
elements, and LI (L (a, a)) a is the constructor for an at least three-valued list.
Since this data structure has no representation for an empty list, we introduce an
additional data type BinaryList that wraps a constructor NonEmpty around the list
representation L a. The second constructor Empty represents empty lists.

lengthBList :: BinaryList a ! BinInt

lengthBList Empty = Zero

lengthBList (NonEmpty list) = Pos (lengthL list)

where

lengthL :: L a ! Nat

lengthL (LIHi ) = IHi

lengthL (LO l) = O (lengthL l)

lengthL (LI l ) = I (lengthL l)

The definition of the length function lengthBList that computes the length of a
BinaryList with the BinInt data structure benefits from underlying structure of the
given list. The BinaryList has a special constructor for non-empty lists with an in-
ner representation. Therefore, we can propagate Pos for a non-empty list without
evaluating the actual list, i.e., the argument of the NonEmpty-constructor. The three
different constructors of the binary list structure reflect which Nat-constructor to use,
such that the constructor is propagated to the front of the expression, again.

We define a corresponding version putHalveBinaryList with our new representation
of lists.

putHalveBinaryList :: BinaryList a ! BinaryList a ! BinaryList

putHalveBinaryList xs 0

| lengthBList xs 0 ⌘ Pos IHi = xs 0 ++ listToBinaryList [()]

The auxiliary function listToBinaryList :: [a ] ! BinaryList a converts a given tra-
ditional list representation to the corresponding binary list.

Once again, we want to test our solution by running the get direction of the lens
for a list of length one. We reduce the query to the expression lengthBList v ⌘
Pos IHi where v free, which yields the following result.

112



7 Conclusion 7.2. Future Directions

> lengthBList v ⌘ Pos IHi where v free

{v = Empty } False

{v = NonEmpty (LIHi _x2 )} True

{v = NonEmpty (LO _x2 )} False

{v = NonEmpty (LI _x2 _x3 )} False

The evaluation terminates after computing four values to bind the free variables;
a detailed evaluation of the expression is given in Figure 7.4. Lines 18-24 illustrate
the propagation of the convenient binary number’s constructor for the corresponding
constructor of the binary list quite well. In the subsequent lines – 25-28 – the evaluation
terminates due the propagated constructors Pos (I ) and Pos (O ), respectively,
that can be finally compared with Pos IHi .

lengthBList v ⌘ Pos IHi where v free 1

⌘ lengthBList (Empty ?NonEmpty xs) ⌘ Pos IHi where xs free 2

⌘ (lengthBList Empty ? lengthBList (NonEmpty xs)) ⌘ Pos IHi 3

where xs free 4

⌘ lengthBList Empty ⌘ Pos IHi ? lengthBList (NonEmpty xs) ⌘ Pos IHi 5

where xs free 6

⌘ Zero ⌘ Pos IHi ? Pos (lengthL xs) ⌘ Pos IHi where xs free 7

⌘ False ? Pos (lengthL (LIHI _x2 ? LO _x2 8

? LI _x2 _x3 )) ⌘ Pos IHi 9

where _x2 ,_x3 free 10

⌘ False ? Pos (lengthL (LIHI _x2 ? LO _x2 11

? LI _x2 _x3 ) ⌘ Pos IHi 12

where _x2 ,_x3 free 13

⌘ False ? Pos (lengthL (LIHi _x2 ) ? lengthL (LO _x2 ) 14

? lengthL (LI _x2 y)) ⌘ Pos IHi 15

where _x2 ,_x3 free 16

⌘ False ? Pos (lengthL (LIHi _x2 )) ⌘ Pos IHi 17

? Pos (lengthL (LO _x2 ) ? lengthL (LI _x2 _x3 )) ⌘ Pos IHi 18

where _x2 ,_x3 free 19
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⌘ False ? Pos IHi ⌘ Pos IHi 20

? Pos (O (lengthL _x2 ) ? I (lengthL _x2 _x3 )) ⌘ Pos IHi 21

where _x2 ,_x3 free 22

⌘ False ? True 23

? Pos (O (lengthL _x2 )) ⌘ Pos IHi 24

? Pos (I (lengthL _x2 _x3 )) ⌘ Pos IHi 25

where _x2 ,_x3 free 26

⌘ False ? True ? False ? False 27

Figure 7.4.: Guessing a binary list with length one

In the end, the expression get putHalveBinaryList (NonEmpty (LO (L ((), ()))))

yields NonEmpty (LIHi ()) as desired.

7.2.2 Further Directions

Unfortunately, our preferred put-based lens library does not guarantee well-behavedness
by construction. This lack of well-behavedness has to be tackled in the future. We
started by defining a test-suite that generates test cases for all lens definitions of a
given module, but the tests still have to be run manually. It would be useful to have
static analyses as a replacement for manual tests. Hu et al. (2014) propose two al-
gorithms to check the two essential laws for put-based lenses – PutDet and PutStab
– statically. However, they define these algorithms on top of a simple, self-defined
language for lenses. This language allows only put definitions that are affine and in
treeless form, thus, we cannot directly apply their results in Curry. Nevertheless, we
think that their work is a good starting point to get ideas for statical analyses in the
context of put-based lenses.

Due to the scope of this thesis, we had to lower our sights regarding record trans-
formations. In this thesis, we proposed a series of transformations on record type
declarations to generate lenses as convenient getter and setter functions instead of
the current implementation with syntactical constructs. We have also implemented a
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prototype that works on the internal FlatCurry2 representation of Curry programs as
proof of concept. However, we would like to integrate these transformations into the
KiCS2 compiler, and provide a simple lens library with a handful of primitives. For
the purpose of these field accessors, it suffices to implement a simple representation of
lenses as a pair of getter and setter functions.

Last but not least, we think that the work of Rajkumar et al. (2013) regarding
lenses in the context of web development could be very applicable for Curry. In our
opinion, lenses perfectly fit the setting of mapping database entities to user interfaces
for two reasons. Firstly, these mappings usually project from database entities to user
interfaces, which is a simple and common application for lenses. Secondly, possible
performance issues of lenses have a smaller impact in the context of web development,
where performance is usually affected by a communication overhead. Curry already
provides a library called WUI to specify web user interfaces; it was implemented by
Hanus (2006). On top of that, the Spicey3 framework can generate an initial setup
of a web-based system from an entity-relationship description of the underlying data.
We have already reimplemented the WUI library to use lenses and changed the Blog
example provided by Spicey to use our reimplementation. As a future work, we propose
to integrate the lens component into the WUI specification and the Spicey framework
in particular.

2http://www.informatik.uni-kiel.de/~curry/flat/
3http://www.informatik.uni-kiel.de/~pakcs/spicey/
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A

Combinatorial Library:
Examples for Lenses

We give some exemplary lens definitions on user-defined data types using the combi-
natorial library we implemented in Curry. The corresponding implementation can be
found in Section 5.1. Most of the following lens definitions are straightforward. In
the first example, we use the combinator isoLens to define a mapping from our data
type to a tuple representation. This tuple representation can be further processed
with the combinators of the library. On the hand, we have two examples that work
directly on primitive data types. In addition, these two examples include constraints
for constructing a value of the data structure. The lens definitions can be seen as
smart constructors for these algebraic data types.
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A Combinatorial Library: Examples for Lenses

Person examples

data Person = Person Name City 1

type First = String 2

person :: Lens Person (Name,City) 3

person = isoLens inn out 4

where 5

inn (n, c) = Person n c 6

out (Person n c) = (n, c) 7

nameOrAddress :: Lens Person String 8

nameOrAddress = nameLens ? addressLens 9

nameLens :: Lens Person First 10

nameLens = person < . > keepSnd 11

addressLens :: Lens Person Address 12

addressLens = person < . > keepFst 13

Temperature examples

data Temp = Temp Float 1

centigrade :: Lens Temp Float 2

centigrade = isoLens inn out 3

where 4

inn celsius = Temp (cToF celsius) 5

out (Temp temp) = fToC temp 6

cToF :: Float ! Float 7

cToF c = c ⇤. 1.8 +. 32 8

fToC :: Float ! Float 9

fToC f = (f �. 32) ⇤. (5 /. 9) 10
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A Combinatorial Library: Examples for Lenses

Time examples

data Time = Time Int Int 1

time :: Lens Time Int 2

time = isoLens innT (�(Time hour min) ! hour ⇤ 60 +min) 3

mins :: Lens Time Int 4

mins = isoLens innT (�(Time min) ! min) 5

innT :: Int ! Time 6

innT m = Time (m ‘quot ‘ 60) (m ‘mod ‘ 60) 7
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B

Printer-Parser for Arithmetic
Expressions with Infix Notation

In addition to the presented printer-parser for arithmetic expression in prefix notation
in Section 6.1.1, we define a more complex and convenient printer-parser. The following
code shows a printer-parser implementation for arithmetic expression in infix notation.
Because of the complication with redundant whitespaces in the parsing direction, the
implementation eschews this improvement. As a side-effect of integrating parsing
techniques into the printer-parser, the implementation needs to avoid left-recursions.
Thus, the printer-parser follows the traditional technique for implementing a parser
for arithmetic expressions.

ppExpr 0 :: PPrinter Expr 1

ppExpr 0 str t@(BinOp op e1 e2 , str 0) 2

| op ⌘ Plus _ op ⌘ Minus = 3

((ppTerm <<< whitespace) 4

<> ppPlusMinus 5

<> (whitespace >>> ppExpr 0)) str (((e1 , op), e2 ), str 0) 6

| otherwise = ppTerm str t 7

ppExpr 0 str t@(Num , ) = ppTerm str t 8
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B Printer-Parser for Arithmetic Expressions with Infix Notation

ppTerm :: PPrinter Expr 9

ppTerm str f@(BinOp op e1 e2 , str 0) 10

| op ⌘ Mult _ op ⌘ Div = 11

((ppFactor <<< whitespace) 12

<> ppMultDiv 13

<> (whitespace >>> ppTerm)) str (((e1 , op), e2 ), str 0) 14

| otherwise = ppFactor str f 15

ppTerm str f@(Num , ) = ppFactor str f 16

ppFactor :: PPrinter Expr 17

ppFactor str f@(e, str 0) = case e of 18

Num v ! digit str (v , str 0) 19

! "("++ ppExpr 0 str (e, ")"++ str 0) 20

ppMultDiv :: PPrinter Op 21

ppMultDiv (Mult , str 0) = "*"++ str 0 22

ppMultdiv (Div , str 0) = "/"++ str 0 23

ppPlusMinus :: PPrinter Op 24

ppPlusMinus (Plus , str 0) = "+"++ str 0 25

ppPlusMinus (Minus, str 0) = "-"++ str 0 26

In order to see the printer-parser in action, we give some exemplary expressions for
printing and parsing.

> pPrint ppExpr 0 (BinOp Mult (Num 1) (BinOp Mult (Num 2) (Num 3)))

1 ⇤ 2 ⇤ 3

> pPrint ppExpr 0 (BinOp Mult (Num 7) (BinOp Plus (Num 5) (Num 3)))

"7 * (5 + 3)"

> pPrint ppExpr 0 (BinOp Mult (Num 1) (BinOp Mult (BinOp Plus (Num 2)

(Num 3))(BinOp Minus (Num 5) (Num 1))))

"1 * (2 + 3) * (5 - 1)"

> pParse ppExpr 0 "1 + 3 * 5"

(BinOp Plus (Num 1) (BinOp Mult (Num 3) (Num 5)))

> pParse ppExpr 0 "1 + 3 * (4 - 9)"

(BinOp Plus (Num 1) (BinOp Mult (Num 3) (BinOp Minus (Num 4) (Num 9))))
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