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Abstract

GHC Language Plugins extend the capabilities of the Glasgow Haskell Compiler (GHC) by trans-
forming code into a monadic representation that allows the usage of ambient effects in the otherwise
purely functional programming language Haskell. The Curry GHC Language Plugin, for example,
transforms the Haskell program into a monadic representation using a tree-based monad, effectively
allowing the GHC to compile programs with Curry-like semantics. The advantage of this approach
compared to the implementation of a Curry compiler from scratch is that it allows the reuse of existing
language infrastructure of the GHC and a seamless integration of the transformed code into Haskell
programs. However, the performance of the code generated by such plugins is suboptimal due to
overheads associated with the monadic representation. This thesis introduces an optimization for
GHC Language Plugins that leverages the well-known optimization technique of the worker/wrap-
per transformation to enhance the evaluation efficiency in particular for functions that are strict in
their arguments or devoid of ambient effects. In accordance with the plugin’s general philosophy, the
implementation builds upon GHC’s own analyses and optimizations. Our findings reveal that this
optimization technique yields substantial performance enhancements, demonstrating notable reduc-
tions in both runtime execution times and memory consumption for the targeted class of functions.
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Chapter 1

Introduction

Curry is a functional logic programming language whose syntax and semantics are very similar to
Haskell (Marlow (ed.), 2010) but extends it with features from the logic programming paradigm such
as nondeterminism and free variables (Hanus (ed.), 2016). Due to the similarities of the two languages,
Haskell is a reasonable target language for Curry compilers. The second version of the Kiel Curry Sys-
tem (KiCS2), for example, compiles Curry source code to Haskell and then uses the Glasgow Haskell
Compiler (GHC) to produce machine code (Braßel, Hanus, Peemöller, and Reck, 2011). Nevertheless,
a Curry compiler still has to repeat a lot of the work that has already been put into the development
of Haskell compilers. For example, a Curry compiler has to implement its own type checker even
though the type systems of Curry and Haskell are the same for all intents and purposes. In conse-
quence, many useful language extensions that are available for Haskell have not been implemented
for Curry yet. Besides the actual compiler, other tools like a Read-Eval-Print-Loop (REPL), a debug-
ger, documentation generator, package manager, etc. also have to be implemented from scratch and
maintained separately from their Haskell counterparts. Furthermore, interoperability with Haskell
and its rich package ecosystem is not possible.

These problems motivated Prott (2020) to build a new Curry compiler based on existing infrastructure
of the GHC. The Curry GHC Language Plugin (hereinafter referred to as the plugin) uses the GHC’s
plugin system to hook into its compilation pipeline and transforms the input Curry program into
Haskell source code that can be compiled by the GHC. To implement support for Curry-specific
features, the plugin performs a monadic lifting based on work by Wadler (1990) and models call-time
choice semantics (Hennessy and Ashcroft, 1977) using an approach by Fischer, Kiselyov, and Shan
(2011). The translation scheme of the plugin is not specific to Curry’s nondeterminism. By swapping
the concrete monad that is used during lifting, the plugin can be adapted to support arbitrary effects.
Prott demonstrated this flexibility of the approach by creating a fork of the plugin that supports
probabilism. Additional forks of the project have been created since then. The resulting class of
plugins is referred to as GHC Language Plugins.

While the monad-based translation scheme of the plugin offers great flexibility, the resulting need to
wrap and unwrap values in the monad as well as the explicit modeling of sharing introduce a signif-
icant performance overhead. In contrast to the approach chosen by KiCS2 (Brassel and Fischer, 2008),
the runtime of parts of the program that are purely functional is also impaired. The primary goal of
this thesis is to implement optimizations that help to improve the performance of the code generated
by GHC Language Plugins. Since the performance problems are caused by the monadic represen-
tation and explicit sharing, our optimizations target functions that do not need these abstractions
to work properly. This means that we predominantly focus on effect-free functions. Functions that
strictly evaluate their arguments are also of particular interest to us because the monadic wrapping
of their arguments is often superfluous. Since the plugin was originally conceived to minimize the
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1. Introduction

implementation effort for a new compiler by reusing parts of the GHC’s infrastructure, a secondary
goal of ours is to achieve these desired performance improvements by utilizing as much of the ex-
isting analyses and optimizations provided by the GHC as possible. Even though we are using the
Curry GHC Language Plugin as an example throughout this thesis, our optimizations are applicable
to all instances of the GHC Language Plugin.

The remainder of this thesis is structured as follows. We begin in Chapter 2 with the preliminaries
of the thesis. This includes among others an introduction to the GHC’s plugin system, an overview
of the GHC Language Plugin’s architecture and an explanation of the principles behind the monadic
lifting performed by the plugin. Our approach to the optimization of the generated code is covered
in Chapter 3. We continue in Chapter 4 by presenting how we implemented the formerly described
optimizations. Lastly, we evaluate the performance gains achieved by our optimizations in Chapter 5
before we conclude in Chapter 6 with a summary of our work and an outlook on potential improve-
ments and extensions to the plugin.
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Chapter 2

Preliminaries

This chapter introduces fundamental concepts required to understand the rest of this thesis. Basic
knowledge of the Haskell programming language (Marlow (ed.), 2010) and functional programming
in general is assumed. In addition to standard Haskell 2010 language features, we also utilize lan-
guage extensions provided by the GHC. While our considerations in this thesis apply to all instances
of the GHC Language Plugin, we will focus on the Curry GHC Language Plugin as our primary ex-
ample. Therefore, we familiarize ourselves with the Curry programming language in the first section.
The second section discusses the GHC’s general architecture and its plugin system in particular. How
the GHC Language Plugins fit into this picture and how the plugin transforms the source code is
covered in the third section. Finally, related work is outlined.

2.1 Curry Programming Language

Curry is a multi-paradigm programming language that seamlessly combines aspects from functional
and logic programming (Hanus (ed.), 2016). The syntax, type-system and semantics of Curry are
very similar to Haskell. The most important difference is that Curry incorporates concepts from
logic programming such as nondeterminism and free variables. Of these two concepts, we will only
discuss nondeterminism since free variables have the same expressive power as nondeterministic
value generators (Antoy and Hanus, 2006) and are not yet supported by the plugin. Additionally, we
need to understand the interplay of nondeterminism and lazy evaluation. We will cover the concept
of nondeterminism in the first subsection and outline two possible interpretations of its semantics
under lazy evaluation in the second subsection.

2.1.1 Nondeterminism

Provided that its evaluation terminates and throws no runtime exception, every expression in Haskell
reduces to exactly one value. In this sense, Haskell expressions behave deterministically. To model a
computation that can produce multiple results, the possible values need to be collected in a container
such as a list or tree data structure. Curry, on the other hand, allows an expression to evaluate to
zero or more values without explicitly modeling this fact on type-level. Therefore, we say that Curry
possesses an ambient effect of nondeterminism. This is similar to how every function in Haskell
can potentially fail by throwing an exception without requiring the explicit use of Maybe or Either.
Haskell is therefore said to have an ambient effect of partiality. The partiality in Haskell is a result of
incomplete pattern matches or the explicit use of built-in functions like undefined :: a or error ::
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2. Preliminaries

String -> a. Similarly, the nondeterminism of Curry arises from the use of functions that are defined
in terms of overlapping rules. The most primitive function that possesses this property is the built-in
choice operator (?). On language-level, it can be defined as follows.

(?) :: a -> a -> a

x ? _ = x
_ ? y = y

The first rule evidently matches unconditionally. In Haskell, (?) would therefore return x and the
second rule would never be considered. Curry, on the other hand, applies all matching rules in a
nondeterministic fashion. Since the second rule also matches unconditionally, x ? y can be reduced to
either x or y. The Curry runtime system is responsible for searching the space of possible reductions
and collecting all results. If no rule matches, Curry does not trigger a runtime error like Haskell
would. Instead, the computation is just irreducible, i.e., yields no results. For the purpose of creating a
computation with zero results explicitly, Curry’s prelude provides a primitive polymorphic operation
failed :: a that is irreducible.

2.1.2 Run-Time Choice and Call-Time Choice

A core concept of Haskell is its call-by-need or lazy evaluation strategy. Lazy evaluation means that
every expression is evaluated at most once and only when its value is needed. Consider, for example,
that we perform an expensive computation comp and use its result in two places.

let x = comp in x + x

Due to referential transparency, this expression is equivalent to comp + comp. However, since comp is
expensive, we would like to avoid evaluating it twice. Lazy evaluation ensures that x is only evaluated
once and its value is shared between the two uses. While there is no way to observe that the value
of an expression has been shared in Haskell, we need to be aware of interactions between sharing
and nondeterminism in Curry. Consider the same example as before but instantiate the computation
comp with a nondeterministic choice between the numbers one and two.

let x = 1 ? 2 in x + x

Due to referential transparency, we might expect that we can substitute the two occurrences of x

with 1 ? 2 without changing the semantics of the program. As Figure 2.1a shows the expressions
evaluates to the four values 2, 3, 3 and 4 in this situation. This interpretation of the (?) operator’s
semantics is called run-time choice (Hennessy and Ashcroft, 1977) as the nondeterministic choice is
delayed until a concrete value for x is demanded. The alternative is to commit to one of the two
options when x is bound. In this way, the concrete choice of a value for x is shared between the
two uses. This interpretation is referred to as call-time choice (Hennessy and Ashcroft, 1977) and is
depicted in Figure 2.1b. Using call-time choice we only get the two results 2 and 4. These two answers
coincide with the results one would expect from an eager evaluation of the program. Call-time choice
is, therefore, more predictable and intuitive than run-time choice (Fischer, Kiselyov, and Shan, 2011).
For this reason, the Curry programming language uses call-time choice semantics (Hanus (ed.), 2016).
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let x = 1 ? 2 in x + x

(1 ? 2) + (1 ? 2)

1 + (1 ? 2) 2 + (1 ? 2)

1 + 1

2

1 + 2

3

2 + 1

3

2 + 2

4

(a) Run-Time Choice

let x = 1 ? 2 in x + x

let x = 1 in x + x let x = 2 in x + x

1 + 1 2 + 2

2 4

(b) Call-Time Choice

Figure 2.1. Schematic evaluation using run-time choice and call-time choice. Dashed lines represent the elimina-
tion of nondeterminism, solid lines regular reduction.

2.2 The Glasgow Haskell Compiler (GHC)

The GHC is an open-source compiler and interactive environment for the Haskell programming
language whose development originally started in 1989 as a research project at the University of
Glasgow. Today the GHC is one of the most widely used Haskell compilers (Hudak, Hughes, Peyton
Jones, and Wadler, 2007). In this section, we will give a brief overview of the GHC’s architecture. We
start by outlining the general compilation pipeline in the first section. Then we familiarize ourselves
with the GHC’s internal representation of Haskell programs as well as the intermediate language that
the GHC uses for its own analyses and optimizations. Finally, the last section covers how plugins can
be used to extend the GHC’s functionality.

2.2.1 Compilation Pipeline

The GHC compiles Haskell programs into machine code via a series of intermediary representations.
The compilation process for an input module is comprised of several phases that are executed se-
quentially. A simplified overview of the compilation pipeline is shown in Figure 2.2 (Marlow and
Peyton-Jones, 2012). First, the parser reads the input file and produces an Abstract Syntax Tree (AST)

.hs Parser

.hi .s, .hc, .ll

Renamer Type Checker Desugarer Simplifier Code Generator

Figure 2.2. Simplified overview of the GHC’s compilation pipeline.
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that represents the program’s source code. The renamer subsequently resolves all references to iden-
tifiers and type constructors before the type checker verifies that the program is well-typed. During
both of these phases, the GHC enriches the AST with additional information about resolved entities
and inferred types, respectively. Next, the desugarer translates the enriched AST into an intermediary
language called Core that is easier to perform analyses and optimizations on. Depending on the se-
lected optimization level, the GHC’s simplifier then applies a series of syntactic transformations on
the Core program such as dead code elimination, function inlining or constant folding. The Core to
Core transformations are interleaved with various analyses and executed iteratively. Based on the
selected backend, the code generator finally translates the optimized Core program into machine code,
C source code or LLVM IR1. In this thesis, we are mainly concerned with the type-checked and Core
representations. In the following two subsections, we will take a closer look at these two formats.

2.2.2 Abstract Syntax Tree (AST)

In addition to the Haskell 2010 standard, the GHC supports a variety of language extensions that
augment Haskell’s type system, introduce new syntax or provide metaprogramming capabilities. In
consequence, the internal representation of the Haskell source code is quite complex. The structure
of the AST is further complicated by the fact that the GHC uses a single data type to represent the
parsed, renamed and type-checked program although there is information that varies between these
phases such as the type of identifiers. Therefore, the AST is parameterized over a type that indicates
the current phase. The GHC uses this parameter in conjunction with type families to substitute the
types of phase-specific fields and constructors in the AST (Najd and Peyton Jones, 2016).

We are only concerned with the type-checked representation of Haskell programs. In this phase,
identifiers have already been replaced with values that record information about the corresponding
syntactic entity such as variables or data constructors. A Var, for example, records the name, type,
scope etc. of a variable. Most importantly, these entities are identified by a Unique number. Their
names are only used for pretty-printing at this point.

Two major kinds of AST nodes are of interest to us. Nodes of type HsExpr represent expressions
whereas HsBind nodes represent both local and top-level bindings. Of these two types, there are only
a few constructors that are relevant for our purposes like HsLams and FunBinds that represent lambda
abstractions and function bindings (including nullary bindings), respectively. Both of these nodes are
implemented in terms of MatchGroups where a match group contains multiple Matches each of which
represents a single rule of a function definition. Additionally, we need to be aware that the AST
alternates between actual nodes and special source location markers for error reporting purposes
(Najd and Peyton Jones, 2016). Specific AST nodes are covered in more detail as needed throughout
the thesis.

Since the AST is very complex, it is difficult to navigate. A lot of boilerplate code is needed to traverse
the tree in order to update nodes or extract information. This code distracts from the actual task at
hand and is prone to errors. To alleviate this problem, it is recommended (Pickering, Wu, and Németh,
2019) to use the syb (Scrap Your Boilerplate) library (Lämmel and Jones, 2003) to traverse the AST.
We do not need to understand in detail how the library works but are going to briefly introduce the
most important concepts in Section 2.4.

1 https://llvm.org/
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2.2.3 GHC Core

Due to the complexity of the Haskell AST, the GHC itself performs most of its own analyses and
optimizations on an intermediary language called Core whose syntax is much simpler than that of
Haskell. The Core language is based on the polymorphic lambda calculus (System F). In order to
support Generalized Algebraic Datatypes (GADTs), Core extends F with type equality coercions.
This extension to the polymorphic lambda calculus is known as System FC in literature (Sulzmann,
Chakravarty, Peyton Jones, and Donnelly, 2007). The Core language only consists of the following
constructs:

Ź variables,

Ź literals for built-in types,

Ź type and value application,

Ź type and value lambda abstractions,

Ź let bindings without pattern matching,

Ź case expressions with flat patterns only,

Ź type casts via coercions and

Ź ticks which are used by Haskell Program Coverage (HPC)2 to track the execution of expressions.

The central data type of the Core language’s internal representation is the CoreExpr type. The type
contains one constructor for each of the constructs listed above and, therefore, is much simpler than
the Haskell AST. Variables and binders use the same Var type as the type-checked AST.

Besides the reduced number of syntactic constructs, the most notable difference to Haskell is that Core
has explicit lambda abstractions and applications for types. Throughout the thesis, we avoid showing
Core code directly. Instead, our examples make use of equivalent Haskell code. To represent Core’s
explicit type applications and lambdas, we are going to borrow syntax from the TypeApplications

and ScopedTypeVariables language extensions.

Another big difference between Haskell and Core is that type classes are eliminated during desug-
aring. To implement type classes, a technique known as dictionary passing is used (Wadler and Blott,
1989). Dictionary passing is inspired by object oriented programming (OOP) where each object is
represented in memory as a structure that contains a pointer to a class object in addition to the
values of instance variables. The class object acts as a dictionary that maps method names to their
implementations. When a method is invoked on an object, the class pointer is followed to look up
the corresponding method’s implementation in the dictionary (Goldberg and Robson, 1989, p. 61). In
contrast to OOP, the dictionaries are not attached to individual objects but are passed as additional
arguments to functions in GHC Core. There is one argument for every type class constraint that is
in the function’s context. Type classes are translated to a product dictionary type that has one field for
each operation of the type class. Superclasses are represented by additional fields of the correspond-
ing dictionary and the operations can be accessed by field selectors of the same name. For instance,

2 http://wiki.haskell.org/Haskell_program_coverage
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2. Preliminaries

the following code snippet illustrates how the dictionary of the Eq type class is represented in Core
using equivalent Haskell syntax.

data Eq a = Eq (a -> a -> Bool) (a -> a -> Bool)

(==) :: forall a. Eq a -> a -> a -> Bool

(==) (Eq eq _) = eq

(/=) :: forall a. Eq a -> a -> a -> Bool

(/=) (Eq _ neq) = neq

Type class instances are represented by top-level function bindings that construct a value of the
corresponding dictionary type. The arguments of these dictionary functions are the dictionaries that
correspond to the constraints from the instance head. The Eq instance for Maybe corresponds to the
following dictionary function, for example.

fEqMaybe :: forall a. Eq a -> Eq (Maybe a)

fEqMaybe dEqA = Eq (eqMaybe @a dEqA) (neqMaybe @a dEqA)

eqMaybe :: forall a. Eq a -> Maybe a -> Maybe a -> Bool

eqMaybe dEqA (Just x) (Just y) = (==) @a dEqA x y

eqMaybe _ Nothing Nothing = True

eqMaybe _ _ _ = False

neqMaybe :: forall a. Eq a -> Maybe a -> Maybe a -> Bool

neqMaybe dEqA (Just x) (Just y) = (/=) @a dEqA x y

neqMaybe _ Nothing Nothing = False

neqMaybe _ _ _ = True

In the context of dictionary passing, the term evidence often refers to a variable that binds a dictionary
value (or coercion). The term is used because the dictionary provides evidence that the corresponding
constraint holds (or two types are equal). Evidence lambda abstractions are created for the constraints
of functions. Additionally, local evidence binders are introduced by the GHC to bind dictionaries
constructed by the application of a dictionary function. These local evidence binders can themselves
take further evidence as arguments.

2.2.4 Compiler Plugins

As a bootstrapping compiler, the GHC is written in Haskell itself. This allows the compiler’s source
code to be used as a library. Additionally, the GHC can be extended through so-called compiler plugins.
Compiler plugins are Haskell modules that are loaded by the GHC at compile time and can hook into
various stages of the compilation pipeline. For instance, there are parser plugins, renamer plugins and
type checker plugins that run after the corresponding phase has finished, i.e., operate on the original,
renamed or type-checked AST respectively. Plugins can also be used to intercept loaded module
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interfaces or modify Template Haskell splices. These kinds of plugins are referred to as source plugins
as all of them operate on the GHC’s internal representation of Haskell source code (Pickering, Wu,
and Németh, 2019). Additionally, plugins can modify compiler flags (driver plugin), force module
recompilation or add custom Core to Core transformations. Furthermore, the type checker can be
enhanced by plugins that provide custom constraint-solving facilities. These so-called constraint solver
plugins can be used to recover from type errors that are introduced by transformations in source
plugins for example. How GHC Language Plugins make use of the GHC’s plugin system will be
covered in the next section.

2.3 GHC Language Plugins

GHC Language Plugins are compiler plugins that monadically lift the input program into a con-
figurable but fixed monad. This transformation allows the program to use effects provided by the
monad in an ambient fashion. For example, the Curry GHC Language Plugin is a GHC Language
Plugin that is configured to use the Nondet monad (Prott, 2020). This monad is based on a binary
tree where each leaf represents a single result of the nondeterministic computation and branches
represent choices. The monad is extended by additional facilities (Fischer, Kiselyov, and Shan, 2011)
to support call-time choice semantics. While the plugin’s approach works with arbitrary monads and
effects, we will focus on the Curry implementation for the remainder of this thesis. In this section,
we cover the general architecture of the plugin and outline the monadic lifting algorithm. In the final
subsection, we give an overview of the plugin’s features and restrictions.

2.3.1 Architecture

In the previous section, we familiarized ourselves with the GHC’s plugin system. Building on that,
we will now take a closer look at how GHC Language Plugins utilize this system to implement the
monadic lifting transformation. While the lifting is implemented based on the type-checked AST,
each GHC Language Plugin is comprised of a driver, parser, renamer and constraint solver plugin in
addition to the type checker plugin that performs the actual lifting (Prott, 2020). The following steps
are performed in the individual phases.

Ź The driver plugin is responsible for suppressing the import of the Haskell prelude by enabling the
NoImplicitPrelude language extension whereas the parser plugin inserts an import for a custom
prelude that provides lifted versions of commonly used functions. The module used for the custom
prelude is configured by the specific GHC Language Plugin and commonly compiled with the
plugin itself.

Ź The renamer plugin runs after all imports have been resolved and uses this information to check
whether the imported modules are lifted. If an unlifted module is encountered, the plugin aborts
the compilation process and reports an error. This is necessary since the monadic lifting assumes
all used functions to be lifted.

Ź Functions that are imported have already been lifted while the current module’s source code has
not been transformed prior to type checking. Therefore, a constraint solver plugin is employed to
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Type Checker Constraint Solver Plugin

Pattern Matching Compiler

Monadic Lifting

Desugarer

Figure 2.3. Overview of the plugin’s architecture. Gray nodes are part of the regular GHC compilation pipeline.
White nodes are executed as part of the plugin’s translation. Dashed lines represent the flow of information
while solid lines trace processing of the AST. Only phases after type checking are shown.

suppress type errors that arise due to the use of lifted functions in an unlifted context.

Ź After type checking, the type checker plugin performs the actual lifting as described in Sec-
tion 2.3.3. To simplify lifting, the AST is preprocessed first. The most important preprocessing
step is pattern matching compilation and will be covered in Section 2.3.2.

The central component of the plugin is the type checker plugin. Figure 2.3 shows how the plugin
interacts with the regular GHC compilation pipeline. Pre-type-checking phases are omitted from the
diagram. Neither the import mechanisms nor the constraint solving had to be adapted for the imple-
mentation of our optimizations. For the remainder of this section, we will focus on the preprocessing
and lifting phases of the type checker plugin.

2.3.2 Pattern Matching Compilation

The GHC uses its Core language to simplify the compilation process. The monadic lifting on the
other hand uses the type-checked AST as input. To keep the lifting simple despite the more com-
plex representation, the plugin performs a preprocessing step that compiles nested pattern matching
into flat case expressions and single argument lambda abstractions first. Pattern matching in guards,
do notation and pattern bindings is also rewritten in terms of case expressions. The pattern match-
ing compiler additionally desugars conditions in guards into if expressions. By implementing its
own pattern matching compiler, the plugin can also change the semantics of pattern matching. For
the most part, the algorithm by Wadler (1987) is followed. However, in contrast to Haskell, pattern
matching is not performed from left to right. Instead, the plugin matches patterns in inductive po-
sitions, i.e., patterns that start with a constructor pattern in all alternatives (Hanus (ed.), 2016), first.
This approach is more similar to the pattern matching semantics of Curry. Additionally, we have seen
in Section 2.1 that Curry matches overlapping patterns in a nondeterministic fashion. While it would
be possible for the plugin to imitate this behavior, Prott (2020) decided against it since it would limit
the applicability of the plugin to Curry but the plugin is designed to work with arbitrary effects. Since
the plugin also supports no free variables, the only source of nondeterminism in the program are the

10
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built-in (?) and failed operations. After pattern matching compilation, every n-ary function binding
in the program has the shape shown below on the left. Case expressions are of the form shown to the
right where pE is a built-in function to report pattern matching failures. In case of nondeterminism,
the plugin sets pE = const failed.

f = \x1 -> . . . -> \xn -> e case e of

C1 x1
1 . . . x1

k1
-> e1

. . .
Cn xn

1 . . . xn
kn

-> en
_ -> pE "Non-exhaustive patterns in ..."

2.3.3 Monadic Lifting

Since Haskell is a purely functional programming language, there are no side effects. To express
effectful computations, the effect and the order of evaluation must be modeled explicitly. While alter-
native approaches have been discussed in the past, the Haskell community settled on the concept of
monads to model effects (Hudak, Hughes, Peyton Jones, and Wadler, 2007). A monad M is a unary
type constructor for which operations with the following types can be defined such that they fulfill
the monad laws.

return :: a -> M a

(>>=) :: M a -> (a -> M b) -> M b

The return operation creates a new computation that yields the given value without any side effect.
The operator (>>=) is known as bind and is used to sequence two monadic computations where the
second computation can use the value returned by the first. In Haskell, these operations are provided
by the Monad type class. To form a valid instance, the implementation of the operations must fulfill
the following monad laws. Especially the left identity law will play an important role during the
implementation of our optimizations.

@x, f : return x >>= f = f x (Left Identity)

@m : m >>= return = m (Right Identity)

@m, f , g : m >>= f >>= g = m >>= (λx Ñ f x >>= g) (Associativity)

To add support for ambient effects, the plugin has to rewrite the program in a monadic style. The
approach followed by the plugin was first presented by Wadler (1990). The idea is to wrap the type
of every value in the program whose evaluation can potentially cause an effect with the monad. In
case of the Curry GHC Language Plugin, the Nondet monad is used. The concrete implementation
of the monad is not relevant at this point. The monadic lifting works with any type constructor that
implements the Monad type class and fulfills the monad laws.

11
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J τ K =

forall α . J τ1 K if τ = forall α . τ1J τ1 Kr => J τ2 K if τ = τ1 => τ2

Nondet J τ Ki otherwise

(a) Regular lifting of types

J τ Ki =



α if τ = α

CND if τ = CJ τ1 Ki J τ2 Ki if τ = τ1 τ2J τ1 Ki --> J τ2 Ki if τ = τ1 -> τ2J τ K otherwise

(b) Inner lifting of types

Figure 2.4. Rules that govern the lifting of types. For presentational purposes, we deviate from Prott’s original
definition of the type lifting and actual implementation. Our set of equations is equivalent but is easier to reason
about.

In the following characterization of the monadic lifting, we are going to use Nondet as a placeholder
for the concrete monad’s type constructor. Prott (2020) denotes the function that recursively lifts a
type expression into the monad as J ¨ K. The rules for the lifting of types are shown in Figure 2.4. Since
the quantification over a type cannot introduce an effect, only the type that is quantified over must
be lifted. The same is true for type class constraints. Within the constraint, type constructors must be
renamed to their lifted counterparts. The recursive renaming within a type expression is denoted asJ ¨ Kr. Given a type constructor C, the plugin as the suffix ND to the lifted version, i.e., J C Kr = CND. All
other types, i.e., monomorphic types without constraints, are wrapped with the monad. Additionally,
an inner lifting J ¨ Ki is defined that applies the lifting recursively but not at the outermost position.

One of the most important aspects for the optimizations that we are going to implement is the
lifting of function types. Since the argument of a function could be an effectful computation and
the application of the function can cause an effect as well, both the argument and return type must
be lifted. Additionally, the function itself must be wrapped in the monad by Figure 2.4a because
functions are first-class values in functional programming languages and could therefore be the result
of an effectful computation. In Curry, the expression head ? last, for example, is a nondeterministic
computation of type [a] -> a. The corresponding lifted type is Nondet (Nondet [a]ND -> Nondet a).
To enhance readability and allow type class instances to be defined for lifted functions, the plugin
defines the following newtype via the TypeOperators language extension.

newtype a --> b = Func (Nondet a -> Nondet b)

The lifting for function types as shown in Figure 2.4b uses this lifted function arrow type. Since the
newtype contains the monad already, the inner lifting is sufficient for the argument and return type.
The monad is wrapped around the function arrow itself by the regular lifting in Figure 2.4a.

It might also be surprising why the inner lifting is used for the lifting of type arguments in type
constructor applications. Consider, for example, a list data type.

data List a = Nil | Cons a (List a)

If only the type passed to the type parameter a was lifted, then the list can contain effectful computa-
tions but the spine of the list would be effect-free. To allow effects in the tail of a list, all fields must
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be lifted. This also means that the head of the list is lifted already. Therefore lifting the type argument
would be redundant. Type synonyms and the argument of newtype constructor are also lifted. In con-
trast to data types, the inner lifting must be used, though (Prott, 2020). To make a seamless integration
of the lifted program into Haskell possible, the plugin preserves the original type declarations and
defines functions to convert between the two representations. Given a type T, these operations are
provided by an instance Normalform Nondet T TND. The name of the type class is derived from the fact
that converting to the unlifted form involves fully evaluating the value to normal form.

Finally, we need to cover how expressions are transformed by their lifting function J ¨ Ke such that
for all expressions e of type τ the transformed expression J e Ke has type J τ K. Thanks to the pattern
matching compiler, the plugin needs to consider only a subset of expressions. In the following, we
are further restricting ourselves to the subset of expressions that are relevant for the remainder of this
thesis.

Ź Variable expressions do not have to be changed to satisfy the invariant because the value that is
bound to the variable must have been lifted already.3

J x Ke = x

Ź Lambda Abstractions are lifted by wrapping the function in the monad and Func constructor. The
pattern matching compiler guarantees that the only argument of the lambda abstraction is bound
by a variable pattern.

J \x -> e Ke = return $ Func $ \x -> J e Ke

Ź Function Applications need to reverse the wrapping of the monad and Func constructor. For this
purpose, the plugin defines the following helper function.

app :: Nondet (a --> b) -> Nondet a -> Nondet b

app mf mx = mf >>= \(Func f) -> f mx

A function application is then lifted by applying app to the lifted callee and argument.

J f e Ke = J f Ke `app` J e Ke

Ź Data constructors do not comply with the invariant after lifting. An n-ary constructor C for a data
type D has a type of the form τ1 -> . . . -> τn -> D. After lifting, the type of CND is J τ1 K -> . . . ->J τn K -> DND, i.e., fields are lifted into the monad but the result (including intermediary results)
are not wrapped in the monad. Therefore, the constructor needs to be wrapped with lifted lambda
abstractions.

J C Ke = return $ Func $ \x1 -> . . . return $ Func $ \xn -> return ( CND x1 . . . xn)

Ź Literals are like nullary constructors and just need to be wrapped in the monad.

J c Ke = return c
3 The actual implementation is more complicated. For example, the type information attached to the identifier by the type

checker needs to be updated.
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Ź Case expressions need to unwrap the scrutinee first.

J case e of { br1, . . . , brn } Ke = J e Ke >>= \ x -> case x of { J br1 Kb , . . . , J brn Kb }

Since the pattern matching compiler guarantees that there is no nested pattern matching, the
branches bri are constructor patterns whose arguments are variable patterns. They can be lifted by
renaming the constructor.

J C x1 . . . xk -> e Kb = CND x1 . . . xk -> J e Ke

The translation of if expressions is very similar, i.e., the condition needs to be bound first.

Given the lifting for expressions, function bindings (including local bindings) can be transformed by
lifting their right-hand side. After pattern matching compilation, the plugin safely assumes that there
are no arguments bound on the left-hand side and ignores them during lifting. We can exploit this
fact for our optimization as we will see in Section 4.5.

The lifting of expressions and bindings as described above results in a program with run-time choice
semantics. To see why this is the case consider the following lifted version of the example from
Section 2.1.2.

let x = (?) `app' return 1 `app' return 2

in (+ND) `app` x `app` x

Due to Haskell’s referential transparency, this expression is indistinguishable from an expression
where the occurrences of x are replaced by the right-hand side of the let expression. When (+ND)
evaluates its arguments using (>>=), there is no way to know that both arguments refer to the same
computation. The plugin needs to model sharing explicitly to achieve call-time choice semantics.
This can be done by defining an operator share :: Nondet a -> Nondet (Nondet a) that converts a
computation into a new computation that memorizes its result (Fischer, Kiselyov, and Shan, 2011).
The share operator must make sure that suspended computations that are nested in the shared value
are not duplicated either. This requires a traversal of the entire data structure. The recursive sharing
of constructor arguments is implemented by the shareArgs operation from the automatically derived
Shareable type class. In our example, the share operator can be used as follows to prevent repeated
evaluation of x.

let x' = (?) `app' return 1 `app' return 2

in share x' >>= \x' -> (+ND) `app` x `app` x

In general, all lifting rules for expressions that bind variables need to be adapted to use the share

operator if the bound variable is used more than once on the right-hand side. Otherwise, the rules
shown above still apply. For instance, the adapted lifting for let expressions is as follows.

J let x = e1 in e2 Ke =

{
let x1 = J e1 Ke in share x1 >>= \ x -> J e2 Ke if x occurs more than once in e2

let x1 = J e1 Ke in J e2 Ke otherwise
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2.3.4 Limitations

As has already been mentioned, the plugin lacks support for free variables and overlapping rules.
Another Curry feature that is not supported by the plugin is functional patterns (Antoy and Hanus,
2005). While these restrictions are specific to the Curry GHC Language Plugin, there are also limita-
tions that are inherent to the monadic transformation.

Effects in recursive local bindings are not properly shared. In the translation rule for let, we can
see that the share operator only scopes over e2. Therefore, recursive occurrences of the local variable
inside e1 are not shared. This can change the semantics of the program as the following example
demonstrates.

let bits = (0 ? 1) : bits in take 3 bits

When this expression is evaluated with KiCS2, the only two results are [0, 0, 0] and [1, 1, 1] as
one would expect from call-time choice semantics. The plugin, on the other hand, produces one list
for each of the seven possible combinations three bits can be arranged in. However, in practice, this
issue has only little relevance.

The most severe issue is that the translation of type classes is broken in the current version of the
plugin. In particular, it is not possible to translate an instance for a custom type class that has just
one operation. For example, the following code leads to a compile-time error.

class Foo a where

foo :: a -> a

instance Foo Int where

foo = (+1)

The reason for the crash is most likely related to the fact that the GHC uses a newtype declaration for
the dictionary of type classes with a single operation. Defining instances of type classes with multiple
operations or built-in type classes works as expected. For example, replacing Foo with the following
definition fixes the previous example.

class Foo a where

foo :: a -> a

bar :: a -> ()

bar = const ()

2.4 Traversing the AST with syb

As we have noticed in Section 2.2.2, the GHC’s AST is very complex. Therefore, the plugin employs
the syb library (Lämmel and Jones, 2003) to traverse the AST. The syb library leverages generic pro-
gramming techniques to provide a uniform interface for updating and querying values of a specific
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type that are embedded at arbitrary depth within some (potentially mutually recursive) data struc-
ture. The Typeable and Data type classes are used to implement this functionality. The Typeable type
class provides facilities for type-safe casts. The Data type class provides primitives that can be used to
map over the immediate subterms of a term. Using the DeriveDataTypeable language extension, both
of these classes can be derived automatically. Therefore, we do not have to be concerned with any
implementation details. In this section, we cover the most important concepts of the syb library.

2.4.1 Generic Transformations

First, we need to understand the concept of type extensions and generic transformations. Given some
fixed type A and a function f :: A -> A, the type extension of f is a polymorphic function g :: b

-> b that is characterized by the following equation.

g x =

{
f x if x :: A

x otherwise

The type extension g can be applied to arbitrary values and leaves them unchanged unless they are of
type A, in which case they are transformed using f . A function like g is called a generic transformation
because it can be applied to values of any type and maps them to values of the same type. The syb

library provides a function mkT (read "make transformation") that converts a function f to its type
extension g, i.e., mkT f = g To tell whether the argument of g is of type A, mkT uses a type-safe cast
operation provided by the Typeable type class.

mkT :: (Typeable a, Typeable b) => (a -> a) -> b -> b

While the resulting generic transformation can be applied to arbitrary values, we actually want to
apply the function at arbitrary depth within a data structure. In a first approximation, we can use
the following operation from the Data type class to apply the generic transformation to all immediate
subterms of a value of type a. To allow the argument of the function to be polymorphic, the Rank2Types

language extension is required.

gmapT :: (forall b. Data b => b -> b) -> a -> a

Building on this primitive, the syb library provides a function everywhere that recursively applies a
transformation to all immediate subterms of a value. The type of everywhere is shown below. Both
the argument and return type are generic transformations.

everywhere ::

(forall a. (Data a) => a -> a) ->

(forall a. (Data a) => a -> a)

There are also mkM and everywhereM which are monadic variants of mkT and everywhere. Since the order
in which the nodes are visited is relevant in case of monadic transformations, it is important to note
that everywhereM performs a bottom-up traversal.
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2.4.2 Generic Queries

While generic transformations allow us to update AST nodes at arbitrary depth, generic queries are
used to extract information from the AST and aggregate the results. Again we start with a concrete
function f :: A -> R that extracts a value of type R from an AST node of type A. We want to extend
this function to a polymorphic g :: b -> R that can be applied to values of any type. This time, we
additionally, need a value z :: R that we can fallback to in case the argument is not of type A.

g x =

{
f x if x :: A

z otherwise

To construct g for a given f and z, we can use the mkQ function provided by syb where mkQ z f = g.
To apply the resulting generic query at arbitrary depth, the everything combinator is used. Since the
data structure can contain multiple values of type R, we need to provide a function that combines
them. The types of mkQ and everything are shown below.4.

mkQ :: (Typeable a, Typeable b) => r -> (a -> r) -> b -> r

everything :: forall r.

(r -> r -> r) ->

(forall a. (Data a) => a -> r) ->

(forall a. (Data a) => a -> r)

There is a variation of everything that can stop the traversal early if a certain condition is met. The
given generic query simply returns an additional flag that indicates whether the traversal should
continue or not.

everythingBut :: forall r.

(r -> r -> r) ->

(forall a. (Data a) => a -> (r, Bool)) ->

(forall a. (Data a) => a -> r)

A common use-case for generic queries is to collect all occurrences of a certain type of AST node that
satisfy a given predicate. The listify function provided by syb implements this functionality.

listify :: (Typeable r) => (r -> Bool) -> GenericQ [r]

There are many more forms of generic traversals provided by the syb library. We will introduce these
functions as needed in the following chapters.

4 For presentational purposes, we have expanded the type synonym GenericQ.
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2.5 Related Work

Since its initial release by Prott in 2020, the plugin has undergone continued development. While a
significant portion of this effort involved adapting the plugin to newer versions of the GHC, there
have also been notable contributions from various theses and papers that have expanded upon the
plugin’s functionality. In this section, we provide a brief overview of key advancements and contri-
butions made in these publications. Furthermore, we discuss other work related to the topic of this
thesis.

In their bachelor thesis Wieczerkowski (2021) implemented a fully-featured Curry system based on
the Curry GHC Language Plugin. Their Curry system adds support for language features like free
variables, unification, Input/Output (IO) and encapsulated search that were missing from the original
plugin. Additionally, they implemented a REPL as an interface for the Curry system. Large parts of
their work are implemented at language-level with only minor changes to the plugin itself. While
these additions have not yet been incorporated into the plugin’s code base, the design of their system
should make an integration with our optimizations trivial.

That the plugin is not only useful in context of the Curry programming language, has been demon-
strated by Teegen, Prott, and Bunkenburg (2021). Their inversion plugin is based on the GHC Language
Plugin and allows to automatically invert functions by extending Haskell’s computational model by
nondeterminism and free variables. The inverse functions are used by the inversion plugin to add
support for functional patterns (Antoy and Hanus, 2005) to Haskell.

There have also been attempts to improve the performance of the plugin’s generated code in the past.
In their bachelor thesis, Lange (2022) explored the feasibility of using a technique known as fold/build
fusion or Short Cut Deforestation (Gill, Launchbury, and Peyton Jones, 1993) to eliminate binds from
the generated code. Similar to our approach, their work also heavily relies on the GHC’s rewriting
mechanism (Peyton Jones, Tolmach, and Hoare, 2001) to achieve the optimization. Unfortunately, their
evaluation did not show any significant performance improvements even for constructed examples.
On the contrary, they report a 50 % reduction in runtime performance and advise against using
fold/build fusion in the context of the plugin.

A more promising outlook is provided by recent research of Hanus, Prott, and Teegen (2022) on a
more efficient monadic representation for nondeterministic computations. Their monad is a purely
functional implementation of memoized pull-tabbing (Hanus and Teegen, 2020). Since their monad
is able to prevent repeated sharing of the same value, it can avoid large parts of the performance
problems that we will encounter in Section 3.1. They conducted benchmarks that indicate good per-
formance compared to other Curry implementations.

The main idea of this thesis is to transform the program based on a demand analysis to improve the
evaluation of strict arguments. That demand analysis can be used to improve the performance of lazy
nondeterministic computations by evaluating demanded arguments in a strict manner has previously
been demonstrated by Hanus (2012).
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Optimization Approach

This chapter covers the approach that we have taken to enhance the performance of the code gen-
erated by the plugin. The first section investigates the underlying factors contributing to the perfor-
mance problems currently exhibited by the generated code. Subsequently, we introduce the general
concept of a commonly used optimization technique known as the worker/wrapper transformation.
Lastly, we present how we can employ the worker/wrapper transformation to optimize the code
generated by the plugin.

3.1 Identification of Performance Bottlenecks

In this section, we investigate the performance problems of the code generated by the plugin. To this
end, we analyze the runtime behavior of two example programs. We start by considering a naive
implementation of the factorial function as shown below.

facInt :: Int -> Int

facInt n = if n <= 0 then 1 else n * facInt (n - 1)

Additionally, we want to consider a variation of this function based on Peano numbers instead of the
built-in Int type. Peano numbers are an inductively defined representation of natural numbers based
on their axiomatic characterization by Giuseppe Peano in 1889. To represent them in Haskell, we will
be using the following algebraic data type.

data Nat = O | S Nat

The constructor O represents the number 0 P N and an application of the constructor S yields the
successor n + 1 for any given n P N. Intuitively speaking, any natural number n is representable as a
chain of n applications of the constructor S terminated by a final O.

@n P N : n ” S (S . . . (S︸ ︷︷ ︸
n´times

O) . . . )

Before we can define the Peano-based factorial function, we need to define operations for the addition
and multiplication of two Peano numbers. These operations are omitted at this point for brevity but
can be found in Appendix C for reference.
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facNat :: Nat -> Nat

facNat O = S O -- 0! = 1
facNat m@(S n) = mult m (facNat n) -- @n P N : (n + 1)! = (n + 1) ¨ n!

The runtime of the compiled programs as well as the corresponding lifted versions is shown in
Figure 3.1 for different values of n. Note the logarithmic scale of the y-axis. The integer-based imple-
mentation has linear runtime as one would expect from the factorial function. The lifted variant runs
about 100 times slower than the original function but is still linear in nature. For the Peano-based
implementation, on the other hand, no polynomial complexity can be expected. The runtime must
possess a lower bound of n! since at least that many applications of the S constructors have to be
chained to constitute the result. Therefore, it is not surprising to see the plotted runtime of the Peano-
based implementation grow rapidly. However, after lifting, the rate of growth accelerates sharply. The
final run for the lifted version of the Peano-based implementation even had to be excluded because
the function exhausted all available memory before completing.
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Figure 3.1. Runtime measured for the two implementations of the factorial functions for values of n between 0
and 8. See also Section 5.3 for details about our benchmarking methodology.

To deepen our understanding, let us consider what the lifted versions of the two functions look like.
Below is a simplified version of the code generated by the plugin for the Peano-based implementation.

facNDNat :: Nondet (Nat --> Nat)

facNDNat =

return $ Func $ \mn ->

share mn >>= \sn ->
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sn >>= \n -> case n of

O -> return (S (return O))

S mn' -> multND `app` sn `app` (facNDNat `app` mn')

The entire function is wrapped in a return because as first-class citizens of the language functions can
themselves be the result of an effectful computation. This fact is also reflected in the type signature.
The Func constructor right after the return is just needed to create an instance of the lifted function
arrow (-->). In the body of the function, the monadically lifted parameter mn is shared using the
share operator because the parameter is used twice on the right-hand side: once during pattern
matching and once in the multiplication. Immediately afterwards, the shared value sn is taken out
of the monad in order to perform the pattern match. In the first branch of the case expression, the
constructor applications are returned in order to lift them into the monad1. In the second branch,
the app operator is used to apply the multiplication and factorial functions. The functions cannot be
applied directly, because they are lifted into the monad and wrapped by the Func constructor.

The lifting of the integer-based implementation is conceptually similar but syntactically more con-
trived because more function applications are involved.

facNDInt :: Nondet (Nat --> Nat)

facNDInt =

return $ Func $ \mn ->

share mn >>= \sn ->

((<=ND) `app' sn `app` return 0) >>= \isLess >>=

if isLess

then return 1

else (*
ND) `app` sn `app` (facNDInt `app` ((-ND) `app` sn `app` (return 1)))

Comparing the original definitions with their lifted counterparts, we identify the following three
major aspects that could affect performance.

1. The need to bind functions using the app operator in order to apply the function. As stated
above, the return and Func are needed in case the function is the result of an effectful computation.
However, in our example, this is not the case since all involved functions are pure. In general,
all n-ary function bindings can be (partially) applied to n arguments or less without causing an
ambient effect. In these cases, we would like to avoid the indirection through the monad and apply
the underlying function directly.

2. The bind operator >>= that needs to be inserted whenever a case or if expression is used. These
operations are redundant when the scrutinee or condition has just been returned. For example,
(-ND) is strict in its second argument and therefore immediately binds the result of the argument
return 1. Additionally, the result of the subtraction is wrapped in the monad but in the recursive
call of facNDInt the result is immediately unwrapped again because the factorial function is also strict
in its argument. Therefore, we would like the argument of strict functions not to be wrapped in the

1 For presentational purposes, this part has been greatly simplified. As has been presented in Section 2.3.3, constructor
applications would usually be translated as an immediately applied lifted lambda abstraction. The GHC is already
capable of eliminating the lambda abstraction, though.
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monad, i.e., we want to use call-by-value semantics for strict arguments. In case a monadic value
is passed to the function, the calling function should be responsible for unwrapping the argument.

3. The explicit sharing of the argument using the share operator. The performance penalty is espe-
cially high in case of Peano numbers since the argument is a value of a recursive data structure
and share traverses the structure using shareArgs. Furthermore, in the next recursive call, the entire
data structure will be shared again. In order to optimize performance we should strive to minimize
the number of share operations.

To assess the extent to which the individual aspects contribute to the observed performance problems,
we next conduct a series of micro-benchmarks. To this end, we define the following three classes of
functions that test the influence of app, (>>=) and share in isolation.

Ź The first class of functions applies the id function n times to the argument such that we end up
with n applications of the app operator in the lifted version.2

applyn x = id (id (. . . (id x)))

Ź For the second benchmark, we perform an n levels deep pattern match on the argument, i.e., the
lifted equivalent contains n nested binds.

matchn ((((x, _), . . .), _), _) = x

Ź Finally, we benchmark a class of functions that duplicate their argument n times using let bindings
and then use each of the n local variables twice to force a share to be inserted during lifting.

sharen x0 = let { x1 = x0, x2 = x1, . . ., xn = xn´1} in [ (x1, x1), (x2, x2), . . ., (xn, xn) ]

Figure 3.2 shows the runtime of these functions and their lifted counterparts for varying values of
the meta variable n between 0 and 10. In all cases, we just passed the unit value () as an argument
to the functions. We clearly see that the lifted versions are consistently slower than their unlifted
counterparts. Across all functions, there is a difference of about one order of magnitude. Furthermore,
the runtime of all functions is linearly correlated with the value of n even though the logarithmic
scale makes this fact not immediately obvious. While at 22ns the slope for the applyn and matchn
functions is similar, the sharen functions grows 10 times faster at 270ns per unit increase. Since we
only considered primitive values, the benchmark does not yet capture deep sharing behavior. Thus,
the performance impact of share is even higher in practice.

2 To prevent the GHC from distorting the result by applying premature optimizations, we added the NOINLINE pragma to
our implementation of the id function.
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Figure 3.2. Results of the runtime measurements for applyn, matchn and sharen for different values of the meta
variable n between 0 and 10 before and after lifting.

In conclusion, all three aspects have a measurable impact on the performance of the generated code.
However, we believe that the deep sharing mechanism acts as the primary bottleneck regarding
runtime due to its recursive nature. Even though all parts of the generated code are relevant to
uphold the plugin’s invariants, the key to optimizing the generated code is to find conditions under
which we are allowed to deviate from the general translation scheme. In the following two sections,
we will introduce the worker/wrapper transformation as our primary tool in this endeavor.

3.2 The Worker/Wrapper Transformation

In this section, we present the general concept of a commonly used optimization technique known
as the worker/wrapper transformation. While the technique has been used in the field of compiler
construction long before (Peyton Jones and Launchbury, 1998), the first formal description of the
transformation was given by Gill and Hutton (2009). The goal of the transformation is to change the
type of a function in a way that makes it more amenable to optimization without affecting other
functions that depend on it. To this end, the function is split into two new functions.

Ź The worker function is the part that actually performs the computation. The implementation and
type are changed as part of some optimization.

Ź The wrapper function, on the other hand, has the original type and name of the function and is
solely responsible for correctly calling the worker function.
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As a result, the changed calling convention of the worker does not have to be respected at call-sites
since the wrapper function takes care of interfacing with the worker while exposing the original
function’s interface itself. By inlining the wrapper function, the compiler can then apply further
optimizations, ideally eliminating all of the interfacing logic and leaving only a call to the more
efficient worker function (Sergey, Peyton Jones, and Vytiniotis, 2017, p. 5).

The worker/wrapper transformation has not just been experimentally shown to yield performance
benefits but can even be formally verified to to either preserve or improve runtime performance under
certain conditions (Hackett and Hutton, 2014). While we attempt to formally convince ourselves of the
correctness of our work in this thesis, runtime improvements are solely assessed based on benchmarks
in Chapter 5.

3.2.1 Formal Definition

Now that we have outlined the basic idea of the worker/wrapper transformation, let us take a closer
look at the formal definition. We will be following the framework laid out by Gill and Hutton (2009).

First, consider a potentially recursive computation comp of some type A. The computation can be
defined in terms of the fixpoint combinator (Peyton Jones, 1987, p. 26), i.e., the computation satisfies
the equation below for some body :: A -> A.

comp = fix body

Next, let wrap :: B -> A and unwrap :: A -> B be functions that convert between the original type
A and some other type B. Specifically, unwrap transforms the original computation into the new type
and wrap reverses this transformation. These functions do not necessarily need to be implemented in
Haskell. They can also be meta functions that rewrite the source code syntactically. Most importantly,
though, they need to satisfy one of the following so-called worker/wrapper assumptions where idA ::

A -> A denotes the identity on A.

wrap ˝ unwrap = idA (WW1)

wrap ˝ unwrap ˝ body = body (WW2)

fix(wrap ˝ unwrap ˝ body) = fix body (WW3)

All of these three criteria basically state that the two functions are inverses of each other. While the
first equation enforces this relationship to hold in general, the two other equations only require it to
hold in the context of the specific computation that we want to transform.

Given these building blocks, we can define how a binding for a function f that computes comp is
split into a corresponding worker and wrapper function as depicted in Figure 3.3. On the left side,
the original function binding instantiates the body of the computation with f since the function can
call itself recursively. On the right side, it would also be correct for the worker function to use the
wrapper f for recursion but instead the wrapper’s right-hand side wrap fworker is inlined into the
body of the worker to break the mutual recursion between the two resulting functions.
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3.2. The Worker/Wrapper Transformation

-- Original Function

f :: A
f = body f

-- Wrapper Function

f :: A
f = wrap fworker

-- Worker Function

fworker :: B
fworker = unwrap (body (wrap fworker))

Figure 3.3. Schematic depiction of the worker/wrapper transformation. On the left is the original binding for the
function f. On the right are the resulting bindings after worker/wrapper transformation. The binding on the top
is the wrapper function with the same name as the original. On the bottom, the binding of the worker function
fworker is shown.

3.2.2 Examples

Before we apply the worker/wrapper transformation scheme to our setting, we will first take a look
at examples of how the transformation is used in practice.

One of the very first documented instances of the worker/wrapper transformation concerned the
optimization of the factorial function (Peyton Jones and Launchbury, 1998). Even though we just
covered the factorial function in Section 3.1, let us first recapitulate the definition of the integer-based
implementation.

facInt :: Int -> Int

facInt n = if n <= 0 then 1 else n * facInt (n - 1)

In a non-strict language like Haskell, variables are only evaluated when they are used. Thus, a variable
of type Int is not represented by a native integer but rather by a pointer to a box somewhere on the
heap. The box can either contain the underlying unboxed integer or – in case it has not been evaluated
yet – a so-called thunk that computes the actual value when it is needed. This indirection is necessary
to support lazy evaluation. However, it also comes with a performance penalty since the indirection
needs to be resolved at runtime. For example, in the recursive call of the factorial function, first, a
new box is allocated and a thunk for decrementing n is stored inside. However, right as we enter
the recursive call, the parameter is immediately demanded by the (<=) operator. Thus, the thunk is
taken out of the box and evaluates n - 1 which itself involves multiple steps of boxing and unboxing
values.

Peyton Jones and Launchbury (1998) solved the problem of repeated boxing and unboxing by making
unboxed integers first-class citizens of the language. This is achieved by introducing a new type Int#
that represents unboxed integers. The boxed Int type can then be defined as a wrapper around the
unboxed version.

data Int = I# Int#
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The Int# type along with corresponding unboxed versions of the arithmetic operations (<=#), (*#)
and (-#) can then be used to define a new version of the factorial function that does not involve any
boxing or unboxing.

facInt# :: Int# -> Int#
facInt# n = if n <=# 0 then 1 else n *# facInt# (n -# 1)

This function is incompatible with the original factorial function since the types of the parameters
and return values differ. Thus, the following wrapper function is introduced that simply unboxes the
given integer, calls the worker function and boxes the result again.

facInt :: Int -> Int

facInt (Int n) = I# (facInt# n)

The data type Int# is exposed to the user via GHC’s MagicHash language extension. However, users
usually do not have to deal with the unboxed versions of primitive data types or worker/wrapper
transform functions themselves. This is because the GHC actually performs a worker/wrapper trans-
formation as part of its regular compilation pipeline (Sergey, Peyton Jones, and Vytiniotis, 2017). This
worker/wrapper transformation is not limited to unboxing of primitive data types. Consider, for
example, the following function that takes a pair of type (A, B) as an argument and performs an
expensive computation comp :: A -> C that only involves the first component of the pair.

f :: (A, B) -> C
f p = case p of

(x, _) -> comp x

The GHC analyzes the program and determines that:

1. the function is strict in its first argument and

2. the second component is absent from the right-hand side.

Therefore, the GHC can generate a worker function that only takes the first component of the pair as
an argument and moves the pattern matching to a wrapper function.

-- Wrapper Function

f :: (A, B) -> C
f p = case p of

(x, _) -> fworker x

-- Worker Function

fworker :: A -> C
fworker x =

let p = (x, error "absent")

in comp x
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In case the computation also depends on the removed parameter p, the GHC introduces a local
binding that reconstructs the pair. The absent field can be K as the analysis already concluded that
the field is never forced. In our example, the comp function does not depend on p. In consequence,
the GHC will remove the binding in a later step of the compilation pipeline.

3.3 Transformation Scheme

In the previous section, we familiarized ourselves with the concept of the worker/wrapper transfor-
mation and have seen an example of how the GHC uses it internally to unbox arguments of strict
functions among others. In this section, we will outline how we can employ this transformation to
optimize code generated by the plugin. In the first three subsections, we are going to tackle one of
the bottlenecks that we identified in Section 3.1 each. In the fourth subsection, we discuss an exten-
sion to our worker/wrapper transformation that yields additional performance improvements but
we have not been able to fully implement. We conclude the presentation of the ideas behind our
worker/wrapper transformation in the fifth subsection by summarizing the general transformation
scheme.

3.3.1 Unlifting Functions

The first aspect that we identified in Section 3.1 is that an invocation of a monadically lifted function
of type Nondet (A --> B) via the app operator is much slower than a direct invocation of a function
Nondet A -> Nondet B that is neither wrapped by the monad nor the constructor Func of the lifted
function arrow (-->). As we have learned in the previous section, the worker/wrapper transforma-
tion is a good candidate when you want to change the type of a computation. First, we need to define
a mapping unwrapFunc that transforms a function of type Nondet (A --> B) to the target type Nondet

A -> Nondet B. The function is characterized by the equation below.

unwrapFunc :: Nondet (A --> B) -> Nondet A -> Nondet B
unwrapFunc (return (Func f)) = f

This definition captures the syntactic removal of the monadic wrapper and the constructor Func

that would usually be generated around a lambda abstraction. Note that the domain is limited to
computations that resulted directly from the lifting of a lambda abstraction. In the inverse direction,
we can define a mapping wrapFunc that reintroduces the monadic wrapper and the constructor Func

to restore the original type of the computation.

wrapFunc :: (Nondet A -> Nondet B) -> Nondet (A --> B)
wrapFunc f = return (Func f)

In order for a worker/wrapper transformation using these two functions to be valid, they need
to satisfy at least one of the worker/wrapper assumptions. Therefore, we prove that wrapFunc and
unwrapFunc satisfy the second worker/wrapper assumption (WW2) under the condition that the
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transformed function has a lifted lambda abstraction on its right-hand side. The more general work-
er/wrapper assumption does not hold due to the need for this contextual clue.

Proof. Let A and B be arbitrary types and consider a function that an be expressed as the least fixed
point of a function body defined as shown below for some body1 :: Nondet (A --> B) -> Nondet A
-> Nondet B.

body :: Nondet (A --> B) -> Nondet (A --> B)
body f = return (Func (\mx -> body1 f mx))

Then the following equation holds for all f :: Nondet (A --> B).

wrapFunc (unwrapFunc (body f ))

= wrapFunc (unwrapFunc (return (Func (\mx-> body1 f mx)))) (Def. body)

= wrapFunc (body1 f ) (Def. unwrapFunc)

= return (Func (\mx-> body1 f mx)) (Def. wrapFunc)

= body f (Def. body)

To demonstrate how this transformation works in practice, let us consider the lifting of the identity
function as shown below on the left. After worker/wrapper transformation with unwrapFunc and
wrapFunc, we obtain the worker and wrapper functions characterized by the equations on the right.

idND :: Nondet (a --> a)

idND = return (Func (\mx -> mx))

idND :: Nondet (a --> a)

idND = wrapFunc idNDworker
= return (Func (\mx -> idNDworker mx))

idNDworker :: Nondet a -> Nondet a

idNDworker = unwrapFunc (return (Func (\mx -> mx)))

= \mx -> mx

3.3.2 Unlifting Strict Arguments

While the previously discussed transformation elides the monad around the function arrow, the
function’s argument is still wrapped in the monad after the transformation. The monad is needed
because a caller might pass an effectful computation to the function. However, as we have seen in
Section 3.1 already, the need to wrap a value in the monad in cases where the argument will be bound
by the function right away can degrade performance. Therefore, we want to follow the example of
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the GHC and elide the monad around the argument where possible similar to how the GHC unboxes
strict arguments.

This time we have to convert functions of type Nondet A -> Nondet B to functions of type A ->

Nondet B. The function unwrapStrict defined below does exactly that by lifting the argument into the
monad before calling the original function. Conceptually, this operation corresponds to syntactically
replacing all occurrences of the original argument mx with return x.

unwrapStrict :: (Nondet A -> Nondet B) -> A -> Nondet B
unwrapStrict f x = f (return x)

The other direction just involves binding the argument before applying the function. Therefore, we
can define wrapStrict as shown below.

wrapStrict :: (A -> Nondet B) -> Nondet A -> Nondet B
wrapStrict f mx = mx >>= \x -> f x

Again, we would like to verify that this kind of transformation is allowed by proving that one of
the worker/wrapper assumptions is satisfied. Since we have restricted ourselves to strict functions,
we suppose that this information must play a role in the proof. Therefore, we can rule out the most
general worker/wrapper assumption (WW1) and instead attempt a proof of the second assumption
(WW2) under the precondition that the least fixed point of body :: (Nondet A -> Nondet B) -> Non-

det A -> Nondet B is strictly evaluating its argument at some point in the returned computation.
Because this concept is difficult to capture formally, we first consider a weaker condition where the
only bind of the argument is the outermost operation in the body. To this end, we define body in terms
of a helper function body1 :: (Nondet A -> Nondet B) -> A -> Nondet B as shown below.

body f mx = mx >>= \x -> body1 f x

The second worker/wrapper assumption is then satisfied as the following equation demonstrates
given an arbitrary f :: Nondet A -> Nondet B.

wrapStrict (unwrapStrict (body f ))

= wrapStrict (unwrapStrict (\mx-> mx >>= \x-> body1 f x)) (Def. body)

= wrapStrict (\y-> return y >>= \x-> body1 f x) (Def. unwrapStrict)

= wrapStrict (\y-> body1 f y) (Monad Left Identity)

= \mx-> mx >>= \x-> (\y-> body1 f y) x (Def. wrapStrict)

= \mx-> mx >>= \x-> body1 f x (β-reduction)

= body f (Def. body)

In general, the bind is not the outermost operation, though. Thus, we have to relax the precondition on
body. However, if we attempt the proof, we eventually get stuck. The problem prevails even if we use
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the least general worker/wrapper assumption (WW3) instead. The reason is that the worker/wrapper
assumptions are violated by the transformation. To see why this is the case, consider the following
counterexample.

c :: Nondet A -> Nondet B
c mx = my >>= \y -> mx >>= \x -> c' x y

Before this function evaluates its argument mx, it first runs another computation my. After applying
the worker/wrapper transformation, we obtain the following worker and wrapper functions.

cwrapper :: Nondet A -> Nondet B
cwrapper mx = mx >>= \x -> cworker x

cworker :: A -> Nondet B
cworker x = my >>= \y -> (return x) >>= \x -> c' x y

If we now consider an invocation of the wrapper function cwrapper to an arbitrary computation mx ::

Nondet A, we notice that the order of binds has been reversed compared to the original function c.

cwrapper mx = mx >>= \x-> cworker x

= mx >>= \x-> my >>= \y-> (return x) >>= \x-> c' x y

= mx >>= \x-> my >>= \y-> c' x y

‰ my >>= \y-> mx >>= \x-> c' x y

= c mx

The unboxing of strict arguments is allowed by the GHC because Haskell is a purely function pro-
gramming language. As such the evaluation of an argument cannot have any side effects in Haskell
and it is safe to reorder them arbitrarily. In our setting, on the other hand, the entire idea of the plugin
is to allow for side effects. In consequence, a mechanism similar to the unboxing performed by the
GHC cannot be adopted by the plugin without sacrificing the semantics of the program. Nevertheless,
we argue that since the plugin is built around the idea of non-strict evaluation the user anticipates
that the order of evaluation of arguments is not fixed. The degree to which the reordering of binds
actually changes the semantics of the program depends largely on the specific monad that is used. In
case of nondeterminism, for example, the reordering merely changes the order in which the results
are produced. Thus, we can still safely integrate the transformation presented in this subsection into
the Curry GHC Language Plugin. Whether the consequences of reordering operations are compatible
with other instances of the plugin has to be carefully considered on an individual basis.

Before we conclude this subsection, let us demonstrate the transformation on a real example function
again. This time we consider the function fst that projects a pair onto its first component. The lifted
version of this function is shown on the left of the listing below. We suppose that the monad around
the function has already been removed using the technique from the previous subsection. On the
right side, we see the worker and wrapper functions that are obtained by applying the transformation
presented in this subsection.
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fstND :: Nondet (a, b)ND -> Nondet a

fstND = \mp -> mp >>= \p ->

case p of { (x, _)ND -> x }

fstND :: Nondet (a, b)ND -> Nondet a

fstND = wrapStrict fstNDworker
= \mp -> mp >>= \p -> fstNDworker p

fstNDworker :: (a, b)ND -> Nondet a

fstNDworker
= unwrapStrict (\mp -> mp >>= \p ->

case p of { (x, _)ND -> x })

= \q -> return q >>= \p ->

case p of { (x, _)ND -> x }

As we can see, the code still contains a return of the strict argument and a bind is needed in the
worker to take the actual value out of the monad. Therefore, it seems as if we gained nothing by
applying the transformation. On the contrary, there is now one bind more than before because the
wrapper also binds the argument. However, the bind and return in the worker can be removed due
to the left identity law of the monad. We do not have to apply the monad law ourselves, though, since
the GHC is able to apply term rewriting rules (Peyton Jones, Tolmach, and Hoare, 2001). The plugin
contains a RULE pragma conceptually identical to the one depicted below in order to instruct the GHC
to simplify such cases.

{-# RULES "bind/return" forall f x. return x >>= f = f x #-}

After applying the term rewriting rule to the worker function fstNDworker, we obtain the following
worker function that is exactly equivalent to the original unlifted function fst except for the lifted
tuple and return type.

fstNDworker :: (a, b)ND -> Nondet a

fstNDworker = \q -> case q of { (x, _)ND -> x }

3.3.3 Sharing Strict Arguments

Until this point, we have not yet addressed the most severe cause of performance degradation that
we identified in Section 3.1. In this subsection, we will present an extension to our previous transfor-
mation that can avoid the performance overhead of the share operator in cases that do not require
deep sharing.

Consider a function that is strict in its argument and uses that argument multiple times. The lifted
version of the function will have the following shape after we remove the outermost monad.

f :: Nondet A -> Nondet B
f mx = share mx >>= \sx -> sx >>= \x -> f' x x

31



3. Optimization Approach

If we now optimize the function as shown in the previous subsection, we obtain a worker function as
shown below. Crucially, the rewrite rule that we relied upon to remove the bind and return from the
worker function does not apply anymore because the share gets in the way.

fworker :: A -> Nondet B
fworker y = share (return y) >>= \sx -> sx >>= \x -> f' x x

At first glance, sharing the computation seems to be redundant since the argument has already been
evaluated. However, a value of type A can still contain thunks that are unevaluated and therefore
need to be shared. Nevertheless, the first step to our solution involves dropping the share of strict
arguments from the worker altogether which yields the following (incorrect) code.

fworker :: A -> Nondet B
fworker y = return y >>= \x -> f' x x

As explained already, this solution is incorrect because nested values still need to be shared, i.e., we
need to traverse the data structure and invoke share on every contained value. The shareArgs function
from the Shareable type class has exactly these semantics. The result is the following final definition
of the worker function.

fworker :: A -> Nondet B
fworker y = shareArgs y >>= \y' -> return y' >>= \x -> f' x x

To understand why this definition is superior to calling share directly, consider the following Share-

able instances of a primitive and a composite data type.

instance Shareable Nondet Int where

shareArgs = return

instance (Shareable Nondet a, Shareable Nondet b) => Shareable Nondet (a, b)ND where

shareArgs (a, b)ND = (,)ND <$> share a <*> share b

The Shareable instance of primitive types like Int defines shareArgs just as a synonym of return. In
this case the GHC can inline the definition of shareArgs and apply the left identity law to effectively
remove the sharing. For other data types such as lists or tuples, the GHC cannot perform such an
optimization. The GHC might still inline shareArgs but the resulting code will contain recursive calls
to share.

To realize this extension for the removal of share, we fortunately do not have to change our existing
transformation. Instead, we can simply add another rewrite rule that replaces a share of a returned
value by a shareArgs followed by a return of the shared argument. The rewrite rule used by the
plugin is conceptually equivalent to the one depicted below.

{-# RULES "share/return" forall f x. share (return x) >>= f = shareArgs x >>= f . return #-}
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3.3.4 Unlifting Results

All of our current transformations have in common that the return type of the worker functions is
still lifted into the monad. This is a direct result of the fact that we strive to use the GHC as much as
possible to simplify the code for us. Namely, the right-hand sides of our worker functions never refer
to any other worker function directly but only the corresponding wrapper functions. The return types
of wrapper functions must be lifted in order to be compatible with the plugin’s invariants. Therefore,
it is very difficult to get rid of the monad without performing inlining ourselves. For the approach
that we are going to present in this subsection, we again rely on the GHC’s rewriting mechanism.

Suppose there exists an operation unsafeBind :: Nondet a -> a that extracts the value returned by a
computation or throws an error at runtime in case the computation is effectful.3 Then we can specify
the following rule that eliminates a return.

{-# RULES "unsafeBind/return" forall x. unsafeBind (return x) = x #-}

To insert an unsafeBind, we formally define the following mappings between the types A -> Nondet

B and A -> B.

unwrapResult :: (A -> Nondet B) -> A -> B
unwrapResult f x = unsafeBind (f x)

wrapResult :: (A -> B) -> A -> Nondet B
wrapResult f x = return (f x)

Under the condition that the evaluation of the transformed computation is devoid of ambient effects,
we expect the definitions of wrapResult and unwrapResult to satisfy the second worker/wrapper as-
sumption (WW2) without proof. Unfortunately, it is very difficult if not undecidable to tell at compile
time whether this condition is satisfied or not. Instead, we consider a weaker condition that is easier
to check but only approximates the notion of effect-freeness. For the purposes of this thesis, we say
that a function is effectful if it satisfies one of the following criteria and effect-free otherwise.

1. Intrinsically effectful functions that are built into the plugin such as (?) are effectful.

2. A function whose binding’s right-hand side contains an occurrence of an effectful function is in
turn also effectful.

While an analysis that checks this condition is easy to implement (see Section 4.2) and has been used
by other Curry implementations successfully (Hanus and Skrlac, 2014), the guarantees provided by
such an analysis are too weak to justify the insertion of unsafeBind in our setting. Recall for example
the final definition of the worker function for fst presented in Section 3.3.2. Based on our definition,
the function is effect-free. Thus, one might suppose that it is safe to remove the Nondet from the return
type by inserting unsafeBind as shown below.

3 See Appendix D for the implementation of unsafeBind used by the Curry GHC Language Plugin.

33



3. Optimization Approach

fstNDworker :: (a, b)ND -> a

fstNDworker q = unsafeBind (case q of { (x, _)ND -> x })

However, this is not the case since fst might be applied to a pair whose first component is the result
of an effectful computation, e.g., fst (0 ? 1, 2). Which additional criteria have to be met in order to
safely perform this optimization is a question that we leave open for future research.

3.3.5 Final Transformation Scheme

Until now we have only seen one piece of the worker/wrapper transformation at a time. Additionally,
we have considered unary functions only. To wrap up the explanation of the optimization approach,
we summarize the final transformation scheme for functions of an arbitrary arity in this subsection.4

Given an n-ary function declaration before lifting as shown below on the left, the plugin usually
produces a function of the form shown on the right. Furthermore, we suppose that the function is
strict in m arguments with indices S = { s1, . . . , sm } Ď { 1, . . . , n }. For all i P { 1, . . . , n } let yi denote
a fresh variable if i P S and define yi := xi otherwise.

f :: X1 -> Xn -> R
f x1 . . . xn = rhs

f ND :: Nondet (XND
1 --> . . . --> XND

n --> RND)

f ND = return $ Func $ \x1 ->

. . .
return $ Func $ \xn -> rhsND

When the worker/wrapper transformation is used, we want the plugin to generate a wrapper func-
tion similar to the lifted function above, but instead of the right-hand side rhsND we want to have
a call to the worker function f NDworker. Additionally, the wrapper binds the arguments xi for i P S to
fresh variables yi before the application of the worker function. In total, the wrapper should look as
follows.

{-# INLINE f ND #-}

f ND :: Nondet (XND
1 --> . . . --> XND

n --> RND)

f ND = return $ Func $ \x1 ->

. . .
return $ Func $ \xn ->

xs1 >>= \ys1 ->

. . .
xsm >>= \ysm -> f NDworker y1 y2 . . . yn

Since this kind of function might exceed the maximum size the GHC is usually willing to inline, we
explicitly direct the GHC to always inline the wrapper by adding an INLINE pragma.

4 In Appendix D the proposed extension of the transformation scheme to effect-free functions is outlined.
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Finally, the worker function is an n-ary function whose i-th argument’s type is wrapped with Nondet

if and only if i R S. For this purpose, we define for all i P { 1, . . . , n } the following meta type variable.

YND
i :=

{
XND

i if i P S
Nondet XND

i if i R S

Since the right-hand side rhsND still refers only to lifted arguments, we introduce local variable binders
that wrap the strict arguments with return. We rely on the GHC to inline these local variables and
apply rewrite rules to eliminate the returns where possible.

f NDworker :: YND
1 -> . . . -> YND

n -> Nondet RND

f NDworker y1 . . . yn =

let xs1 = return ys1
...
xsm = return ysm

in rhsND

In the next chapter, we will explain how we implemented this transformation in the plugin.
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Chapter 4

Implementation

In the preceding chapter, we layed out a strategy for how we can employ the worker/wrapper trans-
formation to optimize monadically lifted code. In this chapter, we shift our focus towards the practical
implementation of this optimization within the plugin. In the first section, we describe the implemen-
tation of an analysis that collects strictness information about functions in the translated program.
This information is needed to steer the optimization process. Additionally implemented analyses are
presented in the two subsequent sections. The effect analysis is part of the experimental extension
to the optimization discussed in Section 3.3.4. The improved sharing analysis aids in the avoidance
of excessive sharing. In the last two sections, we describe the implementation of the actual work-
er/wrapper transformation. Unlike in our theoretical considerations, the optimization does not di-
rectly operate on the monadically lifted code. We first describe how unlifted function bindings can be
split into a worker and a wrapper function. Finally, we outline modifications to the monadic lifting
that respects the distinction between worker and wrapper functions. The general architecture of the
plugin after our implementation is depicted in Figure 4.1. Except for the constraint solver plugin, all
parts of the pipeline after type checking are involved in the optimization process.

Desugarer

Type Class Operation Expansion

Type Checker Constraint Solver Plugin

Pattern Matching Compiler

Effect Analysis Demand Analysis Worker/Wrapper Transformation

Sharing Analysis Monadic Lifting

Desugarer

Rewrite Rules Simplifier

Figure 4.1. Overview of the updated plugin architecture. Gray nodes are part of the regular GHC compilation
pipeline. White nodes are executed as part of the plugin’s translation. Dashed lines represent the flow of infor-
mation while solid lines trace processing of the AST. Only phases after type checking are shown.
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4.1 Demand Analysis

A key component of our optimization is the monadic unwrapping of strict arguments. Therefore, we
need to know which arguments of a function are strictly evaluated. A naive approach could be to look
for pattern matches of the argument on the right-hand side. For instance, we know that the argument
of the following function is strictly evaluated because it is scrutinized by the case expression.

null :: [a] -> Bool

null xs = case xs of

[] -> True
_ -> False

However, this approach falls short if the scrutinee is a more complex term such as id xs. Furthermore,
the entire case expression could be in a position that is never even forced. Concluding that the argu-
ment would still be strict is erroneous in such a situation. Therefore, we need a more sophisticated
mechanism to determine strictness. As we mentioned in Section 3.2.2 already, the GHC optimizes
functions with strict arguments itself. In consequence, the GHC also has to perform an analysis to
determine which arguments are strict. Since the GHC’s analysis is even more capable, it is called a
demand analysis. In the following, we are first going to explain how the GHC keeps track of the de-
mands that are placed by a function on its argument. Next, we outline how we managed to reuse the
GHC’s demand analysis for our purposes. We will notice, that when we apply the analysis on its own
is not sufficient in all cases. The remainder of the section is therefore concerned with preprocessing
steps that are necessary to cover all edge cases.

The GHC’s demand analysis is described in an unpublished draft paper by Sergey, Peyton Jones, and
Vytiniotis (2017). Additional information about the GHC’s demand analysis can be found in the GHC
user guide entry for the -fstrictness flag1.

4.1.1 Demand Signatures

The GHC’s demand analysis records the strictness information in a so-called demand signature. De-
mand signatures are represented by the StrictSig type. A demand signature mainly consists of a list
of demands that are placed on the function’s arguments. Additionally, demand signatures contain
information about the divergence of the function as well as the demands that are placed on free vari-
ables in the environment. The divergence information is of no relevance to us and can be ignored.
Furthermore, we only consider demand signatures that are closed, i.e., do not have environmental
demands. Syntactically, the closed demand signature of a non-diverging n-ary function is denoted as
follows where d1 through dn denote the argument demands.

<d1><d2><d3>. . .<dn>

The list of demands contains exactly one entry per function argument. The type of the function is

1 https://downloads.haskell.org/~ghc/9.2.1/docs/html/users_guide/using-optimisation.html#ghc-flag--fstrictness
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irrelevant in this regard. An argument counts as an argument if there is a lambda abstraction that
binds it.

A demand consists of two parts: a cardinality interval c and a sub-demand s and is denoted d = cs.
The cardinality interval provides a lower and an upper bound for the number of times the argument
is evaluated at runtime. For the cardinality, the compiler only distinguishes whether the argument is
evaluated never (0), exactly once (1) or an unbounded number of times (ω). These cardinalities can
be combined to form the intervals shown in Table 4.1. The cardinality intervals 1 and S are the only
ones we are interested in since they indicate that an argument is evaluated strictly. We will also see
the L interval commonly because it is used as a default value when the analysis cannot provide any
guarantees. The interval M does not carry much meaning for us because there is still the possibility
that the argument is not evaluated at all. Even though it would be easy to remove unused arguments
with cardinality interval A from worker functions, we do not have to implement this optimization
ourselves because the GHC’s own worker/wrapper transformation will take care of that. Therefore,
the A cardinality interval is also irrelevant to us.

Table 4.1. All possible non-empty cardinality intervals that can be formed. The second column contains the set
of cardinalities that are contained in the interval. The syntax in the third column is used to denote the interval
in demand signatures. The last column contains a description of the interval.

Interval Set of Cardinalities Notation Description
[ 0, 0 ] { 0 } A Absent: The argument is never evaluated
[ 0, 1 ] { 0, 1 } M Maybe: The argument is conditionally evaluated
[ 1, 1 ] { 1 } 1 Once: The argument is evaluated exactly once
[ 1, ω ] { 1, ω } S Strict: The argument is evaluated at least once
[ 0, ω ] { 0, 1, ω } L Lazy: The argument’s evaluation is unbounded

The sub-demand specifies the depth of the evaluation. Sub-demands are of very little interest to us
because our transformation does not split product types unlike we have seen in the example of the
GHC’s worker/wrapper transformation in Section 3.2.2. Nevertheless, we are going to briefly explain
the different kinds of sub-demands below before we move on to the actual implementation of the
demand analysis.

Ź Product Sub-Demands specify the demands that are placed on the fields of a value whose type
has a single constructor, i.e., that is isomorphic to some tuple type. A product sub-demand has the
shape P(d1, . . ., dn) where di is the demands placed on the i-th field. There is no equivalent for
sum types.

Ź Polymorphic Sub-Demands specify the cardinality interval of all contained values. The polymor-
phic sub-demand c is equivalent to an infinitely nested product sub-demand P(cP(cP(. . .)), . . .).

Ź Call Sub-Demands specify how often a function is called and how the result is demanded. A call
sub-demand has the shape Cc(d) where the cardinality interval c specifies how often the function
is called and the sub-demand d specifies how the result is demanded.
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4.1.2 Using the GHC Demand Analysis

The major obstacle to using the GHC’s demand analysis is that the GHC performs the analysis on
its intermediate representation GHC Core while the plugin operates on the Haskell AST. Therefore,
we need to translate the Haskell AST into GHC Core first. We can use the GHC’s own desugarer
for this purpose. The plugin actually desugars the program prior to lifting already. The result of this
operation is unused so far. The reason why the plugin invoked the desugarer was to trigger the GHC’s
checks for compilation errors. In principle, we can just use the result of desugaring for our purposes.
However, the GHC’s desugarer applies some trivial simplifications to the program. For example, local
bindings that are used only once are directly inlined. This is problematic for our purposes because we
want to apply our worker/wrapper transformation to such local functions as well and therefore need
their strictness information. In fact, it is very common in Haskell to define the actual implementation
of a function locally and have the top-level function be a wrapper that simply calls the local function.
This approach is used for functions with accumulator argument for instance. To prevent the desugarer
from performing any premature optimizations among these lines, the plugin pretends that a NOINLINE

pragma has been set for every identifier when invoking the desugarer.

Now that we desugared the program to a CoreProgram, we can apply the GHC’s demand analysis on
it. To do so we invoke the following function defined in GHC.Core.Opt.DmdAnal.

dmdAnalProgram :: DmdAnalOpts -> FamInstEnvs -> [CoreRule] -> CoreProgram -> CoreProgram

The first argument contains additional options for the analysis. In version 9.2.1 of the GHC, the only
field of DmdAnalOpts is the flag dmd_strict_dicts. This option controls whether the demand analysis
considers type class dictionary arguments to be strict or not. We do not care about the strictness of
such arguments. Thus, we have arbitrarily chosen to set the flag to False. The FamInstEnvs in the
second argument contains information about type and data family instance declarations and can be
obtained via tcGetFamInstEnvs from the current environment. Finally, the list of CoreRule represents
RULES pragmas that are in scope and is left empty, because we do not want the analysis to take rewrite
rules into account.

The result of demand analysis is a CoreProgram where the GHC has attached demand signatures
to identifiers. We continue by extracting these demand signatures from the CoreProgram and storing
them in a DemandMap. This data type is an abstraction that we build on top of an efficient map data type
provided by GHC. To populate the map, we first enumerate all binders using the syb library and asso-
ciate their identifier with the demand signatures. We have to be careful to use the correct identifiers.
After type checking all functions have two kinds of identifiers in the Haskell AST: a monomorphic
and a polymorphic identifier. This is even the case when the function is not polymorphic at all. Dur-
ing our transformation, we need to have access to the demand signature regardless of which identifier
we are using. After desugaring, the distinction between monomorphic and polymorphic identifiers
only remains in case of mutually recursive bindings. Therefore, we artificially extend the demand
map to include entries for the missing identifiers.

In principle, we are done with the implementation of the demand analysis itself at this point. However,
the analysis does not yet produce the desired results. For the remainder of the section, we are going
to tackle the remaining issues by defining preprocessing steps that need to be applied between the
desugaring and demand analysis.
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4.1.3 Analysis of Function Arities

The first problem we encounter when running the demand analysis is that the demand signatures
are still empty afterward. This peculiar behavior is a consequence of the fact that we invoke the
demand analysis right after the conversion to Core. In the actual compilation pipeline, the demand
analysis is interleaved with other compilation passes of the GHC. Therefore, the analysis makes
assumptions about the program that are not necessarily fulfilled in our case. One of these assumptions
is that the identifiers of function bindings are annotated with their arity. The demand analysis will
only consider the demands of functions up to that point. Initially, the desugarer sets the arity of all
functions to zero. The GHC then analyzes the right-hand side to determine the actual number of
arguments a function can be applied to without doing any work. We will have to replicate this step
to satisfy the demand analysis. Again, we try to reuse the procedure that the GHC performs on its
own. Unlike the demand analysis, there is no clear entry point for the arity analysis, though. The
module GHC.Core.Opt.Arity contains a variety of utility functions regarding function arities and eta-
expansion. The most promising function is manifestArity :: CoreExpr -> Arity. This function counts
the number of value lambda abstractions a Core expression starts with. Conveniently, the function can
look through casts and ticks which are sometimes inserted by the desugarer. Additionally, the Core
Code can sometimes contain let expressions for dictionary binders before the lambda abstractions
and we need to look through these as well. Unfortunately, manifestArity cannot do so. Thus, we had
to copy the source code and add the missing rule for let expressions manually. While this is not ideal,
the function is not very complex either.

A detail that we had to take care of during arity analysis again regards the distinction between
monomorphic and polymorphic identifiers. The monomorphic identifier is used for the binding that
contains the real implementation of the function. Therefore, its arity is determined correctly. The
binding of the polymorphic identifier on the other hand is usually just a wrapper that binds some
type and dictionary arguments and then returns the monomorphic function. The real arguments
are therefore not counted towards the arity of the polymorphic identifier. We solve this problem by
adding the monomorphic identifier’s arity to the polymorphic identifier’s arity in a postprocessing
step.

Additional problems can arise when the arity of a function in the desugared program differs from
the arity of the function in the original Haskell program. Usually, this does not happen because we
do not invoke the GHC’s simplifier and the desugarer also performs no eta-expansion or reduction
by itself. The only exception are tuple sections2 which are desugared to lambda abstractions. The
following binding therefore causes an arity mismatch.

withZero :: a -> (Int, a)

withZero = (0,)

We solved this issue by extending the preprocessing of the plugin that usually compiles pattern
matching. We now also rewrite tuple sections in terms of lambda abstractions. The example above is
therefore rewritten to the following.

withZero :: a -> (Int, a)

2 Enabled by the TupleSections language extension.
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withZero = \x -> (0, x)

Even though this preprocessing step fixes the aforementioned problem, the example of tuple sections
demonstrates the fragility of our approach.

4.1.4 Analysis of Imported Functions

After fixing the arity analysis, the demand analysis finally produces some results. Unfortunately, we
encounter problems as soon as imported functions are involved. Consider, for example, the following
definition that uses the function null from the Prelude.

safeHead :: [a] -> Maybe a

safeHead xs = if null xs then Nothing else Just (head xs)

Since null is strict in its argument and occurs in a position where its evaluation is demanded, we
expect the demand analysis to conclude that safeHead is strict in its first argument as well. Even
though, we can verify that the demand analysis correctly computed a demand signature of <1L> for
null during the compilation of the Prelude, the demand signature of safeHead is still <L>. The reason
is that the lifted version of null has the following shape.

nullND :: Nondet ([a]ND --> Bool)

nullND = return $ Func $ \xs -> . . .

Evidently, this binding is not strict in its first argument anymore as there is no argument left to be
strict in. The actual function has been hidden behind the monad and Func constructor. The importing
module "sees" only this lifted definition of null and not the original version. This problem is related
to the reason why the plugin needs to intervene during type checking. Unlike the original type, the
original demand signature is not restorable from the lifted version, though. In consequence, we need a
mechanism to memorize the original demand signature and look up this information before demand
analysis.

To store the original demand signature we add an annotation to the function in the form of an ANN

pragma. Such pragmas can be used to attach arbitrary Haskell values to top-level identifiers pro-
vided the type implements the Data type class, i.e., is serializable. Unfortunately, the StrictSig type
does not have a Data instance as the GHC uses a custom serialization mechanism internally. We can
also not define such an instance ourselves3, because not all constructors of the contained SubDemands
are exported by the GHC. Even if it had such an instance, using the StrictSig data type inside of
the annotation would make it difficult to manually annotate a function. Such manual annotations
are necessary to correctly specify the demands of built-in functions. Therefore, we decided to use
the following data type for annotations where the String field contains the pretty-printed demand
signature. The format is the same as presented in Section 4.1.1. The Data type class can be derived
automatically using the DeriveDataTypeable language extension.

3 For example by using the StandaloneDeriving and DeriveDataTypeable language extensions.
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newtype DemandSignatureAnnotation = OriginalDemandSignature String

deriving Data

While producing the string representation of a demand signature is trivial by using the GHC’s Out-

putable type class, the question that remains is how we can reverse this process. The GHC does not
have this functionality built-in because a binary format is used for its own serialization mechanism
whereas the Outputable type class produces output that is intended for humans to read. Therefore,
we had to implement our own parser for demand signatures.

The parser is implemented using the parsec parser combinator library. The only problem that arose
during the parser’s implementation is again that the constructors of SubDemand are not accessible.
Because our transformation does not use sub-demands anyway, we decided to simply ignore such
sub-demands during parsing, inserting the polymorphic sub-demand L in their place. While a sub-
demand of L is never wrong, we have to keep in mind that as a result, demand analysis might
sometimes find weaker demands than expected.

Given the annotation and parser, we can add a preprocessing step, where we look up the annotation
of each imported identifier in the program and parse the contained string to restore the original
demand signature of the identifier. Additionally, we need a postprocessing step that adds suitable
annotations based on the calculated demands. For example, the following pragma is added to the
lifted version of null.

{-# ANN nullND (OriginalDemandSignature "<1L>") #-}

4.1.5 Analysis of Type Class Operations

So far our presentation focussed on the analysis of regular function bindings. In this section, we direct
our attention to the analysis of type class operations. In Section 2.2.3 we learned about dictionary
passing style and how type class instances are represented in GHC Core. Let us recapitulate how the
Num type class and a corresponding instance for Peano numbers might be represented in GHC Core.
The original definition is shown below on the left. On the right side, we see show the corresponding
GHC Core code produced by the desugarer.

class Num a where

(+) :: a -> a -> a

. . .

data Num a = Num (a -> a -> a) . . .

(+) :: Num a -> a -> a -> a

(+) (Num add) = add
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instance Num Nat where

O + n = n

S m + n = S (m + n)

. . .

dNum,Nat :: Num Nat

dNum,Nat = Num (+Nat) . . .

(+Nat) :: Nat -> Nat -> Nat

O +Nat n = n

(S m) +Nat n = S (m +Nat n)

The type class itself is represented as a product data type with one field per operation. The opera-
tions are selectors for the corresponding field. Their type class constraint has become an additional
argument for the instance’s dictionary. For instance, a top-level binding dNum,Nat has been created that
constructs the dictionary. The implementation of the operation was also lifted to top-level and is
referred to in the corresponding field of the dictionary constructor.

Since the demand analysis operates on GHC Core, the type class operation (+Nat) is treated as a
regular function binding such that the analysis works as expected, i.e. the demand analysis correctly
concludes that the first argument of (+Nat) is strictly evaluated. While the analysis of the declaration
of type class operations is not problematic, the demand analysis struggles with the analysis of func-
tions that use type class operations. Compare, for instance, the following example function and its
desugared version.

inc :: Nat -> Nat

inc n = n + (S O)

inc :: Nat -> Nat

inc n = (+) @Nat dNum,Nat n (S O)

While the function is guaranteed to evaluate its argument strictly, demand analysis assigns the de-
mand signature <L> to inc. The reason is that the right-hand side does not mention the implemen-
tation (+Nat) of the operation for the Nat data type but the dictionary field selector (+). The selector
has demand signature <1P(1C1(1C(1L)), . . .)>. The cardinality indicates that the first argument (the
dictionary) is strictly evaluated. The sub-demand specifies that the first field of the dictionary is also
strictly evaluated, applied once to exactly two arguments and the return value is used in a strictly
demanded position. Most importantly, there is no information about how the non-dictionary argu-
ments are demanded. The reason is that the operation can be arbitrarily implemented for different
data types.

The GHC usually does not encounter the problem for the same reason that the analysis can safely
assume that the arities of all functions have been determined already. Since the demand analysis
is interleaved with the simplifier and the simplifier inlines the value of the field selected by (+),
the GHC can "see" the actual implementation. In our case, the AST is not processed any further
after desugaring. At first, we tried to reuse GHC’s simplifier to inline the type class operations for
us. Unfortunately, we did not find a way to restrict the simplifier such that it performs no other
optimizations. In consequence, we had to write our own logic to extract the demand signature from
the implementation. This process is quite complicated. Furthermore, we have to distinguish whether
the instance is declared in the same module, another lifted module or is built-in.
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Let us first consider the case that inc and the Num instance for Nat are declared in the same module. In
a preprocessing step, we search for all functions application expressions opi @τ1 . . . @τk d1 . . . dm x1
. . . xn where opi is a dictionary field selector for the i-th operation of some k-parameter type class. We
then look up the Unfolding of d1 and check whether it is a dictionary function, i.e., a DFunUnfolding. If
it is, we syntactically replace opi @τ1 . . . @τk d1 with the dictionary constructor’s i-th argument. Most
often, the evidence variable d1 does not directly unfold to the dictionary constructor, though. As a
result of a process known as zonking, the GHC usually introduces intermediate evidence binders as
shown below.

inc :: Nat -> Nat

inc n =

let ev = dNum,Nat
in (+) @Nat ev n (S O)

For this reason, we have to recursively follow such a chain of CoreUnfoldings until we find a DFunUn-

folding. In our example, the eventual result of this whole procedure is that inc directly applies the
(+Nat) function. As a result, we can continue with the usual demand analysis.

Unfortunately, the process described above does not work if the instance is imported from another
module. Unlike the unfolding of local instances that have not passed through the plugin yet, the
unfolding of imported type class instances contains lifted code. Therefore, we cannot simply expand
the type class operation in such cases. However, there is also no need for the demand analysis to
know the exact implementation of the type class operation. Similar to regular imported functions,
the analysis only needs to know the demand signature of the operation. Thus, we first look up the
demand signature by following the chain of unfoldings and parsing the OriginalDemandSignature.
Then we attach this demand signature to the selector function’s identifier. Additionally, we have
to remove the information that the identifier refers to a dictionary field selector since the demand
analysis treats such functions differently.

While this approach works in theory, in practice we are confronted with the problem that the plugin
removes the unfolding of dictionary functions as part of liftInstance in Plugin.LanguagePlugin.

Lift.ClsInst. For other kinds of functions, this is not a problem, because the GHC recalculates the
unfolding in a later step of the compilation pipeline. In case of dictionary functions, however, the type
checker is responsible for adding the DFunUnfolding. Since the type checker is not executed again, we
have to recreate the unfolding ourselves. However, it turns out that the dictionary functions are
not compatible with this representation anymore after lifting. The reason is that the plugin inserts
evidence binders for Shareable constraints. Therefore, we need an indirection via a CoreUnfolding,
i.e., need to add a wrapper function that applies the dictionary function. Since implementing this
requires almost a complete rewrite of the dictionary lifting logic and custom type class instances do
not properly work in the current version of the plugin anyway, we decided to leave this task as future
work.

Nevertheless, we need to be able to analyze operations from imported type class instances at least
for built-in types as those are among the most frequently used operations. Since built-in instances
are not passed through the plugin, their unfoldings are not erased. Thus, we only need to annotate
the built-in operations with their OriginalDemandSignature. At first we tried to directly attach the
annotation to the declaration of the operation in the instance as shown below for the built-in instance
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of the lifted Num class for Int. Note that the demand signature specifies demands for three arguments
because there is an additional argument for the dictionary in the corresponding Core code.

instance NumND Int where

{-# ANN (+ND) (OriginalDemandSignature "<L><1L><1L>") #-}

(+ND) = liftNondet2 (+)

However, this causes a syntax error because the GHC only allows ANN pragmas on top-level declara-
tions. Since we cannot directly annotate the underlying top-level binding generated by the desugarer,
we have to define our own top-level binding to carry the annotation. We then implement the operation
in the instance as an alias for this new top-level function.

instance NumND Int where

{-# INLINE (+ND) #-}

(+ND) = addNDInt

{-# INLINE [0] addNDInt #-}

{-# ANN addNDInt (OriginalDemandSignature "<L><1L><1L>") #-}

addNDInt :: Nondet (Int --> Int --> Int)

addNDInt = liftNondet2 (+)

Additionally, INLINE pragmas (which are allowed in instance declarations contrary to ANN pragmas)
are added to both functions. The INLINE pragma on the addNDInt function ensures that the indirection
does not introduce an additional function call at runtime. The INLINE pragma on the (+ND) operation,
on the other hand, prevents the GHC from inlining the definition of addNDInt prematurely. Otherwise,
the unfolding of (+ND) would contain liftNondet2 (+) instead of addNDInt but we need to see that iden-
tifier in order to extract the OriginalDemandSignature annotation.

If we consequently apply this pattern to all built-in type class operations, we can analyze them
correctly. We believe that once the unfolding of lifted dictionary functions is fixed, we can analyze
operations from arbitrary imported type class instances with this method. Nonetheless, the whole
process of unfolding the dictionaries is extremely sensitive to the internal workings of the GHC and
is likely to break with a future update.

This concludes our description of the demand analysis implementation. In the last subsection, we
are going to point out one final major limitation of our approach that cannot be addressed without
incorporating the GHC’s simplifier into the analysis pipeline.

4.1.6 Analysis of Higher-Order Functions

As Haskell and Curry are functional programming languages, a central aspect of them is the concept
of higher-order functions. There are currently two problems with demand analysis when higher-
order functions are involved. This first problem was implicitly discussed in Section 4.1.4 already and
is not of fundamental nature. Our parser for demand signatures currently ignores sub-demands since
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there is no straightforward way to create instances of the underlying data type. Usually, a call sub-
demand tells the GHC when the higher-order function calls the given function strictly. For example,
the following function’s demand signature of <1C1(L)><L> expresses that the argument f is strictly
evaluated and the resulting function applied once whereas we cannot tell anything about the demand
placed on x because we do not know the demand signature of f itself.

apply :: (a -> b) -> a -> b

apply f x = f x

Now consider the following artificial example function that invokes apply.

increase_if :: Bool -> Int -> Int

increase_if flag n = apply (\n' -> if flag then n' + 1 else n') n

If apply and increase_if are defined in the same module, the demand analysis can take the call
sub-demand of apply into consideration and thus knows that flag is strictly evaluated. When apply

is imported, the parser discards the call sub-demand and therefore demand analysis cannot tell that
increase_if is strict in flag. While this problem could be easily solved by using a more sophisticated
mechanism for restoring demand signatures of imported functions, higher-order functions pose an-
other problem that is more fundamental to our approach.

In the preceding sections, we were already confronted multiple times with challenges that arise since
we apply the demand analysis out of the context it was originally designed for. Consider again the
example of increase_if. Since this function is strictly evaluating the lambda abstraction which in turn
is strict in n4, we might conclude that the entire function is strict in its second argument. However, this
is not the case because demand analysis never looks into the definition of a function and therefore
does not know that n is eventually passed as the argument n' to the lambda abstraction. To analyze
these kinds of situations, the demand analysis usually relies on the simplifier to inline the definition
of the higher-order function.

An example, where this problem can be observed in practice are sections, i.e., partially applied infix
operators. While we discovered in Section 4.1.3 that tuple sections are desugared to lambda abstrac-
tions, sections of infix operators are desugared to applications of built-in functions leftSection and
rightSection, respectively. The leftSection function corresponds exactly to the apply function while
rightSection is of type (a -> b -> c) -> b -> a -> c and basically just applies the given function
with its arguments in reverse order. Since sections are defined in terms of higher-order functions, the
strictness information of the sectioned operator is lost.

While we could solve the problem of sections by desugaring them to lambda abstractions in the same
way we did for tuple sections, this would not solve the general problem that higher-order functions
cannot be properly analyzed without the simplifier. Unfortunately, we learned from our attempts in
Section 4.1.5 that integrating the simplifier into our plugin is most likely not feasible because the
program is technically speaking incorrect prior to lifting. Therefore, we leave this problem open for
future investigation.

4 A function is always strict in its return value since after β-reduction the returned value ends up in the currently forced
position.
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4.2 Effect Analysis

Before we continue with the implementation of the worker/wrapper transformation, we first discuss
the remaining analyses that we implemented over the course of this thesis. In this section, we cover
an analysis that approximates whether a function has an effect or not. This analysis is currently not
used by any other part of the plugin but could be used in the future to automatically decide whether
the use of unsafeBind is safe.

As there is no concept of an effect in Haskell, there is also no analysis in the GHC that we could
repurpose for the plugin’s effect analysis. Instead, our implementation is based on the determinism
analysis presented by Hanus and Skrlac (2014) as an example for their Curry Analysis Server System
(CASS). In CASS a program analysis is a mapping of functions into an abstract domain. Such an abstract
domain is a type where each element represents a set of functions. For example, the determinism
analysis is performed on the following abstract domain where a value of Det represents all functions
that are guaranteed to produce at most one value when called on ground values whereas NonDet

captures operations that might produce multiple results under this condition.

data DetDom = Det | NonDet

The analysis itself is a fixpoint computation. This means that the computation maintains a map from
function identifiers to values of the abstract domain and updates this map iteratively until there
are no changes anymore. In case of the determinism analysis, all functions are initially considered
deterministic. In each iteration, there is a check for every function in the program whether the right-
hand side contains the (?) operator, any free variables or a call to a function that has the abstract value
NonDet. If this condition is satisfied, the abstract value of the function is set to NonDet. Otherwise, the
value remains at Det. Since the set of functions whose abstract value is NonDet can only grow but the
total number of functions in the program is finite, this kind of algorithm is guaranteed to terminate
eventually. In the worst case, only one function’s abstract value is set to NonDet in every iteration.
In this case, the algorithm terminates after n iterations where n is the number of functions in the
program. Since all functions have to be checked per iteration, the algorithm has a time complexity of
O(n2) in total.

In order to adopt this algorithm, we first need to define our own abstract domain for the distinction
between effectful and effect-free functions. We are using the following data type for this purpose.

data EffectInfo = HasNoEffect | MayHaveEffect | HasEffect

deriving (Eq, Ord, Bounded, Show, Data)

The HasEffect constructor roughly corresponds to NonDet and represents all functions whose evalua-
tion might have an effect whereas HasNoEffect is analogous to Det and indicates that a function always
evaluates without causing an effect. The additional MayHaveEffect constructor has no corresponding
value in the DetDom domain of the original paper. Semantically, this value can be interpreted equiv-
alently to HasEffect. The only distinction is that we do not want to include functions in HasEffect

if the potential effect stems from the usage of a type class operation whose implementation is not
statically known. This distinction helps us during development to test whether the effect analysis
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correctly handles type class operations. For the expansion of type class operations, we reuse the logic
from Section 4.1.5. As could already be seen in Figure 4.1, the handling of type class operations has
therefore been pulled out into a common preprocessing step.

Analogously to the demand signature annotations from the previous section, we rely on ANN pragmas
to remember whether a function has an effect or not across module boundaries. For this purpose,
we reuse our data type of the abstract domain as an annotation. This is why we derived a Data

instance for EffectInfo above. The built-in (?) operation is annotated with HasEffect. All other built-
in operations do not have an annotation. The absence of the annotation is interpreted as if the function
were annotated with HasNoEffect. When the analysis is used in the future, we might have to consider
adding a HasEffect annotation to failed as well depending on the exact information needed. We
suspect that this might be the case because unsafeBind expects exactly one result but failed produces
none. Since the built-in pE function that is used for pattern matching failures is implemented in terms
of failed, this would also require adding a HasEffect annotation to pE. For our current prototype, we
decided to stay as close as possible to the original determinism analysis, though.

Before the actual analysis is started, the plugin collects all identifiers in the current module using syb,
looks up their EffectInfo annotation and writes this data into a map that is used as the initial value
of the fixpoint algorithm. For type class operations that have not been expanded in the preprocessing
step, a value of MayHaveEffect is inserted into the map. In each iteration of the algorithm, we collect
all identifiers that are used on the right-hand side of a function definition again using syb. Then we
look up the corresponding EffectInfo in the map. Finally, we write back the maximum of these values
or default to the "smallest" possible value, i.e., HasNoEffect, if there are none. To this end, we derived
an Ord and Bounded instance for EffectInfo. The ordering of the elements imposed by the derived Ord

instance is as follows.

HasNoEffect ą MayHaveEffect ą HasEffect

In effect, the abstract value associated with every function can only increase in each iteration giving
us the same termination guarantee and runtime complexity as the original determinism analysis had.

4.3 Sharing Analysis

In Section 3.3.3 we presented a rewrite rule that replaces the share operator inside worker func-
tions with shareArgs which the GHC subsequently eliminates for primitive data types. However, this
rewrite rule is not applicable unless the argument is strict. Since the share operator is associated with
a severe performance overhead, we strive to minimize the number of share operators that are inserted
in the first place. The plugin currently inserts a share operator for every argument, variable pattern
or local variable binding that occurs more than once on the corresponding right-hand side (or in

expression in case of local variable bindings). To count the number of times a variable v occurs in an
expression e, the plugin enumerates all variables v' in e with the same Unique as v. As shown below,
this algorithm can be implemented using the syb library very concisely.

countVarOcc :: (Data a) => Var -> a -> Int

countVarOcc v e = length (listify (\v' -> varUnique v' == varUnique v) e)
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A shortcoming of this approach is that it cannot tell whether the value will actually be used twice
during the evaluation of e or the two occurrences reside in mutually exclusive branches of the com-
putation. Consider, for example, the following function.

append :: [a] -> [a]

append xs ys = case xs of

[] -> ys

(x:xs') -> x : append xs' ys

The argument ys occurs twice on the right-hand side of append: once in the branch for the empty list
and once in the branch for the non-empty list. Thus, the plugin will insert a share operator for ys

even though a concrete invocation of append will never involve more than one usage of the argument.
Therefore, we extended the sharing analysis of the plugin to account for such cases. The idea is still
to count the number of variable occurrences. However, instead of collecting all variable occurrences
upfront, we traverse the AST until we encounter an if, case or variable expression. For a variable
expression, we simply compare the Uniques. For if and case expressions, we recursively count the
variable occurrences in each branch of the expression and take the maximum of the results. For all
other kinds of nodes, we sum up the counts from the child expressions.

Due to the need to traverse the AST, the implementation of this analysis is more involved than the
previous one. By using the syb library, we can still implement the analysis in a generic way and
do not have to deal with the complex structure of the AST too much. Particularly, we are using the
everythingBut function to descend into the AST until we find a node of interest but no deeper. We
cannot use everything because we want to use explicit recursion to count in the branches of if and
case expressions. One challenge that we encountered during the implementation is that HsVar, HsIf
and HsMultiIf5 are part of the HsExpr type whereas the branches of all kinds of case expression6 can
be found in the MatchGroup type. We deal with this situation by combining multiple generic queries
for the different types using the extQ combinator from syb.

4.4 Implementing the Worker/Wrapper Transformation

Now that we covered all of the analyses that are performed by the plugin, we can move on to
the actual implementation of the worker/wrapper transformation. Unlike the presentation of the
transformation scheme in Section 3.3 suggests, our implementation does not directly rewrite the lifted
program. While the explicit representation of effects enables us to reason about the transformation
very precisely, operating on the lifted AST would make the implementation more difficult because
the involved data structures are already quite deeply nested and lifting makes them even more
complicated. The approach that we have chosen instead is to first split the program into worker and
wrapper functions and then lift the worker and wrapper functions in a separate phase. In this section,
we focus on the first part while our extensions to the monadic lifting are covered in Section 4.5.

5 Used to represent "multi-way if-expressions" from the MultiWayIf language extension.
6 This also includes the "lambda case-expressions" from the LambdaCase language extension
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4.4.1 Filtering Bindings

The first step is to decide whether to split a function into a worker and a wrapper at all or leave
it as is. Most importantly, special bindings such as record selectors always need to be skipped. For
regular function bindings, the decision to split a function must be guided by some heuristic that
estimates the potential savings of the transformation. The heuristic used by the GHC takes multiple
factors into account like the number of arguments, their strictness, the size of the right-hand side or
whether there is an INLINE pragma. In our setting, however, any function with at least one argument
potentially profits from the transformation. Even if the argument is not strictly evaluated, removing
the return and Func around the lambda abstraction is always beneficial. Therefore, we just check the
arity and split the function if it is greater than zero.

In order to check the arity, we simply count the number of arguments in the demand signature
in the function and therefore do not have to analyze the AST again. However, we need to exclude
dictionary arguments because they only exist in the Core representation whereas the worker/wrapper
transformation operates on the Haskell AST. To tell how many arguments are dictionary arguments,
we can look at the evidence binders that are attached to the function binding by the type checker.

The only kind of function that potentially does not profit from a worker/wrapper transformation is a
function that is inlined anyway. While transforming such a function is redundant, the transformation
does not hurt either except for increasing compilation time. To keep the implementation simple, we
thus do not follow the example of the GHC and transform functions with INLINE pragma as well.

4.4.2 Transforming Function Bindings

As can be seen in Figure 4.1, the worker/wrapper transformation is executed after the pattern match-
ing compiler. This allows us to make assumptions about the structure of the program which greatly
simplify the transformation process. Basically, all functions we are concerned with have the following
shape where x1 to xn are variable patterns and e is an arbitrary expression.

f :: A1 -> . . . -> An -> B
f = \x1 -> . . . -> \xn -> e

Nevertheless, the underlying data structures are still designed to represent arbitrary Haskell pro-
grams. In consequence, navigating the AST is still quite challenging. To make things easier, we devel-
oped a series of abstractions that allow us to work with the AST in a more convenient way.

Ź A writer monad WorkerWriterM is used to collect information about all workers that are generated
during the transformation of the module. Therefore, we do not have to deal with additional return
values. The information that is aggregated in this way guides the modified monadic lifting of the
worker functions that will be discussed in the next section.

Ź Another monad WorkerWrapperM with reader semantics is used during the transformation of a
single function binding to pass information down to functions transforming the right-hand side.
Therefore, we do not have to explicitly pass arguments around.
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Ź Lastly, we defined a record data type WorkerWrapper A that acts as a container for two AST nodes
of type A which resulted from the worker/wrapper transformation. The named fields of this data
type prevent confusion about which node belongs to the worker and wrapper, respectively. A
Functor instance allows us to apply a function to both nodes at the same time and an Applicative

instance enables us in conjunction with a monadically lifted traverse to worker/wrapper trans-
form a list of AST nodes (or any other Traversable) without any boilerplate. These mechanisms
are particularly handy because a lot of AST nodes are wrapped in a type that adds source location
information.

For example, the following code snipped demonstrates how we can apply the transformation to all
Matches of a MatchGroup. The result is a WorkerWrapper of the transformed mg_alts. Despite the three
levels of nesting that are involved not much boilerplate is required.

traverseM (traverseM (traverseM transformMatch)) (mg_alts matchGroup)

Using these abstractions, we transform a function of the shape shown above into two function bind-
ings of the following form. Why we have to "collapse" the lambda abstractions on the right-hand side
of the worker function into the left-hand side will become evident in Section 4.5.

f :: A1 -> . . . -> An -> B
f = \x1 -> . . . -> \xn -> fworker x1 . . . xn

fworker :: A1 -> . . . -> An -> B
fworker x1 . . . xn = e

The new identifier fwrapper of the worker function is generated by adding a new Unique to the original
identifier f . For debugging purposes, we also add the suffix _worker. In case of symbolic names, we
cannot use alphanumeric characters and therefore append \/\/ instead. All other details are copied
from the original identifier. Importantly, this includes INLINE pragmas such that if f is inlined, the
worker fworker is also inlined.

Regardless of the pragmas set by the user, we need to ensure that the wrapper function is inlined such
that the GHC can apply rewrite rules. We can use the GHC’s constant alwaysInlinePragma to enable
inlining in all phases of the compiler. Additionally, we need to specify that the GHC is allowed to
inline the function when it is applied to zero arguments by setting the pragma’s inl_sat accordingly.
Unfortunately, it is not sufficient to add the pragma only to the identifier in the function definition.
There is no single source of truth for information attached to identifiers. The pragma has to be set on
every occurrence of the identifier in the program instead. We can do so by applying a substitution to
the entire program after the transformation.

Because of the INLINE pragma that we add to the wrapper function’s identifier, the GHC will auto-
matically inline the wrapper into the worker’s right-hand side in case of recursive functions. This is
why we can deviate from the schema in Figure 3.3 and use the original right-hand side e. In conse-
quence, the worker and wrapper function are mutually recursive, though. In Section 4.4.4 we will be
confronted with the implications of this design decision.
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4.4.3 Transforming Evidence

One aspect of the AST that the code listings from the previous section cannot capture is how the
additional information that is attached to AST nodes by the type checker is influenced by the transfor-
mation. After type checking function bindings and expressions can have an HsWrapper. Conceptually,
an HsWrapper can be understood as a small snippet of GHC Core code that needs to be wrapped
around an expression when it is desugared. The wrappers are needed because type arguments and
dictionaries are implicitly passed to functions whereas they are explicitly passed in Core.

The simplest HsWrapper is a WpHole which indicates that no additional code needs to be wrapped
around an expression. Since function bindings need lambda abstractions for their invisible argu-
ments, there are WpTyLam v and WpEvLam v that cause a type or evidence abstraction for a variable
v to be wrapped around the expression. Analogously there exist WpTyApp τ and WpEvApp d for type
and evidence applications. When multiple pieces of code need to be wrapped around an expression,
the corresponding wrappers w1 and w2 are combined using WpCompose w1 w2 to a wrapper that first
applies w2 and then w1.

For the worker’s binding, we need to use the HsWrapper as the original function’s binding has. For the
application of the worker function, we need to add application HsWrappers that exactly correspond
to the lambda HsWrappers. We have the following two rules to create an application from a lambda
abstraction wrapper.

transformHsWrapper :: HsWrapper -> HsWrapper

transformHsWrapper (WpTyLam v) = WpTyApp (TyVarTy v)

transformHsWrapper (WpEvLam v) = WpEvApp (EvExpr (Var v))

Additionally, we have to swap the order of the WpComposed wrappers because the outermost lambda
abstraction is the first that needs to be applied. All other kinds of HsWrappers can be safely ignored.
The <.> operator is a smart constructor for WpCompose that takes WpHoles into account.

transformHsWrapper (WpCompose w1 w1) = transformHsWrapper w1 <.> transformHsWrapper w1
transformHsWrapper _ = WpHole

4.4.4 Transforming Generalized Bindings

In the previous subsection we have seen that the type checker adds information to the AST in the
form of HsWrappers that we need to preserve. Additionally, we need to be careful because the type
checker can also reorganize the AST. Specifically, multiple FunBinds can be grouped into a AbsBinds

node. In this subsection, we discuss how the metadata that is stored in such a node needs to be
adapted, how a surrounding AbsBinds node changes the transformation of the contained function
bindings and under which circumstances the resulting worker and wrapper functions can reside in
the same AbsBinds node or have to be separated.

First, we need to understand why the type checker introduces such a node in the first place. Consider
the following function declaration.
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reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Because the binding lacks a type signature, the type checker needs to infer the type of reverse. To
this end, it first supposes that there exists some unknown but fixed type α0 such that reverse :: α0.
Through the application of a series of inference rules, the type checker eventually unifies α0 with
[α1] -> [α2] for some other unknown but fixed types α1 and α2. This monomorphic type now needs
to be generalized to a polymorphic type forall a. [a] -> [a]. For this purpose, the type checker
splits the function into a polymorphic top-level binding and a monomorphic local binding. Using
the ScopedTypeVariables language extension we can write down a roughly equivalent program that
illustrates the type checker’s output.

reverse :: forall a. [a] -> [a]

reverse = reversemono

where

reversemono :: [a] -> [a]

reversemono [] = []

reversemono (x:xs) = reversemono xs ++ [x]

The type variable a is bound by the polymorphic function and scopes over the definition of the
monomorphic binding. Note how the monomorphic function, recursively calls itself and does not
refer back to the polymorphic identifier, i.e., the polymorphic function is not recursive itself. In the
monomorphic function’s recursive call, the HsWrapper also does not need a type application.

While the process of generalizing over type and evidence arguments is only necessary if there is no
type signature, the GHC still performs the same splitting of the function into a polymorphic and
monomorphic part even if there is a type signature. In this scenario, the monomorphic function,
counterintuitively, is not monomorphic at all, i.e., this time reversemono has a HsWrapper for a type
lambda whereas reverse does not. Furthermore, the recursive call targets the polymorphic function.
Its HsWrapper therefore needs to apply the type argument. In the listing below, this fact is illustrated
using the syntax form the TypeApplications language extension.

reverse :: [a] -> [a]

reverse = reversemono

where

reversemono :: forall b. [b] -> [b]

reversemono [] = []

reversemono (x:xs) = reverse @b xs ++ [x]

While functions with a type signature are also placed into AbsBinds in order to model this splitting into
monomorphic and polymorphic functions, they are never grouped with other bindings. Functions
without type signatures, on the other hand, may need to be grouped with other bindings in case they
are mutually recursive. This is because the recursive calls refer to the monomorphic identifiers that
are only available in the local scope. For instance, two mutually recursive functions f and g without
type signatures have AbsBinds that correspond to the following definition.
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f , g :: A -> B
( f , g) = ( f mono, gmono)
where

fmono :: A -> B
fmono = body f gmono

gmono :: A -> B
gmono = bodyg f mono

Now that we familiarized ourselves with the reasons and circumstances under which the GHC’s type
checker creates AbsBinds nodes, we can apply this knowledge to determine how we need to adapt
our transformation in order to produce AbsBinds that the GHC can compile. The following questions
need to be answered in this regard.

1. When the wrapper function invokes the worker, do we need to use the monomorphic or polymor-
phic identifier?

2. Do the worker and wrapper functions need to be in the same AbsBinds node or do we have to split
them apart?

These two questions are linked. The answer to one constraints how the other can be answered. For
example, if we decide to put the worker and wrapper functions into separate AbsBinds nodes, they
cannot refer to each other using the monomorphic identifier because it would not be in scope. Con-
versely, if we decide to use the monomorphic identifiers, we must put the worker and wrapper
functions into the same AbsBinds. Thus, we choose to always refer to the worker function using the
polymorphic identifier for now.

To answer the second question, we need to compare the call graphs between the monomorphic and
polymorphic functions before and after worker/wrapper transformation as shown in Figure 4.2. We
only consider a single recursive function binding for simplicity but need to distinguish whether the
function has a type signature or not.

poly mono

⇓

wrapper poly wrapper mono

worker poly worker mono

(a) with type signature

poly mono

⇓

wrapper poly wrapper mono

worker poly worker mono

(b) without type signature

Figure 4.2. Call graphs of a recursive function with and without type signature. The corresponding call graph
of the worker/wrapper transformed function is shown at the bottom. Black arrows indicate the dependency
between polymorphic and monomorphic functions. The recursive calls are shown in red and the call of the
worker function from the wrapper is shown in gray.
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As we noted at the end of Section 4.4.2 already, we can see here that the worker and wrapper functions
are indeed mutually recursive. The red arrows in Figure 4.2 indicate the original recursive calls. Since
the worker function’s right-hand side is exactly the original right-hand side, the recursive calls in
the worker function target the same callee as before, i.e., the polymorphic identifier if there is a type
signature and the monomorphic identifier otherwise. In the latter case, the two functions therefore
cannot be separated. In the other case, they actually must be separated, because the GHC expects
there to be only one function in AbsBinds when there is a type signature.

To tell whether we must split an AbsBinds node, we can simply look for recursive calls to the monomor-
phic identifier in the original bindings. If there is any such call, we cannot split the AbsBinds node
after worker/wrapper transforming the contained function bindings. The remaining transformation
of AbsBinds involves updating the association between polymorphic and monomorphic identifiers
and ensuring that the call to the polymorphic worker function is wrapped with appropriate HsWrap-

pers for generalized type and evidence arguments. With the transformation of AbsBinds in place, we
can now worker/wrapper transform arbitrary top-level bindings.

4.4.5 Transforming Local Bindings

In addition to top-level bindings we also want local bindings to be transformed. Generally, we can use
the same approach as for top-level bindings. However, we need a mechanism to find all of the local
bindings in the first place. As per usual, the syb library is our preferred choice for this task because
it allows us to traverse the AST in a generic way. Unfortunately, we cannot just use everywhereM

since this would cause function bindings to be processed twice. To understand why this is the case,
consider the following example function. The shape of the AST after type checking is illustrated on
the right where the numbers indicate the order in which the nodes would be visited by everywhereM.

reverse :: [a] -> [a]

reverse = reverse' []

where

reverse' :: [a] -> [a] -> [a]

reverse' acc [] = acc

reverse' acc (x:xs) = reverse' (x:acc) xs

AbsBinds for reverse

FunBind for reverse

4

...

3

AbsBinds for reverse'

FunBind for reverse'

2

1

Since everywhereM processes nodes in a bottom-up fashion, the function binding for reverse' is pro-
cessed first. Since we cannot see the surrounding AbsBinds at this point, we split the function like an
unabstracted top-level binding. Next, the traversal goes one level up to visit the AbsBinds. Splitting
the AbsBinds involves splitting the contained function bindings. Therefore, we split the worker and
wrapper that were just created once again. The same problem occurs for reverse and its AbsBinds on
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the way up.

Alternatively, we need a version of everywhereM that visits nodes in top-down order and stops as
soon as a matching node has been found such that we can explicitly specify where to continue the
traversal. The syb library provides a function somewhere that does exactly that. This function only
descends into the children of a node if the given monadic transformation fails by the means of mzero
from the MonadPlus type class.

somewhere :: forall m. MonadPlus m => GenericM m -> GenericM m

Using somewhere we define the following function to apply the transformation to all local bindings
in a given AST node. This function needs to be invoked recursively on the transformed function
bindings to process arbitrarily nested local bindings.

transformLocalBinds :: (Data a) => DemandMap -> a -> WorkerWriterM a

transformLocalBinds demandMap x =

fmap (fromMaybe x) $

runMaybeT $

somewhere (extM (const mzero) (lift . transformBindsBag demandMap)) x

The function first lifts a computation from our transformation’s writer monad into the MaybeT monad
transformer. We need MaybeT such that we get an instance of MonadPlus. Then we convert the lifted
function into a generic monadic transformation but instead of mkM we use extM (const mzero). This
means that the transformation will fail for all nodes that are of a different type than expected by
transformBindsBag. In consequence, this definition allows us to descend until we find a node of the
expected type and then stop. After we apply the transformation somewhere in the AST node x, we
no longer need the MaybeT transformer. In case the entire computation failed, i.e., there are no local
bindings, we finally return the original AST node x instead of Nothing.

4.5 Monadic Lifting of Workers and Wrappers

In the previous section, we have seen how we split function bindings into a worker and wrapper
function. Both functions still need to be lifted. In this section, we discuss how we had to modify the
plugin’s existing lifting to add support for the translation of bindings and applications of worker
functions.

4.5.1 Application Schemas

To lift the worker and wrapper functions, we want to reuse as much as possible from the original
lifting. However, the lifting for bindings and applications of worker functions slightly differs from
the regular lifting. Namely, the function itself is not wrapped in the monad and strict arguments
are neither. Thus, we need additional information to guide the insertion of app, (>>=), and return in
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the lifting process. During worker/wrapper transformation we therefore collect so-called application
schemas for each worker function. Application schemas are metadata that describe how the function
is intended to be invoked after lifting but are also used to steer the lifting of the function binding’s
right-hand side. These application schemas are represented by the following data type.

data AppSchema

= FuncAppSchema

| LazyAppSchema !AppSchema

| StrictAppSchema !AppSchema

The FuncAppSchema constructor indicates that that the regular lifting should be used for the application
of the function, i.e., the plugin needs to use the app operator. The other two constructors deal with
the application of functions that are not wrapped into the monad. While a LazyAppSchema indicates
that the argument is still wrapped in the monad, a bind needs to be inserted for the argument before
the function application if a StrictAppSchema is encountered. Both constructors take an AppSchema as
argument. This residual application schema describes how the result of the function needs to be ap-
plied. The result of a function with FuncAppSchema always needs to be applied using a FuncAppSchema

as well. During lifting, we can assume that we eventually get a FuncAppSchema as the residual appli-
cation schema because the worker/wrapper transformation is guaranteed to fully apply the worker
function.

For presentational purposes, we introduce the following notation for the i-th residual application
schema.

@a :: AppSchema : ai = a if i = 0

FuncAppSchemai = FuncAppSchema if i ą 0

@a :: AppSchema : (LazyAppSchema a)i = ai´1 if i ą 0

@a :: AppSchema : (StrictAppSchema a)i = ai´1 if i ą 0

4.5.2 Lifting Types

Before we can start lifting the actual code, we need to understand how an application schema influ-
ences the lifting of a function’s type. If we denote the lifting of a function type using an application
schema a :: AppSchema as J τ K f un

a , the modified lifting of types is governed by the following rules.

J τ K f un
FuncAppSchema = J τ K

@a :: AppSchema :
q

τ -> τ1
y f un
LazyAppSchema a = J τ K ->

q
τ1

y f un
a

@a :: AppSchema :
q

τ -> τ1
y f un
StrictAppSchema a = J τ Ki ->

q
τ1

y f un
a

In case of a FuncAppSchema, the regular lifting is applied to the function. For LazyAppSchemas the func-
tion arrow is not lifted. The same is true for StrictAppSchemas but we additionally use the inner lifting
for the parameter type to prevent it from being wrapped in the monad.
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Note, that if τ = forall a. σ for some type σ, there is no monad to be removed on the outermost
level in the lifted type, i.e., the following equation holds.

J τ Ki = J forall a. σ Ki

= forall a. J σ K
= J τ K

A situation like this can occur if the RankNTypes language extension is enabled. The absence of the
monad implies that if a function has a strict polymorphic argument, we cannot bind this argument
using (>>=). Therefore, we need to be careful when we lift such a function or an application thereof
not to bind or return the polymorphic argument.

4.5.3 Lifting Applications

In order to lift a worker function application, we first need to collect all arguments e1 through en
an expression f is applied to. If f is a variable expression, we look up its application schema a ::

AppSchema. In case f is not a worker function we set a = FuncAppSchema. The following two aspects of
the lifting now need to be modified.

1. We only insert app for the application of ei if the corresponding application schema ai´1 is a
FuncAppSchema.

2. If ai´1 = StrictAppSchema ai, the entire application expression needs to be wrapped in a bind for
ei. Note that we cannot insert the bind in the middle of an application because the intermediary
results are not lifted into the monad.

For this purpose, we define an auxiliary lifting J ¨ Kapp that lifts some application expression. The
lifting produces a tuple where the first component is an expression that contains a placeholder ‚ that
finally needs to be substituted with the expression in the second component. Conceptually, the second
component is the lifted application expression and the first component gathers binds that eventually
need to be wrapped around the resulting expression. Additionally, a third component records the
residual application schema. The substitution of the placeholder symbol is illustrated by the equation
below.

J f e1 . . . en Ke = w[r/‚] if J f e1 . . . en Kapp = (w, r, FuncAppSchema) and n ą 0

At this point, the residual application schema must be FuncAppSchema because the wrapper always
applies the worker to the correct number of arguments. This also guarantees that r is wrapped in the
monad such that the replacement is type correct. In the actual implementation, the replacement is
realized by representing the first component of the tuple as a function that maps an HsExpr to a new
HsExpr.
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The auxiliary lifting J ¨ Kapp is inductively defined. In the base case, the function f is applied to no
arguments. The regular lifting can be applied in this case.

J f Kapp = (‚, J f Ke , a) where a:: AppSchema application schema of f

Given an expression e with J e Kapp = (w, r, a), the lifting of an application e e1 depends on the residual
application schema a of e.

Ź If a = FuncAppSchema, then r is wrapped in the monad and app must be used for the application.q
e e1

yapp
= (w, r `app`

q
e1

ye , FuncAppSchema)

Ź If a = LazyAppSchema a1, then r is not wrapped into the monad and can be applied directly.q
e e1

yapp
= (w, r

q
e1

ye , a1)

Ź If a = StrictAppSchema a1, then r can also be applied directly, but its argument needs to be bound
first. q

e e1
yapp

= (
q

e1
ye

>>= \x -> w, r x, a1) where x fresh variable

While these rules are already complicated on their own, the real implementation is even more complex
because we also need to make sure that the resulting expression have the correct type information
attached. We also need to handle infix operations explicitly. In principal, the equations fully capture
the plugin’s behavior, though.

4.5.4 Lifting Function Bindings

The lifting of a worker function’s binding is a little bit easier because of a tick that we applied in
Section 4.4.2. Instead of writing the arguments of the worker function into lambda abstractions on
the right-hand side of the binding, we collected all argument patterns and wrote them on the left-
hand side instead. Usually, the plugin assumes that all arguments are bound by single-argument
lambda abstractions. The translation of such lambdas is usually governed by the following rule.

J \x -> e Ke = return $ Func $ \x -> J e Ke

This rule is responsible for the insertion of the return and Func but only applies to lambda abstrac-
tions. In our case, this has the fortunate effect that return and Func are not inserted for the worker
function’s binding. Nevertheless, since function bindings and lambda abstractions both use Match-

Groups internally to represent their pattern matching and right-hand sides, we can still reuse the rest
of the plugin’s lambda abstraction lifting logic for lifting our worker functions.

The only remaining problem is that we need to generate local bindings that return the strict ar-
guments of the worker function. For this purpose, we slightly modified the lifting of Patterns and
Matches. The function that is responsible for lifting patterns is also responsible for generating fresh
identifiers for shared variables. Basically, a variable pattern x is replaced by a fresh variable pattern x1.
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The plugin then creates a share x1 >>= \x -> . . . on the right-hand side of the pattern’s correspond-
ing Match. Analogously, we replace the variable pattern of a strict argument with a fresh variable
pattern x2. The plugin then creates let x1 = return x2 in . . . on the right-hand side of the pattern’s
corresponding Match right before the share.

With this little change, we are already done with our modifications to the plugin’s lifting for the
regular worker/wrapper transformation. In the final subsection, we will discuss which additional
changes have to be made to the lifting processes in order to support the unsafeBind optimization
presented in Section 3.3.4.

4.5.5 Extended Lifting using unsafeBind

While the effect analysis currently does not suffice to prove that the usage of unsafeBind is safe, we still
want to implement experimental support for this extended transformation such that we can evaluate
in the next chapter whether this optimization has the expected effect on the performance of the
generated code. Instead of using the result of effect analysis, we added the following annotation data
type. A user can add a EnableExperimentalUnsafeBind annotation to a function binding to indicate
that the plugin should use unsafeBind when lifting its worker function.

data ExperimentalAnnotation = EnableExperimentalUnsafeBind

deriving Data

In this subsection, we describe the changes that we had to make to the plugin’s lifting to support
this experimental feature. First, the application schema data type had to be extended such that we
can express that the result of a function application is not lifted. Therefore, we added a flag to
FuncAppSchema that indicates whether the Func itself is wrapped in the monad or not.

data LiftedFlag = IsLifted | IsNotLifted

data AppSchema

= FuncAppSchema LiftedFlag

| . . . -- Remaining constructors unchanged.

If the EnableExperimentalUnsafeBind annotation is set for the original function, the worker/wrapper
transformation sets the LiftedFlag of the residual FuncAppSchema to IsNotLifted. Otherwise, the flag
is set to IsLifted. All rules from the previous sections that applied to FuncAppSchema still apply to
FuncAppSchema IsLifted. For FuncAppSchema IsNotLifted, the following additional rules need to be
defined.

1. If this kind of function were applied, the result would be lifted into the monad.

(FuncAppSchema IsNotLifted)i = FuncAppSchema IsLifted if i ą 0

2. If the final application schema during lifting of a type indicates that the result is not lifted, we
need to lift the entire result type with the inner lifted to prevent the monad from being wrapped
around.
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J τ K f un
FuncAppSchema IsNotLifted = J τ Ki

3. If the final application schema in an application indicates that the result is not lifted, we need to
insert a return, i.e., if J f e1 . . . en Kapp = (w, r, FuncAppSchema IsNotLifted) and n ą 0, then the
application expression is lifted as follows.

J f e1 . . . en Ke = w[return r/‚]

4. Since the worker function is never applied to too many arguments, we do not need a rule forJ e e1 Kapp that covers the case that the residual application schema returned by J e Kapp is FuncApp-

Schema IsNotLifted.

5. Finally, the entire worker function’s right-hand side is wrapped in unsafeBind if a is the worker’s
application schema, n its arity and an = FuncAppSchema IsNotLifted.

The performance benefits of this experimental extension are evaluated in the next chapter along with
the evaluation of our regular optimization.
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Chapter 5

Evaluation

In this chapter we evaluate whether the implementation of the optimization described in the previous
chapter has the desired effects. In the first section we present our testing approach that we have used
to ensure that the optimization does not change the semantics of the program or cause any runtime
errors. Our tests also verify that the demand analysis produces the expected demand signatures as
presented in Section 5.2. In the third section we present the results of benchmarks that we conducted
to evaluate the impact of the optimizations on the runtime performance, memory consumption and
size of generated code as well as the increase of compilation time that the optimizations entail. Finally,
we consider the impact our changes have on the plugin’s maintainability. Throughout this chapter
we focus on the Curry GHC Language Plugin. However, the results of our evaluation are expected to
apply to other instantiations of the plugin as well.

5.1 Automating Existing Tests

To ensure that our modifications to the plugin do not break existing functionality or change the
semantics of the translated programs, we need to test the code produced by the plugin. Fortunately,
the original implementation already came with multiple example modules, that we can use for testing.
However, most of these examples were not executed automatically by the test suite but only checked
for compile-time errors. Furthermore, the tests for those examples that were actually executed by the
test suite have not been stated in a scalable manner due to the use of a custom test framework. In this
section, we present how we rewrote and automated the plugin’s test suite to improve our confidence
in the correctness of our implementation. First, we introduce Hspec1 a popular framework for testing
Haskell programs. Then, we outline how we use Hspec in the new test suite and finally present our
findings of executing the resulting tests before and after our implementation from Chapter 4.

5.1.1 Hspec: A Testing Framework for Haskell

To implement our test suite we have chosen the testing framework Hspec. The framework defines a
Domain Specific Language (DSL) for writing tests in Haskell. The DSL is based on the Spec monad
which is mainly built around the following functions provided by Hspec.

describe :: String -> Spec -> Spec

it :: String -> Expectation -> Spec

1 https://hspec.github.io/
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The describe function is used to define a group of test cases. The first argument is a description of the
group and the second argument is a specification of the group which is itself comprised of describe
and it items. The it function is used to define a single test case. The first argument is a description
of the test case and the second argument is the expectation that must be fulfilled for the test case to
pass. An Expectation is basically just a computation in the IO monad, that throws an exception when
the expectation is not fulfilled. This fact is mostly transparent to the user as Hspec provides its own
operations for defining expectations. Of the many operations that are available, we will only need the
following three for our test suite.

shouldBe :: (HasCallStack, Show a, Eq a) => a -> a -> Expectation

expectationFailure :: HasCallStack => String -> Expectation

pendingWith :: HasCallStack => String -> Expectation

The shouldBe operator takes two arguments and sets the expectation that the two arguments are equal.
The expectationFailure function creates an expectation that always fails. The given string contains the
reason for the failure. Finally, the pendingWith function creates an expectation that is always skipped
by Hspec. The given string contains the reason for skipping the expectation. This function is useful
for temporarily disabling tests that are known to fail.

A key reason for our choice of Hspec is its discovery mechanism. The old test suite of the plugin
required all test cases to be added to a tests list exported by the main module. When adding a
new test case, we had to remember to add it to this list. This approach is not scalable and reduces the
confidence in the test results since we never know for sure that we have not forgotten to add a test case
to the list. There is also the risk, that a test case has been added to the list but while resolving a Git
merge conflict, the corresponding line has been removed on accident. When using Hspec, all of our
Spec items also have to be collected in the main module and passed to the hspec function to check the
contained expectations. However, we do not have to do this ourselves since the framework provides
a GHC plugin that automatically discovers all test cases in a project and generates the corresponding
main function. Hspec even inserts describe calls to make it easier to identify the module that a test
case originated from.

5.1.2 Converting Exiting Examples to Hspec

To convert the existing examples to tests that can be checked by Hspec, we first moved the example
modules from the test-examples directory into the test source directory. Since the examples are now
part of the test suite’s source code, they are compiled automatically when the test suite is built. Thus,
we eliminated the need to compile the examples manually by spawning GHC processes at runtime.
Since we also converted the Cabal files to the Hpack2 format, we don’t even have to add the module
names to the built configuration. To add a test, it is sufficient to add the file to the test directory.

The approach above works perfectly for all examples that are expected to compile successfully. How-
ever, there is one example, that is expected to fail. To handle this edge case, we can add an exception
to the test suite’s built configuration in package/curry-ghc-language-plugin/package.yaml.

2 https://github.com/sol/hpack
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tests:

hspec:

# ...

when:

- condition: false

other-modules:

- Example.HaskellImport

This configuration causes the Example.HaskellImport module whose compilation we expect to fail
to be built only when the condition false is satisfied, i.e., never. Next, we add a corresponding
Example.HaskellImportSpec module that exports a single Spec item that runs the GHC on the excluded
module similar to how the old test suite compiled all of the examples. Spawning the process is
possible in HSpec since Expectations are just IO computations. When the process succeeds we use
expectationFailure to indicate that the test failed. Otherwise, we just return which marks the test as
passed.

Finally, we just have to add Spec modules for all other examples. Since the code produced by the
plugin seamlessly integrates with Haskell code, we can simply call the example functions, encapsulate
their results and check whether the results match the expected outcome by using Hspec’s shouldBe

operator. The tests that were already executable in the old test suite can be converted to Hspec tests
by following the same approach.

For instance, there is the following example that demonstrates the use of Curry’s (?) operator.

{-# OPTIONS_GHC -fplugin Plugin.CurryPlugin #-}

module Example.Coin where

coin :: Bool

coin = True ? False

To test this example, we only need to add a module Example.CoinSpec that exports the Spec item
depicted below.

spec :: Spec

spec = describe "coin" $ do

it "chooses between True and False" $ do

eval DFS coin `shouldBe` [True, False]

5.1.3 Broken Tests

When we tried to run the new test suite for the first time, we found that some of the tests failed
to compile, even though we haven’t changed the plugin’s implementation yet. The failures likely
were the result of regressions introduced by a recent upgrade of the supported GHC version to 9.2.1.
The original implementation of the plugin as presented by Prott (2020) targeted version 8.10.1 of the
compiler. The following test cases are affected:

65



5. Evaluation

Ź Typeclass

In this example module a custom type class and instances thereof are defined.

Ź MultiParamFlexible

This example demonstrates the usage of multi-parameter type classes and other type class related
language extensions.

Ź DefaultSignaturesImport and DefaultSignaturesExport

In one of the example modules, a class with default signature is defined. The other module imports
that class. Both modules define an instance of the class.

Ź TypeOperatorsImport and TypeOperatorsExport

In these modules, the TypeOperators language extension is used. A data type with a symbolic
identifier is defined in one module and used in the other module. However, there are type errors
in the imported module.

Most of the failing tests are related to the declaration of new type classes in the transformed module.
Examples that define instances of type classes that are built into the plugin compile successfully. We
already covered the limitations of the plugin regarding type classes in Section 2.3.4. Since fixing these
errors is out of scope for this thesis, we decided to exclude the affected tests from the test suite. The
broken examples, the corresponding test specification and error messages emitted by the compiler
can be found in the package/curry-ghc-language-plugin/broken-test directory.

After excluding the broken tests, we were able to compile the test suite successfully. However, there
are still two tests that fail at runtime with a segmentation fault. Again, both failing tests are related
to type classes. One example uses the Applicative type class. The other uses the Monad type class. For
the same reason as above, we disabled these two tests using Hspec’s pendingWith operation.

5.1.4 Test Results

In spite of the initial challenges encountered while setting up the test suite, we managed to success-
fully run the remaining tests. After the implementation of our optimizations, the previously func-
tioning tests continue to pass reliably. The automated nature of the test suite proved very helpful
throughout the development process, aiding in the early identification of numerous implementation
oversights.

5.2 Testing Demand Signatures

The tests that we automated in the previous section check that the semantics of translated programs
are not changed by our optimization. For our optimization to have the best possible performance
improvements, we need the demand analysis to correctly identify when an argument of a function
is evaluated strictly. However, when the demand analysis fails to identify an argument as strict, the
optimization will not change the semantics but only the runtime characteristics of the program. Thus,
our tests still pass even when the demand analysis exhibits unexpected behavior.
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To identify such cases, we could manually inspect the demand signatures produced by the demand
analysis and check whether they match our expectations. However, we would like this test to be
automated as well to prevent future regressions. While the benchmarks that will be presented in
Section 5.3 are automated tools that can hint at use cases that involve not fully optimized functions,
the benchmarks do not provide a reliable mechanism to identify the exact cause of the observed
performance problems. For functions that happen to not lie on a critical path of any benchmark, we
cannot rely on the benchmarks to extract any information about the demand signature at all.

The approach that we have chosen to detect deviations from the expected demand signatures is based
on annotations added by the user to functions they like to test. First, we had to define a new data
type that can be used in the ANN pragmas and contains the expected demand signature. We based the
new data type on the DemandSignatureAnnotation data type presented in Section 4.1.4.

newtype DemandAssertionAnnotation = ExpectedDemandSignature String

deriving Data

Next, we added the new annotation to all functions in the Prelude as well as in the benchmark and
test suites. Since the demands of dictionary arguments tend to be very complex and irrelevant to our
transformation, we used a wildcard of the form <_> in place of demands for arguments that we are
not interested in. For example, consider the following function from the plugin’s Prelude.

elem :: (Eq a) => a -> [a] -> Bool

elem a = any (a ==)

This function is strict in its second argument because any needs to check the given predicate for every
element of the list. Whether the first argument is evaluated strictly depends on the implementation
of the (==) operation for the type a and cannot be known at compile-time. Therefore, we expect the
demands <L> and <1L> for the first and second argument, respectively. Additionally, there is another
demand for the dictionary argument that is added by the GHC during the conversion to Core for
the Eq a constraint but we do not care about the exact demand for this argument. Thus, we add the
following annotation to specify the demand signature that we expect and use <_> in place of the
dictionary demand that we are not interested in.

{-# ANN elem (ExpectedDemandSignature "<_><L><1L>") #-}

To test whether the demand signatures are correct, we add a check after the demand analysis that
looks up the annotation for each function in the module and compares the contained string with the
actual demand signature. This comparison must be performed on the string representation since the
wildcards render the annotations syntactically invalid. To implement the matching of wildcards, we
first split the string representations into individual demands and then compare the demands one by
one using the following function to check for equivalence.

matchesDemandString :: String -> String -> Bool

matchesDemandString _ "_" = True

matchesDemandString actualDemand expectedDemand = actualDemand == expectedDemand
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In case of the elem function, our check fails and the plugin reports the error message below.

/package/curry-ghc-language-plugin/src/Plugin/CurryPlugin/Prelude/List.hs:135:1: error:

Demand signature of elem does not match expected demand signature.

Got <MP(MCM(L),A)><L>, but expected <_><L><1L>.

|

135 | elem a = any (a ==)

| ^

The third argument is missing a demand in the demand signature because our implementation of
elem is partially point-free and the plugin does not eta-expand function declarations prior to demand
analysis. If we update the annotation as shown below, the error is resolved.

{-# ANN elem (ExpectedDemandSignature "<_><L>") #-}

As this example demonstrates, the annotation mechanism allows us to detect when the demand
analysis produces unexpected results. However, the annotation mechanism has the limitation that
only top-level functions can be annotated. Thus, we cannot use this approach to check the demand
signatures of functions that are defined in a where clause for example. Similarly, we cannot check the
demands of type class operations directly. Nonetheless, the mechanism increased our confidence in
the correctness of the demand analysis, helped us to fix some bugs and provided helpful hints for
further improvements of the optimization.

5.3 Benchmarks

The objective of the thesis was to improve the performance of the code generated by the plugin. In
this main part of the chapter, we want to analyze whether we achieved this goal. To this end, we
have conducted a set of benchmarks to evaluate the influence of the optimizations on the runtime
performance and memory consumption of the transformed code. The results of the benchmarks are
presented in the first two subsections. Furthermore, we want to assess the costs of our optimizations.
Therefore, we measured how the optimizations affect the size of the generated executables and the
compilation time. The results of these measurements are presented in the last two subsections.

The conducted benchmarks are based on the benchmarks performed by Hanus, Prott, and Teegen
(2022) to measure the performance of their implementation of a more efficient monad for nondeter-
ministic computations. Additionally, we added variants of the benchmarks for example by changing
whether integers or Peano numbers are used. The use of Peano numbers often adds an interesting
perspective since their Sharable instance is non-trivial in contrast to the builtin instance for Int.

To run the benchmarks we are using the criterion3 library. Similar to Hspec, Criterion also defines
its own DSL for specifying benchmarks. The two most important building blocks of this DSL are the
bench and nf functions.

3 https://hackage.haskell.org/package/criterion
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bench :: String -> Benchmarkable -> Benchmark

nf :: NFData b => (a -> b) -> a -> Benchmarkable

The bench function takes the name of the benchmark and a Benchmarkable item which is usually
created by the nf function or related operations. nf accepts a function and an argument for the
function. Criterion applies the function repeatedly to the same argument and then evaluates the
result to head normal form. To force the evaluation of the result to head normal form, the NFData

instance is required. Since the function is always applied to the same argument, it might seem wired
at first that the function and the argument are separate parameters of nf. However, this is needed
because Haskell’s laziness would prevent repeated evaluation otherwise.

To be able to benchmark nondeterministic computations, we created an extension to the nf function
that encapsulates effects of an unary nondeterministic function. A consequence of this definition is
that the cost for converting between the deterministic and nondeterministic representations of the
involved data types is included in our performance measurements.

nfND ::

(NFData b2, Normalform Nondet a1 a2, Normalform Nondet b1 b2) =>

Nondet (a1 --> b1) -> a2 -> Benchmarkable

nfND f = nf (eval1 DFS f)

Criterion applies a benchmarked function as often as possible in a five-second interval by default4.
When the function takes longer than five seconds the function is still applied multiple times until
Criterion is confident that the results are representative (typically ten times). Criterion then performs
a linear regression based on the Ordinary Least Squares (OLS) regression model to correlate the
number of iterations with the measured metrics5. Based on the results of the regression, the library
reports an estimation for the metrics along with an asymmetric 95% confidence interval, i.e., the lower
and upper bound for the deviation from the estimation point expected with a 95% confidence upon
a repetition of the benchmark.

5.3.1 Runtime Performance

The first metric that we consider is the time it takes to execute the benchmarks. Table 5.1 summarizes
the results for the largest problem instance of each benchmark. Across all benchmarks, the runtime
performance is improved when the worker/wrapper transformation is enabled and our improved
sharing analysis is used. How much each benchmark profits from the transformation varies widely.
Some benchmarks such as the nondeterministic permutation sort algorithm PermSort are improved
by just a few percent. However, the runtime of many other benchmarks is several hundred times
faster after the optimization. In the most extreme case, reversing a list of integers is twelfth thousand
times faster than before. On the other hand, reversing a list of Peano numbers is not nearly as fast,
indicating that deep sharing prevails to be one of the major bottlenecks. Despite the performance
improvements, there is still a noticeable gap between the runtime of transformed programs and the

4 http://www.serpentine.com/criterion/tutorial.html#how-long-to-spend-measuring-data
5 http://www.serpentine.com/criterion/tutorial.html#understanding-the-data-under-a-chart
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equivalent pure Haskell programs across all benchmarks. In the following we will inspect the results
for the AddNum and Tak benchmarks in more detail.

Table 5.1. Measured runtime for selected benchmarks with (After) and without (Before) worker/wrapper trans-
formation plus improved sharing analysis enabled, respectively. The factor by which runtime has been reduced
with respect to the unoptimized version is shown in the column labeled Improvement. For reference, the Pure
column shows the runtime for an equivalent unlifted program if applicable.

Benchmark Before After Pure Improvement
AddNumInt10 59.19 µs 25.25 µs — 2.34 ˆ faster

AddNumPeano10 9.43 s 43.38 ms — 217 ˆ faster
NaiveReverseIntList4096 17.47 s 70.40 ms 64.00 ms 248 ˆ faster

NaiveReversePeanoList4096 21.39 s 3.55 s 63.60 ms 6.03 ˆ faster
PermSort12 602.90 ms 629.89 ms — 1.04 ˆ slower

Primes 102.10 ms 4.77 ms — 21.4 ˆ faster
QueensInt9 1.90 s 1.72 s 6.81 ms 1.11 ˆ faster

QueensPeano9 12.96 s 11.63 s 20.47 ms 1.11 ˆ faster
ReverseIntList4096 4.86 s 381.19 µs 30.02 µs 12800 ˆ faster

ReversePeanoList4096 8.94 s 3.4 s 25.57 µs 2.63 ˆ faster
Select100 171.58 ms 4.84 ms — 35.4 ˆ faster

TakInt27_16_8 10.45 s 33.36 ms 16.71 ms 313 ˆ faster
TakPeano24_16_8 40.93 s 35.89 s 51.84 ms 1.14 ˆ faster

AddNum is a class of benchmarks that generate an arbitrary number nondeterministically and then
add the number to itself repeatedly. The differences are in the number of occurrences of the variable
that holds the generated number (1, 2, 3, 4, 5 or 12)6 and the representation of the numbers (integers or
Peano numbers). The benchmark for one variable occurrence corresponds to the degenerate case and
performs no additions at all but simply returns the generated number. The following code snippet
shows the implementation of the AddNum benchmark for integers with one addition (i.e., two variable
occurrences).

someNumInt :: Int -> Int

someNumInt n = if n <= 0 then 0 else (n ? someNumInt (n - 1))

addSomeNum2Int :: Int -> Int

addSomeNum2Int n = let x = someNumInt n in x + x

The someNumInt function is responsible for the nondeterministic generation of the number. The gener-
ated number is added to itself by addSomeNum2Int. The local variable x that holds the generated number
is shared because it occurs twice in the expression. Let m denote the number of variable occurrences.
If run-time choice were used, each occurrence of the variable would duplicate the enumeration of the
numbers yielding a runtime of O(nm). However, since call-time choice semantics are used, the choices
are not duplicated such that the algorithm produces n results and has a runtime linear in the number
of choices and additions, i.e., O(n + m). Since we only consider n = 100, we expect the runtime to be
linear in m. In Figure 5.1 we plotted runtime against the number of variable occurrences.

6 Counterintuitively, the benchmark corresponding to 12 occurrences is called addSomeNum10 and not addSomeNum12 as the
naming convention would suggest. We are sticking with the names assigned by Hanus, Prott, and Teegen (2022), though.
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Figure 5.1. The runtime performance of the addSomeNum benchmarks for integers.
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Figure 5.2. The runtime performance of the addSomeNum benchmarks for Peano numbers.
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As expected, the runtime increases only slightly with the number of variable occurrences. While the
overall runtime is already good, the worker/wrapper transformation is able to improve it by what
seems to be a constant amount. Proportionately, the degenerate benchmark with m = 1 profits the
most. This is because most of the performance gains stem from the optimization of someNumInt. Since
this function is strict in its argument, the worker/wrapper transformation helps to speed up the enu-
meration of the numbers. The sharing analysis does not yield any improvements for this benchmark.
This is because the sharing of the duplicated xs is actually needed and cannot be optimized away.

A different picture is painted when we look at the Peano version of the benchmark. Let us first
consider the theoretical runtime again. Below are the relevant bindings.

someNumNat :: Nat -> Nat

someNumNat O = O

someNumNat n@(S n') = n ? someNumNat n'

addSomeNum2Nat :: Nat -> Nat

addSomeNum2Nat n = let x = someNumNat n in x `add` x

add :: Nat -> Nat -> Nat

add O y = y

add (S x) y = S (add x y)

The someNumNat function has the same runtime characteristics as someNumInt. However, while (+) is a
constant time operation, the add function is linear in its first argument. Thus, the overall runtime
is quadratic in n for addSomeNum2Nat. This also holds true in general. For m additions the expected
runtime is O(m ¨ n2) and therefore still linear in m.

Despite our expectation of linear behavior, we can clearly see exponential growth in Figure 5.2 prior to
optimization. Even worker/wrapper transformation does not yield any performance improvements.
However, the new sharing analysis immediately solves the problem and the runtime becomes linear7

in the number of variable occurrences. When combining the worker/wrapper and sharing analysis,
an additional slight improvement can be observed.

The performance problems are caused by the add function. After pattern matching compilation, the
function looks as shown below. Most notably, the parameter y occurs twice on the right-hand side of
the lambda abstraction. In consequence, the old sharing analysis concludes that a share needs to be
inserted for y. Due to deep sharing, the inserted share has a runtime of O(n). In consequence, the
overall runtime of add is increased to O(n2).

add :: Nat -> Nat -> Nat

add = \x -> \y ->

case x of

O -> y

S x' -> S (add x' y)

7 In the plot the runtime appears to be constant due to a very shallow slope and the logarithmic scale of the y-axis.
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However, it is not needed to share y because the two occurrences are in different branches of the
case expression. Consequently, the new sharing analysis does not insert a share. Furthermore, add
is strict in its first argument and can therefore be optimized by the worker/wrapper transformation.
The gains from this optimization are overshadowed by the performance penalty of share and thus
invisible when the worker/wrapper transformation is enabled in isolation.

Tak is a highly recursive function originally devised by Ikuo Takeuchi in 1978 to benchmark LISP
systems (McCarthy, 1979). The function definition as shown below deviates slightly from the origi-
nal definition. Takeuchi’s version as remembered by McCarthy from their personal communication
returns y instead of z in the then branch. The variant returning z is commonly used today (Johnson-
Davies, 1986) and is actually more difficult to compute because otherwise z is not necessarily de-
manded. By returning z the function is strict in all three arguments meaning that all recursive calls
have to be evaluated.

takInt :: Int -> Int -> Int -> Int

takInt x y z =

if x <= y

then z

else takInt (takInt (x - 1) y z)

(takInt (y - 1) z x)

(takInt (z - 1) x y)

Unlike the functions covered in the section about AddNum benchmarks, tak is deterministic and there-
fore can be evaluated without lifting it with the plugin first. The runtime of the unlifted variant is
shown along with the lifted function’s performance in Figure 5.3. The plot demonstrates that the
lifted function is slower by two orders of magnitude. The new sharing analysis does not yield any
improvement since the all parameters really occur multiple times. However, worker/wrapper trans-
formation is able to eliminate the overhead almost entirely since the function is strict. The remaining
difference between the lifted and unlifted version’s runtime can be explained by the monadic nature
of the worker’s return value.

takNDInt,worker :: Int -> Int -> Int -> Nondet Int

Since we know that neither (<=) from the Ord instance for Int has an effect nor any argument of
the worker can introduce an effect since they have been evaluated already, we can safely add an
EnableExperimentalUnsafeBind annotation to direct the plugin to eliminate the monad from the return
type using unsafeBind. As the yellow bar in Figure 5.3 demonstrates, we achieve the same runtime as
the unlifted variant with this optimization.

Again, it is a different story if we consider Peano numbers instead of integers. This time, the main
reason is that the equivalent of the (<=) operator for Peano numbers leq is not strict in its second
argument. Since zero is the smallest natural number, zero is less than or equal to any other natural
number. Therefore, the second argument does not have to be evaluated when the first argument is
zero. In consequence, the Peano version of tak is not strict in y either.
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Figure 5.3. The runtime performance of the tak benchmarks for integers.
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Figure 5.4. The runtime performance of the tak benchmarks for Peano numbers.
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As Figure 5.4 shows, the runtime of the lifted function is still improved through worker/wrapper
transformation but only by an insignificant amount. In fact the general performance of the generated
code is so bad that the last benchmark in the series cannot be executed on our test machine even
with both optimizations enabled. Furthermore, we cannot enable the experimental annotation for
unsafeBind this time because y can have an effect and the predecessors of S constructors can also
introduce effects.

5.3.2 Memory Usage

Besides the poor runtime performance, we already noticed in Section 3.1 that the transformed pro-
grams tended to consume significantly higher amounts of memory than equivalent pure Haskell
programs. For this reason, some of the benchmarks had to be disabled since they exceeded the 32
GB of RAM available on our test machine and memory swapping started to dominate runtime per-
formance. In this subsection, we are investigating the question of how the optimization affects the
translated program’s memory footprint.

Fortunately, Criterion can collect information about memory usage by hooking into APIs of Haskell’s
Garbage Collector (GC). To enable the collection of GC statistics, the -T option8 of the Haskell Runtime
System9 (RTS) had to be enabled while running the benchmark. The GC statistics include amongst
others the total number of bytes allocated during the run of the benchmark as well as the peak
number of megabytes allocated since the start of the benchmark suite. While the peak allocation is
of highest interest for us, this metric only produces meaningful results when each benchmark is run
independently. Thus, we decided to configure Criterion to measure the total number of allocated
bytes only and hoped that this metric correlates sufficiently with the memory utilization experienced
by the user. The results for the largest problem instances are summarized in Table 5.2.

Table 5.2. Total number of bytes allocated by selected benchmarks with (After) and without (Before) worker/wrap-
per transformation plus improved sharing analysis enabled, respectively. The factor by which allocations have
been reduced with respect to the unoptimized version is shown in the column labeled Improvement. For reference,
the Pure column shows the number of allocated bytes for an equivalent unlifted program if applicable.

Benchmark Before After Pure Improvement
AddNumInt10 270 KB 171 KB — 1.58 ˆ less

AddNumPeano10 24 GB 195 MB — 119 ˆ less
NaiveReverseIntList4096 24 GB 808 MB 683 MB 28.9 ˆ less

NaiveReversePeanoList4096 33 GB 11 GB 683 MB 3.28 ˆ less
PermSort12 3 GB 3 GB — 1.01 ˆ less

Primes 233 MB 14 MB — 16.8 ˆ less
QueensInt9 6 GB 5 GB 36 MB 1.16 ˆ less

QueensPeano9 31 GB 27 GB 55 MB 1.16 ˆ less
ReverseIntList4096 11 GB 3 MB 361 KB 4570 ˆ less

ReversePeanoList4096 21 GB 10 GB 295 KB 2.19 ˆ less
Select100 607 MB 21 MB — 29.0 ˆ less

TakInt27_16_8 34 GB 359 MB 83 Bytes 93.3 ˆ less
TakPeano24_16_8 94 GB 85 GB 25 MB 1.11 ˆ less

8 https://downloads.haskell.org/ghc/9.2.1/docs/html/users_guide/runtime_control.html#rts-options-to-produce-runtime-statistics
9 https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/rts
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Figure 5.5. The memory usage of the addSomeNum benchmarks for integers.

If we compare Table 5.2 with Table 5.1 we can see that the improvement in memory usage is generally
in the same order of magnitude as the runtime performance improvement of the same benchmark.
Nevertheless, the absolute numbers are still much higher than the amount of memory equivalent
pure Haskell programs would consume as becomes evident by comparison with the column labeled
Pure. Next, we again discuss the results for the AddNum and Tak benchmarks in more detail

AddNum already consumed only a little amount of memory when integers were used to represent
the numbers. As Figure 5.5 demonstrates, worker/wrapper transformation is responsible for a further
reduction. The degenerate case saves 76 KB whereas the non-degenerate cases save 99 KB. Therefore,
we conclude that the saved bytes originate from the memorization of someNum’s shared parameter n.
After worker/wrapper transformation no share is needed because someNum is strict in n. The additional
savings of the non-degenerate cases must stem from the elimination of monadic wrappers for the
intermediate results of the additions.

On the other hand, Figure 5.6 shows that the memory usage of the benchmark’s version using Peano
numbers is enormous prior to optimization and grows exponentially. Similar to the runtime perfor-
mance of the AddNumPeano benchmark, its memory usage is predominantly constrained by sharing. By
using the new sharing analysis, the allocations return to linear growth whereas the worker/wrapper
transformation has no effect in isolation. We suspect the same mechanism to be responsible for this
phenomenon as for the similar behavior discovered for the runtime performance.

When both optimizations are enabled, the memory usage is reduced by two orders of magnitude. Still,
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Figure 5.6. The memory usage of the addSomeNum benchmarks for Peano numbers.

the absolute values are in the range of megabytes and therefore a thousand times higher than in the
integer variant of the benchmark. However, this is to be expected since Peano numbers are inherently
a lot more expensive to represent than integers. Since all predecessors are stored as monadic values,
the memory overhead is further increased.

Tak is a function that usually consumes very little memory. In fact, McCarthy (1979) explicitly points
out the property, that the function can be made to run a long time without producing large numbers
or using much stack. Figure 5.7 confirms this property for the integer variant of the benchmark when
the function is not lifted. In this case, the memory usage is limited to a few bytes. While we do in fact
expect the memory usage of the lifted version to be elevated, we are surprised by the extent of the
increase and the residual memory overhead after optimization. All runs of the benchmark that involve
the plugin exhibit a memory usage in the realm of gigabytes prior to worker/wrapper transformation
and continue to allocate megabytes after being optimized. This behavior is particularly surprising as
the memory allocations do not seem to have any negative impact on the runtime performance. For
example, while the experimental usage of unsafeBind yielded the same runtime performance as the
unlifted version of the benchmark, the lifted benchmark seems to consume a million times more
memory. Until now, we have not found any convincing explanation for this phenomenon.

As we already established that the Peano representation of numbers is inherently more expensive
than integers, it is not surprising to find the Peano variant of the benchmark to consume even more
memory. Before lifting, we already observe a rapid growth of allocations in the range of megabytes.
After applying the plugin, memory usage is increased to the range of gigabytes. The optimizations
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Figure 5.7. Memory usage of the tak benchmarks for integers.

can reduce the allocations by two-thirds but the absolute numbers remain in the gigabytes. In the
most extreme cases, about 100 GB are allocated. As the measured metric represents the total number
of bytes allocated, this amount is not necessarily allocated at the same time and memory might be
freed in the meantime. However, the memory usage evidently exceeds the 32 GB of RAM installed in
the test machine plus configured swap at some point during the execution of tak 27 16 8 and causes
a crash of the benchmark suite in effect.

5.3.3 Executable Size

Our optimization heavily relies on the use of INLINE pragmas. One caveat commonly associated with
the excessive usage of inlining is an increase in executable size due to duplication of code by the
compiler (Cooper and Torczon, 2012, pp. 461). To quantify the effect of our optimization on the
size of generated executables, we measured the size of the compilation artifacts for the plugin’s test
and benchmark suites with and without worker/wrapper transformations enabled. Additionally, we
repeated the measurement with dynamically linked versions of the executable to account for the
overhead introduced by system libraries, the RTS and the plugin’s dependencies.

The results of these measurements are presented in Table 5.3. There is one column for each compi-
lation artifact and one row for the run with worker/wrapper transformation enabled and disabled,
respectively. Additionally, the table provides the Difference in executable size between the two runs.
This difference is expressed as a percentage relative to the measurement for the run with disabled
worker/wrapper transformations in the final row.
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Figure 5.8. Memory usage of the tak benchmarks for Peano numbers.

As we can see, the worker/wrapper transformation exhibits only a minor influence on the size of gen-
erated executables. Contrary to our initial expectations, our observations even reveal a slight reduc-
tion in executable size for both the test and benchmark suites. This decrease can likely be attributed
to optimizations of the GHC that are enabled through our worker/wrapper transformation. After in-
lining of a wrapper, the return operations for the lambda abstractions are duplicated. However, at the
call site, there must be a corresponding bind operation unless the function is only partially applied.
The GHC can now eliminate the return and bind due to our RULE pragma. The resulting code thus
contains one bind operation less than the original code. The duplicated return only remains when
the function is partially applied. Since most functions are usually fully applied, the overall number
of bind operations is reduced and consequently the size of the executable.

Table 5.3. Executable sizes of the plugin’s benchmark and test suites with and without worker/wrapper trans-
formation for statically and dynamically linked executables.

Staticly Linked Dynamically Linked

Tests Benchmarks Tests Benchmarks

Without Worker/Wrapper 26,472 KB 48,340 KB 667 KB 514 KB

With Worker/Wrapper 26,440 KB 48,319 KB 641 KB 502 KB

Difference -32 KB -21 KB -25 KB -12 KB

Difference % -0.12 % -0.04 % -3.69 % -2.27 %
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Nevertheless, when put into perspective with the overhead introduced by system libraries, the run-
time system and dependencies, the effect of this optimization is negligible. While the dynamically
linked executables each reduced by between two and three percent in size, the difference in the
statically linked executable’s size amounts to less than half a percent.

Interestingly, the total number of bytes saved is largest for the statically linked executables, though.
The additionally saved bytes likely result from the fact that the executables link against the plugin’s
library. The library is needed because the code generated by the plugin imports the plugin’s monad
and Prelude module. However, the Prelude is also worker/wrapper transformed and thus has a lower
binary size after the transformation. Thus, the difference in size between the static executable includes
the saved bytes from the Prelude whereas the dynamically linked executable only contains the saved
bytes from the tests and benchmarks themselves. This theory suggests that there should be a constant
difference in size between the static and dynamic executables. However, the static executable’s size
of the test suite decreased by 7.5 KB with respect to the corresponding dynamic library whereas
the benchmark suite shows a 8.9 KB decrease of the same metric. Therefore, it should be noted,
that the cause for the observed reduction in executable size cannot be conclusively explained by
the worker/wrapper transformation alone unless dynamic linking inhibits inlining across package
boundaries.

5.3.4 Compile Time

Up to this point, the benchmarks we have examined have predominantly indicated a positive influ-
ence of our optimizations on the respective metrics. However, to achieve these improvements, the
plugin and the GHC have to perform additional work during the compilation process. We expect the
following three aspects to entail longer compilation times:

1. the demand analysis,

2. the transformation of functions into workers and wrappers itself and

3. processing of inlined wrappers by the GHC.

To quantify the impact of these three aspects, we have measured the compile time of the test and
benchmark suite. In contrast to Section 5.3.3, we did not record compilation times of the test and
benchmark suite independently.

The results are presented in Table 5.4. The indicated times are the average amount of CPU time spent
in user mode during the compilation process. The table also indicates the Difference in compile time
between the run with and without worker/wrapper transformation and expresses this difference as
a percentage relative to the measurement for the run with disabled worker/wrapper transformations
in the last row. Since we compiled the tests and benchmarks at the same time, the table contains only
one column for the cumulative compile time of both suites together.

As expected, the incorporation of worker/wrapper transformations led to an increase in compile
time. Specifically, enabling worker/wrapper transformations during the compilation of the plugin’s
benchmark and test suites resulted in an increase of less than one second. In relative terms, this
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Table 5.4. Average cumulative compilation time of the plugin’s benchmark and test suites with and without
worker/wrapper transformation.

Average Compilation Time

Without Worker/Wrapper 43.7 s

With Worker/Wrapper 44.4 s

Difference 0.7 s

Difference % 1.66 %

corresponds to a one-and-a-half percent increase in comparison to the compilation time without
worker/wrapper transformations.

While this increase in compilation time is only marginal, it’s essential to consider that the plugin’s
benchmark and test suites are relatively small. For larger projects, the observed effects might be more
pronounced. However, these effects are outweighed by the substantial performance improvements
that the optimization provides at runtime.

5.4 Maintainability

In this final section of the evaluation, we will discuss which consequences the addition of the anal-
yses and optimizations have on the future maintainability of the plugin. First, we consider how the
improvements to the test and benchmark suite can help to prevent regressions. Then we discuss the
challenges that arise from the newly added dependencies and the usage of the GHC API. Finally, we
analyze the implementation’s impact on the plugin’s code size.

5.4.1 Tests and Benchmarks

Automated tests are important to ease the maintenance of a software project. Without automated tests,
it is difficult to ensure that changes to the code do not break existing functionality. Our additions to
the test suite therefore generally improve maintainability. Additionally, we configured a continuous
integration pipeline based on GitHub Actions10 that runs the test suite on every push to the plugin’s
GitHub repository11 such that a broken test cannot go unnoticed in the future. However, the tests
that have been automated can be considered a kind of integration test. While integration tests are
important to gain confidence in the correct behavior of the tested system as a whole, unit tests are
usually more effective in pinpointing the location of a bug and ensuring test coverage.

In principle, the benchmark suite can also be used to spot regressions that affect the implemented
optimizations. However, unlike the test suite, the benchmark suite is not run as part of the continu-
ous integration pipeline since it is too time-consuming. For the same reason, we do not expect the

10 https://docs.github.com/en/actions
11 https://github.com/just95/curry-ghc-language-plugin
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benchmarks to be run regularly by maintainers.

5.4.2 Dependencies

The use of libraries such as parsec, hspec and criterion aided tremendously in the development of
the plugin as well as its test and benchmark suite. However, each of the libraries comes with its own
set of dependencies. These dependencies need to be maintained as well. Specifically, the versions of
all transitive dependencies have to be listed as extra-deps in the stack.yaml file since the used Stack
resolver ghc-9.2.1 does not include them by default. If the GHC or any of the packages is updated
to a newer version, we have to manually find a set of versions for all transitive dependencies that are
mutually compatible.

5.4.3 GHC API

One of the reasons Prott (2020) states as a motivating factor for setting out to develop a Curry com-
piler by taking advantage of the GHC’s Plugin system in the first place is the prospect of reducing
the implementation effort. While the effort of implementing the plugin is indeed much lower than
building a full-fledged compiler, the tight integration with the GHC poses additional challenges for
the implementation and maintenance of the plugin.

The GHC’s API is not stable and changes even between minor versions. During development, we
regularly used Hoogle12 to search for functions in the GHC’s API that we can utilize. However, the
index of Hoogle contains only the latest version of a package. Since the plugin is based on GHC
9.2.1 but the GHC is on version 9.6.3 at the time of writing, the search results often contain outdated
information. For example, the demand signatures are stored in a data type StrictSig in GHC 9.2.1
but in a data type DmdSig in GHC 9.6.3. Besides the name of the data types, the structure of the
underlying Demands as well as their Outputable string representation has changed significantly. When
upgrading the GHC version need to adapt the implementation to these changes inevitably will open
the possibility for bugs to be introduced. As we have discovered in Section 5.1 an update of the GHC
version has already caused problems in the past. We hope that the improvements to the test suite can
help to mitigate some of these problems.

5.4.4 Code Size

A heuristic for the maintainability of a software project is the size of its code base. The more code
a project encompasses, the more difficult it is to understand and maintain. Thus, we analyze in this
section how many lines of code we have added over the course of the thesis.

When we started working on the thesis13, the plugin’s code base consisted of 10,100 lines of code
across all .hs files including comments and blank lines. By the end of the thesis14, the code base

12 https://hoogle.haskell.org/
13 Commit 4f0fd2e394bbd802e6d751062059865f599d2960
14 Commit 2ec32618abe31a610ef3c17a957a7dce4ef52bd8
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has grown to 18,656 lines of code. However, it is important to note, that large parts of the increase
in code size can be attributed to the restructuring and formatting of the code that we performed in
preparation of the implementation to get familiar with the code. In total, the addition of 3,069 lines
of code can be attributed to the preparatory work15. Some of the steps that we took in this regard are
listed below.

Ź We formatted the code using the Haskell code formatter Ormolu16 and limited the line length to
80 characters where possible. The adoption of a code formatter helped during implementation by
allowing us to focus on the actual functionality instead of having to manually shift code around
to maintain readability.

Ź We split the code into several packages and more fine-grained modules. Previously the Curry
GHC Language Plugin was a single package that was forked from the GHC Language Plugin and
added the Curry plugin-specific code on top. By splitting the code into packages, we hope that it
will be easier to port the optimizations to the other variants of the plugin. Splitting the modules
makes the code easier to comprehend but since each module needs its own header, the code size
increases.

Ź We streamlined the lifting process by adding a monad TcState. As the name suggests, this monad
is similar to GHC’s TcM monad but has state-like semantics whereas TcM has reader-like semantics.
While this abstraction increased code size, the monad also helped to keep the code concise when
we implemented optional passes for the optimization later on.

The implementation of the optimization itself primarily affected the general GHC Language Plugin’s
code. This part of the code increased from 9,965 lines to 12,745 lines. 2,298 lines of code have been
added in the form of modules that exclusively deal with the analyses and worker/wrapper transfor-
mation. The remaining 482 lines resemble additions to the monadic lifting. The Curry-specific part of
the code base is relatively small. It grew from 1,905 to 2,727 lines. The majority of the increase in code
size can be attributed to the extension of the test suite and the addition of benchmarks. The prelude
only increased by 71 lines of code. In summary, the total number of lines has almost doubled but
the optimization code accounts for only 33% of the increase. Nevertheless, a much greater number of
lines of code had to be touched to implement the optimization.

15 Commit 1c862718d1c6592b8909f60672a9eaf13bc3203d
16 https://hackage.haskell.org/package/ormolu
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Chapter 6

Conclusion

In this final chapter, we conclude the thesis. In the first two sections, we summarize our work and
discuss the limitations of the optimization approach and implementation thereof. Finally, we will be
providing an outlook for future improvements to the plugin.

6.1 Summary and Results

The goal of this thesis was to improve the performance of the code generated by GHC Language
Plugin for strict and pure functions. First, we familiarized ourselves with the Curry programming
language which served as an example throughout the thesis. We then discussed the GHC’s plu-
gin system and how the GHC Language Plugin hooks into the compilation pipeline to monadically
transform the source code. Next, we identified deep sharing and repeated monadic wrapping and
unwrapping as the root causes of the performance problems exhibited by the generated code. We
proposed the worker/wrapper transformation as a potential solution and convinced ourselves of the
correctness of this optimization. In the main part of the thesis, we presented how we implemented the
worker/wrapper transformation. To gather the strictness information required by this transformation,
we were able to reuse the existing demand analysis of the GHC. Our evaluation in the final section
showed that the worker/wrapper transformation is able to improve the performance of the gener-
ated code significantly. Our benchmarks suggest improvements in runtime, memory usage and even
code size across a wide range of tasks while requiring moderate compile time costs. The degree of
improvement depends on the depth of involved data structures, strictness of used functions and their
effects. Moreover, we convinced ourselves of the correctness of our implementation by automatically
testing the transformation on a large corpus of example programs.

In summary, we believe that we were able to achieve the primary objective of this thesis. Never-
theless, deep sharing prevails to pose fundamental problems for the generated code’s performance.
In the next section, we point out remaining limitations of our approach and shortcomings of our
implementation before we close with an outlook on future work in the final section.

6.2 Limitations and Known Issues

While our evaluation demonstrates the potential of the worker/wrapper transformation to improve
the performance of the generated code, our implementation has still issues that limit the performance
gains in some situations.
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As discussed in Section 4.1.4, our parser for demand signatures currently has to discard sub-demands
due to restrictions of the GHC’s API. As we have seen in Section 4.1.6, this can weaken inferred
demands for functions using imported higher-order functions, for example. This problem is over-
shadowed by more fundamental restrictions of demand analysis that prevent effective analysis of
higher-order functions without aid from the GHC’s simplifier. Furthermore, we found in Section 4.1.5
that the demands of type class operations cannot be imported from lifted modules at all because the
plugin discards the unfolding of dictionary functions.

While we have implemented experimental support for the insertion of unsafeBind as presented in Sec-
tion 4.5.5 and demonstrated the effectiveness of this optimization to achieve runtime performance on
par with an unlifted program’s performance in Section 5.3.1, a big limitation of our implementation is
that we cannot yet decide automatically whether it is safe to perform this optimization for a function
or not. The effect analysis from Section 4.2 is insufficient in this regard and therefore currently not
used by any part of the plugin.

To mitigate the problems associated with deep sharing, we presented an improved sharing analysis
in Section 4.3. While our evaluation in Section 5.3.1 shows that the analysis is able to avoid unneces-
sary shares and therefore improves runtime performance, the effectiveness of the analysis is highly
sensitive to the concrete syntactical representation of the program. For example, when the BangPat-

terns language extension is enabled, the user can mark strict arguments with an exclamation mark.
The plugin generates a seq for such patterns. In consequence, the variable occurs one more time than
usual on the right-hand side which means that a share maybe needs to be inserted that otherwise is
not needed. While bang patterns are usually strategically inserted to improve performance, they can
have the opposite effect when the plugin is used.

A final limitation that we need to point out is that the worker/wrapper transformation does not have
any effect when the program is interpreted in GHCi. This is because we rely on GHC’s simplifier to
optimize the generated code. However, the simplifier is not run in GHCi. In consequence, it can be
difficult to debug the plugin and example programs. We outline steps to workaround this issue in
the plugin’s documentation.

6.3 Future Work

To address the issues outlined in the previous section, more work is needed in the future. In this final
section of the thesis, we point out possible extensions to our transformation and analyses as well as
complementary work that has the potential to improve the performance of the generated code even
further or simplifies the lifting process.

The most promising candidate to improve the performance of the Curry GHC Language Plugin is
the integration of the memoized pull-tabbing-based monad by Hanus, Prott, and Teegen (2022). The
monad is especially intriguing because it can prevent repeated deep sharing which continues to be the
main performance bottleneck. Swapping the monad of the plugin should be quite easy. Unfortunately,
the monad is Curry-specific. Other versions of the plugin therefore do not profit from this change.

To add support for parsing sub-demands, we either to need open a merge-request on the GHC’s
GitLab repository that adds the missing exports or bypass the restrictions of the API by making a
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distinction between user-defined and generated demand signature annotations. The user-defined an-
notations would still not support sub-demands we could use the GHC’s own serialization mechanism
but for generated annotations.

Once support for sub-demands has been implemented, we might also want to investigate whether
this additional information can be used for further optimizations. In Section 3.2.2 we have seen that
the GHC uses sub-demands to unbox the fields of product data types. This technique could also be
applied to our transformation but it is unclear how much of a benefit it would bring in our situation.

Another way to improve the results of demand analysis is to eta-expand the right-hand sides of func-
tion bindings. The demand analysis considers syntactic arguments of a function only. In consequence,
we currently do not worker/wrapper transform point-free definitions. The GHC provides functions
for the eta-expansion of Core expressions which we could use in the analysis phase. However, we
would need to keep track of the number of lambdas abstractions added such that we can add the
same number of lambda abstractions to the Haskell AST in order to prevent an arity mismatch.

In the previous section, we pointed out that sharing analysis is highly sensitive to the syntactical
representation of the program. A more robust approach could be to reuse the cardinality intervals
that are already part of the demand signatures. A share is not needed if the cardinality of an argument
is 1, S or A, because all of them guarantee that the argument is evaluated at most once. However, this
means that we also need to record the demands that are placed on local variables.

There are also other ways in which we can reuse the machinery introduced for the implementation
of the worker/wrapper transformation to optimize other parts of lifted programs. For example, Bang-
Patterns in data constructors are currently implemented in terms of seq. The underlying fields still
store a monadic value. Also regular data constructors have to be treated differently from regular
functions because their result and partial applications are not monadic. We could either generate a
wrapper function for data constructors or use AppSchemas directly to avoid special treatment of data
constructors and the overhead of the residual monad in strict fields.

Finally, we want to suggest an improvement to the lifting process that has the potential to greatly
simplify the code of the plugin itself. Currently, functions are replaced with their lifted version. The
original definitions therefore do not exist after the lifting process. In consequence, the program is not
type correct prior to lifting as it refers to imported functions that have been lifted and therefore a
different type. The plugin deals with this situation by unlifting types in the constraint solver plugin.
When we tried to incorporate the GHC’s simplifier into our analyses we also ran into the problem
that the unfoldings of imported functions are lifted. Furthermore, the need to restore the original
demand signatures using an annotation is also a direct result of the fact, that imported functions
are lifted and thus have a different demand signature. We, therefore, suggest to leave the original
definitions in the program and rename the lifted functions instead. A similar approach is already
taken for type-level declarations which are renamed by adding the ND suffix and leave the original
declaration intact such that the program can be integrated with regular Haskell code. This also has
the benefit that the unlifted functions can still be used and do not have to be implemented again if
the same functionality is needed in the Haskell host application. The only problem is that there is no
way to express the effects in unlifted code. Therefore, built-in operations such as (?) or failed have
to be defined in terms of error. The plugin would not only profit due to the reduction of special cases
but the original code can also be used to evaluate effect-free expressions with native performance.
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Usage

To enable a GHC Language Plugin, its main module’s name must be specified using the GHC’s -

fplugin flag. To configure the plugin, the GHC’s -fplugin-opt flag can be used. The Curry GHC
Language Plugin can be enabled and configured using the following pragmas for example. Available
options are listed in Table A.1.

{-# OPTIONS_GHC -fplugin Plugin.CurryPlugin #-}

{-# OPTIONS_GHC -fplugin-opt Plugin.CurryPlugin:<option> #-}

Table A.1. Available plugin options.

Option Description
[no-]force-recompile Forces recompilation of the module even if neither the module

nor its dependencies changed. This option is handy during devel-
opment of the plugin because a module compiled with the plugin
will not automatically recompile when the plugin is updated. Dis-
abled by default except for tests and benchmarks.

[no-]check-demand-signatures Enables/disabled the check whether demand signatures that have
been calculated during demand analysis match the ExpectedDe-

mandSignature annotations. Enabled by default.

[no-]worker-wrapper Enables/disabled the worker/wrapper transformation. Enabled
by default.

[no-]effect-analysis Enables/disabled the effect analysis. Disabled by default.

dump-original Dumps the original module before the plugin.
dump-original-ev Dumps the original evidence bindings before the plugin.
dump-original-inst-env Dumps the original class instance environment before the plugin.
dump-original-type-env Dumps the original type environment before the plugin.
dump-core Dumps the GHC core code before the plugin’s analyses.
dump-expanded-class-ops Dumps the GHC core code after expanding class operations.
dump-deriving-errs Dumps errors that are reported during instance deriving.
dump-pattern-matched Dumps the result of the pattern matching compiler.
dump-worker-wrapper Dumps the result of the worker/wrapper transformation.
dump-app-schemas Dumps the application schemas for worker functions.
dump-inst-env Dumps the class instance environment after lifting.
dump-demand-signatures Dumps the result of the demand analysis.
dump-effects Dumps the result of the effect analysis.
dump-final Dumps the final result after lifting the module.

89



A. Usage

The output of the dump-demand-signatures, dump-app-schemas and dump-effects options is formatted
as follows.

Dump<Phase>

-----------

<function_name1> (<function_unique1>): <value1>;

<function_name2> (<function_unique2>): <value2>;

<function_name3> (<function_unique3>): <value3>;

...

The output is prefixed with the name of the function. Additionally, the function’s name is followed
by its Unique in parenthesis to disambiguate the entry. Sometimes the output contains multiple lines
with the same function name and different uniques. This is the case because the output contains both
the monomorphic and polymorphic identifiers. The value should be the same for both identifiers.
Note that the output can also contain lines for locally defined functions. Therefore the printed names
do not uniquely identify a binding.
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Running Tests and Benchmarks

In this chapter, we provide instructions for how to run the tests and benchmarks that we used for the
evaluation of our implementation in Chapter 5.

B.1 Running the Test Suite

To execute the automated tests presented in Section 5.1, run the following command in the root of
the plugin’s repository.

stack test :hspec

It is also possible to run only specific tests by passing the --match flag to Hspec. For example, the
following command only runs the Coin example.

stack test :hspec --ta "--match Example.Coin"

Note that by default, the test suite recompiles all examples, even if only a single example is -matched.
This measure ensures that the examples were compiled with the latest version of the plugin. You can
disable this behavior by unsetting the -fplugin-opt=Plugin.CurryPlugin:force-recompile option for
the hspec test suite in package/curry-ghc-language-plugin/package.yaml.

B.2 Running the Benchmark Suite

To run the benchmarks presented in Section 5.3.1 and Section 5.3.2, run the following command in
the root of the plugin’s repository.

stack bench :criterion

Since the benchmark suite takes a long time to execute, we recommend running only those bench-
marks that are of interest. The Criterion library accepts a pattern that is matched against the name of
the benchmark to control which benchmarks to execute. For example, to run only the benchmarks for
the manually translated and optimized versions of the TakInt example, run the following command.
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B. Running Tests and Benchmarks

stack bench :criterion --ba "TakInt/Manual"

Similar to the test suite, the benchmark suite recompiles all examples by default. You can disable this
behavior by unsetting the -fplugin-opt=Plugin.CurryPlugin:force-recompile option for the criterion

benchmark suite in package/curry-ghc-language-plugin/package.yaml.

By default, all benchmarks are executed with the worker/wrapper transformation enabled. To dis-
able the woker/wrapper transformation, set the plugin’s no-worker-wrapper option. For example, the
following command runs all benchmarks without worker/wrapper transformation.

stack bench :criterion --ghc-options "-fplugin-opt=Plugin.CurryPlugin:no-worker-wrapper"

Due to the high peak memory consumption, we recommend to use at least 32 GB of memory, for
the execution of the benchmarks without the worker/wrapper transformation enabled. We executed
all benchmarks on a machine with an AMD Ryzen 7 3700X Prozessor with 32 GB of RAM running
Ubuntu 22.04.3 LTS.

The results of the benchmarks are printed to the console and stored in package/curry-ghc-language-

plugin/benchmark.json. The benchmark JSON report can be passed to the thesis/tool/plot.py script
to extract the relevant data and generate plots of the benchmark results. To inspect the runtime
performance results, Criterion also provides a convenient web interface that can be started by opening
the generated package/curry-ghc-language-plugin/benchmark.html file in a browser.

To collect the data for our tables and plots, we used a script that runs the benchmark suite for
one example at a time and each example once with worker/wrapper transformation enabled and
disabled, respectively. By running the examples one by one, a failed run can be repeated more easily
and the influence between examples is reduced. The script can be invoked as follows from the plugin
repository’s root directory.

./tool/bench.sh

B.3 Measuring Executable Size and Compile Time

To collect the data for Section 5.3.3 and Section 5.3.4 we created a Bash script that can be invoked as
follows from the plugin repository’s root directory.

./tool/bench-exe-size.sh

The script compiles the test and benchmark suite with and without worker/wrapper transformation
enabled as well as with and without GHC’s -dynamic1 flag set. The compile time is measured using
the time2 command. To the prevent execution of tests and benchmarks from distorting the compile
time measurement, the script sets the --no-run-tests and --no-run-benchmarks flags of the stack3

1 https://downloads.haskell.org/ghc/9.2.1/docs/html/users_guide/phases.html#ghc-flag--dynamic
2 https://man7.org/linux/man-pages/man1/time.1.html
3 https://www.haskellstack.org/
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B.3. Measuring Executable Size and Compile Time

build tool. Finally, the script locates the generated executables in stack path --dist-dir and prints
their size using the stat4 command and %s format string. In between the compilation runs, the script
clears the build cache using the stack clean -full command.

For the measurement of executable sizes, a single run of the script is sufficient since the size of the
executable is deterministic. For the measurement of compile-time, the script has been executed three
times where each run yields two data points per compilation artifact.

The collected data can be found in thesis/data/compile-time-and-exe-size.md. The spreadsheet that
has been used for calculations of averages, differences and percentages can be found in thesis/data/compile-

time-and-exe-size.ods.

4 https://man7.org/linux/man-pages/man1/stat.1.html
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Appendix C

Peano Numbers

Throughout the thesis, we made extensive use of Peano numbers as an example data structure. Since
we sometimes omitted the concrete implementation of common arithmetic operators for Peano num-
bers, we provide an overview of the operations on Peano numbers that we used in the first section.
In the second section, we provide the previously omitted implementation of tak for Peano numbers.

First, let us recapitulate the definition of the data type that we are using to represent Peano numbers.

data Nat = O | S Nat

C.1 Common Operations

In the following listing, the definition of commonly used arithmetic operations on Peano numbers
is given. In comments, we also provide mathematical justifications for each rule. Additionally, the
strictness of each function is indicated as a demand signature.

{-# ANN add (ExpectedDemandSignature "<1L><ML>") #-}

add :: Nat -> Nat -> Nat

add O n = n -- @n P N : 0 + n = n
add (S m) n = S (add m n) -- @n, m P N : (m + 1) + n = m + n + 1

{-# ANN mult (ExpectedDemandSignature "<1L><L>") #-}

mult :: Nat -> Nat -> Nat

mult O _ = O -- @n P N : 0 ¨ n = 0
mult (S m) n = add n (mult m n) -- @m, n P N : (m + 1) ¨ n = m ¨ n + n

{-# ANN leq (ExpectedDemandSignature "<1L><ML>") #-}

leq :: Nat -> Nat -> Bool

leq O _ = True -- @n P N : 0 ď n
leq (S _) O = False -- @n P N : n + 1 ą 0
leq (S m) (S n) = leq m n -- @n P N : m ď n ô m + 1 ď n + 1
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C. Peano Numbers

C.2 Tak Implementation

In Section 5.3.1 we have given an implementation of tak for Int but omitted the corresponding
Peano-based implementation due to their similarities. Below is the implementation of tak for Peano
numbers.

{-# ANN takNat (ExpectedDemandSignature "<SL><L><SL>") #-}

takNat :: Nat -> Nat -> Nat -> Nat

takNat x y z =

if x `leq` y

then z

else

takNat (takNat (pred x) y z)

(takNat (pred y) z x)

(takNat (pred z) x y)
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Appendix D

Worker/Wrapper Transformation using
unsafeBind

In Section 3.3.5 we focused on the transformation scheme that our implementation applies by de-
fault if no experimental features are enabled. As discussed in Section 3.3.4, it is possible to improve
upon the transformation by using an operation unsafeBind. The implementation of unsafeBind has
been omitted so far. The implementation provided by the Curry GHC Language Plugin encapsulates
the operation and throws an error if there is not exactly one result. Usually, the functions are not
evaluated at all since the operator should be eliminated by the relevant GHC rewrite rules.

{-# INLINE [0] unsafeBind #-}

unsafeBind :: Nondet a -> a

unsafeBind mx = case runLazyT (unNondet mx) of

Leaf x -> x
_ -> error "unsafeBind: not a leaf"

While we also implemented experimental support for the generation of code that utilizes this oper-
ation, the guarantees provided by the effect analysis presented in Section 4.2 are not sufficient to
decide whether the use of unsafeBind is safe. If the experimental translation scheme is activated, the
generated worker and wrapper functions have the following shape where we use the same definitions
as in Section 3.3.5.

f ND :: Nondet (XND
1 --> . . . --> XND

n --> RND)

f ND = return $ Func $ \x1 ->

. . .
return $ Func $ \xn ->

xs1 >>= \ys1 ->

. . .
xsm >>= \ysm -> return ( f NDworker y1 y2 . . . yn)

f NDworker :: YND
1 -> . . . -> YND

n -> RND

f NDworker y1 . . . yn =

let xs1 = return ys1
...
xsm = return ysm

in unsafeBind rhsND
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