
Christian-Albrechts-Universität zu Kiel

Diploma Thesis

A purely functional implementation of
ROBDDs in Haskell

Jan Christiansen

February 9th, 2006

Institute of Computer Science and Applied Mathematics

Programming Languages and Compiler Construction

Supervised by:

Prof. Dr. Michael Hanus

Dr. Frank Huch

2

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angebenen Hilfsmittel verwendet habe.

Kiel,

4

Contents

1 Introduction 7

1.1 Lazy Evaluation . 8
1.2 Boolean Expressions . 9
1.3 Decision Trees . 10
1.4 Reduced Ordered Binary Decision Diagrams 12
1.5 BDD Package . 15

2 Test Toolbox 19

2.1 Boolean Expressions . 19
2.2 Checking for Laziness . 19
2.3 Measurements . 21

3 ROBDD Implementations 23

3.1 An Imperative-like Implementation . 23
3.1.1 Making a New Node . 24
3.1.2 Constructing an ROBDD . 25
3.1.3 Descending an ROBDD . 27

3.2 A More Functional Implementation . 28
3.2.1 Making a New Node . 32
3.2.2 Descending an ROBDD . 33
3.2.3 Laziness . 34

3.3 A Lazy Implementation . 36
3.3.1 Lazy Nodes . 36
3.3.2 Relaxing the No-Redundancy Property 37
3.3.3 Making a New Node . 39
3.3.4 Laziness . 41

4 Implementation of a BDD Package 47

4.1 Apply . 47
4.1.1 Laziness . 52
4.1.2 Measurements . 53
4.1.3 Complexity . 55

4.2 Restrict . 56
4.2.1 Laziness . 57

5

Contents

4.2.2 Measurements . 59
4.3 Equality Check . 61

4.3.1 Full No-Redundancy Property . 62
4.3.2 Relaxed No-Redundancy Property 63
4.3.3 Measurements . 63

4.4 Consumer Functions . 66
4.5 User Interface . 68

5 Implementation of the Maps 73

5.1 Map . 73
5.2 FiniteMap . 74
5.3 BraunTree . 75
5.4 IntMap . 76
5.5 Measurements . 77

6 Related Work 81

6.1 Functional Implementations . 81
6.2 Functional Bindings to Imperative Implementations 82

7 Summary 85

7.1 Conclusion . 85
7.2 Future Work . 86

6

1 Introduction

A Reduced Ordered Binary Decision Diagram (ROBDD) is a data structure to represent
boolean expressions. This is a compact representation that provides efficient operations
to manipulate the expression. All implementations of a BDD Package, i.e., the ROBDD
data structure with a couple of operations that are used in practice are written in C
or C++. The goal of this work is to implement the ROBDD data structure and the
most important operations in Haskell [20]. Haskell is a lazy, purely functional program-
ming language, that provides algebraic data types, static typing, higher-order functions
and polymorphism. This paper discusses the design choices that where made in the
implementation.

A main aspect that is observed in this paper is the use of lazy evaluation to save
unnecessary computations. This idea was already mentioned by Bryant who introduced
ROBDDs [10]: ”One possibility would be apply the idea of ’lazy’ or ’delayed’ evaluation to
OBDD-based manipulation. That is, rather than eagerly creating a full representation of
every function during a sequence of operations, the program would attempt to construct
only as much of the OBDDs as is required to derive the final information desired.” Even
the idea of using Haskell was brought up by Launchbury et al. [11]: ”An even more
interesting question may be whether there’s some way to play off of Haskell’s strengths
and take advantage of laziness.” These two citations document the relevance behind
the idea of this thesis. Despite these citations there is no approach to an ROBDD
implementation of this kind.

The main goal of ROBDD implementations is to save memory. The less memory is
used by an ROBDD the greater ROBDD can be handled. If some of the ROBDD parts
are not needed at all we do not have to construct them. The implementation of this
idea in a strict language would be very hard. In Haskell we get this feature for free. For
free is not quite correct because the mechanisms that provide the lazy evaluation cost
memory.

The aim of this thesis is not to beat any C implementation. One goal is to beat the
only present purely functional Haskell implementation. Besides this we provide an im-
plementation that makes no use of laziness and compare this one with an implementation
that focuses on using laziness to save unnecessary computations. Even though we do not
beat an up-to-date C implementation we show that the idea of lazy evaluation can be
applied to this area of ROBDD manipulation. The insights presented in this paper can
potentially be taken back to strict languages to improve the standard implementations.

7

1 Introduction

1.1 Lazy Evaluation

The run of a functional program is the evaluation of an expression. There are multiple
strategies to evaluate an expression. There are two distinctions in the evaluation strategy
that decide which part of an expression is evaluated first. We have to decide whether
to evaluate the outermost or the innermost expression first. Second we have to decide
whether the leftmost or the rightmost expression is evaluated first.

There are two special evaluation strategies, leftmost innermost (LI) and leftmost out-
ermost (LO). Strict functional languages use a leftmost innermost reduction. All ar-
guments have to be evaluated before the function is evaluated, i.e., before a function
application is replaced by the definition of the function. Non strict functional languages
use a leftmost outermost evaluation strategy. It evaluates functions before it evaluates
the arguments of the function. This evaluation strategy is computational complete. That
is, if there is any evaluation strategy that yields a result the leftmost outermost strategy
yields it, too. Figure 1.1 shows an example of a leftmost outermost and a leftmost inner-
most reduction of the expression head ([1,2] ++ [3.4]). The function head yields the
first element of a list. The function (++) is the concatenation of lists. The definitions
of both can be found in the Haskell Report [20]. The leftmost outermost reduction pre-

LI

LI

LO LI

head ([1,2] ++ [3,4])

head (1:([2] ++ [3,4]))

LO LI

head (1:2:[3,4])

head (1:2:([] ++ [3,4]))1

1

Figure 1.1: LI and LO reduction of head ([1,2] ++ [3,4])

vents unnecessary evaluations. In the example the outermost reduction only evaluates
the head of the list while the innermost reduction causes the evaluation of the whole
list. By the term laziness in this paper we denote the fact that parts of an expression
are not evaluated because of lazy evaluation, i.e., that parts of a data structure are not
constructed or function applications are not evaluated.

Figure 1.2 shows the reduction of square (23 + 42) using a leftmost outermost strat-
egy. The function square yields the square of a number by multiplying the number with
itself. This example shows a problem of the leftmost outermost strategy. The expression
23 + 42 is evaluated twice. This is caused by the copying of the argument of square.

The term lazy evaluation describes an evaluation strategy that uses a leftmost out-
ermost strategy and prevents that an expression is evaluated twice. This evaluation
is implemented by a graph. This graph takes care that an expression is only evaluated

8

1.2 Boolean Expressions

65 * (23 + 42)

(23 + 42) * (23 + 42)

65 * 65

4225

square (23 + 42)

Figure 1.2: LO reduction of square (23 + 42)

once. Every node of this graph represents an expression. We do not copy expressions but
add a pointer to the node that represents this expression. If an expression is evaluated
the node that represents this expression is updated to the value that is yielded by the
evaluation. If we demand the evaluation of this term a second time we do not evaluate
it but just look up the value by dereferencing the pointer. A node is represented by a
position in the heap memory. If two expressions are represented by pointers to the same
place in the heap, i.e., pointers to the same node in the graph, the expressions are said
to be shared. Shared expressions have two characteristics. First they are evaluated only
once. Second the expressions do only require the memory for one expression in the heap.
John Launchbury has formalized what was sketched here to a semantics also known as
Launchbury semantics [21].

1.2 Boolean Expressions

Boolean expressions are often used in computer science. Mostly they are expressed either
in disjunctive normal form (DNF) or in conjunctive normal form (CNF). The satisfia-
bility check for a boolean expression in an arbitrary form is NP-complete. Determining
whether a formula in CNF is satisfiable is still NP-complete, even if each clause is limited
to at most three literals. This problem is known as 3-SAT. For boolean expressions in
DNF satisfiability is decidable in polynomial time.

To check whether a formula is a tautology we can use the satisfiability check. A formula
is a tautology iff its negation is not satisfiable. The negation of a boolean formula in
CNF is a boolean formula in DNF and vice versa. Therefore the tautology check is
co-NP complete for DNFs and decidable in polynomial time for CNFs. This seems to
suggest to check for tautology in CNF and satisfiability in DNF but the conversion from
one to another is exponential in the number of variables in the worst case.

This leads to another normal form that is called INF (if-then-else normal form). With
two additional conditions this normal form supports tautology and satisfiability check
in O(1). To generate the INF of a boolean expression we use the Shannon Expansion.

9

1 Introduction

We first introduce an operator called if-then-else. This expression is read ”if x then y0

else y1”.

x → y0, y1 = (x ∧ y1) ∨ (¬x ∧ y0)

A boolean expression in INF consists only of the if-then-else operator and the con-
stants true and false. The Shannon Expansion expresses the relation between a boolean
expression t over one variable x and this expression in INF.

t ≡ x → t[x 7→ 0], t[x 7→ 1]

The expression t[x 7→ 0] denotes the substitution of all occurrences of x in t by 0, i.e.,
false. By iterated use of this statement we can generate an INF for every boolean expres-
sion. We have to use the Shannon Expansion once for every variable in the expression.

1.3 Decision Trees

We can represent a boolean expression in INF by a Decision Tree. A boolean expression
in INF is a term that is composed of three constructors. The two constants true and
false and the three-ary constructor if-then-else. If we look upon this term as a tree we
get the corresponding Decision Tree. A Decision Tree is a binary tree where each node
represents the use of the Shannon Expansion. The node is labeled with the variable that
is substituted. The left successor represents the Decision Tree for the expression where
this variable is substituted by false. This successor is also called the low successor. The
right or high successor represents the substitution by true. The leaves are labeled one
and zero for the boolean constants true and false respectively.

If we want to construct a Decision Tree out of a boolean expression we have to choose
a variable that is substituted on every application of the Shannon Expansion, i.e., we
have to choose the x in the Shannon Expansion. If we use the same order of variables for
every path from the root to a leaf the tree is called Ordered Decision Tree. Figure 1.3
shows an Ordered Decision Tree for the expression (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3). On
all paths from the root to a leaf the variables occur in the order x1, x2, x3.

Implementation of Decision Trees

If we implement a Decision Tree in Haskell in fact we implement INF terms. In a
functional programming language a tree data structure is implemented by an algebraic
data type. Each node of the Decision Tree takes three arguments, its low successor, its
high successor and its variable. Additionally we need two leaves for the constants true

and false called Zero and One. We use the type synonym Var for the variables. The
concrete implementation is not important here.

data DT = DT DT Var DT

| Zero

| One

10

1.3 Decision Trees

x1

x2

x3 x3

0 0 0 1

x3

0 1 1 1

x3

x2

Figure 1.3: A Decision Tree for the expression (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

We define a function build that constructs a Decision Tree out of a boolean expression.
This is done by iterative application of the Shannon Expansion. We define a type
BExp that represents boolean expressions. The constants true and false are represented
by the nullary constructors BFalse and BTrue. We assume a substitute function for
these boolean expressions. This function additionally simplifies the expression as far as
possible. That is, if the boolean expression contains no more variables substitute yields
BFalse or BTrue. Without this simplification build would not terminate.

build :: BExp → DT

build bexp = build ’ 1 bexp

build ’ :: Var → BExp → DT

build ’ _ BFalse = Zero

build ’ _ BTrue = One

build ’ var exp =

let lowExp = substitute exp var BFalse

highExp = substitute exp var BTrue

low = build ’ (succ var) lowExp

high = build ’ (succ var) highExp

in

DT low var high

The definition of build is straight forward. The termination cases are applications to
BFalse and BTrue respectively. If the boolean expression is not a constant we substitute
the current variable by BFalse and BTrue and apply build’ to the results. These ap-
plications yield the low and high successor of the current node. We have to use a type
that is a member of the type class Enum. This class provides the function succ which

11

1 Introduction

yields the successor of its argument. This function is used to determine the next variable
that is used for the Shannon Expansion. We use the type Int for the variables. This
type provides an efficient succ implementation. Later we need an efficient comparison
of two variables. This is provided by Int as well. We have to start the construction with
the substitution of the smallest variable. We determine that all variables in a boolean
expression are greater or equal one and use variable one for the first Shannon Expansion.

1.4 Reduced Ordered Binary Decision Diagrams

Decision Trees are not the best representation for boolean expressions because their size
grows exponential in the number of variables. Lee introduced a data structure called
Binary Decision Diagram (BDD) [22] which was popularized by Akers [2].

A BDD is a directed acyclic graph (DAG). This graph consists of two types of nodes.
There are leaves labeled 0 and 1. The zero leaf represents false and the one leaf true.
The second type of nodes are variable nodes. These nodes are labeled with a variable
number. A variable node has two successors, the low and the high successor. A BDD
with a fix variable order, i.e., the variables on all paths from the root to a leaf occur
in the same order is called OBDD (Ordered BDD). A BDD is a compressed form of a
Decision Tree because equal sub-trees may be shared. At least all zero and all one leaves
are shared. Figure 1.4 shows an OBDD for the expression (x1∧x2)∨(x1∧x3)∨(x2∧x3).
This OBDD is the OBDD of worst case size for this expression.

OBDDs have exponential size in respect to the number of variables in the worst case,
too. They are smaller than Decision Trees but not guaranteed to be of minimal size.
Bryant introduced two properties for OBDDs and called OBDDs that satisfy these prop-
erties ROBDDs (Reduced OBDD) [8]. For a boolean function f and a fix variable order
the ROBDD is the OBDD of minimal size of all OBDDs that represent the function f .

0 1

x3 x3

x2 x2

x1

x3 x3

Figure 1.4: An OBDD for the expression (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

12

1.4 Reduced Ordered Binary Decision Diagrams

An OBDD can contain two nodes with the same variable, low and high successor.
In Figure 1.4 the two center nodes labeled x3 have the same variable, low and high
successor. All edges that point to one of these nodes are redirected to the other one. If a
node cannot be simplified by this rule it satisfies the sharing property. Figure 1.5 shows
an example of the application of this rule. If no node of an OBDD can be simplified by
this rule the OBDD satisfies the sharing property.

xk

xn

xk

xm

⇒
xm xn

xk

Figure 1.5: The Sharing Property

An OBDD can contain nodes whose low and high edge point to the same node. In
Figure 1.4 both edges of the outermost nodes labeled x3 point to the same node, namely
the zero and one leaf respectively. The value of the whole boolean expression is inde-
pendent of the value of this variable. All edges that point to a node whose low and high
edge point to the same node are redirected to one of the successors of this node. If a
node cannot be simplified by this rule, it satisfies the no-redundancy property. Figure 1.6
shows an example of the application of this property. If no node of an OBDD can be
simplified by this rule the OBDD satisfies the no-redundancy property.

xm

xn

⇒ xn

Figure 1.6: The No-Redundancy Property

ROBDDs satisfy the no-redundancy and the sharing property. The operation that
applies these two rules to an OBDD and yields an ROBDD is called reduction. Figure 1.7
shows an ROBDD for the boolean expression (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3). While
the Decision Tree for this expression has 15 nodes the worst case OBDD has 9 and the
ROBDD has 6.

Bryant proved [8] that ROBDDs are canonical with respect to a variable order. That
is, for a fix variable order every boolean function is represented by exactly one ROBDD. It
is important to talk about boolean functions and not about boolean expressions because
there are many boolean expressions that represent the same boolean function. For

13

1 Introduction

0 1

x3

x2 x2

x1

Figure 1.7: An ROBDD for the expression (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

example there are many boolean expressions that represent the constant function false

but only one function and therefore one ROBDD.
All boolean expressions that are not satisfiable, i.e., that are the constant function

false are represented by the same ROBDD. The same holds for the constant true, i.e., all
tautologies. Therefore the satisfiability and the tautology check are in O(1) for ROBDDs.
The ROBDD data structure satisfies all properties that were asked for in Section 1.2.
Another advantage of the canonical representation is that the equality check becomes
very simple because two equal ROBDDs are isomorphic.

Furthermore Bryant proved [8] that any function graph for a function f that is not
isomorphic to the corresponding ROBDD has more nodes. Besides these proofs Bryant
presented operations for the efficient manipulation of ROBDDs. These operations have
worst case behaviors that are linear or quadratic in the number of nodes of the ROBDDs
they are applied to. We present these operations in the next section.

The size of an ROBDD and therefore the efficiency of the operations on this ROBDD
highly depends on the variable order. For example the expression (a1∧b1)∨· · ·∨(an∧bn)
with the variable order a1 < b1 < · · · < an < bn is represented by an ROBDD with
2 ∗ (n + 1) nodes. The same expression with the order a1 < · · · < an < b1 < ... < bn is
represented by an ROBDD with 2(n+1) nodes. Figure 1.8 shows the ROBDDs for n = 3
for both orders.

It is NP-hard to find an optimal order but there are many approaches to find a good
variable order. We do not discuss the choice of a variable order in this paper. The
implementations that are presented in this paper all use the canonical variable order,
i.e., x1 < · · · < xn.

Today ROBDDs are widely used in computer science. They are used in VLSI CAD, in
Model Checking, for representing Relations and many other domains where fast boolean
expression manipulation is needed. The worst case size of an ROBDD is still exponential
in the number of variables but the ROBDD representations for most expressions that
are used in practice are reasonable small.

14

1.5 BDD Package

a1

a2

a2

a3

a3

0

b3

1

b2

b2

a3

a3

b1

b1 b1

b1

a1

a2

b1

a3

b2

0

b3

1

Figure 1.8: ROBDDs for the expression (a1 ∧ b1) ∨ · · · ∨ (a3 ∧ b3) using the order a1 <

b1 < · · · < a3 < b3 and a1 < · · · < a3 < b1 < ... < b3

1.5 BDD Package

This section presents the most important operations on ROBDDs and their complexities
in an imperative framework. All operations are reviewed when their Haskell implemen-
tation is presented. BDD Packages, i.e., the ROBDD data structure and a couple of
operations are usually written in C or C++. The widest known packages are CUDD
[30] and the CMU BDD library [23].

The main idea behind the efficient implementation of the operations on ROBDDs is
the use of memoization. The memoization is used to assure that equal sub-ROBDDs
are processed only once. The first application to an sub-ROBDD is memoized and
all other applications to the same sub-ROBDD are looked up. The running times of
most of the operations are linear in the number of nodes of the ROBDD. Without this
memoization the running times would be exponential in the number of variables. For
the memoization we need keys for the insert and the look-up of the partial results. Each
node of an ROBDD is associated with an integer value. We name these integer values

15

1 Introduction

build :: BExp → ROBDD

evaluate :: Binding → ROBDD → Bool

anySat :: ROBDD → Maybe Binding

allSat :: ROBDD → [Binding]

satCount :: ROBDD → Int

restrict :: ROBDD → Var → Bool → ROBDD

apply :: (Bool → Bool → Bool) → ROBDD → ROBDD → ROBDD

negate :: ROBDD → ROBDD

(==) :: ROBDD → ROBDD → Bool

Table 1.1: Interface of a simple BDD Package

NodeIds.

All running times that are presented here assume an implementation that uses de-
structive updates. This provides the benefit that look-ups and inserts of integer values
in a map-like structure are in O(1).

Table 1.1 shows the operations that are part of a simple BDD Package. Packages like
CUDD support a variety of other functions for example for variable reordering. The
build operation that constructs an ROBDD out of a boolean expression is not part
of a standard BDD Package because its running time is exponential in the number of
variables in the boolean expression. We use this function to present the basic idea of
the ROBDD construction and to investigate the laziness of the reduction of an OBDD
to an ROBDD. The alternative construction is much more complex and therefore not
reasonable for an introduction.

The variables f , g, and h always denote ROBDDs. The function | · | takes an ROBDD
and yields its size, i.e., the number of nodes in the ROBDD. The variables n and m

denote the number of variables in an ROBDD. If it denotes the number of variables in
the expression it is explicitly mentioned.

evaluate :: Binding -> ROBDD -> Bool

The operation evaluate takes a variable binding and an ROBDD and yields the boolean
value that results from substituting all variables by true and false according to the
given binding. This operation starts at the root and takes the low and high successor
respectively at every node till it reaches a leaf. If this is a zero leaf the operation yields
False otherwise True. In an imperative implementation we get the low and high successor
of a node in O(1). Thus evaluate has a worst case running time in O(n) where n is the
number of variables.

anySat :: ROBDD -> Maybe Binding

The operation anySat yields a variable binding that satisfies the corresponding boolean
expression if one exists. This binding contains only the relevant variables. If no such
binding exists anySat yields Nothing. The only ROBDD that is not satisfiable is the
single zero leaf, i.e., the ROBDD that represents the constant boolean function false.
The function anySat uses a depth first traversal to find a one leaf. If an ROBDD is
not the zero leaf we know that it is satisfiable. To find a variable binding we have to

16

1.5 BDD Package

check whether one of the successors is the zero leaf. In this case we follow the other
successor. Because of the no-redundancy property there is no node whose successors are
both unsatisfiable. Every variable occurs at most once on a path from the root to a
leaf. We have to visit at most n nodes where n is the number of variables in the boolean
expression. Therefore anySat is in O(n).

allSat :: ROBDD -> [Binding]

The function allSat is similar to anySat. It yields all variable bindings that satisfy the
expression leaving out irrelevant variables. The return type is a list of variable bindings.
If none exists allSat yields the empty list. This function is rarely used because its
result can contain exponentially many elements with respect to the number of variables.
The worst case running time of allSat is O(n|Sf |) where |Sf | denotes the size of the
satisfying set of the ROBDD f . The result of allSat has at most n|Sf | elements. Just
printing the result is in O(n|Sf |). In the worst case we have to add all variables to every
element of the satisfying set. That is, if the concatenation of two lists and adding to the
front are in O(1) the worst case running time of allSat is in O(n|Sf |). This cannot be
improved by memoization because it is also a lower bound.

satCount :: ROBDD -> Int

The function satCount calculates the number of bindings that satisfy the ROBDD. Let
n be the greatest variable number in the expression. The application of satCount yields
the number of variable bindings consisting of the variables x1 to xn that evaluate the
ROBDD to True. That is, satCount considers variables that are left out in the ROBDD.
The result of satCount is not equal to the length of the result of allSat because allSat

leaves out irrelevant variables.
Let the greatest variable in the expression for the ROBDD in Figure 1.9 be x6.

There is one satisfying binding for a one leaf and none for a zero leaf. There are two
variable bindings that satisfy the sub-ROBDD rooted at the node labeled x4 namely
[(x4, True), (x5, False)] and [(x4, True), (x5, True)]. The low successor of the node labeled
x4 yields none, the high successor yields one binding. The variables that are left out, in
this example x5, can be set arbitrarily. If we leave out k variables there are 2k bindings
that set the left out variables arbitrarily.

x2

0

x4

1

Figure 1.9: An ROBDD for the expression x2 ∧ x4

17

1 Introduction

The function getLow yields the low, getHigh the high successor of a node. The function
var yields the variable number of a node. The number of variables that are left out
between a node and its low successor is var(getLow(f)) − var(f) − 1. That is, we get
2var(getLow(f))−var(f)−1 · satCount(getLow(f)) bindings consisting of the variables var(f)
to xn for the low successor of a non-terminal f . The same holds for the high successor.
Therefore a non-terminal f gets the value 2var(getLow(f))−var(f)−1 ·satCount(getLow(f))+
2var(getHigh(f))−var(f)−1 ·satCount(getHigh(f)). All leaves get the variable number of the
greatest variable in the expression. This way the left out variables at the leaves are set
arbitrarily.

The application of this formula to the example yields four. This does not consider the
variables that are left out at the root. That is, we have to add two to the power of the
number of variables that are left out at the root times the result of the application of
satCount to the ROBDD. Altogether we get eight for the example.

This formula was published by Bryant [8]. By using memoization we get a worst case
running time in O(|f |) where f is the ROBDD we are applying satCount to.

restrict :: ROBDD -> Var -> Bool -> ROBDD

The restrict operation on an ROBDD is equivalent to the substitution of a variable by
false or true in the boolean expression. On the ROBDD the restriction replaces all nodes
with a corresponding variable by its low and high successor respectively. This operation
uses memoization to restrict equal sub-trees only once and is in O(|f |). If restrict is
applied to a sub-tree that has been processed already the result is looked up.

apply :: (Bool -> Bool -> Bool) -> ROBDD -> ROBDD -> ROBDD

The apply operation combines two ROBDDs by a boolean operator. This function has a
worst case running time in O(|f ||g|) where f and g are the two ROBDDs. This running
time is achieved by memoizing all applications to two sub-ROBDDs. There are at most
|f ||g| applications of apply to a pair of nodes.

negate :: ROBDD -> ROBDD

The function negate on ROBDDs is equivalent to the not function on a boolean ex-
pression. It replaces all references to zero leaves in the ROBDD by references to one

leaves and all references to one leaves by references to zero leaves. By using memoiza-
tion we achieve a running time in O(|f |). By using complement edges like explained in
section 7.2 the running time can be improved to O(1).

(==) :: ROBDD -> ROBDD -> Bool

The function (==) is the equality check on ROBDDs. Because ROBDDs are a canonical
representation of boolean functions equal ROBDDs are isomorphic. The equality check
(==) is a check for isomorphy that is implemented by a simultaneous traversal of the two
ROBDDs. Its running time is in O(min{|f |, |g|}) where f and g are the two ROBDDs.
If we use an extension that is introduced in Section 7.1 the equality check is in O(1).

18

2 Test Toolbox

This chapter introduces the test toolbox that is used in this paper. We introduce example
expressions and tools that are used for the measurement of the laziness and the efficiency
of the presented implementations.

2.1 Boolean Expressions

This section introduces some boolean expressions that are used in this paper. We call
expressions that are exponential in the number of variables hard expressions. These
expressions are the worst case of the ROBDD operations. Section 1.4 introduced the
integer expression whose ROBDD representation has 2 ∗ (n + 1) or 2(n+1) nodes depending
on the variable order. We call the version of this expression that has exponential many
nodes Integer and the one that has linear many nodes Integer2. If we use variable
reordering the ROBDD for this expression has linear many nodes in the number of
variables, too.

There are expressions that have exponential many nodes in the number of variables
for all variable orders. One example is the hidden weighted bit function HWB that was
introduced by Bryant [9]. For each variable order the size of the ROBDD that represents
this function is in O(n20.5n) [5]. It is defined as

HWB(x1, . . . , xn) =

{

xs if s ≥ 1,
0 if s = 0.

where s = sum(x1, . . . , xn)

Besides the hard expressions we use SAT expressions, i.e., expressions that define
a satisfiability problem. One example is the eight queens problem. We use a simple
representation for this problem. We model every field of the chess board by one boolean
variable. Iff this variable is true the corresponding field is occupied by a queen. We call
this expression Queens n where the n specifies the number of queens.

There is a library of expressions that are used for measuring SAT solvers. This library
is called SATLIB [19]. It uses a CNF format [31] for the definition of the expressions.
This library provides a couple of expressions. The names of all the expressions that
belong to this library end with the string “.cnf”. More information on theses expressions
can be found on the SATLIB homepage.

2.2 Checking for Laziness

Most tools that are concerned with the evaluation of Haskell programs abstract from
the lazy evaluation. For example the hat debugger pretends a strict evaluation order for

19

2 Test Toolbox

producing a trace that is easier to understand by the user. We observed this to be a
problem. To find the origin of an unexpected evaluation the strict evaluation does not
help.

To check the laziness of our algorithms we use the Hood observer [16, 15]. This
tool provides the information which parts of a data structure are evaluated in a run
of a program. Hood provides the function observe :: String -> a -> a. When it
is applied to a String it behaves like the identity function and additionally records to
which result its argument is evaluated. The String argument defines a name that is
associated with this observation. At the end of the program run the observations of all
observe applications are reported. Unevaluated parts are represented by an underscore.

Here is a simple example and the observations that result from applying the function
main. The function print causes the evaluation of all elements of the list.

list :: [Int]

list = [1,2,3,4,5]

main = print (observe "list" list)

Main > main

[1,2,3,4,5]

>>> Observations <<<

list

(1 : 2 : 3 : 4 : 5 : [])

In the example below we add the application of the function length. The elements of
the list are not evaluated. The function length only demands the evaluation of the list
data structure. The unevaluated elements are represented by underscores.

list :: [Int]

list = [1,2,3,4,5]

main = print (length (observe "length" list))

Main > main

5

>>> Observations <<<

length

(_ : _ : _ : _ : _ : [])

We can use Hood to observe the applications of a function. The observations of a
function are shown in the form of a mapping from the arguments to the results. We
observe the partial application (+ 1) to a list of numbers. The function inc is applied
five times in this example once to every element in the list.

20

2.3 Measurements

inc = observe "inc" (+ 1)

main = print (map inc [1,2,3,4,5])

Main > main

[2,3,4,5,6]

>>> Observations <<<

inc

{ \ 5 → 6

, \ 4 → 5

, \ 3 → 4

, \ 2 → 3

, \ 1 → 2

}

If we apply a take 3 to the result of map two of the applications of inc are never
evaluated and therefore are not shown in the observations.

main = print (take 3 (map inc [1,2,3,4,5]))

Main > main

[2,3,4]

>>> Observations <<<

inc

{ \ 3 → 4

, \ 2 → 3

, \ 1 → 2

}

2.3 Measurements

The measurements that are presented throughout this paper always state at least two
values namely the time and the total heap memory that was consumed by the operation.
These two values are measured using the profiling that comes with the Glasgow Haskell
Compiler [29]. The memory usage is more significant than the running time. The running
time depends on the scheduling of the processes. We present the running times to give
the reader an impression of the efficiency of the implementations. We do not profile the
heap memory usage. That is, we do not check how much heap memory is used at one
time. We only check the total amount of heap memory that is used. This problem is
addressed in Chapter 7.

The final implementation of the ROBDD data structure uses an algebraic data type.
Most of the measurements state the number of constructors of this data type that are

21

2 Test Toolbox

evaluated. This number is an indication for the laziness of an implementation. A strict
implementation evaluates all constructors no matter which parts of the ROBDD are
needed to compute the final result. A lazy implementation evaluates less parts of the
ROBDD, i.e., less constructors if not the whole ROBDD is needed to compute the final
result. For example if the implementation is completely lazy a function that yields the
leftist path to a leaf causes the evaluation of the constructors on this path. The counting
of the constructors uses about one percent of additional heap memory.

To get as meaningful results as possible we use a powerful PC for the measurements.
The ROBDDs that are used in real live applications are very big and need a lot of
memory and a fast processor for the processing. For the measurements we use a PC
with 3GB of RAM and a 2GHz AMD Athlon XP 3000+ processor. We use GHC [14]
version 6.4.1. For the BDD Package binding HBDD [12] we use GHC version 6.2.1. The
HBDD binding is introduced in detail in Section 6.2. The package system that is used by
HBDD is no more supported by the new GHC version. Unless otherwise noted we use no
optimizations. The use of optimizations would improve the running time and decrease
the memory consumption of the program but would make an interpretation of the results
fairly complex. We would have to divide the results into effects of the optimizations and
of the implementation. We execute the programs using the runtime system parameter
-H2G. This option is called ”suggested heap size” and tells the program to start with 2
gigabyte of heap memory. Without this parameter the incremental generational garbage
collection that is used by the GHC would start with a small amount of heap memory
and would increase the amount every time the heap memory is exhausted. The garbage
collector is started every time the heap memory is exhausted. This would cause a lot of
unnecessary garbage collector runs.

It is very difficult to choose good examples for the measurements. The algorithms on
ROBDDs are still exponential in the number of variables in the worst case. In practical
applications they tend to be much better. On the other side the ROBDDs that are used
in practical applications are too big for the implementation and the test environment of
this thesis. We cannot provide overall benchmarks for the implementations. We only
look at some examples that are supposed to show a trend. We always compare two
implementations, i.e., we state that one of them is better than the other in respect to a
particular kind of expression. We try to give explanations for the differences to generalize
the results.

22

3 ROBDD Implementations

This chapter presents three implementations of the ROBDD data structure. We start
with an imperative-like implementation that is based on an implementation by Henrik
Reif Andersen [3]. The second implementation is more functional. It uses an alge-
braic data type to define the structure of an ROBDD instead of a map structure. The
third implementation focuses on the aspect of laziness and relaxes the no-redundancy

property to gain any laziness in the construction of an ROBDD at all. We do not use
destructive updates in all three implementations because our goal is a purely functional
implementation.

3.1 An Imperative-like Implementation

Every node of an ROBDD is associated with a unique identifier. Its type is NodeId which
is a type synonym for an integer type. The NodeId of a node uniquely determines the
structure of the ROBDD that is rooted at this node. The unique Ids offer an efficient
method to preserve the no-redundancy and the sharing property. To preserve the no-

redundancy property we compare the NodeIds of the low and high successor when a node
is constructed. If they are equal the node is not constructed because it is redundant.
To preserve the sharing property we memoize all constructed nodes. We use a mapping
from triples consisting of the NodeIds of the low and high successor and the variable
number to the NodeId of the node. This way a new node with the same low and high
successor and variable number gets the same NodeId. Because the construction works
bottom-up this preserves the sharing property. In the imperative implementation this
mapping is implemented by a dynamic hash table.

The structure of the ROBDD is defined by a second mapping. It maps the NodeId of
a node to the NodeIds of the two successors and the variable number. In an imperative
implementation this mapping is implemented by an array. This map represents the
structure of the ROBDD and we refer to it as the map. Since the first map is the reverse
mapping of this one we refer to it as the reverse map.

The ROBDD data type combines the map and the reverse map. The third argument
of ROBDD is the NodeId of the root node. The terminals Zero and One are represented
by the NodeIds zero and one respectively.

data ROBDD = ROBDD Map RevMap NodeId

In the imperative implementation the ROBDD is represented by the id of the root node
while map and reverse map are global data structures.

23

3 ROBDD Implementations

3.1.1 Making a New Node

The first step to the construction of an ROBDD is the implementation of a function
called make. This function adds one node to an ROBDD. It takes a variable number,
the NodeIds of the low and high successor, the map and the reverse map and yields
the resulting ROBDD. We call this function rOBDD because it is some kind of smart
constructor for the ROBDD data structure. We assume the implementation of the
abstract data types Map and RevMap that support lookup and insert functions. Table 3.1
shows these two ADTs. The abstract data type RevMap provides an additional function
called nextId that yields the next free NodeId. The choice of a concrete implementation

insertMap :: NodeId → NodeId → Var → NodeId → Map → Map

lookupMap :: NodeId → Map → Maybe (NodeId , Var, NodeId)

insertRevMap :: NodeId → Var → NodeId → NodeId → RevMap

→ RevMap

lookupRevMap :: NodeId → Var → NodeId → RevMap → Maybe NodeId

nextId :: RevMap → NodeId

Table 3.1: The functions of the ADTs Map and RevMap

of these maps is discussed in Section 5.
The function rOBDD first checks whether the NodeIds of the two successors are equal.

In this case it yields the ROBDD consisting of the unchanged map and reverse map and
the NodeId of the low successor. This preserves the no-redundancy property because a
node with two equal successors is never constructed. We do not have to change the
maps because we do not construct a new node. If the NodeIds are not equal we look
up whether a node with these successors and variable number already exists. If such a
node is found an ROBDD with the unchanged map and reverse map and this NodeId

is yielded. We do not have to change the maps because the node already exists in the
map and in the reverse map. If the look-up fails the function rOBDD2 is applied to the
arguments.

rOBDD :: NodeId → Var → NodeId → Map → RevMap → ROBDD

rOBDD low var high map revmap

| low==high = ROBDD map revmap low

| otherwise =

case lookupRevMap low var high revmap of

Just nodeId → ROBDD map revmap nodeId

Nothing → rOBDD2 low var high map revmap

The function rOBDD2 is a smart constructor that is not that smart. It simply adds the
new node to the map and the reverse map.

24

3.1 An Imperative-like Implementation

rOBDD2 :: NodeId → Var → NodeId → Map → RevMap → ROBDD

rOBDD2 low var high map revmap =

let nodeId = nextId revmap

in

ROBDD (insertMap nodeId low var high map)

(insertRevMap low var high nodeId revmap) nodeId

3.1.2 Constructing an ROBDD

Based on the function rOBDD we define the function build that constructs an ROBDD
out of a boolean expression. Later we replace this function by a construction that uses
the function apply because the running time of build is exponential in the number of
variables in the boolean expression.

The construction of an ROBDD is very similar to the construction of a Decision Tree.
The difference is that we have to preserve the no-redundancy and the sharing property.
This is achieved by using the smart constructor rOBDD instead of the constructor DT.
The build function gets two additional arguments namely the map and the reverse map.
These are passed from one application to another. To preserve the sharing property we
have to construct the ROBDD in a certain order. That is, we have to decide to construct
the ROBDD either from left to right or from right to left. We decide to do it left to
right. This order is arbitrary but we have to keep it in mind for the definition of other
functions later. It brings in a dependency of the low successors of a node on the high
successors of a node. We pass the map and the reverse map that are yielded by the
application of build on the low successor to the application to the high successor. The
resulting reverse map is passed to rOBDD.

build :: BExp → ROBDD

build bexp = build ’ 1 bexp emptyMap emptyRevMap

build ’ :: Var → BExp → Map → RevMap → ROBDD

build ’ _ BFalse map revmap = ROBDD map revmap 0

build ’ _ BTrue map revmap = ROBDD map revmap 1

build ’ i bexp map revmap =

let lowExp = substitute bexp i BFalse

highExp = substitute bexp i BTrue

i’ = succ i

ROBDD lowMap lowRevmap low =

build ’ i’ lowExp map revmap

ROBDD highMap highRevmap high =

build ’ i’ highExp lowMap lowRevmap

in

rOBDD low i high highMap highRevmap

25

3 ROBDD Implementations

Figure 3.1 illustrates the transfer of the reverse maps that are involved in the construc-
tion of a node. The revmap is passed to the construction of a node from the construction
of the predecessor. This map is passed to the construction of the low successor which
yields lowRevmap. This map is passed to the construction of the high successor which
yields highRevmap. The revmap contains all predecessors and all nodes left of the con-

revmap highRevmap

lowRevmap

revmap highRevmap

lowRevmap

Figure 3.1: Transfer of the reverse map in the construction of a node

structed node. The lowRevMap additionally contains all nodes in the ROBDD rooted at
the low successor. The highRevmap additionally contains all nodes in the ROBDD rooted
at the high successor.

We do not have to look up the new node in the part of the reverse map that is added
in the construction of its successors. Non of the nodes of the ROBDDs rooted at the
two successors can be the same node as the one we are constructing. Therefore we do
not have to look up the node in lowRevmap or in highRevmap. We look it up in revmap.
This benefits the laziness because the constructed node is no longer dependent on all its
successor nodes.

Figure 3.2 illustrates the difference between the two look-ups. The triangle represents
the ROBDD. The dot marks the node that is constructed. A look-up in highRevmap

depends on the horizontally and vertically lined parts of the ROBDD. A look-up in
revmap depends only on the horizontally lined part. The higher the node, i.e., the
smaller the variable number, the more the benefit. The extreme case is the construction
of the root node. In this case revmap is the empty map while highRevmap contains all
nodes of the ROBDDs rooted at the two successors of the root node, i.e., all nodes except
for the root node. In this case the old implementation performs a look-up in a reverse

map that contains all nodes except for one. The new implementation performs a look-up
in the empty reverse map.

We still insert the new node to the reverse map that is passed to the predecessor
namely highRevmap. The function rOBDD is enriched with an additional argument of
type RevMap. We pass revmap and highRevmap to rOBDD and use them for the insert and
look-up respectively.

26

3.1 An Imperative-like Implementation

Figure 3.2: Dependencies in an ROBDD caused by look-ups in the reverse map

3.1.3 Descending an ROBDD

All operations on ROBDDs have to descend the ROBDD. We define the functions get-

Low and getHigh that yield the low and high successor of a node respectively. These
functions make the implementation more flexible. For example for the implementation
of complement edges like explained in Section 7.2 we mainly change the implementation
of these two functions. Without these functions we would have to adapt all the pattern
matchings of the operations on ROBDDs.

getLow :: NodeId → Map → NodeId

getLow nodeId map =

case lookupMap nodeId map of

Just (low,_,_) → low

_ → error ("getLow: The node with NodeId "

++ show nodeId

++ " has no low successor")

getHigh :: NodeId → Map → NodeId

getHigh nodeId map =

case lookupMap nodeId map of

Just (_,_,high) → high

_ → error ("getHigh: The node with NodeId "

++ show nodeId

++ " has no low successor")

The functions getLow and getHigh have the same complexity as lookupMap. Purely
functional map implementations that support efficient look-up and insert functions are
at least logarithmic in the number of elements in the map. For example the look-up and
insert in a balanced search tree requires logarithmic time in the number of elements in
the tree. The look-up and insert in a Braun [7] or Patricia Tree [26] are logarithmic in
the key size. This is equal to the logarithm of the number of elements if the keys are
continuous.

27

3 ROBDD Implementations

3.2 A More Functional Implementation

This section presents a more functional implementation of the ROBDD data structure.
An ROBDD is a Decision Tree that satisfies two additional properties. We implement the
ROBDD on the basis of the Decision Tree implementation in Section 1.3. The Decision
Tree is implemented by an algebraic data type. The idea of the implementation of the
ROBDD is to represent a directed acyclic graph by a tree with reference edges. These
are edges that point at a node anywhere in the tree. We use the NodeIds of the ROBDD
to point at a node. We use an algebraic data type similar to DT with an additional
constructor for the reference edges.

We extend the algebraic data type that is used for the Decision Trees. We call the
constructor OBDD instead of DT and add an argument of type NodeId to it. The leaves do
not need a NodeId because Zero and One have the static NodeIds zero and one respectively.
The reference edges are represented by the additional constructor Ref. We refer to a Ref

constructor as a reference node and to an OBDD constructor as an original node.

data OBDD = OBDD OBDD Var OBDD NodeId

| Ref NodeId

| Zero

| One

We assure that an OBDD contains exactly one original node for every NodeId. That is,
there are no two OBDD constructors with the same NodeId in an OBDD data structure. The
original node is always the leftmost in the OBDD. This decision is arbitrary but we have
to remember it when we implement the consumer functions. A consumer function uses a
preorder traversal. It uses the NodeId of the outermost OBDD constructor to memoize the
results for all sub-OBDDs that are processed. We call a map that is used for memoization
memo map. If the consumer function reaches a Ref constructor the result for this node
is looked up by the NodeId of the Ref. Because the original node is the leftmost the
consumer function visits the original node before it visits any references to this node.
We have to assure that the original node is the leftmost to guarantee that equal sub-trees
are processed only once by the consumer functions.

References that point at leaves are not represented by Ref constructors. All leaves are
represented by the constructors Zero and One no matter whether they are a reference
or not. Haskell shares constants, i.e., all Zero leaves require the memory of one unary
constructor. The same holds for all One leaves. We do not memoize the application of
a function to a leaf because the input is constant. Therefore the computation is not
expensive. The memoizing of the result would be more expensive than the computation.

Figure 3.3 shows the OBDD data structure for the expression (x1∧x2)∨(x1∧x3)∨(x2∧x3)
and a graphical representation of this OBDD. There is some indentation in the OBDD data
structure to increase the readability. Constructors that have the same indentation are
siblings. Arguments of a constructor are one level further right than the constructor
itself.

In the graphical representation the constructors Zero and One are represented by the
square nodes labeled 0 and 1 respectively. The OBDD constructors are represented by the

28

3.2 A More Functional Implementation

circle nodes. The labels of the nodes are the variable numbers. The NodeIds are left out.
A Ref constructor is represented by an edge with a gap. The edge points at the node
with the corresponding NodeId. The gap illustrates that we have no direct access to the
node that is referenced. We only have access to its NodeId.

OBDD (OBDD Zero

2

(OBDD Zero

3

One

4)

3)

1

(OBDD (Ref 4)

2

One

5)

2

x1

x2 x2

0

x3

1

Figure 3.3: OBDD for the expression (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) (left) and a graph
representation of this OBDD (right)

x1

x2

x3

0 1

⇒

x1

x3

0 1

Figure 3.4: The application restrict x2 False ((x1 ∧x3)∨ (x2 ∧x3)) using NodeId refer-
ences

The restrict operation chucks away parts of the OBDD. There are unpleasant cases in
which it chucks away the original node but leaves a reference to this node. In this case we
have to correct the OBDD data structure because we have to assure that the original node
is the leftmost. We have to replace the leftmost reference node by the corresponding

29

3 ROBDD Implementations

original node. Figure 3.4 shows the OBDD for the expression (x1 ∧ x3)∨ (x2 ∧ x3) and the
result of restricting variable x2 to False without an correction of the representation.

The original node that is labeled x2 is chucked away but the reference to this node
remains. We have to replace the reference Ref 4 by the OBDD with the NodeId four. We
would have to remember all sub-trees that are chucked away. The leftmost Ref to one of
these nodes must be replaced by the original node. All other Refs with the same NodeId

remain. This requires a lot of bookkeeping. We would need a map that saves the nodes
that are lost and have to look up every NodeId of a Ref constructor in this map.

The operation apply is a simultaneous traversal of two ROBDDs. It preserves the variable
order by descending both root nodes if their variables are equal. If they are not equal
only the node with the smaller variable is descended. Therefore there are cases in which
apply demands the variable number of a Ref constructor. To get this number we have
to look it up in an additional data structure or in the OBDD itself. This would require
additional time and maybe memory. Section 4.1 presents the apply operation in detail.
All the consumer functions do never demand the variable number of a reference node.
They look up the NodeId in the memo map.

data OBDD = OBDD OBDD Var OBDD NodeId

| Ref OBDD

| Zero

| One

This new implementation solves the outlined problems. We replace the NodeIds in the
reference edges by complete OBDDs. The operation restrict uses a memo map to memoize
processed nodes. We have to look up the NodeIds of all references in this map. We do
not save the NodeIds of nodes that are chucked away in this map. If the look-up of a
reference fails we know that the original must be chucked away. To make the OBDD valid
again we just remove the Ref constructor and apply restrict to this node. This adds
its NodeId to the memo map. Therefore all other references with the same NodeId are
not replaced.

Figure 3.5 shows the same restriction as Figure 3.4 but uses this new implementa-
tion. References are represented by an edge with an empty arrow head. To adjust the
representation we just fill the arrow head, i.e., remove the outermost Ref constructor.
Section 4.2 that presents the implementation of restrict explains this proceeding in
more detail. The operation apply does not have to look up the variable number of a Ref

constructor because it can directly access it.

We could omit the Ref constructors in the OBDD data type. That is, there would be no
difference between a reference node and an original node in the OBDD representation. In
this case all the functions that use memoization would have to look up the NodeIds of
all nodes. Iff the look-up fails the node is an original node. In an implementation with
Ref constructors all look-ups are successful. Note that this is not true for our restrict

implementation. It is advantageous if all look-ups are successful because a look-up takes
a logarithmic amount of time while checking whether a node is a Ref constructor takes
constant time. Additionally it is advantageous for the laziness to look up as few NodeIds
as possible. Every look-up causes the evaluation of some NodeIds in the map. Chapter 5

30

3.2 A More Functional Implementation

x1

x3

0 1

x2

⇒

x1

x3

0 1

⇒

x1

x3

0 1

Figure 3.5: The application restrict x2 False ((x1∧x3)∨(x2∧x3)) using OBDD references

that discusses the chose of a concrete implementation of the maps takes a closer look at
this. Furthermore the information whether a node is a reference or not saves additional
look-ups in the reverse map and look-ups by the apply operation. The prevention of
these look-ups in the reverse map is essential for the laziness. On the other hand the
additional Ref constructors require additional memory.

A function that uses memoization never evaluates an OBDD that is an argument of a
Ref constructor. It only looks up its NodeId in the memo map. The apply operation does
not satisfy this condition. There are cases in which apply causes the evaluation of both
sub-trees, i.e., the original one and a reference to it and neither of them can be garbage
collected. This may not happen because this would cause the same memory usage that
is caused by a Decision Tree, i.e., an exponential amount of memory in respect to the
number of variables. We additionally have to use implicit sharing, i.e., the sharing that
is produced by the Haskell compiler. Lazy evaluation uses sharing to prevent that an
expression is evaluated twice. For details see Section 1.1 about lazy evaluation or the
semantics of lazy evaluation by John Launchbury [21]. Implicitly shared expressions are
pointers to the same structure in the heap. This has too effects. First the expression
is evaluated only once. Second all the shared structures only use the heap memory for
one expression plus the memory for the pointers. We do not save the NodeIds of the
nodes in the reverse map but the shared OBDD structure. When we look up a triple in
the reverse map we place the shared OBDD structure that is yielded in a Ref constructor.
We still need the explicit sharing that is provided by the NodeIds. Haskell provides no
mechanism to check the pointer equality of two terms, i.e., to check whether two terms
are shared. Therefore we need the NodeIds to identify equal sub-OBDDs.

The implicit sharing is disadvantageous for the laziness. The evaluation of an OBDD to
Head Normal Form causes a look-up in the reverse map. If we would not use implicit
sharing the look up would only be performed if the NodeId of the node is evaluated.

To save memory we merge every Ref constructor with the outermost OBDD constructor
of its argument. We replace the Ref constructor by a RefOBDD constructor.

31

3 ROBDD Implementations

data OBDD = OBDD OBDD Var OBDD NodeId

| RefOBDD OBDD Var OBDD NodeId

| Zero

| One

For the presentation in this paper we use a slightly different implementation. Instead
of two distinct constructors we use an additional argument of type Bool. Iff its value is
True the node is a reference, i.e., the whole OBDD that is rooted at this node is shared.

data OBDD = OBDD OBDD Int OBDD NodeId Bool

| Zero

| One

This implementation simplifies the definition of functions that make no use of the infor-
mation whether a node is a reference or not. These functions have fewer rules. Note that
this does not save running time since a pattern matching is translated into a jump and
the running time is therefore independent of the number of rules. The implementation
with the reference Bool requires more memory because every OBDD constructors gets an
additional argument of type Bool.

In the ROBDD data structure we replace the Map by an OBDD. We remove the argument
that holds the NodeId of the root node because the OBDD already provides this information.

data ROBDD = ROBDD OBDD RevMap

3.2.1 Making a New Node

rOBDD :: OBDD → Var → OBDD → RevMap → RevMap → ROBDD

rOBDD low var high lookupRevmap revmap

| low==high = ROBDD low revmap

| isRef low && isRef high =

case lookupRevMap low var high lookupRevmap of

Just obdd → ROBDD obdd revmap

Nothing → rOBDD2 low var high revmap

| otherwise = rOBDD2 low var high revmap

We only look up a node in the reverse map if its successors are both references. If one of
its successors is not a reference it cannot be in the reverse map. The construction works
bottom-up. If a node is in the reverse map all sub-trees of the tree that is rooted at this
node are in the reverse map, too. Thus, if one sub-tree is no reference the node is none,
too. If we construct a node that is no reference all its predecessors are no references.
First of all this check saves running time because a look-up is more expensive than the
check. Second this is essential for the laziness as is discussed in Section 3.3.1.

rOBDD2 :: OBDD → Var → OBDD → RevMap → ROBDD

rOBDD2 low var high revmap =

let obdd = OBDD low var high (nextId revmap) False

in

ROBDD obdd (insertRevMap low var high (setRef obdd) revmap)

32

3.2 A More Functional Implementation

Again the function rOBDD2 constructs the node. Instead of adding the node to the map

we construct an OBDD with the two successors. This OBDD is added to the reverse map.
The function setRef takes an OBDD and yields a corresponding reference, i.e., it replaces
the boolean value of the outermost constructor by True. We deconstruct the outermost
OBDD constructor and take a new one. This one is applied to the NodeId, low and high
successor of the old constructor and to True. This function allocates the memory for
the new OBDD constructor. The setRef function for the implementation that uses a Ref

constructor instead of a reference boolean also allocates one constructor namely the Ref

constructor.

All nodes in the reverse map are references. This way we do not have to apply setRef

to the result of a look-up. We directly use the OBDD that is yielded by the look-up. That
is, all reference nodes of an OBDD are implicitly shared while the original node only shares
its successors with the corresponding reference nodes. Therefore n equal sub-OBDDs,
where n is greater or equal 2, require the memory for the OBDD structure of the original
node plus the memory for one constructor namely the constructor that is used by setRef.
All the reference nodes are shared, i.e., they do not require additional memory. If all
OBDDs in the reverse map would be no references we would need one additional OBDD

constructor for every reference. That is, n equal sub-OBDDs would require the memory
for one sub-OBDD plus the memory for n − 1 OBDD constructors.

3.2.2 Descending an ROBDD

The descending of an OBDD with this functional ROBDD implementation is more efficient
than the descending of the imperative-like implementation.

getLow :: OBDD → OBDD

getLow (OBDD low _ _ _ _) = low

getLow obdd =

error ("getLow: The OBDD " ++ show obdd

++ " has no low successor")

getHigh :: OBDD → OBDD

getHigh (OBDD _ _ high _ _) = high

getHigh obdd =

error ("getHigh: The OBDD " ++ show obdd

++ " has no high successor")

The functions getLow and getHigh have logarithmic complexities in the imperative-like
implementation. These two functions are in O(1). Because of the implicit sharing even
the descending of a reference node is in O(1).

33

3 ROBDD Implementations

3.2.3 Laziness

To check the laziness of this ROBDD implementation we observe which parts of the OBDD

are evaluated when applying the function anySat. This function is a good check because
when it is applied to a Decision Tree it causes only the leftmost path to a One leaf and
all parts left of it to be evaluated. Some parts of the OBDD will be additionally evaluated
because of the no-redundancy and the sharing property.

The function anySat takes an ROBDD and yields a variable binding that satisfies this
ROBDD if one exists. It uses a depth first strategy to find a One leaf.

anySat :: ROBDD → Maybe Binding

anySat (ROBDD robdd _) = anySatO robdd

anySat ’ :: OBDD → Maybe Binding

anySat ’ Zero = Nothing

anySat ’ One = Just []

anySat ’ (OBDD low var high _ _) =

case (anySat ’ low , anySat ’ high) of

(Just path , _) → Just ((var,False):path)

(_, Just path) → Just ((var,True):path)

_ → error "anySat: ROBDD is not reduced"

This implementation of anySat yields the leftmost path to a One leaf. This is advanta-
geous for the laziness because the original nodes are the leftmost and a reference node is
only known to be a reference by looking it up in the reverse map. Therefore anySat tends
to evaluate original nodes rather than reference nodes. In fact we show later that anySat
only causes the evaluation of original nodes and performs no look-up in the reverse map

at all.

There is no path for the Zero leaf and a path of length zero for the One leaf. The
function yields a path for a node if one of its successors yields a path. There must be at
least one path to a One leaf because otherwise the node is not reduced. If the application
on the low successor yields a binding we add a binding of the current variable to False

to it. Otherwise we check whether the other application is successful. The application
anySat’ high is not evaluated if anySat’ low yields a path.

We apply the function anySat to the ROBDD for the expression (x1 ∧x2)∨ (x1 ∧x3)∨
(x2∧x3) like it is shown in Figure 1.7. Figure 3.6 shows two observations made by Hood.
The left one results from observing the OBDD data structure when applying anySat to the
corresponding ROBDD. The right one shows the observation of a DT data structure for
the same expression when applying anySat. In the observation of the DT data structure
only a path to the leftmost One leaf and all parts left of it are evaluated. The OBDD

data structure is almost completely evaluated. Although anySat does not pattern match
against the NodeIds all ids except for the one of the root node are evaluated.

The pattern matching of anySat forces build’ to evaluate the OBDD to Head Normal

34

3.2 A More Functional Implementation

Just [(1,False),(2,True),(3,True)]

>>>>>>> Observations <<<<<<

testExp4

(OBDD (OBDD Zero

2

(OBDD Zero

3

One

4

False)

3

False)

1

(OBDD (OBDD Zero

3

One

4

True)

_

One

5

False)

_

False)

>>>>>>> Observations <<<<<<

testExp4

(DT (DT Zero

2

(DT Zero

3

One

_)

_)

1

_

_)

Figure 3.6: Observations of an ROBDD (left) and a DT (right) when applying anySat

Form. Because the boolean expression is neither BFalse nor BTrue the function rOBDD

is demanded to yield the Head Normal Form of the OBDD. rOBDD has to check which
guard is satisfied. To check the first guard it demands the NodeIds of the two successors.
The function getId demands the successors to be evaluated to Head Normal Form, i.e.,
demands build’ to yield their Head Normal Forms. This forms the vicious circle. This
is highly simplified but points out the problem. To evaluate any OBDD to Head Normal
Form we have to evaluate the NodeIds of its two successors. This is caused by the no-

redundancy property. The evaluation of these NodeIds again causes the evaluation of the
NodeIds of their successors and so on. This results in the complete evaluation of the OBDD

data structure.

If we want to check whether a node is redundant we have to compare its successors
somehow. We have to evaluate the successors at least as far as they are equal. This
definitely causes the evaluation of the outermost constructors of the successors. If we
check the no-redundancy property for all nodes this causes the whole structure to be
evaluated. The only way to avoid this is to relax the no-redundancy property for some

35

3 ROBDD Implementations

nodes.
Although an ROBDD with relaxed no-redundancy property is no ROBDD we carry

on using the name ROBDD. We distinguish between an ROBDD with full and relaxed
no-redundancy property. Sometimes we call an ROBDD with relaxed no-redundancy

property short relaxed ROBDD. The next chapter examines an ROBDD implementation
with relaxed no-redundancy.

3.3 A Lazy Implementation

This chapter presents an implementation of the construction of an ROBDD with relaxed
no-redundancy property and discusses the consequences of the relaxing.

3.3.1 Lazy Nodes

We call all nodes that are known to be no reference without looking them up in the
reverse map lazy nodes. By a node with two leaves we denote a node whose low successor
is the Zero leaf and high successor is the One leaf or vice versa. In an ROBDD all nodes
on the path to the leftmost node with two leaves and left of it are lazy nodes. The
leftmost node with two leaves is the first node that is looked up in the reverse map. This
node is guaranteed to be not in the reverse map because the map is empty. Therefore
this node is no reference. That is, all predecessors of the leftmost node with two leaves
are not looked up, too. We do not look them up because we only look up nodes whose
successors are both references.

The number of nodes on the path to the leftmost node with two leaves and left of
it is in O(n) where n is the number of variables. There are two cases. Either the low
successor of a node of this path belongs to the path itself or it is a leaf. If the low
successor does not belong to the path the high successor has to. We assume that the
low successor is no leaf. Then the ROBDD that is rooted at this node must contain
a node with two leaves. Otherwise it would be reduced to a single leaf because of the
no-redundancy property. Therefore the high successor would not be part of the path
to the leftmost node with two leaves. This is a contradiction. That is, all nodes in an
ROBDD that are left of the leftmost path to a node with two leaves are leaves. The
path consists of at most n nodes and there are at most n leaves left of this path. Thus
the number of nodes on the path to the leftmost node with two leaves and left of it is
in O(n). Because all parts that are left of the path to the leftmost node with two leaves
are leaves we do not explicitly refer to these. That is, if we talk about the evaluation
of the path to the leftmost node with two leaves the leaves left of this path are always
included.

If a node is not lazy all the nodes of the ROBDDs that are rooted at the two successors
of this node are not lazy, too. If any of these nodes would be lazy it would be no reference
node. That is, we would not have to look up its successor. By iterated use of this rule
we would not have to look up the node we started with. That is, this node would be
lazy which is a contradiction.

36

3.3 A Lazy Implementation

The lazy nodes are essential for the laziness. To look up a node in the reverse map we
have to evaluate the NodeIds of its successors. Without lazy nodes the whole ROBDD
would be evaluated even without the no-redundancy property because all the NodeIds
are evaluated by the look-ups. We do not relax the no-redundancy property for nodes
that are looked up in the reverse map. The NodeIds of the two successors of these nodes
are evaluated anyway because of the look-up. We relax the no-redundancy property for
the lazy nodes, i.e., the nodes that have at least one successor that is no reference.

3.3.2 Relaxing the No-Redundancy Property

An ROBDD with relaxed no-redundancy property has more nodes than an ROBDD
with full no-redundancy property. This worsens the running times of the operations on
this ROBDD. Besides this an ROBDD with relaxed no-redundancy property is no more
canonical. That is, there are more than one ROBDD with relaxed no-redundancy that
represent the same boolean function. We can add redundant nodes to the ROBDD and
the represented boolean function stays the same. That is, there are as many ROBDDs
that represent the same boolean function as redundant nodes can be added.

Figure 3.7 shows the three cases in which a node can be removed because of the no-

redundancy property. An implementation that checks the no-redundancy property only
for lazy nodes does not remove a node where the high successor is a reference to the
low successor as seen in the left graphic. The node is removed if both successors are
references to the same node. There are no nodes in the ROBDD where the low successor
is a reference to the high successor because the original node is always the leftmost node
in the OBDD.

xm

xn

xm

xn

xm

xn

Figure 3.7: The three types of redundant nodes

Let f be an ROBDD with full no-redundancy property. Let e be an edge in f that
leads from a node with variable u to a node with variable v. In an ROBDD with
relaxed no-redundancy property there can be u− v − 1 redundant nodes on edge e, i.e.,
one redundant node for every variable between the variables of the connected nodes.
Because we keep the no-redundancy property for the leaves we get no additional nodes
for edges that lead to a leaf. We cannot use this insight for the estimation because we
do not know how many edges lead to a leaf. We can roughly estimate the number of
redundant nodes on one edge by the number of variables minus one, i.e., n − 1.

37

3 ROBDD Implementations

If a node is a reference both its successors are references. We check the no-redundancy

property for nodes whose successors are both references. Therefore we remove all redun-
dant nodes on edges that lead to a reference. Only edges that lead to original nodes can
contain redundant nodes. The number of edges that lead to an original node is equal to
the number of nodes in the ROBDD. We can estimate the number of redundant nodes
by the upper bound of (n − 1) ∗ |f | where |f | is the number of nodes in the ROBDD
with full no-redundancy property.

Redundant nodes can destroy the sharing of other nodes. Figure 3.8 shows two ROB-
DDs that represent the same boolean function. The left ROBDD contains no redundant
nodes. We add one redundant node that checks the variable x3. We check this vari-
able only in the case that variable x1 is false. First this destroys the sharing of the
two ROBDDs rooted at the nodes labeled x2. Because these sub-ROBDDs are no more
equal the node labeled x1 is no more redundant. The ROBDD where we have added one
redundant node has seven nodes while the ROBDD with full no-redundancy has only
four nodes. That is, we cause a blow up by three nodes with one redundant node.

x2

0

x4

1

x3

x2 x2

0

x4

1

x1

Figure 3.8: ROBDDs for the expression x2 ∧ x4 with full no-redundancy property (left)
and relaxed no-redundancy property (right)

A redundant node cannot destroy the sharing of a whole sub-tree. The successors of
the redundant node are still shared. Only the sharing of the predecessors of a redundant
node can be destroyed. That is, a redundant node can destroy the sharing of the path
from the root node to the redundant node. All other nodes are still shared. In the
example the redundant node is the node labeled x3. The successor of the redundant
node, the node labeled x4, is still shared. The sharing of the predecessor of the redundant
node namely the left node labeled x2 is destroyed. Additional nodes are caused by the
redundant node only on a path from the root node to the redundant node.

Because we can only destroy the sharing of the nodes on the path from the root node
to another node we can cause at most n additional nodes by the insert of one redundant

38

3.3 A Lazy Implementation

node. There are at most n − 1 redundant nodes per node in an ROBDD. Therefore
an ROBDD with relaxed no-redundancy property can have at most n2|f | nodes. This
is a very loose estimation. We would need more time to deliver a closer estimation of
the number of nodes in an ROBDD with relaxed no-redundancy property. The same
holds for the check whether the destroying of the sharing can be prevented by the
implementation. The measurements in this paper show that the number of additional
nodes that are caused by the relaxing is small for all the examples.

If we relax the no-redundancy property the ROBDD representation is no more canon-
ical. We do not relax the no-redundancy property for the leaves because in this case
the complexity of the satisfiability and the tautology check would be in O(n) while for
ROBDDs with full no-redundancy property they are in O(1). Additionally we gain no
extra laziness if we relax the no-redundancy property for the leaves. This is discussed in
Section 3.3.3. We relax the no-redundancy property only for inner nodes.

For a canonical representation the equality check is a check for isomorphy. This can
be done in O(min{|f |, |g|}) where |f | and |g| denote the number of nodes of the two
ROBDDs. The equality check for an ROBDD with relaxed no-redundancy property is
more difficult. We can reduce the ROBDD with the full no-redundancy property and
use the isomorphy check on the results. The running time of this implementation will be
worse than the running time of the equality check for ROBDDs with full no-redundancy

property. Besides the additional nodes this is the price that we have to pay for the
laziness.

Surprisingly there is an equality check implementation for ROBDDs with relaxed no-

redundancy that is almost as good as the check for ROBDDs with full no-redundancy.
This implementation makes use of the laziness and is better than the check for ROBDDs
with full no-redundancy if two unequal ROBDDs are compared. If two equal ROB-
DDs are compared the implementation with relaxed no-redundancy is worse than the
implementation with full no-redundancy but the differences are small. The different
implementations of the equality check are discussed in detail in Section 4.3.

3.3.3 Making a New Node

We pull the equality check of the NodeIds in the function rOBDD to the inside of the
function. We check the no-redundancy property only for nodes that are not lazy, i.e.,
nodes whose successors are both references. We could remove the check for redundancy
completely. Its benefit for the laziness depends on the laziness of lookupRevMap. If it can
yield Nothing by evaluating only one of the keys, i.e., the low successor, high successor
or variable number, a complete removal would be advantageous for the laziness. There
are map implementations that provide this property. The probability that lookupRe-

vMap yields Nothing without evaluating all the keys decreases with every inserted node.
Therefore the benefit of a complete removal is negligible as we have checked with some
measurements.

39

3 ROBDD Implementations

rOBDD :: OBDD → Int → OBDD → RevMap → RevMap → ROBDD

rOBDD Zero _ Zero _ revmap = ROBDD Zero revmap

rOBDD One _ One _ revmap = ROBDD One revmap

rOBDD low var high revmap1 revmap2

| isRef low && isRef high =

if getId low==getId high

then ROBDD low revmap1

else

case lookupRevMap low var high revmap2 of

Just obdd → ROBDD obdd revmap1

Nothing → rOBDD2 low var high revmap1

| otherwise = rOBDD2 low var high revmap1

The function getId yields the NodeId of the root node, i.e., the NodeId of the outermost
OBDD constructor. We do not compare low and high but getId low and getId high. It
would be a bad semantics of equality if the two OBDDs are equal iff the NodeIds of the
root nodes are equal. This is only true if we would use the full no-redundancy property.

The laziness does not benefit from a relaxing of the no-redundancy property for the
leaves. If we relax the no-redundancy property for the leaves rOBDD causes the same
evaluation as with the check for no-redundancy for leaves. The rules of rOBDD are trans-
lated into a cascade of case expressions. The following code illustrates the result of the
translation. The expression exp represents arbitrary expressions that are of no relevance
for the example.

rOBDD low var high revmap1 revmap2 =

case low of

Zero → case high of

Zero → exp

_ → exp

One → case high of

One → exp

_ → exp

_ → exp

The outermost case matches the first argument of rOBDD against Zero and One. This
pattern matching evaluates the first argument to Head Normal Form. If one of the
patterns matches, i.e., if the first argument is a leaf, the second argument is evaluated
to Head Normal Form. If none of these patterns matches, i.e., if the first argument is a
OBDD constructor, the second argument is not evaluated.

If we relax the no-redundancy for leaves we remove the first two rules of rOBDD. That
is, there is no pattern matching against the arguments of rOBDD. The check whether
both successors are references still causes the same evaluation as the pattern matching.
The boolean conjunction (&&) is lazy, i.e., it only evaluates its second argument if the
evaluation of the first argument yields True. If the first argument is a leaf it is defined
to be a reference. Therefore the second argument is evaluated to Head Normal Form.

40

3.3 A Lazy Implementation

If leaves would be no references we would never share any nodes. The second argument
is evaluated to Head Normal Form iff the first is a leaf. Thus, without no-redundancy

property for the leaves the same parts of the arguments of rOBDD are evaluated as with
the no-redundancy property. A measurement proved that there is no difference in the
number of evaluated constructors with or without no-redundancy property for leaves.

3.3.4 Laziness

We build an ROBDD with relaxed no-redundancy property for the expression (x1 ∧ x2) ∨
(x1∧x3)∨ (x2∧x3) and check whether there is a satisfying binding for this ROBDD. We
observe the OBDD data structure when applying anySat to the ROBDD. The left part of
Figure 3.3.4 shows the observations of the implementation with relaxed no-redundancy

property. The right part shows the observations for the ROBDD implementation with
full no-redundancy property. The whole high successor of the root node is not evaluated

Just [(1,False),(2,True),(3,True)]

>>>>>>> Observations <<<<<<

testExp4

(OBDD (OBDD Zero

2

(OBDD Zero

3

One

_

False)

_

False)

1

_

_

False)

>>>>>>> Observations <<<<<<

testExp4

(OBDD (OBDD Zero

2

(OBDD Zero

3

One

4

False)

3

False)

1

(OBDD (OBDD Zero

3

One

4

True)

_

One

5

False)

_

False)

by the implementation with relaxed no-redundancy while it is by the implementation with
full no-redundancy. In the example with relaxed no-redundancy property all evaluated

41

3 ROBDD Implementations

nodes are lazy nodes. That is, we do not look them up in the reverse map. All these nodes
are known to be lazy nodes because their low successors are original nodes. Therefore
the boolean values that state whether a node is a reference are evaluated but the NodeIds
are not.

Evaluation to Head Normal Form

The no-redundancy property causes the evaluation of the whole OBDD data structure if
the OBDD is evaluated to Head Normal Form (HNF). Even the relaxed no-redundancy

property works against the laziness. We investigate which parts of an OBDD are evaluated
if we evaluate it to HNF. We distinguish whether the root node of the OBDD that is
evaluated to HNF is lazy or not.

We take a look at an examples. We construct the ROBDD for the expression (x1 ∧
x2)∨(x1∧x3)∨(x2∧x3). We observe the OBDD data structure when the function getVar is
applied to this ROBDD. The left part of Figure 3.9 shows this observation. The function
getVar yields the variable of the outermost OBDD constructor. It has to check whether
the OBDD is a leaf, i.e., it has to evaluate the OBDD to HNF. The root node of the OBDD that
is evaluated to HNF is a lazy node. Therefore its low successor namely the OBDD rooted
at variable 2 is evaluated to HNF. This causes the evaluation of its low successor to
HNF. The low successor of this node is a Zero leaf. The function rOBDD checks whether
the high successor is a Zero leaf, too. This causes the evaluation of the OBDD rooted
at variable 3 to HNF. Its low successor is a Zero leaf. Therefore the high successor is
evaluated to HNF, too. This one is a One leaf. This node is not redundant, i.e., it is
an OBDD constructor. Therefore all predecessors of this node are OBDD constructors, too.
That is, the outermost constructor is known to be an OBDD constructor.

The definition that follows is recursive. That is, the evaluation of an OBDD to HNF
causes the evaluation of sub-OBDDs to HNF. The evaluations of the sub-OBDDs follow the
same rules as the evaluation of the top level OBDD. We describe the evaluation of an OBDD

to HNF by means of the evaluation of sub-OBDDs to HNF.
If the root node of the OBDD that is evaluated to HNF is a lazy node we have to check

whether it can be reduced to a leaf. That is, we have to check whether both successors
are the same kind of leaf. This causes the evaluation of the low successor to HNF. If
the low successor is a leaf the high successor is evaluated to HNF, too. A node with
two leaves, i.e., low successor Zero and high successor One or the other way round is not
redundant. If such a node is evaluated all predecessors of this node are known to be
OBDD constructors because at least one of their successors is no leaf.

If a top level OBDD, i.e., an argument of an ROBDD constructor is evaluated to HNF a
path to the leftmost node with two leaves is evaluated. If the low successor of a node
is a leaf the high successor is evaluated to HNF. If the low successor is the other kind
of leaf the node is known to be an OBDD constructor and all predecessors, too. That
is, as soon as a node with two leaves is evaluated the root node is known to be an
OBDD constructor. Because Haskell evaluates function arguments from left to right the
function rOBDD causes the evaluation of the low successor of a node to HNF before the
high successor is evaluated. According to Section 3.3.1 the nodes on the path to the

42

3.3 A Lazy Implementation

1

>>>>>>> Observations <<<<<<

testExp4

(OBDD (OBDD Zero

2

(OBDD Zero

3

One

_

False)

_

False)

1

_

_

False)

2

>>>>>>> Observations <<<<<<

testExp4

(OBDD (OBDD Zero

2

(OBDD Zero

3

One

2

False)

_

False)

1

(OBDD (OBDD Zero

3

One

2

True)

2

One

_

False)

_

False)

Figure 3.9: Observations of two evaluations to Head Normal Form

leftmost node with two leaves are lazy nodes. Therefore the evaluation of a top level
OBDD to HNF causes the evaluation of sub-OBDDs that are rooted at lazy nodes.

In the left observation in Figure 3.9 the root node of the OBDD that is evaluated to
HNF is a lazy node. According to the previous paragraph this causes the evaluation
of the path to the leftmost node with two leaves. Note that this includes all the leaves
left of this path like stated in Section 3.3.1. In the observation exactly these parts are
evaluated.

The OBDD for the expression (x1∧x2)∨(x1∧x3)∨(x2∧x3) is observed when the function
getVar is applied to the high successor of this OBDD. The right part of Figure 3.9 shows
these observations. The function getHigh causes the evaluation of the OBDD to HNF. This
causes the same evaluation as the application of getVar in the left part of Figure 3.9.
The application of getVar to the high successor additionally causes the evaluation to
HNF of the OBDD that is rooted at the high successor.

The root node of this OBDD is not lazy because its low successor is a Zero leaf and its
high successor is a reference. Therefore the whole OBDD rooted at this node is evaluated.

43

3 ROBDD Implementations

The low successor of this node is a reference. The evaluation of this OBDD causes the
evaluation of the OBDD that is referenced. This OBDD is positioned in the low successor of
the root node. This OBDD would not be evaluated without the evaluation of the reference.

The NodeId of a node that is not lazy depends on the structure of the whole OBDD.
Therefore the evaluation of such a NodeId causes the evaluation of the whole OBDD. Note
that the evaluation of the NodeId of a lazy node does not cause the evaluation of the
whole OBDD.

If the root node of the OBDD that is evaluated to HNF is not lazy we have to check
whether the node is redundant. The outermost constructor depends on the result of the
comparison of the NodeIds of the successors. This comparison causes the evaluation of
the whole OBDD.

An application of anySat to an ROBDD checks for every node on the path to the
leftmost One leaf whether it is an OBDD constructor or not. This causes the evaluation
to HNF of all the OBDDs rooted at these nodes. According to Section 3.3.1 the nodes on
the path to the leftmost node with two leaves and left of it are all lazy. The path to
the leftmost One leaf is part of these nodes. Therefore all root nodes of the OBDDs that
are evaluated to HNF are lazy nodes. An application of anySat to an ROBDD causes
the evaluation of the path to the leftmost node with two leaves and all parts left of it.
Therefore anySat evaluates O(n) many nodes where n is the number of variables in the
ROBDD. No look-ups or inserts in the reverse map are performed by anySat because all
the evaluated nodes are lazy. That is not exactly true because the node with two leaves
is looked up in the reverse map. Because the map is empty the look-up yields Nothing

without evaluating the empty map. This is addressed in detail in Section 5 where we
discuss several implementations of the reverse map.

Assigning NodeIds

We number the nodes of an ROBDD in postorder. That is, we first number the low
successor then the high successor and in the end the node itself. This is the canonical
numbering because the look-up in the reverse map depends on the NodeIds of the suc-
cessors. That is, we have to number the successors before we can number the node. We
could as well use a reversed preorder, i.e., first number the high successor then the low
successor and the node in the end. This would be disadvantageous because it would bring
in a dependency of the NodeIds of the low successor on the ones of the high successor
while the dependency that is brought in by the construction order is reversed.

If a postorder numbering is used the NodeId of the root node depends on the greatest
NodeId of the high successor. Therefore we have to evaluate this NodeId to evaluate the
NodeId of the root node. This NodeId again depends on other NodeIds. If one of the
nodes whose NodeIds are evaluated is not lazy the evaluation of the NodeId causes the
evaluation of the whole OBDD. To break these dependencies we have to use gaps in the
numbering. We do not know whether the constructed node gets a new NodeId until we
have looked up the node in the reverse map. That is, we have to save a NodeId for
the node and do not use this NodeId in the numbering of its successors. If the node
turns out to be a reference we do not use the saved NodeId at all. This causes a gap in

44

3.3 A Lazy Implementation

the numbering because one number is left out. If the node is no reference we just use
the NodeId we have saved before. This way we can use a preorder numbering. With a
preorder numbering the NodeId of the node does not depend on the NodeIds of the nodes
of the OBDDs rooted at the two successors.

There still remain dependencies in the numbering when we use a preorder numbering.
That is, to number the high successor we have to know the greatest NodeId in the
low successor. These dependencies cause no additional nodes to be evaluated. The
dependencies that are caused by the preorder numbering are the same that result from
the look-up in the reverse map. Figure 3.2 illustrates these dependencies. With the
preorder numbering the NodeId does not depend on the NodeIds of its successors but on
the NodeIds of the parts of the OBDD left of it namely the vertically lined parts in the
graphic.

Instead of the preorder we could use a static numbering like the one used in Braun
Trees. This numbering does not have any dependencies at all. When we use a Braun
numbering the NodeIds grow exponential in the number of variables. Therefore we have
to use the type Integer for the NodeIds instead of Int. The values of the type Integer

are unbounded integer values. Otherwise the number of variables would be limited to
64 because there are 264 Int values.

Figure 3.10 shows the number of evaluated constructors for a postorder, a preorder
and a Braun numbering. In three of the examples the preorder and Braun numbering
causes the evaluation of fewer constructors than the postorder numbering. In all the
other cases there is no difference. The preorder and Braun numbering always cause the
evaluation of the same number of constructors, i.e., there is no advantage of the static
numbering over the preorder numbering. On the other hand the NodeIds that are used
by the preorder numbering are much smaller than the ones of the Braun numbering.

A numbering with gaps can increase the expense of a look-up and insert in the maps.
For example a look-up or insert in a Braun or Patricia Tree takes logarithmic time in
the size of the key. A numbering with gaps increases the size of the NodeIds, that is
the size of the keys. Therefore a numbering with gaps increases the time and memory
consumption if we use a Braun or Patricia Tree for the implementation of the maps. The
measurements in Section 5 advise to use a Braun Tree implementation for the maps. We
have investigates whether the benefit of lesser evaluated constructors does exceed the
disadvantages of the gaps in the numbering. In the examples were less constructors
are evaluated the time and memory consumption of the Braun Tree implementation
benefits. In the cases where the same number of constructors are evaluated the preorder
numbering is a disadvantage because the look-ups and inserts are more expensive. That
is, both implementations have their advantages and disadvantages. Therefore we use
a Braun Tree implementation with the more conservative postorder numbering of the
NodeIds in all measurements in this paper.

As mentioned before the function build is exponential in the number of variables in
the expression. We do not use this function for the construction of ROBDDs. Although
the results stated here can be applied to other operations. The build operation is a
combination of a construction of a DT and a reduction to an ROBDD. This scheme is used
in all operations that yield an ROBDD. Instead of doing this one after the other it is done

45

3 ROBDD Implementations

Expression Numbering Eval. Constr.
Queens 7 Postorder 598430

Preorder 497926
Braun 497926

Integer 17 Postorder 236
Preorder 236
Braun 236

Integer2 1000 Postorder 505498
Preorder 505498
Braun 505498

HWB 14 Postorder 2044822
Preorder 2044822
Braun 2044822

uf20-02.cnf Postorder 4689
Preorder 4324
Braun 4324

uf20-020.cnf Postorder 27078
Preorder 21835
Braun 21835

Figure 3.10: Number of evaluated constructors for several numberings

all at once. This saves time and memory. The results are applicable to all operations of
this kind because the construction of the DT does not bring in any dependencies. The
additional evaluations are all caused by the reduction. The only additional evaluation
that is caused by the construction of the DT is the evaluation of the variable numbers.
These are evaluated because of the substitution in the boolean expression. We can apply
these observations to all operations that yield an ROBDD and therefore reduce an DT.
This is also the case in the function apply that is later used to construct an ROBDD. Note
that this results does not say anything about which parts of the arguments of apply are
evaluated. It only concerns the resulting ROBDD.

46

4 Implementation of a BDD Package

This chapter presents the implementation of the main operations for the ROBDD im-
plementation with relaxed no-redundancy property.

4.1 Apply

Every application of build causes two recursive applications. Every application removes
one variable number from the expression. Therefore build is exponential in the number
of variables.

The apply operation combines two ROBDDs with a boolean operator. The imperative
implementation of this function has a worst case running time in O(|f ||g|) where f and g

are the argument ROBDDs. We can construct an ROBDD by replacing every operator
in a boolean expression by an appropriate application of apply. The ROBDDs for a
single variable and the constants true and false are easy to construct. This construction
is also exponential in the worst case. This case occurs when an ROBDD has exponential
many nodes in the number of variables.

For the construction of an ROBDD out of a boolean expression it is sufficient to provide
a negation and an apply function for the boolean operator ∨. For example an apply

with the boolean operator ⇔ can be expressed by three applications of apply and five
applications of negate. One of these apply applications is applied to ROBDDs of the
same size as the application apply (⇔). The others are applied to smaller ROBDDs.
Therefore the implementation using the boolean operator ⇔ is more efficient than the
combination of applys. Thus we define an apply operation that takes an arbitrary
boolean operator as first argument. This leaves the choice to the user whether to use
one apply with an appropriate boolean operator or an equivalent combination of apply

operations. With the power of higher order functions like provided by Haskell this is fairly
easy. The user interface that is presented in Section 4.5 provides a simple mechanism
to alter the implementation of the provided boolean operators. All boolean operators
provide a standard implementation that uses a combination of applys. By defining one
of these boolean operators this standard implementation is replaced.

The implementation of apply is based on the observation that we can push all boolean
operators down to the arguments of a Shannon Expansion.

apply op f g = x →
apply op (f [x 7→ 0]) (g[x 7→ 0]),
apply op (f [x 7→ 1]) (g[x 7→ 1])

The application of an operator op to the ROBDDs f and g can be expressed by a
Shannon Expansion of a variable x and the substitution of this variable in the ROBDDs
f and g by false and true respectively.

47

4 Implementation of a BDD Package

Like build the function apply has to choose a top variable for the Shannon Expansion,
i.e., the x in the expansion above. We define a substitute function on ROBDDs. This
function assumes that the variable that is substituted (var) is less equal to the top
variable of the ROBDD. In this case the implementation of the substitute function is
very simple. The function topVar yields the variable of the root node of an ROBDD.

substitute robdd x b

| x<topVar robdd = robdd

| x=topVar robdd = if b

then getHigh robdd

else getLow robdd

If x is less than the top variable we know that it does not occur in robdd at all because
the variables in the ROBDD are ordered. If the variables are equal we just yield the low
or high successor dependent on whether we substitute x by False or True.

We are looking for a variable that is less equal to both top variables of the argument
ROBDDs. If we substitute such a variable the substitutions that are used in the expan-
sion are very simple. We use the smaller variable of the two top variables. The function
next chooses the smaller of the two variables and applies the substitutions to the ROB-
DDs. It yields the four ROBDDs, namely f [x 7→ 0], g[x 7→ 0], f [x 7→ 1], g[x 7→ 1] and
the top variable x. This operation is in O(1).

The terminal case of the application of apply is the application to two leaves. In this
case the boolean operator is applied to the corresponding boolean values.

Figure 4.1 shows the ROBDDs for the expressions (x1 ∧ x3) ∨ (x2 ∧ x3) and (x1 ⇔
x2) ∧ (x3 ⇔ x4) and the result of applying ∧ to these ROBDDs. The nodes are labeled
with their NodeIds. The variable numbers of the nodes are shown on the left. The
NodeIds are needed for the callgraph. Figure 4.2 shows the callgraph for this application
of apply. Each node represents the application of apply to two ROBDDs. The nodes
are labeled with the NodeIds of the root nodes of these ROBDDs.

Memoization is used to apply apply only once to a pair of ROBDDs. For every pair
of NodeIds the result of the application is saved in a map called apply map. The dashed
nodes represent applications that are memoized and therefore looked up in the apply

map. Applications to two leaves are not memoized. The input of this applications is
constant and the insert and look-up are more expensive than the computation.

Some parts of the callgraph reduce to Zero leaves. An example is the sub-tree rooted
at the node labeled 4, 0. The results of the applications of ∧ to the leaves of this sub-
callgraph are Zero leaves. Therefore this whole sub-tree is reduced to a single leaf. The
semantics of the node labeled 4, 0 is the application of the boolean operator ∧ to a
boolean expression and false. This yields false independent of the first argument. In
this case we do not have to traverse the ROBDD. We can immediately yield the Zero

leaf. The same holds for applications of apply with the boolean operator ∧ where the
first argument is the Zero leaf. All bold nodes in Figure 4.2 represent applications that
immediately yield the Zero leaf without traversing one of the arguments. This idea was
introduced by Bryant [8]. Let a and b be boolean values. If a boolean operator op

satisfies a op false = a op true = b we can define a op X = b where X is a don’t care

48

4.1 Apply

x1

x2

x3

x4

x5

8

6 7

5

0

3 4

2

1

∧

5

2

0 1

3 4

=

9

5 8

4

0

3

2

1

7

6

Figure 4.1: ROBDDs for the expressions (x1 ∧x3)∨ (x2 ∧x3) and (x1 ⇔ x2)∧ (x3 ⇔ x4)
and the result of applying ∧

value. That is, no matter which value the second argument has we know the result.
The first argument of apply is the boolean operator that is applied to the leaves.

Due to the don’t care idea its type is Maybe Bool -> Maybe Bool -> Maybe Bool. This
operator is a function on a three valued logic. The values Just True and Just False

represent the two boolean values. The value Nothing represents a third value that is
neither true nor false, i.e., a boolean expression that cannot be simplified to one of the
boolean values. The function obddToBool takes an OBDD and yields the corresponding
value of the three value data type. That is, it yields a boolean value for the leaves and
Nothing otherwise.

The function andM implements the boolean operator ∧. It yields Just False if one of
the arguments is Just False. On the Haskell level don’t care values are represented by
underscores. That is, we do not need the value of this argument to express the result.

andM :: Maybe Bool → Maybe Bool → Maybe Bool

andM (Just False) _ = Just False

andM (Just True) x = x

andM _ (Just False) = Just False

andM _ _ = Nothing

49

4 Implementation of a BDD Package

x1

x2

x3

x4

x5

8, 5

6, 3 7, 4

5, 3 0, 3

3, 2 4, 0

2, 2 0, 2

1, 1 0, 0 0, 1 0, 0

0, 0 2, 0

1, 0 0, 0

0, 2 0, 0

0, 4 5, 4

0, 1 0, 2 3, 0 4, 2

2, 0 0, 1 0, 2 2, 2

Figure 4.2: Callgraph for apply (∧) ((x1 ∧ x3) ∨ (x2 ∧ x3)) ((x1 ⇔ x2) ∧ (x3 ⇔ x4))

In a strict language this idea saves the traversal of an ROBDD. In a lazy language
it saves the evaluation of this ROBDD. The function error :: String -> a causes a
runtime error if it is evaluated. The String is printed on the screen. The application
apply andM Zero (error "second arg") yields Zero. That is, the second argument is
not evaluated. Note that the application apply andM (error "first arg") Zero yields
an error. Haskell evaluates the arguments of a function from left to right. andM checks
whether the first argument is a Zero leaf, i.e., it has to evaluate the first argument to
Head Normal Form. This raises the error.

We assume an abstract data type ApplyMap that provides the functions emptyApplyMap,
insertApplyMap and lookupApplyMap.

To make as less look-ups as possible we only look up a pair of NodeIds if at least one
of the nodes is shared. That is, one of the nodes is part of an OBDD whose root node is
a reference. All these nodes are at least twice in the OBDD. The original nodes are the
leftmost and they have therefore been visited already. If none of them is shared the pair
of NodeIds cannot be memoized. We always deconstruct at least one of the outermost
constructors. The OBDD contains at most one node with a specific NodeId that is no
reference and furthermore contains no cycles. Therefore a pair of NodeIds cannot be
memoized if both nodes are not shared.

50

4.1 Apply

apply :: (Maybe Bool → Maybe Bool → Maybe Bool) → ROBDD

→ ROBDD → ROBDD

apply op robdd1 robdd2 =

let ROBDD obdd1 _ = robdd1

ROBDD obdd2 _ = robdd2

in

fst (apply1 False emptyApplyMap emptyRevMap obdd1 obdd2)

where

apply1 b applymap revmap obdd1 obdd2 =

case op (obddToBool obdd1) (obddToBool obdd2) of

Nothing → apply2 b applymap revmap obdd1 obdd2

Just False → (ROBDD Zero revmap , applymap)

Just True → (ROBDD One revmap , applymap)

apply2 b applymap revmap obdd1 obdd2

| b || isRef obdd1 || isRef obdd2 =

case lookupApplyMap obdd1 obdd2 applymap of

Nothing → apply3 True applymap revmap obdd1 obdd2

Just obdd → (ROBDD obdd revmap , applymap)

| otherwise = apply3 b applymap revmap obdd1 obdd2

apply3 b applymap revmap obdd1 obdd2 =

let (low1 , high1 , var, low2 , high2) = next obdd1 obdd2

(ROBDD low lowRevmap , lowApplymap) =

apply1 b applymap revmap low1 high1

(ROBDD high highRevmap , highApplymap) =

apply1 b lowApplymap lowRevmap low2 high2

robdd@(ROBDD obdd _) =

rOBDD low var high revmap highRevmap

in

(robdd ,insertApplyMap obdd1 obdd2 (setRef obdd) highApplymap)

There are cases in which an application is memoized although only one of the root
nodes of the argument OBDDs is a shared node. Figure 4.4 shows the callgraph of the
application of the boolean operator ∧ to the ROBDDs for the expression (x1 ∧ x3) ∨
(x2 ∧ x3) and for the single variable x4. The node labeled 2, 2 occurs twice in the
callgraph. That is, we have to look up the second application namely the dashed node
labeled 2, 2. This node represents the application of apply to two OBDDs that are both
rooted at the NodeId 2. The first OBDD is a reference, the second one is none. That
is, the first node is shared the second one is not shared. Thus there are cases in which
an application is memoized although only one of the arguments is a shared node. If we
would only perform a look-up in the apply map if the two root node of the OBDDs are both
shared less NodeIds would be evaluated. This would be an advantage for the laziness.
It is rarely the case that an application is memorized if only one of the arguments is
shared but measurements showed that it heavily decreases performance if we only look
up applications where both nodes are shared. This is due to the fact that a look-up

51

4 Implementation of a BDD Package

x1

x2

x3

x4

0 1

4

3

2 ∧

2

0 1

=

5

4

3

0

2

1

Figure 4.3: ROBDDs for the expressions (x1 ∧ x3) ∨ (x2 ∧ x3) and x4 and the result of
applying ∧

takes a logarithmic amount of time. The application of apply to two OBDDs is linear in
the number of pairs of NodeIds of the two argument OBDDs. Thus a missed look-up can
be very expensive.

If the Bool that states whether a node is a reference is True all nodes in the sub-OBDD
that is rooted at this node are shared. Therefore we have to look up all applications in
the apply map of a node of this OBDD and any other node. The additional argument of
type Bool that is passed to apply1 takes care of this.

4.1.1 Laziness

The application apply andM Zero (error "second arg") yields Zero. That is, we do not
have to evaluate the second argument if the first is Zero and we apply ∧. Independently
of the size of the second argument of apply the Zero leaf is yielded immediately. For
example the application apply andM Zero (integer n) is in O(1) for every n. An imple-
mentation in a strict language always has to construct the second argument even though
it is not needed. That is, there are applications of apply that would not terminate in a
reasonable amount of time in a strict implementation while the Haskell implementation
yields the result immediately. All applications of apply have this property. For example
in Figure 4.2 the node labeled 4, 0 yields Zero without evaluating the second argument.
This does not guarantee that the second argument is never evaluated. There are other
dependencies that can cause its evaluation. For example a look-up in the apply map

causes the evaluation of the NodeIds of the inserts in the apply map that are delayed.
The evaluation of the NodeIds causes the evaluation of parts of the OBDD.

The application apply andM (error "first arg") Zero raises an error. The boolean

52

4.1 Apply

x1

x2

x3

x4

4, 2

3, 2 2, 2

0, 2 2, 2

0, 2 1, 2

1, 0 1, 1

Figure 4.4: Callgraph for apply (∧) ((x1 ∧ x3) ∨ (x2 ∧ x3)) x4

operator andM checks whether the first argument is a Zero leaf and therefore causes the
evaluation of the first argument to Head Normal Form. The application apply andM

(integer n) Zero does not yield the result in an amount of time that is independent of
n. The first argument is evaluated to Head Normal Form. Section 3.3.4 already stated
that this causes the evaluation of the leftmost path to a node with two leaves and all
parts left of it. These are linear many nodes whereas an implementation in a strict
language would construct the whole ROBDD, i.e., would evaluate exponentially many
nodes.

4.1.2 Measurements

Figure 4.5 shows measurements of the construction of some ROBDDs using apply. We
apply the functions anySat and eval to the constructed ROBDDs and measure the
construction together with this application. Because of the laziness we cannot separate
these two parts. The efficiency of the construction depends on the evaluation that is
caused by the consumer function. If the consumer function causes the evaluation of small
parts of the ROBDD great parts of the ROBDD are not constructed. All the expressions
that are used in this measurement except for hole8.cnf are satisfiable.

The function eval is a structural equality of an OBDD with itself. We use this func-
tion to cause the evaluation of the whole result OBDD. This illustrates the worst case in
respect of the use of laziness. No function causes the evaluation of more nodes of the
intermediate and final results than eval. We use this function to check whether the
implementation with relaxed no-redundancy can compete with the implementation with
full no-redundancy if it cannot benefit from laziness. We could use the show function to
cause the evaluation but show would consume additional heap memory for the String

53

4 Implementation of a BDD Package

that is yielded. We would not be able to distinguish the memory usage of the show

application and of the construction.

To check whether the laziness is of any advantage for the construction we compare
the application of anySat to an relaxed ROBDD with that to an ROBDD with full no-

redundancy. The application of anySat to an satisfiable ROBDD causes the evaluation
of just a part of the ROBDD. The size of this part depends on the structure of the
ROBDD.

Expression Operation No-Redundancy Time Memory Eval. Constr.
Queens 8 anySat Relaxed 25.28 2,918,337,044 1874446

Full 32.00 3,656,326,616 2214256
eval Relaxed 32.06 3,630,827,808 2200765

Full 32.06 3,656,438,228 2214256
Integer 16 anySat Relaxed 0.00 202,064 214

Full 4.36 508,343,316 327689
eval Relaxed 4.34 512,543,932 327689

Full 4.50 515,689,380 327689
Integer2 1000 anySat Relaxed 1.70 294,052,836 505498

Full 12.78 1,838,362,908 1504498
eval Relaxed 18.00 1,825,750,612 1504498

Full 12.98 1,837,786,380 1504498
HWB 14 anySat Relaxed 6.92 1,359,474,756 2044822

Full 13.82 2,407,651,020 2903684
eval Relaxed 13.22 2,232,152,640 2903684

Full 13.84 2,407,684,808 2903684
uf20-02.cnf anySat Relaxed 0.04 5,287,788 4689

Full 0.54 70,327,860 49518
eval Relaxed 0.54 71,705,676 50930

Full 0.52 70,337,040 49518
hole8.cnf anySat Relaxed 20.32 2,628,758,076 1632847

Full 20.14 2,656,013,124 1635756
eval Relaxed 20.10 2,628,775,708 1632847

Full 20.44 2,656,030,756 1635756

Figure 4.5: Construction of some ROBDDs using apply

The implementation with the relaxed no-redundancy property is in all measurements
better then the implementation with full no-redundancy when we apply anySat. The
values for consumed time, consumed heap memory and the number of evaluated con-
structors are all less than these values for the implementation with full no-redundancy.
The quotient of evaluated constructors of the implementation with full no-redundancy

and the implementation with relaxed no-redundancy ranges between 1531.26 for Integer
16 and 1.17 for Queens 8 for satisfiable boolean expressions. The number of evaluated

54

4.1 Apply

constructors highly depends on the structure of the boolean expression. For example if
we apply ∧ to two ROBDDs where the leftmost variable binding that evaluates both
ROBDDs to true is far right, i.e., binds many variables to true we have to evaluate great
parts of the ROBDDs even when we apply anySat to the result. The worst case for the
laziness is an application to an unsatisfiable ROBDD. This is naturally totally strict,
i.e., it has to evaluate the whole ROBDD. This ROBDD is a single leaf but it causes the
complete evaluation of all the intermediate results. The expression hole8.cnf is unsat-
isfiable. The application of eval and anySat evaluate the same number of constructors.
This is always the case for unsatisfiable expressions. The application of eval to the re-
laxed ROBDD for the boolean expressions Queens 8 and hole8.cnf cause the evaluation
of less constructors in the implementation with full no-redundancy. This seems to be odd
because we have expected the relaxed ROBDD to have more nodes than the one with
full no-redundancy. Here the relaxed implementation benefits from the don’t care idea.
Some parts of the intermediate results are not evaluated because they are not needed
to determine the result of an apply application. The full no-redundancy property causes
the complete evaluation of all intermediate ROBDDs. Even the sub-ROBDDs that are
not evaluated by the relaxed no-redundancy are evaluated by the full no-redundancy

implementation.
When eval is applied to the relaxed ROBDD for the expression uf20-002.cnf more

constructors are evaluated than by the implementation with full no-redundancy. For
uf20-002.cnf the relaxed ROBDD has 59 while the ROBDDD with full no-redundancy

has 57 nodes. In all the other examples the number of nodes of the result ROBDDs are
the same for both implementations.

We cannot explain the differences in the running times of eval on an relaxed ROBDD
and an ROBDD with full no-redundancy for the expression Integer2 1000. In all tests
for the Integer2 expression the running time for the eval measurement with the relaxed
no-redundancy is about 35% percent worse than the running time of the implementation
with full no-redundancy. This is surprising cause the number of evaluated constructors
are the same for both implementations.

4.1.3 Complexity

There are |f ||g| pairs of NodeIds of the ROBDDs f and g. If the sets of variables of the
two ROBDDs are disjunct there is one application of apply for every pair of NodeIds.
All the other applications are looked up. If the variables of the two ROBDDs are not
disjunct there are less applications. There is one look-up and insert in the apply map and
an application of rOBDD for every application of apply. The complexity of the look-up and
insert depends on the implementation of the apply map. The measurements in Section 5
show that the best implementation for the maps is a Braun Tree or a Patricia Tree. The
complexity of insert and look-up of these structures is logarithmic in the size of the key.
We use a continuous numbering for the NodeIds and can estimate the logarithm of the
size of the key by the logarithm of the elements in the map, i.e, the number of pairs.
Therefore the worst case running time of apply is in O(log(|f ||g|)|f ||g|). That is, we get
an additional logarithmic factor in comparison to an imperative implementation.

55

4 Implementation of a BDD Package

4.2 Restrict

The restrict operation substitutes one variable in the boolean expression by true or
false. On an ROBDD this operation replaces all nodes with this variable by its low and
high successor respectively. We have to guarantee that equal sub-trees are restricted
only once. We use a map that memoizes the results of the applications of restrict.
We assume an abstract data type MemoMap that is polymorphic over the type of the
entries in the map. We use this data type for all the memoization and the entries in
other applications have another type than the one for restrict. This ADT provides the
functions emptyMemoMap, insertMemoMap and lookupMemoMap.

restrict :: Var → Bool → ROBDD → ROBDD

restrict var’ b (ROBDD obdd _) =

fst (restrict1 emptyMemoMap emptyRevMap odd)

where

restrict1 memomap revmap Zero = (ROBDD Zero revmap , memomap)

restrict1 memomap revmap One = (ROBDD One revmap , memomap)

restrict1 memomap revmap obdd

| var<var ’ = restrict2 memomap revmap obdd

| var==var ’ = if b

then reduce memomap revmap (getHigh obdd)

else reduce memomap revmap (getLow obdd)

| otherwise = reduce memomap revmap obdd

where

var = fromVar (getVar obdd)

restrict2 memomap revmap obdd

| isRef obdd =

case lookupMemoMap (getId obdd) memomap of

Nothing → restrict2 memomap revmap (unsetRef obdd)

Just obdd → (ROBDD obdd revmap , memomap)

| otherwise =

let (ROBDD low lowRevmap , lowMemomap) =

restrict1 memomap revmap (getLow obdd)

(ROBDD high highRevmap , highMemomap) =

restrict1 lowMemomap lowRevmap (getHigh obdd)

robdd@(ROBDD obdd ’ _) =

rOBDD low var high revmap highRevmap

in

(robdd

, insertMemoMap (getId2 obdd ’) (setRef2 obdd ’) highMemomap)

where

var = fromVar (getVar obdd)

56

4.2 Restrict

The function getVar yields the variable of a node wrapped in a constructor named Var.
If getVar is applied to a leaf it yields a nullary constructor. We do not use the Maybe

type instead because we want to make the type an instance of the type class Ord and
want to use another implementation than it is used for the Maybe type. The function
fromVar wipes the additional constructor off like fromJust.

The restriction of a leaf yields the same kind of leaf. If we restrict a node we have
to compare its variable to the variable we are restricting. If the variable is still smaller
we check whether the node is a reference. In this case we look it up in the memo map.
If it is not a reference we continue descending the ROBDD. We have to reduce the
result because restrict can produce nodes that can be shared after the restriction and
were not before. Therefore we reconstruct the ROBDD by using rOBDD. If the look-up
of a reference fails we have chucked away the original node. In this case we change
the reference into an original node by applying unsetRef. This idea was introduced in
Section 3.2.

If the variable of the node is greater than the one we are restricting we do not have to
look for the variable any longer. We apply the function reduce to the OBDD. This function
reconstructs the ROBDD and adds all nodes to the reverse map and all partial results
to the memo map. The only difference between reduce and restrict is that reduce does
not check the variable numbers.

If the correct variable is found the low and high successor is yielded respectively. We
have to add all nodes of this OBDD to the reverse map and the memo map via reduce.

4.2.1 Laziness

The function restrict takes an ROBDD and yields a new ROBDD. This section investi-
gates which parts of the argument are evaluated because of restrict. That is, we check
which parts of the argument are evaluated when only parts of the result of restrict are
evaluated.

We check which parts of the argument OBDD are evaluated when restrict is applied to
it and anySat to the result of restrict. We can compare these parts with the parts that
are evaluated when anySat is applied without an application of restrict. This gives
use a hind which parts of the OBDD are evaluated because of the additional restrict

application. We distinguish two cases of restrictions.

Let (xi, bi) . . . (xn, bn) be the path from the root node to the leftmost node with two
leaves. Let xk be the variable that is restricted and b be the boolean value xk is restricted
to. We distinguish the cases b = bk and b 6= bk. That is, we preserve the path to the
leftmost node with two leaves in the first case and destroy it in the second case.

We restrict variable x3 to True in the ROBDD for the expression (x1 ∧ x2) ∨ (x1 ∧
x3)∨ (x2 ∧x3). The left ROBDD in Figure 4.6 shows this ROBDD. The center ROBDD
shows the result of the restriction. The bold parts of the ROBDDs are the paths from
the root node to the leftmost node with two leaves. The restriction preserves this path
and just shortens it by one variable. That is, the path to the leftmost node with two
leaves in the result of restrict is the same as in the argument.

57

4 Implementation of a BDD Package

x2 x2

x1

x3

0 1

x1

x3

0 1

x1

0 1

x3

Figure 4.6: An ROBDD for the expression (x1∧x2)∨(x1∧x3)∨(x2∧x3) (left), the result
of restrict x2 True (center) and the result of restrict x2 False (right)

We apply anySat to the result of the restriction and observe the argument OBDD. The
left part of Figure 4.7 shows this observation. The right part shows the observation
of the argument OBDD when applying anySat without an application of restrict. The
two observations prove the considerations. An application of anySat to the result of
restrict causes the evaluation of the same parts as an application of anySat without a
restrict application.

It is very difficult to predict the evaluation of the argument of restrict that is caused
by an application of anySat to the result if b 6= bk holds. In this case the path to the
leftmost node with two leaves is destroyed. There are cases in which a new node with
two leaves is constructed by the restriction. Figure 4.8 shows a part of an ROBDD. If
we restrict variable xm to True in this ROBDD a new leftmost node with two leaves is
constructed. The right part of the figure shows the result of the restriction. The new
leftmost node with two leaves is on the path to the old one. Therefore an application of
anySat to the result of restrict causes the evaluation of the same parts of the argument
as without the restrict application.

We take a look at another example where b 6= bk holds but no new leftmost node with
two leaves is constructed. In the ROBDD for the expression (x1∧x2)∨(x1∧x3)∨(x2∧x3)
variable x2 is restricted to False. The right ROBDD in Figure 4.6 shows the result of
this restriction. Figure 4.9 shows the observation of this restriction. We throw away
the high successor of the left node labeled x2. Therefore the path to the leftmost node
with two leaves is no more existent in the result of restrict. That is, the application of
anySat causes the evaluation of nodes that are not evaluated by an application without
restrict. An application of anySat to the result of the restriction causes the evaluation
of the bold parts of the right ROBDD in Figure 4.6 and all parts left of it. This causes
the evaluation of the high successor of the root node in the argument of restrict. The
observation proves this statement. The high successor of the root node is evaluated. This
part is not evaluated in the right observation in Figure 4.7 that observes an application

58

4.2 Restrict

Just [(1,False),(3,True)]

>>>>>>> Observations <<<<<<

testExp4

(OBDD (OBDD Zero

2

(OBDD Zero

3

One

_

False)

_

False)

1

_

_

False)

Just [(1,False),(2,True),(3,True)]

>>>>>>> Observations <<<<<<

testExp4

(OBDD (OBDD Zero

2

(OBDD Zero

3

One

_

False)

_

False)

1

_

_

False)

Figure 4.7: Observation of the OBDD structure when applying anySat . restrict x2

True (left) and anySat (right)

of anySat without an application of restrict. The high successor of the root node is a
reference. The evaluation of this node causes the evaluation of the original node that is
positioned in the part that is chucked away by the restriction.

4.2.2 Measurements

We want to measure the effect of a restriction to the laziness. We measure the appli-
cation of anySat to six restrictions of three ROBDDs each. The effect of a restrict

application on the laziness depends highly on the variable that is restricted. We present
measurements of restrictions of the variables x1, xn

2
and xn where n is the number of

variables in the ROBDD. That is, we restrict the top variable the bottom variable and
the one in the middle. Each variable is restricted to True and False.

If we apply eval to the restricted ROBDD the results do not differ highly. The whole
ROBDD is evaluated in this case and the complexity of restrict is independent from
the variable that is restricted. An application of anySat to an ROBDD with full no-

redundancy shows the same behavior. That is, there are nearly no differences in the
restrictions of the different variables. The measurement of the implementation with
relaxed no-redundancy always performs better or at least as good as the implementation
with full no-redundancy in respect to time and memory consumption. Therefore we only
present measurements for the relaxed no-redundancy implementation.

In addition to the restrictions we measure the application of anySat without an ap-
plication of restrict. This is a lower bound for the results of the application of anySat

59

4 Implementation of a BDD Package

0

xm

1

1

xn

0

xk

1 0

xk

Figure 4.8: A part of an ROBDD (left) and the result of restrict xm False (right)

with a restriction. That is, an application of anySat with an additional restriction can at
most be as lazy as this application. Besides this we measure an application of eval to a
restriction of a variable that is not part of the ROBDD. These measurements are labeled
100 False (eval), i.e., we restrict variable x100 to False and apply eval to the result.
The function eval causes the evaluation of the whole ROBDD. The additional restric-
tion is important because restrict reconstructs the ROBDD. Therefore a restriction
always increases the number of evaluated constructors and the memory consumption.
The application of eval in combination with a restriction is an upper bound for the
performance of the applications of anySat because it causes the evaluation of all nodes.
The number of evaluated constructors and therefore the time and memory consumption
of all the applications of restrict will be somewhere between the values of the lower
and the upper bound. These bounds make it easier to rate the measurements that are
presented here.

The laziness of a restriction depends on the fact whether the path to the leftmost node
with two leaves is destroyed or not. Additionally the laziness depends on the variable
that is restricted. The smaller the variable, i.e., the higher the node the more nodes are
evaluated additionally.

The restriction of the bottom variable always destroys the path to the leftmost node
with two leaves because if chucks away one of the two leaves. In the measurements of
Queens 8 the restrictions of all other variables to False preserve the path. In the mea-
surements of Integer 16 the restrictions of variable x1 to False and x16 to True preserve
the path. The restrictions of variable x1 to False and x7 to True in the expression HWB 14

preserve the path. The results for the restrictions that preserve the path are very close
to the results of an application of anySat without a restriction. These measurements
differ slightly because the sub-OBDD that is chucked away is not evaluated and the size
of this OBDD is different for different variables.

The restrictions that destroy the path cause the evaluation of more constructors than
the restrictions that preserve the path. The smaller the variable the greater the part

60

4.3 Equality Check

Just [(1,True),(3,True)]

>>>>>>> Observations <<<<<<

testExp4

(OBDD (OBDD Zero

2

(OBDD Zero

3

One

2

False)

_

False)

1

(OBDD (OBDD Zero

3

One

2

True)

2

One

_

False)

_

False)

Figure 4.9: Observation of the restriction of variable x2 to False

that is additionally evaluated.

The main observation of this section is that an application of restrict does not
categorically destroy the laziness. That is, restrict can be used without the fear that
the laziness of the construction is lost.

4.3 Equality Check

This chapter discusses different implementations of the equality check. The main prob-
lem here is that ROBDDs with relaxed no-redundancy are no more canonical. The
equality check of ROBDDs makes use of the canonical representation. Therefore the def-
inition of an equality check for the ROBDD implementation with relaxed no-redundancy

property requires some work.

61

4 Implementation of a BDD Package

Expression Restriction Time Memory Eval. Constr.
Queens 8 100 False (eval) 32.22 3,674,966,992 2203306

none 25.28 2,918,337,044 1874446
1 False 27.02 2,918,358,944 1874509
1 True 34.06 3,629,573,656 2200563
32 False 27.08 2,918,360,172 1874509
32 True 28.08 3,035,483,776 1924515
64 False 25.50 2,953,945,216 1874509
64 True 27.54 3,172,832,228 1969764

Integer 16 100 False (eval) 6.72 770,216,508 491526
none 0.00 202,064 214
1 False 0.00 207,180 230
1 True 3.68 390,389,092 221227
16 False 0.00 208,880 231
16 True 0.00 207,700 230
32 False 0.00 275,200 288
32 True 0.00 207,800 230

HWB 14 100 False (eval) 13.24 2,232,768,912 2904328
none 6.92 1,359,474,756 2044822
1 False 7.24 1,353,462,308 2044835
1 True 12.84 2,231,921,548 2903368
7 False 7.70 1,422,135,936 2122126
7 True 6.94 1,359,479,276 2044835
14 False 6.86 1,359,543,804 2044909
14 True 6.92 1,359,479,536 2044835

Figure 4.10: Measurements of the restriction of several variables in several ROBDDs

4.3.1 Full No-Redundancy Property

First we introduce the equality check for ROBDDs with full no-redundancy property.
For this implementation the equality check is a check for isomorphy.

instance Eq OBDD where

(OBDD _ _ _ nodeId1 True) == (OBDD _ _ _ nodeId2 True) =

nodeId1 ==nodeId2

(OBDD l1 var1 h1 _ False) == (OBDD l2 var2 h2 _ False) =

var1==var2 && l1==l2 && h1==h2

Zero == Zero = True

One == One = True

_ == _ = False

62

4.3 Equality Check

To compare two references we compare their NodeIds. These are equal if the two ROB-
DDs are equal because they are constructed using a deterministic algorithm. If we
compare two OBDDs that are no references we compare their variable numbers and their
low and high successors. Two Zero and two One leaves are equal. All other OBDDs are not
equal. This equality check is in O(min{|f |, |g|}). We stop the traversal of the ROBDDs
at the latest when we have traversed the smaller ROBDD. We cannot use this equality
check for relaxed ROBDDs. If we add redundant nodes to an ROBDD we get an ROBDD
that represents the same boolean function but is not isomorphic to the one without these
nodes. That is, there are relaxed ROBDDs that are equal but not structural equal.

4.3.2 Relaxed No-Redundancy Property

One way to check the equality of two relaxed ROBDDs is to reduce the ROBDDs with
the full no-redundancy property and apply the isomorphy check to the results.

The term r(n) where n is the number of variables denotes the worst case number
of redundant nodes that an ROBDD with relaxed no-redundancy additional contains
per node in the ROBDD with full no-redundancy. Let f and g be two ROBDDs with
full no-redundancy property. Let f ′ and g′ be ROBDDs with relaxed no-redundancy

property that represent the same boolean functions. These ROBDDs have r(m)|f | and
r(n)|g| nodes in the worst case where m and n are the numbers of variables of f and
g respectively. We can reduce these ROBDDs in O(log(|f ′||f ′|)) and O(log(|g′|)|g′|).
The equality check of the reduced ROBDDs is in O(min{|f |, |g|}). We can estimate
log(|f ′|)|f ′| + log(|g′|)|g′| and min{|f |, |g|} by max{log(|f ′|)|f ′|), log(|g′|)|g′|}. That is,
this equality check for relaxed ROBDDs is in O(max{log(|f ′|)|f ′|, log(|g′|)|g′|}).

This implementation of the equality check is strict, i.e., it causes the complete eval-
uation of both ROBDDs even if they are unequal. The result of the reductions are
ROBDDs with full no-redundancy property. If we evaluate these to Head Normal Form
we have to evaluate the whole ROBDDs.

Another way of checking equality is using apply with the boolean operator ⇔ and
check whether the result is the boolean constant true, i.e, the One leaf. The worst case
running time of this operation is in O(log(|f ′||g′|)|f ′||g′|). To check whether the result
of apply ⇔ is a One leaf it must be evaluated to Head Normal Form. This causes the
evaluation of all nodes on the leftmost path to a node with two leaves and left of it.
It is very difficult to argue which parts of the argument ROBDDs are evaluated. This
depends highly on the structure of the arguments.

The worst case for the laziness, i.e., the most nodes are evaluated, if the two ROBDDs
are equal or if one of them is the negation of the other. In these cases the result of apply
⇔ is the Zero or the One leaf and we have to evaluate both arguments completely.

4.3.3 Measurements

Figure 4.11 shows some measurements of the equality check of equal ROBDDs using
the three different kinds of equality checks. Figure 4.12 shows some measurements of
the equality check of unequal ROBDDs. We only expose the more significant examples

63

4 Implementation of a BDD Package

here. The first two columns report the expressions that are compared. The third one
reports the type of equality check that is used. Eq1 is the equality check using reduce

of relaxed ROBDDs. Eq2 is the equality check using apply of relaxed ROBDDs. Eq3 is
the check for isomorphy of ROBDDs with full no-redundancy property. The third and
fourth column show the time and memory usage of the applications respectively. The
fifth column reports the number of constructors that are evaluated in total, i.e., in both
ROBDDs together.

Fst Argument Snd Argument Check Time Memory Eval. Constr.
Queens 6 Queens 6 Eq1 3.44 429,069,396 308832

Eq2 3.48 428,944,256 308568
Eq3 3.46 434,143,972 311444

Integer 16 Integer 16 Eq1 12.78 1,521,499,032 983052
Eq2 10.34 1,196,614,376 655378
Eq3 8.94 1,040,711,296 655378

Integer2 500 Integer2 500 Eq1 8.56 897,237,676 757494
Eq2 8.78 895,615,668 754496
Eq3 6.44 900,722,276 754496

uf20-02.cnf uf20-02.cnf Eq1 1.08 143,467,748 101982
Eq2 1.08 143,342,756 101860
Eq3 1.04 140,568,616 99036

Figure 4.11: Equality check of equal ROBDDs

Eq1 basically causes the evaluation of more constructors because reduce reconstructs
the two argument ROBDDs. The reconstruction is most significant in the measurement
of Integer 16 because the resulting ROBDD is very big in this example. In the mea-
surement of Queens 6 the Eq1 check evaluates even less constructors than Eq3 does.
The number of additional constructors that are used by the reduction is very small in
this example. As we have already observed in Section 4.1.2 the construction of a Queens

expression highly benefits from the don’t care idea. Many constructors of the interme-
diate results are not evaluated because of the don’t cares. Because Eq3 is applied to
an ROBDD with full no-redundancy there are no constructors that are not evaluated
because of the don’t cares. The equality checks Eq1 and Eq2 do not cause the evaluation
of these constructors because they are applied to ROBDDs with relaxed no-redundancy.

In the measurements of the expression uf20-02.cnf Eq3 causes the evaluation of less
constructors than the other two equality checks. The relaxed ROBDD simply contains
more nodes. We have already observed this in Section 4.1.2. This causes the evaluation
of more constructors when we compare two ROBDDs with relaxed no-redundancy than
two ROBDDs with full no-redundancy.

The running times for Eq2 are better than we expected. The worst case running times
stated that Eq2 is quadratic in the number of nodes with an additional logarithmic factor
while Eq1 is linear in the number of nodes. As stated in Chapter 4.1 the running time

64

4.3 Equality Check

of apply is only quadratic if the sets of variables of the two ROBDDs are disjunct.
In the comparison of two equal ROBDDs the sets of variables are equal. Thus, the
running time of apply is linear in the size of the ROBDD because apply traverses the
two ROBDDs parallel. Note that this is only true for structural equal ROBDDs. Because
of the relaxing of the no-redundancy there are ROBDDs that are equal but not structural
equal.

Let f1 and f2 be two ROBDDs with relaxed no-redundancy that are equal but not
structural equal. Let f be the ROBDD with full no-redundancy that represents the same
boolean function as f1 and f2. The term r(m) where m is the number of variables
in f describes the worst case number of redundant nodes per node. That is, it is
|f1| ≤ r(m)|f | and |f2| ≤ r(n)|f | where m and n are the number of variables in f1 and
f2 respectively.

We use the equality check Eq2 to compare the ROBDDs f1 and f2. Let x be any
of the redundant nodes that can be in an ROBDD with relaxed no-redundancy. In the
equality check of f1 and f2 there are three cases. In the following we have to keep
in mind that the equality check Eq2 on f with itself is a parallel descending of the
ROBDDs. That is, all application of apply in this equality check are applications to
equal nodes. If neither f1 nor f2 contains x this node has no influence on the running
time of the equality check.

If both ROBDDs contain x there is an application to these two redundant nodes.
Because the variable numbers of the nodes are equal they are both descended. There
are two applications of apply to the two successors of the redundant node. Because the
successors are equal, i.e., they have the same NodeId the second application is looked up
in the memo map. That is, apply performs one additional descent and one look up.

If only one of the ROBDDs contains x there is an application to this node and another
node y. The variable number of the redundant node is less than the number of y.
Therefore there are two applications of apply each to the successor of the redundant
node and y. The successors of the redundant node are equal and the second application
is therefore looked up in the memo map.

Every redundant node causes at most one additional descend of a node and one look-
up in the apply map. Therefore the worst case running time of an equality check using
Eq2 of two equal ROBDDs with relaxed no-redundancy is in O(log(r(m)|f |)r(m)|f |).
That is, it is linear in the worst case size of the ROBDD with relaxed no-redundancy

property with an additional logarithmic factor.
In all examples except for uf20-02.cnf the relaxed ROBDD contains no redundant

nodes, i.e., |f1| = |f2| = |f |. Therefore Eq2 is in O(log(|f |)|f |) in these cases. The
equality check Eq3 is in O(|f |) for all examples. The running times of Eq2 are worse
than the ones of Eq2 in the examples with no redundant nodes because of the additional
logarithmic factor in the running time of Eq2.

If we compare unequal ROBDDs the implementation using apply is far better then
the isomorphy check. This is due to the laziness of this equality check. We only have
to evaluate the result of apply ⇔ to Head Normal Form. All examples except for the
last one cause the evaluation of about one third of the constructors that are evaluated
by Eq3.

65

4 Implementation of a BDD Package

Fst Argument Snd Argument Check Time Memory Eval. Constr.
Queens 6 Integer2 1000 Eq1 20.04 2,074,778,364 1661913

Eq2 2.58 472,308,836 638944
Eq3 14.80 2,086,692,328 1660220

Integer2 500 Integer2 1000 Eq1 22.86 2,308,865,908 1886244
Eq2 1.72 368,051,084 634247
Eq3 16.52 2,319,984,904 1881746

Integer 16 Integer2 1000 Eq1 24.94 2,617,326,780 1999023
Eq2 1.18 294,056,264 506721
Eq3 17.56 2,386,309,608 1832187

uf20/uf20-02.cnf Integer2 1000 Eq1 14.84 1,932,015,160 1557489
Eq2 1.30 299,138,080 511191
Eq3 13.90 1,939,907,300 1554016

Integer2 1000 uf20/uf20-02.cnf Eq1 14.82 1,932,015,160 1557489
Eq2 14.30 1,863,295,600 1509176
Eq3 13.70 1,939,907,264 1554016

Figure 4.12: Equality check of unequal ROBDDs

The last two measurements in Figure 4.12 show that the efficiency of the lazy equality
check depends on the order of the arguments. The last two measurements are the same
equality checks with swaped arguments. While the two other methods yield the same
time and memory consumption and number of evaluated constructors the results for
Eq2 differ highly. One of the applications needs 14.30 seconds while the other one needs
only 1.30 seconds for the check. This is due to the fact that Haskell evaluates function
arguments from left to right. For example the function rOBDD has to check whether one
of its arguments is a leaf. Haskell first evaluates the leftmost argument to Head Normal
Form. If this is not leaf it does not check the other argument. Therefore it can depend
on the order of the arguments which parts of a data structure are evaluated. It would
be interesting to investigate the lazy running time of the equality check that uses apply.
This is supposed to be very complex because the analysis of the evaluation what parts
of the two ROBDDs are evaluated is far from trivial. If the two ROBDDs are equal
the running time is linear in the number of nodes of the ROBDD with an additional
logarithmic factor. In the measurements of the check of unequal ROBDDs the equality
check is faster than the one that is linear in the number of nodes. That is, it would be
interesting whether an overall lazy running time of this equality check would be linear
with an additional logarithmic factor.

4.4 Consumer Functions

All the consumer functions, i.e., functions that take an ROBDD and yield a value and
not an ROBDD have the same general structure. Examples for this kind of functions are

66

4.4 Consumer Functions

anySat, allSat, satCount and evaluate. All these operations work like a fold with the
additional condition that partial results are memoized and looked up when a reference
is visited. We implement a fold function that uses a memo map that maps the NodeIds
of all processed nodes to the result of the processing. We assume an abstract data type
called MemoMap that is polymorphic over the type of the entries in the map like we used
it for the implementation of restrict. This ADT provides the functions emptyMemoMap,
insertMemoMap and lookupMemoMap.

fold :: (a → Int → a → a) → a → a → OBDD → a

fold f ez eo obdd =

fst (fold ’ emptyMemoMap obdd)

where

fold ’ memomap Zero = (ez, memomap)

fold ’ memomap One = (eo, memomap)

fold ’ memomap obdd

| isRef obdd =

case lookupMemoMap obdd memomap of

Nothing → error ("fold: no original node for the"

++ " NodeId " ++ show (getId obdd))

Just v → (v, memomap)

| otherwise =

let (lowV , lowMemomap) = fold ’ memomap (getLow obdd)

(highV , highMemomap) = fold ’ lowMemomap (getHigh obdd)

v’ = f lowV (fromVar (getVar obdd)) highV

in

(v’, insertMemoMap obdd v’ highMemomap)

With this abstraction it is easy to define a couple of functions. We just have to define
two basic cases and the function that is used to combine two partial results. We do not
have to worry about the memoization. The fold function takes care that the result for
equal sub-OBDDs are computed only once.

anySat :: ROBDD → Maybe Binding

anySat (ROBDD obdd _) = fold sat Nothing (Just []) obdd

where

sat Nothing _ Nothing = error "anySat: redundant nodes"

++ " on an edge to a leaf"

sat Nothing var (Just path) = Just ((var ,True):path)

sat (Just path) var _ = Just ((var ,False):path)

allSat :: OBDD → [Binding]

allSat = fold sat [] [[]]

where

sat low var high =

map ((var ,False):) low ++ map ((var ,True):) high

67

4 Implementation of a BDD Package

evaluate :: Binding → ROBDD → Bool

evaluate bs (ROBDD obdd _) =

fold eval False True obdd

where

eval low var high =

case lookup var bs of

Just b → if b

then high

else low

_ → error ("evaluate: binding does not contain"

++ " variable " ++ show var)

satCount :: ROBDD → Int

satCount (ROBDD obdd revmap) =

let (var ,count) = fold count (0,getNextId revmap+1)

(1,getNextId revmap+1) obdd

in

2^(var -1) * count

where

count (varl ,low) var (varh ,high) =

(2^(varl -var -1) * low + 2^(varh -var -1) * high , var)

The implementations of anySat, allSat and evaluate are straight forward. Note that
anySat makes no use of the memoization. It does not evaluate any reference node and
therefore never performs a look-up. There is a little overhead in comparison with an
implementation that does not use fold because of the suspended inserts in the memo

map. The function satCount implements the formula that is presented in Section 1.1.
Therefore we need the greatest variable number in an ROBDD. The reverse map is
enriched with this information. In the smart constructor rOBDDwe adjust this information
every time a node is constructed.

4.5 User Interface

The user interface is inspired by a paper by Nancy A. Day, John Launchbury and Jeff
Lewis [11]. They use the type classes Boolean and Var to define constructor functions
for boolean expressions. The type class Boolean contains functions that are used to
construct a boolean expression without variables. The class Var extends this class to the
construction of boolean expressions with variables. We use similar type classes and call
them Boolean and BooleanExp.

The types that are members of the class Boolean represent boolean expressions without
variables. The class provides the constants bFalse and bTrue and the functions bNot and
(∧). The class additionally provides the functions (∨), (⇒) and (⇔) that have default

68

4.5 User Interface

implementations. The class contains two additional functions namely bAll and bAny.
These functions are the generalizations of (∨) and (∧) to lists of boolean expressions.
These functions are very useful in the construction of boolean expressions that have a
regular form like boolean expressions in CNF or DNF. We provide an instance of the
type Bool to demonstrate the use of this class.

class Boolean b where

bFalse :: b

bTrue :: b

bNot :: b → b

(∧) :: b → b → b

(∨) :: b → b → b

x ∨ y = bNot (bNot x ∧ bNot y)

(⇒) :: b → b → b

x ⇒ y = bNot x ∨ y

(⇔) :: b → b → b

x ⇔ y = (x ⇒ y) ∧ (y ⇒ x)

bAll :: [b] → b

bAll [] = bTrue

bAll bexps = foldr1 (∧) bexps

bAny :: [b] → b

bAny [] = bFalse

bAny bexps = foldr1 (∨) bexps

instance Boolean Bool where

bFalse = False

bTrue = True

bNot = not

(∧) = (&&)

(∨) = (||)

The members of the type class BooleanExp are boolean expressions with variables.
This type class just provides one function called bVar that takes a variable number and
yields a boolean variable with this number. All members of the class BooleanExp have
to be members of the class Boolean.

class Boolean b => BooleanExp b where

bVar :: Int → b

The instances of the classes Boolean and BooleanExp for the type BExp that implements
boolean expressions are canonical. By defining the functions (⇒) and (⇔) we replace
the default implementations of these functions.

69

4 Implementation of a BDD Package

instance Boolean BExp where

bFalse = BFalse

bTrue = BTrue

bNot = BNot

(∧) = BAnd

(∨) = BOr

(⇒) = BImp

(⇔) = BEqu

instance BooleanExp BExp where

bVar = BVar

The instances for the type ROBDD are straight forward. The functions (⇒) and
(⇔) provide default implementations but we reimplement these function because of the
efficiency. For details take a look at Section 4.1.

instance Boolean ROBDD where

bFalse = ROBDD Zero emptyRevMap

bTrue = ROBDD One emptyRevMap

bNot = negate

(∧) = apply andM

(∨) = apply orM

(⇒) = apply impM

(⇔) = apply eqM

instance BooleanExp ROBDD where

bVar i = ROBDD (OBDD (Zero False) i (One False) 2 False)

emptyRevMap

Besides the construction of an ROBDD we want to provide additional operations for
their manipulation. We extend the class BooleanExp to BooleanPackage. This type class
provides all the functions that are part of an BDD Package. The equality check is not
part of this class. We use the type class Eq that is part of the Haskell Standard [20] for
its implementation. This class provides the single function (==) :: a → a → Bool.

An instance of the type class BooleanPackage requires the definition of allSat. On
basis of this function we provide a default implementation for the function anySat. In
a strict language this would increase the complexity of anySat. In a lazy language
this implementation is as efficient as an independent implementation of anySat. This
implementation causes just a little overhead because of the suspended evaluations. Apart
from these two functions this type class provides the functions evaluate, restrict and
satCount.

70

4.5 User Interface

class (BooleanExp b, Eq b) => BooleanPackage b where

allSat :: b → [Binding]

anySat :: b → Maybe Binding

anySat b =

case allSat b of

[] → Nothing

(x:_) → Just x

evaluate :: Binding → b → Bool

restrict :: Var → Bool → b → b

satCount :: b → Int

It is very easy to extend this design. If we want to extend the BDD Package by further
operations we just add an interface of these operations to the type class BooleanPackage.
Another advantage of this user interface is that there is no way to construct an ROBDD
that does not fulfill the sharing and the relaxed no-redundancy property. We do not
export the constructors of ROBDD and OBDD. The only way to construct an ROBDD is
using the functions that are provided by the type class BooleanExp.

Additionally we can change the concrete implementation of the boolean expressions
by changing type annotations. For example if we apply the function show to a member
of BooleanExp and annotate the type ROBDD the expression is displayed as an acyclic
graph. We represent the graph just like the OBDD data structure, i.e., by a tree with
reference edges. If we annotate the type BExp to the expression the boolean expression
is displayed. We can extend this idea by adding more instances to the type classes to
alter the concrete implementation of consumer functions like show or the construction
itself.

There is a little drawback of this implementation. We always have to add type an-
notations when we use boolean expressions. The consumer functions are overloaded.
The type checker cannot infer which implementation should be used when we generate
a boolean expression and apply a consumer function to it. The only way to solve this
would be not to use the type class BooleanPackage. If we use different names for the
implementations of a consumer function for different representations the type checker
knows which construction to use by the type of the consumer function.

71

4 Implementation of a BDD Package

72

5 Implementation of the Maps

This chapter discusses the implementation of the maps that are used in this work. We
have to implement three abstract data types, namely RevMap, ApplyMap and MemoMap. Im-
perative implementations use hash tables for the reverse and the apply map because they
can be very sparse. We do not use hashing here and focus on the map implementation
itself. The MemoMap is implemented by an array in the imperative implementation.

The memo map uses NodeIds as keys. The apply map uses (NodeId,NodeId) and the
reverse map (NodeId,Var,NodeId). The types NodeId and Var are type synonyms for
integer types.

A look-up in a map that uses a numerical type as keys causes the evaluation of the
keys of all delayed inserts. If a look-up in a map is performed the keys of the delayed
inserts are evaluated to check whether the insert replaces the entry that is requested.
If we use an algebraic data type for the keys it depends on the equality check whether
the whole key is evaluated. It depends on the value of the key and the concrete map
implementation whether the insert is completely evaluated. That is, if the entry that is
looked up is positioned in another part of the map than the entries of the delayed inserts
the inserts are only as far evaluated as the look-up takes the same path as the inserts.
The inserts are delayed where the paths diverge.

Therefore the laziness of a map implementation has no effect on the number of eval-
uated constructors in the ROBDD. The only way to cause the evaluation of a part of
the ROBDD by the evaluation of a part of the map is the evaluation of a NodeId. The
entries in the map are never evaluated because of a look-up or an insert. All map im-
plementations cause the evaluation of all keys, i.e., the NodeIds, of all delayed inserts.
Therefore the same parts of the ROBDD are evaluated because of a look-up no matter
which implementation is used. The laziness of the maps that is observed in this chapter
only saves the evaluation of parts of the map structure itself.

5.1 Map

The GHC provides an implementation of a finite map. The version 6.4 supports a new
implementation called Map. This implementation is based on size balanced binary trees
and trees of bounded balance [1, 24].

data Map k a = Tip

| Bin !Size !k a !(Map k a) !(Map k a)

type Size = Int

73

5 Implementation of the Maps

The exclamation marks in the definition of the Map data type are strictness annotations.
A strictness annotation states that every application of the corresponding constructor
is applied with the strict apply function $! instead of the non strict apply function $.
This strict apply is defined by means of the seq function.

seq :: a → b → b

seq _|_ b = _|_

seq a b = b, if a /= _|_

This is not a valid Haskell syntax but it points out the semantics of the function. First
seq checks whether the first argument is bottom. To check this the first argument is
evaluated to Head Normal Form. That is, seq evaluates its first argument to Head
Normal Form and yields its second argument.

The strict apply function $! is defined by means of seq. It evaluates its second
argument to Head Normal Form before it applies the provided function to it.

($), ($!) :: (a → b) → a → b

f $ x = f x

f $! x = x ‘seq ‘ f x

In the case of the Map data type the evaluation of a Map to Head Normal Form causes
the whole Map structure to be evaluated because of the strictness annotations. The
entries of the Map do not have a strictness annotation, i.e., they are not evaluated until
they are needed.

We add the numbers 2, 1 and 3 in this order to an empty map and look up 2. We
observe the data structure that is passed to the look-up.

>>> Observations <<<

Map

(Bin 3 2 2 (Bin 1 1 _ Tip Tip) (Bin 1 3 _ Tip Tip))

The observations backup the considerations stated before. The whole structure except
for the entries is evaluated.

5.2 FiniteMap

We take a look at the deprecated library FiniteMap since this one contains no strictness
annotations.

data FiniteMap key elt = EmptyFM

| Branch key elt Int (FiniteMap key elt)

(FiniteMap key elt)

We again add the numbers 2, 1 and 3 in this order to an empty map and look up 2.
We observe the data structure that is passed to the look-up.

74

5.3 BraunTree

>>> Observations <<<

FM

(Branch 2 2 _ _ _)

Only the root node of the FiniteMap is evaluated because this one directly contains the
key we are looking for. This picture changes if we change the order in which the numbers
are inserted from 2,1,3 to 1,2,3.

>>> Observations <<<

FM

(Branch 2 2 _ (Branch 1 _ 1 EmptyFM EmptyFM) _)

Although we look up the 2 which is the key of the root node the node with the key 1

is evaluated. This evaluation is caused by the rotation that preserves the search tree
property. The first example inserts the values in a way that no rotation is needed. First
we insert the 2. The 1 is inserted as left successor of 2. The 3 is inserted to the right of
2. If we insert the numbers in the order 1,2,3 an insert without a rotation would result
in an unbalanced tree. Therefore a rotation is needed which has to evaluate parts of
the data structure. The relation between the order of inserts and the evaluation is not
trivial. It requires a close understanding of the specific finite map implementation.

5.3 BraunTree

Braun Trees [7] are a long but not widely known data structure. A Braun Tree is a
binary tree that is used to save data with positive numerical values as keys. The root
node contains the value for the key zero. To look up a key its checked whether the key
is even or odd and the left and right successor is taken respectively. On every step down
the tree the key is divided by two. If the key reaches zero the element is inserted and
looked up respectively. Braun Trees are used to implement purely functional arrays.

data BraunTree a = Node a (BraunTree a) (BraunTree a)

The empty BraunTree in this implementation is an infinite data structure whose entries
all Nothing. Because of laziness we do not have to bother with extending the tree from
time to time. We just generate an infinite data structure and let the lazy evaluation do
all the bookkeeping.

>>> Observations <<<

Braun

(Node _ _ (Node _ (Just 2) _))

The look-up in the BraunTree only evaluates the path to the key we are looking for. On
the other side the BraunTree is logarithmic in the key while balanced search trees are
logarithmic in the number of elements in the tree. That is, the Braun Tree is only as good
as a balanced search tree if the keys are continuous. Note that this does not necessarily

75

5 Implementation of the Maps

rate balanced search trees over Braun Trees. The constants that are not measured by
the complexity can be very different. Section 5.5 that provides measurements of all
map implementations shows that an BraunTree implementation consumes less time and
memory than the Map when it is used for the maps in the ROBDD implementation
presented in this paper.

A BraunTree maps positive integer values to entries. We additionally need a mapping
from tuples of integer values to entries. A map that uses tuple types as keys is imple-
mented by a BraunTree whose entries are BraunTrees. This is a general construction that
is used for Tries, too [18]. A map that uses a product of types as keys is implemented
by an application of the maps for the component types. The measurements show that
this implementation of maps for tuple types even has advantages when it is used for Map.
Note that balanced search trees and therefore the Map implementation provide maps for
arbitrary comparable key types.

There are two improvements for the BraunTree implementation. The first one is to
use an finite data structure instead of an infinite one. We add an constructor Empty and
use this one to represent the empty map. We call this data structure BraunMap. This
implementation has advantages when we look up a key in an empty map. The key is
not evaluated by this look-up. The look-up instantly yields Nothing. If we look up a key
in an empty BraunTree we always have to evaluate the path to the entry we are looking
for. In a BraunMap we can stop when we reach an Empty constructor.

Another improvement is using unboxing [27]. The BraunTree implementation needs
a lot of memory. Every operation on an Int assigns a new memory cell in the heap.
The Unboxing of the Int values prevents this. This feature is not part of the Haskell 98
Standard [20].

5.4 IntMap

The GHC supports an implementation of Patricia Trees [26]. A Patricia Tree is a Trie
[25] for binary numbers that are represented by the corresponding integer value. If the
keys that are inserted are not continuous a Trie can be very sparse. In a Patricia Tree
empty parts of the Trie are merged. Patricia Trees are very similar to Braun Trees. The
main difference is that the Braun Tree does not merge empty parts. We can emulate
the behavior of one by the other. We present both data structures in this work because
the BraunMap with unboxing is best when we use no optimizations and the IntMap comes
with the GHC and is best when using optimizations.

The IntMap implementation uses an UNPACK pragma [20]. This pragma prompts the
compiler to unbox the value behind the pragma. The values are reboxed if it is neces-
sary for examples if the value is passed to a non-strict function. This pragma is used
in combination with optimizations. Because of unfolding some of the reboxing is not
needed. We define a map for tuples types like in the BraunTree implementation, i.e., by
an IntMap that contains IntMaps.

76

5.5 Measurements

5.5 Measurements

Figure 5.1 shows measurements of several map implementations. We only compare
measurements for an implementation that uses a relaxed no-redundancy because this
paper focuses on this implementation. We measure the construction together with an
application of eval or anySat for two expressions. These applications use the apply and
the reverse map but not the memo map. The apply map and the reverse map make
the same demands on the map implementation. We have proved this by additional
measurements where we changed the implementations independently.

It is unlikely for balanced search tree implementations to work well for one expression
and bad for another. This is not necessarily true for a Braun or Patricia Tree implemen-
tation. The look-up and insert in a Braun and a Patricia Tree are logarithmic in the
size of the key. The keys of the apply and the reverse map are tuples of NodeIds. If the
ROBDD contains many nodes with one successor that is a reference to a node with a
big NodeId many of the keys of the reverse map are big. That is, the look-up and insert
of these keys is expensive. Therefore the efficiency of these implementations depends on
the structure of the ROBDD. Hashing could be used to avoid this problem.

We start with the most common solution, the Map. The Map2 implementation uses this
balanced search tree implementation, too. Instead of using the map for tuple types that
is supported by Map it uses a BraunTree-like implementation for tuples types, i.e., a Map

that uses integer values as keys that contains Mapss. This implementation is better than
the standard implementation. When using optimizations the running times are half the
ones for the standard Map implementation. Without optimizations the differences are
not that significant.

The standard implementation searches a key by comparing the key tuple with the
tuples in the map. The Map2 implementation always compares only one component of
the tuple. In the outermost map the first component of the tuple is looked up. If an
entry is yielded the first component is discarded and the rest of the tuple is looked up.
We never compare the first component again. In the Map implementation we have to
compare the whole tuple. It would be interesting to check whether this implementation
is always better than the one provided by the GHC and if this effect scales with the size
of the tuple but this is out of the range of this thesis.

The FiniteMap implementation that uses no strictness annotations is nearly as good
as the Map. The differences are more significant if we use optimizations.

The BraunTree implementation is better than the Map2 implementation. Unboxing
even improves this implementation because we do not assign a new memory cell for every
integer operation. When we apply anySat to an ROBDD the BraunTree implementation
requires more memory than the BraunMap implementation. This is also reflected in
the number of evaluated constructors. While the anySat application to the ROBDD
for the Integer 16 expression evaluates 278560 with the BraunTree implementation it
evaluates only 236 with every other implementation. In the Queens 7 measurement it is
571235 evaluated constructors against 508083. The empty BraunTree is an infinite data
structure whose entries are all Nothing. Thus, a look-up in an empty BraunTree causes
the evaluation of the key that is looked up. All other implementations use a special

77

5 Implementation of the Maps

constructor for the empty map. Therefore these implementations yield Nothing without
evaluating the key. The evaluation of the NodeId causes the evaluation of additional
constructors in the ROBDD. Like predicted, the number of evaluated constructors is the
same for all the other measurements.

Last we measure the IntMap implementation that comes with the GHC. Because the
unbox pragma of the IntMap implementation has no effect without optimizations it can-
not compete with the implementation of Braun Trees that uses explicit unboxing. If we
use optimizations the IntMap is significantly better than the Braun Tree implementation
with unboxing.

Map Expression Operation Time Memory
Map Queens 7 anySat 18.12 2,518,950,244

eval 22.68 3,152,943,608
Integer 17 anySat 0.00 210,540

eval 38.50 5,815,872,736
Map2 Queens 7 anySat 14.58 2,391,872,640

eval 18.16 2,963,585,696
Integer 17 anySat 0.00 212,088

eval 24.24 4,134,822,020
FiniteMap Queens 7 anySat 18.94 2,813,998,312

eval 23.90 3,520,657,404
Integer 17 anySat 0.00 206,500

eval 40.48 6,544,851,040
BraunTree Queens 7 anySat 15.32 1,979,628,088

eval 17.00 2,213,574,228
Integer 17 anySat 9.00 1,177,283,428

eval 18.96 2,513,029,316
BraunMap Queens 7 anySat 16.90 1,948,148,232

eval 21.68 2,498,971,256
Integer 17 anySat 0.00 210,116

eval 24.50 2,901,153,896
BraunMap Queens 7 anySat 5.64 703,744,940
(unboxed) eval 7.26 880,183,040

Integer 17 anySat 0.00 206,140
eval 8.72 1,026,640,864

IntMap Queens 7 anySat 17.30 2,946,999,464
eval 21.98 3,749,171,680

Integer 17 anySat 0.00 213,780
eval 25.96 4,689,306,920

Figure 5.1: Measurements for several map implementations

The complexity of the look-ups and inserts in a Braun or a Patricia Tree are loga-
rithmic in the size of the key while these are logarithmic in the number of elements in

78

5.5 Measurements

the map for the Map implementation. For a Braun or a Patricia Tree these operations
are logarithmic in the greatest component of the tuple for a map over tuples of integer
values. For a balanced search tree these operations are still logarithmic in the num-
ber of elements in the map. The two implementations have equal complexities only if
the keys are continuous. This is not the case for both, the reverse and the apply map.
Although the complexities of the Braun and Patricia Tree implementations are worse
then the complexities of balanced search trees they perform better in the measurements.
This can have two reason. First the constant of the complexity of the balanced search
tree implementations can be significantly greater than the one for the other implemen-
tations. Second the laziness of the Braun and Patricia Tree implementation can cause
this difference.

All these measurements do not make any use of the memo map. Therefore we measure
the use of this map by the application of satCount. Measurements of this application
with a Braun Tree implementation for the reverse and the apply map showed that this
map is also the best implementation for the memo map. The keys of the memo map are
continuous. Therefore the complexity of look-up and insert of the Braun Tree implemen-
tations is the same as the complexity of these operations of the balanced search trees.
The Braun Tree implementations even performed better with non continuous keys.

79

5 Implementation of the Maps

80

6 Related Work

6.1 Functional Implementations

There is only one ROBDD implementation in a functional language available [6]. Like
stated on their page this implementation is a alpha version and not very efficient. This
implementation is not likely to be improved since the page states ”It is intended to
improve the implementation throughout the coming year (97-98) and I will post any
refinements and extra documentation as and when I write them.”.

Instead of using a map and a reverse map this implementation uses only one list
of tuples for both. The first component of each tuple is the NodeId of a node and the
second is a triple consisting of its variable number and the NodeIds of its low and its high
successor. This is not very efficient since a look-up in this map is linear in the number
of nodes. The look-ups of the implementations presented in this paper are logarithmic
in the number of nodes.

We compare the purely functional implementation using the relaxed no-redundancy

property with the implementation of Jeremy Bradley. Figure 6.1 shows the results.
The Bradley implementation cannot compete with the implementation presented here.

Expression Operation Implementation Time Memory
Queens 4 anySat Relaxed 0.04 6,397,652

Bradley 4.04 816,380,772
eval Relaxed 0.06 7,957,572

Bradley 4.02 816,382,228
Integer 11 anySat Relaxed 0.00 138,392

Bradley 33.72 4,784,688,228
eval Relaxed 0.08 13,717,360

Bradley 34.04 4,789,579,276
uf20-02.cnf anySat Relaxed 0.04 5,100,168

Bradley 93.12 17,784,793,116
eval Relaxed 0.52 69,648,632

Bradley 93.10 17,784,817,912

Figure 6.1: Comparison with the Bradley implementation

This implementation is far better no matter if we use a relaxed or a full no-redundancy

property. The differences in the running times are not surprising since we use maps that
support logarithmic look-up and insert operations while the Bradley implementation

81

6 Related Work

uses a list that supports look-up and insert operations that are linear in the number
of elements. The memory usage of the Bradley implementation is surprisingly high.
This implementation uses only one list where we use an algebraic data type and a map.
However the memory usage of the Bradley implementation is much worse.

6.2 Functional Bindings to Imperative Implementations

There are two implementations of interfaces to BDD packages using the foreign function
interface of the GHC. The first was presented in 1999 by Day, Launchbury and Lewis
[11]. This implementation defines an abstract interface to boolean expressions similar to
the one presented in Section 4.5. They use this interface to bind the CMU Long BDD
Package to Haskell. Their interface is referentially transparent which allows the user to
ignore the details of the imperative implementation.

The other binding of a BDD Package is HBDD [12]. This is a Haskell interface that
can be used with the CMU Long BDD Package, too. Bindings to CUDD and BuDDy
are planned. HBDD is used in MCK [13] a model checker for the logic of knowledge
written in Haskell. This implementation uses the don’t care idea in the implementation
of the top level boolean operators. That is, the boolean operators that are provided by
the interface. For example the boolean operator (∧) instantly yields false if one of its
arguments is false.

(∧) :: Boolean b => b → b → b

x ∧ y

| x == false = false

| x == true = y

| y == false = false

| y == true = x

| otherwise = x ‘bAND ‘ y

The function bAnd is the Haskell binding of the function apply with the boolean operator
∧ in the BDD Package. Therefore the construction of the ROBDD for the boolean
expression false∧ exp does not evaluate exp even if we use HBDD. Note that the don’t

care idea saves the evaluation of ROBDDs only for the top level boolean operators, i.e.,
for an application to two ROBDDs and not for the applications on their sub-ROBDDs.
The sub-ROBDDs are processed by the C implementation. This implementation can
only save the traversal of the ROBDD but not its evaluation.

We compare our implementation with the HBDD binding. This is the more current
binding to a BDD Package. We use optimizations in this measurements. The C im-
plementation is highly optimized and therefore we want to bring out the best in our
implementation. Besides we do not know the internal implementation of the BDD Pack-
age. Therefore we are unable to explain the differences in the measurements considering
the internals anyway.

The HBDD implementation consumes less time and more memory than the implemen-
tation presented here in all the measurements. On the one hand the C implementation
uses lots of refinements. A major one is the variable reordering. The best example for

82

6.2 Functional Bindings to Imperative Implementations

Expression Operation Implementation Time Memory
Queens 8 anySat Relaxed 8.14 1,413,390,596

HBDD 1,04 1,476,988
eval Relaxed 10.36 1,754,746,240

HBDD 1,04 1,377,600
Integer 19 anySat Relaxed 0.00 166,972

HBDD 0,00 69,916
eval Relaxed 10.54 2,223,653,380

HBDD 0,00 58,256
Integer 1800 anySat Relaxed 4.96 920,804,952

HBDD 0,06 6,071,980
eval Relaxed out of memory

HBDD 0,04 4,049,024
Integer2 1800 anySat Relaxed 2.92 587,783,116

HBDD 0,04 6,103,648
eval Relaxed 21.82 3,138,158,752

HBDD 0,04 4,080,732
HWB 13 anySat Relaxed 1.38 381,347,160

HBDD 0,70 87,341,268
eval Relaxed 2.64 587,033,824

HBDD 0,68 87,323,952
HWB 17 anySat Relaxed 29.92 8,431,064,836

HBDD 13,34 1,792,605,492
eval Relaxed out of memory

HBDD out of memory

Figure 6.2: Comparison with the HBDD implementation

the use of variable reordering is the Integer expression. This expression is of exponential
size with the canonical variable order that is used by the implementation in this paper.
The best order causes Integer to be linear in the number of variables like Integer2

which uses this optimal variable order. On the other hand C is a low level language in
comparison to Haskell and is therefore more efficient.

Our implementation gets closest to HBDD in the measurements of the HWB expression.
The ROBDD size of HWB is exponential independent of the variable order. The differences
in the sizes of the ROBDD for different variable orderings are very small [5]. Therefore
the reordering of the variables is of little use. We cannot explain the out of memory
exception that is caused by the application of eval on the ROBDD in the HBDD im-
plementation. The compiler reports an out of memory exception for all applications of
eval to the HWB expression with more than 13 variables although beforehand the correct
result is displayed. Our implementation does not yield the result before it runs out of
memory.

83

6 Related Work

84

7 Summary

This paper presents a purely functional implementation of ROBDDs in Haskell. The
motivation of this implementation is the use of lazy evaluation to prevent unnecessary
computations in the construction of an ROBDD. To get any lazy behavior at all we relax
the no-redundancy property of the ROBDDs. Besides the ROBDD data structure this
paper presents the implementation of the most important operations on these ROBDDs.

7.1 Conclusion

This thesis demonstrates that data structures can benefit from laziness. We improve the
performance of the operations on ROBDDs in respect of time and memory consumption.
The ROBDD data structure is highly optimized, i.e., it contains few redundancies and
contains many dependencies. This complicates the use of laziness. We have to relax the
no-redundancy property to gain any laziness in the construction.

The relaxing of the no-redundancy property is an elementary modification of the
ROBDD data structure. This is in fact a variation of the data structure and not an
implementation detail. This paper does not only present the implementation of the
ROBDD data structure and investigates its laziness, it additionally proposes a modifi-
cation of this data structure, shows its implementation and investigates the laziness of
this modification.

The no-redundancy property of ROBDDs causes the evaluation of the whole ROBDD
when we apply an operation to it. The relaxing of the no-redundancy property is an
adequate answer to this problem. The disadvantages of the relaxing are small or not ex-
istent. The number of redundant nodes is very small for all examples we have measured.
All operations more or less benefit from the laziness.

Even though the representation with relaxed no-redundancy is no more canonical the
implementation of the equality check shows surprisingly good results. In the run-up of
the implementation we expected this to be the most difficult function because it makes
use of the canonical form. The implementation of the equality check for ROBDDs with
relaxed no-redundancy property using apply has a quadratic worst case complexity in
a strict language. In a lazy programming language we expect this operation to have a
better complexity. There is only one paper about a lazy complexity of an algorithm [4].
This is a broad field of undiscovered research. For a fundamental investigation of the
effect of lazy evaluation on the complexity of an algorithm the ROBDD data structure
is too complex.

Apart from the benefits in the semantics it is very hard to benefit from laziness if
the benefits should exceed the standard examples like infinite data structures. It is very

85

7 Summary

easy to destroy the laziness of an algorithm. Furthermore it is very difficult to locate
the origin because of the complexity of lazy evaluation. Its unlikely that an algorithm
is implemented without bothering about laziness and benefits from it as a side effect.
There are no tools that explicitly support the design of lazy algorithms. The available
tools even abstract from lazy evaluation. The development of tools that support the
design of lazy algorithms is another field of research that is not discovered yet.

The implementation presented here is far more efficient than the only known functional
implementation. Even without the use of laziness this implementation beats the existing
one. The Haskell implementation presented here cannot compete with a binding to an
BDD Package implemented in C or C++. This comparison is not completely fair because
these implementations use many refinements that are not used in the implementation
presented here. One example is the variable reordering. Apart from these refinements
an highly optimized implementation in a low level language like C is more efficient.

There are some disadvantages of the implementation with relaxed no-redundancy. A
common extension of the ROBDD implementation to improve it is the use of one reverse

map for all ROBDDs. The equality check of this implementation is in O(1). We just
have to compare the NodeIds of the root nodes of the two ROBDDs. Additionally we
can use one apply map for all applications of apply. This increases the probability that
application is memoized. This extension does not cooperate with laziness. When we look
up the first node in an ROBDD in the reverse map we have to check whether we have
already constructed this node. Therefore we have to evaluate the keys of the delayed
inserts. That is, we have to evaluate the NodeIds of all nodes that were constructed so
far. This causes the evaluation of all ROBDDs constructed so far.

A shortcoming of this paper is the lack of heap profiling, i.e., the observation how
much heap memory is occupied at one moment. All the measurements in this paper only
observe the overall memory usage. An observation that is highly related to this one is the
execution of the garbage collector. There are measurements where the implementation
with relaxed no-redundancy runs out of heap memory while the implementation with
full no-redundancy does not although the relaxed implementation consumes less heap
memory. Laziness often prevents data structures from being garbage collected. This is
a disadvantage for the ROBDD construction because we can run out of memory only
because there are parts of an ROBDD that cannot be garbage collected because of lazy
evaluation.

7.2 Future Work

In the conclusion section some of the future work was already presented. There is one
point that is rather future research than future work, namely a closer investigation of
the lazy complexities of the presented algorithms. A future work is the implementation
of the extension that uses one reverse map for all ROBDDs and the comparison of this
implementation with the implementation that is presented in this paper. Another point
where we have to do some work is the profiling of the heap memory.

We do not provide a good estimation of the number of redundant nodes in an ROBDD

86

7.2 Future Work

with relaxed no-redundancy property. If we could support a closer estimation it would be
easier to rate the disadvantages of the relaxing of the no-redundancy property. However
even the operations on an ROBDD with full no-redundancy are not efficient in the worst
case. That is, they only perform well in practice. The worst case number of redundant
nodes is not required to be of any practical relevance. Therefore more measurements
would probably be more significant.

Another extension that was proposed shortly after the introduction of the ROBDD
data structure are Complement Edges, i.e., edges that complement all terminals of an
sub-ROBDD. In the OBDD data type this can be implemented by an additional unary
constructor Not. The most important advantage of this extension is that the negation of
an ROBDD is in O(1) by complementing the edge that leads to the root node. We have
implemented this idea. The implementation only requires some minor changes mainly
in the implementation of the functions getLow and getHigh. We have not measured this
extension but some first tests showed that this extension cooperates with laziness.

Many modifications of ROBDDs have been published. These are motivated by the
fact that the ROBDD representations of some functions that are used in practice are still
exponentially large. Here is a list of some of the modifications and this list is far from
complete: OFDDs, OKFDDs, parity OBDDs, FBDDs, BEDs, Partitioned-ROBDDs,
Free BDDs, IBDDs, TBDDs, MTBDDs, ADDs. Rolf Drechsler and Detlef Sieling give
a short introduction to the ideas of some of these extensions [28]. We have to relax the
no-redundancy property of the ROBDDs to gain any laziness. It would be interesting
whether any of these modifications would benefit from laziness without restricting their
properties.

We hope that this thesis is only the start point of more research on the benefits and
disadvantages of lazy evaluation for the efficiency of algorithms. Many experts advice to
use strictness annotation in the definition of a data structure to improve the performance
of the algoritms for this data structure. Still today eight years after the definition of the
Haskell 98 Standard this issue is highly up-to-date like shown by some discussions on
the mailing list to the new Haskell standard Haskell’ [17].

We thank you for your attention!

87

7 Summary

88

Bibliography

[1] Adams, S., Efficient sets: a balancing act, in: Journal of Functional Programming,
1993, pp. 553–562.

[2] Akers, S., Binary Decision Diagrams, IEEE Trans. actions on Computers C-27

(1978), pp. 509–516.

[3] Andersen, H. R., An introduction to binary decision diagrams (1997),
http://www.itu.dk/people/hra/bdd97-abstract.html .

[4] Bird, R., G. Jones and O. D. Moor, More haste, less speed: lazy versus eager

evaluation, J. Funct. Program. 7 (1997), pp. 541–547.

[5] Bollig, B., M. Lobbing, M. Sauerhoff and I. Wegener, On the complexity of the

hidden weighted bit function for various BD D models, Informatique Theorique et
Applications 33 (1999), pp. 103–116.

[6] Bradley, J., Binary decision diagrams - A functional implementation (1997),
http://www.cs.bris.ac.uk/~bradley/publish/bdd/ .

[7] Braun, W. and M. Rem, A logarithmic implementation of flexible arrays, Memo-
randum MR83/4 (1983).

[8] Bryant, R. E., Graph-based algorithms for boolean function manipulation, IEEE
Trans. Comput. 35 (1986), pp. 677–691.

[9] Bryant, R. E., On the complexity of VLSI implementations and graph representa-

tions of boolean functions with application to integer multiplication, IEEE Trans.
Comput. 40 (1991), pp. 205–213.

[10] Bryant, R. E., Symbolic boolean manipulation with ordered binary-decision dia-

grams, ACM Comput. Surv. 24 (1992), pp. 293–318.

[11] Day, N. A., J. Launchbury and J. Lewis, Logical abstractions in Haskell, in: Pro-

ceedings of the 1999 Haskell Workshop (1999).

[12] Gammie, P., A Haskell binding to Long’s BDD library,
http://www.cse.unsw.edu.au/~mck/ .

89

http://www.itu.dk/people/hra/bdd97-abstract.html
http://www.cs.bris.ac.uk/~bradley/publish/bdd/
http://www.cse.unsw.edu.au/~mck/

Bibliography

[13] Gammie, P. and R. van der Meyden, MCK: Model checking the logic of knowledge,
in: Proceedings of the 16th International conference on Computer Aided Verifica-

tion, CAV, 2004, pp. 479–483.

[14] The Glasgow Haskell compiler, http://www.haskell.org/ghc/ .

[15] Gill, A., Debugging haskell by observing intermediate data structures (2000).

[16] Gill, A., The haskell object observation debugger (2000),
http://www.haskel.org/hood/ .

[17] The haskell-prime archives (2006),
http://www.haskell.org/pipermail/haskell-prime .

[18] Hinze, R., Generalizing generalized tries, Journal of Functional Programming 10

(2000), pp. 327–351.

[19] Hoos, H. H. and T. Stützle, SATLIB: An online resource for research on SAT, in:
SAT 2000 (2000), pp. 283–292, http://www.satlib.org.

[20] Jones, S. P. et al., Haskell 98 - a non-strict, purely functional language, 1999.

[21] Launchbury, J., A natural semantics for lazy evaluation, in: Conference Record

of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Charleston, South Carolina, 1993, pp. 144–154.

[22] Lee, C., Representation of switching circuits by binary decision diagrams, Bell Sys-
tem Technical Journal 38 (1959), pp. 985–999.

[23] Long, CMU BDD library (1993),
http://www.cs.cmu.edu/~modelcheck/bdd.html .

[24] Nievergelt, J. and E. Reingold, Binary search trees of bounded balance, in: SIAM

journal of computing, 1973.

[25] Okasaki, C., “Purely Functional Data Structures,” Cambridge University Press,
Cambridge, 1998.

[26] Okasaki, C. and A. Gill, Fast mergeable integer maps, in: Workshop on ML, 1998,
pp. 77–86.

[27] Peyton Jones, S. L. and J. Launchbury, Unboxed values as first class citizens in a

non-strict functional language, in: J. Hughes, editor, Proceedings of the Conference

on Functional Programming and Computer Architecture (1991), pp. 636–666.

[28] Rolf Drechsler, D. S., Binary decision diagrams in theory and practice, International
Journal on Software Tools for Technology Transfer (STTT) 3 (2001), pp. 112–136.

90

http://www.haskell.org/ghc/
http://www.haskel.org/hood/
http://www.haskell.org/pipermail/haskell-prime
http://www.satlib.org
http://www.cs.cmu.edu/~modelcheck/bdd.html

Bibliography

[29] Sansom, P. M. and S. L. Peyton Jones, Time and space profiling for non-strict

higher-order functional languages, in: Conference Record of POPL ’95: 22nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, 1995, pp. 355–366.

[30] Somenzi, F., CU decision diagram package release 2.4.1 (1998),
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html .

[31] Satisfiability suggested format,
http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps .

91

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html
http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps

	Introduction
	Lazy Evaluation
	Boolean Expressions
	Decision Trees
	Reduced Ordered Binary Decision Diagrams
	BDD Package

	Test Toolbox
	Boolean Expressions
	Checking for Laziness
	Measurements

	ROBDD Implementations
	An Imperative-like Implementation
	Making a New Node
	Constructing an ROBDD
	Descending an ROBDD

	A More Functional Implementation
	Making a New Node
	Descending an ROBDD
	Laziness

	A Lazy Implementation
	Lazy Nodes
	Relaxing the No-Redundancy Property
	Making a New Node
	Laziness

	Implementation of a BDD Package
	Apply
	Laziness
	Measurements
	Complexity

	Restrict
	Laziness
	Measurements

	Equality Check
	Full No-Redundancy Property
	Relaxed No-Redundancy Property
	Measurements

	Consumer Functions
	User Interface

	Implementation of the Maps
	Map
	FiniteMap
	BraunTree
	IntMap
	Measurements

	Related Work
	Functional Implementations
	Functional Bindings to Imperative Implementations

	Summary
	Conclusion
	Future Work

