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1

Introduction

Modern software systems typically rely on many external libraries, reusing func-
tionality that can be shared between programs instead of reimplementing it for each
new project. In principle this reuse of functionality is, of course, desirable: less time
is spent reinventing the wheel and existing libraries are more likely to have seen
real-world use and the bug fixes that come along with it. Heavy use of libraries
does, however, come with its own set of challenges.

First, a user has to find a library that offers the functionality they need. Then they
have to acquire the library and integrate it into their project, i.e., alter the compiler’s or
interpreter’s load path, customize the Makefile or whatever else their programming
environment might require. Next, they have to ensure that any libraries required
by the original library are also present in the correct versions. If some library is
required by two other libraries, they have to ensure that its version is compatible
to both – if such a version even exists. When the next programmer is added to the
project and sets up their development environment, they have to repeat many of
these steps manually.

To improve discoverability of new libraries and automate some of the steps sur-
rounding installation and integration, package management systems have been devel-
oped for many modern programming languages. Package management systems are
usually able to install packages from a centralized package repository and ensure
that any dependencies – other packages that the original package needs to func-
tion – are installed as well. They are integrated into the programming language
ecosystem and can automatically make installed packages available to the compiler
or interpreter.
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The goal of this thesis is the development of a package management system for the
integrated functional logic programming language Curry. This system should be
able to install packages, resolve dependencies, and feature a simple user interface.
Additionally, it should itself be written in Curry and be compatible to the two major
Curry compilers, PAKCS and KiCS2.

In the next chapter, we give a cursory introduction to the Curry programming lan-
guage. Chapter 3 discusses package management systems and resolution of depen-
dencies in general and gives a brief overview of three modern package management
systems. In Chapter 4, we discuss the design of the Curry package manager and
Chapter 5 describes the implementation of that design. Chapter 6 evaluates how
two of the system’s major features work in practice and gives some performance
figures. Finally, we present conclusions and possible improvements in Chapter 7.
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The Curry Programming Language

Curry is an integrated functional logic language that combines the functional and
logic programming paradigms into one language. Syntactically and in its func-
tional features, it is similar to Haskell [Pey03], most notably lacking support for
type classes. We assume the reader to be familiar with basic Haskell syntax and
semantics. A complete description of Curry is given in the Curry Report [Han+16a].

There are two major compilers for Curry, the Portland Aachen Kiel Curry System,
PAKCS1, which compiles Curry programs to Prolog programs, and the Kiel Curry
System 2, KiCS2 [Bra+11], which compiles to Haskell.

Throughout this chapter, we will give a brief introduction to Curry’s logic features
before turning our attention to AbstractCurry, a representation of Curry programs
as Curry data types that can be used for metaprogramming. Afterwards, we will
briefly discuss the Curry compiler ecosystem.

2.1 Curry’s Logic Features

Since Curry’s functional programming features are largely similar to Haskell’s, we
will only give an introduction to its logic programming constructs, namely non-
determinism and free variables.

Operations in Curry can be non-deterministic, i.e., they can return multiple results

1https://www.informatik.uni-kiel.de/~pakcs/

https://www.informatik.uni-kiel.de/~pakcs/
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for one input. The most basic non-deterministic operation is Curry’s built-in oper-
ator "?", which returns both of its arguments non-deterministically. The following
and all further examples are evaluated using KiCS2 version 0.5.1. Lines beginning
with > are inputs given to the interactive Curry environment, lines without such a
prefix are the results given by the system.

> 0 ? 1

0

1

> "a" ? "b"

"a"

"b"

While Haskell tries the rules of a function in the order they are specified and stops at
the first match, Curry will try all rules, evaluate all that match and return the results
of those evaluations. The function addBoth defined below results in both 0 and 10 if
called on (0, 0).

addBoth :: (Int, Int) -> Int

addBoth (x, _) = x

addBoth (_, x) = x + 10

> addBoth (0, 0)

0

10

In addition to non-determinism, Curry includes support for free variables. Free vari-
ables are not bound to a value until the expression is evaluated. The Curry system
then generates possible values for free variables, binds them to those values and
evaluates the expression. Since multiple values can be generated, expressions con-
taining free variables are non-deterministic. In the following example, the variable
xs is declared as free using where xs free. Each generated value of xs is printed in
braces with the result of the original expression printed afterwards.

> [] ++ xs == [1] where xs free

{xs = []} False

{xs = ((-_x3):_x4)} False

{xs = (0:_x4)} False

{xs = [1]} True

{xs = ((2 * _x5):_x4)} False
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{xs = (1:_x6:_x7)} False

{xs = ((2 * _x5 + 1):_x4)} False

Note that [1] is the only generated value for xs which makes the expression true.
If constraints on free variables are used in guards, then the guarded rule will only
be evaluated for bindings of the free variables that make the guard expression true.
We can then use the now-bound variables inside the function body. As an example,
we define a function prefix that will return all possible prefixes of a list using free
variables:

prefix :: [a] -> [a]

prefix xs | ys ++ zs == xs = ys where ys, zs free

> prefix [1,2,3]

[]

[1]

[1,2]

[1,2,3]

2.2 Abstract Curry

Curry’s has powerful built-in metaprogramming capabilities via AbstractCurry. Ab-
stractCurry is a representation of Curry programs as Curry data types. Functions are
included for reading Curry programs into AbstractCurry form and for pretty print-
ing AbstractCurry terms into Curry programs. Additionally, many helper functions
are provided for selecting specific parts of an AbstractCurry program, for build-
ing AbstractCurry programs, and for transforming AbstractCurry programs. In this
section, we will give a brief overview of the main data types that make up an Ab-
stractCurry program. All of these types are defined in the AbstractCurry.Types

module.

An AbstractCurry program is represented by the CurryProg type, which has one
constructor of the same name taking a module name, a list of imported modules
and lists of type, function and operator declarations.

type MName = String

data CurryProg = CurryProg MName [MName] [CTypeDecl] [CFuncDecl]



6 A Package Manager for Curry

[COpDecl]

A type declaration, CTypeDecl, is either a data type, a type synonym, or a newtype,
which is a special case of a data type.

type QName = (String, String)

data CTypeDecl = CType QName CVisibility [CTVarIName] [CConsDecl]

| CTypeSyn QName CVisibility [CTVarIName] CTypeExpr

| CNewType QName CVisibility [CTVarIName] CConsDecl

data CConsDecl = CCons QName Visibility [CTypeExpr]

| CRecord QName CVisibility [CFieldDecl]

All three constructors take a name, a visibility – whether or not the type is exported
from the module – and a list of type variables used in the following constructors
or type expressions. Additionally, type synonyms take the type expression they
are a synonym for, while data types and newtypes take a list of constructors or a
single constructor. A constructor can either be a simple constructor taking positional
arguments (CCons) or a record constructor (CRecord).

A function declaration, CFuncDecl, consists of a name, the function’s arity, its visi-
bility, its type and a list of rules. There is an additional constructor, CmtFunc, that is
similar except for an additional parameter for a comment.

data CFuncDecl = CFunc QName Arity CVisibility CTypeExpr [CRule]

While we have only given a very superficial introduction to AbstractCurry, it is
sufficient for understanding the parts of this thesis that make use of AbstractCurry.

2.3 The Compiler Ecosystem

As mentioned in the introduction, the two major Curry compilers under active de-
velopment are PAKCS and KiCS2. Both compilers share the same frontend written
in Haskell and only differ in their backends which generate the target code. Addi-
tionally, many settings and command line parameters are the same in both systems.
While they each provide their own executable to launch the compiler and interac-
tive environment, the pakcs and kics2 commands, both also include an alias called
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curry. The curry command can be used to launch an interactive Curry environment
when either compiler’s bin directory is on the path.

Additionally, both compilers use the directories from the CURRYPATH environment
variable to search for modules when an import is encountered, which will turn out
to be very useful in Chapter 4.

Both compilers ship with the same set of standard libraries that cover a variety of
areas: essential data types and operations on those data types, GUI programming,
web programming, data structures and algorithms, database access, as well as li-
braries for metaprogramming such as AbstractCurry. Additionally, a set of tools for
tasks such as generating documentation web sites from specially formed comments
or executing unit and property tests is included in both distributions.
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Package Management Systems

Depending on the context in which is it used, the term package can have many dif-
ferent legitimate uses when talking about software. In Java, a package is a language
concept somewhat similar to hierarchical modules in Curry and Haskell. When
talking about package management systems, we use the term package to refer to a
distribution of a software component in binary or source code form and its accom-
panying metadata such as a package name, author and version. Packages are often
distributed in the form of archive files (such as TAR or ZIP). We will use the term
package file to refer to these archive files explicitly.

A package management system is a software system tasked with installing and
updating packages in an environment. In the case of system-wide package man-
agers such as Debian Linux’s apt1 or Android’s Google Play Store2, the environ-
ment is the operating system instance. For more specialized package managers,
e.g. programming-language specific ones such as the examples discussed in the last
few sections of this chapter, the environment can be a system-wide, per-user or even
per-directory collection of packages, or a combination of the above.

Packages often need other packages to function correctly and these dependencies are
usually listed in the package’s metadata. For example, a package for manipulating
image files might depend on a package supplying a decoder for the JPEG image
format. Ensuring that a package’s dependencies are met when it is installed and/or
used and that there are no conflicts between the dependencies of different pack-
ages is part of a package management system’s tasks. Package dependencies are

1https://www.debian.org/doc/manuals/debian-reference/ch02.en.html
2https://play.google.com/store?hl=en

https://www.debian.org/doc/manuals/debian-reference/ch02.en.html
https://play.google.com/store?hl=en
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described further in Section 3.2.

In the next two sections, we will discuss version numbers and their semantics as well
as dependency management in general. Afterwards, we will turn our attention to
three specific package management systems in common use today and give a brief
overview of the design decisions made during their implementation and the effect
these decisions have on those system’s day-to-day usability.

3.1 Semantic Versioning

Many different schemes are used to version software releases, from simple increasing
numbers to codenames. One of the more common ways to version software is using
a hierarchy of numbers separated by dot characters, e.g. 1.0, 1.0.2 or 2.5.3.1002.
The meaning of the different version components can vary from project to project
and organization to organization. The Eclipse and Apache Commons open source
projects, for example, each have their own guidelines on when to increment which
component of the version number34.

Semantic Versioning aims to be a technology-agnostic standard on the structure and
semantic meaning of software version numbers. It has seen adoption in different
programming communities, such as the Ruby and JavaScript ecosystems. In this
section, we will give a brief overview of the most important aspects of version 2.0.0
of the standard, which is the current version as of this writing. The full specification
can be found in [Pre16].

A semantic versioning version number is made up of three integers separated by dot
characters and, optionally, additional specifiers for pre-release versions (e.g. alpha or
beta versions) and build metadata. The first, second and third components are called
the major, minor and patch versions. Semantic versioning is meant to be applied to
software systems that can be used by other software systems programatically. Thus,
all descriptions of semantic meaning of a version number change in the semantic
versioning standard refer to the public application programming interface (API) of
the versioned software system.

If the major version is set to zero, e.g. 0.5.2, then the system is considered to be in
the initial development phase. Any changes to the public API are permitted and

3https://wiki.eclipse.org/Version_Numbering
4https://commons.apache.org/releases/versioning.html

https://wiki.eclipse.org/Version_Numbering
https://commons.apache.org/releases/versioning.html
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no stability guarantees are made. Version 1.0.0 defines the first stable public API,
subject to the following rules:

• The patch version must be incremented if a new release contains only bug fixes, i.e.,
changes that correct previously incorrect behavior. Backwards compatibility to the
previous release must be maintained, except for bug fixes. Nothing must be added
to or removed from the public API and no API interface must change.

• The minor version must be incremented if new functionality is introduced, for ex-
ample if new functions are added to the public API. Any new functionality must not
affect backwards compatibility of the existing functionality. Additionally, a minor
version may also include bug fixes. The patch version must be reset to zero when
the minor version is increased.

• If a new version contains any backwards incompatible changes, the major version
must be incremented. Backwards incompatible changes include removing or renam-
ing public APIs and changing existing behavior. Patch and minor versions must be
reset to zero if the major version is increased.

Pre-release versions are denoted by a hyphen ("-") followed by a string of ASCII
alphanumeric and hyphen characters. Semantically, a pre-release version indicates
that the software may be unstable and that the normal version semantics may not
apply. Version 1.1.0-beta1 might be missing some parts of the public API from 1.0.0,
for example. Build metadata is a part of the semantic versioning specification, but
is not currently supported or used by the Curry package manager and thus not
described here.

The semantic versioning standard also describes how to compare two versions to
one another. We can formalize this description into a total order on versions if
we represent a version as a four-tuple of three version numbers and an optional
pre-release specifier. To this end, we define Σpre := {-, 0, ..., 9, A, ..., Z, a, ..., z} as
the alphabet of valid characters for pre-release specifiers. We then define V :=
{(a, b, c, p)|a, b, c ∈ N, p ∈ Σ∗pre} to be the set of all semantic versioning version
numbers, i.e., the major, minor and patch version numbers are natural numbers
while pre-release specifiers are words over the alphabet Σpre. Versions without a pre-
release specifier have the empty word (ε) as their last component. We define ≤Σpre to
be the order on Σpre that sorts all characters into the order given in the definition of
the set above, which is the same order the characters are given in the ASCII character
set. ≤Σpre is a total order on Σpre, since a function f : Σpre → {0, ..., 62} that assigns
0 to -, 1 to 0 and so on is an order isomorphism from (Σpre,≤Σpre) to (N,≤).
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Using ≤Σpre and the shortlex order ≤sx on Σ∗pre (see [Sip12]), which is itself a total
order, we can define the order ≤pre on Σ∗pre. In shortlex, shorter strings precede
longer strings while strings of the same length are compared lexicographically. By
the rules laid out in the semantic versioning standard, if both pre-release specifiers
are purely numeric, i.e., all characters are digits, then the specifiers are compared as
integers. If one of the specifiers is numeric, but the other is not, then the numeric
specifier is always considered smaller. If both specifiers are non-numeric, then they
are compared using shortlex order. Assuming a function strToInt that will map a
numeric pre-release specifier to corresponding natural number, we define:

≤pre := {(a, b) | a, b ∈ Σ∗pre, a, b numeric, strToInt(a) ≤ strToInt(b)}

∪ {(a, b) | a, b ∈ Σ∗pre, a numeric, b non-numeric}

∪ {(a, b) | a, b ∈ Σ∗pre, a, b non-numeric, a ≤sx b}

≤pre is a total order on Σpre, a proof is given in Appendix A. We now use ≤pre to
define an order ≤ver on V:

prC((a, b, c, p1), (x, y, z, p2)) := p1 ≤pre p2

paC((a, b, c, p1), (x, y, z, p2)) := c < z ∨ (c = z ∧ prC((a, b, c, p1), (x, y, z, p2)))

miC((a, b, c, p1), (x, y, z, p2)) := b < y ∨ (b = y ∧ paC((a, b, c, p1), (x, y, z, p2)))

maC((a, b, c, p1), (x, y, z, p2)) := a < x ∨ (a = x ∧miC((a, b, c, p1), (x, y, z, p2)))

≤ver := {(v1, v2) | v1, v2 ∈ V, maC(v1, v2)}

It can be shown that ≤ver is a total order on V, a proof is given in Appendix A.

3.2 Dependency Management

Packages often need other packages to function correctly. For example, a JSON (see
[Bra14]) parser package might depend on a package offering parser combinators.
Each package typically lists the packages it depends on in its metadata, including
constraints on the range of versions of these package it is compatible to. Version
1.0.0 of the JSON package might require the parser combinator package in a specific



Package Management Systems 13

web-service-client

json http-client

parser-combinators

>= 1.0.0 >= 1.0.0

>= 1.1.0 >= 1.5.0, < 2.0.0

Figure 3.1.: A simple dependency graph

web-service-client

json http-client

parser-combinators

>= 1.0.0 >= 1.0.0

>= 2.0.0 >= 1.5.0, < 2.0.0

Figure 3.2.: A conflicting dependency graph

version, e.g. 1.1.5, or specify an acceptable range of versions, e.g. anything above
1.1.0 but below 2.0.0.

Dependencies can also be transitive: if a dependency has dependencies of its own,
then those dependencies become dependencies of the original package. A web ser-
vice client might, for example, depend on some HTTP client package and the JSON
package. The web service client package then also depends on the parser combinator
package.

The direct and transitive dependencies of a package form a dependency graph. Each
package is a node in the graph. A directed edge from package A to package B sig-
nifies that package A depends on package B. The edges are labeled with the version
constraints of the dependencies. An example dependency graph for the web service
client described above is shown in Figure 3.1. The example graph also shows why
the dependency graph is a graph and not just a tree: multiple (transitive) depen-
dencies of the original package can depend on the same package. In the example
graph, both the json and http-client packages depend on the parser-combinators

package.
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Packages with multiple incoming edges, i.e., packages that are depended upon by
more than one other package, are a common source of conflicts: if the version con-
straints on two or more of these edges are incompatible, then there is no way to
choose one of the available versions that will satisfy all constraints. Figure 3.2 shows
a dependency graph with conflicts. The json package requires parser-combinators

in version 2.0.0 or higher, while the http-client package cannot work with any-
thing newer than 1.y.z. There is no way to form a set containing only one version of
json, http-client and parser-combinators that will satisfy all version constraints.

We will give a few definitions adapted from Burrows [Bur05] to make the above
observations more precise. As above, a package is simply defined by its name, e.g.
json or parser-combinators. We define P to be the set of all packages known to a
package system. A package version is represented by the name of the package and
its version number separated by a hyphen, e.g. json-1.0.0 or parser-combinators-3.8.1-
b5. We define V to be the set of all package versions known to a package system and
PkgOf (v) to be the package of any package version v:

Definition 1. Given a package version v ∈ V , PkgOf (v) ∈ P is the corresponding package.
4

Next, we define version constraints:

Definition 2. A version constraint is written p OP ver, where p ∈ P is a package name,
OP is one of the operators =,>,≥,<,≤, and ver ∈ V is a version number. 4

An example version constraint is json ≥ 1.0.0. A version constraint is satisfied for
a package version v iff PkgOf (v) equals the package in the version constraint and
v’s version satisfies the condition. If version numbers are in the semantic version-
ing format discussed in the previous section, we can use the ≤ver relation to check
when a constraint is satisfied. Note that individual package managers may support
different version number formats and operators.

We can build combined version constraints from individual version constraints:

Definition 3. A combined version constraints is a combination of one or more version con-
straints for the same package using the boolean operators and (∧) and or (∨) in disjunctive
normal form, i.e., a disjunction of conjunctions of version constraints. A combined version
constraint is satisfied iff its value is true when satisfied individual version constraints are
interpreted as true and non-satisfied version constraints as false. 4

An example combined version constraint that requires either the JSON package in
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a version between 1.0.0 and 2.0.0 or from version 3.0.0 onwards is: (json ≥ 1.0.0 ∧
json < 2.0.0) ∨ json ≥ 3.0.0.

Additionally, we define VPkg and VCPkg for version constraints and combined ver-
sion constraints:

Definition 4. Given a version constraint c = p OP ver, we define VPkg(c) := p, i.e., the
package referenced by the version constraint. 4

Definition 5. Given a combined version constraint d, the set

{VPkg(c) | c is a version constraint in d}

contains all packages referenced by the version constraints that make up d. Note that since
all version constraints in a combined version constraint must reference the same package, it
will always be a singleton set. We define VCPkg(d) to be the sole member of that singleton
set, i.e., the package depended upon by the combined version constraint d. 4

We can now define dependency constraints, which let us specify which other packages
a package version depends on.

Definition 6. Given a package version v and a combined version constraint c, we write
v ⇒ c if v depends on a package version that satisfies c. v ⇒ c is called a dependency
constraint. S is the set of all dependency constraints. 4

For example, if json-1.0.0 depends on parser-combinators in version 1.0.0 or above, we
can write json-1.0.0 ⇒ parser-combinators ≥ 1.0.0. Next, we define DependingPkg,
Deps and DepPkgs:

Definition 7. Given a dependency constraint d = v ⇒ c ∈ S where v is a package version
and c is a combined version constraint, we define DependingPkg(d) := v, i.e., the depending
package version, and DependedVC(d) := c, i.e., the combined version constraint depended
upon. 4

Definition 8. Given a package version v, we define

Deps(v) := {d ∈ S | DependingPkg(d) = v}.

Deps(v) is the set of of all known dependency constraints for v. 4

Definition 9. Given a package version v, we define

DepPkgs(v) := {VCPkg(d) | d ∈ S with DependingPkg(d) = v}.



16 A Package Manager for Curry

DepPkgs(v) is the set of all package names mentioned in the dependency constraints of v,
i.e., the packages that v depends on directly. 4

Note that a concrete implementation of a package management system might not
offer exactly the same capabilities as described here using versions and dependency
constraints, for example, not all systems offer boolean disjunctions.

Given a set of package versions I, we say that I satisfies a dependency constraint d,
written I ` d, if d is satisfied by the package versions in I. We call a set I of package
versions consistent if for all dependency constraints d of all package versions in I, I
either satisfies d or I does not contain a version of VCPkg(DependedVC(d)).

We say that I is complete if it contains exactly one version of each package depended
upon by a package version in I, i.e., of each package in ∪{DepPkgs(v) | v ∈ I}. If I
is both consistent and complete, we say that I is a solution.

The process of extending I with additional package versions from V until it is a
solution is called dependency resolution. The resulting set is called R(I).

From now on, we will use the term version constraint to mean both simple version
constraints as well as combined version constraints.

Dependency resolution can take place at different times and with sets of package
versions of varying sizes. In some package management systems, e.g. most op-
erating system package managers or Haskell’s Cabal (see Section 3.5), dependency
resolution takes place at install time. The set of installed packages must always
form a solution, i.e., a newly installed package version must leave it consistent and
complete and only one version of a package can be installed at any given time.
Other package management systems perform dependency resolution at run-time or
compile-time on a much smaller set of package versions, namely the packages that
are required to run or compile the program. The set of installed packages versions
does not have to be a solution. Ruby’s Bundler and JavaScript’s npm both use this
approach, see Sections 3.3 and 3.4, respectively.

3.3 Ruby’s Gems and Bundler

Ruby ships with a default package manager called RubyGems that can install and
manage Ruby packages, called gems. Gems are installed globally in the current Ruby
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installation via the gem command, e.g. gem install rails. A gem can be installed
from a local .gem file, which is just a ZIP archive with a different extension, or from
a central repository of gems, which offers an API that the gem utility can use to find
and download gems.

RubyGems is integrated into the Ruby language: if the json gem is installed on the
system, then its files are automatically added to Ruby’s load path and it is available
for use via require ’json’ 5. Since it is possible to install multiple versions of a gem,
RubyGems will run a dependency resolution algorithm when a gem is required from
a Ruby program: the first gem that is loaded will always be loaded in the newest
available versions, unless the user explicitly specifies another version to load. Each
subsequent gem will be loaded in the newest version that is compatible with the set
of already loaded gems. If no compatible version exists on the system, execution of
the current program is stopped with an error.

thin actionpack

rack

>= 1.0.0 >= 1.0.0, < 1.1.0

Figure 3.3.: A dependency graph with different results depending on order.

Note that using this approach, the order in which gems are loaded has an effect on
the versions loaded and even whether or not a compatible set of gems can be found
at all. Consider the scenario shown in Figure 3.3, taken from [Kat10]. If we assume
that the system has the rack gem installed in versions 1.0.5 and 1.1.3, the following
two requires will result in an error:

require ’thin’

require ’actionpack’

Since thin’s only requirement is that the version of rack be greater than or equal
to 1.0.0, RubyGems will load rack in version 1.1.3. When actionpack is required,
RubyGems checks if the already loaded version of rack is compatible with its de-
pendency requirements. Since actionpack explicitly declares that is not compatible
with rack in version 1.1.0 or above, execution stops with an error. The following
load order will, however, not result in an error:

5The require command is used to load other files into a Ruby program. The load path is a list of
directories that are searched when a file is required without an absolute path.
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require ’actionpack’

require ’thin’

actionpack is loaded first, and with it rack in version 1.0.5. Since 1.0.5 also matches
the dependency specification of thin, both gems can be loaded without error.

This consecutive resolution of dependencies can quickly become unwieldy in larger
projects, especially since gems may themselves require other gems in unknown or-
der. Because of this and a few other shortcomings (see [Kat10] for a detailed ex-
planation), the Ruby community developed the Bundler 6 tool. Bundler provides a
way to explicitly declare and install a list of dependencies for a single Ruby project.
To this end, the user can create a file called Gemfile in the project’s root directory
in which they list the gems their project needs, including the desired versions or
version ranges. A Gemfile for the example above might look like this:

gem ’actionpack’

gem ’thin’

When the user runs bundle install in the project’s root directory, Bundler will
check if there are versions of actionpack, thin and their dependencies installed on
the system that form a compatible set and choose the newest compatible version
of each gem. If some packages are missing, it will ask RubyGems to install them
in the newest compatible version. Dependency resolution is no longer done after
each require, but ahead of time, with all dependencies known to the dependency
resolution algorithm. In addition, a developer new to a Ruby project but familiar
with the language and its ecosystem knows where to find all project dependencies
and how to install them.

To further increase the ease of collaboration and to prevent bugs arising from slightly
different gem versions being used on different developer’s systems, Bundler cre-
ates a Gemfile.lock file when bundle install is first run. In this file, it notes the
exact versions of all gems installed and used during the installation run. When
bundle install is run again, this time with a Gemfile.lock file present in addition
to the Gemfile, Bundler will use the exact versions noted in the Gemfile.lock, even
if different – potentially newer – versions of some gems are available that satisfy the
version constraints in the Gemfile. This ensures that exactly the same gem versions
are used on different systems.

6http://www.bundler.io

http://www.bundler.io
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3.4 JavaScript’s npm

npm is a popular package manager in the JavaScript ecosystem and comes bundled
with the widely-used JavaScript environment Node.js. It encourages creating many
small packages that only do a few things each, resulting in a large number of pack-
ages published to the central npm package index. The creators of npm claim that
over a 250, 000 packages have been published thus far.7

A B

C

= 1.0.0 = 2.0.0

Figure 3.4.: A dependency graph with the same package required in two versions.

npm’s most distinguishing feature is that it allows the user to not only install multi-
ple versions of a package, but also use multiple versions during one execution run.
A scenario in which the user’s package depends on packages A and B, which de-
pend on different version of package C (e.g. A depends on C-1.0.0 while B depends
on C-2.0.0, see Figure 3.4) does not lead to a dependency conflict in npm. Instead,
the code in package A can use the code from C-1.0.0 while the code in package B can
use the code from C-2.0.0. This is made possible by the way Node.js loads JavaScript
code.

Node.js provides a require function to import other JavaScript modules.8 Unlike
Ruby’s require statement or Haskell’s import, Node’s require function does not
load the definitions of the required module into the global environment. Instead, the
other module’s exports are returned from the function. In the following example,
the module foo.js loads the module circle.js from the same directory and uses
its exports.9 The contents of circle.js:

const PI = Math.PI;

exports.area = function(r) {

return PI * r * r;

};

exports.circumference = function(r) {

return 2 * PI * r;

7http://www.npmjs.com
8In Node.js, modules are JavaScript files.
9Example taken from https://nodejs.org/api/modules.html#loading_from_node_modules_Folders

http://www.npmjs.com
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};

The contents of foo.js:

const circle = require(’./circle.js’);

console.log(’The area of a circle of radius 4 is ’ + circle.area(4));

Note that the local declaration of PI in circle.js remains invisible to foo.js.
Only the functions exported from circle.js are usable, and only through the new
constant circle. Loading another version of circle.js – e.g. from a file called
circle-2.js – and using it alongside the original version is possible if we assign the
exports of the second version to a different constant.

const circle = require(’./circle.js’);

const circle2 = require(’./circle-2.js’);

console.log(’The areas of a circle of radius 4 are ’ + circle.area(4) + ’

↪→ and ’ + circle2.area(4));

In addition to loading a JavaScript module by specifying the name of a file, it is
also possible to load a directory as a module. Node.js will look for a directory with
the required name, search for an index.js file inside that directory and load it.10

Unless a specific path is given to require (such as ./circle.js in the above exam-
ple), Node.js will search a global load path for the required module. Additionally,
it will search the node_modules subdirectory of directory containing the module ex-
ecuting the call to require. This is used by npm to enable scenarios such as the one
shown in Figure 3.4. If the module foo.js depends on A and B from the graph and
loads them via require, then npm will install the packages in the directory structure
shown in Figure 3.5: The dependencies of a package are always installed into the
node_modules subdirectory of that package.11 Modules A and B will look for C in
their own node_modules subdirectories and find the versions they need. Since, as
explained above, Node.js modules cannot easily influence the global environment
when they are required, using both versions of C inside the same program is pos-
sible as long as incompatible data from C are not shared between A and B through
foo.

10There are a few more ways a module can be loaded, see https://nodejs.org/api/modules.html#

loading_from_node_modules_Folders
11This behavior has been optimized in npm version 3 to reduce duplication of packages and prevent very

deep trees. The basic idea remains the same, however.

https://nodejs.org/api/modules.html#loading_from_node_modules_Folders
https://nodejs.org/api/modules.html#loading_from_node_modules_Folders
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foo/

foo.js

node_modules/

A/

index.js

node_modules/

C/

index.js

B/

index.js

node_modules/

C/

index.js

Figure 3.5.: npm directory structure

3.5 Haskell’s Cabal

Cabal [Jon05] is the main package manager in the Haskell ecosystem and ships with
the Glasgow Haskell Compiler (GHC). It uses the central Haskell package database
Hackage12 to search for and retrieve packages. Like Ruby’s Gems, Cabal installs
packages in a global location on the user’s system. Unlike Gems, Cabal does not
allow more than one version of a package to be installed at the same time and
requires all installed packages to be compatible with one another, i.e., the set of
installed package version has to be consistent and must not contain more than one
version of a package.

The main reason for this restriction is that Cabal resolves the dependencies of a
package when it is installed and then compiles the package against those depen-
dencies. In a scenario such as the one shown in Figure 3.6, either json-1.0.0 or
http-client-1.0.0 can be installed on the system, but not both. If json-1.0.0 is in-
stalled first, then parser-combinators will be installed in some version greater than

12https://hackage.haskell.org

https://hackage.haskell.org
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web-service-client-1.0.0

json-1.0.0 http-client-1.0.0

parser-combinators

>= 1.0.0 >= 1.0.0

>= 2.0.0 >= 1.5.0, < 2.0.0

Figure 3.6.: A conflicting dependency graph

or equal to 2.0.0, e.g. 2.0.1. When the user now tries to install http-client-1.0.0,
it cannot be installed since parser-combinators is installed in version 2.0.1, which
is not smaller than 2.0.0 and thus incompatible to http-client-1.0.0’s dependency
constraints. Installing http-client-1.0.0 first results in a similar scenario. Rein-
stalling parser-combinators in a version smaller than 2.0.0 is also not an option,
since that would render the already installed json-1.0.0 unusable. If there were a
version of json that was compatible with parser-combinators-2.0.1 and all other
installed package versions, we could reinstall json in that compatible version, but
would then have to recompile every package that depends on the installed version of
json. These kinds of situations are quite common since package authors on Hack-
age are free to choose their dependency constraints and version ranges in those
constraints, quickly leading to situations in which popular packages or their de-
pendencies are incompatible with one another. These situations are known in the
community as "Cabal hell"13.

To ease the burden of "Cabal hell", the Cabal authors have added a feature called
sandboxes14, which allows the user to create multiple isolated installation locations.
Running cabal sandbox init inside a directory A will create a sandbox for this
directory. All Cabal operations executed in A will use the sandbox as their pack-
age installation location. Since sandboxes are isolated from one another there is no
problem with conflicts between the sandboxes. The package versions inside each
sandbox must, of course, still be free of conflicts.

The stack build tool15 is built on top of the Glasgow Haskell Compiler and Cabal.
In addition to isolated build environments similar to Cabal’s sandboxes, it aims

13http://www.yesodweb.com/blog/2012/11/solving-cabal-hell
14https://www.haskell.org/cabal/users-guide/installing-packages.html#

developing-with-sandboxes
15http://haskellstack.org

http://www.yesodweb.com/blog/2012/11/solving-cabal-hell
https://www.haskell.org/cabal/users-guide/installing-packages.html#developing-with-sandboxes
https://www.haskell.org/cabal/users-guide/installing-packages.html#developing-with-sandboxes
http://haskellstack.org
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to provide reproducible builds: projects are built using a fixed version of GHC and
a curated and compatible set of popular Haskell packages, providing a consistent
environment every time the project is compiled.





4

A Package Manager for Curry

As we have seen in Chapter 3, the core tasks of most package management systems
are similar. There are many design decisions, however, that affect the day-to-day
usage and user-friendliness of the system. Additionally, the kind of support the
underlying language offers for loading files and/or modules from within a program
imposes some constraints, especially on dependency management and installation
locations. For example, the require function in Node.js does not allow a loaded
module to easily impact the global environment of the loading module, enabling
the use of multiple versions of one package within the same program. In Ruby and
Haskell, a loaded module usually does alter the global environment, making it very
hard or impossible for a package system to support loading multiple versions of a
package into one program.

In this chapter, we will explain the choices made during the design of the Curry
package manager (cpm) and the trade-offs involved in these choices as well as the
restrictions imposed by the Curry language and ecosystem that influenced them.
We will give a brief overview of the functionality offered by the package manager’s
command line interface, discuss how a Curry package is structured and distributed
and how a user can find and obtain new packages. Afterwards, we will turn our
attention to how packages are installed on the user’s system and how dependen-
cies can be specified and how they are resolved. Finally, we will describe how the
package manager interacts with the Curry compiler and show a way for a pack-
age developer to check whether their version increments are compatible to semantic
versioning. First, however, we will discuss some major design goals for the Curry
package manager.
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The overarching design goal we started out with was to develop a package system
for Curry that works with the two major Curry compilers, KiCS2 and PAKCS, and
is itself written in Curry. If possible, the system should require very few or even no
support from and thus changes to the compilers themselves. It should be possible
for the user to specify the dependencies of a package or project and have the package
system calculate a conflict-free set of package versions that satisfies these dependen-
cies, if such a set exists. The system should then be able to automatically acquire and
install any missing dependencies, i.e., the user should not need to manually search
for, acquire and then install package files. It should, however, still be possible for a
user to manually install a package from a local file. In case of a dependency conflict,
the user should be able to easily identify the source of the conflict, i.e., the pack-
age versions that are responsible for the conflict, and which dependency constraints
conflict one another.

To aid the discovery and acquisition of new packages, there should be a central,
searchable package index. It should be easy for a package developer to publish a
new package or a new version of a package to the index. Package versioning should
be done according to the semantic versioning standard discussed in Section 3.1 and
the system should support package developers as much as possible in adhering to
the rules established in the standard.

Early on we decided for simplicity’s sake to require every consumer of a Curry
package to itself be a Curry package. Thus, the term package can, in the context of the
Curry package manager, refer not only to libraries of Curry modules that are meant
to be used by other Curry modules, but also to Curry programs that only consume
other packages but do not themselves offer any reusable functionality in the form
of Curry modules. Node’s npm has made a similar choice, while Haskell’s Cabal
and Ruby’s Bundler allow package modules to be used outside of other packages.
A downside of this approach is that a globally installed package, e.g. xml, cannot be
used simply by starting an interactive Curry session and loading a module from the
xml package, unless the Curry session is started from within the directory of another
package with a dependency on xml.

4.1 The Command Line Interface

The user interacts with the Curry package manager through the cpm executable,
which offers a command line interface. It supports multiple commands, most of
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which perform operations on the current package. The current package is defined
by the directory cpm is executed from: since a Curry package is simply a directory
structure with a specification file called package.json at its root, the package man-
ager will search for such a file in the current directory and – for convenience – in the
parent directories of the current directory. If it finds a package.json file, it assumes
the package described in it is the current package. The directory structure of a Curry
package and the contents of the package.json file are explained further in the next
section.

The following commands are supported by cpm: install, uninstall, upgrade,
update, search, info, deps, link, exec, curry, new and diff.

As their names suggest, install and uninstall can be used to install and uninstall
packages on the local system. While uninstall simply expects the name and ver-
sion of the package to uninstall, e.g. cpm uninstall xml 1.0.5, and then removes
the corresponding package version from the global package cache – see Section 4.4
for an explanation of the global package cache – install can be used in multiple
ways. Just executing cpm install without any arguments will install all depen-
dencies and transitive dependencies of the current package into the global package
cache. Specifying a package name, e.g. cpm install xml, will install the latest ver-
sion of the package from the central package index, while a distinct version can be
installed by specifying it as another parameter, e.g. cpm install xml 1.0.5. Finally,
a package can be installed from a ZIP file by specifying the name of the file in place
of the package name, e.g. cpm install xml-1.0.5.zip.

upgrade can be used to install the newest compatible version of one or more of the
current package’s dependencies. If upgrade is called without further arguments,
then all dependencies of the current package are upgraded to the newest available
versions that form a conflict-free set. A specific package can be upgraded to the
newest compatible version by passing its name as an argument to upgrade, e.g.
upgrade xml. This will also upgrade all of the upgraded package’s dependencies
and transitive dependencies.

The deps and info commands print out information about the current package. info
prints general information from the package metadata, such as the package’s name
and author as well as its dependency specifications. Using deps, the user can run
the dependency resolution algorithm and see the package versions chosen for all
dependencies and transitive dependencies, or information about a conflict that may
have occurred.



28 A Package Manager for Curry

curry allows the user to start the Curry compiler with all dependencies of the current
package resolved and available to the compiler, assuming there exists a conflict-free
set of packages that can satisfy all of the package’s dependency constraints. Any
arguments to curry will be passed verbatim to the Curry compiler. exec can be
used to execute an arbitrary command with the dependencies known to any Curry
compiler that might be started via that command. A sample use case is starting
currycheck to execute tests within the package with all dependencies available.

When the user wants to replace a dependency or transitive dependency of the cur-
rent package with a version somewhere on their local system, e.g. because they have
fixed a bug in that dependency and the next version containing the bug fix has not
been published yet, they can use link to declare a local directory as the source of
a specific package version. Imagine that the xml package has a bug in its newest
version 1.0.5 that is easily fixable, but the package is maintained by some third party
and not by the user. The user acquires a copy of the package’s source code, fixes
the bug and sends a patch to the maintainers. Since the maintainers are busy, a new
version containing the fix, e.g. 1.0.6, is not released immediately. In this case, the
user can execute cpm link ~/src/xml-1.0.5-fixed to instruct the package manager
to use copy of xml-1.0.5 in the ~/src/xml-1.0.5-fixed directory instead of the one
installed on the system.

new offers a quick way to get started with a new package. It asks the user a few
questions and then creates a bare bones directory structure and package metadata
file.

The diff command can be used to compare the public APIs and behavior of the
current package to another version of that package. It expects the version of the
other package as its first argument, e.g. cpm diff 1.0.5 to compare the current
package version to version 1.0.5 of the same package. By default, the public APIs and
behavior of all exported modules will be compared. The --modules option can be
used to specify the modules to be compared, the --api-only and --behavior-only

flags switch off the behavior and API comparison, respectively. More information
on API and behavior comparison can be found in Section 4.7.

Using update, the user can keep the local copy of the central package index (see
Section 4.3) up to date. search searches the central package index for the term
passed as a parameter.
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4.2 What’s in a Package?

A Curry package is, at its core, a directory structure following a certain layout with
a metadata file in the structure’s root directory. The minimum directory structure
for a package is as follows:

some-package/

src/

package.json

The src directory contains the source code of the Curry modules that make up the
package, while the package.json file contains the metadata of the package. Curry
packages are distributed and installed in source code form to reduce dependency
conflicts, as explained in Sections 4.4 and 4.5. A package offering functionality for
parsing and building XML files might contain the modules XML.Types, XML.Parser
and XML.Pretty to be used by the consumers of the package, and XML.Internal.Par-

serPrimitives for internal use. The directory structure of such a package might look
like this:

xml/

src/

XML/

Types.curry

Parser.curry

Pretty.curry

Internal/

ParserPrimitives.curry

package.json

As the file extension suggests, the package.json file contains the package metadata
in the JSON file format, since this format is easy to parse and widely used. The
structure of the file is adapted from JavaScript’s npm (see Section 3.4), which also
uses JSON as its metadata file format.

A Curry package can have a variety of metadata associated with it, but only a few



30 A Package Manager for Curry

fields are mandatory. Most of the metadata fields are purely informational, i.e.,
their content does not influence how the package system works when performing
operations concerning the package. The following list explains all metadata fields
briefly, with mandatory fields marked with a *.

• Name*, name in the package.json file. The name of the package. It must only
contain lowercase ASCII letters, digits, and hyphens as well as start with a letter. In
particular, package names may not contain spaces. Sample package names are json

and http-client. This field is mandatory.

• Version*, version in the package.json file. The version of the package. Must fol-
low the format specified in the semantic versioning standard (see Section 3.1), e.g.
1.5.6 for a regular version or 2.0.0-beta5 for a pre-release version. This field is
mandatory.

• Author*, author in the package.json file. The author or authors of the package.
This is a free-form field that is only used for informational purposes. The sug-
gested format is either just the names of the authors separated by commas, or the
names of the authors with their email addresses added in angular brackets, e.g.
John Doe <john.doe@goldenstate.gov>.

• Maintainer, maintainer in the package.json file. The current maintainers of the
package, if different from the original authors. This field allows the current main-
tainers to indicate the best person or persons to contact about the package while
recognizing the original authors. Like the author field, this is a purely informational
field. The suggested format is the same as for the author field.

• Synopsis*, synopsis in the package.json field. A short form summary of the pack-
age’s purpose. It should be kept as short as possible, ideally under 100 characters.
This is a purely informational field. This field is mandatory.

• Description, description in the package.json file. A longer form description of
what the package does. This is a purely informational field.

• License, license in the package.json file. A license under which the package is
distributed. This is a free-form field and purely informational. In case of a well-
known license such as the GNU General Public License1, the SPDX license identifier2

should be specified. If a custom license is used, this field should be left blank in favor

1https://www.gnu.org/licenses/gpl-3.0.en.html
2https://spdx.org/licenses/

https://www.gnu.org/licenses/gpl-3.0.en.html
https://spdx.org/licenses/
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of the license file field.

• License File, licenseFile in the package.json file. The name of a file in the root di-
rectory of the package containing explanations regarding the license of the package
or the full text of the license. The suggested file name is LICENSE.

• Copyright, copyright in the package.json file. Copyright information regarding
the package. This field is free-form and purely informational. There is no suggested
format.

• Homepage, homepage in the package.json file. The package’s web site. This field
should contain a valid URL.

• Bug tracker, bugReports in the package.json file. A place to report bugs found in
the package. This is a free-form field, but the suggested formats are either a valid
URL to a web based bug tracker or an email address.

• Repository, repository in the package.json file. The location of an SCM repository
containing the package’s source code. This should be a valid URL, pointing either
to the repository itself – e.g. a Git URL – or to a web site explaining how to get to
the repository.

• Dependencies*, dependencies in the package.json file. The package’s dependen-
cies. The exact format is explained below. Note that this is a mandatory field and
must be present even if the package has no dependencies.

• Compiler compatibility, compilerCompatibility in the package.json file. This field
can be used to declare which compiler versions are required by the package. The for-
mat is similar to dependency declarations. If this field is missing, then the package
is assumed to be compatible to all compilers in all versions.

• Source, source in the package.json file. This field is used to indicate where the
specific version described in the current metadata set can be obtained. The exact
format is described below.

• Exported modules, exportedModules in the package.json file. A list of modules that
this package exports for use by consumers of the package. This list is used when
checking for semantic versioning compliance, see Section 4.7. Note that modules not
in this list are still accessible to the consumers of the package. See Section 4.6 for
details.
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As mentioned above, the metadata go into a JSON file called package.json in the
package’s root directory. We will now give a brief introduction to the JSON file
format. The full specification can be found in IETF RFC 7159 [Bra14].

A JSON value can be either a primitive value – a string, a number, a boolean or null
to represent a missing value – or one of two more complex structures – a list of values
and a collection of key/value pairs. A JSON string consists of zero or more Unicode3

characters enclosed in double quotes. As in many programming languages, the \

character is used as an escape character within a JSON string. The exact rules for
escaping inside of strings can be found in the JSON standard. Examples of valid
JSON strings are "Hello, World!", "", and "This contains \"escaping\"\n".

A JSON number is a floating point number written in the format found in many
programming languages: an optional leading minus sign followed by one or more
digits, optionally followed by a decimal point and one or more digits. It is also
possible to specify an exponent to the base of 10 in scientific ("e") notation.

Booleans in JSON are simply represented by the two literals true and false, while
the missing value is represented by the literal null.

A list of JSON values, called an array, is represented by an opening bracket ([), zero
or more JSON values separated by commas, and a closing bracket (]). JSON arrays
can contain values of different types, i.e., a JSON array can contain a mix of strings,
numbers, other JSON arrays and so on. Examples of valid JSON arrays are [] and
[true, "Hello, World!", 5.27e10].

Collections of key/value pairs are called objects. A JSON object starts with an open-
ing brace ({) and ends with a closing brace (}). Zero or more key/value pairs can
be placed between the braces. A key/value pair consists of a JSON string as the key,
the colon (:) character as a delimiter, and the value for the key, which can be an
arbitrary JSON value. The values inside a JSON object do not need to be of the same
type. Examples of valid JSON objects are:

{}

{

"Hello": "World",

"Test": 1.27e10,

"List": ["A", "B", "C"],

3http://unicode.org

http://unicode.org
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"Nested": {

"Hi": "Hello"

}

}

The package.json file contains one top-level JSON object, whose possible keys are
mentioned in the list of metadata fields above. For most keys, e.g. name, version or
author, the expected value is a JSON string, while a package’s dependencies, com-
piler compatibility and source are specified using JSON objects and the package’s
exported modules are listed using a JSON array.

To specify the dependencies of a package, we add a new JSON object under the
dependencies key of the package specification object. This new object maps the
package names of our dependencies to version constraints in the form of a JSON
strings, e.g. ">= 1.0.0". If we were developing the web-service-client pack-
age and needed to use the xml-parser package in some version greater than 1.5.0
and the http-client package in some version greater than 2.1.2, we could use the
package.json file in Listing 4.1. The full format for version constraints is described
in Section 4.5.

Listing 4.1: A simple package.json file including dependencies.

{

"name": "web-service-client",

"version": "1.0.8",

"synopsis": "A web service client",

"author": "John Doe",

"dependencies": {

"xml-parser": "> 1.5.0",

"http-client": "> 2.1.2"

}

}

Compiler constraints can be specified similarly to dependencies. The value of com-
pilerCompatibility key should be a JSON object containing the names of Curry
compilers as keys and version constraints as values. Each entry constrains the pack-
age to the versions of the compiler matching the version constraint. Currently, the
Curry package manager knows about the KiCS2 and PAKCS compilers, referenced
via the kics2 and pakcs keys, respectively. If at least one compiler is specified, the
package is assumed to be incompatible to any compiler that does not occur in the
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compilerCompatibility object. If no compilers are specified, the package is assumed
to be compatible to all compilers in all versions. Assuming the web-service-client

package used features introduced in KiCS2 0.6.0 and PAKCS 1.3.0, the package.json

file from Listing 4.1 could be extended as shown in Listing 4.2.

Listing 4.2: A package.json file including compiler compatibility specifications.

{

"name": "web-service-client",

"version": "1.0.8",

"synopsis": "A web service client",

"author": "John Doe",

"dependencies": {

"xml-parser": "> 1.5.0",

"http-client": "> 2.1.2"

},

"compilerCompatibility": {

"kics2": ">= 0.6.0",

"pakcs": ">= 1.3.0"

}

}

The source key specifies how the version of the package described in the metadata
file can be obtained. When the Curry package manager is asked to install a package
from the central package index, it uses the the source description to acquire the pack-
age’s files. Packages without source specifications cannot be installed automatically.
A package source can be a HTTP URL pointing to a ZIP file, or a Git repository URL
and an optional revision to check out. We can set a HTTP source using the http key:

{

...

"source": {

"http": "http://curry-packages.org/web-service-client-1.0.8.zip"

}

}

To use a Git repository, we can set the git key to the repository’s URL. If we only set
the git key and do not indicate a revision to use, the Curry package manager will
check out the most recent revision in the repository. We can use the tag or ref keys
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to specify either a Git tag or revision identifier.4 tag and ref are mutually exclusive,
i.e., we can use tag or ref to indicate the revision to use, but not both.

{

...

"source": {

"git": "git+ssh://git@github.com:john-doe/web-service-client.git",

"tag": "version-one"

}

}

The Curry package manager supports a shortcut to avoid having to change the
source specification for each new package version: if the tag key is set to $version,
then the system will automatically check out the the tag vversion, where version is
replaced by the package version. For a package in version 1.0.8, the system will
check out the tag v1.0.8.

{

...

"source": {

"git": "git+ssh://git@github.com:john-doe/web-service-client.git",

"tag": "$version"

}

}

Finally, the exportedModules key indicates which modules are intended for use by
the consumers of the package. Its value should be a JSON array containing mod-
ule names as JSON strings, e.g. ["WebServiceClient.Request", "WebServiceCli-

ent.Response"] for our example web-service-client package. The packages inside
this list are checked by the cpm diff command, as explained in Section 4.7.

4.3 Finding Packages

Many modern package management systems have a centralized package index con-
taining metadata for published packages that can be used to find new packages and
acquire dependencies for existing packages. For example, the three package man-
agers presented in Chapter 3 all have centralized indexes with web-based interfaces

4A Git tag is a named revision.
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for searching and viewing packages: Ruby’s Gems are searchable via RubyGems.org,
npm packages can be found in the central registry at npmjs.com and Hackage pro-
vides an index of Cabal packages at hackage.org.

Without a centralized package index, the user has to find the packages they want to
use by other means and then try to find and acquire all dependencies and transitive
dependencies of these packages. A centralized package index allows the package
manager to automatically find all available versions of all transitive dependencies
and search for a compatible set of these package versions. Afterwards, the package
manager can acquire the actual package files and install the packages on the system.
Clearly, a centralized package index enables a much better user experience and aids
the discoverability of packages, leading to more code reuse and less reinvention of
the wheel. However, a full-fledged web application providing a browser interface
for end-users and an API for the package manager on the user’s system is outside
the scope of this thesis.

A simpler alternative is to collect all package specification files in a fixed directory
structure and distribute this directory structure to the user’s systems for use as an
index. CocoaPods5, a package manager for the Apple iOS and macOS ecosystems, as
well as Homebrew6, a package manager for macOS operating system packages, use
this approach. Since a specification file contains the name, version and dependencies
of a package as well as a description of how to obtain the actual package contents
(the source key), a collection of all package specifications is sufficient to resolve
the dependencies of any given package and automatically acquire and install any
missing packages.

One simple approach to storing package specifications in a directory structure is
to create a directory for each package, containing subdirectories for all versions of
the package, which in turn contain the package.json specification files for these ver-
sions. This is the approach used by CocoaPods and the one we adopted for the Curry
package manager. An index containing specifications for xml-1.0.0, xml-1.0.1 and
web-service-client-1.1.7 might look like this:

5http://www.cocoapods.org
6http://www.brew.sh

http://www.cocoapods.org
http://www.brew.sh
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cpm-index/

xml/

1.0.0/

package.json

1.0.1/

package.json

web-service-client/

1.1.7/

package.json

To distribute this structure of package specifications to user’s systems, we use the
Git version control system. The index is stored in a publicly accessible Git repository
at a well-known URL distributed alongside the package manager. Git supports effi-
ciently updating a local copy of a repository from another location, transferring only
the files that are different from the local copy. Since changing a package specification
once it has been published, i.e., added to the index, is discouraged by semantic ver-
sioning, most files in the index will never change. Only new files will be added, and
thus all that Git will transfer from the central location when the index is updated are
these new files. Furthermore, since the audience for the Curry package manager are
Curry developers, it is not unreasonable to expect Git to be installed on the user’s
system.

4.4 Installing Packages

Once the user has found a package they want to use, they have to install it on
their system. Usually, they will declare a dependency in the metadata of their own
package and use cpm install without additional arguments to automatically install
the package from the central package index in the newest compatible version. In
addition, the cpm install command supports manually installing package versions
from the central package index or local ZIP files. Installing packages from local ZIP
files can be used to distribute packages without having them appear in the central
package index. Installing specific versions from the central package index is useful
when the user wants to compare a package under development to an older version
using the cpm diff command.



38 A Package Manager for Curry

All packages installed on the system are stored in a central location, the global package
cache. The location of the global package cache can be changed through the .cpmrc
configuration file, see the user’s manual included in Appendix D. The global pack-
age cache is a directory containing the installed package versions in subdirectories
called <package name>-<package version>:

packages/

xml-1.0.0/

xml-1.0.1/

web-service-client-1.1.7/

To enable the installation of multiple versions of one package, all packages are in-
stalled in source code form. Packages are only compiled when they are used, i.e.,
when a Curry program inside the package or a dependent package is compiled to
be executed, and not upon installation. This allows us to install multiple versions of
a package, since the installed package versions have no relation to one another until
they are used. See Section 4.6 for details on the compilation process.

4.5 Resolving Dependencies

As described in Section 3.2, dependency resolution is the process of finding a con-
sistent and complete set of package versions based on an original, not necessarily
consistent set of package versions. In the terms of Section 3.2: given a set of package
versions I, we want to find a consistent and complete set of package versions R(I) –
a solution – such that I ⊆ R(I).

In the context of the Curry package manager the set I is always a singleton set
containing the package version whose dependencies we want to resolve. To resolve
those dependencies, we need to decide what makes up the set V of all package
versions known to the package manager, how dependencies on other packages can
be declared and with which operators, what package version to choose if multiple
candidates exist, and if there are any factors other than the ones listed for the general
case in Section 3.2 that can influence the dependency resolution process.

For individual version constraints, the Curry package manager supports all opera-
tors introduced in Section 3.2: <, ≤, =, ≥, and >. Combined version constraints –
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individual version constraints combined via the boolean AND and OR operators –
are also supported. The Curry package manager requires all combined version con-
straints to be in disjunctive normal form, i.e., they have to consist of one disjunction
of arbitrarily many conjunctions. e1 OR (e2 AND e3) OR e4 is a valid expression in
disjunctive normal form, while e1 AND (e2 OR e3) and e1 OR (e2 AND (e3 OR e4))

are not.

Package specification files use a different textual representation for combined ver-
sion constraints: the AND operator is represented by a comma (,) and the OR
operator by two pipes (||). The first example from above becomes e1 || (e2 , e3) || e4.
Since all version constraints must be in disjunctive normal form, conjunctions can
only have version constraints or other conjunctions as their children, so we can
leave out the parenthesis in the above example without introducing ambiguity:
e1 || e2 , e3 || e4. Furthermore, since the boolean AND is associative, we do not
need parenthesis when a conjunction has another conjunction as its child either, e.g.
e1 || e2 , e3 , e4 || e5. A dependency specification requiring the xml package in any
version larger than 1.5.0, but smaller than 1.6.0 and the http-client package in any
version between 1.2.0 and 2.0.0 or from 2.1.0 onwards might look like this:

{

...

"dependencies": {

"xml": ">= 1.5.0, < 1.6.0",

"http-client": ">= 1.2.0, < 2.0.0 || >= 2.1.0"

}

}

In systems encouraging semantic versioning, it is common to specify constraints that
restrict a package to a specific minor version. For example, the version constraint for
the xml package in the example above restricts the package to the minor version 1.5.x.
Since semantic versioning allows only bug fixes and no behavior-altering changes
in patch version increments, locking a package to a minor version will allow the
consumer to benefit from any defects resolved in new patch versions while reducing
the chances of introducing bugs through altered behavior in those new versions.
The risk can, of course, not be eliminated entirely, since semantic versioning is only
a guideline that cannot be enforced completely, as we will see in Section 4.7.

As locking a dependency to a specific minor version is so common, we introduce
a special operator called the semantic versioning arrow, or semver arrow, as syntactic
sugar: a version constraint ∼> 1.5.0 is equivalent to the dependency constraint
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≥ 1.5.0, < 1.6.0, while ∼> 1.5.5 is equivalent to ≥ 1.5.5, < 1.6.0. That is, the version
behind the semver arrow is the minimum required version and all patch versions
greater than this version that are still within the same minor version are accepted as
well. Similar operators are supported by Ruby’s Bundler as well as Node’s npm.

After discussing the kinds of dependency constraints the Curry package manager
supports, we will now turn our attention to how packages are chosen based on these
constraints. To resolve any dependencies, we need a set V of all package versions
known to the dependency resolution algorithm. All packages in the central package
index are potentially available to us. Even if a package version is not yet installed
on the user’s system, it can be acquired and installed using the source given in the
package specification. Thus, we add all package versions from the central package
index to the set V . As we have seen in Section 4.4, it is also possible for the user to
install a package manually from a local ZIP file. These manually installed packages
are not necessarily included in the package index, so we add any packages from the
global package cache that are not part of the package index to the set V .

We now have dependency constraints to resolve and a set of package versions to
operate on. Depending on the constraints given and the versions available in V , we
might run into situations where more than one package version matches the depen-
dency constraints: assume that we are resolving the dependencies of the package
http-client-1.0.0, which depends on network >= 1.0.0, < 2.0.0. Furthermore,
V contains network in versions 1.0.0, 1.0.5, 1.1.0, and 2.0.3. Each of the three ver-
sions 1.0.0, 1.0.5, and 1.1.0 is a valid choice that satisfies the dependency constraints.
Since the package manager has nothing left to base its decision on except the ver-
sion numbers of the package, it optimistically assumes that newer is always better
and chooses the newest compatible version, 1.1.0 in this case. Note that each choice
between multiple potentially compatible versions of a package influences the set of
dependency constraints that need to be satisfied, since each version of a package
may specify different dependencies. In this case, network-1.1.0 might depend on
the package ipv6, while network-1.0.5 might depend on ipv4. When the package
manager chooses version 1.1.0 of network, it also needs to satisfy the dependency on
ipv6. More details on how this affects the dependency resolution algorithm can be
found in Section 5.3.

The newer is always better strategy is a good approach since, in general, newer ver-
sions of a package can be assumed to contain bug fixes and features not present in
older versions. This is not true, however, when we consider pre-release versions. As-
sume once again that we are resolving the dependencies of http-client-1.0.0. This
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time, though, the HTTP client depends on network >= 1.0.0, so any version of the
network package from 1.0.0 onwards is compatible. Further assume that V contains
network in versions 1.0.0, 1.1.0 and 2.0.0-beta1. Newer is always better would lead the
package manager to choose network-2.0.0-beta1, since it is the newest version that
satisfies the dependency constraint. Clearly, it is not safe to assume that the user in-
tended to potentially choose a non-stable pre-release version given the dependency
constraint network >= 1.0.0. The sensible choice for the dependency resolution
algorithm would have been to choose network-1.1.0. To mitigate this fault of the
newer is always better strategy, we introduce a simple change to how dependency con-
straints are evaluated: a dependency constraint only matches a pre-release version if
a pre-release version is explicitly mentioned in one of its version constraints. If the
user wanted to use the beta version of network, they would have to specify a depen-
dency constraint such as network = 2.0.0-beta1 or network >= 2.0.0-beta1.

After a successful dependency resolution run on a package version v with I = {v}
we obtain the set of resolved package versions, R(I). Since the set V of available
package versions is the union of the set of package versions in the package index
and the set of locally installed package versions, the package versions in R(I) might
be from the package index, but not locally installed. In this case, all dependencies
were resolved successfully, but not all packages are actually available to be used.
If the action that originally led to the dependency resolution algorithm being run
only requires the dependency metadata and not the contents of the actual package
versions, e.g. if the user asked the Curry package manager to simply print out all
dependencies and transitive dependencies of the current package, then this is not a
problem. If the user invoked some action that does require the package contents, e.g.
they asked for a compiler to be started with all dependencies available, then an error
is given and the user is asked to run the cpm install command to automatically
install the missing packages on the local system (see Section 4.1 for a brief overview
of all commands available).

We can use the set of resolved package versions R(I) to compile v, as described in
the next section. The next time we want to compile v, we re-run the dependency
resolution algorithm since v’s dependencies might have changed in the meantime. If
new versions of some packages have become available in the meantime, then newer
is always better might result in different versions being chosen for some dependency.
Revisiting the http-client example from above, on the first dependency resolution
run network might be available in versions 1.0.0 and 1.0.3, so the algorithm chooses
1.0.3. On the next run, there might be a new version of network available, e.g 1.1.0,
which is then chosen over 1.0.3 and added to R(I). Based on this new version of
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http-client/

.cpm/

package_cache/

det-parse-1.0.0 -> /global/package/cache/det-parse-1.0.0

xml-1.0.5 -> /global/package/cache/xml-1.0.5

Figure 4.1.: A sample local package cache

R(I), the user is either asked to run cpm install to install network-1.1.0 or any of
its dependencies that might be missing on the local system, or, if all packages are
already available on the system, network-1.1.0 is used instead of network-1.0.3

without further notice.

Both of these behaviors are problematic from a user experience standpoint: in the
first situation, the user is asked to install new packages even though they did not
change any dependencies, which is unexpected and confusing. In the second situ-
ation, a new version of some dependency is used without the user having done or
changed anything, which might lead to unexpected changes in behavior if the de-
pendency has changed significantly. Instead of choosing the newest version of any
dependency on each dependency run, we only want to choose the newest versions
when doing a fresh installation of all dependencies, or when the user explicitly asks
us to upgrade one or more packages via the cpm upgrade command. In all other
cases, the resolution algorithm should choose the same package versions as in the
last install or update run, as long as they still satisfy all dependency constraints.

In order to remember which package versions were chosen in the last dependency
resolution run and prefer these versions the next time, we introduce a local package
cache. The local package cache is stored in the .cpm/package_cache directory in the
root of the package whose dependencies are being resolved. It contains symbolic
links to package versions in the global package cache, which are created when a
package’s dependencies are installed via cpm install or upgraded via cpm upgrade.
The local package cache for a package http-client dependent on det-parse and xml

might look like the tree shown in Figure 4.1. We now modify the newer is always better
strategy to also search the package versions in the local package cache and prefer
those versions to the ones from other sources. If versions 1.1.0 and 1.0.5 of a package
are in the local package cache and additional versions 1.0.6 and 1.2.5 exist in the
package index, the modified strategy will choose version 1.1.0 instead of 1.2.5. This
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way, when a new dependency resolution run is triggered, the versions from the local
package cache will be preferred as long as they are still compatible. When the user
wants to upgrade all dependencies via cpm upgrade, we clear the local package cache
to effectively forget our former choices before running the dependency resolution
algorithm, which will then choose the newest compatible versions of all packages.

The user can also use cpm upgrade to upgrade a single package p to the newest com-
patible version. In this case, we have two options: we can clear all entries for p from
the local package cache, or clear all entries for p and its transitive dependencies. In
the former case, the dependency resolution algorithm will choose the newest avail-
able version of p that is compatible to the versions of its transitive dependencies that
remain in the local package cache, which might restrict its choices. In the latter case,
the algorithm is not limited to those versions of p’s transitive dependencies that were
chosen in a previous dependency resolution run. We choose the second approach
for the Curry package manager, since we assume that when a user explicitly asks
to upgrade a single package they want the newest possible version, even if it means
upgrading the dependencies of that package.

The local package cache is also used to implement the link command explained
in Section 4.1: if the local package cache contains a symbolic link to some other
location than the global package cache, then the package is automatically used from
that location if it is chosen during dependency resolution.

As we have seen in Section 4.2, package specifications also contain a field for the user
to declare which compiler versions the package is compatible to. Compiler version
dependencies are declared under the key compilerCompatibility using the same
dependency constraint syntax used for package dependencies. During dependency
resolution, we check if the current compiler version satisfies one of the compiler
constraints. If so, we can use the package provided its dependency constraints are
satisfied. If not, the package is marked incompatible.

4.6 Interacting with the Compiler

To compile the Curry files inside a package we need to resolve the dependencies
and transitive dependencies of that package and then make the contents of these
dependencies available to the compiler. As described in Section 2.3, there are two
main Curry compilers that we want to support: KiCS2 and PAKCS.
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Both KiCS2 and PAKCS have a setting for the paths that they will search for when
they encounter an import statement in a Curry file that is to be compiled. When a
module called ParserCombinators is imported via import ParserCombinators, the
Curry compiler will search all directories in its paths setting for the file ParserCombi-

nators.curry. If a nested module such as XML.Schema.Parser is imported, the Curry
compiler will search all directories in paths for a directory called XML containing a
directory called Schema, in turn containing a file called Parser.curry. Since all Curry
packages have their source code inside the src directory by convention, we need to
add the src directories of all dependencies to the compiler’s path list. Luckily, both
compilers will consult the CURRYPATH environment variable for additional paths to
search whenever they are started, so all we have to do for the compiler to discover
the source files of our packages is to set this environment variable to the list of src
directories separated by colon characters.

Since we add the src directories of all dependencies to the Curry compiler’s search
path, all modules inside of these directories will be available to any module being
compiled. There is no way to restrict the set of available modules to the ones in
the package metadata exportedModules field. Since one of our design goals was to
avoid modifying how the existing Curry compilers work if at all possible and this
approach allows us to do that, we accept the disadvantage of not being able to hide
internal modules as a trade-off. A possible approach to making modules hideable
with modifications to the Curry compilers is discussed in Chapter 7 on future work.

When a Curry compiler compiles a Curry file, it stores intermediate results as well
as any resulting binaries in the .curry directory next to the source files. If we
have a directory parser-combinators containing the ParserCombinators.curry file
and we start a Curry compiler in the parser-combinators directory and load the
ParserCombinators module from the corresponding file, a .curry directory will be
created in the parser-combinators directory. For nested modules, the .curry di-
rectory will be created at the start of the hierarchy. If the compiler is asked to
load the module XML.Schema.Parser and it finds this module in a directory called
xml-package – either because this directory is in the compiler’s paths setting or be-
cause it is the current directory – then the .curry directory will be created in the
xml-package directory and not in the xml-package/XML/Schema directory. In our sce-
nario, the .curry directories will thus be created in the src directories of the package
being compiled and its dependencies.

The concrete information that is stored in the .curry directories is dependent on the
compiler being used. What is important, however, is that the generated files for a
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compiled module m may be reused by the compiler when it is next asked to compile
m to avoid repeating expensive computations. Additionally, the generated files may
be specific to the exact versions of any modules imported by m. A single package
version p with a set of dependency constraints Deps(p) may be depended upon by
arbitrarily many package versions pi with i ∈ N, each with its own set of depen-
dency constraints Deps(pi).7 When the dependency resolution algorithm is run on
two such package versions pk and pj with j, k ∈ N and j 6= k, then the dependency
constraints in Deps(pk) and Deps(pj) may cause the concrete versions of the pack-
ages in DepPkgs(p) to differ in the resolution result sets R({pk}) and R({pj}). This
means that we cannot, in general, reuse the files generated by the Curry compiler for
p when compiling pk during the compilation of pj, since p may have been compiled
with different versions of its dependencies during the compilation of pk than the
ones calculated for the compilation of pj.

To avoid reusing any intermediate files between different packages, we copy the
contents of each package version in the resolution result set from the local package
cache (see Section 4.5 on dependency resolution for an explanation of the local pack-
age cache) to the runtime package cache. Like the local package cache, the runtime
package cache is a subdirectory of the .cpm directory in the current package’s root
directory. Note that unlike the local package cache, the runtime package cache con-
tains actual copies of the packages, and not just symbolic links to another location.
The paths added to the CURRYPATH environment variable all point to the copies in
the runtime package cache, so the Curry compiler will read the imported modules
from there and also create its .curry directories and intermediate files inside the
the copies in the runtime package cache. While this approach has the upside of be-
ing very simple and effective – there is no danger of ever reusing any intermediate
results created with different dependency versions if we always create fresh copies
before compiling any code – it has the distinctive downside of potentially repeating
a lot of work that could be avoided by reusing the compiler’s intermediate results
when possible. One potential approach to safely reuse intermediate results in this
scenario is given by Dolstra, Löh, and Pierron [DLP10] and discussed in more detail
in Chapter 7 on future work.

7In practice, the number of packages will, of course, be finite.



46 A Package Manager for Curry

4.7 Enforcing Semantic Versioning

As explained in Section 3.1, semantic versioning aims to be a cross-ecosystem stan-
dard for the format of version numbers and, more importantly, for encoding seman-
tic meaning into those version numbers, or rather into the difference between two
version numbers. Early on, we decided to adopt semantic versioning for the Curry
package manager, following the example of both Ruby’s Gems8 and Node’s npm9.
We adopted the semantic versioning arrow (see Section 4.5) from Ruby’s Bundler to
help the user specify version constraints that take advantage of semantic versioning
to minimize the chances of introducing breaking changes when upgrading a pack-
age to a newer version. What is still missing is a way for package developers to gain
confidence that they are not violating semantic versioning when releasing new ver-
sions of their packages, i.e., that no changes to the previous version are introduced
that are incompatible with the change in version number.

To this end, we developed the diff command briefly mentioned in Section 4.1. The
diff command compares two versions of a package and tries to determine what has
changed between them and whether these changes are compatible with the change
in version numbers. Semantic versioning requires that only backwards-compatible
changes be introduced in a patch version, i.e., if only the last part of the version num-
ber changes, then only bug fixes are allowed. Increasing the minor version allows
the developer to introduce new functionality, as long as it is backwards-compatible,
i.e., no existing behavior must be impacted by the new functionality. Backwards-
incompatible changes can be introduced in new major versions, i.e., functionality
can be removed or changed at will. No guarantees are made regarding compati-
bility to any other major versions. Since semantic versioning applies only to public
APIs, diff only compares those modules listed in the exportedModules field in the
package specification and only the functions and data types exported from those
modules. Internal functions and modules are not compared.

The Curry package manager compares two aspects of all exported modules: the
types of exported functions and data types, i.e., the API of the package, and the
actual behavior of the exported functions. There are various tools for comparing
the public APIs of libraries for other languages, e.g. JDiff 10 for Java or hackage-diff 11

8http://guides.rubygems.org/patterns/
9https://docs.npmjs.com/getting-started/semantic-versioning

10http://javadiff.sourceforge.net
11https://hackage.haskell.org/package/hackage-diff

http://guides.rubygems.org/patterns/
https://docs.npmjs.com/getting-started/semantic-versioning
http://javadiff.sourceforge.net
https://hackage.haskell.org/package/hackage-diff
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Change in API Required version increase

Module added Minor
Module removed Major
Function added Minor
Function removed Major
Function type changed Major
Data type added Minor
Data type removed Major
Data type changed Major

Table 4.2.: Changes in API and semantic versioning

for Haskell. Elm12, a functional programming language that compiles to JavaScript,
ships with a package manager that supports comparing two API versions and re-
porting semantic versioning offenses13. Comparing the behavior of two packages
seems to be less common. Leslie-Hurd [Les13] explores comparing versions of veri-
fied packages via automated proof to automatically compute version constraints. We
were, however, unable to find an existing package manager that incorporates this or
any other form of behavior comparison between two package versions.

To compare the APIs of two package versions, we first examine the list of exported
modules of both package versions from their respective package specifications. From
here on, we define A to refer to the older or lower version of the package and B to
refer to the newer or higher version. Any modules listed in one package but not the
other can obviously not be compared, since there is nothing to compare them to in
the other version. If a new module was added in version B, i.e., the newer version,
then the version difference between A and B must be at least a minor version for
the change to be allowed under semantic versioning, since new functionality was
introduced. If a module was removed in B that was present in A, then B must be
a new major version of the package, since existing functionality was removed or
changed in a backwards-incompatible way (it may have moved to another module,
for example).

Once we have the list of exported modules that are present in both A and B, we
read in each module in both versions in AbstractCurry format (see Section 2.2) and

12http://elm-lang.org
13https://github.com/elm-lang/elm-package#publishing-updates

http://elm-lang.org
https://github.com/elm-lang/elm-package#publishing-updates
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compare the list of exported functions and data types in those two modules. Once
again, if a function or data type was added in version B, then new functionality was
introduced and B has to be at least a minor version above A. If a function or data
type was removed in version B, then existing functionality was changed and B has to
be a new major version. For functions or data types that are present in both versions
of a module, we compare their structure. If the type of a function has changed, then
this is a backwards incompatible change and B has to be a new major version. If the
type of a data type or any of its constructors has changed, then this is a backwards
incompatible change as well and the same rules apply. A summary of the different
API changes that can be found and what version changes they require is given in
Table 4.2.

We can use the information from the API comparison process to alert package devel-
opers to a large class of semantic versioning violations. Comparing the API of two
package versions will not, however, find changes in the implementations of those
functions whose types have remained the same. To find some of these implementa-
tion changes, we compare the behavior of both versions using CurryCheck [Han16].
CurryCheck is a tool distributed with both the KiCS2 and PAKCS compilers that
allows the programmer to specify unit tests and property tests. Unit tests are im-
plemented similarly to other languages: the programmer writes a function that uses
comparison operators provided by the testing library to check if some property of
the code under test holds. Property tests are similar, but they are parameterized, i.e.,
each test function can take one or more arguments and CurryCheck will call these
test functions multiple times with different values for these arguments. A property
test checking whether 0 is the additive identity on Curry’s Int type might look like
this:

test_zeroIsAdditiveIdentity :: Int -> Test.EasyCheck.Prop

test_zeroIsAdditiveIdentity x = x <~> x + 0

<~> is a comparison operator provided by CurryCheck that checks whether the set of
values of both of its arguments are equal. More such operators can be found in the
KiCS2 manual [Han+16b]. This test can be executed by calling CurryCheck with the
name of the module containing the test. CurryCheck will then find all test functions
in the module and execute them, generating different values for the Int parameter.
The idea behind property tests is to check the attribute described by the test function
for many different values in the hopes of discovering edge cases for which it does
not hold and thus revealing bugs in the implementation.

We can use property tests to compare two versions of a function and check whether
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their implementations are equivalent: for each such function, we generate a prop-
erty test parameterized over the argument types of the function. Two functions
addInts_1 :: Int -> Int -> Int and addInts_2 :: Int -> Int -> Int could, for
example, be compared via the following property test:

test_addInts :: Int -> Int -> Test.EasyCheck.Prop

test_addInts a b = addInts_1 a b <~> addInts_2 a b

A test such as this is, of course, no proof that both implementations are equivalent.
CurryCheck generates a limited number of parameters and there is always a chance
that the implementations show different behavior for values that are not among
those parameters. However, it is still useful to gain some confidence in the equiva-
lence of both implementations. To prevent confusion, we will call the property tested
by test functions such as the one above limited equivalence from now on.

Sadly, there are some limitations that prevent us from checking any arbitrary two
functions for limited equivalence using CurryCheck:

• Functions that perform infinite computations cannot be checked for limited equiv-
alence, since a property test comparing two versions of such a function will not
terminate. Assume we have two versions of a function ones that generate infinite
lists of ones. A test comparing these functions will look like this:

test_ones :: Test.EasyCheck.Prop

test_ones = ones_1 <~> ones_2

Neither version of ones will terminate and thus test_ones will not terminate ei-
ther. We could, of course, only take the first 100 values of each version, e.g. take

100 ones_1 <∼> take 100 ones_2, which will terminate thanks to Curry’s laziness.
Since we want to generate the test functions automatically, however, and have no
way of determining automatically which part of an infinite data structure such as
the one generated by ones is sufficient for establishing limited equivalence with rea-
sonable certainty, we cannot, in general, compare functions such as ones. In fact,
we require the programmer to explicitly mark such functions as do not compare us-
ing pragmas in the source code to avoid generating tests for these functions, since
we have no way of automatically determining which functions will perform infinite
computations:

{#- NOCOMPARE -#}

ones :: [Int]
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• Functions that take other functions as parameters, e.g. map :: (a -> b) -> [a]

-> [b] cannot be tested, since CurryCheck does not have a generator for function
types as of this writing.

• Functions that take Float parameters cannot be tested, since CurryCheck does not
have a generator for floating point values as of this writing.

• CurryCheck only supports parameterized tests up to five arguments, limiting us to
five arguments as well. Any functions taking more than five arguments cannot be
checked automatically.

• Functions are only tested for their behavior when used as functions, not when used
as relations via free variables.

Outside of these limitations, however, the diff command can be used by package
maintainers to gain more confidence that they have not inadvertently introduced
any breaking changes in what was meant to be a patch level release. The imple-
mentation of API and behavior comparison, including some more problems that we
encountered and their solutions, can be found in Sections 5.4 and 5.5.
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Implementation

In this chapter, we will describe the concrete implementation of the Curry package
manager. The package manager consists of various Curry modules that are used by
the main module CPM.Main, which is compiled to the cpm executable mentioned in
Chapter 4. We will now give a brief overview of the modules that make up the Curry
package manager before going into detail on some of them in the next sections.

A hierarchical overview of all modules is shown in Figure 5.1. As mentioned above,
the CPM.Main module contains the main function that becomes the entry point for the
cpm executable. The other modules are concerned with:

• CPM.AbstractCurry provides helper functions that deal with reading, writing and
mutating AbstractCurry files.

• CPM.Config contains default values for configuration options and functions to read
the .cpmrc configuration file.

• CPM.Diff.API provides the API comparison functionality mentioned in Section 4.7.

• CPM.Diff.Behavior provides the behavior comparison functionality described in
Section 4.7.

• CPM.Diff.CurryComments can read comments from Curry programs that belong to
functions and data type definitions. It is adapted from the CurryDoc [Han02] tool.

• CPM.Diff.Rename renames (prefixes) modules in a package and its dependencies on
the AbstractCurry level.
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• CPM.ErrorLogger provides combinators for chaining IO operations that can fail and
output log messages.

• CPM.FileUtil contains utility functions for dealing with files and directories.

• CPM.LookupSet provides the LookupSet data type, a set of packages used as candi-
dates during dependency resolution.

• CPM.Main is the main entry point.

• CPM.Package contains data types for package specifications and functions for reading
and writing specifications from and to JSON files.

• CPM.PackageCache.Global provides functions for managing packages in the global
package cache, i.e., globally installed packages.

• CPM.PackageCache.Local contains functions that manage the local package cache
described in Section 4.5.

• CPM.PackageCache.Runtime provides functions for the runtime package cache de-
scribed in Section 4.6.

• CPM.PackageCopy contains functions that operate on a copy of a package, i.e., a pack-
age directory.

• CPM.Repository provides data types and functions for dealing with the central pack-
age index and its local copy.

• CPM.Resolution contains the dependency resolution algorithm.

We also use some modules that we have extracted into their own Curry packages,
since they are useful in other contexts. These packages are described in Appendix B.

5.1 The Main Module

The CPM.Main module contains the main function, which is the entry point of the cpm

executable. On startup, we first try to parse the command line arguments using the
OptParse module described in Section B.3. If successful, we check if a number of
applications are present on the user’s system, e.g. curl, git, or the UNIX cp utility.
We use these applications throughout the Curry package manager to fetch ZIP files
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Figure 5.1.: The modules that make up the Curry package manager
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from URLs, check out Git repositories, copy binary files and so on. Next, we try to
read the .cpmrc configuration file from the user’s home directory, which can be used
to overwrite some settings such as the path where the global package cache is kept.
We then try to read the package specifications from the central package index and
the global package cache and dispatch to the function that handles the subcommand
specified on the command line.

The command line is parsed into an Options value, a record data type with the two
fields optCommand and optLogLevel:

data Options = Options

{ optLogLevel :: LogLevel

, optCommand :: Command }

LogLevel is defined by CPM.ErrorLogger and contains all possible log levels. Err-

orLogger contains combinators for chaining IO operations and supports logging
messages in between operations. The value of this field is used as the minimum
level required for a log message to be printed, the default being Info. Command is a
data type representing all commands known to the package manager:

data Command

= Deps

| NoCommand

| Install InstallOptions

| Uninstall UninstallOptions

| PkgInfo InfoOptions

| Compiler

| Update

| Search SearchOptions

| Upgrade UpgradeOptions

| Link LinkOptions

| Exec ExecOptions

| Diff DiffOptions

| New

Some commands, e.g. Install and Exec, take their own option data types as argu-
ments. For example, the options for Install consist of an optional target and version
as well as a flag specifying whether to install pre-release versions if available:

data InstallOptions = InstallOptions
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{ instTarget :: Maybe String

, instVersion :: Maybe Version

, instPrerelease :: Bool }

The command line arguments to the application are parsed into these data structures
via the OptParse module. OptParse provides functions to build a declarative model
of the command line argument structure that is to be parsed. Much like Curry’s
built-in GetOpt module, OptParse supports arbitrary values as parse results. We use
this flexibility to return functions as parse results that modify the above data types.
For example, the following excerpt specifies the options of the install command:

[...]

( command "install" (help "Install a package.") (\a -> Right $ a {

↪→ optCommand = Install (installOpts a) })

( arg (\s a -> Right $ a { optCommand = Install (installOpts a)

↪→ { instTarget = Just s } })

( metavar "TARGET"

<> help "A package name or the path to a file"

<> optional)

<.> arg (\s a -> readVersion’ s >.> \v -> a { optCommand =

↪→ Install (installOpts a) { instVersion = Just v } })

( metavar "VERSION"

<> help "The package version"

<> optional)

<.> flag (\a -> Right $ a { optCommand = Install (installOpts a)

↪→ { instPrerelease = True } })

( short "p"

<> long "pre"

<> help "Try pre-release versions when searching for newest

↪→ version.") )

[...]

Note that each function creates a modified version of a value of type Options, only
changing what is necessary using Curry’s record update syntax. The result type of
each function is an Either, since some arguments, such as the package version in
the example, may need to be parsed further which may result in errors. OptParse

returns a list of parse results, one for each command, flag, and option. In our case,
this will be a list of functions which we fold onto an initial, default Option value to
obtain a value that represents all command line options.
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5.2 Packages and Dependencies

In this section, we will present Curry data types for the most essential concepts
introduced in Chapters 3 and 4, such as versions, packages and dependencies. All
data types presented here are defined in the CPM.Package module.

First, we define a version to be a four-tuple, as seen in Section 3.1. The first, second
and third components are the major, minor and patch versions, respectively. The
fourth component is the optional pre-release specifier:

type Version = (Int, Int, Int, Maybe String)

The CPM.Package module also offers functions for rendering versions to strings
and parsing strings into versions (using the det-parse package described in Ap-
pendix B).

Next, we use Version to define a data type for version constraints. Based on this
data type, we define a conjunction as a list of version constraints and a disjunction
as a list of conjunctions. Modeling disjunctions as lists of conjunctions is sufficient to
represent dependency constraints found in package specifications since we only al-
low constraints in disjunctive normal form. As for versions, the module also contains
functions for rendering and parsing version constraints, conjunctions and disjunc-
tions.

data VersionConstraint = VExact Version

| VGt Version

| VLt Version

| VGte Version

| VLte Version

| VCompatible Version

type Conjunction = [VersionConstraint]

type Disjunction = [Conjunction]

The VCompatible constructor represents the semantic versioning arrow discussed
in Section 4.5. A dependency consists of the name of a package and a disjunction
as a constraint on the version of that package. Similarly, a compiler compatibility
constraint consists of the name of the compiler and a disjunction:
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data Dependency = Dependency String Disjunction

data CompilerCompatibility = CompilerCompatibility String Disjunction

The PackageSource type represents the different sources that can be specified in a
package description, namely a HTTP URL to a ZIP file of the package contents or a
Git URL with an optional revision specifier:

data PackageSource = Http String

| Git String (Maybe GitRevision)

| FileSource String -- for internal use

data GitRevision = Tag String

| Ref String

| VersionAsTag

Finally, we define a record type to represent packages. Each field of the record
corresponds to one of the possible metadata fields described in Section 4.2, with
optional fields modeled as Maybe types where necessary.

data Package = Package {

name :: String

, version :: Version

, author :: String

, maintainer :: Maybe String

, synopsis :: String

, description :: Maybe String

, license :: Maybe String

, licenseFile :: Maybe String

, copyright :: Maybe String

, homepage :: Maybe String

, bugReports :: Maybe String

, repository :: Maybe String

, dependencies :: [Dependency]

, compilerCompatibility :: [CompilerCompatibility]

, source :: Maybe PackageSource

, exportedModules :: [String]

}
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5.3 Dependency Resolution

As we have seen in Sections 3.2 and 4.5, the goal of dependency resolution is to
find a consistent and complete set of package versions R(I) from an initial set I of
package versions. In the context of the Curry package manager we always resolve
the dependencies of a single package, so I is a singleton set. We already discussed
some aspects of how we want to resolve dependencies in Section 4.5. In short, we
have to make sure that all dependency constraints are satisfied, that all compiler
compatibility constraints are satisfied and that we choose the newest compatible
version of each dependency (newer is always better). In this section, we describe the
algorithm that the Curry package manager uses to resolve dependencies and how it
is implemented.

The problem of dependency resolution is a variant of the classic constraint satisfaction
problem (CSP). Russell and Norvig [RN03] define the constraint satisfaction prob-
lem by a set of variables X1, ..., Xn with corresponding domains of possible values
D1, ..., Dn as well as a set of constraints C1, ..., Cm. A constraint Ci specifies allow-
able values for some subset of the variables. An assignment of values to variables is
called a state and states are called consistent if they satisfy all constraints and complete
if they assign a value to every variable. A state that is both consistent and complete
is called a solution to the constraint satisfaction problem. Note that this terminology
is equivalent to the definitions established in Chapter 3.

A first attempt at mapping the dependency resolution problem to the constraint
satisfaction problem might look like this: interpret each package that is a transitive
dependency of the initial package version as a variable. The domain of each such
variable will be the set of available versions of the package it represents and the
set of constraints will be all dependency constraints of the initial package version as
well as its transitive dependencies. Sadly, this definition is flawed: since dependency
constraints can be different for each version of a package, both the set of variables
and the set of constraints might change when some variable is assigned a value –
that is, when a specific version of some package is chosen. However, Nordin and
Tolmach [NT01] present functional versions of classic algorithms for solving CSPs
which can be adapted from statically known sets of variables and constraints to the
dynamic nature of the dependency resolution problem. The implementation of the
algorithm presented below is such an adaption of the examples given by Nordin and
Tolmach.
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A Simple Implementation

A naive approach to finding a set of package versions that is a solution is to enu-
merate all possible sets of package versions and look for one that satisfies all depen-
dency and compiler constraints of all contained package versions. We can represent
all candidate sets or states for this approach in a tree where each node is labeled
with a state. The state of the root node is the singleton set containing the initial
package version. For a given node n with state s, we choose an arbitrary pack-
age p from ∪v∈s{x ∈ DepPkgs(v) | x /∈ {PkgO f (v′) | v′ ∈ s}}, i.e., the set of
packages depended upon by the package versions in s of which s does not yet con-
tain any version. If such a p exists, we define the set of child states of s to be
{s ∪ {v} | v ∈ V with PkgO f (v) = p}. If no such p exists, we define the set of child
states of s to be the empty set. A Curry program that generates such a tree might
look like this:

data Tree a = Node a [Tree a]

simpleCandidateTree :: Package -> [Package] -> Tree [Package]

simpleCandidateTree initial allVersions =

Node initial (buildTree [initial] (dependencies initial))

where

versionsOf p = filter ((== p) . name) allVersions

buildTree pkgs ((Dependency p _):ds) =

if p ‘elem‘ (map name pkgs)

then buildTree pkgs ds -- skip packages already in tree

else map (nodeForVersion pkgs ds) (versionsOf p)

nodeForVersion pkgs deps v =

Node (v:pkgs) (buildTree (v:pkgs) (dependencies v ++ deps))

A tree for the set of package versions V and set of dependencies D from the example
in Figure 5.2 is given in Figure 5.3, with consistent states set in italic and states that
are solutions – both consistent and complete – set in bold. For brevity, each node is
labeled only with the package version that was added to the state of its parent node.

Assuming Curry functions isConsistent :: [Package] -> Bool and isComplete

:: [Package] -> Bool, which will check a state for consistency and completeness,
respectively, we can easily find a solution in a candidate tree if one exists:

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Node a cs) = Node (f a) (map (mapTree f) cs)



60 A Package Manager for Curry

V = {ws-client-1.0.0,

http-client-1.0.0, http-client-1.0.5,

network-2.0.7, network-2.1.3,

xml-parser-1.0.0, xml-parser-1.2.0,

det-parse-0.5.7, det-parse-0.7.3}

D = {ws-client-1.0.0⇒ http-client = 1.0.5,

ws-client-1.0.0⇒ xml-parser < 1.2.0,

http-client-1.0.0⇒ network ≥ 2.0.0,

http-client-1.0.5⇒ network ∼> 2.1.0,

xml-parser-1.0.0⇒ det-parse ∼> 0.5.0,

xml-parser-1.2.0⇒ det-parse ≥ 0.6.0}

Figure 5.2.: An example resolution problem

leaves :: Tree a -> [a]

leaves (Node a []) = [a]

leaves (Node _ cs) = concatMap leaves cs

solution :: Package -> [Package] -> Maybe [Package]

solution = find isConsistent . filter isComplete . leaves

. candidateTree

Note that even for a small example such as this with only two versions of each
package and four dependencies in total, the tree grows rapidly. As the number of
dependencies and available versions of each dependency grows, it quickly becomes
infeasible to check every leaf of the tree – every complete state – for consistency.
Luckily, if a state is inconsistent, then every descendant state will be inconsistent as
well, since a package version is never updated or removed in subsequent states once
it has been added to a state.

We can use this fact to our advantage by checking every state in the tree for incon-
sistency and removing all inconsistent states and their children, which will remove
large subtrees, lowering the number of leaves in the tree that we have to check. A
pruned version of the tree in Figure 5.3 is given in Figure 5.4. Assuming a Curry
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Figure 5.3.: A candidate tree
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Figure 5.4.: A pruned candidate tree
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Figure 5.5.: Primary conflicts leading to a
missing package version fail-
ure.
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function prune :: (a -> Bool) -> Tree a -> Tree a that will remove all nodes
and their descendants that match the predicate from a tree, we can build an opti-
mized version of solution:

labelInconsistent :: [Package] -> ([Package], Bool)

labelInconsistent ps = (ps, not $ isConsistent ps)

solution :: Package -> [Package] -> Maybe [Package]

solution = find isComplete . map fst . leaves . prune snd

. mapTree labelInconsistent . candidateTree

This approach is a functional generate-and-test variant of the classic backtracking
algorithm for solving constraint satisfaction problems. Since Curry uses lazy evalu-
ation, i.e., it evaluates expressions only when their results are actually needed, the
above version of solution will never generate the subtrees of those nodes removed
by the call to prune. Laziness lets us specify a compact and readable version of the
algorithm in terms of operations on a tree of all possible states and still retain the
performance gains of backtracking.

There are still a few things missing from the above implementation: we have not yet
discussed where compiler compatibility is checked, the algorithm might not always
choose the newest compatible version of each package and in case no solution can
be found, the output of solution is Nothing, giving no hint as to what caused the
failure. The check for compiler compatibility can be implemented by extending
isConsistent to also check whether the current compiler is compatible with each
package version in the state.

Giving Good Feedback

Giving good feedback about why the search for a solution failed is a bit more in-
volved. There a three failure constellations that we want to treat and report sepa-
rately:

1. Compiler compatibility. A package that is required by a dependency constraint is
not compatible to the current compiler.

2. Missing package versions. There is a single dependency constraint that no available
package version is able to meet.
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3. Conflicting dependency constraints. Two dependency constraints for a package
exist and no available package version is able to meet both.

For a compiler compatibility failure, we want to inform the user which package
version was found to be incompatible and why that package version was consid-
ered in the first place, i.e., which package has a dependency on the incompatible
package and with which constraints. A missing package version should be reported
similarly: which package is missing, why it is needed and which versions would
be compatible. To resolve a conflict between two dependency constraints, the user
needs to know which package is affected, which two dependency constraints are
conflicting and to which two packages these constraints belong.

Currently, each node’s state is simply a list of active package versions. To be able to
present information about a conflict to the user, we change this to a list of activations.
Each activation consists of the package version that was activated, the dependency
constraint that led to it being activated and the activation of the package version
containing that dependency constraint. The activation of the initial package version
simply contains that package version. We define actPkg(a) to be the package version
of some activation a, actDep(a) to be the dependency constraint on actPkg(a) that
led to the activation and actParent(a) to be the parent activation. actDep(a) and
actParent(a) are undefined if a is an initial activation. Thus, an activation lets us trace
back which package versions and dependencies led to a package being added to a
state, all the way to the initial package version. We define a data type for activations
and rewrite the candidateTree function to generate a tree of States instead of lists
of packages. Each state consists of a list of all activations up to the current node as
well as a reference to the activation added at the current node for convenience.

data Activation = InitialA Package

| ChildA Package Dependency Activation

actPackage :: Activation -> Package

actPackage (InitialA pkg) = pkg

actPackage (ChildA pkg _ _) = pkg

type State = (Activation, [Activation])

candidateTree :: Package -> [Package] -> Tree Activation

candidateTree initial allVersions = let a = InitialA initial in

Node a (buildTree [a] $ zip (repeat a) (dependencies initial))
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Figure 5.6.: Different dependency conflict constellations

where

versionsOf p = filter ((== p) . name) allVersions

buildTree acts ((depAct, d@(Dependency p _)):ds) =

if p ‘elem‘ (map (name . actPackage) acts)

then buildTree acts ds -- skip packages already in tree

else map (nodeForVersion acts depAct d ds) (versionsOf p)

nodeForVersion acts depAct dep deps v =

let

a’ = ChildA v dep depAct

acts’ = a’:acts

nextDeps = zip (repeat a’) (dependencies v) ++ deps

in

Node acts’ (buildTree acts’ nextDeps)

Now that our states have more information than just the currently active package
versions, we can label the tree with more than just a boolean value when we find an
inconsistency. When we encounter an inconsistent state, we differentiate the three
cases mentioned above: if the state is inconsistent because some package version is
incompatible to the current compiler, we label the node with a compiler incompatibility
conflict. Three different constellations can lead to a state being inconsistent because of
an unmet dependency constraint, shown in Figure 5.6. In the first case, Figure 5.6a,
a new activation a2 conflicts the dependency constraint of its parent activation a1

and no other active package version has a dependency constraint on a2’s package.
This constellation appears when a1’s package is the first package to depend on a2’s
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package in the current branch of the candidate tree. We call this kind of conflict a
primary conflict. Note that if all child states of a node are inconsistent because of
primary conflicts, we have a missing package version failure in that branch of the trees,
since no compatible version of the package in question could be found. An example
of this is shown in Figure 5.5, where http-client-1.0.5 is not present but required
by ws-client-1.0.0 (see Figure 5.2).

In the second case, Figure 5.6b, the package version of a new activation a3 has a
dependency constraint on a package p that was activated in an earlier activation
a2, but the version that was activated is incompatible to a3’s dependency constraint.
We call this constellation a secondary conflict. A version of p was activated in a2

because the package version of a2’s parent activation a1 depends on p. Note that
a2’s package version may or may not be compatible to the dependency constraint
from a1’s package version. If it is not, then the state that introduced a2 will be
inconsistent with a primary conflict. Figure 5.6c shows another constellation for
a secondary conflict. The new package actPkg(a3) is depended upon both by its
parent activation a2 and by some earlier activation a1. If actPkg(a3) is compatible to
actPkg(a2)’s dependency constraint, but not to actPkg(a1)’s dependency constraint,
then we have a secondary conflict. Otherwise, if actPkg(a3) is also incompatible
to actPkg(a2)’s dependency constraint, we have a primary conflict. A secondary
conflict means that resolution failed because of the third failure condition, conflicting
dependency constraints.

We define a Curry data type for the three kinds of conflicts and redefine labelIn-

consistent to label each state with either one of these conflicts, or Nothing in case
the state is consistent. Note that we check the dependencies of the state in reverse
order, from oldest to newest. Otherwise, secondary conflicts could mask primary
conflicts if the current activation’s package version is incompatible to some previous
activation but also has a dependency constraint that conflicts an earlier dependency
constraint.

data Conflict = CompilerConflict Activation

-- the activation of the incompatible package

| PrimaryConflict Activation

-- the activation containing the original activation of the

-- package and the activation of the incompatible

-- dependency constraint

| SecondaryConflict Activation Activation

stDependencies :: State -> [(Activation, Dependency)]
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stDependencies (_, acts) = concatMap zippedDeps acts

where

zippedDeps a = zip (repeat a) (dependencies $ actPackage a)

labelInconsistent :: State -> (State, Maybe Conflict)

labelInconsistent s = (s, firstConflict s (reverse $ stDependencies s))

firstConflict :: State -> [(Activation, Dependency)] -> Maybe Conflict

firstConflict _ [] = Nothing

firstConflict s@(act, acts) ((depAct, d@(Dependency p disj)):ds) =

if not $ isCompatibleToCompiler (actPackage act)

then Just $ CompilerConflict act

else case findPkg of

Nothing -> firstConflict s ds

Just a -> if isDisjunctionCompatible (version $ actPackage a) disj

then firstConflict s ds

else if actParent a == depAct

then Just $ PrimaryConflict act

else Just $ SecondaryConflict a depAct

where

findPkg = -- finds previous activation of p

solution :: Tree State -> Maybe [Package]

solution = find isComplete . map fst . leaves

. prune ((/= Nothing) . snd) . mapTree labelInconsistent

If we encounter a labeled candidate tree that contains no solution states, we have to
decide which of the inconsistent states to report to the user as the cause of the failure
that they need to investigate, since a candidate tree will usually contain many incon-
sistent states, such as primary conflicts for every version of a package that has been
tried unsuccessfully. First, we disregard any inconsistent state that is a descendant
of another inconsistent state. That is, we only consider the first inconsistent state on
a path down the labeled tree, since as far as the search for solutions is concerned,
states further down the path are unreachable.

This pruned tree might still contain many inconsistent states. Since one of our de-
sign goals was to provide clear and helpful information to the user in case of a
resolution failure, we do not want to report every single inconsistent state. Instead,
we try to find the most relevant conflict and report that. The most relevant incon-
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Figure 5.7.: Depth and level of completion in a tree

sistent states are the ones where the resolution algorithm came closest to finding a
solution. Sadly, we cannot simply compare the lengths of the paths leading up to an
inconsistent state, i.e., the depth of the state in the tree, as a measure for closeness
to a solution: since different package versions chosen along different paths may de-
pend on different packages and in particular on a different number of packages, a
consistent state of depth five may be closer to a solution than a consistent state of
depth ten, depending on the package versions chosen along the paths to those states.
Instead, we use the number of packages that are missing for a state to become com-
plete as our distance measure. We call this number the level of completion of a state.
Figure 5.7 shows a tree where the conflict node – shown in black – is deeper in the
left branch, but closer to a complete state in the right branch.

Once we have found the inconsistent states closest to a solution, we group them
by their parent nodes. Note that all siblings of any state in the set of inconsistent
states closest to a solution must be members of the set as well. If any sibling of
such a state s were not inconsistent, then inconsistent states would exist that were
closer to a solution than s. We then choose a single conflict from each group of
siblings to represent that group: if the group consists solely of states labeled with
primary conflicts, we simply choose the first of those. The information we would
present to the user is the same for any of the states. The same is true for any group
consisting only of states labeled with secondary or compiler conflicts. In mixed
groups, secondary conflicts are usually the most interesting ones and give the most
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information about what went wrong to the user: they contain the same information
as primary conflicts, namely which dependency constraint could not be satisfied,
as well as hinting at a possible way to resolve the conflict by adjusting the version
of the package with the conflicting dependency constraint. Additionally, if some
package version exists that is compatible to both dependency constraints from the
secondary conflict, but was not chosen because it is incompatible to the current
compiler, it is reasonable to expect the user to notice the overlap between the two
version ranges and investigate why no package in that overlap was chosen. Thus,
we always choose the first state labeled with a secondary conflict if any exists. If the
mixed group only contains compiler conflicts and primary conflicts, we choose the
first compiler conflict, since that will give the user most information: which package
was required by which dependency constraint and that at least one of the package
versions is not compatible to the current compiler.

We choose one state from the resulting set of inconsistent states to present to the
user by the same rules.

Choosing the Newest Version

Now that we can give good feedback in case of a failure, we turn our attention
to finding the solution containing the newest versions of each package. Note that
solution searches the list of states returned by leaves for a complete state:

solution :: Tree State -> Maybe [Package]

solution = find isComplete . map fst . leaves

. prune ((/= Nothing) . snd) . mapTree labelInconsistent

leaves :: Tree a -> [a]

leaves (Node a []) = [a]

leaves (Node _ cs) = concatMap leaves cs

As we can see, leaves returns all leaves of a tree in left-to-right order. If we generate
the candidate tree with the versions of each package listed in the preferred order,
then the states containing those preferred versions will be checked for completeness
first. Recall that in Section 4.5 we discussed a slightly modified variant of the newer
is always better strategy that prefers package versions from the local package cache
to avoid choosing newer package versions on subsequent dependency resolution
runs unless the user explicitly asks to do so. This strategy is implemented by the
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CPM.LookupSet module. A LookupSet is a collection of package versions and their
sources, i.e., the package index, the global package cache and the local package
cache:

data LookupSource = FromRepository

| FromLocalCache

| FromGlobalCache

type PkgMap = TableRBT String [(LookupSource, Package)]

data LookupOptions = LookupOptions

{ ignoreLocalVersions :: [String] }

data LookupSet = LookupSet PkgMap LookupOptions

findAllVersions :: LookupSet -> String -> [Package]

findAllVersions = -- implementation omitted

Since the most common operation on a lookup set is findAllVersions, which re-
trieves a list of all versions of a specific package, we keep the package-source-pairs
in a TableRBT – a table based on red-black-trees – indexed by package name. The
TableRBT type is provided by a module of the same name as part of Curry’s stan-
dard library. findAllVersions returns the versions of a package in the order laid out
above: first, all versions from the local package cache, sorted from newest to oldest,
then all versions from the global package cache and the package index, also sorted
from newest to oldest. In an upgrade scenario, we want to prevent the versions in the
local package cache from being ordered before those from the other sources for the
packages being upgraded and their transitive dependencies. ignoreLocalVersions

can be used to set a list of packages whose locally cached versions should not be
preferred.

If we modify candidateTree to take a LookupSet instead of a list of package versions
and use findAllVersions on that lookup set, the nodes of the tree will be ordered
the way we want them to be. Building a lookup set from the package index, global
package cache and local package cache and setting which versions, if any, should not
be preferred from the local cache is left up to the consumers of the CPM.Resolution

module.
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The Public API

To hide the complexity of candidate trees and conflicts from the consumers of the
Resolution module, the public API consists of only a few data types and methods:

module CPM.Resolution (ResolutionResult, showResult, resolutionSuccess

, resolvedPackages, showDependencies, showConflict, resolve) where

data ResolutionResult = ResolutionSuccess Package [Package]

| ResolutionFailure (Tree ConflictState)

resolve :: Package -> LookupSet -> ResolutionResult

resolutionSuccess :: ResolutionResult -> Bool

resolvedPackages :: ResolutionResult -> [Package]

showResult :: ResolutionResult -> String

showDependencies :: ResolutionResult -> String

showConflict :: ResolutionResult -> String

A ResolutionResult is the result of resolve, which runs the algorithm discussed
in this section. Note that only the type is exported, not its constructors. The con-
sumers of the package have to use the methods provided to work with a result.
resolutionSuccess will check if a resolution run was successful, resolvedPackages
can be used to extract the list of resolved packages from a successful resolution
result. showDependencies renders a tree of the resolved transitive dependencies
from a successful package resolution while showConflict renders a human-readable
representation of the different types of conflicts discussed above. showResult calls
showDependencies for successful resolution results and showConfict for unsuccess-
ful ones. An example of the output of both functions is given in Chapter 6 on
evaluation.
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5.4 Comparing APIs

As described in Section 4.7, the Curry package manager can compare the public APIs
of two packages, i.e., exported functions and data types from the modules listed as
exported in the package specification. This functionality is mostly implemented in
the module CPM.Diff.API. To compare two versions of a package, we first create
copies of those packages in a temporary directory, since we need to run the Curry
compiler’s frontend on them (see Section 4.6 on why we create copies of packages
before compiling them). We then resolve all dependencies of each package version
and finally call compareApiModule for each module from the combined list of ex-
ported modules (in case a module is exported in one package version, but not the
other):

compareApiModule :: (Package, String, [Package])

-> (Package, String, [Package])

-> String -> IO (ErrorLogger Differences)

compareApiModule (pkgA, dirA, depsA) (pkgB, dirB, depsB) mod =

if mod ‘elem‘ exportedModules pkgA

then if mod ‘elem‘ exportedModules pkgB

then readAbstractCurryFromPath dirA depsA mod >>= succeedIO |>=

\p1 -> readAbstractCurryFromPath dirB depsB mod >>= succeedIO |>=

\p2 -> let

funcDiffs = diffFuncsFiltered funcIsPublic p1 p2

typeDiffs = diffTypesFiltered typeIsPublic p1 p2

opDiffs = diffOpsFiltered (\_ _ -> True) p1 p2 in

succeedIO $ (Nothing, funcDiffs, typeDiffs, opDiffs)

else succeedIO $ (Just $ Addition mod, [], [], [])

else succeedIO $ (Just $ Removal mod, [], [], [])

The result type of compareApiModule is Differences wrapped in an IO ErrorLogger,
which is a type synonym for a four-tuple of Difference values of different types:

type Differences = (Maybe (Difference String), [Difference CFuncDecl]

, [Difference CTypeDecl], [Difference COpDecl])

data Difference a = Addition a

| Removal a

| Change a a
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The first component is a single optional Difference String, which is used to rep-
resent an added or removed module. If the first component is present, then the
other components will be empty lists, since there is nothing to compare if there is
only one version of a module. For modules that are present in both versions of
the package, we read their AbstractCurry versions via readAbstractCurryFromPath

from CPM.AbstractCurry.

CPM.AbstractCurry uses the AbstractCurry modules from Curry’s standard library
to generate, read, and write AbstractCurry files for the modules inside a package.
Curry’s frontend is used to generate AbstractCurry files from Curry source files. To
generate an AbstractCurry representation for a Curry module, the frontend needs
access to imported modules, which may be contained in one of the package’s depen-
dencies. For this reason, CPM.AbstractCurry makes all dependencies available to
the frontend when generating AbstractCurry files. Additionally, CPM.AbstractCurry
provides functionality to read modules from any dependency, not just from the pack-
age itself, and to apply a transformation function to any of those modules.

Once we have both versions of a module, we use diffFuncsFiltered, diffTypes-
Filtered and diffOpsFiltered to calculate the difference in functions, types and
operators defined in both modules. A function, type or operator is marked as an
addition if it is present in package B, but not in package A. Conversely, it is marked
as a removal if it is present in package A, but not in package B. If a function is
present in both versions of the package, we compare its arity and type expression.
The function is marked as changed if they are different. For types that are present
in both package versions, we compare their type variables and constructors. If any
are different, they are also marked as changed. For operators, we compare fixity and
precedence.

As the filtered suffix in the above function names suggests, all entities to be com-
pared from both modules are filtered by a predicate. For types and functions, we
check whether they are marked as public, i.e., exported from the module (via the
typeIsPublic and funcIsPublic predicates, respectively). Operators do not have
any visibility on the AbstractCurry level, so we compare all of them. Since only
public functions and types are in the list of candidate functions from both versions
of the module, any change in visibility will show up as an addition or removal in
the list of differences, not as a change, which is in line with semantic versioning: if a
function was public but is no longer, it has effectively been removed from the public
API of the package.
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Once we have obtained a list of Differences for the various modules in both package
versions, we use showDifferences to format them for the user and annotate those
changes that are not allowed by semantic versioning for the jump between the two
versions. An example comparison is shown in Chapter 6.

5.5 Comparing Program Behavior

In Section 4.7, we gave a rough overview of how the behavior of two package ver-
sions can be compared. In this section, we will outline the process in a bit more
detail and discuss some of the problems that can occur and how to work around
them.

The functionality for comparing package behavior is largely implemented in the
CPM.Diff.Behavior and CPM.Diff.Rename modules. Our goal is to generate a Curry
program that contains a series of CurryCheck property tests which compare two
versions of a function. An example test for a function called sayHello might look
like this:

test_sayHello :: String -> Test.EasyCheck.Prop

test_sayHello x = sayHello_1 x <~> sayHello_2 x

Note that we have assumed two versions of the sayHello function: sayHello_1 and
sayHello_2. When comparing two package versions, the functions we want to com-
pare will have the same names in both packages, however. Furthermore, the modules
that contain these functions will also have the same name, posing the first challenge:
how do we import two versions of a module with the same name?

The only way to import two versions of a module is to rename one or both of them.
If we assume that sayHello is contained in the Greetings module of the greetings

package, and that we want to compare versions 1.0.0 and 1.0.1 of that package, we
can rename the Greetings module in version 1.0.0 to V_1_0_0_Greetings and to
V_1_0_1_Greetings in version 1.0.1. We can then use qualified imports to reference
both versions of the sayHello function in our test program:

import qualified V_1_0_0_Greetings

import qualified V_1_0_1_Greetings

test_sayHello :: String -> Test.EasyCheck.Prop

test_sayHello x = V_1_0_0_Greetings.sayHello x
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<~> V_1_0_1_Greetings.sayHello x

Since both package versions can have different dependency constraints for the same
dependencies, it is not enough to just rename the modules inside the two packages
to be compared. Assume, for example, that greetings-1.0.0 depends on pack-
age name-parser in version = 2.0.0, while greetings-1.0.1 requires name-parser in
version ≥ 2.0.5, since an important bug was fixed in this version. If name-parser

exports the module NameParser, then both versions of Greetings will include an
import NameParser statement. We need to rename NameParser in both versions
and replace all references to NameParser in Greetings with the correct name, i.e.,
Greetings in version 1.0.0 must refer to V_2_0_0_NameParser while version 1.0.1
must refer to V_2_0_5_NameParser. name-parser might, of course, have dependen-
cies of its own that we have to rename and then change the references to. In short,
we have to rename all modules in all transitive dependencies and change all refer-
ences to other modules in those modules. Renaming, or rather prefixing, packages
and dependencies like this is implemented in CPM.Diff.Rename.

The prefixPackageAndDeps function in CPM.Diff.Rename takes the directory of a
package which should be prefixed, the string to prefix module names with, and a
directory where the renamed modules should be stored. prefixPackageAndDeps will
write the modules themselves to the destination directory in the correct directory
structure, but not the package specification files. Instead, the destination directory
can be added to the CURRYPATH directly and the modules from the original package
as well as any dependencies will be available to the compiler.

Once we have obtained renamed versions of both packages, we can generate test
programs using the AbstractCurry.Build module from Curry’s standard library.
We will still run into problems, however, if a tested function takes a parameter of a
type that is defined in a module of the original package or one of its dependencies.
Imagine that Greetings contains a data type Name:

-- First name and last name.

data Name = Name String String

Additionally, instead of taking a String parameter, the sayHello function now takes
a parameter of type Name:

sayHello :: Name -> String

sayHello (Name first last) = "Hello, " ++ first ++ " " ++ last
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Which version of the Name type should we use to parameterize our test function?
If we choose V_1_0_0_Greetings.Name, then we cannot pass the generated values
to V_1_0_1_Greetings.sayHello and vice versa, since both versions expect the type
from their own module. Since comparing the behavior of two versions of a function
only makes sense if both functions are of the same type, we only compare functions
if all types referenced by those functions are unchanged between both versions. If
both versions of a type are exactly the same except for their names, however, we can
easily generate a function that will translate from one version to the other and use
that in the property test:

tt_Name :: V_1_0_0_Greetings.Name -> V_1_0_1_Greetings.Name

tt_Name (V_1_0_0_Greetings.Name a b) = V_1_0_1_Greetings.Name a b

test_sayHello :: V_1_0_0_Greetings.Name -> Test.EasyCheck.Prop

test_sayHello x = V_1_0_0_Greetings.sayHello x

<~> V_1_0_1_Greetings.sayHello (tt_Name x)

The same technique can be used to translate nested types. Another function gre-

etPeople :: [Name] -> String might, for example, generate a greeting for every
person in the list and concatenate them. If we want to compare these functions, we
need to translate both the list of Name values and the Name values themselves:

tt_0 :: V_1_0_0_Greetings.Name -> V_1_0_1_Greetings.Name

tt_0 = (V_1_0_0_Greetings.Name a b) = V_1_0_1_Greetings.Name a b

tt_1 :: [V_1_0_0_Greetings.Name] -> [V_1_0_1_Greetings.Name]

tt_1 [] = []

tt_1 (x:xs) = (tt_0 x) : (tt_1 xs)

test_greetPeople :: [V_1_0_0_Greetings.Name] -> Test.EasyCheck.Prop

test_greetPeople x = V_1_0_0_Greetings.greetPeople x

<~> V_1_0_1_Greetings.greetPeople (tt_1 x)

When we generalize what we have described in the example above, we arrive at the
following steps to generate a CurryCheck program that will compare all exported
functions from two versions of a package:

1. Rename all modules and dependencies. First, we prefix every module from each of
the two package versions and every one of its transitive dependencies with the ver-
sion number of the package. We copy all renamed files to two temporary directories,
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one for each package version.

2. Find functions to compare. We read the modules in AbstractCurry form to obtain
a list of all functions and their types. To exclude those functions whose types have
changed between the two versions of the module, we use the functionality from
CPM.Diff.API to compare the module’s public APIs. We then filter the resulting
list further to exclude all non-public functions, functions that are marked with the
NOCOMPARE pragma discussed in Section 4.7, functions that have argument or result
types whose definitions have changed, as well as functions that take more than five
parameters or that take a parameter of functional or Float type.

3. Generate translator functions. For each of the functions to be compared, we collect
all argument and return types that are not built-in, i.e., not defined in Curry’s stan-
dard library, and generate a type translator function for each one. If a type in turn
references other non-built-in types, we recursively generate translator functions for
those types as well and use them in the translator function for the original type.

4. Generate comparison functions. We generate one comparison test for each function
that is to be compared. In these functions, we use the type translator functions
generated in the step before on parameters and return types.

5. Write module and call CurryCheck. Finally, we write the generated module to
a temporary location and execute CurryCheck on this module, with all renamed
modules on the CURRYPATH. We present the output of CurryCheck to the user.

In the CPM.Diff.Behavior module, the first step is performed by preparePackage-

Dirs, which takes source directories of both modules as its arguments. It copies
both packages to a temporary directory in their original form. It then uses copyAnd-
PrefixPackages from CPM.Diff.Rename to prefix all modules in the package and its
transitive dependencies and copy them to a temporary directory. Finally, it returns
a ComparisonInfo value, which contains both package specifications, the locations
of the original and renamed modules, the prefixes that the modules were renamed
with, and maps from original to renamed module names for both versions.

Based on this ComparisonInfo, the diffBehavior function will execute the rest of
the steps. Note that some parameters and return values such as the central package
index or a cache for AbstractCurry files have been omitted from the listings below for
brevity. |>=, |>, and succeedIO are combinators from CPM.ErrorLogger that chain
IO operations.

diffBehavior :: ComparisonInfo -> [String] -> IO (ErrorLogger ())
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diffBehavior info mods = getBaseTemp |>=

\baseTmp -> findFunctionsToCompare (infSourceDirA info) (infSourceDirB

↪→ info) |>=

\funcs ->

let

filteredFuncs = filter ((‘elem‘ mods) . fst . funcName) funcs

in case funcs of

[] -> succeedIO ()
_ -> genCurryCheckProgram filteredFuncs info |>

putStrLn infoText >> putStrLn "" >> succeedIO () |>

callCurryCheck info baseTmp filteredFuncs

Here, we first find the temporary directory and use findFunctionsToCompare to
read all functions in both modules and find the functions that we can compare.
We then further filter that list to only include functions from the modules we are
supposed to compare. If no functions are left, we do nothing. Otherwise, we use
genCurryCheckProgram to generate the comparison program, output a message in-
forming the user of what is about to happen, and then use callCurryCheck to exe-
cute the tests in the comparison program.

The main work is done in genCurryCheckProgram, which in turn calls genTestFunc-

tion and genTranslatorFunction to generate test and translator functions, respec-
tively. First, it calls genTranslatorFunction for every type that needs to be trans-
lated from one package version to the other. genTranslatorFunction will generate
a translator from version A of the type to version B of the type. The relevant types
are all argument and return types of all functions that contain or are themselves a
type inside a module that was renamed.

genCurryCheckProgram funcs info baseTmp =

foldEL genTranslatorFunction emptyTrans translateTypes |>=

\transMap ->

let

testFunctions = map (genTestFunction info transMap) funcs

transFunctions = transFuncs transMap

allFunctions = testFunctions ++ transFunctions

prog = CurryProg "Compare" imports [] allFunctions

in

writeFile (baseTmp </> "Compare.curry") (showCProg prog) >>

succeedIO ()
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where

translateTypes = filter (needToTranslatePart info) allReferencedTypes

allReferencedTypes =

(concatMap (argTypes . funcType) funcs) ++

map (resultType . funcType) funcs

needToTranslatePart info (CTVar _) = False

needToTranslatePart info (CFuncType e1 e2) =

needToTranslatePart info e1 || needToTranslatePart info e2

needToTranslatePart info (CTCons n es) =

isMappedType info n || any (needToTranslatePart info) es

isMappedType info (mod, _) = isJust $ lookup mod (infModMapA info)

In the listing above, info refers to a ComparisonInfo value and infModMapA accesses
its map of translated module names for one of the versions. Note that since we only
compare functions whose types are identical in both versions, the map of translated
module names for either version of the the package will contain all modules that
occur in the types of those functions. genTranslatorFunction takes a TransMap, a
data type that contains a map from type expressions to functions that can translate
those type expressions, as well as the generated translator functions themselves, and
returns a modified TransMap with additional translator functions. Since a transla-
tor function added to the TransMap by genTranslatorFunction might be needed in
the translation of another type further down the list, we use foldEL to thread one
TransMap through all invocations of genTranslatorFunction.

genTranslatorFunction itself takes a ComparisonInfo, the current TransMap as well
as the type expression to generate a translator for as its arguments:

genTranslatorFunction info tm t@(CTCons (mod, n) te) =

Note that we pattern match against CTCons, which is the AbstractCurry type for a
constructor application. A type expression can also be a type variable or a func-
tion type. Function types cannot occur, since we do not compare any functions
that take functions as arguments because of a limitation in CurryCheck. Type
variables cannot occur either, since those are not deemed translation-worthy by
genCurryCheckProgram (see needToTranslatePart above) because they will be in-
stantiated to Bool when generating the test functions, as we will see below.

The first thing genTranslatorFunction does is to check whether there already is a
translator function for the requested type. If so, it simply returns the TransMap it
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was passed. Otherwise, it loads the type declaration for the data type referenced in
the constructor application from its module:

if isJust $ findTrans tm t’ then succeedIO tm else findType |>=

t’ is the type expression t with all type variables instantiated to Bool. Since we gen-
erate our test functions for Bool-instantiated types, we also generate our translator
functions for Bool-instantiated types. If a translator function does not already ex-
ist and we succeeded in finding the current constructor’s type declaration, we next
instantiate the type declaration with the type from the type expression using the
instantiate function:

\typeDecl -> succeedIO (instantiate typeDecl t’) |>=

Since the type declaration of a polymorphic type and specifically its constructors
will contain type variables in their type expressions and we are looking to generate
a translator function for a fully instantiated version of this type – those type variables
that were not already instantiated in the original type taken as a parameter by the
function to be compared were instantiated to Bool instead – we build a version of
the type declaration with all type variables instantiated to the ones from t’. This
instantiated type declaration might contain types that also need to be translated by a
translator function: in our introductory example, we saw one function, greetPeople,
which took a list of values of type Name. We would call genTranslatorFunction on
the type expression [Name] and get the instantiated type declaration for [Name]. The
type Name inside the list needs to be translated from one version to the other. So
we find the parts of our instantiated type declaration that need to be translated
and recursively generate translator functions for them. First, we add an entry for
our own, yet to be generated translator function to the TransMap, though, to avoid
running into an infinite loop if we are dealing with a recursive data type.

\instTypeDecl -> succeedIO (addEntry tm t’) |>=

\(tm’, name) -> foldEL (genTranslatorFunction info) tm’ (transExprs

↪→ instTypeDecl) |>=

Note that the addEntry function returns a tuple of the new TransMap and a name
that it has automatically assigned for our new function. Next, we calculate the type
of our new translator function:

\tm’’ ->

let

aType = prefixMappedTypes (infPrefixA info) t’
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bType = prefixMappedTypes (infPrefixB info) t’

fType = CFuncType aType bType

prefixMappedTypes is a function that will prefix all constructor names in a given
type expression that are defined in a module that has been renamed with the given
prefix. We define two functions, one for package A and one for package B, that will
prefix a module name if it is one of the modules that has been renamed:

mapIfNeeded modMap m = if isMappedType info (m, "")

then fromJust $ lookup m modMap

else m

mapIfNeededA = mapIfNeeded (infModMapA info)

mapIfNeededB = mapIfNeeded (infModMapB info)

Next, we define a function that takes a constructor and builds a rule for the transla-
tion function from it. The rule will match version A of the constructor and build a
new value using version B of the constructor:

ruleForCons (CCons (m, cn) _ es) = simpleRule [pattern] call

where

pattern = CPComb (mapIfNeededA m, cn) (pVars (length es))

call = applyF (mapIfNeededB m, cn) $ map transformer vars

vars = zip (take (length es) [0..]) es

simpleRule, pVars and applyF are from Curry’s built-in AbstractCurry.Build mod-
ule. pVars generates pattern variables starting from x0, applyF creates a function ap-
plication, and simpleRule creates a function rule from a list of patterns and a body
expression. We build a pattern that matches on the constructor name in version A,
using mapIfNeededA from above to translate the module name in case versions A and
B are different. Our function body is a call to version B of the constructor, applied to
the output of the transformer function function mapped over a list of tuples of the
constructor’s argument type expressions alongside the variable numbers assigned
to these arguments in the pattern.

The transformer function tries to find a translator for the type of the argument
and returns an expression that will call this translator function on the correspond-
ing variable in the pattern. If there is no translator function, it simply returns an
expression for the variable:

varX i = CVar (i, "x" ++ (show i))
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transformer (i, CTVar _) = varX i

transformer (i, CFuncType _ _) = varX i

transformer (i, e@(CTCons _ _)) = case findTrans tm’’ e of

Nothing -> varX i

Just tn -> applyF ("Compare", tn) [varX i]

We now have everything we need to generate our translator function:

rules = map ruleForCons cs

in

succeedIO $ addFunc tm’’ $ cfunc fName 1 Public fType rules

Note that the full version of genTranslatorFunction is a bit more complex since it
also supports record constructors and type synonyms as well as types declared via
newtype.

Now that we have seen how the type translator functions are generated, we turn our
attention to genTestFunction, which is a bit simpler than genTranslatorFunction.
Recall that the goal of genTestFunction is to generate a CurryCheck property test
that checks whether both versions of the function under test behave similarly. To
this end, we want to parameterize the CurryCheck test on the argument types of
the function being tested. genTestFunction takes a ComparisonInfo, a TransMap

containing translator functions, and the function to generate a test for. First, we
define the name of the test function, calculate the names of the A and B versions of
the module and instantiate the function type with Bool as explained above:

genTestFunction info tm f =

let

(mod, localName) = funcName f

testName = "test_" ++ underscorifyFuncName (funcName f)

modA = infPrefixA info ++ "_" ++ mod

modB = infPrefixB info ++ "_" ++ mod

instantiatedFunc = instantiateBool $ funcType f

underscorifyFuncName takes a function name and replaces all module separators,
i.e., dots, by underscores. Next, we generate the type for the test function via
genTestFuncType, which will replace the return type of the function with Test.Ea-

syCheck.Prop, the return type of CurryCheck tests. It will also rename all module
names that occur in the function’s argument types to version A, if necessary, since we
want to generate our values in version A to be able to apply the translator functions
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generated before. Additionally, we generate pattern variables for the arguments of
the new test function, which are exactly as many arguments as the function under
test takes.

fType = genTestFuncType f

vars = pVars (realArity f)

We are now ready to generate the calls to versions A and B of the function that is
being tested. For the call to version A, we do not need to translate the test function’s
parameters, since CurryCheck will generate them in version A. We might have to
translate version A’s return value, however, if it is of a type that needs to be trans-
lated, since version B’s return value will be in version B and we have only generated
translators from A to B but not the other way around. So we generate arguments in
version A, but compare results in version B. We define the function returnTransform

which is either the identity function if the return type does not need to be translated,
or a function that will generate a call to the appropriate translator function. We then
use returnTransform to define callA:

returnTransform = case findTrans tm (resultType instantiatedFunc) of

Nothing -> id

Just tr -> \t -> applyF (modName, tr) [t]

cvars = map (\(CPVar v) -> CVar v) vars

callA = returnTransform $ applyF (modA, localName) cvars

For the call to version B, we need to translate every argument of a type from a
renamed module. We use a function called transformedVar for this, which is similar
to the transformer function from above. We do not need to translate the return
value, since it will already be in version B:

args = argTypes instantiatedFunc

callB = applyF (mod, localName) $ map transformedVar $ zip args vars

Finally, we use our definitions to generate the test function:

in

cfunc (modName, testName) (realArity f) Private newType [

simpleRule vars (applyF ("Test.EasyCheck", "<~>") [

callA, callB])]

We have given a rough but accurate overview of how the Curry package manager
compares the behavior of two versions of a package, all the way from an illustration
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of the possible problems by example to the implementation in CPM.Diff.Behavior

and how diffBehavior, genCurryCheckProgram, genTranslatorFunction, and gen-

TestFunction interact to generate a Curry program containing CurryCheck tests that
compare the two package versions.
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Evaluation

In this chapter, we will give a few examples of successful and conflicting dependency
resolutions as well as API and behavior comparisons. We will then evaluate the
performance of the resolution algorithm for success and conflict cases. Finally, we
will give some performance measurements for API and behavior comparisons.

6.1 Comparing Package Versions

To evaluate the API and behavior comparison functionality, we create a package
called foo in versions 1.0.0 and 1.0.1. foo contains only one exported module,
Foo.Bar. In version 1.0.0 of Foo.Bar, there is a data type Greeting which is a record
containing fields first and last. last is of type String, while first is of type Name,
which is a type synonym for String. The function sayHello takes a Greeting and
returns a String containing a greeting:

Listing 6.1: Version 1.0.0

module Foo.Bar (sayHello, Greeting (..), Name) where

import DetParse

import Char

type Name = String

data Greeting = Greeting
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{ first :: Name

, last :: String }

sayHello :: Greeting -> String

sayHello (Greeting first last) = "Hi " ++ first ++ " " ++ last

In version 1.0.1, the data types are the same as before, but the string generated
by sayHello is different. Additionally, it contains a new function hiThere, which
returns a String.

Listing 6.2: Version 1.0.1

module Foo.Bar (sayHello, hiThere, Greeting (..), Name) where

type Name = String

data Greeting = Greeting

{ first :: Name

, last :: String }

sayHello :: Greeting -> String

sayHello (Greeting first last) = "Hello " ++ first ++ " " ++ last

hiThere :: String

hiThere = "Hi!"

We run the following command from the directory of foo-1.0.1 to compare its
public API to that of version 1.0.0.

cpm diff 1.0.0 --api-only

Since the types of Name, Greeting and sayHello are unchanged, the only output we
receive is that hiThere has been added in version 1.0.1. Since adding new function-
ality is not allowed in a patch version, we are also notified that we are in violation
of semantic versioning:

Now running API diff

Added hiThere :: [Char]

Adding features in a patch version is a violation

of semantic versioning.
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To compare the behavior of both versions, we use the --behavior-only option of the
cpm diff command and receive the following output:

The following functions were not compared:

Foo.Bar.hiThere - Different function types or function missing

Now running behavior diff. You will be presented with the raw output of

↪→ CurryCheck. The test functions are named after the functions they

↪→ compare. If a test fails, the implementations differ.

Comparing functions Foo.Bar.sayHello

---------------------------------------------------------------------

CurryCheck: a tool for testing Curry programs (version of 17/08/2016)

---------------------------------------------------------------------

Analyzing module ’Compare’...

Properties to be tested:

test_Foo_Bar_sayHello

Generating main test module ’TEST8317’...and compiling it...

Executing all tests...

test_Foo_Bar_sayHello (module Compare, line 7) failed

Falsified by first test.

Arguments:

(Greeting [] [])

Results:

"Hello "

=====================================================================

FAILURES OCCURRED IN SOME TESTS:

test_Foo_Bar_sayHello (module Compare, line 7)

=====================================================================

Since the two versions of sayHello produce different strings, the test test_Foo_-

Bar_sayHello has failed. hiThere was not compared, since it is only present in one
version of the module.

Next, we introduce a new version, 1.0.5, of package foo which removes the Name

type synonym and changes the first field of the Greeting data type to a String:

Listing 6.3: Version 1.0.5

module Foo.Bar (sayHello, hiThere, Greeting (..)) where
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data Greeting = Greeting

{ first :: String

, last :: String }

sayHello :: Greeting -> String

sayHello (Greeting first last) = "Hello " ++ first ++ " " ++ last

hiThere :: String

hiThere = "Hi!"

The API comparison to version 1.0.1 will complain that the Name type has been
removed and that the type of Greeting has changed:

Now running API diff

Removed type Name = String

Removing features in a patch or minor version is

a violation of semantic versioning.

Changed data Greeting (1 constructor) to data Greeting (1 constructor)

Changing APIs in a patch or minor version is a

violation of semantic versioning.

As the Greeting type has changed, the sayHello functions cannot be compared
using CurryCheck anymore, so running a behavior comparison from version 1.0.5
to version 1.0.1 will not actually compare anything:

The following functions were not compared:

Foo.Bar.hiThere - Different function types or function missing

Foo.Bar.sayHello - Some types inside the function type differ

6.2 A Sample Dependency Resolution

In this section, we show three resolution problems of moderate complexity. One that
can be resolved successfully, one that results in a conflict because of incompatible
dependency constraints, and a third that results in a compiler conflict. The pack-
ages versions V , dependency constraints D and compiler constraints C shown in
Figure 6.1 will be the basis for all three cases. We will run the resolution algorithm
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on the rest-client package. Figures 6.2, 6.3 and 6.4 give a clearer picture of the
dependencies of rest-client in versions 1.0.0, 1.0.1, and 1.0.2, respectively.

There are no dependency or compiler conflicts for rest-client-1.0.0, so resolution
will succeed. Upon successful resolution, the Curry package manager will print a
tree representation of all transitive dependencies and the versions chosen for each
package. For rest-client-1.0.0, the tree looks like this:

rest-client-1.0.0

|- http-client-1.0.0

|- network-1.2.0

|- sockets-1.0.0

|- bytes-1.0.0

|- ip-addresses-1.0.0

|- bytes-1.0.0

|- det-parse-1.0.0

|- string-encodings-1.0.6

|- json-1.0.0

|- det-parse-1.0.0

|- bytes-1.0.0

Note that this is essentially the tree from Figure 6.2. As can be seen in Figure 6.3,
dependency resolution on rest-client-1.0.1 will result in a dependency conflict:
the constraints on bytes of json-1.0.0 and sockets-1.0.1 are incompatible. If a
resolution is unsuccessful, the Curry package manager prints information on the
conflict that was encountered:

There was a conflict for package bytes

rest-client

|- http-client (http-client = 1.0.1)

|- network (network = 1.2.2)

|- sockets (sockets = 1.0.1)

|- bytes (bytes >= 1.0.5)

rest-client

|- json (json = 1.0.0)

|- bytes (bytes = 1.0.0)

The conflicting package is named and the two dependency constraints are printed
along with their origins. This gives the user as much information as possible on how
to resolve the problem. In this case, they can quickly see that http-client and json
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are not compatible to one another in the currently required versions.

The dependencies of rest-client-1.0.2 are compatible, but the json-1.0.1 pack-
age is only compatible to the KiCS2 compiler in version 0.4.0 or lower. Since we are
using KiCS2 0.5.1, resolving the dependencies for rest-client-1.0.2 will result in
a compiler conflict:

The package json-1.0.1, dependency constraint json = 1.0.1, is not

↪→ compatible to the current compiler. It was activated because:

rest-client

|- json (json = 1.0.1)

6.3 Performance of the Resolution Algorithm

The implementation of the classic backtracking algorithm given in Section 5.3 uses
lazy evaluation to evaluate only those parts of a – potentially very large – candidate
tree that are needed to find a solution or conflict. This lets us specify a concise and
readable implementation. In this section, we want to examine the performance of
this implementation.

To make the performance measurements as relevant as possible, we want to run the
algorithm on a complex but realistic problem. To find such a problem, we used
information from the npm registry, the central package index of the Node package
manager (see Section 3.4). The npm registry is particularly well suited for finding
realistic examples, because its package specification format is similar to the Curry
package manager’s and it provides usage statistics for all packages as well as leader-
boards of the most-used packages. Furthermore, npm encourages its users to create
many small packages that depend on one another, leading to larger problems for the
algorithm to solve.

First, we have to acquire the relevant package specifications from the npm registry
and convert them to the Curry package manager’s format. At its core, the npm reg-
istry is a large Apache CouchDB1 database. We used CouchDB’s built-in replication
functionality to copy the whole npm metadata registry to a local Couch DB instance,
314,633 packages in total. Next, we chose five packages from the npm leader board,

1http://couchdb.apache.org

http://couchdb.apache.org
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V = {rest-client-1.0.0, rest-client-1.0.1, rest-client-1.0.2, http-client-1.0.0,

http-client-1.0.1, network-1.2.0, network-1.2.2, det-parse-1.0.0,

string-encodings-1.0.5, string-encodings-1.0.6, sockets-1.0.0, sockets-1.0.1,

ip-addresses-1.0.0, bytes-1.0.0, bytes-1.0.5, json-1.0.0, json-1.0.1}
D = {rest-client-1.0.0⇒ http-client = 1.0.0,

rest-client-1.0.0⇒ json = 1.0.0,

rest-client-1.0.1⇒ http-client = 1.0.1,

rest-client-1.0.1⇒ json = 1.0.0,

rest-client-1.0.2⇒ http-client = 1.0.1,

rest-client-1.0.2⇒ json = 1.0.1,

http-client-1.0.0⇒ network = 1.2.0,

http-client-1.0.0⇒ det-parse = 1.0.0,

http-client-1.0.0⇒ string-encodings ≥ 1.0.5,

http-client-1.0.1⇒ network = 1.2.2,

http-client-1.0.1⇒ det-parse = 1.0.0,

http-client-1.0.1⇒ string-encodings ≥ 1.0.5,

network-1.2.0⇒ sockets = 1.0.0,

network-1.2.0⇒ ip-addresses = 1.0.0,

network-1.2.2⇒ sockets = 1.0.1,

network-1.2.2⇒ ip-addresses = 1.0.0,

sockets-1.0.0⇒ bytes = 1.0.0,

sockets-1.0.1⇒ bytes ≥ 1.0.5,

ip-addresses-1.0.0⇒ bytes ≥ 1.0.0,

json-1.0.0⇒ det-parse = 1.0.0,

json-1.0.0⇒ bytes = 1.0.0,

json-1.0.1⇒ det-parse = 1.0.0,

json-1.0.1⇒ bytes ≥ 1.0.0}
C = {json-1.0.1⇒ kics2 ≤ 0.4.0}

Figure 6.1.: The example resolution problem.
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rest-client-1.0.0

http-client

network

sockets

bytes

ip-addresses

bytes

det-parse string-encodings

json

det-parse bytes

= 1.0.0

= 1.2.0

= 1.0.0

= 1.0.0

= 1.0.0

≥ 1.0.0

= 1.0.0 ≥ 1.0.5

= 1.0.0

= 1.0.0 = 1.0.0

Figure 6.2.: Dependencies for rest-client-1.0.0
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Figure 6.3.: Dependencies for rest-client-1.0.1
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= 1.0.0 ≥ 1.0.5

= 1.0.1

= 1.0.0 ≥ 1.0.0

Figure 6.4.: Dependencies for rest-client-1.0.2
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express2, a framework for writing web applications, chalk3, a library for coloring
terminal output, request4, a HTTP client, mocha5, a testing framework, and karma6,
another testing framework. As of August 30th, 2016, all packages were downloaded
between 300,000 and several million times per month.

Using a simple Ruby script7, we extracted all versions of the packages above as well
as all of their transitive dependencies from the npm registry. The script reads each
package version’s specification from CouchDB and converts it to a format under-
stood by the Curry package manager. The Node package manager supports a few
more ways of specifying dependency constraints and is not as strict regarding the
format of version numbers. To avoid over complicating the Ruby script, we skip
package versions whose version numbers are not in semantic versioning format.
Furthermore, we replace npm’s caret operator (^), which allows all versions from
the specified version up to but not including the next major version, by a simple
greater than or equal operator, which widens the compatibility range of the depen-
dency constraint. Afterwards, the script writes the CPM package specification files
to disk in the index directory structure described in Section 4.3. On our copy of the
registry, the script extracted a total of 2,058 packages and 29,553 versions of those
packages.

We wrote a performance test program, implemented in the CPM.PerformanceTest

module, to load the package index created by the script into a lookup set and run
the resolution algorithm on the packages we selected. To test the algorithm on prob-
lems of varying sizes and include successful as well as unsuccessful resolutions, we
experimented with various versions of these packages. Ultimately, we chose version
4.14.0 of express and version 2.74.0 of request as examples of complex problems
with a solution. Version 1.1.3 of chalk is a small problem that can be resolved suc-
cessfully. express-3.9.0 is complex and cannot be resolved successfully because of
a missing dependency in our data set. mocha-1.21.5 is complex and results in a fail-
ure because of a dependency conflict, while the algorithm fails to arrive at a result
for karma-1.2.0. We run the algorithm five times on each problem and use Curry’s
built-in Profile module to measure the time taken. Additionally, we measure the
time taken to load the package index from the directory structure generated by the
Ruby script. The gist of the test program can be found in Listing 6.4. We compiled

2https://www.npmjs.com/package/express
3https://www.npmjs.com/package/chalk
4https://www.npmjs.com/package/request
5https://www.npmjs.com/package/mocha
6https://www.npmjs.com/package/karma
7The script is distributed with the CPM source code under the path misc/extract_npm_packages.rb

https://www.npmjs.com/package/express
https://www.npmjs.com/package/chalk
https://www.npmjs.com/package/request
https://www.npmjs.com/package/mocha
https://www.npmjs.com/package/karma
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the test program using KiCS2 0.5.1 on GHC 7.10.2 and PAKCS 1.14.1 on SICStus
Prolog 4.3.3 and ran each version on a system with an Intel Core i5-5257U processor
running Mac OS X 10.11. The raw performance figures and instructions on how to
use the performance test program to reproduce them are given in Appendix C.

The first weakness exposed by the performance measurements is the current struc-
ture of the package index: Reading a file for each package version does not scale
to large data sets. Loading the 29,533 package specifications from the sample data
sets takes an average of 12.5 seconds on KiCS2 and fails with an out of memory
error on PAKCS. Since the Curry ecosystem is small, it will take some time for the
central package index to reach a number of package versions that will noticeably
impact performance. Possible approaches to improve the performance of the index
are discussed in Chapter 7 on future work.

Listing 6.4: Performance test program

main = do

putStrLn "Reading package specifications..."

ls <- profileTime (readLS "/tmp/npm-repo")

e4140 <- return $!! fromJust $ findVersion ls "express" (4, 14, 0,

↪→ Nothing)

e390 <- return $!! fromJust $ findVersion ls "express" (3, 9, 0,

↪→ Nothing)

c113 <- return $!! fromJust $ findVersion ls "chalk" (1, 1, 3, Nothing)

r2740 <- return $!! fromJust $ findVersion ls "request" (2, 74, 0,

↪→ Nothing)

m1215 <- return $!! fromJust $ findVersion ls "mocha" (1, 21, 5,

↪→ Nothing)

k120 <- return $!! fromJust $ findVersion ls "karma" (1, 2, 0, Nothing)

putStrLn "Now starting resolution"

-- five times for each of the above.

profileTime (putStrLn $ showResult $ resolve e4140 ls)

Since we want to measure the algorithm’s performance on both PAKCS and KiCS2,
we have to find a way to work around PAKCS’/SICStus’ limitations when reading
many small files. Curry’s standard library includes the ReadShowTerm module, which
contains functions for rendering Curry values into string representations and pars-
ing these string representations back into Curry values. We can use these functions
to write out one large file containing a string representation of the packages in the
lookup set from a program compiled using KiCS2. A version of the performance test
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Table 6.1.: Median time used for dependency resolution on KiCS2 and PAKCS in
msec

Package
No. of tran-
sitive depen-
dencies

No. of pack-
age versions
of those de-
pendencies

KiCS2 PAKCS

express-4.14.0 1, 795 23, 295 5 350
express-3.9.0a 1, 794 23, 286 241 25, 070
chalk-1.1.3 8 65 0 10
request-2.74.0 1, 789 23, 229 17 1, 330
mocha-1.21.5a 1, 789 23, 229 4, 532 Did not finishb

karma-1.2.0 1, 850 24, 264 Did not finishb Did not finishb

a Results in conflict.
b Aborted after 10 minutes.

program compiled using PAKCS will then be able to read this larger file and run the
performance tests. The median time taken by each compiler to run the resolution
algorithm for the different packages is shown in Table 6.1.

The data show that PAKCS is slower than KiCS2, that conflicts take a lot longer
than successful resolutions, and that some problems are too large for the algorithm
to handle. The performance difference between KiCS2 and PAKCS is consistent
with the measurements in [Bra+11], which show that KiCS2 produces much faster
programs than PAKCS. Successful resolution runs finishing faster than unsuccessful
ones can be explained by the different strategies for the two cases: if a solution exists,
we stop searching the tree once we have found one. To arrive at the conclusion that
there is no solution, however, we have to search the entire tree to make sure that all
possible branches result in failure and then find the most relevant conflict.

karma-1.2.0 transitively depends on 1,850 packages with a total of 24,264 versions,
while mocha-1.21.5 transitively depends on 1,789 packages with a total of 23,229

versions, so both problems are roughly similar in size. The dependency constraints
for mocha-1.21.5, however, are very strict for some its direct dependencies and those
dependencies are considered early in the resolution process, resulting in a small tree.
In contrast, karma’s dependency constraints are more liberal and its conflicts appear
deeper in the tree, so many subtrees are examined multiple times.

The algorithm’s performance is acceptable on large problems in successful cases,
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using both KiCS2 and PAKCS, even though KiCS2 is much faster. Problems of a
size similar to those presented here – excluding chalk – are unlikely to occur in
practice for some time due to the current size of the Curry ecosystem. Multiple
optimizations are possible should the algorithm’s performance become a problem in
the future, some of which are discussed in Chapter 7 on future work.

6.4 Performance of API and Behavior Comparison

Section 6.1 shows the API and program behavior comparison described in Sec-
tions 5.4 and 5.5 from the user’s perspective. In this section, we will evaluate the
runtime performance of both functionalities on artificially generated Curry modules
of varying sizes.

We run the API comparison algorithm on two artificially generated Curry modules,
A and B. A contains n functions and types that B does not, and vice versa, where
n is varied between 10, 100, 1, 000 and 10, 000. Additionally, B contains n functions
and types that are also present in A, but with different types and constructors,
respectively.

For the behavior comparison test, we generate two Curry modules that contain ex-
actly the same functions and types. Each of the m ∈ {10, 100, 1000} generated func-
tions takes a single parameter of a newly generated type τ1 and returns that parame-
ter. In effect, all generated functions are the identity function on τ1. To exclude those
functions that cannot be compared via CurryCheck, the type of each parameter is
inspected recursively – i.e., the types mentioned in its constructors are inspected as
well – for function types, Floats, and so on (see Section 4.7 for details). We generate
not only a type τ1, but multiple types τ1, ..., τn for some n ∈ {10, 100, 1000} where
τi references τi+1 for i ≤ n and τn references String, to measure the performance
impact of these parameter type checks. We call n the type nesting depth.

As in the previous section, we compiled the test program using KiCS2 0.5.1 on
GHC 7.10.2 and PAKCS 1.14.1 on SICStus Prolog 4.3.3 and ran each version on a
system with an Intel Core i5-5257U processor running Mac OS X 10.11. The raw
performance figures and instructions on how to reproduce them can be found in
Appendix C.

Table 6.2 shows that the API comparison algorithm is sufficiently fast on KiCS2,
even for large problems. It does fail to arrive at a result for a problem with 10, 000
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Table 6.2.: Median time used for API diff on KiCS2 and
PAKCS in msec

No. of changed,
added, removed
functions and
types each

KiCS2 PAKCS

10 2 60
100 2 50
1, 000 2 Out of memorya

10, 000 Did not finishb Out of memorya

a Aborted after 15GB of memory usage.
b Aborted after 10 minutes.

Table 6.3.: Median time used for behavior diff on KiCS2 and PAKCS
in msec

Type nesting depth No. of functions KiCS2 PAKCS

10 10 290 1, 450
10 100 530 7, 460
10 1, 000 5, 256 Out of memorya

100 10 460 10, 960
100 100 718 18, 990
100 1, 000 5, 666 Out of memorya

1, 000 10 8, 141 Out of memorya

1, 000 100 8, 611 Out of memorya

1, 000 1, 000 17, 627 Out of memorya

a Aborted after 15GB of memory usage.
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changed, removed, and added types and functions each. However, a package with
60, 000 exported functions and types is unlikely to occur in practice. On PAKCS, the
algorithm is much slower than KiCS2 on smaller problems, although its performance
is still acceptable for real-world use. For larger problems of 6, 000 and 60, 000 total
exported functions and types, the test program fails while generating the Curry
modules to be compared.

The performance figures for the behavior comparison algorithm are shown in Ta-
ble 6.3. Note that the time measured is for the generation of the test program only
and does not include the time taken by CurryCheck. The data show that a type
nesting depth of 1, 000 has a significant impact on the total runtime of the algorithm
when compared to a depth of 100 or 10. Luckily, a type with a nesting depth of
1, 000 is unlikely to occur in practice. Even a nesting depth of 10 is rather rare: out
of 343 type declarations in all modules in Curry’s standard library, only 26 have a
nesting depth of 10 or higher. The highest nesting depth is 13.8

With a nesting depth of 10, the performance figures on KiCS2 are acceptable for
everyday use. Modules with 1, 000 exported functions that need to be compared
should be rare in practice. PAKCS fails when either the number of functions or the
type nesting depth is set to 1, 000. Performance on smaller problems is significantly
worse than on KiCS2 – as is to expected according to Braßel et al. [Bra+11] – but still
tolerable for a type nesting depth of 10.

8The program used to calculate the nesting depths of the types in Curry’s standard library is distributed
alongside the CPM source code in the misc directory.
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Summary & Future Work

In this thesis, we discussed the design and implementation of the Curry package
manager, a package management system for the Curry programming language.
First, we determined the state of the art in programming language-specific pack-
age managers by examining three popular package management systems, Ruby’s
Gems, JavaScript’s npm, and Haskell’s Cabal.

Based on our findings and the particulars of the Curry language and compiler
ecosystem, we developed a format for Curry packages as well as approaches for dis-
tributing, installing, and using them with the KiCS2 and PAKCS compilers. Specif-
ically, we developed a simple specification for package metadata files, including a
way to indicate the dependencies of a package in a flexible manner. We also decided
on a fixed format for version numbers, namely the one defined in the semantic ver-
sioning specification, and a simple directory structure for packages.

To avoid some of the frequent dependency conflicts that plague the Cabal package
manager, we decided not to compile packages upon installation. Instead, packages
are installed in source code form and only compiled when needed, i.e., when a
dependent package is compiled. We chose a simple mode of interaction with the
KiCS2 and PAKCS compilers: we add the paths of all dependencies to their module
search paths via an environment variable supported by both systems. This way, we
avoid having to modify either of the compilers and having compiler-specific behavior
in the Curry package manager.

A mainstay of many popular package management systems, including the ones ex-
amined in detail in this thesis, is some form of central package index. Central pack-
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age indices aid the user in finding new packages and lower the barrier to using them.
We presented a simple form of centralized package index based on a directory struc-
ture distributed via the Git version control system and implemented support for it
in the package manager. This implementation enables easy installation of packages,
but only slightly improves their discoverability. A possible future improvement is a
web interface for the package index, which is discussed in more detail in the next
section.

We gave a general definition of packages, package versions, dependencies and de-
pendency resolution and adapted those definitions to the Curry package manager.
In particular, we developed a textual format for version constraints and defined
how to choose between multiple compatible package versions. Based on this, we
developed a functional implementation of the classic backtracking algorithm for de-
pendency resolution, as well as a model for finding and reporting the most relevant
conflict when dependency resolution fails. The performance of this implementation
is acceptable for day-to-day use, but it fails to arrive at a solution on large problems.
Possible improvements are discussed in the next section.

In addition to using the semantic versioning version number format, we also strongly
encourage package authors to follow the guidelines from the semantic versioning
specification on when to increase which part of the version number. To aid package
authors in following these guidelines, we developed a way to automatically com-
pare the public APIs and the behavior of two package versions. While at least one
package manager – elm-package1 – exists that can compare the public APIs of two
package versions, to the best of our knowledge the Curry package manager is the
first package manager incorporate any form of behavior comparison.

7.1 Future Work

While the Curry package manager is usable for day-to-day work in its current form,
there are several aspects that could be improved.

Improve Performance of the Resolution Algorithm

In Section 6.3, we have seen that the implementation of the backtracking algorithm
developed in Section 5.3 may not arrive at a solution in any reasonable timeframe
for large problems – in this case, over 1,500 dependencies and 23,000 total versions

1http://elm-lang.org

http://elm-lang.org


Summary & Future Work 101

A-1.0.0

B-1.0.0

C-1.0.0

D-1.0.0 D-1.0.1

...

B-1.0.1

C-1.0.0

...

...

(a) A tree from our implementation

A-1.0.0

choice B, C, D

B

B-1.0.0

choice C, D

C

...

D

...

B-1.0.1

choice C, D

...

C

C-1.0.0

choice B, D

...

...

D

...

(b) Cabal’s tree containing choice nodes

Figure 7.1.: Our tree and Cabal’s tree

of those dependencies. Two possible approaches for performance improvements
can be found in the implementation of Cabal’s resolution algorithm, described by
Löh [Löh11]. Cabal’s implementation, like ours, is based on the ideas presented by
Nordin and Tolmach [NT01].

In our implementation, when we generate the search tree for the backtracking algo-
rithm, we add the dependencies of a package version to the tree in the order they
are given in the package specification. If, for example, package A depends on pack-
ages B, C, and D, which have no further dependencies themselves, then the search
tree will list all versions of B on the first level, all versions of C on the second level,
and all versions of D on the third level. In contrast, Cabal’s search tree contains
additional choice nodes. Each choice node branches off into nodes for each of the
dependencies that are not yet contained in the tree. In the above example, the root
node would have a choice node as its sole child, which would then branch out into
package nodes for B, C, and D. These package nodes would in turn branch out into
nodes for each package version, just like our implementation’s search tree. Each
of those package version nodes would lead to another choice node. Both trees are
shown in Figure 7.1. Choice nodes are shown as rectangles, package nodes as circles.

Encoding the order of dependencies into the tree enables Cabal to choose which
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dependency to explore next based upon potentially better criteria than the order in
which they are listed in a package specification. Example criteria are the number
of versions available of each package or whether all versions of a package are in-
compatible to some existing dependency constraint. Before the tree is explored for
solutions, every choice node is replaced by its first child. As we have seen in Sec-
tion 6.3, the order in which dependencies are explored can have a significant impact
on the execution time of the resolution algorithm. Implementing a tree based on
choice nodes in the Curry package manager would enable quick experimentation
with different heuristics for which dependencies to explore first.

In addition to introducing choice nodes, Cabal uses backjumping instead of backtrack-
ing when exploring the tree for solutions. In backtracking, subtrees of inconsistent
nodes are removed from the tree, on the grounds that no descendant of an inconsis-
tent node can ever become consistent. Backjumping adds the upwards propagation
of inconsistencies: if a node has an inconsistent child whose inconsistency does not
involve the node’s package, i.e., the node does not contribute to the conflict via one
of its package version’s dependencies, then we can mark that node with its child’s
inconsistency. This will lead to inconsistencies higher up in the tree and thus larger
subtrees that can be pruned.

Improve Performance of the Package Index

In Section 6.3, we saw that the simple file-based approach for the central package
index does not scale to a large number of packages. KiCS2 took 12.5 seconds to read
an index containing roughly 30,000 package versions, while PAKCS failed with an
out of memory error. A possible approach to improving startup times with large
indexes is not reading the whole index at once. Instead, we would only read a
package version’s specification when it is needed. For large resolution problems,
such as the ones presented in Section 6.3, however, this approach is not likely to lead
to a big increase in overall performance, since more than 20,000 packages would still
have to be read from the index.

Other possible approaches include using a database as a cache in front of the package
index and replacing the package index by a web service that can be queried for
packages and their (transitive) dependencies.

Website for Central Package Index

To aid discoverability of packages in the central package index, a website listing
all packages in the index is desirable. Ideally, such a website would offer search
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functionality and CurryDoc [Han02] documentation for each version of a package.

Improve Integration with CurryCheck

We use CurryCheck to compare the behavior of two package versions. Currently,
we only generate the test program, execute currycheck on this test program and
present the user with its output. The user is left to correctly interpret the output of
CurryCheck and the names of the generated property tests. If there was a way to
interact with CurryCheck via an API, we could present the results of the tests to the
user in a more friendly manner.

Integration with Compilers

Currently, the only interaction with the KiCS2 and PAKCS compilers is via the
CURRYPATH environment variable. This approach has the upside of not requiring
any customization of the compilers themselves. A distinctive downside, however,
is that we cannot use the list of exported modules inside a package specification to
hide any internal modules a package may contain from the consumers of that pack-
age. Package authors have to rely on convention, e.g. putting all internal modules
inside of an Internal namespace, to reduce the chances of internal modules being
used.

If KiCS2 and PAKCS were extended to have knowledge about the Curry package
manager, they could offer an option that would allows us to specify the available
modules for each package alongside the paths to their modules.

Cache Compilation Results

In Section 4.6, we saw that when compiling a package’s modules, we create copies of
all of its transitive dependencies to avoid inadvertently reusing incompatible com-
pilation results. Specifically, compilation results for a package version vc obtained
with version vd1 of one of its dependencies may not be reusable when vc is required
to work with version vd2 of the same dependency. The current behavior is wasteful,
since compilation results are never reused, even when they are compatible.

Dolstra, Löh, and Pierron [DLP10] propose a method for caching compilation re-
sults when different dependency versions are involved, which could also be applied
to the Curry package manager: when a package version v is compiled with a set
of dependencies D, convert the names and versions of those dependencies into a
canonical format – for example, a comma-separated list sorted alphabetically. Then,
hash the canonicalized dependency information using a suitable hash function, e.g.
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SHA256. Store the compilation results in a directory named package-version-hash,
e.g. foo-1.0.0-b6a890cfde.... The next time v is to be compiled with a set of
dependencies D′, convert the names of those dependencies into the same canonical
format, compute the hash and check if a directory named with that hash exists. If it
does, we can reuse those compilation results.

Allow Distribution of Tools

Currently, a Curry package can only contain Curry modules to be used by other
Curry packages via import. In package managers for other languages, e.g. Ruby’s
Gems and Node’s npm, it has proven useful to allow package authors to include
tools in a package that are then added to the user’s PATH, either globally or local to a
package. For example, a unit testing library might include a command to run tests or
a web application framework might offer a command that can start a development
web server.

Implementing such a feature in the Curry package manager poses a few challenges.
Ideally, the commands or executables distributed with a Curry packages should
themselves be implemented on Curry. In this case, however, they would have to
be compiled either when the package is installed globally if the executable is to be
available globally, or, for local availability, when the package is activated during
a cpm install run. Furthermore, a system is needed for running locally installed
executables from the dependent package’s directory. Possible solutions are requir-
ing the user to run everything through cpm exec, or creating binstubs2 on package
installation. Similarly, a strategy for making the executables of globally installed
packages available on the user’s PATH will have to be devised: the commands of
which version of a package should be available globally? Should there be a way to
access the commands of other versions? What happens when a global executable
is run from within a package directory that has another version of that executable
available locally?

2https://github.com/rbenv/rbenv/wiki/Understanding-binstubs

https://github.com/rbenv/rbenv/wiki/Understanding-binstubs
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Total Order on Versions

In Section 3.1, we defined the relation ≤pre on pre-release specifiers as well as the
relation ≤ver on versions. We will show that both of these relations are total orders
on Σ∗pre and V, respectively.

Lemma A.1. The relation ≤pre is a total order on Σ∗pre.

Proof. By definition, ≤pre is the union of three sets:

≤pre = {(a, b) | a, b ∈ Σ∗pre, a, b numeric, strToInt(a) ≤ strToInt(b)}

∪ {(a, b) | a, b ∈ Σ∗pre, a numeric, b non-numeric}

∪ {(a, b) | a, b ∈ Σ∗pre, a, b non-numeric, a ≤sx b}

Since an element of Σ∗pre is either numeric or non-numeric but never both, the three
sets are disjunct. Let a ∈ Σ∗pre. If a is numeric, then strToInt(a) ≤ strToInt(a), since
≤ is a total order on N and thus reflexive. Thus, a ≤pre a. If a is non-numeric, then
a ≤sx a, since ≤sx is a total order on Σ∗pre and thus a ≤pre a. It follows that ≤pre is
reflexive.

Now let a, b ∈ Σ∗pre with a ≤pre b and b ≤pre a. If both a and b are numeric, then
a = b follows from the antisymmetric property of ≤ on N. If neither a nor b are
numeric, then a = b follows from the antisymmetry of ≤sx on Σ∗pre. By definition, a
cannot be numeric if b is non-numeric and vice versa, so the above cases are all that
we need to cover. Thus, ≤pre is antisymmetric.
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Let a, b, c ∈ Σ∗pre with a ≤pre b and b ≤pre c. The sixteen possible cases of a, b and
c being numeric/non-numeric are given in the following table, with n standing for
numeric and n̄ for non-numeric.

a b c

n n n a ≤pre c, since ≤ is transitive on N

n n n̄ a ≤pre c, since numeric is always smaller
n n̄ n impossible, since numeric is always smaller and thus b > c
n n̄ n̄ a ≤pre c, since numeric is always smaller
n̄ n n impossible, since numeric is always smaller and thus a > b
n̄ n n̄ impossible, since numeric is always smaller and thus a > b
n̄ n̄ n impossible, since numeric is always smaller and thus b > c
n̄ n̄ n̄ a ≤pre c, since ≤sx is transitive in Σ∗pre

In all cases that can occur, we have a ≤pre c. Thus, ≤pre is transitive.

Since ≤pre is reflexive, antisymmetric and transitive on Σ∗pre, it is a total order on
Σ∗pre.

Lemma A.2. The relation ≤ver is a total order on V.

Proof. We recall the definition of ≤ver:

prC((a, b, c, p1), (x, y, z, p2)) := p1 ≤pre p2

paC((a, b, c, p1), (x, y, z, p2)) := c < z ∨ (c = z ∧ prC((a, b, c, p1), (x, y, z, p2)))

miC((a, b, c, p1), (x, y, z, p2)) := b < y ∨ (b = y ∧ paC((a, b, c, p1), (x, y, z, p2)))

maC((a, b, c, p1), (x, y, z, p2)) := a < x ∨ (a = x ∧miC((a, b, c, p1), (x, y, z, p2)))

≤ver := {(v1, v2) | v1, v2 ∈ V, maC(v1, v2)}

Let (a, b, c, d) ∈ V. Then prC((a, b, c, d), (a, b, c, d)) holds since ≤pre is a total order
and thus d ≤pre. Since c = c, paC((a, b, c, d), (a, b, c, d)) holds as well and similarly
miC((a, b, c, d), (a, b, c, d)) and maC((a, b, c, d), (a, b, c, d)) hold since b = b and a = a.
Thus, (a, b, c, d) ≤ver (a, b, c, d) and ≤ver is reflexive.

Let a, b ∈ V with a ≤ver b and b ≤ver a. Then there exist a1, b1, a2, b2, a3, b3 ∈ N

and a4, b4 ∈ Σ∗pre with a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4). Since both maC(a, b)
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and maC(b, a) must hold by choice of a and b, we can conclude that a1 = b1 since
otherwise a1 < b1 and b1 < a1, which is a contradiction. From a1 = b1 we have that
miC(a, b) and miC(b, a) hold and we can conclude a2 = b2 by a similar argument.
a2 = b2 in turn gives us that paC(a, b) and paC(b, a) hold and since a3 = b3, which
gives us that prC(a, b) and prC(b, a) hold. Since ≤pre is antisymmetric, we get a4 =

b4. Thus a = b since all their components are equal and ≤ver is antisymmetric.

Let a, b, c ∈ V with a ≤ver b and b ≤ver c. Then there exist a1, b1, c1, a2, b2, c2, a3, b3, c3 ∈
N and a4, b4, c4 ∈ Σ∗pre with a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) and c = (c1, c2, c3, c4).
We know that maC(a, b) and maC(b, c) hold, and thus a1 < b1 ≤ c1 or a1 = b1 ≤ c1.
In the first case, we have maC(a, c) and thus a ≤ver c. In the second case, we know
that miC(a, b) and miC(b, c) hold. Thus a2 < b2 ≤ c2 or a2 = b2 ≤ c2. Again, in the
first case we can conclude a ≤ver c since we have miC(a, c). In the second case, we
know that paC(a, b) and paC(b, c) hold and thus a3 < b3 ≤ c3 or a3 = b3 ≤ c3. In
the first case, we know that paC(a, c) holds and thus a ≤ver c. In the second case,
we know that prC(a, b) and prC(b, c) hold and thus a4 ≤pre b4 and b4 ≤pre c4, which
gives us a4 ≤pre c4 and thus prC(a, c) by transitivity of ≤pre. It follows that in every
case a ≤ver c and thus ≤ver is transitive.

We can conclude that ≤ver is a total order on V since it is reflexive, antisymmetric
and transitive on V.
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A Few Curry Packages

In this chapter, the README files of the packages det-parse, json, opt-parse and
boxes are printed verbatim.

B.1 det-parse

det-parse is a library of deterministic parser combinators. It is based on the material
presented in Frank Huch’s functional programming lecture at Kiel University. To
use it, you build a Parser a using the provided combinators and then apply it to
a string using parse. The simplest parsers are provided by the primitives yield,
failure, anyChar and check.

yield always results in the given value, consuming no input. yield 1 will success-
fully parse the empty string to the value 1. failure is a parser that always fails.
anyChar is a parser that consumes a single character and uses it as the parse re-
sult. check takes a parser and a predicate on the result type of the parser. From
these, it builds a new parser that applies the existing parser and succeeds only if the
predicate holds for the parse result.

char and word build parsers for single characters and whole strings from these prim-
itives. char ’c’ is a parser that consumes the single character c and results in the
unit value (). word "hello" consumes the string hello and results in the unit value.
empty is a parser that recognizes an empty string and results in the unit value.

The operators *> and <* are provided to combine parsers into more complex ones. *>
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applies two parsers and returns the result of the second one if both were successful.
char ’a’ *> yield 1 is successful if applied to the string a and results in the value
1. <* applies two parsers in the same order, i.e., left to right, but returns the result
of the first one.

<|> combines two parsers by applying them both. If the first one is successful, it
returns its result. If it is not, but the second one is, then it returns the result of
the second one. If both are unsuccessful, the combined parser is unsuccessful as
well. The parser char ’a’ *> yield 1 <|> char ’b’ *> yield 2 parses the string
a to the value 1 and the string b to the value 2. <!> works similarly to <|>, but
does not backtrack. That is, it only tries the second parser if the first one was
unsuccessful, and only on the remaining input. It can be used if the alternatives
do not overlap. The above example would also work if <|> were replaced by <!>,
while word "ab" *> yield 1 <!> word "abc" *> yield 2 would fail to parse abc

into the value 2 since the first alternative has already consumed ab.

<$> builds a new parser from an existing parser by applying a function to the result
of that parser. For example, (+ 1) <$> (char ’a’ *> yield 1) is a parser that
parses the string a into the value 2.

<*> :: Parser (a -> b) -> Parser a -> Parser b combines two parsers, one that
results in a function from a to b, and one that results in an a value. It applies the
parsers in order and then applies the function result of the first parser to the value
result of the second parser.

many :: Parser a -> Parser [a] builds a parser that parses whatever the original
parser parses arbitrarily many times. some is similar, but requires that the original
parser succeed at least once. Applying many (char ’a’ *> yield 1) to the string
aaaa results in the value [1,1,1,1].

B.2 json

This package provides data types, a parser and a pretty printer for JSON1.

Representing JSON values in Curry

A JSON value can be a primitive, i.e., true, false, null, a string or a number, an

1http://json.org

http://json.org
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array of JSON values or an object mapping strings to JSON values. In Curry, a JSON
value is represented by the data type JValue from the JSON.Data module:

data JValue = JTrue

| JFalse

| JNull

| JString String

| JNumber Float

| JArray [JValue]

| JObject [(String, JValue)]

Parsing JSON strings

parseJSON from JSON.Parser can be used to parse a JSON string into a JValue:

> parseJSON "{ \"hello\": [\"world\", \"kiel\"] }"

Just (JObject [("hello", JArray [JString "world", JString "kiel"])])

Printing JSON strings

ppJSON from JSON.Pretty will turn a JValue into a pretty printed string. If you want
more control over the layout of the resulting string, you can use ppJValue from the
same package to obtain a Doc for Curry’s Pretty module from a JValue.

B.3 opt-parse

opt-parse is an advanced command line parser for Curry. It features support for
options with and without values (i.e., flags), positional arguments and commands
that can define their own sub-parsers. It borrows heavily from Paolo Capriotti’s
Haskell package optparse-applicative2 and Curry’s GetOpt3 module.

You use opt-parse by declaring a parser specification and then running that parser
specification on a command line. A parser specification is made up from individ-
ual parsers for options, flags, position arguments and commands. Each individual
parser results in an arbitrary value, though all parsers in a parser specification must
result in values of the same type.

2https://hackage.haskell.org/package/optparse-applicative
3https://www-ps.informatik.uni-kiel.de/kics2/lib/GetOpt.html

https://hackage.haskell.org/package/optparse-applicative
https://www-ps.informatik.uni-kiel.de/kics2/lib/GetOpt.html
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A Simple Example

A simple command line parser example might look like this:

cmdParser = optParser $

option (\s -> readInt s)

( long "number"

<> short "n"

<> metavar "NUMBER"

<> help "The number." )

<.> arg (\s -> readInt s)

( metavar "NEXT-NUMBER"

<> help "The next number." )

main = do

args <- getArgs

parseResult <- return $ parse (intercalate " " args) cmdParser "test"

putStrLn $ case parseResult of

Left err -> err

Right v -> show v

This defines a parser that supports a number option and requires a single positional
argument. Both values are parsed into an integer. The parse function is called with
the command line as a single string, the parser specification and the name of the
current program. It results in either a Left if there was a parse error or a Right with
the list of parse results. Running test --help prints out usage information:

test NEXT-NUMBER

-n, --number NUMBER The number.

NEXT-NUMBER The next number.

If we run test --number=5 2, we get the list of parse results:

[2, 5]

metavar and help are modifiers that can be applied to any argument parser, com-
mand, option, flag or positional. The help text is what is printed in the detailed
usage output, the metavar is the placeholder to be printed for the argument’s value
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in the usage output. The optional modifier can also be applied to all argument
types, although flags and options are already optional by default.

The long and short modifiers are specific to options and flags.

Right now, the result of our parser is a list of the individual parse results. Usually,
we want our parse result to be a single value, for example a Curry data type such as
this:

data Options = Options

{ number :: Int

, nextNumber :: Int }

To parse a command line to an Options value, we return functions from our indi-
vidual parsers instead of integers:

cmdParser = optParser $

option (\s a -> a { number = readInt s })

( long "number"

<> short "n"

<> metavar "NUMBER"

<> help "The number." )

<.> arg (\s a -> a { nextNumber = readInt s })

( metavar "NEXT-NUMBER"

<> help "The next number." )

The result of a successful parse will now be a list of functions that change an Options

value. We can fold this list onto a default Options:

applyParse :: [Options -> Options] -> Options

applyParse fs = foldl (flip apply) defaultOpts fs

where

defaultOpts = Options 0 0

main = do

args <- getArgs

parseResult <- return $ parse (intercalate " " args) cmdParser "test"

putStrLn $ case parseResult of

Left err -> err

Right v -> show $ applyParse v
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Executing test --number=5 1 results in:

(Options 5 1)

Positional Arguments and Flags

Positional arguments can be created via arg and rest. arg is a normal positional
argument which can be optional or mandatory. rest is a positional argument that
consumes the rest of the command line as-is. Positional arguments are expected in
the order they occur in the parser definition.

flag can be used to create flag arguments. A flag argument expects no value.

Commands

In addition to options, flags and positional arguments, opt-parse also includes sup-
port for commands. A command is a positional argument that dispatches to sub-
parsers depending on its value. If we have a calculator program that supports ad-
dition and multiplication, we could model its command line interface using com-
mands:

data Options = Options

{ operation :: Int -> Int -> Int

, operandA :: Int

, operandB :: Int }

cmdParser = optParser $

commands (metavar "OPERATION")

( command "add" (help "Adds two numbers.") (\a -> a { operation =

↪→ (+) })

( arg (\s a -> a { operandA = readInt s }

( metavar "OPERAND-A"

<> help "The first operand." )

<.> arg (\s a -> a { operandB = readInt s }

( metavar "OPERAND-B"

<> help "The second operand." ) )

<|> command "mult" (help "Multiplies two numbers.") (\a -> a {

↪→ operation = (*) })

( arg (\s a -> a { operandA = readInt s }

( metavar "OPERAND-A"

<> help "The first operand." )



A Few Curry Packages 115

<.> arg (\s a -> a { operandB = readInt s }

( metavar "OPERAND-B"

<> help "The second operand." ) ) )

The corresponding usage output for test run with no further arguments is:

test OPERATION

Options for OPERATION

add Adds two numbers.

mult Multiplies two numbers.

If we choose an operation, e.g. add, the output is:

test add OPERAND-A OPERAND-B

OPERAND-A The first operand.

OPERAND-B The second operand.

B.4 boxes

boxes is a pretty-printing library for laying out text in two dimensions. It is a direct
port of the Haskell library boxes4 by Brent Yorgey.

boxes’ core data type is the Box, which has a width, a height and some contents.
A box’s contents can be text or other boxes. There are functions for creating boxes
from text and for combining boxes into bigger boxes.

Creating Boxes

The text function can be used to create a box from a string, which will have height
1 and length N, where N is the length of the string (Nx1). char creates a 1x1 box
containing a single character. emptyBox creates an empty box of arbitrary width and
height.

para :: Alignment -> Int -> String -> Box creates a box from a string with a
specific width. The box will be as high as necessary to fit the text, which is laid out
according to the given alignment.

4https://hackage.haskell.org/package/boxes

https://hackage.haskell.org/package/boxes
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Combining Boxes

The <> and <+> operators combine boxes horizontally with and without a column
of space between both boxes, respectively. The // and /+/ operators are similar, but
combine boxes vertically instead of horizontally. hcat and vcat are versions of <>
and // that combine whole lists of boxes instead of two at a time. hsep and vsep are
versions of <+> and /+/ that operate on lists, with a configurable amount of space
between each two boxes. punctuateH and punctuateV also combine lists of boxes
horizontally and vertically, but allow us to specify another box which is copied in
between each two boxes.

The align, alignVert and alignHoriz functions can be used to create new boxes
which contain other boxes in some alignment. moveUp, moveLeft, moveDown and
moveRight move boxes by some amount inside larger boxes.

table creates a table from a list of rows and a list of widths for each column.

Rendering Boxes

The render function renders a box to a string. The printBox function prints a box to
stdout.
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Raw Performance Figures

This chapter contains the raw figures obtained for the performance measurements
described in Sections 6.3 and 6.4, as well as instructions on how to reproduce them.

To run performance tests for the resolution algorithm as well as the API and be-
havior comparison algorithms, the CPM distribution contains the source code for
a performance test program. This program can be built using make buildperf and
executed via bin/perftest.

Using perftest api -n NUMBER, we can run the API comparison performance test,
where NUMBER is the number of added, removed and changed functions and types
to generate each. That is, running the API performance test with a NUMBER of 10

will generate 60 elements to be compared in total: 10 added, removed and changed
functions and types each.

perftest behavior -t NESTING -f FUNCTIONS runs the behavior comparison per-
formance test, where NESTING is the nesting depth of the generated type and FUNCTIONS

is the number of functions to be compared. See Section 6.4 for an explanation of the
type nesting depth.

perftest resolution --packages=PKGS runs the dependency resolution performance
test on the specified packages. PKGS must be a list of comma-separated package iden-
tifiers, i.e., package names and versions separated by hyphens.1 To run the resolu-
tion set, a set of package specifications is needed. The sample data set used in Sec-

1Pre-release versions are not supported by perftest at the moment.
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tion 6.3 is provided in the cpm-perf-test-data2 Git repository. The packages.term

file from that repository needs to be available in the current directory when perftest

resolution is run. To reproduce the exact tests from Section 6.3, run perftest on
the following packages:

perftest resolution --packages=express-4.14.0,express-3.9.0,chalk-1.1.3,

↪→ request-2.74.0,mocha-1.21.5,karma-1.2.0

2https://git.ps.informatik.uni-kiel.de/joo/cpm-perf-test-data

https://git.ps.informatik.uni-kiel.de/joo/cpm-perf-test-data
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Table C.1.: Performance figures for resolution on KiCS2 0.5.1, all times in msec
Read Package Index express-4.14.0 express-3.9.0 chalk-1.1.3 request-2.74.0 mocha-1.21.5 karma-1.2.0

12, 573 5 240 0 16 4, 421 did not finish
12, 232 6 236 0 16 4, 471 did not finish
12, 756 6 243 1 19 5, 140 did not finish
13, 252 5 241 0 19 4, 532 did not finish
12, 067 4 241 0 17 4, 632 did not finish

x̄ = 12, 573 x̄ = 5 x̄ = 241 x̄ = 0 x̄ = 17 x̄ = 4, 532 did not finish
σ = 465.51 σ = 0.83 σ = 2.58 σ = 0.44 σ = 1.51 σ = 290.79 did not finish

Table C.2.: Performance figures for resolution on PAKCS 1.14.1, all times in msec
Read Package Index express-4.14.0 express-3.9.0 chalk-1.1.3 request-2.74.0 mocha-1.21.5 karma-1.2.0

- 330 30, 160 30 1, 810 did not finish did not finish
- 370 23, 360 10 1, 540 did not finish did not finish
- 340 24, 420 10 1, 490 did not finish did not finish
- 350 25, 070 20 1, 500 did not finish did not finish
- 350 25, 600 10 1, 430 did not finish did not finish

- x̄ = 350 x̄ = 25, 070 x̄ = 10 x̄ = 1, 500 did not finish did not finish
- σ = 14.83 σ = 2, 617.73 σ = 8.94 σ = 148.43 did not finish did not finish

Table C.3.: Performance figures for API diff on KiCS2 0.5.1, all times in msec
No. of functions Run 1 Run 2 Run 3 Run 4 Run 5 x̄ σ

10 2 1 2 1 3 2 0.8366
100 2 2 2 2 3 2 0.4472
1000 2 2 2 2 2 2 0
10000 Did not finish, aborted after 10 minutes

Table C.4.: Performance figures for API diff on PAKCS
1.14.1, all times in msec

No. of functions Run 1 Run 2 Run 3 Run 4 Run 5 x̄ σ

10 120 50 60 60 70 60 27.7488
100 10 50 50 50 50 50 17.8885
1000 Out of memory while generating sample problema

10000 Out of memory while generating sample problema

a Aborted after 15 GB of memory usage.
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Table C.5.: Performance figures for behavior diff on KiCS2 0.5.1, all times in msec
Type nesting depth No. of functions Run 1 Run 2 Run 3 Run 4 Run 5 x̄ σ

10 10 290 303 287 286 299 290 7.5828
10 100 525 528 561 530 530 530 14.7885
10 1000 5093 5260 5428 5232 5256 5256 119.0806
100 10 454 463 457 460 466 460 4.7434
100 100 722 706 718 722 716 718 6.5726
100 1000 5636 5823 5637 5789 5666 5666 89.0937
1000 10 8768 9179 7929 8141 7955 8141 554.3138
1000 100 8454 8696 8692 8611 8564 8611 193.9961
1000 1000 17595 17835 17398 18261 17627 17627 328.3187

Table C.6.: Performance figures for behavior diff on PAKCS 1.14.1, all times in
msec

Type nesting depth No. of functions Run 1 Run 2 Run 3 Run 4 Run 5 x̄ σ

10 10 1490 1450 1400 1370 1520 1450 61.8869
10 100 6930 7460 9090 8290 7210 7460 883.8438
10 1000 Out of memorya

100 10 16590 9780 10960 9160 13950 10960 3118.7930
100 100 36130 17490 18990 16470 24410 18990 8108.7927
100 1000 Out of memorya

1000 10 Out of memorya

1000 100 Out of memorya

1000 1000 Out of memorya

a Aborted after 15GB of memory usage.
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User’s Manual

The user’s manual for the Curry package manager is printed verbatim on the fol-
lowing pages.
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This document describes the Curry package manager (CPM), an application for dis-
tributing and installing Curry libraries.

D.1 Installing the Curry Package Manager

To install and use CPM, a working installation of either the PAKCS1 compiler in
version 1.14.1 or greater, or the KiCS2

2 compiler in version 0.5.1 or greater is re-
quired. Additionally, CPM requires Git3, curl4 and unzip to be available on the PATH

during installation and operation. You also need to ensure that your Haskell in-
stallations reads files using UTF-8 encoding by default. Haskell uses the system
locale charmap for its default encoding. You can check the current value using
System.IO.localeEncoding inside a ghci session.

With your Curry compiler’s bin directory on the PATH, enter the root directory of
the CPM source distribution and type make. The application will be compiled using
the Curry compiler on the PATH and a binary called cpm will be created in the bin

subdirectory. Put this binary somewhere on your path.

Afterwards, run cpm update to pull down a copy of the central package index to
your system.

D.2 Package Basics

Essentially, a Curry package is nothing more than a directory structure containing
a package.json file and a src directory at its root. The package.json file is a JSON
file containing package metadata, the src directory contains the Curry modules that
make up the package.

We assume familiarity with the JSON file format. A good introduction can be found
at http://json.org. The package specification file must contain a top-level JSON
object with at least the keys name, author, version, synopsis and dependencies.
More possible fields are described in section D.8. A package’s name may contain
any ASCII alphanumeric character as well as dashes (-) and underscores (_). It

1https://www.informatik.uni-kiel.de/ pakcs/
2https://www-ps.informatik.uni-kiel.de/kics2/
3http://www.git-scm.com
4https://curl.haxx.se
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must start with an alphanumeric character. The author field is a free-form field,
but the suggested format is either a name (John Doe), or a name followed by an
email address in angle brackets (John Doe <john.doe@goldenstate.gov>). Separate
multiple authors with commas.

Versions must be specified in the format laid out in the semantic versioning stan-
dard5: each version number consists of numeric major, minor and patch versions
separated by dot characters as well as an optional pre-release specifier consisting of
ASCII alphanumerics and hyphens, e.g. 1.2.3 and 1.2.3-beta5. Please note that
build metadata as specified in the standard is not supported.

The synopsis should be a short summary of what the package does. Use the de-

scription field for longer form explanations.

Dependencies are specified as a nested JSON object with package names as keys
and dependency constraints as values. A dependency constraint restricts the range
of versions of the dependency that a package is compatible to. Constraints consist
of elementary comparisons that can be combined into conjunctions, which can then
be combined into one large disjunction – essentially a disjunctive normal form. The
supported comparison operators are <,≤,>,≥,= and ∼>. The first four are inter-
preted according to the rules for comparing version numbers laid out in the semantic
versioning standard. ∼> is called the semantic versioning arrow. It requires that the
package version be at least as large as its argument, but still within the same minor
version, i.e. ∼> 1.2.3 would match 1.2.3, 1.2.9 and 1.2.55, but not 1.2.2 or 1.3.0.

To combine multiple comparisons into a conjunction, separate them by commas, e.g.
≥ 2.0.0,< 3.0.0 would match all versions with major version 2. Note that it would
not match 2.1.3-beta5 for example, since pre-release versions are only matched if
the comparison is explicitly made to a pre-release version, e.g. = 2.1.3-beta5 or
≥ 2.1.3-beta2.

Conjunctions can be combined into a disjunction via the || characters, e.g. ≥ 2.0.0,<
3.0.0|| ≥ 4.0.0 would match any version within major version 2 and from major
version 4 onwards, but no version within major version 3.

5http://www.semver.org
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D.3 Using Packages

Curry packages can only be used as dependencies of other Curry packages. Luckily
creating a Curry package is easy, as we have seen in the previous section. So, to use
a Curry package in your project, create a package.json file in the root, fill it with the
minimum amount of information discussed in the previous session, and move your
Curry code to a src directory inside your project’s directory. Alternatively, if you are
starting a new project, use the cpm new <project-name> command, which will ask
you a few questions and then create a new project directory with a package.json

file for you. Declare a dependency inside the new package.json file, e.g.:

{

...,

"dependencies": {

"json": "~> 1.1.0"

}

}

Then run cpm install to install all dependencies of the current package and start
your interactive Curry environment with cpm curry. You will be able to load the
JSON package’s modules.

Installing and Updating Dependencies

To install the current package’s dependencies, run cpm install. This will install the
most recent version of all dependencies that are compatible to the package’s depen-
dency constraints. Note that a subsequent run of cpm install will always prefer
the versions it installed on a previous run, if they are still compatible to the pack-
age’s dependencies. If you want to explicitly install the newest compatible version
regardless of what was installed on previous runs of cpm install, you can use the
cpm upgrade command to upgrade all dependencies to their newest compatible ver-
sions, or cpm upgrade <package> to update a specific package and all its transitive
dependencies to the newest compatible version.

Note that there is also a cpm update command, which will update your copy of
the central package index to the newest version. You can search the central package
index via the cpm search command. See section D.7 for a reference of all commands.
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Executing the Compiler

To use the dependencies of a package, the Curry compiler needs to be started via
CPM, so that the compiler will know where to search for modules. You can use the
cpm curry command to start the current Curry compiler (the curry command that
is on the path). Any parameters given to cpm curry will be passed along verbatim
to the Curry compiler, for example the following will start the Curry compiler, print
Hello, World and then quit.

cpm curry :eval "1+1" :quit

To execute other Curry commands such as currycheck with the package’s dependen-
cies available, you can use the cpm exec command. cpm exec will set the CURRYPATH

environment variable and then execute the command it is given.

Replacing Dependencies with Local Versions

During development of your applications, situations may arise in which you want to
temporarily replace one of your package’s dependencies with a local copy, without
having to publish a copy of that dependency somewhere or increasing the depen-
dency’s version number. One such situation is a bug in a dependency not controlled
by you: if your own package depends on package A and A’s current version is 1.0.3
and you encounter a bug in this version, then you might be able to investigate, find
and fix the bug. Since you are not the the author of A, however, you cannot release
a new version with the bug fixed. So you send off your patch to A’s maintainer and
wait for 1.0.4 to be released. In the meantime, you want to use your local, fixed copy
of version 1.0.3 from your package. The cpm link command allows you to replace a
dependency with your own local copy.

cpm link takes a directory containing a copy of one of the current package’s depen-
dencies as its argument. It creates a symbolic link from that directory the the current
package’s local package cache. If you had a copy of A-1.0.3 in the /src/A− 1.0.3
directory, you could use cpm link ~/src/A-1.0.3 to ensure that any time A-1.0.3 is
used from the current package, your local copy is used instead of the one from the
global package cache. To remove any links, use cpm upgrade without any arguments,
which will clear the local package cache. See section D.6 for more information on
the global and local package caches.
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D.4 Authoring Packages

If you want to create packages for other people to use, you should consider filling
out more metadata fields than the bare minimum. See section D.8 for a reference of
all available fields.

Semantic Versioning

The versions of published packages should adhere to the semantic versioning stan-
dard, which lays out rules for which components of a version number must change if
the public API of a package changes. Recall that a semantic versioning version num-
ber consists of a major, minor and patch version as well as an optional pre-release
specifier. In short, semantic versioning defines the following rules:

• If the type of any public API is changed or removed or the expected behavior of a
public API is changed, you must increase the major version number and reset the
minor and patch version numbers to 0.

• If a public API is added, you must increase at least the minor version number and
reset the patch version number to 0.

• If only bug fixes are introduced, i.e. nothing is added or removed and behavior is
only changed to removed deviations from the expected behavior, then it is sufficient
to increase the patch version number.

• Once a version is published, it must not be changed.

• For pre-releases, sticking to these rules is encouraged but not required.

• If the major version number is 0, the package is still considered under development
and thus unstable. In this case, the rules do not apply, although following them as
much as possible as still encouraged. Release 1.0.0 is considered to be the first stable
version.

To aid you in following these rules, CPM provides the diff command. diff can
be used to compare the types and behavior of a package’s public API between two
versions of that package. If it finds any differences, it checks whether they are
acceptable under semantic versioning for the difference in version numbers between
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the two package versions. To use diff, you need to be in the directory of one of
the versions, i.e. your copy for development, and have the other version installed in
CPM’s global package cache (see the cpm install command). For example, if you
are developing version 1.3.0 of the JSON package and want to make sure you have
not introduced any breaking changes when compared to the previous version 1.2.6,
you can use the cpm diff 1.2.6 command while in the directory of version 1.3.0.

CPM will then check the types of all public functions and data types in all exported
modules of both versions (see the exportedModules field of the package specifica-
tion) and report any differences and whether they violate semantic versioning. It
will also generate a CurryCheck program that will compare the behavior of all ex-
ported functions in all exported modules whose types have not changed and execute
that program. Note that not all functions can be compared via CurryCheck. In par-
ticular, functions taking other functions as arguments can not be checked, as well as
functions taking Float arguments. There are a few other minor restrictions. Also
note that the generated program may not terminate if one of the versions of the func-
tion does not terminate, for example if it generates an infinite list. In this case, you
can mark those functions with the compiler pragma {-# NOCOMPARE -#} and CPM
will not generate tests for them, e.g.

{-# NOCOMPARE #-}

ones :: [Int]

ones = 1 : ones

Publishing a Package

There are three things that need to be done to publish a package: make the package
accessible somewhere, add the location to the package specification, and add the
package specification to the central package index.

CPM supports ZIP files accessible over HTTP as well as Git repositories as package
sources. You are free to choose one of those, but a publicly accessible Git repository
is preferred. To add the location to the package specification, use the source key.
For a HTTP source, use:

{

...,

"source": {

"http": "http://example.com/package-1.0.3.zip"
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}

}

For a Git source, you have to specify both the repository as well as the revision that
represents the version:

{

...,

"source": {

"git": "git+ssh://git@github.com:john-doe/package.git",

"tag": "v1.2.3"

}

}

There is also a shorthand, $version, available to automatically use a tag consisting
of the letter v followed by the current version number, as in the example above.
Specifying $version as the tag and then tagging each version in the format v1.2.3 is
preferred, since it does not require changing the source location in the package.json

file every time a new version is released.

After you have published the files for your new package version, you have to add the
corresponding package specification to the central package index. The central pack-
age index is just a Git repository containing a directory for each package, which con-
tain subdirectories for all versions of that package which in turn contain the package
specification files. So the specification for version 1.0.5 of the json package would
be located in json/1.0.5/package.json. If you have access to the Git repository
containing the central package index, then you can add the package specification
yourself. If you do not have access, then send the file to someone who does.

D.5 Configuration

CPM can be configured via the $HOME/.cpmrc configuration file. The following list
shows all configuration options and their default values.

package install path The path to the global package cache. This is where all
downloaded packages are stored. Default value: $HOME/.cpm/packages

repository path The path to the index repository. Default value: $HOME/.cpm/index.
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D.6 Some CPM Internals

CPM’s central package index is a Git repository containing package specification
files. A copy of this Git repository is stored on your local system in the $HOME-

/.cpm/index directory, unless you changed the location using the repository_path

setting. CPM uses the package index when searching for and installing packages
and during dependency resolution.

When a package is installed on the system, it is stored in the global package cache.
By default, the global package cache is located in $HOME/.cpm/packages. When a
package foo, stored in directory foo, depends on a package bar, a link to bar’s direc-
tory in the global package cache is added to foo’s local package cache when depen-
dencies are resolved for foo. The local package cache is stored in foo/.cpm/package-
_cache. Whenever dependencies are resolved, package versions already in the local
package cache are preferred over those from the central package index or the global
package cache.

When a module inside a package is compiled, packages are first copied from the
local package cache to the runtime cache, which is stored in foo/.cpm/packages.
Ultimately, the Curry compiler only sees the package copies in the runtime cache,
and never those from the local or global package caches.

D.7 Command Reference

This section gives a short description of all available CPM commands. In addition
to the commands listed here, there is a global --verbosity parameter which defaults
to info but can be increased to debug for more output.

info Gives information on the current package, e.g. the package’s name, author,
synopsis and its dependency specifications.

info package Gives information on the newest known version of the given package.

info package version Gives information on the given package version.

search query Searches the names and synopses of all packages in the central pack-
age index for a term.
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update Updates the local copy of the central package index to the newest available
version.

install Installs all dependencies of the current package.

install package [--pre] Installs the newest version of a package to the global pack-
age cache. --pre enables the installation of pre-release versions.

install package version Installs a specific version of a package to the global pack-
age cache.

install package.zip Installs a package from a ZIP file to the global package cache.

uninstall package version Uninstalls a specific version of a package from the global
package cache.

upgrade Upgrades all dependencies of the current package to the newest compati-
ble version.

upgrade package Upgrades a specific dependency of the current package and all its
transitive dependencies to their newest compatible versions.

deps Does a dependency resolution run for the current package and prints out the
results. The result is either a list of all package versions chosen or a description
of the conflict encountered during dependency resolution.

diff Test

exec command Executes an arbitrary command with the CURRYPATH environment
variable set to the paths of all dependencies of the current package. Can be used
to execute currycheck with dependencies available, for example.

curry args Executes the Curry compiler with the dependencies of the current pack-
age available. Any arguments are passed verbatim to the compiler.

link source Can be used to replace a dependency of the current package using a
local copy, see D.3.3 for details.

new Asks a few questions and creates a new package.
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D.8 Package Specification Reference

This section describes all metadata fields available in a CPM package specification.
Mandatory fields are marked with a * character.

name* The name of the package. Must only contain ASCII letters, digits, hyphens
and underscores. Must start with a letter.

version* The version of the package. Must follow the format for semantic version-
ing version numbers.

author* The package’s author. This is a free-form field, the suggested format is
either a name or a name followed by an email address in angle brackets – e.g.
John Doe <john@doe.com>. Multiple authors should be separated by commas.

maintainer The current maintainers of the package, if different from the original
authors. This field allows the current maintainers to indicate the best person or
persons to contact about the package while attributing the original authors.

synopsis A longer form description of what the package does.

license The license under which the package is distributed. This is a free-form
field. In case of a well-known license such as the GNU General Public License6,
the SPDX license identifier7 should be specified. If a custom license is used, this
field should be left blank in favor of the license file field.

licenseFile The name of a file in the root directory of the package containing
explanations regarding the license of the package or the full text of the license.
The suggested name for this file is LICENSE.

copyright Copyright information regarding the package.

homepage The package’s web site. This field should contain a valid URL.

bugReports A place to report bugs found int he package. The suggested formats
are either a valid URL to a bug tracker or an email address.

repository The location of a SCM repository containing the package’s source code.
Should be a valid URL to either a repository (e.g. a Git URL), or a website repre-

6https://www.gnu.org/licenses/gpl-3.0.en.html
7https://spdx.org/licenses/
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senting the repository.

dependencies* The package’s dependencies. This must be JSON object where the
keys are package names and the values are version constraints. See section D.2.

compilerCompatibility The package’s compatibility to different Curry compilers.
Expects a JSON object where the keys are compiler names and the values are
version constraints. Currently, the supported compiler names are pakcs and kics2.
If this field is missing or contains an empty JSON object, the package is assumed
to be compatible to all compilers in all versions.

source A JSON object specifying where the version of the package described in the
specification ca be obtained. See section D.4.2 for details.

exportedModules A list of modules intended for use by consumers of the package.
These are the modules compared by the cpm diff command. Note that modules
not in this list are still accessible to consumers of the package.
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