
A Web-Based Editor for
Cloud-Based Programming

Jan Bracker

Master’s Thesis
submitted in March 2014

Christian-Albrechts-Universität zu Kiel
Institut für Informatik

Arbeitsgruppe für Programmiersprachen und Übersetzerkonstruktion

Advised by: Prof. Dr. Michael Hanus

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbststän-
dig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet habe.

Kiel,

ii

Abstract

Today’s programmers and development tools still use concepts and work-
flows that were introduced with the early operating systems. Programs
are still structured in files and to reuse code a developer still has to search
and integrate appropriate libraries all by herself. One way to solve these
problems is to structure source code using the semantic concepts a language
offers and store them in a database to allow structured access and a more
advanced search and support for reuse. These ideas lead to the concept
of a code cloud. Last year a group of students at the Christian-Albrechts-
University developed such a code cloud; they called it Claude. It supports
simple Haskell code, up- and download of Haskell packages, and offers
search functionality for the code. Though there are Haskell specific features
the general structure of Claude is language independent and is supposed
to fit as many languages as possible. This thesis extends Claude with a
web-based editor to develop new packages in the code cloud and release
them. The editor by design is also kept language independent, but offers
integration of language specific features.

iii

Contents

1 Introduction 1

2 Foundations and Technologies 5
2.1 JavaScript . 5

2.1.1 JavaScript Object Notation 6
2.1.2 Language Description 6
2.1.3 Utility Libraries . 8
2.1.4 CodeMirror: Editor Component 10

2.2 Haskell . 11
2.2.1 http-client: HTTP Network Protocol API 13
2.2.2 aeson and bson: Data Serialization 14
2.2.3 Yesod . 15

2.3 Claude: Code Cloud . 19
2.3.1 Data Model . 19
2.3.2 Database . 24
2.3.3 Authentication . 26

3 Implemenation 27
3.1 Application Structure . 27
3.2 Changes to the Code Cloud . 29

3.2.1 Authentication . 30
3.2.2 Data Model . 31
3.2.3 Database Access . 31

3.3 Graphical User Interface . 32
3.3.1 Package Management 33
3.3.2 Editor View . 35
3.3.3 Usage and Workflow . 39
3.3.4 Hypercode Editor Component 41
3.3.5 Asynchronous Operations 45

v

Contents

3.4 Language Specific Customization 47
3.4.1 User Interface Customization 48
3.4.2 Object Handling in Claude 50

3.5 Cloud Development Interface 52
3.5.1 Authentication . 54
3.5.2 Create Operations . 55
3.5.3 Read Operations . 57
3.5.4 Update Operations . 58
3.5.5 Delete Operations . 59

3.6 Network Communication . 61
3.6.1 HTTP Communication 61
3.6.2 Automated JSON Transfer Infrastructure 64

4 Problems, Limitations and Future Work 69
4.1 Editor and Claude . 69
4.2 Database Limitations . 70
4.3 Database Abstraction . 72
4.4 Management of Concurrent Changes 74
4.5 Future Work . 74

5 Related Work 77

6 Conclusion 81

Bibliography 83

A Project Structure 85

B Installation Guide 87
B.1 Prerequisites . 87
B.2 Compilation . 88
B.3 Configuration . 89
B.4 Execution . 90

C Contents of the Attached CD 91

vi

List of Abbreviations

ADT Algebraic Data Type

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BSON Binary JSON

CSS Cascading Style Sheets

CRUD Create, Read, Update and Delete

DOM Document Object Model

DSL Domain-Specific Language

GADT Generalised Algebraic Data Type

GHC Glasgow Haskell Compiler

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ID Identifier

IDE Integrated Development Environment

JSON JavaScript Object Notation

MVC Model View Controller

NoSQL Not only SQL

URL Uniform Resource Locator

vii

List of Figures

2.1 Claude’s data model . 20

3.1 Logical structure of Claude and the editor 27
3.2 General communication structure of Claude and the editor . 28
3.3 Package dependency graph of Claude and the editor 29
3.4 Login screen of the editor . 33
3.5 Package management landing page of the editor 34
3.6 Form to release a package in the editor. 35
3.7 Package-level editor view . 36
3.8 Module- and function-level editor view 37
3.9 Dialog to confirm deletion of a module 38
3.10 Workflow to develop a new package 39
3.11 Workflow to create a new module, function or data type object 40
3.12 Editor view to create a new data type object 41
3.13 The hypercode editor component with activated tooltip and

autocompletion . 42
3.14 Dialog displayed by the editor view when waiting for asyn-

chronous communication . 46
3.15 Dialog for server-side error messages in the editor view . . . 47
3.16 Validation of an editor view form field 49
3.17 AJAX communication of the different editor components . . . 61

ix

List of Listings

2.1 Short example of JavaScript code 7
2.2 Definition of the Status data type 21
2.3 Definition of the Parent data type 22
2.4 Definition of the CodeElem data type used to represent hyper-

code references . 22
2.5 Definitions of the language specific data types 23
2.6 Definition of the Query data type 24
2.7 Excerpt of the query data type for Module 25

3.1 Data type to define language specific functionality in Claude 50
3.2 Development interface functions to authenticate 54
3.3 Development interface functions to create and release packages 55
3.4 Development interface functions to create modules, functions

and data types . 56
3.5 Development interface functions to read objects 57
3.6 Development interface functions to modify objects 58
3.7 Development interface functions to delete objects 60
3.8 Sending an AJAX request to save changes of a data type 61
3.9 JSON transfer infrastructure signature of the updateDevelop-

mentDatatype function . 65
3.10 Reminder of the function signature of the updateDevelopment-

Datatype function . 65

xi

Chapter 1

Introduction

Modern programming still uses concepts and workflows that were intro-
duced through early operating systems. Programs are structured in files
instead of using the abstractions offered by the underlying programming
language. Especially in large software projects the number of files can be
overwhelming. Developers can easily loose track of where they put a certain
function or what the purpose of a specific file or module was.

Another regular problem when developing software is code reuse. It
avoids errors and saves a considerable amount of time to use libraries al-
ready developed by others. But it is not always easy to find libraries that
provide the functionality needed. Once found, a library has to be down-
loaded, compiled and integrated into a project and version management.
This process is different for each programming language and, depending
on the provided infrastructure, can be tedious.

A solution to these problems would be to actually structure software by
the concepts offered in the used programming language. Instead of using
files, a database would allow structured access and search functionality.
Combining this approach with a web interface leads us to the idea of a
code cloud. Such a code cloud is a central point that holds libraries and
code from different developers and makes them easily accessible to other
developers.

Last year a student project at the Christian-Albrechts-University de-
veloped such a code cloud. The project’s goal was to develop a code
cloud that is language independent and offers a way to store sources and
documentation. There should also be a way to search the stored objects
using different criteria. Sources in the cloud should be enriched with
hypercode references that show which other objects in the cloud they rely

1

Chapter 1. Introduction

and depend on. On top of everything a editor was supposed to enable
developers to create new programs within the cloud allowing easy access to
existing functionality.

The project group achieved to create a code cloud they called Claude
[claude]. They concentrated on support for typical functional programming
concepts: functions, data types, modules and packages. But it should not be
hard to integrate further concepts from other languages into Claude. The
code cloud supports importing and exporting Haskell packages using the
Cabal package format [cabal-a]. One can also search within Claude to see
which objects are available. Due to the limited amount of time it was not
possible to develop an editor on top of Claude.

The goal of this thesis is to implement such an editor. As mentioned,
it shall enable developers to write new packages on top of those already
within a cloud instance. When finished, such a package may be released and
reused in other packages of the cloud. The editor should work independent
of the underlying cloud implementation. Following the spirit of Claude the
editor is web-based and, by that, diminishes the need to install additional
software on a users machine.

The remainder of this thesis will be structured as follows:

Ź First of all, Chapter 2 will familiarize us with the used technologies and
concepts that form the basis of Claude. To write a web-based editor we
need to use ECMAScript [ecma11] (also called JavaScript), as it is the
language understood by most browsers. A short introduction will be
given in Section 2.1. Haskell and Claude will be highlighted in Section 2.2
and 2.3.

Ź In Chapter 3 we talk about the implementation of the editor and the
changes to Claude. The general structure of the editor and how it
works with Claude is described in Section 3.1. The required changes
to access Claude and its data model will be discussed in Section 3.2.
After discussing the changes, we describe the editor’s graphical user
interface (GUI). Of course, it is not possible to fit all capabilities of each
programming language into a general scheme, therefore, Section 3.4
explains how Claude and the editor handle language specific properties.

2

Section 3.5 describes the development interface, which is used to access
and modify objects in Claude. The network communication between the
editor and Claude is explained in Section 3.6.

Ź The next chapter discusses limitations and known problems of Claude
and the editor. We will highlight limitations of the database system un-
derlying Claude in Section 4.2 and 4.3. A discussion on the management
of concurrent changes in the editor will follow up in Section 4.4. We will
also present future work in this process.

Ź At last, we discuss related work in Chapter 5 and then conclude in
Chapter 6.

3

Chapter 2

Foundations and Technologies

In order to build a large software system we have to reuse the work others
already did. The code cloud project group made the decision to write
Claude in Haskell. They used MongoDB [mongo] as database system to
store information and provide the web-based interface using the Yesod
Web Framework [yesod]. The editor also uses Yesod to provide its interface.
Main parts of the editor’s web-based user interface are written in JavaScript.

The following sections give a brief introduction to all of the mentioned
technologies; but we still assume the reader has a basic familiarity with the
HyperText Transfer Protocol (HTTP), HyperText Markup Language (HTML),
Cascading Style Sheets (CSS), and the Document Object Model (DOM) web
browsers use to represent the HTML document they are displaying. Though
these technologies may not be essential to understand the contents of this
thesis, they are important to comprehend the actual implementation.

2.1 JavaScript

JavaScript is a prototype-based programming language with duck typing
[Hei07, p. 68] that offers features from object-oriented, functional and im-
perative languages. It is standardized as ECMAScript [ecma11] in version
5.1 at the time of writing. As JavaScript is supported across several popular
browsers, [browsers] it is the standard script language to manipulate the
browsers DOM and interact with the user.

5

Chapter 2. Foundations and Technologies

2.1.1 JavaScript Object Notation

There are several primitive types built into JavaScript. Literals for strings,
booleans and numbers use the notation known from most C-like languages.
There are also inhomogeneous and associative arrays. Values of these
primitive types can be written down directly using JavaScript Object No-
tation (JSON). An example of a possible JSON value for an author [Ada] is
illustrated in the following listing:

{ "name" : ’Douglas Adams’,

’books’: ["The Hitchhiker’s Guide to the Galaxy"

, ’The Restaurant at the End of the Universe’],

age : 49 }

We can see that an associative array (also called object or dictionary) in
JavaScript is enclosed by curly brackets and each key value pair is separated
by a colon. A key can be any string and does not have to be enclosed in
quotes if it is a valid identifier. A numerically indexed array is enclosed in
square brackets. Strings can be enclosed in single or double quotes. All of
these values are handled as objects by JavaScript, which means they have a
set of methods that can be called on the value.

2.1.2 Language Description

There is no predefined entry point for JavaScript. It is either executed when
it first occurs in the document or when the browser fires an event that
triggers it. A common way to execute JavaScript is to embed the code into
HTML; this can be done through the script tag. It should contain a type

attribute with the value text/javascript. The contents can be any valid
JavaScript. It is also possible to store JavaScript in separate files, which
is preferable for larger chunks of JavaScript, to reuse them across several
pages. To do so, we leave the contents of the script tag empty and add the
src attribute with the value set to the location of the JavaScript file.

Listing 2.1 displays an example of JavaScript. Line 1 and 2 of the listing
show the declaration and definition of a variable. A declaration always
begins with the keyword var. In Line 2 we can also see how the method

6

2.1. JavaScript

1 var str = "42, is the answer!";

2 var answer = str.substr(0,2);

3 if(answer == 42) {

4 str = "The answer is there!";

5 } else {

6 str = "No answers...";

7 }

Listing 2.1. Short example of JavaScript code

substr of the string object defined in Line 1 is called. The third line shows
how the equality operator implicitly converts the string value in answer

to a number to compare it with 42. JavaScript always tries to perform
implicit conversions for primitive types if they mismatch. Depending on the
outcome of the comparison, a different destructive update on str is done.
We can also see that the branching control structure looks the same as in
other C-like languages. This is also the case for other control structures such
as the switch-case or the while- and for-loop.

Functions are first class values in JavaScript. To define a function we use
the function keyword. The following listing shows two ways to do this:

function fun(a,b) { return a + b; };

var fun = function(a,b) { return a + b; };

Both variants are equal in that the variant from the first line is translated
to the variant in the second line by JavaScript. The second variant uses an
anonymous (or lambda) function. We can see that defining a function is
nothing else then declaring a variable and setting its value to a function
object.

As mentioned earlier, JavaScript is a prototype-based language. First
of all, objects in JavaScript are nothing more then associative arrays. That
means, we can add methods and attributes to an object as we please. In Line
2 of Listing 2.1 we called the substr method of a string object. The method
selection str.substr is nothing else then a short-cut for str[’substr’] and
then calling the function that entry is associated with. For built-in types we

7

Chapter 2. Foundations and Technologies

cannot manipulate these objects, but for user-defined objects we can just
overwrite a single method if we want to by setting the specific entry. If we
create a function object and add a prototype entry to it, we can use that
function as a constructor for new objects. To construct a new object we use
the new keyword as in the following listing:

1 var Pos = function() {};

2 Pos.prototype = { x: 0, y: 0 };

3 var p = new Pos();

4 p.x; // 0

5 p.x = 5;

6 p.x; // 5

7 Pos.prototype.x; // 0

8 p.y; // 0

9 Pos.prototype.y = 42;

10 p.y; // 42

To lookup an attribute or method in an object created this way, we first
look if the object has a matching entry. If this is not the case, we look into
its prototype and follow the chain of prototypes until we either find the
attribute or have to return undefined. JavaScript uses prototypes to represent
advanced concepts such as inheritance, that are not part of the language
itself.

In our example neither x nor y are entries of Pos objects. This means, the
result values in Line 4, 8, and 10 come from the entries of the prototype for
Pos. As we can see in Line 9 and 10, changing the prototype object affects all
objects related to the prototype, if the value was not overridden beforehand.

2.1.3 Utility Libraries

The standard JavaScript API of most browsers is cumbersome to use, es-
pecially when performing DOM manipulation. Therefore, there are many
JavaScript libraries that provide a more pragmatic interface to access these
capabilities. We decided to use two libraries to make programming the
editor user interface more convenient.

8

2.1. JavaScript

Also, these libraries guarantee that the written JavaScript behaves the
same when executed in different browsers. Though many browsers claim
to implement the standard, some may not fully support all details or there
may be inaccuracies within the standard [browsers], that lead to different
implementations.

jQuery: DOM Manipulation Library

The first library we choose is jQuery [jquery]. It is mainly a DOM manipu-
lation library. The library introduces the dollar ($) function, which can be
used to select and create new nodes in the DOM tree. It can also be used
to access predefined objects through the jQuery interface. The result of the
dollar function is an object that provides a versatile API to manipulate the
DOM tree and manage events. A few examples can be seen in the following
listing:

1 $(document).ready(function() { alert("DOM loaded"); });

2 $(’.someCssClass’).text(’New content’);

3 $(’<div></div>’).append($(’#elementId’));

The first line wraps the global document object into a jQuery object and sets
the callback for the event, that is triggered when the complete document is
loaded. The second line uses a CSS selector to select all elements with the
CSS class someCssClass and sets their text content to “New content”. Line
3 creates a new div element and appends it to the children of the element
with ID elementId.

Another important capability that jQuery provides access to is asyn-
chronous JavaScript and XML (AJAX). This allows a document to communi-
cate with its server without reloading the complete page. The ajax method
allows access to this functionality. An example call that would login to the
code cloud is displayed in the following listing:

$.ajax({

type: ’POST’,

url: ’http://codecloud.example/login’,

data: { username: ’test’, pwd: ’test’ },

9

Chapter 2. Foundations and Technologies

dataType: ’json’,

success: function(result) { /* ... */ },

error: function(result, status, errorMsg) { /* ... */ },

mimeType: ’application/json’ });

We can see that the ajax method is configured by a JavaScript object. There
are a variety of options that can be set for an AJAX request. These options
are all listed in the jQuery documentation [jquery-a].

Lo-Dash: Functional Utility Library

Another library we use is Lo-Dash [lodash]. It introduces the underscore (_)
object that provides methods to enable a more functional style of program-
ming, e.g., functions to access or iterate over data uniformly across different
types. Short examples of these functions are given in the following listing:

1 _.forEach("Text", function(ch) { /* do something */ });

2 _.map([1,2,3,4], function(val) { return val + 1; });

3 _.cloneDeep({ name: "Douglas Adams" });

The first line calls a function for each character of a text. map in Line
2 applies the given function to each element in the given collection and
produces a new collection with the result values. Both map and forEach work
on strings, arrays and objects in the same way. The call to cloneDeep in the
third line creates a deep copy of the given value.

2.1.4 CodeMirror: Editor Component

There are many different text editor components for JavaScript available. The
most mature ones we could find were Ace [ace] and CodeMirror [codemirror].
Both offer about the same set of features. They support standard text editing,
syntax highlighting, marking of text, editing history and many more.

Though Ace seems more mature and modular when it comes to the API
design, we decided to use CodeMirror. It offers marking text through actual
DOM elements within the editor content, which is important for the way

10

2.2. Haskell

we implement some features. Additionally, it is easier to adapt the history
behavior in CodeMirror to enable custom undo and redo operations.

A new editor component can be created using the CodeMirror function.
It expects two arguments. First the element to insert the editor component
into and second a JSON object to configure the instance with. The result is a
CodeMirror object.

The CodeMirror object offers a variety of methods to control the behavior
of the editor component. For us the document interface is especially useful.
The document is responsible to manage the contents displayed by an editor
instance. To access the document we need to call the method getDoc. The
document object offers the markText method. It annotates a certain range of
text in the editor with a configurable DOM object and by that allows us to
link events with contents of the editor, or track the location of a text-mark
while editing. markText accepts three arguments. The first two are the
beginning and end of the text range to mark. The third is a configuration
object for the mark.

To register event handlers in CodeMirror the CodeMirror object offers the
on method. It takes the name of the event as first argument, and the event
handler function as second argument.

Further information about the CodeMirror object and its functionality
can be found in the manual that is linked on the CodeMirror homepage
[codemirror].

2.2 Haskell

Haskell is a pure functional programming language. It uses a non-strict
evaluation strategy and provides a strong static type system. Typical fea-
tures of the functional paradigm such as pattern matching, anonymous
functions, algebraic data types (ADTs) and type polymorphism are offered.
It is standardized in the Haskell 2010 Language Report [Mar10].

We decided to use Haskell, because it was already used in Claude. By
also using Haskell, we gain the advantage that we can reuse code and data
structures that were already written for Claude.

11

Chapter 2. Foundations and Technologies

All developed Haskell code for Claude and the editor was compiled
using the Glasgow Haskell Compiler (GHC) in Version 7.4 and 7.6.

We assume that the reader is familiar with standard Haskell as defined
by the 2010 Language Report. Some advanced language extensions will be
explained here, since we used them to implement certain parts of the editor.

Generalised Algebraic Data Types

The major extension we use is Generalised Algebraic Data Types (GADTs).
GADTs extend the data type definition syntax to look similar to that of type
classes and allow to determine type parameters of polymorphic data types
on construction. As an example, we can look at an Exp data type to represent
simple expressions in the following listing:

data Exp a where

IntVal :: Int Ñ Exp Int

BoolVal :: Bool Ñ Exp Bool

Plus :: Exp Int Ñ Exp Int Ñ Exp Int

Equal :: Eq a ñ Exp a Ñ Exp a Ñ Exp Bool

IfThenElse :: Exp Bool Ñ Exp a Ñ Exp a Ñ Exp a

All of the constructors have specialized the type parameter of Exp in their
return value. This enables us to give functions using a GADT more type
safety. When pattern matching on one of these constructors, we can be sure
that types are bound correctly in each case. Also note the Eq constraint
on the Equal constructor. Setting such a constraint on types involved in a
constructor would normally not be possible at this level.

As an example, we look at the eval function in the following listing to
see how we benefit from this extension:

eval :: Exp a Ñ a

eval (IntVal n) = n

eval (BoolVal b) = b

eval (Plus n m) = eval n + eval m

eval (Equal a b) = eval a == eval b

eval (IfThenElse b t e) = if eval b then eval t else eval e

12

2.2. Haskell

Note that eval is polymorphic over a. Though this is the case we can still
return a value of the concrete type Int or Bool in second and third line.
This would not work with a normal ADT. Due to the Eq constraint on Equal

we can compare the results of both evaluations in line five, although our
polymorphic type a does not have to be comparable in general. An extensive
use of a GADT can be seen in Section 3.6.2.

Overloaded Strings

The overloaded strings extension generalizes the way string literals are
handled by GHC. It has the name OverloadedStrings. When activated the
fromString function from the type class IsString is used to convert string
literals to the type currently needed.

class IsString a where

fromString :: String Ñ a

This behavior is similar to that of numeric literals where the fromInteger or
fromRational functions are used to convert them into the needed type.

This extension is especially useful since we often use the Text data type
from the package text [OSu], as it is a more efficient representation of strings.

2.2.1 http-client: HTTP Network Protocol API

We use HTTP to communicate with Claude. To access the protocol in Haskell
we decide to use the http-client library [Sno13]. We choose this specific library,
because our web framework (Section 2.2.3) also uses it to communicate over
HTTP.

The most important types introduced through http-client are Request and
Response. A Request is a record that allows to set the HTTP request method,
host, port, path, headers, cookies and the body. It can be sent using the
httpLbs function.

httpLbs :: Request Ñ Manager Ñ IO (Response ByteString)

13

Chapter 2. Foundations and Technologies

Sending a Request either results in an IO-based exception or the received
Response data is returned. The Response type parameter specifies the con-
tents of the response body, which in the most general case is just a sequence
of bytes. The Manager provides the network connection to use for the request.

As an example we can see a simple GET request in the following listing:

1 main = do

2 req <- parseUrl "http://www.loremipsum.de/downloads/original.txt"

3 mng <- newManager defaultManagerSettings

4 rsp <- httpLbs (req {method = "GET"}) mng

5 print (responseBody rsp)

6 Lorem ipsum dolor sit amet, ...

The request is sent to http://www.loremipsum.de/downloads/original.txt

and prints the result body. In the second line we create the request value
from an URL that is given as a string. Next we create a new manager that
acquires a network connection for us and then we send the request. Before
sending it, we make sure it actually is a GET request. At last we print the
body of the response we received.

2.2.2 aeson and bson: Data Serialization

Most AJAX data sent over network by the editor is encoded in JSON. The
Haskell library aeson [OSu13] is used to do this serialization. For this
purpose it provides the two type classes FromJSON and ToJSON:

class FromJSON a where

parseJSON :: Value Ñ Parser a

class ToJSON a where

toJSON :: a Ñ Value

The FromJSON type class is responsible for decoding a JSON encoded value.
It uses a Parser to provide appropriate errors if decoding fails for some
reason. The ToJSON type class encodes a value into JSON.

The framework offers a set of utility functions to use the type classes:

14

2.2. Haskell

decode :: FromJSON a ñ ByteString Ñ Maybe a

encode :: ToJSON a ñ a Ñ ByteString

eitherDecode :: FromJSON a ñ ByteString Ñ Either String a

These functions use ByteStrings, that can be sent over the network directly.
The document-based database Claude uses as backend stores documents

in a format called Binary JSON (BSON) [bson]. This format is similar to
standard JSON, but extends it with support for some other data types and
binary data. To convert between the Haskell data types and their BSON
representation we have to implement the Val type class:

class (Typeable a, Show a, Eq a) ñ Val a where

val :: a Ñ Value

cast’ :: Value Ñ Maybe a

The val function creates a BSON Value and the cast’ function decodes it
again.

2.2.3 Yesod

Yesod describes itself as “[...] a Haskell web framework for productive
development of type-safe, RESTful, high performance web applications”
[yesod]. It is based on the model view controller (MVC) pattern. Yesod is not
only a framework to develop web applications with, but it also offers the
yesod command [Snoc], which allows to generate basic project infrastructure
and run web applications during development.

The model usually consists of a database layer. Yesod prefers to use the
persistent [Snoa] package for this purpose. But the Claude project decided to
use another database directly instead of using the abstraction layer provided
by persistent. We will give more details about this in Section 2.3.

The following subsections will provide an overview of how the view
and controller part in Yesod are realized. They will also give insight to
the general structure of a Yesod project as it is produced by the yesod init

command.

15

Chapter 2. Foundations and Technologies

Routing and Type-safe URLs

The reachable paths of a web application in Yesod are specified through
routes. Routes are specified in a central route file. A possible route consists
of one line. That line begins with the route itself followed by a valid Haskell
data type constructor name and the HTTP methods it supports to handle.
All three parts are separated by whitespace characters. As an example, if
we want to display user information depending on the user’s name, a route
may look as follows:

/user/#String UserR GET

We can see that the name of the user we want to see can be encoded as a
parameter within the route. The #String tells Yesod that the route /user/

may be followed by something that can be decoded as a Haskell String.
Such a decoded value can be passed to the handler or controller of that
route. The example route only handles GET requests.

Yesod generates a data type for routes or URLs of the application. Each
route is represented by one constructor with the name given in the second
entry of the route. The String encoded parameter of our example is one
entry of the constructor UserR in that data type. These constructors enable
us to view links to routes in the application as an instance of a constructor
in this data type. We can use this type to specify links in a type-safe manner.

Once a user tries to access a certain route Yesod calls an appropriate
handler (controller). A handler is represented as a function with a standard
naming scheme. Each handler begins with the methods of the HTTP request
it handles and ends with the name of the associated URL constructor. As an
example

getUserR :: String Ñ Handler Html

would handle requests sent to /user/#String, because that entry only han-
dles GET requests and the associated URL constructor is UserR. We can
see that the route parameters are arguments to the handler and a handler
always has to operate in the Handler monad. Additionally, a handler needs
to return a response to the request. In this case we respond with some
HTML. Yesod automatically selects the right content type for the returned

16

2.2. Haskell

content and sets up the correct HTTP headers.

Standard Project Structure

Yesod offers the possibility to generate infrastructure for a project. We choose
to use this generated infrastructure. It provides the following directories
and files:

config/routes The routes file is responsible to set up the reachable paths
of our web application. It contains all routes available.

Handler/ This directory contains Haskell modules that provide the route
handler functions.

templates/ The templates directory provides template files that can be used
within the controllers to produce the view. The next section explains the
structure of templates and how they can be used.

Application.hs This file is generated by Yesod and links everything together.
We usually only have to modify it to add new modules, that provide
handlers, to the list of imports.

Foundation.hs The foundations are responsible for reading our configura-
tion and implementing the type classes Yesod needs to run our applica-
tion. Here we can fine tune and configure the mechanisms Yesod uses to
provide our application.

static/ This folder is used to provide static files that do not change while
the application is running. The Yesod binary automatically creates a route
for this folder in the config/routes file.

Other source directories All other directories that could represent a module
can be source directories for further Haskell sources. We would just have
to configure the project’s cabal file correctly. Claude and the editor use
the Claude directory to store all Haskell sources aside from the handlers
and other Yesod generated sources.

17

Chapter 2. Foundations and Technologies

Template System

Yesod uses the Shakespearean template system [Snob], which provides three
Domain-Specific Languages (DSLs) to generate HTML, CSS and JavaScript.
These templates have the file extensions hamlet, lucius and julius. The
DSLs are custom tailored languages that are translated to Haskell during
compilation using Template Haskell [ghc-th; SJ02]. To use a certain template
we can use the command $(widgetFile "myTemplate"), where "myTemplate"

gives the name of the template without extension within the templates

directory. A matching lucius and julius file is automatically also loaded
and correctly embedded within the page.

All template formats offer the #{expr} syntax to embed the Haskell
expression expr into the template contents. They also offer @{routeConstr}

to embed a link to an application page specified by the route constructor
routeConstr. The scope of available identifiers in such a template is equal
to the scope at which it is embedded within the handler. In other words, a
template can only be used at different locations if the same identifiers with
the same respect type are in scope.

Within the templates for CSS and JavaScript we can write normal CSS
and JavaScript with the addition to embed Haskell expressions and links
into the template contents. Templates for HTML use syntax that differs from
actual HTML. They use the offside rule to nest HTML elements and remove
closing tags unless the offside rule is not applicable, i.e., the closing tag is in
the same line as the opening tag. To clarify, we look at a small example:

1 <html>

2 <head>

3 <title>A HTML Page</title>

4 <body>

5 <p>

6 #{someText} - Visit the

7 author.

We can see how the different elements are nested by the offside rule. The
closing tag of the title element in Line 3 is optional, while the closing tag
of the a element in Line 6 is required. Line 6 shows how the Haskell value

18

2.3. Claude: Code Cloud

of someText is embedded within the template. Note that the link to the
author’s page in Line 7 uses a type-safe URL.

Hamlet templates also offer control structures to express pattern match-
ing, branches, loops over lists and other constructs. To clarify, we look at
the short example of a branch:

$if null myList

<p>No entries!

$else

<p>List has #{length myList} entries.

The example shows how the case that a given list myList is empty can be
handled specially. All control structures in Hamlet templates begin with a
dollar sign ($) and use the offside rule for nesting. More elusive examples
can be found in the official Yesod book [Sno12].

2.3 Claude: Code Cloud

The Claude project group [claude] aimed to provide a language independent
code cloud to store source code and documentation of software. The
semantic objects represented by the code is stored in a structured way
instead of using the language syntax. Of course, this is only possible up to
a certain level.

2.3.1 Data Model

As a first approximation, Claude supports objects typical for functional
languages such as Haskell. It distinguishes between packages, modules,
functions and data types. When talking about an object in Claude, we refer
to either of these.

By default Claude does not allow objects to be modified. The simple
reason for this is, that a modification may break the dependencies that exist
between different objects in the database. To give an example: If a function
in some package uses a data type in another package, a modification of that
data type may render the function broken. It would be even worse, if we

19

Chapter 2. Foundations and Technologies

Function
fObjectId : ObjectId
fName : Text
fComment : Text
fStatus : Status
fLanguageFuncSpecifics

: LanguageFuncSpecifics
fCode : [CodeElem]
...Module

mObjectId : ObjectId
mName : Text
mComment : Text
mStatus : Status
mLanguageModSpecifics

: LanguageModSpecifics
mAuthors : [Text]
mFunctions : [Function]
mDatatypes : [Datatype]
...

Package
pObjectId : ObjectId
pName : Text
pComment : Text
pStatus : Status
pVersion : Version
pChild : Maybe ObjectId
pBranches : [ObjectId]
pParent : Parent
pAuthors : [Text]
pModules : [Module]
pMaintainers : [Text]
...

Datatype
dObjectId : ObjectId
dName : Text
dComment : Text
dStatus : Status
dDependencies : Dependencies
dLanguageDatatypeSpecifics

: LanguageDatatypeSpecifics
dCode : [CodeElem]
...

Figure 2.1. Claude’s data model

deleted the data type; that would not only break the function referring to it,
the deletion would also invalidate the dependency of that function and lead
to an inconsistent state.

20

2.3. Claude: Code Cloud

Figure 2.1 gives an overview of the data types representing the objects.
We can see that the types are organized hierarchically. A Package con-
tains several Modules and a Module contains several Functions and Datatypes.
These Haskell data types are implemented as records. They contain fields
for meta data, e.g., an object’s name, comment or authors. This enables us
to access meta data in a structured way. Note that the object records are not
absolutely custom tailored for Haskell. They should fit as many functional
languages as possible. Specialties of certain languages are supposed to be
stored in the language specific fields.

Each object has a unique ObjectId that identifies it within the database
and allows direct access to that specific object. When talking about a
dependency hereafter, we refer to the reference of such an ObjectId. We
sometimes separate between internal and external ObjectIds. A dependency
is internal if the referring object is in the same package as the referred object.
It is external if the referring and referred object are in different packages.

All objects have a Status. This meta information represents the stability
or maturity of a given object. Claude currently offers a small set of different
states:

data Status = Alpha | Beta | Default | Deprecated

Listing 2.2. Definition of the Status data type

Though the status normally is not reflected by a programming language, we
annotate objects with it to give the programmer more information about the
objects he is working with. We also use the status to distinguish between
code in development and released code (Section 3.2.2).

The version field gives the version of a package. The version number
format corresponds to Haskell’s package version format. This reflects in the
type, which is just a wrapper around a list of numbers:

newtype Version = Version [Int]

Relationships between packages are modeled using the field pChild,
pBranches and pParent. pParent is used to model the relationship to a
parent package. The Parent (Listing 2.3) data type offers three constructors.
If the Parent is New, a package is independent from other packages. The

21

Chapter 2. Foundations and Technologies

1 data Parent = ChildOf ObjectId

2 | BranchOf ObjectId

3 | New

Listing 2.3. Definition of the Parent data type

ChildOf constructor references the parent package of a version update, i.e.,
if the current package is a version update of some package, it is the child of
that package. A package referred to from ChildOf contains the child package
identifier (ID) in the pChild field. There can only be one child of a package.
Thus, a hierarchy of child and parent packages is always linear. It is also
possible to branch a package. A branch is an experimental or development
version of a package. A branch sets its parent to BranchOf. All branches of a
package are listed in pBranches. We add the possibility to set a name for a
branch. We take a closer look to this change in Section 3.2.2.

Certain features of Haskell are not yet representable, e.g., type classes
are still missing. The same is true for non-functional features that are typical
for object-oriented or logical languages. But the data model should be easy
to extend with new objects for this kind of features.

The only parts of a program that remain in their original syntactic form
is the source code of a function or a data type. Source code stored inside
the cloud is enriched with hypercode references that show what a certain
syntactic object in the code refers to and depends on. Enriched source code
is represented as a list of CodeElems:

1 data CodeElem = CodeText Text

2 | CodeRef ObjectId Name (Maybe Qualifier) Text

3 | CodeBaseRef Name Qualifier Text

Listing 2.4. Definition of the CodeElem data type used to represent hypercode
references

The CodeText constructor just marks regular source code without any an-
notations. A reference to another object in the cloud is given by a CodeRef

object. It contains an ObjectId that identifies the other object, the Name of
the object it refers to, the optional Qualifier and the Text actually rep-

22

2.3. Claude: Code Cloud

resenting this reference in the original source code. Note that Name and
Qualifier are just synonyms for Text. As an example, if we assume objId

refers to Data.Maybe.fromJust, then a call of Data.Maybe.fromJust would be
annotated the following way:

CodeRef objId "fromJust" (Just "Data.Maybe") "Data.Maybe.fromJust"

The last constructor CodeBaseRef represents a reference to an object that
is predefined in the current language, e.g., the objects from the module
Prelude in Haskell.

Currently, the language specifics only support Haskell specific features.
The different language specifics are shown in Listing 2.5.

1 data LanguageModSpecifics =

2 HaskellModuleSpecifics [Pragma]

3
4 data LanguageFuncSpecifics =

5 HaskellFuncSpecifics { fPragmas :: [Pragma]

6 , fType :: [CodeElem]

7 , fDataType :: Maybe ObjectId }

8
9 data LanguageDatatypeSpecifics =

10 HaskellDatatypeSpecifics [Pragma] [ObjectId]

Listing 2.5. Definitions of the language specific data types

We can see that a module only gets the Haskell specific pragmatics as
annotation. The type Pragma is just a synonym for Text right now, but this
may change in the future. Functions get more Haskell specific information.
Aside of pragmatics they can also be annotated with their type signature
(fType). The type signature can contain hypercode references to the used
types. In case the function actually is a constructor it may contain the ID
to the data type it is from in the fDataType field. Data types again contain
pragmatics and a list of IDs to their constructors. Constructors are inserted
into the database as additional objects to allow searching for them.

Function and data type objects also contain an entry for dependencies.
Dependencies is just a container that collects the IDs of function and data
type objects the respective object refers to in its sources:

23

Chapter 2. Foundations and Technologies

data Dependencies = Dependencies

{ funDeps :: [ObjectId], dtDeps :: [ObjectId] }

The dependency data type is there to decide if a hypercode reference, in the
source code, refers to a function or data type.

Packages also contain a list of maintainers. They show who uploaded
the package and is responsible for it. Aside of that, the editor uses them to
control who is allowed to modify a package and its contents (Section 3.5).

2.3.2 Database

The Claude project group decided to use a document-oriented database.
They used MongoDB [mongo]. There are several reasons for this decision.
First of all, MongoDB does not require a predefined schema for the held
data. This gives flexibility when changing or extending a representation,
because a field can be added or removed on demand, without putting the
complete data set into jeopardy. Another reason was that the project group
wanted to see how well a NoSQL database meets their requirements and how
mature MongoDB in particular is. As a consequence Claude does not use
the persistent library [Snoa] Yesod usually advises as abstraction layer of the
database.

Claude uses the MongoDB Haskell bindings provided by the mongoDB
package [Han13] to access the database. This interface is generic and does
not offer type-safety while using it. All documents and queries in MongoDB
are expressed as BSON values. Therefore, every data type of the model
implements the Val type class from Section 2.2.2, which enables storing
them in the database. The Claude project group wrote a wrapper that offers
a type-safe interface to manipulate the data managed by Claude.

An abstraction over the MongoDB query language is provided by Claude.
The main abstraction is the Query data type that can be seen in Listing 2.6.

data Query a = Any | NotSet

| Equal a | NotEqual a

| ContainsAll a

Listing 2.6. Definition of the Query data type

24

2.3. Claude: Code Cloud

The constructor Any puts no constraint on the a field. NotSet requires the
field not to be set in the database record. The queries Equal and NotEqual

check if the respective value is equal or not equal to the given value. We can
use ContainsAll, if the queried field contains a list; it checks, if the queried
entry list contains all entries of the list given to ContainsAll.

Querys are used to create query data types for each of the objects stored
in the database. Listing 2.7 displays an example for such a query data type.

data QModule = QModule

{ mObjectId :: Query ObjectId

, mName :: Query Text

, mComment :: Query Text

{- ... -}

, mFunctions :: QFunction }

Listing 2.7. Excerpt of the query data type for Module

We can see that the fields match the entries of the module object, except that
the Query data type is applied to them. If we want to search for an object,
we just fill the entries of our query data type and pass it to the appropriate
interface function. Note, that the mFunctions entry in Line 6 has the type of
the query data type for functions QFunction; this is used to query a module
that contains a function matching the query of the QFunction value.

To manipulate the contents of the database we use the Modification data
type:

data Modification query modifier = Modification query modifier

Basically, it is a tuple that pairs a query and a modifier data type together.
The query then selects the value that needs to be modified and the modifier
says how they shall be modified. The modifier data type has the same
structure as the respective query data type, but instead applies the Modifier

type from the following listing to each field:

data Modifier a = Unchanged

| Set a | Unset

| Add a (Maybe Int) | Remove a (Maybe Int)

25

Chapter 2. Foundations and Technologies

If the entry is set to Unchanged it remains unchanged. Set and Unset replace,
add or remove the field from the document. If the field contains a list Add
and Remove can be used to add or remove an entry of that list. The optional
Int parameter is needed for nested lists and specifies in which sublist to
add or remove the given value, if set.

The Claude.Server.DataInterface module provides a variety of func-
tions to access the database using queries and modifications. We will not go
into further detail on these functions, since we will not use them directly.

Claude also provides a way to apply a full-text search to the contents of
the cloud; this full-text search uses an index that MongoDB supplies. Using
the search facility, we can also find objects that contain a search term in
one of their meta information fields, e.g., in their comments or one of their
authors.

There are some limitations and problems with MongoDB that we will
discuss in Section 4.2 and 4.3.

2.3.3 Authentication

To authenticate as a user we have to login using a user name and a password.
When logging in, Claude generates a unique token that is associated with
the current user in the database. Then this token is saved in an encrypted
cookie of the users browser. Once the user accesses Claude again, the
token can be read from the cookie and Claude can find the associated
user information in the database. Claude originally supported only one
token associated with a single user, which prevents her from using different
devices at the same time. A token is only valid for a specific amount of time
to prevent a user from staying logged in forever. Section 3.2.1 explains all
changes made to the authentication process of Claude.

26

Chapter 3

Implemenation

In this chapter we look at the implementation of the editor. Therefore, we
talk about the application structure in Section 3.1 and proceed with the
changes required in Claude (Section 3.2). After the foundations, Section 3.3
introduces the user interface. The last three sections look at specific aspects
of the implementation. Section 3.4 highlights language specific behavior.
After that, we introduce the development interface that is used to commu-
nicate with Claude in Section 3.5 and close by looking at the specifics of
network communication in Section 3.6.

3.1 Application Structure

When designing the application’s general structure, we made the decision
to separate the editor from Claude. This allows exchanging either the
editor or Claude afterwards in case there is a radical change to one of these
components. Thus, the editor can be reused if Claude is rewritten at some
point or if a completely different architecture is developed.

The different layers resulting from this decision can be seen in Figure 3.1.
To separate the editor and Claude from each other we wrote a development

Claude
Development Interface

Code Cloud Editor

Figure 3.1. Logical structure of Claude and the editor

27

Chapter 3. Implemenation

HTTP communication

HTTP communication

Claude

Code Cloud Editor Server

Web Browser (Editor GUI)

Figure 3.2. General communication structure of Claude and the editor

interface that the editor uses to communicate with Claude. All data and
requests are sent through this interface. We will take a closer look at the
different operations the interface provides in Section 3.5.

We also do not want to replicate the data management already provided
by Claude. Therefore, the editor does not store any persistent data; this
reflects in the development interface. Not storing data in the editor also
avoids the need to manage inconsistencies between editor and Claude data,
though this problem reoccurs with the editor GUI as we will discuss in
Section 4.4. Nevertheless, the editor does need to save session information
of the current user to log in to Claude. We use cookies to save the session
data in the user’s web browser. Section 3.5 and 3.5.1 will give an overview
of the authentication process.

When running the editor, we typically have three instances communi-
cating with each other using HTTP, which are shown in Figure 3.2. First of
all, we have the web browser that displays the GUI to the user. The GUI is
initially provided by the editor server. Once the GUI is deployed, it requests
information from and sends updates to the editor server via HTTP. The
editor server decodes these requests and uses the development interface
to send them to Claude. After processing the request, Claude sends an
answer back as response. We will highlight further details of this process in
Section 3.6.

The described architecture decouples the editor from a specific Claude
instance such that several editors can work on one cloud or one editor can

28

3.2. Changes to the Code Cloud

work with different instances of Claude.

3.2 Changes to the Code Cloud

Claude was structured as one monolithic package when we began to develop
the editor. Of course, we do not want the editor to depend on the Claude
package code-cloud, because then each instance of an editor would be
required to install the complete code cloud. In consequence we restructured
the package and created several other packages as can be seen in the
dependency graph of Figure 3.3

First of all, we move the shared structures and logic to a separate package
we call code-cloud-data. The package does not only contain shared data
structures; it also provides the code to serialize and deserialize those data
structures into JSON or BSON. Serialization is important for network commu-
nication (JSON) and to enable storing the data structures in MongoDB (BSON).
The serialization code is thoroughly tested using QuickCheck [CBS13] tests
to give confidence that it works correctly. Aside of serialization the package
also provides network infrastructure that is used in all other packages of
the project. We highlight the provided infrastructure in Section 3.6.2.

The development interface is in the additional package code-cloud-

interface. This division allows different applications to also use the in-
terface for development access to the cloud and enables exchanging the

code-cloud code-cloud-interface

code-cloud-editor

code-cloud-data
(data structures, serialization, network infrastructure)

implicit dependency

network communication

Figure 3.3. Package dependency graph of Claude and the editor

29

Chapter 3. Implemenation

editor without touching other components. The interface package currently
only depends on code-cloud-data because all communication with Claude
is done over network. If required, the interface package can be exchanged
with an alternate implementation. Details of the development interface are
discussed in Section 3.5.

Last but not least, the editor is provided through the package code-cloud-

editor. This package only depends on the interface and the data package,
but not on code-cloud due to the reasons mentioned above.

3.2.1 Authentication

Originally every time a user logged in to Claude, exactly one token was
generated and associated with that user to identify him by his cookie. This
approach works fine, if a user only uses a single device and browser to
access Claude, but it leads to problems once there are several different
devices or browsers. If another device logs in, it would replace the token
associated with the user, and thus, log out any other device currently logged
in. We need the ability to be logged in from two different places at the same
time, e.g., a user may access Claude and the editor simultaneously.

To allow several different devices to be logged in with the same user
account, we extend the original mechanism. We now allow multiple tokens
to be associated with a single user. Each time a new device logs in, a new
token is generated for that device and associated with the user that logged
in. This way each device can log in and out independently. In case a user
does not log out properly, the list of associated tokens is cleaned up each
time it is accessed. The cleanup uses time stamps, that are associated with
each token and limit its validity.

During the time of writing, we noticed that it may be possible to simplify
our enhancement by using only one token per user. Instead of generating
a new token each time a user logs in to Claude, we could just lookup an
already existing token and hand it out to the new device. A log out could
be realized by simply deleting the cookie on client side. This would also
guarantee that a user is automatically logged out after a certain amount of
time, because of the cookie’s time stamp. The only advantage, we see in our

30

3.2. Changes to the Code Cloud

approach, is that the server ensures a device is logged out after a certain
amount of time, and we do not have to trust the browser to invalidate its
cookies correctly. We decided not to change the system again, as it works as
is.

3.2.2 Data Model

Claude’s data model, as presented in Section 2.3.1, needs to be altered to fit
the purposes of the editor.

First of all, we extend the Parent data type from Listing 2.3. We add the
ability to name branches by adding a Text field to the BranchOf constructor.
This makes sense in context of the editor, since there may be many different
development branches of a package at the same time. Without human read-
able names for each branch it would be hard for a developer to distinguish
them from each other. Therefore, we ensure that each branch of a package
needs to have a unique name among all other branches of that package. A
valid branch name consists of an alphanumeric character at the beginning
followed by dash (-), underscore (_) or other alphanumeric characters. The
same restrictions now also apply for package names.

Another important change is to add the Development status to the Status

data type from Listing 2.2. The Development status is used to mark objects,
which may be modified and changed. When searching for objects in Claude,
development objects are ignored to restrict people from referring to code
that may change in future. More details about the general requirements to
allow modifications of objects in Claude, when using the editor, are given
in Section 3.5.

3.2.3 Database Access

Functions to access the database within Claude were collected in the
Claude.Server.Interface and Claude.Server.DataInterface modules. We
refer to these modules as Interface and DataInterface from now on. The
Interface module contains low-level database access functions, while the
DataInterface module offers a more high-level and restricted access.

31

Chapter 3. Implemenation

First, we ensure that all database access in Claude is done through
the DataInterface functions; there were several places that bypassed this
module and used functions from Interface directly. Since DataInter-

face contained many functions that only differed by the call of utility
functions we remove these duplicates. The interface was still large after-
wards, so we created two further modules, Claude.Server.UserInterface
and Claude.Server.DevelopmentInterface. The UserInterface contains all
database functions related to user data. The DevelopmentInterface provides
all functions that allow modification of database objects. Note that the
DevelopmentInterface module does not provide the development interface
used by the editor, though that interface mostly relies on functions from the
module.

Secondly, we needed to filter objects in development status from Claude’s
search results, because it should not be possible to reuse a development
package until it is released. We need to ignore objects in development status,
because the search is used to suggest annotations while developing code.
Therefore, development objects would just pollute the search results and not
deliver useful information to a user. To do so we had to add the NotEqual

constructor to the Query data from Listing 2.6. Only through this query we
can select packages that are not in development status.

Thirdly, we had to implement a simple transaction manager for database
queries, because at some point we could not express our queries in one step
anymore. This transaction manager is only used for write access, not for
read access. It has many limitations and is a work around for the missing
capabilities of MongoDB. We will give a more detailed explanation of the
used techniques and the limitations in Section 4.2.

The last set of changes was adding a HTTP-based JSON interface to the
modification functions given in DevelopmentInterface. It is accessed by the
development interface, we introduce in Section 3.5, and uses the capabilities
of the automated JSON transfer infrastructure we developed (Section 3.6.2).

32

3.3. Graphical User Interface

Figure 3.4. Login screen of the editor

3.3 Graphical User Interface

The editor’s GUI mainly consists of two parts: the actual editor and the
package management.

Before either of these are visible to a user, she has to log in (Figure 3.4).
To do so she has to specify the Claude server to work on and credentials of
a valid user account on that server.

Every view of the editor displays the main navigation bar at the top of
the view port, as seen in Figure 3.4 and 3.5. If the user is not logged in, the
navigation bar only contains a link to the login page. Otherwise, there are
links to manage the packages, create a new package, or log out.

3.3.1 Package Management

The package management is the landing page after the login and gives an
overview of all packages; it separates between those packages that are in
development status and those that are already released in Claude. Figure 3.5
shows the package management page. Only packages that are maintained
by the currently logged in user are displayed. A user has the possibility to
execute the following operations from the package management page:

33

Chapter 3. Implemenation

Figure 3.5. Package management landing page of the editor

“Edit” Opens the editor view for the selected development package. The
editor view is presented in Section 3.3.2.

“Release” Opens a form to release the selected development package in
Claude. The form can be seen in Figure 3.6. We can set the release status,
the new version and the parent package in case we want to release the
development package as a new version of that package. Since we are
ready to release the development package, we are also offered to delete
it after the release.

“Branch” Opens a form to create a new development branch of the selected
package. The user can supply the branch name. This form looks similar
to the form in Figure 3.6.

“Delete” Deletes the selected development package. As this operation is
irreversible, there is a security question to ensure that the user really
wants to delete the package.

34

3.3. Graphical User Interface

Figure 3.6. Form to release a package in the editor.

“New Development Package...” Opens a form to create a new empty develop-
ment package. The form requires to supply a name for the new package.
This functionality can also be reached using the entry “New Package” in
the navigation bar.

3.3.2 Editor View

When the user decides to edit a development package, by pressing the “Edit”
button, he is directed to the editor view, which is displayed in Figure 3.7.

When inside of the editor view, the navigation bar contains an additional
entry that leads to the current view. This is mainly there to provide orienta-
tion for the user, but can also be used to reload the editor view or open it in
another tab.

The editor view is structured hierarchically. At top-level we can modify
the package we are working with. First we see a toolbar with operations,

35

Chapter 3. Implemenation

Figure 3.7. Package-level editor view

that are available at package-level. The toolbar is followed by form fields
to modify package meta information. At last, we see the list of modules
contained in the package. Clicking on a module unfolds an editor for that
module. The following operations are available at package-level:

“Save Package” Saving a package, hierarchically, saves all changes in the
editor; this also includes the modules, functions and data types.

“New Module...” Unfolds an editor to create a new module. More informa-
tion on this operation will be given in Section 3.3.3.

“Reload Package Data” This operation reloads all information in the editor,
i.e., every change or old data is overwritten with the most current
package data from Claude.

The unfolded module-level editor is structured similar to the package-
level editor, as illustrated in Figure 3.8. There is a toolbar with operations

36

3.3. Graphical User Interface

Figure 3.8. Module- and function-level editor view

37

Chapter 3. Implemenation

Figure 3.9. Dialog to confirm deletion of a module

available for the module, similar to the one at package-level. The toolbar is
followed by forms for meta information as well as the list of functions and
data types contained in the module. Each of the functions and data types
can be unfolded to reveal their editors. Note that the module editor from
Figure 3.8 already contains an unfolded function editor. The operations
available for modules are:

“Save Module” Saving a module also works hierarchically and saves all
contained functions and data types in addition to the changed meta
information. Changes to other modules or the package meta information
are not saved.

“New Function...” and “New Datatype...” Creates a new entry to create a new
function or data type. We will explain this operation in Section 3.3.3.

“Delete Module” Deletes the current module from the package. There is a
security question (Figure 3.9) to ensure that the user really wants to do
this, since this operation is irreversible.

One major difference when looking at the function or data type editor
is that they also contain a source code editor as last element, which is
shown in Figure 3.8. We will explain the details of the editor component in
Section 3.3.4. The operations available at function- and data type-level are:

“Save” Saves the changes to the current function or data type. This does
not save changes of other objects, the parent module, or package.

38

3.3. Graphical User Interface

no

yes
Start

with empty
package?

Create new package;
Select package name

Branch package;
Select branch name

Edit package
in editor view

Release package

Optional: Delete
development package

Figure 3.10. Workflow to develop a new package

“Delete” Deletes the function or data type from the module. As for the other
delete operations, this one also asks a security question similar to that in
Figure 3.9.

The editor view is structured hierarchically, because we think it gives a
good view at the semantical structure of a package.

3.3.3 Usage and Workflow

We had several workflows in mind when designing the editors GUI.
First of all, there is a general workflow to develop new packages; it can

be seen in Figure 3.10. When developing a package the user first has to
decide if her new package shall be based on code of an already existing
package, or if she wants to develop a completely new package. Depending
on her decision, a branch or package name has to be selected. Once the

39

Chapter 3. Implemenation

abort

Press creation button

Open preliminary
editor entry

Provide language specific
information

Execute language specific
generator in Claude.

Work with new object

createCreate
object or

abort?

Preliminary entry removed

Figure 3.11. Workflow to create a new module, function or data type object

new development package was created, the user can change or modify her
package in the editor view. When finished with changing or modifying, the
user can release her package and then optionally delete the development
package afterwards.

Editing a package means to use the editor view. Of course, the editor
view has its own workflow. The usage in general should be clear from
the previous section, but there are still is a workflow that needs further
explanation.

The workflow of creating new objects aside from packages, in general,
is the same for modules, functions and data types and can be seen in
Figure 3.11. First of all, the user has to press the button to create a new
object. This button opens a preliminary entry in the editor view. An example

40

3.3. Graphical User Interface

Figure 3.12. Editor view to create a new data type object

of such a preliminary entry for a new data type can be seen in Figure 3.12.
The user can provide language specific information to initialize the object
with. In case of a module, the development language and name is asked for.
For a function or data type the user can enter their source code. The source
language is determined by the module that contains the new function or
data type. After entering this information, the user can decide if he really
wants to create the object or abort the operation. If he selects to abort, the
preliminary entry is removed and no changes take place. Otherwise, a
language specific generator is called through the development interface, and
the object is inserted to the database. Then the user can work with the new
object, as he does with any other object in the editor view.

Note that the preliminary entry, used to enter language specific code, is
also a hidden dialog to confirm that the user really wants to create a new
object.

3.3.4 Hypercode Editor Component

The hypercode editor component is the part of the GUI that allows the user
to edit and annotate code with hypercode references. We use CodeMirror
[codemirror] as a JavaScript based text editor and extend it with the func-
tionality needed. An example of the hypercode editor component in action

41

Chapter 3. Implemenation

Figure 3.13. The hypercode editor component with activated tooltip and autocom-
pletion

can be seen in Figure 3.13.
In a first step, we add highlighting of existing hypercode references; they

are displayed in an underlined blue font. When hovering over a hypercode
reference a tooltip for it is displayed. Figure 3.13 shows an example of
the hovering behavior. The tooltip links directly to Claude, so a user has
additional information about the hovered reference at hand.

In order to implement this behavior, we use the text-marking feature of
CodeMirror mentioned in the introduction (Section 2.1.4). The hypercode
references of our source are stored as an array of objects. Each of these
objects represents one reference. We look at an example to show their
structure:

1 { from: { line: 2, ch: 5 }

2 , to : { line: 2, ch: 11 }

3 , ref : { _id : "5310958f321c6a249f000003"

4 , name : "isJust"

5 , text : "isJust"

6 , qualifier: "Data.Maybe" } }

42

3.3. Graphical User Interface

The from and to field delimit the range of the reference within the source
code. The actual reference is given in the ref entry. In Line 3 to 6 of
our example we see a reference as it would be represented by the CodeRef

constructor from Listing 2.4. A CodeBaseRef would just omit the _id field.
Assuming this.refs is an array that contains all references, we create

the text-marks in the following way:

1 _.forEach(this.refs, function(ref) {

2 ref.marker = this.getDocument().markText(ref.from, ref.to,

3 { className: ’editor-hypercode-ref’

4 + ’ ’ + ref.getClassId()

5 , addToHistory: false });

6 ref.marker.hypercodeRef = ref;

7 }, this);

8
9 _.forEach(this.refs, function(ref) {

10 $(’.’ + ref.getClassId(), this.getScopeElement())

11 .mouseenter(this.handleMarkHoverInEvent(this, ref));

12 }, this);

The first loop from Line 1 to 8 creates all marks and associates each reference
with a created mark. The getDocument method returns the CodeMirror
document object, which we use to create the mark using the markText

method. Note that we set the CSS class to editor-hypercode-ref and the
return value of getClassId. editor-hypercode-ref is used to style the text-
mark. The result of getClassId identifies the reference’s target, which is
important for the second loop from Line 10 to 13. The loop selects all
elements with this identifying class to associate the event handler, which
we call when hovering over the mark.

The getClassId method, is a utility added to the reference by the hy-
percode editor component. The this object in our code refers to the object
that represents the current hypercode editor component. getScopeElement
returns the DOM node that contains the editor. To limit the part of the
DOM tree the dollar function searches, we pass a DOM node to the function.
Limiting the scope is important to ensure that our code does not interact

43

Chapter 3. Implemenation

with other editor components, that may use the same class name for their
marks.

It is very important that both loops are separated from each other. Due to
the creation of marks, the DOM tree of the CodeMirror instance may change
after each call to markText. These changes can invalidate the event handlers
associated with the text-mark element. Therefore, we have to associate
the event handlers with the text-mark element, after the DOM tree’s final
structure is known.

In a second step, we implement the removal of hypercode references
when editing code. When changing or removing text that is part of a
hypercode reference, the reference is automatically removed. The removal is
done using the "change" event from CodeMirror. The event supplies an event
handler with the location and range of a change. If one of the reference
overlaps with this range, it is removed. All other references are updated
correctly according to the change by using their find method and updating
the reference ranges.

There are some problems with CodeMirrors edit history in this context.
Since CodeMirror does not allow replacing or tapping into its edit history,
we have to implement our own history and manually synchronize it with
the edit history. Our custom history class is very general, because it just
stores two functions for each operation, one to undo and one to redo the
operation:

1 CustomHistory.prototype.addChange = function(undoOp, redoOp) {

2 this.changes.push({ undo: undoOp, redo: redoOp });

3 if(this.changes.length > this.maxUndoDepth) {

4 this.changes.shift();

5 }

6 this.undoneChanges = [];

7 };

The addChange method is called every time the CodeMirror document changes
and appropriate actions to re- and undo the operation are passed in. These
functions are stored in our history in Line 2. From Line 3 to 4 we have to
check if we have reached the maximum history length; if this is the case, we

44

3.3. Graphical User Interface

delete the oldest entry. All undone changes are invalidated after by Line 6,
because we only manage a list of changes, not a tree.

If a change indicates that it is an undo or redo operation, we call the
undo or redo method of our history. Since both are similar, we only look at
the undo function:

1 CustomHistory.prototype.undo = function() {

2 if(_.isEmpty(this.changes) === false) {

3 var change = this.changes.pop();

4 change.undo();

5 this.undoneChanges.push(change);

6 }

7 };

Line 2 checks if there are any changes to undo; if so, we get the latest change
in Line 3 and call the associate undo function. At last, in Line 5, we add the
change to the stack of undone changes, so we are able to redo the change if
necessary.

Calling our history in sync with all change events makes sure that
hypercode references are undone and redone correctly.

At last, we need to add a possibility to add new hypercode references
to the source code; this is done using an autocompletion plug-in that
CodeMirror offers [codemirror-a]. When activated using the keys ctrl+space,
it uses the current token at cursor position to search the current package
and Claude for possibly fitting elements. There also is a possibility to state
that code is predefined. Figure 3.13 shows autocompletion. Note that the
kind and language of objects depends on the language specific settings
currently activated; we will highlight this in Section 3.4. The search interface
used for autocompletion will be introduced in Section 3.5.3. There are some
limitations when using autocompletion due to the database Claude uses;
these will be explained in Chapter 4.

45

Chapter 3. Implemenation

Figure 3.14. Dialog displayed by the editor view when waiting for asynchronous
communication

3.3.5 Asynchronous Operations

Each time a change is saved through the editor view network communication
with the editor server is required. Since we do not want to reload the editor
view for each change, we use JavaScript and AJAX to communicate with the
server. This communication is asynchronous, which means there is a time
window where an operation has been requested, but the changes resulting
from the request have not yet been received and displayed in the view’s
surface. During this time the user can make changes that lead to an invalid
state of the editor. The changes can also be overridden by the response.
Hence, we need to keep the user from making those changes.

There are different ways to handle this time window. One would be to
make the AJAX communication synchronous. However, this is not desirable
and major browsers advise against it [mdn; chrome; msdn; Ros11] since
it blocks JavaScript execution and can lead to a “frozen” screen while
the communication takes place. The “frozen” screen is due to JavaScript
execution being done in the same thread that is responsible for rendering
the web page in those browsers.

Therefore, we keep communication asynchronous, but open a modal
dialog during the period of time we are waiting for a response. We also
disable all forms so the user cannot create an invalid state in between. An
example of such a dialog can be seen in Figure 3.14. If the communication
is successful and Claude accepts all changes, we just close the dialog again.

46

3.4. Language Specific Customization

Figure 3.15. Dialog for server-side error messages in the editor view

In case there is an error, it is displayed, as can be see in in Figure 3.15.
Currently all information available in a received error object is displayed.
Future versions of the editor may choose to render messages differently to
give the user a more pleasant experience.

A special case of this asynchronous communication is loading a tooltip
for hypercode references in the editor component. Loading such a tooltip
should happen as a background operation, because, otherwise, it would
interrupt the user’s workflow considerably. Therefore, we just display a
loading animation in the tooltip area instead of opening a dialog. In case
the user wants to see the tooltip of another element before the latest tooltip
was loaded, the request is aborted and a new request is started.

We will give an example of an asynchronous JavaScript request when
we talk about network communication in Section 3.6.1.

3.4 Language Specific Customization

Although the goal of the editor is to offer a language independent way to
develop code in Claude, not every aspect of a language can be captured
with the concepts introduced in Claude. Therefore, the language specific
types from Listing 2.5 were introduced to the model. This means parts of

47

Chapter 3. Implemenation

the editor and also parts of Claude need to handle these language specific
aspects.

3.4.1 User Interface Customization

In general the editor view is language independent, but we provide an
interface to customize for a language through the JavaScript object Language-
Specifics. It offers the getLanguageSpecifics method to get data about
language specific customizations that can be applied to the editor. Cur-
rently only the language "Haskell" is supported. The object returned for
customization is guarenteed to have the following methods:

getLanguage() Returns the name of the language.

getCodeMirrorMode() Returns a mode object [codemirror-b] used to con-
figure the CodeMirror instances of the editor view. The mode object
configures indentation rules, syntax highlighting and other editor set-
tings.

getAutocompleteInfo(autocompleteEntry) Returns a string that is displayed
as additional information for a given autocomplete entry. This is respon-
sible for type signatures appearing when autocompleting Haskell code
(Figure 3.13).

getAutocompletePredefined(token) Returns an object with information if
the given token can be annotated as a predefined object and how that
reference shall look. Figure 3.13 shows a predefined object generated
with this method.

isAutocompleteToken(token) Checks if autocompletion should be offered
on the given token. This method prevents autocompletion from being
offered for keywords or built-in constructs of a language.

getEditorTitleInfo(editorType , editorData) Returns an object with ad-
ditional information to display along with the name of the editor entry.
This method is responsible for displaying the type signature and com-
ment in the title line of each editor entry as can be seen in Figure 3.8.

48

3.4. Language Specific Customization

Figure 3.16. Validation of an editor view form field

isGeneratedObject(objType, objData) If the given object is generated by
Claude, isGeneratedObject returns true, otherwise false. This method
is used to hide generated objects in the editor, because they should not
be modified by hand. As an example, generated constructor functions
of data types are not available for editing when working with Haskell
code, because of this method. We keep this method general, because not
yet supported languages may generate other objects.

getRequestedAutocompletes() Returns a dictionary to configure which kind
of objects shall be offered for auto completion. The dictionary also
configures the language of the offered objects. This information is used
to feed the autocompletion search offered by the development interface
presented in Section 3.5.

isValidName(type, name) If the given name is a valid name for an object of
the given type, isValidName returns true, otherwise false. This method
is used for validation of names before they are sent to Claude. An
example can be seen in Figure 3.16.

createLanguageSpecificForm(objType, objData, formEditor) Creates the meta
data form for language specific data. Figure 3.8 shows a function editor
that was enriched with a form for type signatures using this functionality.

More detailed and specific information can be found in the comments of the
LanguageSpecifics object, which is defined in static/js/editor/Language-

Specifics.js of the code-cloud-editor package.

49

Chapter 3. Implemenation

3.4.2 Object Handling in Claude

As Section 3.3.3 already mentioned, actions in Claude often involve language
specific operations. These operations are used to correctly update the
model depending on the language. To give an example: each time a
Haskell data type is modified, Claude needs to update the constructor
functions, which are autogenerated function objects. Though this example
is not yet implemented, Claude already offers an interface where this
functionality can be implemented easily. The interface is provided through
the module Claude.Server.LanguageSpecific, which offers the data type
LanguageSpecific, that is illustrated in Listing 3.1.

1 data LanguageSpecific m = LanguageSpecific

2 { lsAddFunction :: ModuleId Ñ [CodeElem] Ñ Package

3 Ñ SessionMonad m (Package, Function)

4 , lsAddDatatype :: ModuleId Ñ [CodeElem] Ñ Package

5 Ñ SessionMonad m (Package, Datatype)

6 , lsAddModule :: Name Ñ [Author] Ñ Package

7 Ñ SessionMonad m (Package, Module)

8 , lsModifyFunction :: Function Ñ Function Ñ Package

9 Ñ SessionMonad m Package

10 , lsModifyDatatype :: Datatype Ñ Datatype Ñ Package

11 Ñ SessionMonad m Package

12 , lsModifyModule :: Module Ñ Module Ñ Package

13 Ñ SessionMonad m Package

14 , lsRemoveFunction :: Function Ñ Package Ñ SessionMonad m Package

15 , lsRemoveDatatype :: Datatype Ñ Package Ñ SessionMonad m Package

16 , lsRemoveModule :: Module Ñ Package Ñ SessionMonad m Package

17 , lsValidateFunction :: Function Ñ SessionMonad m ()

18 , lsValidateDatatype :: Datatype Ñ SessionMonad m ()

19 , lsValidateModule :: Module Ñ SessionMonad m ()

20 , lsValidatePackageModules :: Package Ñ SessionMonad m ()

21 }

Listing 3.1. Data type to define language specific functionality in Claude

50

3.4. Language Specific Customization

The type parameter m specifies the monad transformer stack the functions
stored in LanguageSpecific work on. We could provide the stack directly,
but using a type parameter decouples the data type from the rest of our
application and allows us to write more general code.

We can see that there are four groups of functions offered by Language-

Specific. Most of these functions take a package and return a modified
version of that package. Functions to handle packages are not offered, as
packages are assumed to be language agnostic. The offered functions all run
within the SessionMonad to give access to the database in case it is required
for the language specific functionality. This access should only be used for
read access and not for write access. The changes made are all written back
automatically after the language specific functionality has been accessed.
Hence, writing to the database from within the interface functions may
cause an invalid state or lead to an unnecessary additional update.

First of all, the functions in Line 2 to 7 generate new objects from their
parameters. The first two create a function or data type depending on the
sources given to them; it is added to the module with the given ID. The
third function creates a new empty module with the given name and author.
Note that the parameters of all three functions reflect exactly what can be
entered in the editor view when creating a new object with it, as explained
in Section 3.3.3 and displayed in Figure 3.12.

The second group of functions in Line 8 to 13 modifies an existing object.
As such a modification may require knowledge about the old version of
that object, they always receive the old and the new version of the object to
update as their parameters.

At last, the functions in Line 14 to 16 remove objects and the functions
in Line 17 to 20 are responsible for performing language specific validation.
In the context of Haskell, validation would check if names are unique and
valid within their scope. Note, the last function lsValidatePackageModules

is only there to perform checks that require knowledge of all modules in a
package, e.g., if the module name is unique. To check a single module for
consistency, we provide the function lsValidateModule.

There are separate functions to validate objects, because the validation
done within the functions to add, modify or remove objects would always

51

Chapter 3. Implemenation

be the same. Therefore, it is more consistent to implement validation at
this central point. Validation is always performed before writing back
changes. The separate validation is another reason why functions in the
interface should not modify the database, because those changes would not
be validated properly.

The function getLanguageSpecific is used to retrieve a LanguageSpecific

record for a given language:

getLanguageSpecific :: (Sessionable m) ñ Language

Ñ Maybe (LanguageSpecific m)

Currently the only supported Language is Haskell. If the given language is
not found in the map of available language specifics, Nothing is returned.
Trying to create, update or remove an object for an unsupported language
leads to an UnsupportedLanguageFailure.

3.5 Cloud Development Interface

The development interface provides the link between the editor and Claude.
The editor uses the interface to access the development features of Claude
and manipulate the data it stores.

The interface offers the usual create, read, update and delete (CRUD)
operations and session management operations. All operations require to
run in a monad transformer stack that implements MonadIO [hackage-b],
because network communication and database access are side-effects and
need to be lifted into the IO monad.

To indicate failures, all operations return an Either value. The return
value can either contain an ExternalFailure if something went wrong or
the actual result of the operation.

All functions also require a CloudContext as first parameter. The cloud
context supplies the operation with all information needed to contact a
specific instance of Claude. The current implementation of CloudContext is
as follows:

52

3.5. Cloud Development Interface

data CloudContext = CloudContext

{ cloudHost :: String

, cloudPort :: Int

, cloudSession :: Maybe Cookie

, cloudToken :: Maybe TokenObj

, cloudHttpLogOutput :: Bool

, cloudConnManager :: Manager }

First of all, it contains the host address and port of the Claude instance
we want to work with. When logged in, the entry cloudSession contains
the cookie Claude uses to identify users. The token associated with the
current user is stored in cloudToken; it is stored independently of the cookie,
because we can not read the contents of the cookie as it is encrypted by
Claude. During authentication, the JSON interface of Claude returns the
token as result to give us access to it. The cloudHttpLogOutput entry tells
the interface if it should log debugging information when called. At last,
the Manager is needed by http-client to create new network connections and
reuse old ones where possible.

The implementation of CloudContext can be exchanged later on if the
implementation of the interface changes. The interface provided for Cloud-

Context consists of the following functions:

mkCloudContext :: MonadIO io ñ (String, Int) Ñ io CloudContext

serializeContext :: MonadIO io ñ CloudContext Ñ io ByteString

deserializeContext :: MonadIO io

ñ ByteString Ñ io (Maybe CloudContext)

To create a new context we offer the mkCloudContext function, which only
requires the host and port as parameters; it is the only function that may
reflect a change in the underlying implementation of the interface, as it
may require different input to create a new context. serializeContext and
deserializeContext can be used to save and load a context; the session
management of the editor uses these functions every time the context is
stored inside or loaded from the cookie.

The user is required to be logged in for almost all of the operations in-
troduced in the following sections; an exception are the read operations and

53

Chapter 3. Implemenation

the authentication functions. Additionally, only maintainers of a package
have the right to create new objects in a package, manipulate objects or
delete them.

3.5.1 Authentication

Most operations of the development interface require the user to authenticate
before he is allowed to modify the objects in the database. As mentioned
earlier, the editor does not store any persistent data. Thus, the editor does
also not manage its own user accounts. We use user accounts that already
exist within Claude for authentication. The three operations from Listing 3.2
manage authentication with Claude.

1 login :: MonadIO io ñ CloudContext Ñ (String, String)

2 Ñ io (Either ExternalFailure CloudContext)

3
4 logout :: MonadIO io ñ CloudContext Ñ io CloudContext

5
6 isLoggedIn :: MonadIO io ñ CloudContext Ñ io (CloudContext, Bool)

Listing 3.2. Development interface functions to authenticate

All of the functions need a CloudContext to supply them with all information
about the Claude instance to contact; they also may modify the context
during their execution and return an updated version of the context.

To authenticate we call login. In addition to the context, we have to
supply a user name and password in the tuple of the second argument. If
authentication was successful the updated context is returned.

We call logout if we want to log out. Logging out is always successful,
even when we are not logged in.

The last operation isLoggedIn checks if the given context is authenticated
with the cloud. In case the authentication timed out, isLoggedIn eventually
updates the context.

54

3.5. Cloud Development Interface

3.5.2 Create Operations

The create operations generate new objects within the database.
When we talk about a package clone in the following paragraphs, we mean

an exact copy of a package, but object IDs are mapped to newly generated
ones. Thus, there exists a bijection between the object IDs of the package
and the package’s clone. References to external IDs are not changed.

The three functions from Listing 3.3 create new packages or release
existing ones.

1 createDevelopmentPackage :: MonadIO io

2 ñ CloudContext Ñ Name Ñ Version

3 Ñ io (Either ExternalFailure Package)

4
5 createDevelopmentBranch :: MonadIO io

6 ñ CloudContext Ñ PackageId Ñ BranchName

7 Ñ io (Either ExternalFailure Package)

8
9 releaseDevelopmentPackage :: MonadIO io

10 ñ CloudContext Ñ Maybe PackageId

11 Ñ Version Ñ Status Ñ PackageId

12 Ñ io (Either ExternalFailure Package)

Listing 3.3. Development interface functions to create and release packages

The first two functions create new development packages. createDevelop-
mentPackage creates a new empty package with the given initial name and
version. createDevelopmentBranch creates a branch of an already existing
package; it creates a package clone for the package with the given ID. The
package or branch name given to either of these functions has to comply
with the new rules for package and branch names, that were introduced in
Section 3.2.2. These names are not subject to language specific validation,
since we assume that packages are language agnostic.

A finished development package can be released with releaseDevelop-

mentPackage; it creates a package clone of the package with the ID given by
the last parameter. The clone is updated with the new version given. If a

55

Chapter 3. Implemenation

package ID is given in the second argument, it is used as parent package
and the clone is the child of that package. This only works if the releasing
user also maintains the parent package and the new version is larger than
the version of the parent. Of course, the parent may not already have a child
package. Releasing a package only works if all objects of the package to
release are in development status. All objects of the cloned package receive
the new status given in the fourth argument; it may not be the Development

status.
The next three functions in Listing 3.4 are there to create modules,

functions and data types in an existing package.

1 createDevelopmentModule :: MonadIO io

2 ñ CloudContext Ñ Language Ñ PackageId Ñ Name Ñ [Author]

3 Ñ io (Either ExternalFailure (Package, Module))

4
5 createDevelopmentFunction :: MonadIO io

6 ñ CloudContext Ñ Language Ñ PackageId Ñ ModuleId Ñ [CodeElem]

7 Ñ io (Either ExternalFailure (Package, Function))

8
9 createDevelopmentDatatype :: MonadIO io

10 ñ CloudContext Ñ Language Ñ PackageId Ñ ModuleId Ñ [CodeElem]

11 Ñ io (Either ExternalFailure (Package, Datatype))

Listing 3.4. Development interface functions to create modules, functions and data
types

All of the functions require the altered package to be in development status;
they also return an updated version of the modified package along with
the newly created object. Both are returned, because the language specific
operations (Section 3.4.2), run to create the new object, may generate further
objects that are also inserted into the package. An example of such further
objects are the data type constructor functions, that should be inserted to
a package every time a data type is created. We also have to supply the
language to create the object for as second argument, because otherwise
Claude can not decide which language specific generator to use.

New modules can be created with createDevelopmentModule. The ID of

56

3.5. Cloud Development Interface

the package to insert the modules into, the name and the authors are also
given. The new module is empty initially.

createDevelopmentFunction and createDevelopmentDatatype create a new
function or data type object respectively. The new function or data type is
generated from the annotated source code given in the last argument. We
also have to supply the ID of the package and module to insert the new
object into.

Note that, the parameters these functions accept exactly match the
information that is requested from the user through the editor view. Looking
at the signature of these functions, the workflow presented in Section 3.3.3
seems logical.

3.5.3 Read Operations

The read operations just retrieve certain objects from Claude. There are four
of them, which are listed in Listing 3.5.

1 getObject :: MonadIO io ñ CloudContext

2 Ñ ObjectId

3 Ñ io (Either ExternalFailure MixedResult)

4
5 getPackage :: MonadIO io ñ CloudContext

6 Ñ PackageId

7 Ñ io (Either ExternalFailure Package)

8
9 getUserPackages :: MonadIO io ñ CloudContext

10 Ñ io (Either ExternalFailure [Package])

11
12 searchTextAutocomplete :: MonadIO io ñ CloudContext

13 Ñ Text Ñ Maybe Language Ñ Bool Ñ Bool Ñ Bool Ñ Bool

14 Ñ io (Either ExternalFailure [MixedResult])

Listing 3.5. Development interface functions to read objects

All functions except getUserPackages can be used without authentication.

57

Chapter 3. Implemenation

getObject and getPackage only search for an object with a given ID; the
former looks for a package while the later returns any kind of object with
the specified ID. The definition of MixedResult is as follows:

data MixedResult

= PackageResult Package

| ModuleResult (PackageDescription, Module)

| FunctionResult (PackageDescription, ModuleDescription, Function)

| DatatypeResult (PackageDescription, ModuleDescription, Datatype)

It provides one constructor for each type of result object. The tuples are used
to ease the usage with other database functions that return exactly these
tuples. The PackageDescription and ModuleDescription are just records of
the respective ID, name and version.

getUserPackages returns a list of packages that are maintained by the
current user.

The last function, searchTextAutocomplete, is used to search for possible
hypercode references to annotate with source code in the editor. The first
argument is the name of the objects we are searching for. This is supposed
to be a prefix search for names, but there are some limitations that will be
discussed in Section 4.2. The second argument sets the language of objects
to search for; when Nothing is given objects of all languages are returned.
The last four boolean arguments say if packages, modules, functions or data
types are included in the search results (in that order).

3.5.4 Update Operations

There are four operations to update or modify objects in the interface:

1 updateDevelopmentFunction :: MonadIO io

2 ñ CloudContext Ñ PackageId Ñ Function Ñ Function

3 Ñ io (Either ExternalFailure (Package, Function))

4
5 updateDevelopmentDatatype :: MonadIO io

6 ñ CloudContext Ñ PackageId Ñ Datatype Ñ Datatype

7 Ñ io (Either ExternalFailure (Package, Datatype))

58

3.5. Cloud Development Interface

8
9 updateDevelopmentModule :: MonadIO io

10 ñ CloudContext Ñ PackageId Ñ Module Ñ Module

11 Ñ io (Either ExternalFailure (Package, Module))

12
13 updateDevelopmentPackage :: MonadIO io

14 ñ CloudContext Ñ Package Ñ Package

15 Ñ io (Either ExternalFailure Package)

Listing 3.6. Development interface functions to modify objects

All of the functions receive the object containing all changes in the last
argument. An object can only be updated if it did not change in the time
in between loading and saving it. Therefore, the unchanged original object,
from when editing started, is given in the second last argument. It is then
checked if the persisted object still matches that unchanged version to ensure
no intermediate changes occurred. Only if this check succeeds, the object is
updated. It is only possible to update objects that are in development status.
Even if the object ID or status is set to a new value in the changed object,
the functions do not modify these attributes, since this would invalidate the
development status or referential integrity of other hypercode references.
All dependencies to other objects in the database are automatically updated
according to the changed contents of the updated object.

The first three functions receive the ID of the package, containing the
object to change, in the first argument, whereas updateDevelopmentPackage

extracts the package ID from the unchanged package.
All functions return an updated version of the package containing the

changed object to reflect language specific changes, that may have altered
the package as a whole. In case of the last function, the changed package
and object coincide.

3.5.5 Delete Operations

The last class of operations consists of functions to delete objects (Listing 3.7).
All of these functions require the object that shall be deleted to be in

59

Chapter 3. Implemenation

1 deleteDevelopmentFunction :: MonadIO io

2 ñ CloudContext Ñ PackageId Ñ Function

3 Ñ io (Either ExternalFailure Package)

4
5 deleteDevelopmentDatatype :: MonadIO io

6 ñ CloudContext Ñ PackageId Ñ Datatype

7 Ñ io (Either ExternalFailure Package)

8
9 deleteDevelopmentModule :: MonadIO io

10 ñ CloudContext Ñ PackageId Ñ Module

11 Ñ io (Either ExternalFailure Package)

12
13 deleteDevelopmentPackage :: MonadIO io

14 ñ CloudContext Ñ PackageId

15 Ñ io (Either ExternalFailure ())

Listing 3.7. Development interface functions to delete objects

development status.

The first three functions take the ID of the package to delete from and
the object that shall be deleted. Deletion can only succeed if the object has
not changed in the database yet; this, again, is a measure to prevent lost
updates. The return value is the modified package after deleting the given
object. There may be further, language specific, changes to the package, e.g.,
the removal of automatically generated constructor functions for data types.
All hypercode references to the given object are automatically removed
everywhere in the package. It is not necessary to remove the references
from other packages, because it is not allowed to set external dependencies
to development objects.

The last function, deleteDevelopmentPackage, only takes the package ID
to delete the package. It returns unit if the package was deleted successfully
and an ExternalFailure otherwise.

60

3.6. Network Communication

JSON Response
JSON Response

JSON POST
Request

JSON POST Request

Web Browser
(Editor GUI)

Code Cloud
Editor Server Claude

AJ
AX

 R
eq

ue
st

Ed
ito

r I
nt

er
fa

ce

Cl
au

de
 In

te
rfa

ce

De
ve

lo
pm

en
t I

nt
er

fa
ce

HTTP HTTP

Figure 3.17. AJAX communication of the different editor components

3.6 Network Communication

Figure 3.2 gives us a general idea of which instances are present when the
editor is running and which of them communicate with each other. In the
following section we will take a closer look at this communication.

3.6.1 HTTP Communication

All communication is done over HTTP. As we do not want the editor view
to reload each time an action is selected, it sends an AJAX request using
JavaScript to execute an action and update the view depending on the
answer. Figure 3.17 displays how these AJAX requests are run through the
different instances.

Once the button of the selected action is pressed, a JSON object with the
request data is constructed. The JSON object is sent to the editor server using
a POST request. We use the ajax function from jQuery to send such requests.
To save the changes of a data type, sending the request looks as follows:

61

Chapter 3. Implemenation

1 $.ajax({

2 type: ’POST’,

3 url: ’/editor/update/datatype’,

4 data: $.toJSON({

5 ’package-id’ : pkgId,

6 ’original-datatype’: origDtp,

7 ’updated-datatype’ : modDtp

8 }),

9 dataType: ’json’,

10 success: function(result) {

11 /* Update editor view and hide dialog... */ },

12 error: function(result, status, errorMsg) {

13 /* Display error in dialog and make it non modal... */ },

14 processData: false,

15 mimeType: ’application/json’

16 });

Listing 3.8. Sending an AJAX request to save changes of a data type

Of course, this code is part of a function to abstract over the process of
sending a request. The function parameters are already substituted and
GUI related code is not shown. We assume that pkgId contains the ID of the
package containing the data type. We also assume that origDtp and modDtp

contain the original and the modified version of the data type respectively.
In addition to the standard parameters already explained in the introduction,
we also set the flag processData to false. Setting this flag prevents jQuery
from automatically converting our data into an URL encoded string. Note
that the data values exactly match the parameters needed to call the update-

DevelopmentDatatype function (Listing 3.6) of the development interface.
The code above is exactly what the sequence diagram in Figure 3.17 refers
to with “AJAX Request”.

The editor server decodes the request data to Haskell values and calls
the appropriate function of the development interface. The interface then
reconstructs a JSON object from the Haskell data and sends it to Claude
through another POST request. Claude processes this data and executes

62

3.6. Network Communication

the requested operation. When the operation is processed or has failed,
the answer is again encoded in JSON and sent back as HTTP response. The
development interface decodes the answer and returns it as a Haskell value,
which is then reencoded as JSON and sent back to the browser by the editor
server. The browser processes the JSON answer by calling the success or
error callbacks on Line 10 and 12 of Listing 3.8. The callbacks update the
editor view accordingly.

Answers and errors are likewise encoded in JSON, but their response
status differs. While a successful request always responds with a 200 “OK”
status, an erroneous response has a 400 “Bad Request” status. The response
code is how the ajax method knows, if it has to call the error or the success

handler in our example from Listing 3.8.

We notice that the editor server does nothing else but decoding and
encoding JSON messages while it uses the development interface. Of course,
this could be simplified, but by using the development interface, we decou-
ple the editor from Claude and enable us to exchange the implementation
of either the editor or the data management in Claude at some point.

Other parts of the editor such as logging in, creating new packages,
releasing packages or deleting packages use classical HTML forms. Once the
form is filled with all required data, we can send it using a submit button.
The data is then URL encoded inside of a post request. Once these requests
arrive at the editor server, they are handled and the development interface
is called. The interface then communicates with Claude using the already
explained AJAX/JSON mechanism.

The only exception to this behavior within the development interface
is the log in. Since we want to reuse the existing infrastructure offered by
Claude, we actually send form data instead of JSON when logging in. This
way we do not have to handle logging in differently depending on the two
different components — the editor and Claude — we can authenticate from.
Using the HTTP “Accept” header, we can tell Claude that we want a response
encoded as JSON, not as HTML, because the editor can only properly process
JSON.

63

Chapter 3. Implemenation

3.6.2 Automated JSON Transfer Infrastructure

We already noticed that the editor server only forwards messages from
the editor GUI to Claude and vice versa. Programming this forwarding
mechanism by hand each time is error-prone and repetitive. Therefore, we
develop infrastructure to ease this process; it allows us to write down the
names of fields in request objects and associate them with their correspond-
ing Haskell type. With these definitions (signatures) we can automatically
handle the encoding and decoding of JSON requests and call functions that
match their structure.

The type to write down signatures is JsonParams:

data JsonParams f m err v where

(:Ñ) :: (FromJSON a, ToJSON a)

ñ Text Ñ JsonParams f m err v

Ñ JsonParams (a Ñ f) m err v

Res :: JsonParams (m (Either err v)) m err v

The first type parameter f contains the complete function signature of a
function that can be called if the described JSON object is decoded. It can
just as well describe the function that is produced to encode a value into the
described JSON object. The second type parameter m provides the monad
the function result is run in. The err type parameter contains the error
type used if something fails, and the last parameter v represents the value
returned by a described function.

The “:Ñ” constructor extends a described function by one argument.
The constructor sets the name of the JSON object field associated with this
argument and takes the rest of the function signature as second argument.
Note that the returned function signature is extended by the new argument;
this requires the use of GADTs. Also note that every parameter value needs
to implement toJSON and fromJSON from the aeson library (Section 2.2.2).
These constraints ensure that conversion from and to JSON works for a
function involving the type a.

The second constructor Res determines the end of a signature; it sets the

64

3.6. Network Communication

return value to the monad computation, that either returns an error value
or the result value.

As an example, we can look at the signature defined for updateDevelop-

mentDatatype from Listing 3.6:

1 updateDevelopmentDatatypeSig

2 :: JsonParams (PackageId Ñ Datatype Ñ Datatype

3 Ñ m (Either err (Package, Datatype)))

4 m err (Package, Datatype)

5 updateDevelopmentDatatypeSig =

6 "package-id" :Ñ "original-datatype" :Ñ "updated-datatype" :Ñ Res

Listing 3.9. JSON transfer infrastructure signature of the updateDevelopmentDatatype

function

Recall the type of updateDevelopmentDatatype:

1 updateDevelopmentDatatype :: MonadIO io

2 ñ CloudContext Ñ PackageId Ñ Datatype Ñ Datatype

3 Ñ io (Either ExternalFailure (Package, Datatype))

Listing 3.10. Reminder of the function signature of the updateDevelopmentDatatype

function

Note the signature’s function type is unifiable with the type of updateDevel-
opmentDatatype after the CloudContext. This means, with the right tools we
can call updateDevelopmentDatatype directly from a function that handles a
request. Also note that the names given in the signature match those used
when sending the AJAX request in Listing 3.8.

First of all, the infrastructure offers a function to handle incoming JSON
requests:

runJsonRequest :: (MonadHandler m, ToJSON v)

ñ (String Ñ err’)

Ñ (err Ñ err’)

Ñ (err’ Ñ m TypedContent)

Ñ JsonParams f m err v

Ñ f

Ñ m TypedContent

65

Chapter 3. Implemenation

The first three parameters handle errors; if decoding of JSON fails, the
function from String to err’ is called with the decoding error message. The
second function converts the error, resulting from the function f, to an error
that can be handled by the third function. We decouple the error type of the
handler function f from JSON errors, because of runJsonRequest’s use in the
editor server. When handling a JSON request in the server, the called handler
function is provided by the development interface, which uses its own error
type ExternalFailure. However, inside of the editor server, we commonly
only handle EditorFailures and, therefore, need to convert errors. The other
two parameters take the signature of the JSON objects to handle and the
function that is supplied with the contents of the objects. runJsonRequest is
already specialized for uses in Yesod, because we only handle requests when
receiving them in the editor server or in Claude, which both use Yesod. All
request handling done in Yesod uses monads that implement MonadHandler
and return some TypedContent. In this case, the TypedContent contains a
HTTP response that contains the JSON encoded result value of type v.

As an example, we look how the AJAX request from Listing 3.8 is handled
using the following function:

1 postEditorUpdateDatatypeR :: Handler TypedContent

2 postEditorUpdateDatatypeR = runWithLogin $ \cxt Ñ do

3 runJsonRequest

4 JsonProcessingFailure ExternalFailure

5 sendJsonError

6 updateDevelopmentDatatypeSig

7 (updateDevelopmentDatatype cxt)

The displayed source code is all code required to handle the AJAX request
and forward it to the development interface. The call of runWithLogin

ensures that the user is logged in and supplies us with a CloudContext.
The first two parameters of runJsonRequest in Line 4 are constructors

for error values. If we fail to parse the incoming JSON value, we produce a
JsonProcessingFailure value. In case the call of the development interface
fails, an ExternalFailure is created and sent back to the editor view. send-
JsonError is a function, also provided by the infrastructure, that sends an

66

3.6. Network Communication

error encoded as JSON. In this case, its signature specializes to EditorFailure

Ñ Handler TypedContent. Both error constructors, JsonProcessingFailure
and ExternalFailure, are part of EditorFailure. The fourth parameter is
the signature we want to use (Listing 3.9). The last parameter is the call
to the development interface function updateDevelopmentDatatype from List-
ing 3.10.

The second function offered by the infrastructure sends JSON requests:

sendJsonRequest :: (Monad m, ToJSON o)

ñ JsonParams f m err o

Ñ (Value Ñ m (Either err o))

Ñ f

The function is not specialized to Yesod, since it is used from the development
interface that uses http-client to send its requests. Once supplied with the
signature and a function that sends the created JSON Value, it constructs
a function according to the signature. The constructed function can be
supplied with the Haskell values given in the signature; it automatically
converts the Haskell values into JSON values and sends them as part of the
JSON request object. There are no arguments for error handling, because
converting some value to a JSON object is always possible, if the ToJSON type
class is implemented.

An example for the use of this function is the implementation of the
updateDevelopmentDatatype function:

updateDevelopmentDatatype

:: (MonadIO io) ñ CloudContext

Ñ PackageId Ñ Datatype Ñ Datatype

Ñ io (Either ExternalFailure (Package, Datatype))

updateDevelopmentDatatype cxt =

sendJsonRequest

updateDevelopmentDatatypeSig

(jsonPostRequest cxt ["dev", "update", "datatype"])

We only need to supply sendJsonRequest with the signature and the function
to send the JSON value. These arguments are enough to automatically
generate the rest of the interface function. The jsonPostRequest function

67

Chapter 3. Implemenation

sets up a HTTP POST request with the given JSON value; it requires a
CloudContext to log in and the path of Claude to contact. In this case,
jsonPostRequest would contact the path /dev/update/datatype.

As we can see, the infrastructure allows us to write down the code to
handle and send AJAX request concisely and supports us with its use of the
type system in doing so.

68

Chapter 4

Problems, Limitations and
Future Work

Though we finished a working version of the editor, there are still known
problems and limitations. We have some ideas for improvements, which
can be done in the future.

4.1 Editor and Claude

Though the editor and Claude can handle simple Haskell packages, they do
not support major parts of Haskell yet. There is no support or representation
for type classes. Non-standard extensions of the language, such as type
families [Sch+08] or functional dependencies [Jon00], are also ignored.

Claude has the ability to up- and download Haskell packages to and
from its database respectively. However, this translation is incomplete; it
ignores comments, type classes, pragmatics, or extensions.

The language specific functionality to create, modify and delete objects
has a central interface, but there is only a basic implementation that lacks
expected functionality. Right now, Haskell is the only supported language,
and the validation of Haskell specific aspects works correctly, as described
in Section 3.5. However, the creation, modification and deletion of functions
and data types is incomplete. The correct extraction of meta information
from sources is not implemented and automatic generation or handling of
constructor functions for data types does not work either.

The language specifics in the editor view miss two checks for annotating
predefined tokens. First, tokens can always be annotated as predefined in
Prelude, although the Prelude may not actually offer them. Secondly, it is

69

Chapter 4. Problems, Limitations and Future Work

not possible to annotate tokens as predefined in another base module aside
from Prelude. All of these problems and limitations need to be solved in
future work.

4.2 Database Limitations

Some of Claude’s limitations arise from the underlying database MongoDB.
One limitation is that the full-text search capability of MongoDB is

word-based. Therefore, it is not possible to search for prefixes of words in
text. [mongo-b; mongo-c] A prefix search would be useful to improve the
autocompletion feature of the hypercode editor component introduced in
Section 3.3.4. Right now, the autocompletion only suggests names for an
exact match. With a prefix search, suggestions for other objects could also be
made, which would improve the usefulness of autocompletion considerably.
There are different ways to solve this limitation: a future version of MongoDB
may add this feature; it could be implemented within Claude at some point.
An external search engine could also be used.

Another limitation is MongoDB’s lack of transactions. Only one single
operation on a single document is handled atomically, but there is no way
to atomically express several subsequent operations [mongo-d]. However,
some of our more elaborate validations require such operations on several
documents. To prevent race conditions, we had to develop our own trans-
action management. The transactions are implemented within Claude and
integrated into the database interface functions in the modules DataInter-

face, DevelopmentInterface and UserInterface. Locks are placed on IDs of
database objects to keep the system simple; they are reentrant to ensure that
different locking functions remain composable. We decided to only lock on
write operations, because read operations are more complicated to realize
as we do not always know which objects are read. As an example, if we
search for objects with a certain property, we cannot know which objects
are the result; this means we do not know which IDs to lock. In contrast, all
of our writing operations work with objects that are identified by their ID.
The interface of our transaction management consists of three functions:

70

4.2. Database Limitations

mkTransactionManager :: MonadIO io ñ io (TransactionManager res)

doTransaction

:: (MonadError e io, MonadIO io, Ord res)

ñ TransactionManager res Ñ res Ñ io a Ñ io a

doMultiTransaction

:: (MonadError e io, MonadIO io, Ord res)

ñ TransactionManager res Ñ [res] Ñ io a Ñ io a

First of all, we provide a function to create a TransactionManager. The
TransactionManager manages locks on a given type of resource res. Only
transactions using the same manager can block each other. We abstract over
the resources we lock on, but Claude only uses ObjectIds as resource. A
transaction over a single resource can be performed with doTransaction. If
we want to lock several resources at once, it is safer to use doMultiTransac-

tion, because it ensures that the resources are locked in a global order to
avoid possible deadlocks. We also take care of errors that arise in MonadError

instances [hackage-a] to ensure the lock is released even if such an error
occurs.

Note that we abstract over MonadIO [hackage-b] for operations that can
be run in transactions, because they are later used on operations that take
place in a monad transformer stack, e.g., the Handler monad. A problem
with this abstraction is that we are not able to handle IO-based exceptions
anymore. To catch such an exception we would need to use catch from
Control.Exception:

catch :: Exception e ñ IO a Ñ (e Ñ IO a) Ñ IO a

However, we cannot catch exceptions from our operation io a, since MonadIO

only offers a lifting operation IO a Ñ io a. To catch IO-based exceptions
with catch we would need a lowering operation io a Ñ IO a. Providing
such an operation may be possible if we know which monads are involved
in our transformer stack and how they are implemented, but it is not
possible in our case. We do not know how the internals of the Action

monad from MongoDB or the HandlerT and WidgetT from Yesod work; these
are an integral part of the transformer stack used in Claude. Therefore,
we ignore IO-based exceptions in our transactions. We do not think that

71

Chapter 4. Problems, Limitations and Future Work

ignoring these exceptions is a problem in our case, since Claude and the
editor use the ErrorT transformer [hackage-c; LHJ95] to handle errors. Any
IO-based exception that might occur comes from Yesod or MongoDB itself
and we do not know if we could recover from such an error anyway.

Edward Z. Yang [Yan12] gives a more elaborate discussion on proper
exception handling in MonadIO transformer stacks and the problems that
arise from IO-based exceptions in this context.

In the future, the missing support of transactions can be solved in
different ways. We can hope that MongoDB will implement them at some
point. Using a different database system with support for transactions may
also be useful. A relational database system would have advantages over
MongoDB’s document-based approach. In addition to proper transaction
support, it would allow a more granular access to information, where
MongoDB always requires us to handle the complete document, which may
become large for a big package.

4.3 Database Abstraction

The Claude project group decided to implement its own API on top of
MongoDB. We did not tap into this abstraction layer to concentrate on the
editor itself, but there are some limitations we have noticed.

First of all, the function updateFunction from Claude.Server.Interface

to update a function object does not work. When applied, it leads to a failure
coming from the database. This problem seems to be independent of the
used query and may be related to a known problem with querying nested
arrays in MongoDB. [mongo-a] As a workaround, we started updating the
complete package instead. In the editor’s current state, a complete update
of the package has to be done anyway, because language specific changes
may change several other parts of the package when updating an object.
Therefore, this bug is not relevant to the development interface or the
editor anymore, but should be noted for future developers. We have not
checked if other related functions such as updateDatatype or updateModule

also malfunction.

72

4.4. Management of Concurrent Changes

There was another problem when querying for objects that contain fields
with Maybe values. When querying for Nothing by setting the query to
NotSet, no results were delivered. We did not investigate this problem far
enough to know the reason, but we assume that there is some semantic
confusion during the translation of the Claude query to a MongoDB query.
All Maybe fields that were queried had the type Maybe Text. Therefore, we
solve the problem by replacing them with a field of type Text. The Text

type essentially has the same meaning for each of the involved fields.
The query and modifier data types introduced in Section 2.3.1 are limited

in their expressiveness. As an example, there is no way to query for a
module that contains several functions with different attributes, because the
mFunctions field of QModule has type QFunction (Listing 2.7). If we want a
module that contains a function with name “f” and a function with name
“g” this would not be possible, because QFunction only allows us to query
for either of these values. This problem also occurs when trying to query
for several modules in a package.

A similar problem arises if we want to find objects of a certain lan-
guage. The language of an object is determined by the instance of its
language specific value (Section 2.3.1, Listing 2.5). When querying for
such a value, we only have the possibility to specify a concrete value as
a Query LanguageModSpecifics, Query LanguageFuncSpecifics, or Query Lan-

guageDatatypeSpecifics, but we cannot formulate the general query for all
Haskell objects. There is no query record for these types that would allow
this kind of query.

We do not discuss solutions to the limitations of the query language
abstraction here, since that would lead out of scope. These remarks are
meant as a hint for future developers of Claude. Currently, both cases are
handled by hand in Haskell after the query has taken place.

4.4 Management of Concurrent Changes

Currently, a user cannot save her changes if someone changed the objects she
is working on concurrently. The user has to reload the objects from Claude

73

Chapter 4. Problems, Limitations and Future Work

and overwrite her changes. A future version of the editor may be extended
with a proper interface to merge changes. CodeMirror already offers a
plug-in to display differences [codemirror-c] between two documents.

When implementing such a merge view, saving objects should also be
made more granular. Currently, we can only save objects as whole, but
it would be useful to only save those parts of an object that have actually
changed. With this approach, conflicts with concurrently changed objects
would occur less frequently. It may be necessary to refactor the data model
used by Claude to support these more granular changes.

4.5 Future Work

There is a wide range of other work that can be done in future.
First of all, there still are a lot of features that the editor should support.

It should be possible to move objects, e.g., move a function from one module
to another. More extensive refactoring operations such as renaming are also
useful.

In light of the change management discussed in the previous section a
proper version control may be useful. Right now saving a change means
overwriting the old version. In the past it has proven useful to maintain a
history of changes, as done by modern version control systems.

The language specific features can be extended as well. A package
developer is interested if the code contained in the package compiles. There-
fore, offering to run the language specific compiler or interpreter to check
syntactic integrity would be useful, especially, since this is not checked at
all right now. In context of Haskell packages the type system supports the
programmer and it would be useful to see its response on code written in
Claude, too.

We developed a considerable amount of JavaScript code. During the
development, we noticed that JavaScript is not a language to develop large
projects with; it is possible when disciplined, but may cause a lot of struggle.
JavaScript by itself misses important features to program in the large. There
is no module system to structure a large code base. Aside of syntax checks

74

4.5. Future Work

only runtime errors show typos or the wrong use of code. Static code checks
are not available by default. It would have been useful to use a system
such as JSLint [jslint] or JSHint [jshint] to statically check code quality from
the beginning. The support of a static type system would have also been
desirable.

A solution to this problem would be to use a language that compiles
down to JavaScript to write the editor view. There are different languages
that may be suitable: TypeScript [typescript] or PureScript [purescript].
From the beginning, both of these languages were designed to compile
to JavaScript and are well suited to write large programs in them. The
languages offer a type system and a variety of static checks to support
the programmer. [typescript; purescript-a] Most importantly, they offer a
module system [typescript; purescript-a] to structure large application. Pure-
Script is especially interesting, since its syntax is close to that of Haskell.
In theory this may allow sharing common code and data types between
Haskell and the PureScript code, which would be beneficial for maintenance
and to ensure communication compatibility.

75

Chapter 5

Related Work

The ideas behind Claude and the editor were already expressed in a paper
from Kaiser and Dossick [Kai+97]. We picked up the expressed ideas and
tried to apply them to our work.

Claude and the editor combine several different aspects offered by a
variety of applications that already exists. Looking at each of these aspects,
we find a number of applications that offer similar functionality. An exhaus-
tive survey of all of these would lead beyond this work. Therefore, we will
pick some specific systems at each point. Our focus is set on applications
from the Haskell and JavaScript ecosystem, since those are the tools used to
develop Claude and the editor.

First of all, Claude offers a way to search the stored packages and objects
to view their meta information, documentation and implementation. A
similar functionality is offered by the many different code search engines
available. The Haskell community offers two: Hoogle [hoogle] and Hayoo
[hayoo]. Their results link with the documentation hosted on Hackage [hack-
age]. Other languages such as JavaScript tend to combine a search directly
into their documentation, e.g., the jQuery documentation [jquery-b]. Claude
is distinct from these systems in that its search works directly on the source
objects it stores in its database, instead of indexing or being built separately.
Of course, Claude’s search is not as sophisticated or elaborate as those
provided by Hoogle and Hayoo. However, creating such an advanced search
on top of Claude would be possible and may be done in future work on
Claude.

Aside of being a search engine Claude is also a system to host code
and packages. A different yet comparable system would be Hackage. It
also stores Haskell packages, but does not analyze their sources, annotate

77

Chapter 5. Related Work

them with hypercode, or check for their integrity other then looking at the
package description. JavaScript does not have a commonly acknowledged
system to host and distribute packages. There are several different tools
to offer this service: npm [npm], Bower [bower], Ender [ender], volo [volo]
and some others [comp; jam]. However, none of them has a dominating role
and it is also common not to use any of them at all. Again, these systems
are meant to store or allow access to packages, but they do not check the
packages for integrity other then looking at the package description. Aside
of the additional dependency analysis and hypercode generation, another
major difference between Claude and the mentioned systems is, that Claude
does not offer a way to install packages. Hackage uses Cabal [cabal-b] for
this purpose and the JavaScript tools offer their own mechanisms to install
packages. Claude allows exporting a package again, but requires a user to
install it himself. Claude has the advantage that it is able to automatically
offer all dependencies required for a package, and it can also create a new
package already containing all sources of dependencies, which may ease the
installation process considerably. The abstract representation of language
objects and the hypercode annotations allow this mingling of a package
with its dependencies.

Claude can also be seen as a platform to host source code such as GitHub
[github], which is popular among Haskell and JavaScript developers, but
Claude lacks the proper version control functionality other systems offer.

The idea to offer a web-based integrated development environment (IDE)
is not new either, there are several successful projects such as Cloud9 [cloud9],
Koding [koding], FP Haskell Center [fpcenter], or Eclipse Orion [orion]. In
contrast to Claude, these IDEs still work in file-based manner and just offer a
proper integration of the tool-chain needed to develop in a certain language;
they do not use an abstract representation of the language concepts to work
with. The major goal of the mentioned IDEs is to shift from desktop-based
to web-based development. A major drawback of the editor is that it does
not yet support language specific tool-chains. There is no integration to
compile, debug or run libraries and applications.

Working on language concepts instead of structuring everything in files
is also not a new idea. IDEs such as Lighttable [light-a; light-b] or Code Bubbles

78

[Bra+10a; Bra+10b] provide an interface to support working with abstract
language concepts. Though the interface of the IDEs is built around this
idea, they still use files to store their code. In contrast, our editor works
on an abstract representation instead of converting back to a file-based
representation behind the scenes. Of course, the interface of the editor is
not yet as sophisticated and well designed as that of the two mentioned
IDEs, but there is nothing to hinder improving it in future.

79

Chapter 6

Conclusion

We started by introducing Claude and the used technologies as a foundation.
Building on these foundations, we presented the general structure of the
editor and discussed the changes made to Claude during its development.
The features and usage of the editor were introduced by discussing the
GUI. Knowing what features are there, we then talked about other details of
the implementation: the language specific functionality, the development
interface, and the network communication. We closed our thesis by first
discussing the different limitations and problems that still exist, and then
talking about the related work.

Most related work only relates to certain aspects of the editor or Claude.
None of the work matches the full capabilities of Claude and the editor, but
all of it offers more mature capabilities when looking at the matched parts.

Our initial goal was to develop an editor that enables a user to create,
modify and release packages in Claude in a language independent manner.
We have achieved this goal. As discussed in the GUI section, the editor is
capable of working with the packages held by Claude. The package editor
is able to annotate source code with dependencies from other packages,
and it is also able to modify all contents of a package including its meta
information. We also kept the editor decoupled from Claude by introducing
the development interface.

Of course, there still is future work. The language specific customization
still requires to implement proper handling of language specific changes, in-
tegration of language specific tools, and the GUI should not offer predefined
annotations for every syntactic object. Aside of language specific features,
the database misses support for transactions and its abstraction needs to be
extended. A proper support of version management or at least the ability to

81

Chapter 6. Conclusion

merge changes in the editor view would also be pleasant.

82

Bibliography

Literature

[Bra+10a] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman
Karumuri, William Cheung, Joshua Kaplan, Christopher
Coleman, Ferdi Adeputra, and Joseph J. LaViola Jr. “Code
bubbles: rethinking the user interface paradigm of inte-
grated development environments”. In: Proceedings of the
32Nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1. ICSE ’10. Cape Town, South Africa:
ACM, 2010, pp. 455–464. isbn: 978-1-60558-719-6. doi: 10.
1145/1806799.1806866. url: http://doi.acm.org/10.1145/
1806799.1806866.

[Bra+10b] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman
Karumuri, William Cheung, Joshua Kaplan, Christopher
Coleman, Ferdi Adeputra, and Joseph J. LaViola Jr. “Code
bubbles: a working set-based interface for code understand-
ing and maintenance”. In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. CHI ’10.
Atlanta, Georgia, USA: ACM, 2010, pp. 2503–2512. isbn:
978-1-60558-929-9. doi: 10.1145/1753326.1753706. url: http:
//doi.acm.org/10.1145/1753326.1753706.

[ecma11] Standard ECMA-262. Ecma International. June 2011. url:
http://www.ecma-international.org/publications/standards/

Ecma-262.htm (visited on Mar. 6, 2014).

[Hei07] M. Heim. Exploring Indiana Highways: Trip Trivia. Travel
Organization Network Exchange, 2007. isbn: 9780974435831.

83

http://dx.doi.org/10.1145/1806799.1806866
http://dx.doi.org/10.1145/1806799.1806866
http://doi.acm.org/10.1145/1806799.1806866
http://doi.acm.org/10.1145/1806799.1806866
http://dx.doi.org/10.1145/1753326.1753706
http://doi.acm.org/10.1145/1753326.1753706
http://doi.acm.org/10.1145/1753326.1753706
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Bibliography

[Jon00] Mark P Jones. “‘Type classes with functional dependen-
cies’”. In: Programming Languages and Systems. Springer, 2000,
pp. 230–244.

[Kai+97] Gail E. Kaiser, Stephen E. Dossick, Wenyu Jiang, and Jack
Jingshuang Yang. “An architecture for www-based hyper-
code environments”. In: Proceedings of the 19th International
Conference on Software Engineering. ICSE ’97. Boston, Mas-
sachusetts, USA: ACM, 1997, pp. 3–13. isbn: 0-89791-914-9.
doi: 10.1145/253228.253231. url: http://doi.acm.org/10.
1145/253228.253231.

[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. “Monad trans-
formers and modular interpreters”. In: Proceedings of the
22Nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’95. San Francisco, Califor-
nia, USA: ACM, 1995, pp. 333–343. isbn: 0-89791-692-1. doi:
10.1145/199448.199528. url: http://doi.acm.org/10.1145/
199448.199528.

[Mar10] Simon Marlow, ed. Haskell 2010 Language Report. 2010.
url: http://www.haskell.org/onlinereport/haskell2010/
(visited on Mar. 6, 2014).

[Sch+08] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty,
and Martin Sulzmann. “Type checking with open type func-
tions”. In: ACM Sigplan Notices 43.9 (2008), pp. 51–62.

[SJ02] Tim Sheard and Simon Peyton Jones. “Template meta-pro-
gramming for haskell”. In: Proceedings of the 2002 ACM SIG-
PLAN Workshop on Haskell. Haskell ’02. Pittsburgh, Penn-
sylvania: ACM, 2002, pp. 1–16. isbn: 1-58113-605-6. doi:
10.1145/581690.581691. url: http://doi.acm.org/10.1145/
581690.581691.

[Sno12] M. Snoyman. Developing Web Applications with Haskell
and Yesod. Oreilly and Associate Series. O’Reilly Media,

84

http://dx.doi.org/10.1145/253228.253231
http://doi.acm.org/10.1145/253228.253231
http://doi.acm.org/10.1145/253228.253231
http://dx.doi.org/10.1145/199448.199528
http://doi.acm.org/10.1145/199448.199528
http://doi.acm.org/10.1145/199448.199528
http://www.haskell.org/onlinereport/haskell2010/
http://dx.doi.org/10.1145/581690.581691
http://doi.acm.org/10.1145/581690.581691
http://doi.acm.org/10.1145/581690.581691

Online Resources

Incorporated, 2012. isbn: 9781449316976. url: http://www.
yesodweb.com/book-1.2.

Online Resources

[ace] Ace - The High Performance Code Editor for the Web.
Ajax.org B.V. url: http://ace.c9.io/ (visited on Mar. 6,
2014).

[Ada] Douglas Adams. DNA/Biography. The Digital Village, Ltd.
url: http://www.douglasadams.com/dna/bio.html (visited
on Mar. 6, 2014).

[bower] Bower. Twitter, Inc. url: http : / / bower . io/ (visited on
Mar. 6, 2014).

[browsers] Comparison of web browsers – Wikipedia, The free en-
cyclopedia. Wikimedia Foundation, Inc. url: http://en.
wikipedia.org/wiki/Comparison_of_web_browsers#JavaScript_

support (visited on Mar. 6, 2014).

[bson] BSON - Binary JSON. url: http://bsonspec.org/ (visited
on Mar. 6, 2014).

[cabal-a] Duncan Coutts and Ian Lynagh. Cabal User Guide. De-
veloping Cabal packages. url: http : / / www . haskell . org /

cabal/users- guide/developing- packages.html#package-

descriptions (visited on Mar. 6, 2014).

[cabal-b] Duncan Coutts and Ian Lynagh. The Haskell Cabal. url:
http://www.haskell.org/cabal/ (visited on Mar. 6, 2014).

[cabal-c] The Haskell Cabal. url: http://www.haskell.org/cabal/
download.html (visited on Mar. 19, 2014).

[CBS13] Koen Claessen, Björn Bringert, and Nick Smallbone. Hack-
age: QuickCheck: Automatic testing of Haskell programs.
Version 2.6. Mar. 7, 2013. url: http://hackage.haskell.org/
package/QuickCheck-2.6 (visited on Mar. 6, 2014).

85

http://www.yesodweb.com/book-1.2
http://www.yesodweb.com/book-1.2
http://ace.c9.io/
http://www.douglasadams.com/dna/bio.html
http://bower.io/
http://en.wikipedia.org/wiki/Comparison_of_web_browsers#JavaScript_support
http://en.wikipedia.org/wiki/Comparison_of_web_browsers#JavaScript_support
http://en.wikipedia.org/wiki/Comparison_of_web_browsers#JavaScript_support
http://bsonspec.org/
http://www.haskell.org/cabal/users-guide/developing-packages.html#package-descriptions
http://www.haskell.org/cabal/users-guide/developing-packages.html#package-descriptions
http://www.haskell.org/cabal/users-guide/developing-packages.html#package-descriptions
http://www.haskell.org/cabal/
http://www.haskell.org/cabal/download.html
http://www.haskell.org/cabal/download.html
http://hackage.haskell.org/package/QuickCheck-2.6
http://hackage.haskell.org/package/QuickCheck-2.6

Bibliography

[chrome] Disabled Web Features - Google Chrome. Google Inc. url:
http://developer.chrome.com/apps/app_deprecated (visited
on Mar. 6, 2014).

[claude] Bastian Holst, Julia Beck, Karl Balzer, Sandra Dylus, and
Timo von Holtz. Wiki - Master-Projekt Sommersemester
2013 - Redmine. 2013. url: https://redmine.ps.informatik.
uni-kiel.de/projects/projekt-13s/wiki (visited on Mar. 6,
2014).

[cloud9] Cloud9 IDE | Your code anywhere, anytime. Cloud9ide.
url: https://c9.io/ (visited on Mar. 6, 2014).

[codemirror] Marijn Haverbeke. CodeMirror. url: http://codemirror.net
(visited on Mar. 6, 2014).

[codemirror-a] Marijn Haverbeke. Code Mirror: User Manual. hint/show-
hint.js. url: http://codemirror.net/doc/manual.html#
addon_show-hint (visited on Mar. 11, 2014).

[codemirror-b] Marijn Haverbeke. CodeMirror: User Manual. Writing CodeMir-
ror Modes. url: http://codemirror.net/doc/manual.html#
modeapi (visited on Mar. 6, 2014).

[codemirror-c] Marijn Haverbeke. CodeMirror: User Manual. merge/merge.js.
url: http://codemirror.net/doc/manual.html#addon_merge
(visited on Mar. 6, 2014).

[comp] TJ Holowaychuk. component - modular javascript frame-
work. url: http://component.io/ (visited on Mar. 6, 2014).

[ender] Dustin Diaz, Jacob Thornton, and Rod Vagg. Ender - the no-
library JavaScript library. url: http://ender.var.require.
io/ (visited on Mar. 6, 2014).

[fpcenter] FP Haskell Center - FP Complete. FP. url: https://www.
fpcomplete.com/business/fp-haskell-center/ (visited on
Mar. 6, 2014).

86

http://developer.chrome.com/apps/app_deprecated
https://redmine.ps.informatik.uni-kiel.de/projects/projekt-13s/wiki
https://redmine.ps.informatik.uni-kiel.de/projects/projekt-13s/wiki
https://c9.io/
http://codemirror.net
http://codemirror.net/doc/manual.html#addon_show-hint
http://codemirror.net/doc/manual.html#addon_show-hint
http://codemirror.net/doc/manual.html#modeapi
http://codemirror.net/doc/manual.html#modeapi
http://codemirror.net/doc/manual.html#addon_merge
http://component.io/
http://ender.var.require.io/
http://ender.var.require.io/
https://www.fpcomplete.com/business/fp-haskell-center/
https://www.fpcomplete.com/business/fp-haskell-center/

Online Resources

[ghc] GHC: Download version 7.6.3. Version 7.6.3. url: https:
//www.haskell.org/ghc/download_ghc_7_6_3 (visited on
Mar. 19, 2014).

[ghc-th] The GHC Team, ed. The Glorious Glasgow Haskell Compi-
lation System User’s Guide. Template Haskell. Version 7.6.3.
Chap. 7. url: http://www.haskell.org/ghc/docs/7.6.

3/html/users_guide/template- haskell.html (visited on
Mar. 6, 2014).

[github] GitHub. GitHub, Inc. url: https://github.com/ (visited on
Mar. 6, 2014).

[hackage] Hackage: Introduction. url: http://hackage.haskell.org/
(visited on Mar. 6, 2014).

[hackage-a] Andy Gill and Edward Kmett. Control.Monad.Error.Class.
Version 2.1.2. June 23, 2012. url: https://hackage.haskell.
org/package/mtl-2.1.2/docs/Control-Monad-Error-Class.

html#t:MonadError (visited on Mar. 6, 2014).

[hackage-b] Andy Gill and Ross Paterson. Control.Monad.IO.Class. Ver-
sion 0.3.0.0. Mar. 22, 2012. url: http://hackage.haskell.
org/package/transformers-0.3.0.0/docs/Control-Monad-

IO-Class.html#t:MonadIO (visited on Mar. 20, 2014).

[hackage-c] Andy Gill and Ross Paterson. Control.Monad.Trans.Error.
Version 0.3.0.0. Mar. 22, 2012. url: https://hackage.haskell.
org/package/transformers-0.3.0.0/docs/Control-Monad-

Trans-Error.html#t:ErrorT (visited on Mar. 6, 2014).

[Han13] Tony Hannan. Hackage: mongoDB: Driver (client) for Mon-
goDB, a free, scalable, fast, document DBMS. Version 1.4.4.
Dec. 21, 2013. url: http://hackage.haskell.org/package/
mongoDB-1.4.4 (visited on Mar. 10, 2014).

[hayoo] Timo B. Kranz, Sebastian M. Gauck, and Uwe Schmidt.
Hayoo! - Haskell API Search. url: http://holumbus.fh-
wedel.de/hayoo/ (visited on Mar. 6, 2014).

87

https://www.haskell.org/ghc/download_ghc_7_6_3
https://www.haskell.org/ghc/download_ghc_7_6_3
http://www.haskell.org/ghc/docs/7.6.3/html/users_guide/template-haskell.html
http://www.haskell.org/ghc/docs/7.6.3/html/users_guide/template-haskell.html
https://github.com/
http://hackage.haskell.org/
https://hackage.haskell.org/package/mtl-2.1.2/docs/Control-Monad-Error-Class.html#t:MonadError
https://hackage.haskell.org/package/mtl-2.1.2/docs/Control-Monad-Error-Class.html#t:MonadError
https://hackage.haskell.org/package/mtl-2.1.2/docs/Control-Monad-Error-Class.html#t:MonadError
http://hackage.haskell.org/package/transformers-0.3.0.0/docs/Control-Monad-IO-Class.html#t:MonadIO
http://hackage.haskell.org/package/transformers-0.3.0.0/docs/Control-Monad-IO-Class.html#t:MonadIO
http://hackage.haskell.org/package/transformers-0.3.0.0/docs/Control-Monad-IO-Class.html#t:MonadIO
https://hackage.haskell.org/package/transformers-0.3.0.0/docs/Control-Monad-Trans-Error.html#t:ErrorT
https://hackage.haskell.org/package/transformers-0.3.0.0/docs/Control-Monad-Trans-Error.html#t:ErrorT
https://hackage.haskell.org/package/transformers-0.3.0.0/docs/Control-Monad-Trans-Error.html#t:ErrorT
http://hackage.haskell.org/package/mongoDB-1.4.4
http://hackage.haskell.org/package/mongoDB-1.4.4
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/

Bibliography

[hoogle] Neil Mitchell. Hoogle. url: http : / / www . haskell . org /

hoogle/ (visited on Mar. 6, 2014).

[jam] Caolan McMahon. Jam - The JavaScript package manager.
url: http://jamjs.org/ (visited on Mar. 6, 2014).

[jquery] jQuery. The jQuery Foundation. url: http://jquery.com/
(visited on Mar. 6, 2014).

[jquery-a] jQuery.ajax() | jQuery API Documentation. The jQuery
Foundation. url: http://api.jquery.com/jQuery.ajax/

(visited on Mar. 10, 2014).

[jquery-b] jQuery API Documentation. The jQuery Foundation. url:
http://api.jquery.com/ (visited on Mar. 6, 2014).

[jshint] Anton Kovalyov. JSHint, a JavaScript Code Quality Tool.
url: http://www.jshint.com/ (visited on Mar. 6, 2014).

[jslint] Douglas Crockford. JSLint: The JavaScript Code Quality
Tool. url: http://www.jslint.com/lint.html (visited on
Mar. 6, 2014).

[koding] Koding | A New Way For Developers To Work. Koding,
Inc. url: https://koding.com/ (visited on Mar. 6, 2014).

[light-a] Chris Granger. Light Table. url: http://www.lighttable.
com/ (visited on Mar. 6, 2014).

[light-b] Chris Granger. Chris Granger - Light Table. url: http://www.
chris-granger.com/lighttable/ (visited on Mar. 6, 2014).

[lodash] John-David Dalton, Blaine Bublitz, Kit Cambridge, and
Mathias Bynens. Lo-Dash. url: http://lodash.com/ (vis-
ited on Mar. 6, 2014).

[mdn] Web API Interface | MDN. Synchronous and asynchronous re-
quests. Mozilla Developer Network. url: https://developer.
mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_

and_Asynchronous_Requests (visited on Mar. 6, 2014).

[mongo] MongoDB. Version 2.4.8. MongoDB, Inc. url: http://www.
mongodb.org/ (visited on Mar. 6, 2014).

88

http://www.haskell.org/hoogle/
http://www.haskell.org/hoogle/
http://jamjs.org/
http://jquery.com/
http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/
http://www.jshint.com/
http://www.jslint.com/lint.html
https://koding.com/
http://www.lighttable.com/
http://www.lighttable.com/
http://www.chris-granger.com/lighttable/
http://www.chris-granger.com/lighttable/
http://lodash.com/
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests
http://www.mongodb.org/
http://www.mongodb.org/

Online Resources

[mongo-a] Durran Jordan. [SERVER-831] Positional Operator Matching
Nested Arrays - MongoDB. Mar. 25, 2010. url: https://
jira.mongodb.org/browse/SERVER-831 (visited on Mar. 18,
2014).

[mongo-b] MongoDB Manual 2.4.9. Text Indexes. MongoDB, Inc. url:
http://docs.mongodb.org/v2.4/core/index-text/ (visited
on Mar. 6, 2014).

[mongo-c] MongoDB Manual 2.4.9. Search String Content for Text. Mon-
goDB, Inc. url: http://docs.mongodb.org/v2.4/tutorial/
search-for-text/ (visited on Mar. 6, 2014).

[mongo-d] MongoDB Manual 2.4.9. FAQ: MongoDB Fundamentals. Mon-
goDB, Inc. url: http : / / docs . mongodb . org / v2 . 4 / faq /

fundamentals/#does-mongodb-support-acid-transactions

(visited on Mar. 6, 2014).

[mongo-e] MongoDB Manual 2.4.9. Install MongoDB. MongoDB, Inc.
url: http://docs.mongodb.org/v2.4/installation/ (visited
on Mar. 19, 2014).

[msdn] open method (Internet Explorer). Microsoft Corporation.
url: http : / / msdn . microsoft . com / en - us / library / ie /

ms536648(v=vs.85).aspx (visited on Mar. 6, 2014).

[npm] npm. npm, Inc. url: https://www.npmjs.org/ (visited on
Mar. 6, 2014).

[orion] Orion. The Eclipse Foundation. url: http://www.eclipse.
org/orion/ (visited on Mar. 6, 2014).

[OSu] Bryan O’Sullivan. Hackage: text: An efficient packed Uni-
code text type. url: http://hackage.haskell.org/package/
text (visited on Mar. 10, 2014).

[OSu13] Bryan O’Sullivan. Hackage: aeson: Fast JSON parsing and
encoding. Version 0.6.2.1. Oct. 14, 2013. url: http://hackage.
haskell.org/package/aeson-0.6.2.1 (visited on Mar. 6,
2014).

89

https://jira.mongodb.org/browse/SERVER-831
https://jira.mongodb.org/browse/SERVER-831
http://docs.mongodb.org/v2.4/core/index-text/
http://docs.mongodb.org/v2.4/tutorial/search-for-text/
http://docs.mongodb.org/v2.4/tutorial/search-for-text/
http://docs.mongodb.org/v2.4/faq/fundamentals/#does-mongodb-support-acid-transactions
http://docs.mongodb.org/v2.4/faq/fundamentals/#does-mongodb-support-acid-transactions
http://docs.mongodb.org/v2.4/installation/
http://msdn.microsoft.com/en-us/library/ie/ms536648(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/ms536648(v=vs.85).aspx
https://www.npmjs.org/
http://www.eclipse.org/orion/
http://www.eclipse.org/orion/
http://hackage.haskell.org/package/text
http://hackage.haskell.org/package/text
http://hackage.haskell.org/package/aeson-0.6.2.1
http://hackage.haskell.org/package/aeson-0.6.2.1

Bibliography

[purescript] Phil Freeman. PureScript. url: http://functorial.com/

purescript/ (visited on Mar. 6, 2014).

[purescript-a] Phil Freeman. Introduction - PureScript 0.4.0 documentation.
url: http://purescript.readthedocs.org/en/latest/intro.
html#introduction (visited on Mar. 6, 2014).

[Ros11] Dom Roselli. Why You Should Use XMLHttpRequest Asyn-
chronously - WER Service - Site Home - MSDN Blogs. Mi-
crosoft Corporation. Aug. 3, 2011. url: http://blogs.msdn.
com / b / wer / archive / 2011 / 08 / 03 / why - you - should - use -

xmlhttprequest - asynchronously . aspx (visited on Mar. 6,
2014).

[Snoa] Michael Snoyman. Hackage: persistent: Type-safe, multi-
backend data serialization. url: http://hackage.haskell.
org/package/persistent (visited on Mar. 6, 2014).

[Snob] Michael Snoyman. Hackage: shakespeare: A toolkit for mak-
ing compile-time interpolated templates. Version 1.0.5.1.
url: http://hackage.haskell.org/package/shakespeare-
1.0.5.1 (visited on Mar. 6, 2014).

[Snoc] Michael Snoyman. Hackage: yesod-bin: The yesod helper
executable. url: http://hackage.haskell.org/package/

yesod-bin (visited on Mar. 6, 2014).

[Sno13] Michael Snoyman. Hackage: http-client: An HTTP client
engine, intended as a base layer for more user-friendly
packages. Version 0.2.0.3. Dec. 10, 2013. url: http://hackage.
haskell.org/package/http- client- 0.2.0.3 (visited on
Mar. 6, 2014).

[typescript] Welcome to TypeScript. Microsoft Corporation. url: http:
//www.typescriptlang.org/ (visited on Mar. 6, 2014).

[volo] volo. The Dojo Foundation. url: http://volojs.org/ (vis-
ited on Mar. 6, 2014).

90

http://functorial.com/purescript/
http://functorial.com/purescript/
http://purescript.readthedocs.org/en/latest/intro.html#introduction
http://purescript.readthedocs.org/en/latest/intro.html#introduction
http://blogs.msdn.com/b/wer/archive/2011/08/03/why-you-should-use-xmlhttprequest-asynchronously.aspx
http://blogs.msdn.com/b/wer/archive/2011/08/03/why-you-should-use-xmlhttprequest-asynchronously.aspx
http://blogs.msdn.com/b/wer/archive/2011/08/03/why-you-should-use-xmlhttprequest-asynchronously.aspx
http://hackage.haskell.org/package/persistent
http://hackage.haskell.org/package/persistent
http://hackage.haskell.org/package/shakespeare-1.0.5.1
http://hackage.haskell.org/package/shakespeare-1.0.5.1
http://hackage.haskell.org/package/yesod-bin
http://hackage.haskell.org/package/yesod-bin
http://hackage.haskell.org/package/http-client-0.2.0.3
http://hackage.haskell.org/package/http-client-0.2.0.3
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://volojs.org/

Online Resources

[Yan12] Edward Z. Yang. Modelling IO: MonadIO and beyond.
Jan. 24, 2012. url: http : / / blog . ezyang . com / 2012 / 01 /

modelling-io/ (visited on Mar. 6, 2014).

[yesod] Yesod Web Framework for Haskell. url: http://www.yesodweb.
com/ (visited on Mar. 6, 2014).

91

http://blog.ezyang.com/2012/01/modelling-io/
http://blog.ezyang.com/2012/01/modelling-io/
http://www.yesodweb.com/
http://www.yesodweb.com/

Appendix A

Project Structure

The source code of the four packages introduced in Section 3.2 is stored
in the Git repository of the research group Programming Languages and
Compiler Construction: https://git-ps.informatik.uni-kiel.de. Each of
the four packages has its own repository inside of the project programming-
in-the-cloud:

code-cloud-data has the structure of a standard Haskell package. There is
a src folder for all module sources and a test folder with all test code.

code-cloud is a standard Yesod project as described in Section 2.2.3. The
tests directory contains some tests.

code-cloud-interface has the same structure as code-cloud-data, but misses
tests.

code-cloud-editor is also a standard Yesod project. It is important to note
that the editor view’s JavaScript sources are stored in static/js/editor.

All of the repositories contain a cabal package file and a read me file.
The original version of Claude in the code-cloud repository, is tagged as
masterproject-version. All repositories are tagged with masterthesis-jbra-

version to mark the version as it was when this thesis was submitted. The
zipped packages are also included on the attached CD.

93

https://git-ps.informatik.uni-kiel.de

Appendix B

Installation Guide

This section will give instructions on how to setup an instance of Claude
and the editor on a Linux machine.

B.1 Prerequisites

Installing the software requires compiling it from source. It is advised
to do so on the target machine to avoid problems with missing libraries.
Therefore, an up-to-date version of GHC and cabal has to be installed [ghc;
cabal-c] on the target system. Instead of cabal one can also use cabal-dev.
We will use cabal-dev from now on, though there should be no problems
just exchanging it with cabal. When using cabal you may want to remove
the sandbox parameters from the given commands.

We also need to ensure that MongoDB is installed [mongo-e]. Version
2.4.8 of MongoDB was used during development. To check if MongoDB is
installed run to following command:

mongo --version

The output should display the installed MongoDB version.
In a next step, we need to clone the repository contents. We assume that

everything is located in the directory ~/code-cloud/. To clone all repositories
to that directory execute the following commands:

cd ~/code-cloud/

git clone ssh://git@git-ps.informatik.uni-kiel.de:55055/\

programming-in-the-cloud/code-cloud-data.git

git clone ssh://git@git-ps.informatik.uni-kiel.de:55055/\

programming-in-the-cloud/code-cloud.git

95

Appendix B. Installation Guide

git clone ssh://git@git-ps.informatik.uni-kiel.de:55055/\

programming-in-the-cloud/code-cloud-interface.git

git clone ssh://git@git-ps.informatik.uni-kiel.de:55055/\

programming-in-the-cloud/code-cloud-editor.git

Note, that we had to break the lines of the git commands, due to the limited
width of a page.

Changes and additions to Claude are in the extensions branch of the
code-cloud repository. So switch to that branch before proceeding:

cd ~/code-cloud/code-cloud/

git checkout extensions

B.2 Compilation

To compile and install the binaries it is advised to create a shell script. The
following commands can be executed to compile everything:

cd ~/code-cloud/

cabal-dev --sandbox=./cabal-dev --force-reinstall --reinstall \

install \

./code-cloud-data \

./code-cloud \

./code-cloud-interface \

./code-cloud-editor \

blaze-html-0.6.1.2 cryptohash-0.9.1 shakespeare-js-1.1.4.1 \

wai-extra-1.3.4.6 warp-1.3.8.4 yesod-1.2.4 random-1.0.1.1 \

transformers-0.3.0.0 text-0.11.3.1 primitive-0.5.0.1 zlib-0.5.4.1 \

shakespeare-css-1.0.6.6 semigroups-0.12.1

Explicit versions of some dependencies are given to ease installation and
avoid cabal hell. It may be necessary to give further restrictions. We provide
a complete list of all packages installed in our development sandbox on the
attached CD.

If compilation worked ensure that the executables code-cloud and code-

cloud-editor were correctly written to ~/code-cloud/cabal-dev/bin.

96

B.3. Configuration

B.3 Configuration

For Claude to work properly, we have to configure MongoDB to create a
text index for its full-text search. This has to be done manually. The first
possibility to activate the text index is by executing the MongoDB daemon
with additional parameters:

mongod --setParameter textSearchEnabled=true

Another possibility is to use the MongoDB shell and enter the following
command:

db.adminCommand({ setParameter : 1, textSearchEnabled : true })

When the full-text search index is activated we still have to use the
MongoDB shell to configure it further. Before we can configure we need to
select the right database in the shell:

use Claude

Currently Claude uses the database called Claude. To create the indexes we
have to execute the following command:

db.cloud.ensureIndex({"$**": "text"},

{name: "fts", default_language: "none"})

We also have to ensure that MongoDB keeps an index for each object in the
database:

db.cloud.ensureIndex({"modules._id": 1})

db.cloud.ensureIndex({"modules.functions._id": 1})

db.cloud.ensureIndex({"modules.datatypes._id": 1})

Once MongoDB is configured correctly we can configure Claude and the
editor by editing their configuration files

Ź ~/code-cloud/code-cloud/config/settings.yml and

Ź ~/code-cloud/code-cloud-editor/config/settings.yml.

Inside of the Production section of these files, we have to modify the approot

and port. The approot sets the applications root, that is used as prefix for

97

Appendix B. Installation Guide

all generated Uniform Resource Locators (URLs). Be sure that the editor and
Claude have different ports set. Also be sure to include the port within the
approot, if it is not the standard HTTP port. As an example for a correctly
setup configuration section we can look at the following:

Production:

approot: "http://m-049.informatik.uni-kiel.de:8080"

port: 8080

<<: *defaults

This is the configuration that was used for the internal test server.
The following section will assume that Claude is configured to run on

port 8080 and the editor on port 8081.

B.4 Execution

Now that everything is set up correctly and the Claude and editor executa-
bles are ready we can start Claude:

cd ~/code-cloud/code-cloud/

../cabal-dev/bin/code-cloud Production --port 8080

The command to start the editor looks similar:

cd ~/code-cloud/code-cloud-editor/

../cabal-dev/bin/code-cloud-editor Production --port 8081

For both commands it is important to change into the correct working
directory, because the servers search for their resources and static files in
the working directory.

Both applications should now be accessible by opening their respective
approot with a web browser.

It may be advisable to set both, the editor and Claude, up as a system
service that is automatically started when the target system boots.

98

Appendix C

Contents of the Attached CD

All data on the attached CD represents the most current version of the
software, from when this thesis was submitted. Every directory on the CD
contains an index.html, which provides links to all important contents.

The attached CD contains the following directories:

documentation/ The documentation directory contains the generated Had-
dock documentation of all four packages.

packages/ The package directory contains a zipped version of each package.
These packages contain the source code and project files.

dependencies.html Provides a list of all packages that were installed in the
development sandbox.

thesis.pdf An electronic copy of this thesis.

99

	Introduction
	Foundations and Technologies
	JavaScript
	JavaScript Object Notation
	Language Description
	Utility Libraries
	CodeMirror: Editor Component

	Haskell
	http-client: HTTP Network Protocol API
	aeson and bson: Data Serialization
	Yesod

	Claude: Code Cloud
	Data Model
	Database
	Authentication

	Implemenation
	Application Structure
	Changes to the Code Cloud
	Authentication
	Data Model
	Database Access

	Graphical User Interface
	Package Management
	Editor View
	Usage and Workflow
	Hypercode Editor Component
	Asynchronous Operations

	Language Specific Customization
	User Interface Customization
	Object Handling in Claude

	Cloud Development Interface
	Authentication
	Create Operations
	Read Operations
	Update Operations
	Delete Operations

	Network Communication
	HTTP Communication
	Automated JSON Transfer Infrastructure

	Problems, Limitations and Future Work
	Editor and Claude
	Database Limitations
	Database Abstraction
	Management of Concurrent Changes
	Future Work

	Related Work
	Conclusion
	Bibliography
	Project Structure
	Installation Guide
	Prerequisites
	Compilation
	Configuration
	Execution

	Contents of the Attached CD

