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Chapter 1

Introduction

Modern compilers perform numerous transformations during the compilation process to speed
up execution, reduce memory usage or optimize for more exotic criteria such as energy usage
(e.g. [KVIO2]). The compilers for the functional logic language Curry, in particular the KiCS2
compiler ([Han+12a]), are no exception. There are many aspects to the correctness of such
transformations, the most obvious one being whether the transformed programs perform
computations equivalent to the original ones.

For strongly typed languages such as Curry, another interesting aspect is whether these
transformations leave a program type correct. In many Curry compilers, including KiCS2,
transformations are usually performed on a representation of the program in an intermediate
language called FlatCurry. The FlatCurry representation of a Curry program is generated by the
compiler’s front end. During this translation from Curry to FlatCurry, the front end performs its
own type checking and calculates (infers) all types in the original Curry program. The resulting
FlatCurry program can thus be assumed to be type correct.

The KiCS2 compiler does not, however, have any facilities for explicitly checking the type
correctness of FlatCurry programs. Thus, there is currently no way for the compiler to auto-
matically verify that the various transformations it performs on FlatCurry programs during the
compilation process leave those programs type correct.

The goal of this bachelor thesis is the development of a program that can infer and check the
types of FlatCurry programs. This type inferrer should have a compact and easy-to-use interface;
since the KiCS2 compiler is implemented in Curry and the type inferrer’s main purpose is to
eventually be used by KiCS2, it should itself be a Curry program.

In the next chapter, we give a cursory introduction to Curry and describe the FlatCurry
language in more detail. Chapter 3 gives a general introduction to type inference, while
Chapter 4 discusses the specifics of our implementation. We present conclusions and possible
improvements in Chapter 5.






Chapter 2

Curry and FlatCurry

This chapter will give a short introduction to Curry and a more detailed description of FlatCurry
and how the two relate to each other.

21 Curry

Curry is an integrated functional logic language, i.e. it combines the functional and logic
programming paradigms into one language. A complete description of the language can be
found in [Han+06]. Syntactically Curry is similar to the functional programming language
Haskell ([Pey+03]).

2.1.1 Modules

Curry programs and libraries are organized into modules. A module can be declared at the
beginning of a Curry source file and must contain at least a module name, for instance Example:

module Example where

The module’s function and datatype definitions follow the where keyword. If a Curry source
file does not contain a module definition, it is implicitly assumed to define a module of the
same name as the source file. As it is not possible to define more than one Curry module inside
a Curry source file, each Curry file contains exactly one module.

Curry modules can import other Curry modules using the import syntax:

module Example where

import List
import Char

It is also possible to selectively import functions or datatypes from other modules. In the
following example, only the findIndex function is imported from the List module:

module Example where

import List (findIndex)

There are a few other ways of importing modules, which are explained in detail in Chapter 6
of [Han+06].

Using the minimal module declaration above, every function and datatype inside the module
is exported and can be imported and used by other modules. It is also possible to explicitly
list all functions and datatypes that should be exported. All other functions and datatypes
will then remain internal to the module. The following definition, for example, would declare
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that the classifyAnimals function, the Animal datatype and the Classification datatype should
be exported from the module. The (..) after the Animal datatype denotes that all of Animal’s
constructors should be exported as well, whereas none of Classification’s constructors will
be exported. This facility of exporting dataypes without exporting their constructors is useful
when defining abstract data types that should be usable for other modules without exposing
their internals.

module Example (classifyAnimals, Animal(..), Classification) where

2.1.2 Built-in Data Types

Before we introduce custom data types we will look at the most important built-in ones: integers,
characters, lists, tuples and strings. All of these are defined in the Prelude module, which is the
module that contains the language’s basic operations and data types and is implicitly imported
into every Curry module. There is support for literal values of each of these types in Curry.

> Intis the data type for integral numbers. Its literal values look like one would expect: 4, -42
and 10389 are some examples.

> Char is the character data type. Character literals must be enclosed in single quotes, like this:
'a’.

> The basic list data type in Curry is a singly linked list. There is support for prepending an
item to the front of a list (via the : constructor), for getting the first element and the rest
of a list (via the head and tail functions) and for appending one list to another (via the ++
operator). All elements of a list must be of the same type.

Literal list values are expressions enclosed in brackets ([1) and separated by commas: [1, 2,
3lor[’'a’, 'b’, (someFunction 1)] are examples.

> Tuples are like their mathematical namesakes: ordered collections of a fixed number of
elements. Contrary to a list, the elements of a tuple can be of differing types. A tuple’s
elements are usually accessed via pattern matching or the fst and snd functions, which
return the first and second components of pairs, respectively. Literal tuple values are denoted
by expressions enclosed in parentheses (()) and separated by commas, for instance: (1, 2)
or ([1, 2], 3).

> The String data type is just a type synonym for a list of characters and therefore behaves like
a regular list: One can prepend characters to a string with the : constructor, append strings
to one another with the ++ operator and so on. To make working with strings nicer, there
is a literal syntax for them in Curry: A sequence of characters enclosed in double quotes is
considered a string literal, as in

"hello" ++ " world"

2.1.3 Datatypes

Curry is a strongly typed language featuring a polymorphic type system. Datatypes are defined
by a name, a list of polymorphic type parameters and constructor definitions separated by
vertical bars. The data keyword introduces a datatype definition. For instance,
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data Maybe a = Nothing | Just a

defines the datatype Maybe, which has one polymorphic type parameter, a, and two con-
structors. The first constructor, Nothing, does not take any arguments, it is nullary. The second
constructor, Just, takes one argument of the polymorphic type a.

Besides simple polymorphic type parameters, it is also possible to define constructors that
take more complex, constructed types as parameters. Constructors can also be self-referential,
taking arguments of the datatype that is being defined. For example,

data Jvalue = JString String

| JINumber Float

| JBool Bool

| JINull

| JObject [(String, JValue)]l
| JArray [JValue]

from Chapter 5 of [OSGO08] defines a datatype for storing JSON data (JavaScript Object Notation,
see [Cro06]). The JString, JNumber and JBool constructors each take a String, Float and Bool

argument respectively, the INull constructor is another example for a nullary constructor.
Jobject and JArray are examples of constructors that take more complex, constructed types as
arguments. Both are also self-referential.

Type synonyms

In addition to defining new datatypes, Curry also makes it possible to define synonyms for
existing types. A definition of a type synonym is made up of a name, a list of polymorphic type
parameters and a type expression Type synonyms are introduced by the type keyword. For
instance,

type StringTuple a = (String, a)

defines a synonym for tuples that have a String fixed as their first component but are polymor-
phic in their second component. The type of a tuple of String and Int would then be

StringTuple Int

214 Functional Programming

Curry functions are defined by sets of equations or rules. Equations come in two shapes: simple
equations and conditional equations.

Simple equations consist of the name of the function followed by a list of patterns for the
function’s arguments on their left-hand sides and an expression to evaluate on their right-hand
sides, like this:

square X = X * X

In this example, the function square has only one rule that takes a single parameter which is
bound to the name x. Its expression is x * x. We can also use more complex patterns:

squarefFst (x,_) = x * X
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Here, the parameter is deconstructed using the tuple constructor. x is bound to the tuple’s
first component, while its second component is ignored. The expression is the same as in the
previous example.

Conditional equations have one or more guards on their left-hand sides, introduced by a
vertical bar character after the function name and its rule patterns, which is then followed by an
expression, called the condition.

If there are multiple guards, their conditions must all be boolean expressions. A single guard
can be either a boolean expression or a constraint (see 2.1.5). The right-hand side of the first
guard clause whose condition evaluates to True will be evaluated. To make programming with
multiple guards more convenient, a boolean function called otherwise is predefined, which
always evaluates to True. An example of a rule with multiple guard clauses is the following
function that calculates a person’s body mass index (BMI) given his or her height in meters
and weight in kilograms and then classifies the resulting value (this example was adapted from
Chapter 4 of [Lip11]):

bmiTell :: Float -> Float -> String
bmiTell width height
| bmi <= 18.5 = "Underweight"
| bmi <= 25.0 = "Normal"
| bmi <= 30.0 = "Overweight"
| otherwise = "Very overweight"
where bmi = weight / (height * height)

The example also shows the use of the where keyword to define a variable local to the
conditions and right-hand sides of the rule and the optional type annotations for functions.

2.1.5 Logic Programming

The two main concepts of logic programming as implemented in Curry are free variables and
constraints. Constraints can be specified as part of the rule of a function (if there is only one
guard that guard can be a constraint, see 2.1.4). If a constraint is specified, the rule is only
applied if that constraint can be satisfied. Curry’s basic constraint is the equational constraint =:=
(the following example is taken from [Han+06]):

[x] =:= [0]

This equational constraint can be satisfied if x is bound to 8. Multiple constraints can be
combined to form a conjunction using the & symbol:

[x] =:= [0] & x =:= fT h & h x =:=g X

Conjunctions are interpreted concurrently, see Section 2.6 of [Han+06] for details.

When using a constraint such as [x] =:= [0] from above, the variable x is free, meaning
it is not bound and not instantiated. It will be instantiated and bound to @ in the process of
satisfying the constraint. In Curry expressions, free variables must be declared inside let or
where expressions using the syntax x free. For instance, the following is a convoluted way of
defining a 0-ary function returning the number 0:

zero | [x] =:= [0] = x where x free

The free variable x is instantiated and bound such that it satisfies the constraint [x] =:= [0]
and its value is returned. If there are multiple bindings satisfying a constraint, all possibilities
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are computed. For instance, the function allMammals in the following example would return
Elephant and Dingo:

data Class = Mammal | Bird
data Animal = Elephant | Eagle | Hawk | Dingo

class Elephant = Mammal
class Eagle = Bird
class Hawk = Bird

class Dingo = Mammal

allMammals | class x =:= Mammal = x where x free

This is an example of a non-deterministic program, as the function allMammals has two
results. Another way to introduce non-determinism into Curry programs are overlapping rules:
Functions in Curry can have rules with overlapping left-hand sides and such functions are
evaluated non-deterministically. For instance, the function

addOne :: (Int, Int) -> Int
addOne (x, _) = x + 1
addOne (_, x) = x + 1

has overlapping left-hand sides: any tuple of Ints will match the patterns in both rules, as
any tuple of Ints has a first and a second component. Thus applying the function to the tuple
(0, 10) will yield both 1 and 11.

2.2 FlatCurry

Curry programs are translated into the intermediate language FlatCurry by the compiler’s front
end. FlatCurry programs are usually represented by the Curry datatypes found in the FlatCurry
module that ships with KiCS2. We will give an overview of the language and the datatypes in
the FlatCurry module by translating parts of a Curry program to FlatCurry.

The program that we will translate is a simple implementation of a queue, based on the
banker’s queue from [Oka98] and the source code of the Dequeue module that ships with KiCS2.

module BankersQueue (Queue, empty, isEmpty,
append, head, tail) where

data Queue a = Q [a] Int [a] Int

empty :: Queue a
empty = Q [] 6 []10

isEmpty :: Queue a -> Bool
isEmpty (Q - 1 _ ) =1==0
queue :: [a] -> Int -> [a] -> Int -> Queue a
queue T If rlr | lr<=1f =Q f lf r 1r
| otherwise = Q (f ++ (reverse r)) (1f + lr) [] ©



2. Curry and FlatCurry

append :: Queue a -> a -> Queue a
append (Q f Uf r lr) x = queue f 1f (x:r) (lr + 1)

head :: Queue a -> a

head (Q [] _ _ _) = error "E"
head (Q (x:_) - _ _) =X

tail :: Queue a -> Queue a

tail (Q [] _ _ _) = error "E"

tail (Q (_:f) Uf r lr) = queue f (1f - 1) r 1r

2.2.1 Prog

The top-level datatype of a FlatCurry program is Prog:
data Prog = Prog String [String] [TypeDecl] [FuncDecl] [OpDecl]

Its constructor takes arguments corresponding to the main parts of a Curry program: The
name of the module it defines, a list of imported modules, a list of type declarations, a list of
function declarations and a list of operator fixity declarations.

For now, our BankersQueue module looks like this (remember that the Prelude module is
automatically imported into every module):

Prog "BankersQueue" ["Prelude"] [1 [] [1

2.2.2 TypeExpr

Before moving on to declaring datatypes, we have to first take a look at TypeExpr, which is used
to represent FlatCurry types:

data TypeExpr = TVar TVarIndex
| FuncType TypeExpr TypeExpr
| TCons QName [TypeExpr]
type TVarIndex = Int
data QName = (String, String)

As can be seen in the TypeExpr datatype’s definition, a type can be one of three things:
(1) a polymorphic type variable (TVar)
(2) a function type (FuncType)
(3) a constructed type (TCons)

A polymorphic type variable is identified by an index, which is why the first and only
argument to TVar is a TvarIndex (which is just a synonym for Int).

Function types are represented by FuncType, which takes two types (TypeExpr) as its argu-
ments. In case a function takes more than one argument, the second argument of the top-level
FuncType is another FuncType. A Curry function with a type signature of a -> b -> c -> a
would thus have the following type in FlatCurry (modulo the renaming of type variables):
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FuncType (TVar @) (FuncType (TVar 1) (FuncType (TVar 2) (TVar 0)))

This nesting of FuncType represents the right-associativity of functions in Curry and FlatCurry
and makes function currying (partial application) easy to implement.

TCons is used to represent constructed types. It takes the qualified name (QName, a tuple of
module name and type name) of the datatype and a list of types for its type parameters. The
type of an Int, for instance, would be:

TCons ("Prelude", "Int") []
whereas the type of a list of Ints would be:

TCons ("Prelude", "[]") [TCons ("Prelude", "Int") []]

2.2.3 TypeDecl

Types are defined by the TypeDecl type, which has two constructors:

data TypeDecl = Type QName Visibility [TVarIndex] [ConsDecl]
| TypeSyn QName Visibility [TVarIndex] TypeExpr
data Visibility = Public | Private

Type is used to define actual datatypes, while TypeSyn is used to define type synonyms
(Curry’s type construct).

A type synonym is defined by its qualified name, its visibility (Public or Private, depending
on whether it is exported from the module or not), a list of the indices of all of the synonym’s
polymorphic type variables and the type it is a synonym for. If we were, for example, to define
the synonym IntList in the module Example for a list of Ints and export that type synonym
from the module, the resulting TypeSyn could look like this:

TypeSyn ("Example", "IntList") Public []
(TCons ("Prelude", "[1") [TCons ("Prelude", "Int") [1])

To define a datatype using the Type constructor, we also need its qualified name, its visibility
and a list of polymorphic type variable indices. In addition, Type expects a list of constructor
declarations (ConsDecl):

data ConsDecl = Cons QName Int Visibility [TypeExpr]

A constructor declaration is made up of a qualified name for the constructor, the number of
parameters it expects (its arity), its visibility and a list of the types of its expected parameters. In
a well-formed FlatCurry program the arity is always equal to the length of the list of parameter
types and is only provided for convenience.

One could define the Queue type with its Q constructor from our BankersQueue module like
this:

Type ("BankersQueue", "Queue") Public [0] [
Cons ("BankersQueue", "Q") 4 Private
[TCons ("Prelude", "[]1") [TVar 0],

TCons ("Prelude", "Int") [1,
TCons ("Prelude", "[]1") [Tvar 0],
TCons ("Prelude", "Int") []]]
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As the Queue type is the only datatype in the BankersQueue module, we are now ready to
extend our program definition:

Prog "BankersQueue" ["Prelude"] [
Type ("BankersQueue", "Queue") Public [0] [
Cons ("BankersQueue", "Q") 4 Private

[TCons ("Prelude", "[1") [Tvar 0],
TCons ("Prelude", "Int") [1,
TCons ("Prelude", "[]") [TVar 0],
TCons ("Prelude", "Int") [1111]

[1 11

2.24 Expr

Before looking at how functions are declared, we will take a look at FlatCurry expressions. In
FlatCurry, there are seven different types of expressions, represented by the Expr datatype:

data Expr = Comb CombType QName [Expr]

| Var VarIndex

| Lit Literal

| Let [(VarIndex, Expr)] Expr
| Free [VarIndex] Expr

| Or Expr Expr

I

Case CaseType Expr [BranchExpr]

We will take a look at these one by one.

Comb

Combinations, which can be function or constructor calls, are represented by Comb. Its first
argument, the CombType, determines whether it is a call to a function or a constructor and
whether all parameters are present:

> ConsCall - a complete call to a constructor
> FuncCall - a complete call to a function

> ConsPartCall Int - a partial call to a constructor, where the argument is the number of
parameters missing

> FuncPartCall Int - a partial call to a function, where the argument is the number of parame-
ters missing

Secondly, Comb expects the qualified name of the function or constructor to call, and, lastly, a
list of expressions to pass to the function/constructor as parameters.
A sample call to construct an empty list could look like this:

Comb ConsCall ("Prelude", "[1") [I

10
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Var

Var evaluates to the value of a variable. Variables in FlatCurry, like polymorphic type variables,
are numbered. Var takes as its parameter the number of the variable whose value it should
evaluate to.

While VarIndex and TVarIndex are both type synonyms for Int, it is important to distinguish
between variable indices used in Var and type variable indices used in Tvar.

Assuming that both hold values of type Int, adding the values of the variables with indices
2 and 3 could look like this:

Comb FuncCall ("Prelude", "+") [Var 2, Var 3]

Lit

Literal values are represented by Lit expressions. Its only parameter is a Literal:
data Literal = Intc Int | Floatc Float | Charc Char

Adding the literal values 2 and 3 could look like this:

Comb FuncCall ("Prelude", "+") [Lit (Intc 2), Lit (Intc 3)]

Let

Let is used to bind variables to values in the context of a single expression (the binding has no
effect outside of that expression). It is similar to Curry’s let and where constructs, although
these two constructs are not always translated to FlatCurry Lets by the compiler. If the bound
expressions are simple enough, not dependent on each other and not used more than once in
the inner expression, they are usually directly embedded into that inner expression.

Let expects an association list, a list of tuples of variable indices and expressions, as its first
parameter. Each tuple in that list represents the binding of a variable to an expression, where the
variable index is the tuple’s first component and the expression is the tuple’s second component.
When Let is evaluated, it in turn evaluates the expression in its second parameter with the
bindings from the association list in effect.

We can use the Let construct to make our above example of adding the numbers 2 and 3 a
little less straight-forward:

Let [(1, Lit (Intc 2)), (2, Lit (Intc 3))]
(Comb FuncCall ("Prelude", "+") [Var 1, Var 2])

Free

Free introduces local free/logic variables (see Section 2.1.5). It takes the indices of the free
variables as its first argument and the expression to introduce these variables in as its second
argument.

Or

0r non-deterministically evaluates both expressions passed to it as arguments. It is used to
translate overlapping rules in Curry functions.

11



2. Curry and FlatCurry

Case

A Case is a construct that takes an expression, the subject, and evaluates another expression,
one of the branches, based on the form of the subject expression. If none of the branches match
the subject, the case expression fails to evaluate. The Case constructor takes the subject as the
second argument and a list of branch expressions as the third argument. It also takes a type
(CaseType) as its first argument, which is relevant with regard to free variables, but irrelevant
for type inference. For details, refer to Appendix D of [Han+06].

Each branch of the Case is represented by a BranchExpr. A BranchExpr consists of a Pattern,
used to describe the structure a value must have for the branches’ expression to be evaluated,
and an Expr.

data BranchExpr = Branch Pattern Expr
data Pattern = Pattern QName [VarIndex]
| LPattern Literal

There are two kinds of patterns: literal patterns, LPattern, and constructor patterns, Pattern.

Literal patterns only match the literal value specified in their argument; a branch with pattern

LPattern (Intc 0) would be chosen only if the case’s subject expression evaluates to the integer
0.

Constructor patterns take a constructor’s qualified name as their first argument. We will call
this constructor the match-constructor. A constructor pattern will match any value constructed
by its match-constructor. Additionally, the matched value will be deconstructed: The variables
specified in Pattern’s second argument are bound to the values passed to the match-constructor
when the matched value was constructed (in the order of the match-constructor’s arguments).
For example, the following branch/pattern combination will match all pairs and the matched
pair’s first component will be bound to the variable with index 1, while its second component
will be bound to the variable with index 2 inside the branch’s expression. So, if chosen the
whole branch would evaluate to the pair’s first component:

Branch (Pattern ("Prelude", "(,)") [1, 2]) (AVar 1)

To give a complete example of a case expression, the following would evaluate to one if the
list in variable 1 were not empty and to zero if it were:

Case Flex (Var 1) [Branch (Pattern ("Prelude", ":") [2, 3]) (Lit (Intc 1)),
Branch (Pattern ("Prelude", "[]") [1) (Lit (Intc 0))]

2.2.5 FuncDecl

Functions are represented by the FuncDecl datatype, which is defined as:
data FuncDecl = Func QName Int Visibility TypeExpr Rule

The constructor’s parameters are the function’s name (QName), its number of parameters (also
called its arity), whether it is exported from the module (Visibility), its type (TypeExpr) and a
Rule. All of these types have been covered in the section on TypeDecls (2.2.3), except for Rule.
Rule is defined as follows:

data Rule = Rule [VarIndex] Expr
| External String

12
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The External constructor is used for functions that are defined externally. We will not cover
those here. Instead, we will focus on the Rule constructor, which takes as its arguments a list of
variable indices for its parameters (VarIndex is just a synonym for Int) and an Expr. Note that
the length of the VarIndex list is equal to the arity of the function.

The Expr is the function’s body; the variable indices listed in Rule’s first argument are used
to refer to the function’s formal parameters inside the body.

We now have all definitions we need to translate the BankersQueue module’s functions.
As an example, we will translate the tail function. tail takes a Queue as its argument and
distinguishes two cases: the first argument of the Q constructor may be an empty list or a
non-empty list. Thus, we need a way to deconstruct the function’s first argument and reference
the Q constructor’s individual arguments. We do this using a Case expression with a single
branch (assuming that the variable with index 1 refers to tail’s first parameter):

Case Flex (Var 1) [
Branch (Pattern ("BankersQueue", "Q") [2,3,4,5])
]

We can now add another, inner Case expression with branches for empty and non-empty
lists. Note that we refer to the variable with index 2, which has been bound to Q’s first argument
in the outer Case:

Case Flex (Var 1) [
Branch (Pattern ("BankersQueue", "Q") [2,3,4,5])
(Case Flex (Var 2) [
Branch (Pattern ("Prelude", "[1") [I) ...,
Branch (Pattern ("Prelude", ":") [6,7]) ...1)]

Finally, we can fill in the calls to error and queue completing the expression for our function:

Case Flex (Var 1) [
Branch (Pattern ("BankersQueue", "Q") [2,3,4,5])
(Case Flex (Var 2) [
Branch (Pattern ("Prelude", "[]1") [1)
(Comb FuncCall ("Prelude", "error") [
Comb ConsCall ("Prelude", ":") [
Lit (Charc 'E’),
Comb ConsCall ("Prelude", "[1") [111),
Branch (Pattern ("Prelude", ":") [6,71)
(Comb FuncCall ("BankersQueue", "queue") [
Var 7,
Comb FuncCall ("Prelude", "-") [
Var 3,
Lit (Intc 1)1,
Var 4,
Var 51)1)1

Now all that is left to do is to add the actual FuncDecl to our Prog (some of the expressions
have been abbreviated to reduce clutter):

13
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Prog "BankersQueue" ["Prelude"]
[Type ("BankersQueue", "Queue") Public [0] [
Cons ("BankersQueue", "Q") 4 Private
[TCons ("Prelude", "[1") [TVar 01,
TCons ("Prelude", "Int") [1,
TCons ("Prelude", "[1") [TVar 0],
TCons ("Prelude", "Int") [1]1]1]
[Func ("BankersQueue", "tail") 1 Public
(FuncType (TCons ("BankersQueue", "Queue") [TVar 0])
(TCons ("BankersQueue", "Queue") [TVar 0]1))
(Rule [1]
Case Flex (Var 1) [
Branch (Pattern ("BankersQueue", "Q") [2,3,4,5])
(Case Flex (var 2) [
Branch (Pattern ("Prelude", "[1") [1) .
Branch (Pattern ("Prelude", ":") [6,7]1) ...1)1)]
[]

You can find a complete translation of the BankersQueue module in Appendix C.

2.2.6 OpDecl

The 0OpDecl type is used to represent declarations of operator fixity:

data OpDecl = Op QName Fixity Int

data Fixity = InfixOp | Infix10p | InfixrOp

These definitions are a straight-forward translation of Curry’s infix, infixl and infixr
constructs. As operator fixities are not relevant to type inference in FlatCurry and are not used
anywhere else in this thesis, please refer to appendix C.4 of [Han+06] for more details.
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Chapter 3

Type Inference

In this chapter we will briefly introduce the theory of type inference. The goal of type inference
is to find the most general types of a given expression and all its subexpressions that leave the
expression type correct (Section 1.5.2, [Han10]). To achieve this, we first insert type variables (as
placeholders for the types we seek) into the expression and its subexpressions and then generate
type equations (see Section 3.1) based on the languages’ semantics. These equations are then
solved to obtain a type substitution (Section 3.2), a process called unification (Section 3.3). This
substitution can then be applied to the original expression to replace the type variables by the
inferred types.

To be able to reason about the types of expressions, we introduce type variable annotations
into Curry expressions, denoted by superscript. In the expression

(head™ x%2, 0B)%

the overall tuple expression has type 74, while head has type 17, x has type 1» and 0 has type 3.
Instead of type variables like 73, we may also sometimes insert concrete types, like Int:

(headTl XT2 , OInt ) Tg

3.1 Generating Equations

To infer the type of an expression, we first annotate that expression with fresh type variables to
represent the unknown types we wish to infer. A fresh type variable is one that does not yet
occur in the expression. Once we have inserted type variables, we can capture in equations what
we know about how the types of the expression (and thus the type variables we just inserted)
relate to each other based on the semantics of the programming language. For example, the type
of the first argument expression of a function call must be equal to the type of that function’s
first formal parameter and the type of a branch must be equal to the overall type of the case
expression.
As a concrete example, we introduce type variables into the expression 6 + 1:

(OTl +T4 sz )T3

We know that the type of the first argument expression (the literal 0) must be equal to the
type of the + function’s first formal parameter. Likewise, the type of the second argument
expression (the literal 1) must be equal to the type of +'s second formal parameter. Lastly, the
type of the whole function application expression must be equal to the return type of the +
function.

Every FlatCurry FuncDecl (see Section 2.2.5) contains the type of the function it defines;
additionally, a FlatCurry program contains the types of all constructors it defines. Since we
can load any Curry module’s FlatCurry representation via the readFlatCurry function from the

15



3. Type Inference

FlatCurry module, we can look up the type of any function or constructor we might encounter
in a FlatCurry program (see Section 4.3.1 for details).
Looking up the type of the + function, we find:

+ :: Int -> Int -> Int

Thus, 74 = Int -> Int -> Int. Since, as explained above, we can assume knowledge about the
types of all functions and constructors, we omit type variables and equations for functions and
constructors from the examples below. The type of + also tells us that the type of the function
call’s first argument must be Int. The same is true for the call’s second argument and the type
of the call itself:

71 = Int
T = Int
73 = Int

Additionally, we know that the types of the two literals 6 and 1 must be Int:

71 = Int
T = Int

These two equations might seem redundant, but we can see that they are important when
we consider the following (type-incorrect) expression:

(01 + True®)®

If we just equated the literals 0 and True to the argument types expected by +, we would, as
before, end up with the following equations:

71 = Int
T = Int
73 = Int

Only by additionally generating equations based on what we know about the types of the
literals themselves can we detect the type conflict:

71 = Int

T = Bool

Our equations tell us that 1, is supposed to be equal to both Int and Bool, which means that
there is a type conflict and the expression is not type correct.

3.1.1 A more involved example

For a more involved example that includes polymorphism, we will look at the following
expression:

(head x, 0)

16



3.2. Substitutions

First, we need to introduce fresh type variables:
((head x™)™2, 03)%

Without looking up any types, we can see that 13 is equal to Int, as the expression is an
integer literal.
Looking up the types of the tuple constructor and head, we find

(,) ::a->b ->(a, b)
head :: [a] -> a

We replace the polymorphic type variables a and b by new ones according to our T-notation:

(,) :: @ > -> (11, D)
head :: [T71] -> T

Before we can use these types to generate equations, we have to rename their polymorphic
type variables so they do not clash with those in our original expression or each other; otherwise
the same type variable number might end up referring to different types and the inference
process will either fail or generate incorrect types. To do this, we just replace them by fresh
ones. We need three fresh type variables and our original expression has type variable numbers
going up to 4, so we can safely use the numbers 5, 6 and 7:

(,) :: 5 -> T -> (T5, Tg)
head :: [T7] -> T

With the types renamed, we can continue forming our equations. 73 must be equal to 75, as
the Int literal is the second argument to the tuple constructor. Furthermore, the result of the
call to head, Ty, is the first argument to the tuple constructor, so 1, is equal to 75. T, is also equal
to .

We also know that head’s argument is a list of 77, which means that 71 must be equal to [77].
Finally, the type of the overall call to the tuple constructor is equal to the constructed tuple’s
type, so 14 is equal to (15, 7). Summing up:

73 = Int

T, = T

T = T
=T

©n = [17]

u = (T5,7)

The complete rules for generating equations based on FlatCurry’s semantics will be given in
the implementation section (4.3.3).

3.2 Substitutions

In general, let there be sets of constant symbols (C) and variables (V) and sets A; of functions of
arity i. Then a term is defined as follows ([MMS82]):

(1) constant symbols and variables are terms

17



3. Type Inference

(2) if tq,...,ty (n > 1) are terms and f € A, then f(t1,...,t,) is a term

A substitution o is a mapping from variables to terms ([MMS82]). We will use the notation
from [Han10]:

o= {'01 11,00 tz,...}

A substitution o can be applied to a term t by simultaneously substituting all occurrences
of every variable v; in t by o(v;). For instance, given the term t = f(g(v1),v2,h(v3)) and the
substitution o = {v] = j(v3),v2 = v4,v3 ~ v3}, 0 applied to t would yield the term

t' = f(g(j(v3)),v4,h(v3))

We can apply these general definitions to FlatCurry when looking at type expressions
(TypeExpr) as terms. A variable as defined above is a type variable (Tvar), while the functions
mentioned in (2) are type constructors (TCons) and function types (which can be interpreted as
binary type constructors with a special name). Type constructors that take no arguments (such
as Int’s constructor) can be interpreted as constant symbols.

3.3 Unification

Given a set of k equations

any substitution that makes all ¢;,s;,j € {1, ..., k} equal to each other is called a unifier ((MM82]). A
unifier o of a set of equations E is called a most general unifier if all other unifiers are special cases
of o, specifically if for all unifiers ¢ of E there exists a substitution ¢ such that ¢(7) = P(o(7))
for all terms T ([Han10]). The process of finding a most general unifier is called unification.

The following algorithm for unification is given by Martelli and Montanari in [MMB82]. Given
a set of equations E, keep applying the following transformations until none is applicable
anymore, then stop with success:

(1) Select any equation of the form t = x where x is a variable and ? is not and reinsert it into the
set as x =t (swap x and ¢).

(2) Select any equation of the form x = x where x is a variable and erase it from E.

(3) Select any equation of the form t’ = '/, where t’ and "’ are not variables. Let g€ A, h € Ag
be functions, x1, ..., Xp, Y1, ..., Y be terms and ' = g(x1,..xp), t" = h(yy,..yx). f h# g or m #k,
stop with failure (the two terms clash). Otherwise we insert x1 = ¥y, ..., X = Y into E and
remove t' ="/ from the set.

(4) Select any equation of the form x =t where x is a variable, t # x and x occurs in some
other equation in E. If x occurs in ¢, then stop with failure (we cannot further process a
variable that occurs in the term it maps to). Otherwise, apply the substitution {x - f} to
every equation in E except x = .

18



3.3. Unification

When done, translate every equation in E to a mapping in a substitution by taking the
left-hand side (which due to (1) is always a variable) and mapping it to the right-hand side.
As an example, we will apply it to the equations generated in the previous section (3.1.1):
E={B=Int,3=7,17=T707=17,7 = [t7], 14 = (15,76) }
In the first round of applications, we apply (4) to 73 = Int and 1, = 75. We end up with:
E={m=Int,Int =76, = 75,75 = T7, T = [T7], T4 = (15, T6) }
Next, we apply (1) to Int =15 and (4) to 75 = 77
E={5=2Int, 5= Int, 2 =77, 5=T7,71 = [7], 4 = (77, T6) }
We can now apply (4) to 7 = Int:
E={m2Int, 5 =Int, =77, T5 =T, 71 = [17], 4 = (17, Int)}

No more rules are applicable, which means we are done. We can now translate E to a substitu-
tion o

c={mr Int, g~ Int, o~ T, T~ 7,0+ [T], 1~ (17,Int)}

Although we have only defined what it means to apply a substitution to a term, extending
that definition to our type-annotated Curry expressions defined above can be done intuitively:
Apply the substitution to each type annotation. Applying ¢ to our example, we get its type-
inferred version:

((head xL77] )7, eIt (77,Int)
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Chapter 4

Implementation

The implementation of the type inferrer is split into three Curry modules: AnnotatedFlatCurry,
containing a version of FlatCurry datatypes that can be annotated with arbitrary data (type
information in our case); Unification, a module implementing general data structures and
functions for unifying equations; and Inference, the actual type inferrer containing functions
for generating equations, renaming type variables, extracting type information from imports,
interfacing with the unifier and so on. We will look at each of these modules, starting with
AnnotatedFlatCurry.

41 AnnotatedFlatCurry

The AnnotatedFlatCurry module contains a version of FlatCurry’s core datatypes that take an
additional polymorphic type parameter to be used for arbitrary annotations.

data AProg a = AProg String [String] [TypeDecl] [AFuncDecl a] [OpDecl]
data AFuncDecl a = AFunc QName Int Visibility TypeExpr (ARule a)

data ARule a = ARule [VarIndex] (AExpr a)
| External String

data AExpr a = AVar a VarIndex

| ALit a Literal

| AComb a CombType QName [AExpr a]

| ALet a [(VarIndex, AExpr a)] (AExpr a)
| AFree a [VarIndex] (AExpr a)

| AOr a (AExpr a) (AExpr a)

I

ACase a CaseType (AExpr a) [ABranchExpr a]
data ABranchExpr a = ABranch (APattern a) (AExpr a)

data APattern a = APattern a QName [VarIndex]
| ALPattern a Literal

The datatype’s names are similar to the ones in FlatCurry, except for a leading A character
(standing for Annotated). The polymorphic type parameter for the annotation data is just
passed down the type hierarchy to AExpr, which is the first time it is actually used in any of the
constructors. When the type parameter is used in a constructor, it is always the constructor’s
first argument.

In the following sections we will be dealing with TypeExpr as the annotation type, as typed

expressions are what our inferrer is interested in.
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4. Implementation

4.2 Unification

The Unification module offers datatypes for terms and substitutions (see Section 3.2) and
functions to deal with these in addition to the core unification functionality. Specifically, the
module has functionality for creating new substitutions, extending substitutions, combining
substitutions, applying substitutions to terms and equations and, finally, unifying equations.
For a complete description of all functions, see the interface description in appendix A.2.

Terms are represented by the following datatype, which is mostly a direct translation of the
definition from Section 3.2, except that constant symbols are represented by constructors with
empty argument lists:

type VarIdx = Int

data Term = TermVar VarIdx | TermCons String [Term]

To unify sets of equations, the module uses a Curry implementation of the ML implemen-
tation given in Section 4.7 of [BN98]. This algorithm is a straight-forward translation of the
abstract algorithm description given in Section 3.3:

Start with the list of equations to be unified, E, and an empty substitution, o. Keep applying
the following transformations until E is empty:

(a) If the head of E equates a variable term x to a constructor term #, check whether x occurs in
t. Stop with failure if it does. Otherwise, apply the substitution {x ~ ¢} to the rest of E and
to the right-hand sides of all elements of ¢. Afterwards, add {x ~ t} to ¢ and recursively
continue unifying with the rest of E and the new ¢. This combines (1) and (4) of the original
algorithm description.

(b) If the head of E equates two variables, x and y, recursively continue unifying with the rest
of E and the unchanged o if x = y. Otherwise, apply the substitution {x — y} to the rest
of E and to the right-hand sides of all elements of ¢, as in (a). Also add {x = y} to c and
recursively continue unifying with the rest of E and the new ¢. This combines (2) and (4) of
the original algorithm description.

(c) If the head of E equates two term constructors, f(t1,...,t,) and g(t},...,t},),and f # gorn +m,
stop with failure. If f = ¢, continue unifying with the equations t; = ], ..., t;; = t;,, prepended
to E and the unchanged ¢. This corresponds to (3) of the original algorithm description.

The core of this algorithm is implemented in the unify’ and elim functions (in Listing 4.1)
from the Unification module. Note that the unify’ function is an internal function. It deals
with two lists of equations instead of one list of equations and one substitution, because
the FiniteMap-based substitutions in the Unification module, while very efficient for finding
the term a variable maps to, are not well-suited for updating all terms they contain. unify’
transforms the second list of equations into solved form, which means that the left-hand sides of
all equations consist exclusively of variables. Thus, turning this list into a substitution is a very
straight-forward task, taken care of by a user-facing wrapper function around unify’ simply
called unify. To avoid confusion, we will call the second list, the one that will be transformed
into solved form and converted into a substitution, the result list.

The elim function substitutes a term for a variable inside all equations in the yet-to-unify list
and the right-hand sides of all members of the result list. It also adds an equation between said
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4.2. Unification

Listing 4.1. Core unification algorithm
data TermEq = (Term, Term)

data TermEqs = [TermEq]
data UnificationError = Clash TermEq | OccurCheck TermEq | Unexpected TermEq

unify’ :: TermEqs -> TermEqs -> Either UnificationError TermEqs
unify’ [1] s = Right s
unify’ (((TermVar i), b@(TermCons _ _)):e) s = elimi bes -- (a)
unify’ ((a@(TermCons _ _), (TermVar 1i)):e) s =elimiaes -- (a)
unify’ ((Termvar i, b@(Termvar i’)):e) s | i==1" = unify’ e s -- (b)
| otherwise = elim i b e s -- (b)

unify’ ((a@(TermCons f fts), b@(TermCons g gts)):e) s = if f ==
then unify’ ((zip fts gts) ++ e) s -- (c)
else Left (Clash (a, b)) -- (c)

elim :: VarIdx -> Term -> TermEqs -> TermEqs -> Either UnificationError TermEqgs
elim i t e s | (TermVar i) ‘occursIn‘’ t = Left (OccurCheck (TermVar i, t))
| otherwise = unify’ (substitute i t e) ((TermVar i, t):s’)

where s’ = map (\(x, y) -> (x, termSubstitute’ i t y)) s

variable and said term to the result list. See alternatives (a) and (b) of the algorithm description
above.

occursIn checks whether its first argument term appears in its second argument term and
substitute’ and termSubstitute’ expect a variable and a term as arguments and substitute the
term for the variable inside a list of equations or a single term, respectively.

While this version of the unification algorithm works in the sense that it leads to correctly
unified equations and thus correctly inferred programs, it is rather slow. Inferring the GUI
module from Curry’s standard library takes roughly 38 seconds, which, even for one of the
largest modules in the standard library, is too much for practical applications. The optimization
presented below reduces the time needed to infer the GUI module to about 3.5 seconds, an
improvement of one order of magnitude.

To improve performance, we could try to implement one of the more efficient unification
algorithms available, for instance the near-linear time algorithm presented in [MMS82]. However,
in Section 7 of [DB95] the authors suggest that the initial overhead of many such asymptotically
better algorithms leads to worse real-world performance on the sort of unification problems
usually encountered in type inference. A possible improvement would be a variant of the
algorithm implemented above operating on a graph-based representation of terms, as explained
in Section 4.8 of [BN98]. We take a somewhat similar approach to speed up our algorithm.
Parts of the implementation below are based on the ML implementation given in the appendix
of [DB95].

In particular, we want to improve the following call inside elim:

unify’ (substitute’ i t e) ((TermVar i, t):s’)
where s’ = map (\(x,y) -> (x, termSubstitute’ i t y)) s

The problem with this call is that we have to iterate through both the list of equations that
have yet to be unified (e) and the entire current result list (via the map on s) and then recursively
walk through every term inside these. As the inferrer will generate quite a few equations even

23



4. Implementation

for short functions, this incurs a significant cost. What we would like to be able to do is apply a
substitution to every equation and every right-hand side inside the result list without having to
look at each of them.

To this end, we introduce new internal datatypes for terms and equations:

data RTerm = RTermCons String VarIdx
| RTermVar VarIdx
| Ref VarIdx

type REq = (RTerm, RTerm)

type REqs = [REq]

RTermCons and RTermVar are exactly the same as TermCons and TermVar. Ref is a type used to
create a reference to a type variable, the value of which is stored inside a RefTable (implemented
using a FiniteMap, a datatype in Curry’s standard library providing an efficient way to map
keys to values). The deref function can be used to retrieve the value of a Ref; chained references
are handled transparently:

type RefTable = FM Int RTerm

deref :: RefTable -> RTerm -> RTerm

deref t (Ref i) = case lookupFM t i of
Just a -> case a of

(RTermVar _) -> a
(RTermCons _ _) -> a
(Ref _) -> deref t a

Nothing -> error "Deref failed!"
When a Term is converted to an RTerm, all TermVars are automatically changed into Refs:

termToRTerm :: RefTable -> Term -> (RefTable, RTerm)
termToRTerm r (TermVar i) = (addToFM r i (RTermVar i), Ref i)
termToRTerm r (TermCons n 1) = (r’, RTermCons n 1)

where (r’, 1') = mapAccumL termToRTerm r 1

We change the unify’ function to work on RTerms instead of Terms and add a few rules to
handle Refs. Those rules simply dereference the reference and recursively call unify’ again.
Additionally, unify’ now expects and returns a RefTable:

unify’ :: RefTable -> REqs -> REqs -> Either UnificationError (RefTable, REQs)
unify’ r [] s = Right (r, s)

unify’ r (((RTermVar i), b@(RTermCons _ _)):e) s =elimr i b e s

unify’ r ((a@(RTermCons _ _), (RTermVar i)):e) s =elimr i ae s

unify’ r ((RTermVar i, b@(RTermVar i’)):e) s | 1i==1i" = unify’ re s

| otherwise = elim r i b e s
unify’ r ((a@(RTermCons f fts), b@(RTermCons g gts)):e) s = if f == g
then unify’ r ((zip fts gts) ++ e) s
else Left (Clash (rTermToTerm r a, rTermToTerm r b))

unify’ r ((a@(Ref _), b@(RTermVar _)):e) s = unify’ r ((deref r a, b):e) s
unify’ r ((a@(Ref _), b@(RTermCons _ _)):e) s = unify’ r ((deref r a, b):e) s
unify’ r ((a@(Ref _), b@(Ref _)):e) s = unify’ r ((deref r a,

deref r b):e
unify’ r ((a@(RTermVar _), b@(Ref _)):e) unify’ ((a, deref r b):
unify’ r ((a@(RTermCons _ _), b@(Ref _)):e) s = unify’ ((a, deref r b):

n
Il
® D -
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4.2. Unification

While the changes to unify’ are as expected and do not yield any improvements (if anything,
the extra step of having to dereference should slightly decrease performance), the new version
of elim in Listing 4.2 results in a large performance gain:

Listing 4.2. Improved elim function

elim :: RefTable -> VarIdx -> RTerm -> REgs -> REQs
-> Either UnificationError (RefTable, REgs)
elim r i t e s | occursIn r (RTermVar i) t = Left (OccurCheck (TermVar i,
rTermToTerm r t))
| otherwise = case t of

RTermVar i’ -> unify’ (addToFM r i (Ref i’')) e
((RTermVar i, (Ref i')):s)
RTermCons _ _ -> unify’ (addToFM r i t) e

((RTermVar i, t):s)

The iteration through all equations and the right-hand sides of all elements of the result list
has been replaced by changing the corresponding entry in the RefTable to the new element, with
the special case that instead of changing an entry to an RTermVar, we change it to a reference to
that term variable’s entry in the RefTable.

To illustrate how the enhanced algorithm works, we will unify the following list of equations:

[(TermVar 1, TermVar 12),
(Termvar 1, TermCons "Int" []),
(TermVar 3, TermCons "List" [TermVar 1])]

The steps of the unification algorithm are given in Table 4.1, beginning with the conversion
of the above list of equations to RTerms. Dereferencing everything inside the resulting list and
converting it back to Term yields:

[(TermVar 3, TermCons "List" [TermCons "Int" []]),
(TermVar 12, TermCons "Int" []),
(TermvVar 1, TermCons "Int" [])]
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Table 4.1. Sample application of unification algorithm
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4.3. Inference

4.3 Inference

The Inference module contains functionality for reading FlatCurry programs, generating fresh
type variables, extracting type information from imported modules and interacting with the
unifier. When asked to infer the types of a function or program, it takes the following steps to
arrive at an inferred version of that function or program:

(1) Create a type environment by extracting type information from the program’s imported
modules.

(2) Convert the program to AnnotatedFlatCurry and annotate it with fresh type variables in the
process.

(3) Generate equations for each function’s body:.

(4) Translate the equations into a form understood by the unifier.

(5) Unify the equations.

(6) Translate the terms inside the substitution back into FlatCurry types.
(7) Apply the substitution to the original expression.

(8) Regenerate the function type and normalize type variable numbers.

Steps (3) through (8) happen on a per-function basis even if the caller asks for an inferred
version of the whole program. We will look at each step in order, starting with the creation of
a type environment. Afterwards, we will discuss the handling of errors during the inference
process.

A complete description of Inference’s interface can be found in appendix A.3.

4.3.1 Creating a Type Environment

A type environment is a mapping from qualified names to types. It is used to look up the
types of known functions and constructors when generating equations. When a program is first
loaded and the inferrer is not given a type environment to use, it creates a new one. To do this,
it reads the interface files of all imported modules of the given program, which will contain all
types needed to infer that program’s types.

An interface file is simply a FlatCurry program with the bodies of all functions omitted to
make it more compact and efficient to parse. Thus, it only contains function and datatype/con-
structor definitions (and operator fixities, but those do not interest us since they carry no type
information). The type of a function is contained in its definition, so extracting it is simply a
matter of looking at the FuncDecl. A little more work needs to be done for TypeDecls: If the type
is a synonym, we can just insert a mapping from its qualified name to its target type. In case
of a datatype, we create a function type for each of its constructors, where the constructor’s
parameter types are the function’s parameter types and the datatype’s type is the function’s
return type.

To illustrate how types are extracted from TypeDecls, we will look at the Prelude’s Either
datatype as an example:

data Either a b = Left a | Right b
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The corresponding TypeDecl in FlatCurry looks like this:

Type ("Prelude", "Either") Public [0, 1] [
Cons ("Prelude", "Left") 1 Public [TVar 0],
Cons ("Prelude", "Right") 1 Public [TVar 1]]

According to the process outlined above, we extract function types for the constructors Left
and Right. The Left constructor’s only argument is of type Tvar 6. A call to the constructor
results in the constructed type TCons ("Prelude", "Either") [TVar 0, TVar 1]. So the resulting
function type looks like this:

FuncType (TVar 0) (TCons ("Prelude", "Either") [TVar 0, TVar 1])

Similarly, the Right constructor’s only argument is of type Tvar 1 and it results in the same
constructed type. So its function type is:

FuncType (TVar 1) (TCons ("Prelude", "Either") [TVar 0, TVar 1])

Regardless of whether a type environment is given to the inferrer as a parameter or newly
created by the inferrer itself, it is always extended with the types from the module that is to
be inferred. This step is needed to be able to infer functions that refer to constructors or other
functions inside the same module (or themselves in case of recursive functions).

Type variable numbers in the types of functions and constructors are usually normalized by
the front end when they are generated, so the type variables of most polymorphic functions
start with the number 0. Just using these type variable numbers when looking up the types of
functions and constructors in the type environment will lead to clashes, meaning that different
types will end up being associated with the same type variable number. This will likely lead
to either a failure to infer any types at all or a type-inferred expression with wrong types.
As a consequence, we need to replace type variables in any looked-up type (of functions or
constructors) with fresh ones to prevent these clashes.

This replacement is done by the renameTVars function. The process of replacing the type
variables is simple: Replace every Tvar with a fresh one, recursively refresh the type expressions
of a FuncType, and recursively refresh the argument type expressions of a TCons. The only
complexity is that we have to keep track of what TVar has been replaced by what fresh Tvar and
replace any other occurrence of the original Tvar by the same fresh one.

Otherwise, if we did not keep track of already-replaced variables and just replaced every
occurrence of any type variable by a fresh one, the tuple type

TCons ("Prelude", "(,)") [Tvar 0, TVar 0]
would be renamed like this, assuming the next fresh type variable is 5:
TCons ("Prelude", "(,)") [Tvar 5, TVar 6]

We have now lost valuable information: Whereas the former tuple type clearly specified that
both components were of the same type, the new one has no such restrictions.

4.3.2 Converting and Annotating FlatCurry Programs

When a FlatCurry program is loaded, the inferrer needs to convert it to AnnotatedFlatCurry and
insert fresh type variables as annotations to represent the unknown types that we wish to infer
(see Section 3.1). Since the AnnotatedFlatCurry datatypes are similar to the FlatCurry datatypes
except for the additional polymorphic type parameter at the beginning of each expression
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(a TypeExpr in our case), this conversion is straightforward: Convert a function’s top-level
expression to AnnotatedFlatCurry, insert fresh type variables as the annotation and recursively
convert all of its subexpressions.

Converting a function or program datatype is even easier, since we do not have to insert
any type variables. For a program, we convert all functions, keep the other parameters of the
datatype, and construct an annotated program using the converted functions and the original
parameters. For a function, we can keep all of the original parameters when constructing its
annotated version except for its rule. There are two alternatives when constructing a rule:
external rules only take a string parameter which we can leave untouched; regular rules take an
expression, which needs to be converted, and a list of variable indices, which we can use as-is
when constructing the rule’s annotated version.

The annotatexTVar functions are responsible for this conversion, starting with the top-level
annotateTVar. Since we want to annotate the converted expressions with fresh type variables,
we need a way to come up with ones. The easiest way and the one we use is to start with type
variable 0 and keep counting. Whenever we need a fresh type variable number, we use the
current count and increment it afterwards.

As Curry is a purely function programming language, there is no global location to store our
count of variable numbers (like a static class member in Java). Instead, functions that need the
count take the current count as a parameter and return a tuple of the new count and their actual
return value. For example, the type signature of the annotateExprTvar function looks like this:

annotateExprTVar :: Int -> Expr -> IntState (AExpr TypeExpr)

Where IntState ais a type synonym for (Int, a). The function’s implementation is straight-
forward in simple cases such as the following:

annotateExprTVar n (Var i) = (n + 1, AVar (TVar n) i)

The type variable with number n, the current count, is used for the type variable inserted
into the Var expression, so n + 1 becomes the new count. However, this becomes more complex
when we need to recursively translate subexpressions, which can be nested arbitrarily deeply
themselves and thus have a need for an unknown number of fresh type variables. To translate
the 0r expression, for example, we need to first translate its first alternative expression and then,
using the new count returned from that translation, translate the second alternative expression.
We can then use the count returned from this second translation to generate the fresh type
variable needed to annotate the Or itself. So something like this would not work:

annotateExprTVar n (Or a b) = (n + 1, AOr (TVar n)
(annotateExprTVar n a)
(annotateExprTVar n b))

To thread the variable number count through the various function calls, we can use Curry’s
where construct:

annotateExprTVar n (Or a b) = (n'" + 1, AOr (TVar n’'’) a’ b’")
where (n’, a') = annotateExprTVar n a
(n"", b") = annotateExprTVar n’ b

This kind of implementation works, but becomes tedious to write and hard to read when
we need to thread the variable count through more than a couple of function calls. Instead, we
introduce a very simple operator to make threading more pleasant to write and more visually
apparent:
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(>-=) :: (b, @) -> (b ->a -> (b, c)) -> (b, C)
(>-=) (s, a) f=fs a

Using this and a few anonymous functions, the above example becomes:

annotateExprTVar n (Or a b) = annotateExprTVar n a >-= \n’ a’ ->
annotateExprTVar n’ b >-=\n'’ b’ ->

(n"" + 1, AOr (TVar n’’) a" b")

This is already enough for most use cases, but an important case that is not covered is
mapping over a list while threading the count through all function calls. We can define a
mapState function to do this for us:

mapState :: (s -> b -> (s, ¢)) -> s -> [b] -> (s, [c])
mapState _ s [] = (s, [])

mapState f s (x:xs) = (s’'’, x":xs')
where (s’', x') =f s x
(s’'’, xs') = mapState f s’ xs

Using this function, we can easily implement the translation of combinations, where we
need to translate each parameter expression:

annotateExprTVar n (Comb t q es) = mapState annotateExprTVar n es >-= \n’' es’ ->

(n” + 1, AComb (TVar n’') t q es’)

This functionality is enough to implement all conversion functions from FlatCurry to
AnnotatedFlatCurry. The rest of the rules are very similar to the examples presented.

4.3.3 Rules for Generating Equations

We will look at the rules for generating equations abstractly before discussing their Curry
implementation. In the examples below, we define the typeof function to be the type of its
argument expression as specified in its constructor. So typeof (Avar (TVar 0) 1) would be Tvar

0. Please note that typeof is the type of the argument expression as specified in its constructor,
not the type that will eventually be inferred for the expression.

AVar

AVar TypeExpr VarIndex

Variables are easy: since we only have the information about the variable’s type given to
us in Avar’s first argument, we cannot generate any equations that would encapsulate new
information.

ALit

ALit TypeExpr Literal

The type of a literal expression is the type of the literal it represents. In FlatCurry, this can be
either an Int, a Char or a Float. Thus, the type of the ALit expression must be equal to the type
of its Literal. For instance, the expressions
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ALit (TVar 0) (Intc 0)
ALit (Tvar 0) (Charc ’a’)
ALit (TVar 0) (Floatc 0.1)

Would yield the following equations, respectively:

> TVar 0 =TCons ("Prelude", "Int") []
> TVar 0 =TCons ("Prelude", "Char") []

> TVar 0 =TCons ("Prelude", "Float") []

AOr

AOr TypeExpr (AExpr TypeExpr) (AExpr TypeExpr)

An AOr expression introduces non-determinism, meaning it can evaluate to none, one or both
of its argument expressions. As an expression is of exactly one type, both of A0r’s alternative
expressions must be of the same type. That type must also be the type of the A0r itself. This
yields three equations: One that equates the type of the AOr to the type of its first alternative
expression, one that equates the type of the A0r to its second alternative expression, and one that
equates the types of both alternative expressions to one another. Additionally, we recursively
generate equations for each alternative expression. For example:

AOr (TVar 0) el e2

would yield the following equations, in addition to the equations recursively generated for el
and e2:

TVar @ = typeof(el)
TVar © = typeof(e2)
typeof(el) = typeof(e2)

AComb

AComb TypeExpr CombType QName [AExpr TypeExpr]

A combination is a call to a function or a constructor, partially (some of the callee’s formal
parameters missing) or fully applied. In either case the type of the callee can be represented by
a FlatCurry FuncType, as constructors can be interpreted as functions that take the constructor’s
parameters as their formal parameters and return a value of the datatype the constructor belongs
to.

We can use this function type to find the types of the expressions in the AComb’s parameter
list: The type of the i-th expression is the type of the i-th formal parameter. Or, when expressed
in terms of FuncTypes: The type of the i-th expression is the type of the first parameter to the
FuncType at the i-th level. Furthermore, if the list of parameter expressions has length k, then
the type of the call’s return value, and thus the type of the overall AComb expression, is the
type of the second argument of the FuncType at the k-th level. Because of the nesting nature of
FuncTypes, this also takes care of partial calls because in that case the second argument of the
FuncType at the k-th level would simply be another FuncType. For an illustration, consider the
following expression:
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AComb (TVar 0) FuncCall ("Example", "fourArgs") [el, e2, e3]
Assuming that the type of fourArgs is

FuncType (TVar 1) -- first level
(FuncType (TVar 2) -- second level
(FuncType (TVar 3) -- third level
(FuncType (TVar 4) (TVar 5)))) -- fourth level

we can use the above method to conclude that the type of el must be the type of the first
argument to the first level FuncType, namely Tvar 1. By the same rule, the type of e2 must
be the type of the first argument to the second level FuncType, namely TVar 2. The same rule
applies to e3, so its type must be Tvar 3. As we only have three arguments, the type of the
overall AComb must be the type of the second argument to the third level FuncType, which is
FuncType (TVar 4) (TVar 5). This yields the following equations in addition to any equations
generated recursively for el, e2 and e3:

typeof(el) = TVar 1
typeof(e2) = TVar 2
typeof(e3) = TVar 3
TVar © = FuncType (TVar 4) (TVar 5)

AlLet

ALet TypeExpr [(VarIndex, AExpr TypeExpr)] (AExpr TypeExpr)

ALet introduces a set of variable-to-expression bindings local to another expression, its inner
expression. Inside this inner expression, any Avar referencing a variable present in ALet’s bindings
evaluates to the expression that variable is bound to. Thus, the types of those Avars must be
the same as the types of the expressions their respective variables are bound to by the ALet. If
variable k is bound to the expression ek, then we can generate the equation Tvar 0 = typeof(ek)
for any Avar (Tvar 0) k inside the inner expression.

As the ALet itself evaluates to its inner expression, its type must be the same as that of the
inner expression. Furthermore, we can recursively generate equations for each expression in
ALet’s bindings and its inner expression.

So, for the following expression

ALet (Tvar 0) [(1, el), (2, e2)]
(AOr (TVar 1) (AVar (Tvar 2) 1) (AVar (TVar 3) 2))

we can generate the following equations, in addition to any equations generated recursively for
el, e2 and the inner AOr expression:

TVar 0 = Tvar 1
TVar 2 = typeof(el)
TVar 3 = +typeof(e2)
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ABranch and APattern

ABranch (APattern TypeExpr) (AExpr TypeExpr)
data APattern TypeExpr = APattern TypeExpr QName [VarIndex]
| ALPattern TypeExpr Literal

We have to distinguish between branches with literal patterns and branches with regular
constructor patterns. In case of an ALPattern, a literal pattern, we can only generate one
equation in addition to the equations recursively generated for the branch’s expression: The
type of the pattern itself must be equal to the type of its Literal, similarly to an ALit expression.

Constructor patterns, APatterns, as explained in Section 2.2.4, match any value that was con-
structed by the constructor identified by the qualified name passed to the pattern. Additionally,
the matched value is deconstructed: The variable with the index at the i-th position in the list
of variable indices passed to the pattern is bound to the i-th parameter originally passed to
the constructor of the matched value. As an example, given the list [1, 2, 3] as the variable
indices, a constructor pattern with constructor (,,) (the 3-tuple constructor) would match the
value (a, b, c) and bind the variable with index 1 to expression a, the variable with index 2
to expression b, and the variable with index 3 to expression c. This binding is in effect when
evaluating the parent branch’s expression. Similarly to ALet, the type of every variable reference
inside the branch’s expression that references one of the variables bound by the deconstruction
process must be equal to the type of the expression that variable is bound to.

Since variables are bound to parameters originally passed to the pattern’s constructor, we
can derive their types from the type of the constructor using the rule described in the above
section on AComb: A constructor type is represented by a function type (FuncType). The type of
the variable with the index at the i-th position of the pattern’s variable index list is the same
as the type passed as the first parameter to the i-th level FuncType in the constructor’s function
type.

Similarly to combinations, the type of the overall pattern is the same as the type of the
second parameter of the k-th level FuncType in the constructor’s function type, where k is the
number of variable indices given in the pattern’s variable index list. In a well-formed FlatCurry
program, this should always be the constructor’s return type, which is the datatype it constructs.

Thus, we can generate the following equations for branches with constructor patterns, in
addition to any equations generated recursively for the branch’s expression:
> The type of every reference to a variable whose number appears at index 7 of the pattern’s

variable index list must be equal to the type computed for the i-th variable by the process

outlined above (for variable references inside the branch’s expression).

> The type of the overall pattern must be equal to the type that remains after all bound
variables have been matched to their types by the process outlined above.

For instance,

ABranch (APattern (TVar 0) ("Prelude", ":") [1,2])
(AVar (Tvar 1) 1)

would yield the following equations, assuming that we know that the type of : is a function
type from Tvar 3 to a list of Tvar 3 to a list of Tvar 3:

TVar @ = TCons ("Prelude", "[]") [TVar 3]
TVar 1 = TVar 3
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ACase

ACase TypeExpr CaseType (AExpr TypeExpr) [ABranchExpr TypeExpr]

We can equate the type of the overall ACase to each of the types of the branches” expressions.
We also equate the type of the subject expression to the types of each of the branches’ patterns.
Furthermore, we recursively generate equations for the subject expression and each of the
branches.

For example, the following ACase with two branches,

ACase (TVar 0) subj [
ABranch (APattern (TVar 2) ("Prelude", "Nothing") []) el,
ABranch (APattern (TVar 3) ("Prelude", "Just") [2]) (AVar (TVar 4) 2)]

could yield these equations in addition to any equations recursively generated for the subject,
the expression el and the inner expression of the second branch:

TVar @ = typeof(el)

TVar 06 = TVar 4
typeof(subj) = TVar 2
typeof(subj) = TVar 3

TVar 2 = TCons ("Prelude", "Maybe") [TVar 6] -- (see section on ABranch)
TVar 3 = TCons ("Prelude", "Maybe") [TVar 6] -- (see section on ABranch)
TVar 4 = TVar 6 -- (see section on ABranch)

AFree

AFree TypeExpr [VarIndex] (AExpr TypeExpr)

An AFree introduces free variables into an expression, but does not offer any insight into the
types of those variables. Thus, the only thing we know with certainty is that the type of the
AFree itself must be equal to the type of its inner expression. For example,

AFree (TVar 0) [1] (Avar (Tvar 1) 1)

yields the equation TVar 0 =Tvar 1.

4.3.4 Implementing the Rules in Curry

Most of the rules in the previous section are implemented inside the genPairs function (see
Listing 4.3). As with all function definitions in this section, error and state handling have been
omitted to keep the examples short and uncluttered.

There are a few functions that genPairs depends on. Some of these are easily explained:

> lookupType looks up a type inside a type environment and replaces all type variables with
fresh ones (see Section 4.3.2 for details on how this is done)

> literalType returns the type of a literal; either Int, Float or Char
> typeExpr extracts the TypeExpr from an AExpr TypeExpr

> matchCombType does the matching from parameter types to a function type explained in

Section 4.3.3
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Listing 4.3. Function for generating equations

type TypeEnv = FM QName TypeExpr

type Equations = [(TypeExpr, TypeExpr)]
genPairs :: TypeEnv -> AExpr TypeExpr -> Equations

genPairs env (AComb ex _ f ps)
genPairs env (ACase ce _ subj bs)
genPairs env (AVar _ _)

genPairs env (ALit t 1)
genPairs env (AOr t a b)

genPairs env (ALet t b e)

genPairs env (AFree t _ e)

map (genPairs env) ps ++

matchCombType ex (lookupType env f) ps

map (genBranchPairs env ce subj) bs ++

genPairs env subj

[1

[(t, literalType 1)]

genPairs env a ++

genPairs env b ++

[(typeExpr a, typeExpr b), (typeExpr a, t),

(typeExpr b, t)]

genVarPairs env
(map (\(a, b) -> (a, typeExpr b)) m)
e ++

map (genPairs env . snd) b ++

genPairs env e ++

[(t, typeExpr e)]

genPairs env e ++ [(t, typeExpr e)]

We are left with genBranchPairs and genVarPairs. As the former depends on the latter, we

will start with genVarPairs:

genVarPairs :: TypeEnv -> [(VarIndex, TypeExpr)]l -> AExpr TypeExpr -> Equations

genVarPairs env vs (AComb _ _ _ ps)
genVarPairs env vs (ACase _ _ s bs)
genVarPairs _ vs (AVar e k)

Just a -> [(e, a)]

Nothing -> []
genVarPairs -  _ (ALit _ _)
genVarPairs env vs (AOr _ a b)
genVarPairs env vs (ALet _ m e)

genVarPairs env vs (AFree _ _ e)

= map (genVarPairs env vs) ps
= map (genBranchVarPairs env vs) bs ++

genVarPairs env vs s

= case (lookup k vs) of

=[]
= genVarPairs env vs a ++ genVarPairs env vs b
= map (genVarPairs env vs . snd) m ++

genVarPairs env vs e

= genVarPairs env vs e

This function recursively searches an expression for variables occurring in the binding from
variables to types given in its second argument - as can be seen in the rule matching Avar
expressions. When it finds such a variable, the type of that Avar expression is equated to the
type in the binding. This functionality is used in generating equations for ALet expressions and

pattern deconstruction.

The genBranchvarPairs function used in the ACase rule above just evaluates genvarPairs for
the branch’s expression. That leaves us with genBranchPairs:
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genBranchPairs :: TypeEnv -> TypeExpr -> AExpr TypeExpr
-> ABranchExpr TypeExpr -> Equations
genBranchPairs env t subj (ABranch pat@(APattern pt f _) e) = genPairs env e ++
genVarPairs env (patternVarTypes ct pat) e ++
[ (typeExpr subj, patternType ct pat), (t, typeExpr e),
(pt, patternType ct pat)]
where ct = lookupType env f
genBranchPairs env t (ABranch (ALPattern pt 1) e) = genPairs env e ++
[ (typeExpr subj, literalType 1), (t, typeExpr e), (pt, literalType 1)]

This function generates equations for a branch. If that branch has a literal pattern, it
recursively generates equations for the branch’s expression and equates the parent case’s subject
type to the type of the literal, the parent case’s overall type to the type of the branch’s expression
and the type of the pattern to the type of the literal.

If the branch has a regular pattern, the function also recursively generates equations for its
expression. It uses the functions patternvarTypes and patternType to generate bindings from
the variables used in deconstruction to their types and return the type of the pattern constructor,
respectively (see Section 4.3.3 for details). The bindings are used to generate equations for
all occurrences of the variables used in deconstruction inside the branch’s expression via
genVarPairs. It equates the pattern’s constructor result type to the type of the pattern itself and
to the parent case expression’s subject type. Finally, it equates the overall type of the parent
case expression to the branch expression’s type.

In short, genPairs is responsible for generating equations and calls out to genvarPairs to
handle variable bindings, genBranchPairs to handle branches and matchCombType to handle
function calls.

4.3.5 Interfacing with the Unifier

The unification module works with Terms and not TypeExprs, which means that we have to find
a way to convert a type expression into a term and vice versa. Luckily, the definitions of terms
and type expressions are structurally similar:

data Term = TermVar VarIdx
| TermCons String [Term]

data TypeExpr = TVar TVarIndex
| TCons QName [TypeExpr]
| FuncType TypeExpr TypeExpr

As VarIdx and TVarIndex are both type synonyms for Int, we can easily map TVar to TermVar.
To map TCons to TermCons, we have to convert QName to a regular string and back. Joining the
two parts of a QName by a semicolon (;) character does the trick - according to appendix C.1 of
[Han+06] the semicolon is not a valid character for either identifiers or operator names in Curry.

This leaves us with FuncType, which we can translate to a TermCons with name ->. Even if
a function of this name were to occur in a FlatCurry program, it could only appear inside a
TypeExpr as a qualified name, implying that it would always be prefixed by a module name;
or at the very least the semicolon character used to separate the two parts of a qualified name
when translating TCons to TermCons.
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Once the conversion to Term is done, we can hand the equations to the unifier. The terms
inside the resulting substitution are converted back into type expressions when the substitution
is applied to the inferred expression, as describe in the next section.

4.3.6 Applying a Substitution to an Expression

To apply a substitution to an expression, we recursively look at every type variable occurrence.

If it exists in the substitution, we translate the looked-up Term back to a TypeExpr and substitute

that for the type variable. If it does not exist in the substitution, we leave the type variable alone.
To translate a Term back into a TypeExpr, we use the following rules:

> If the term is a Termvar, we simply translate it into a Tvar with the same number.

> If the term is a TermCons with name ->, we make sure that it has exactly two parameters and
translate these into TypeExpr. We then use the translated parameters as the arguments to the
resulting FuncType.

> If the term is a TermCons with any name other than ->, we split its name at the first occurrence
of the semicolon character and use the resulting two parts to create a qualified name (the
first part is used as the module name). We recursively translate the parameters to TypeExpr
and construct a TCons with the generated qualified name and the converted parameters as
arguments.

In the implementation, we define the function lookupConvertDefault to look up a type
variable in the substitution and convert it if it is found or just return the original type variable if
it is not. Constructed types and function types are returned as-is. termToTypeExpr is simply a
straight-forward implementation of the rules presented above to convert a Term to a TypeExpr.

lookupConvertDefault :: TypeExpr -> Substitution -> TypeExpr
lookupConvertDefault e@(TVar n) sub = case lookupSubstitution sub n of
Just v -> termToTypeExpr v
Nothing -> e
lookupConvertDefault o@(TCons _ _) _ =0
lookupConvertDefault f@(FuncType - _) - = f

This makes the implementation of substTypes, the top-level function responsible for applying
a substitution to an expression, very straightforward to both read and write. For example, the
rule for AComb looks like this:

substTypes :: Substitution -> AExpr TypeExpr -> AExpr TypeExpr
substTypes sub (AComb e t f ps) = AComb (lookupConvertDefault e sub) t f
(map (substTypes sub) ps)

4.3.7 Generating a Function Type and Normalizing Type Variables

After the equations have been generated and unified and the inferred types have been substituted
into the original program or function, we renumber the type variables starting from 0. This
process is called normalization and is done to make the inferred program easier to read. We also
regenerate the function type inside each function definition to make sure that any type variables
inside it line up with their counterparts in the function’s body. The extractFuncType function
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is responsible for generating the function type, while normalizeFunc and normalizeExpr handle
type variable normalization.

Type variable normalization is a straightforward process: recursively walk through the
expression and for each type variable encountered either assign to it a new number starting
from 0 if we have not seen it before, or assign to it whatever number we assigned at a previous
occurrence. This means that we have to keep track of the next free type variable number and a
mapping from type variables to type variables for the ones we have already encountered. When
normalizing a complete function, we first normalize the type given in its FuncDecl to make sure
that the type variables used inside that are always assigned the lowest numbers.

To extract a function’s type given its body, we use the variables declared as its formal
parameters inside the ARule definition. We look up the types of those variables inside the
function’s body and make them the types of the function’s parameters. If a parameter is not
used, the corresponding variable will not be found inside the function’s body. In this case, we
generate a fresh type variable and use that as the type of that particular function parameter.
The type of the top-level expression becomes the function’s return type.

-- Curry equivalent: a x _ =x + 5
AFunc ("Example", "a") 2 Public (TVar 42) (ARule [1, 2]
(AComb (TCons ("Prelude", "Int") []) FuncCall ("Prelude", "+") [
AVar (TCons ("Prelude", "Int") []) 1,
ALit (TCons ("Prelude", "Int") []) (Intc 0)]1))

In the above function definition, for instance, the first formal parameter’s variable number is
referenced in an Avar whose type has been inferred to be TCons ("Prelude", "Int") []1. Thus,
we know that the type of the function’s first formal parameter must also be TCons ("Prelude"
, "Int") []. Likewise, the top-level expression has type TCons ("Prelude"”, "Int") [], which
tells us that this is also the function’s return type. The variable with number 2, which is the
variable number assigned to the function’s second formal parameter in the ARule, however, does
not appear anywhere inside the function’s body. We assign it a fresh type variable, 0, to make it
a polymorphic parameter, since we do not have any information about its type. The generated
function type becomes:

FuncType (TCons ("Prelude", "Int") [])
(FuncType (TVar 0) (TCons ("Prelude", "Int") []))

In practice, a freshly generated function type can be more general than the type specified
in the original FlatCurry program. For instance, the PAKCS ([Han+12b]) compiler’s front end
sometimes adds helper functions that return parts of a constructed value when translating from
Curry to FlatCurry. One such function could simply return the first component of a pair:
helper (a, _) = a

The compiler’s front end uses the type information available to it when generating the
function to speed up type inference. If the helper functions is generated in the context of a
integer-tuple, it will have the following type in its FlatCurry representation:

helper :: (Int, Int) -> Int
helper (a, _) = a

The type inferrer, however, will generate the following, more general type:

helper :: (a, b) -> a
helper (a, _) = a
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4.3.8 Handling Errors

During equation generation and unification, we might run into errors like clashes during
unification or missing type information in the type environment. When such an error occurs,
we need a way to inform our caller that it occurred and what kind of error it is.

The most straight-forward way to do this is using an Either return type:

data Either a b = Left a | Right b

We use the Left constructor to signal an error and the Right constructor to wrap the actual
return value in case of success. All errors returned from functions in the Inference module are
Strings, so we define a type synonym to make type signatures more compact:

type StrErr a = Either String a

The genPairs function calls functions that look up types in a type environment, an operation
that can fail, so we need to incorporate StrErr into its type signature. As type variables in
looked-up function types are replaced with fresh ones, genPairs also makes use of IntState to
keep track of the type variable count (see Section 4.3.2).

genPairs :: TypeEnv -> Int -> AExpr TypeExpr -> IntState (StrErr Equations)
In the simple case, including support for error handling inside the rules is trivial:
genPairs _ n (Avar _ _) = (n, Right [])

As discussed above, a lone variable does not give us any valuable type information, so we do
not need to generate a rule. A variable also does not have any subexpressions, so no recursive
calls to genPairs that could generate errors are necessary. All we need to do is wrap the result
inside the Right constructor. As soon as we call genPairs recursively though, we have to check
every such call for a possible error return value. AOr makes for a good example:

genPairs tab n (AOr e a b) = case (genPairs tab n a) of
(Left err) -> Left err
(Right (n’, a’)) -> case (genPairs tab n’ b) of
(Left err) -> Left err
(Right (n’’, b’)) -> Right (a’ ++ b’ ++ [(typeExpr a, typeExpr b),
(typeExpr a, e), (typeExpr b, e)l])

Clearly, this nesting of cases will lead to complicated and unreadable code sooner or later.
We can define a simple operator to make error handling implicit (and handle threading the type
variable count at the same time):

(>+=) (b, StrErr a) -> (b -> a -> (b, StrErr c¢)) -> (b, StrErr c)
(>+=) (s, (Left err)) _ = (s, Left err)
(>+=) (s, (Right a)) f =f s a

Using this operator, the above example becomes:

genPairs tab n (AOr e a b) = genPairs tab n a >+= \n’' a’' ->
genPairs tab n’ b >+= \n’'’ b’ ->
(n"", a" ++ b’ ++ [(typeExpr a, typeExpr b),
(typeExpr a, e),
(typeExpr b, e)l)
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We can go one step further and also make appending the lists of resulting equations into
one overall result list implicit using the following operator:

(++=) :: (b, StrErr [a]) -> (b -> (b, StrErr [a])) -> (b, StrErr [a])
(++=) (s, Left err) _ = (s, Left err)

(++=) (s, Right xs) = let (s’, r) = f s in case r of

(Left err) -> (s', Left err)

(Right xs’) -> (s', Right (xs ++ xs'))

With this implicit error-handling, count-threading and list-appending operator, the above
rule of genPairs can be written like this:

genPairs tab n (AOr e a b) = genPairs tab n a ++= \n’' ->
genPairs tab n’ b ++= \n'’ ->
(n"", [(typeExpr a, typeExpr b),
(typeExpr a, e),
(typeExpr b, e)])

There are a few other helper functions to help with handling errors, but they are all based
on the concepts presented here.

4.4 Testing the Inference Process

The InferTester module is supplied in the source distribution of the inferrer as a means of
automatically testing the Inference module and the unifier for correctness. To this end, the
InferTester module contains functionality for inferring the types of a Curry module and
comparing the result to a manually type-inferred version of the same program.

These manually type-inferred programs are stored alongside the original Curry files inside
the test subdirectory of the inferrer’s source distribution in files ending in .tfcy (for typed
FlatCurry). InferTester’s main function automatically tests each .tfcy file in the test directory
and reports whether its contents match the inferrer’s result when applied to the corresponding
Curry program.

The programs supplied in the source distribution’s test folder are taken from the PAKCS
([Han+12b]) examples and make use of many of Curry’s constructs.

To compare the manually inferred FlatCurry programs to the automatically inferred ones,
we have to define what it means for two FlatCurry programs to be equal with regard to their
types. We start with the equality of two expressions with regard to types:

(1) They share the same constructor (AVar, ALet, AOr, ...), and
(2) their types are equal, and

(3) the rules in Table 4.2 hold based on the expression’s constructor

To fully understand this definition, we need to define what it means for two FlatCurry
types to be equal to each other in our context. Two function types are equal to each other if
their argument type expressions are equal. Two constructed types are equal to each other if
their qualified names are equal and equal types appear in equal positions inside their lists of
argument types (and both have an equal number of argument types).
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Table 4.2. Rules for comparing expressions

Kind Rules

Avar the variable numbers are equal
ALit the constructor and value of the literal are equal
AComb  the combination type and qualified name are equal; both have the same
number of argument expressions and equal argument expressions occur in the
same order
ALet the bindings are equal, meaning that exactly the same variable numbers occur
in exactly the same order and they are bound to equal expressions; the inner
expressions are equal
AFree the lists of free variable numbers are exactly the same, meaning the same
numbers occur in the same order
AOr  the first inner expressions are equal and the second inner expressions are
equal
ACase the case types and subject expressions are equal; both have the same number
of branches and equal branches occur in the same order
ABranchExpr the patterns are equal and the inner expressions are equal
APattern the qualified names are equal and the lists of variable numbers are exactly the
same, meaning the same numbers occur in the same order
ALPattern the kind and value of the literal are equal

When are two type variables equal to each other, for example Tvar 0 and Tvar 1? To answer
this question, we look at two examples. The following two constructed types are equal as it
does not matter whether the type variable number of their parameter is 0 or 1.

TCons ("Prelude", "[1") [TVar 0]
TCons ("Prelude", "[1") [TVar 1]

The following two function types, however, are not. The first is a function that takes
parameters of one polymorphic type and another polymorphic type and returns a value of the
first polymorphic type, while the second is a function that takes parameters of one polymorphic
type and another polymorphic type and returns values of yet another, different polymorphic

type:
FuncType (TVar 0) (FuncType (TVar 2) (TVar 0))
FuncType (TVar 2) (FuncType (TVar 3) (TVar 1))

The examples show that whether two type variables are equal depends on whether one or
both of them have been seen before in the current scope. In the examples the scope is just the
type expression, when comparing whole programs it is the current function. So in the first
example we can conclude that Tvar 0 is indeed equal to Tvar 1. In the second example we
already know that the type represented by Tvar 0 in the first function type is the same as the
type represented by Tvar 2 in the second function type. We can therefore conclude that the
two function types are not equal when we encounter TVar 0 as the return type of the first and
Tvar 1 as the return type of the second. After first encountering the types of Tvar @ and Tvar 2
as being equal, a Tvar 0 in the first type expression can never be equal to anything but a Tvar 2
in the second one and vice versa.

So when deciding whether two type variables with numbers a (in the first expression) and b
(in the second expression) are equal to each other, we have to follow these rules:

41



4. Implementation

(1) If a has been encountered in the first expression and b has not been encountered in the
second expression, then they are not equal

(2) If b has been encountered in the second expression and a has not been encountered in the
first expression, then they are not equal

(3) If a has not been encountered in the first expression and b has not been encountered in the
second expression, then they are equal

(4) If a has been encountered in the first expression and b has been encountered in the second
expression and the previous occurrence of a was equal to b, then they are equal

(5) If a has been encountered in the first expression and b has been encountered in the second
expression and the previous occurrence of a was not equal to b, then they are not equal

After this somewhat complicated definition of what it means for two types to be equal, we
have to define what it means for two functions to be equal:

(1) Both functions have the same name, and
(2) the functions have equal types, and

(3) the functions have equal bodies
Now all that is left to define is what it means for two programs to be equal:

(1) Both programs have the same number of functions, and

(2) the functions, when compared in order, are equal to each other (so the first function of the
first program is equal to the first function of the second program and so on)

4.5 Performance

The inferrer’s original purpose is to check optimized programs for type-correctness, making
it part of the compilation process at the very least during development and testing of said
optimizations. As such it is worthwhile to take a look at how much of a burden it places on
compilation speed. We will measure the performance of the inference process for a large module
from the Curry standard library, both for the whole module and a single function. Additionally,
we will measure the time needed to compile each of these modules using the KiCS2 compiler.

As the time required to print out the result of the computation can be significant, lead-
ing to measurements that are not meaningful when compared to each other, we define the
forceAndDiscard helper function.

forceAndDiscard :: a -> IO Int
forceAndDiscard d = do

r <- return $!! d

return 0

forceAndDiscard forces the evaluation of its argument to normal form using the $!! operator,
circumventing Curry’s lazy evaluation, and returns the integer value 0, which takes only little
time to print.
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Measurements using forceAndDiscard will be more suited to comparison with each other
than measurements taken without it, but evaluating the result of a computation to normal form
will still take more time for a more complex result. We have to be careful when comparing the
time needed for computations with results of different complexities.

The following measurements were made using version 0.2.1 of the KiCS2 compiler ([Han+12a]).
For each measurement we started KiCS2, loaded the Inference module, set the +time option
telling KiCS2 to measure the time taken to evaluate an expression and then evaluated the
expression in question ten times.

We measured the time needed to compile a module by copying that module’s Curry source
file from the KiCS2 library directory to another directory and running the following command
ten times, removing the . curry subdirectory before each iteration to get rid of any cached results
from the compilation process:

time kics2 :load modname :quit

The raw data of all measurements taken below can be found in Appendix B.

4.5.1 The GUI Module

The GUI module is one of the largest modules in the Curry standard library. We measured
the time taken to infer the whole module, to create a type environment, to simply read its
FlatCurry version using readFlatCurry from the FlatCurry module and to infer a single one of
the functions it defines. The single function we chose was menu2tcl, since it is of about average
complexity compared to the other functions in the module.

First we inferred the whole module using the following expression:

readFlatCurry "GUI" >>= progWithTypes >>= forceAndDiscard

This took an average of 2.928 seconds with a standard deviation of 0.016 seconds. Just creating
the type environment using

readFlatCurry "GUI" >>= extractTypeEnv >>= forceAndDiscard

took 1.896 seconds on average, with a standard deviation of 0.023 seconds. As discussed above,
we have to take the complexity of the computation’s results into account when comparing
these two figures. Measured simply in the bytes consumed by their String representations, the
inferred program is about an order of magnitude larger than the type environment (1,247,440
bytes versus 115,760 bytes). So we can safely conclude that evaluating the inferred program to
normal form will, on average, take at least as much time as evaluating the type environment to
normal form. This means that the actual process of generating equations and unifying them
for all of GUI’s functions took at most 1.032 seconds, the difference between the average time
measured for the creation of the type environment and the average time taken for the inference
of the GUI module.

We measured how much of the time taken for the creation of the type environment was
being used on reading the FlatCurry program using the following expression:

readFlatCurry "GUI" >>= forceAndDiscard

This yielded an average of 1.806 seconds with a standard deviation of 0.026 seconds. To
accurately compare this figure to the time taken to create the type environment, we again
have to take into account the complexities of the computation’s results. In terms of the size of
their String representations, the FlatCurry program is about four times larger than the type

43



4. Implementation

environment (480,461 bytes versus 115,760 bytes). This is not all that much of a size difference,
which means it is probably safe to conclude that generating the type environment took about
0.1 seconds.

The same problem plagues our measurements of the time taken to infer the menu2tcl function.
The String representation of the inferred function weighs in at 6,357 bytes, more than an order of
magnitude less than the 115,760 bytes taken up by the type environments String representation.
This explains why evaluating the expression

readFlatCurry "GUI" >>= functionWithTypes ("GUI", "menu2tcl") >>= forceAndDiscard

took an average of only 1.881 seconds with a standard deviation of 0.016 seconds, 0.015 seconds
less than it took to create the type environment. The only thing we can somewhat safely conclude
from this measurement is that the time needed to infer menu2tcl should be somewhere in the
sub-0.1 second range.

Compiling the GUI module using KiCS2 took an average of 5.8254 seconds with a standard
deviation of 0.026 seconds.

4.5.2 The Cchar Module

The Char module is a rather small module in the Curry standard library. As with GUI, we

measured the time to infer the whole module, to create a type environment, to read its FlatCurry

representation and to infer a single function. The single function we chose for Char is intToDigit.
Inferring the whole module using

readFlatCurry "Char" >>= progWithTypes >>= forceAndDiscard

took an average of 0.155 seconds (standard deviation 0.007 seconds). Only creating the type
environment using

readFlatCurry "Char" >>= extractTypeEnv >>= forceAndDiscard

took 0.140 seconds on average (standard deviation 0.004 seconds). Since the results of both
operations are about the same size (27,152 bytes for the inferred program versus 29,738 bytes
for the type environment) and there is only a 0.015 second difference between both times, we
can conclude that the time actually spent on inferring types is very small.

Only reading the Char module using readFlatCurry,

readFlatCurry "Char" >>= forceAndDiscard

took an average of 0.041 seconds (standard deviation 0.003 seconds). There is about a 0.1 second
difference between the time needed to read the FlatCurry program and the time needed to read
the FlatCurry program and create a type environment. Even though the type environment is
more complex in terms of data structure size than the FlatCurry program, it is safe to say that
for the Char module most of the time is not spent on inference or reading the program, but on
creating the type environment.

Inferring only the intToDigit function took 0.149 seconds on average, with a standard devia-
tion of 0.007 seconds, roughly as long as inferring the complete module and thus reinforcing the
observation that for such a small module the time spent on the actual type inference is rather
small compared to the time spent on generating the type environment.

Compiling the module using KiCS2 took an average of 0.5748 seconds with a standard
deviation of 0.007 seconds.

44



Chapter 5

Conclusions

The goal of this thesis was the development of a type inferrer for FlatCurry programs. As
outlined in the general description of type inference in Chapter 3, this posed the following main
problems:

(1) Finding a way to associate type information with FlatCurry expressions.
(2) Generating equations based on FlatCurry’s semantics.
(3) Solving the resulting equations using unification.

We developed a version of the datatypes used to represent FlatCurry programs that supports
arbitrarily annotated expressions. This allows us to associate type information with FlatCurry
expressions by directly storing the type information as an annotation, which makes for a very
simple programming interface: given a FlatCurry program, the inferrer will return a version of
the same FlatCurry program that has been annotated with the calculated types or a string with
an error message if the program contains type errors.

To solve the second problem, generating equations based on our knowledge about the types
in an expression, we first devised rules on how to generate equations for the different kinds
of FlatCurry expressions and then implemented functions that use these rules to generate the
equations (see Sections 4.3.3 and 4.3.4).

We solved the third problem, unification of the resulting equations, by developing a general-
purpose unification module operating on a datatype for terms. After making some performance
measurements, we modified the algorithm to make use of a datatype for references, which
improved performance by roughly an order of magnitude.

The inferrer was automatically tested by inferring sample programs and comparing the
results to versions that had been manually annotated with type information. Additionally, we
measured the performance of the finished program. In its current form, the inferrer should
be fast enough to be integrated into KiCS2 for the testing of program transformations during
development. Especially for large modules, however, it might prove too slow to be permanently
integrated into the compilation process. There is some potential for performance improvements:

> Type environments for commonly used modules could be cached, especially for the Prelude,
as it is rather large and will not change frequently.

> The process of generating equations could be improved by eliminating some redundancies
in the way that bindings are handled for Let and Pattern.

> Although the authors of [DB95] state that the initial overhead of unification algorithms with
near-liner time complexity leads to worse real-time performance for the problems typically
encountered in type inference, the article is rather old. It might be worth investigating
whether an implementation of a near-linear unification algorithm leads to better performance.
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Appendix A

Interface Description

A1 AnnotatedFlatCurry

The AnnotatedFlatCurry module defines datatypes for an annotated version of the FlatCurry
intermediate language.

Exported types

data AProg a

Datatype for a FlatCurry module.

> AProg :: String -> [String] -> [TypeDecl] -> [AFuncDecl al] -> [OpDecl] -> AProg a
AProg mod imps types funcs ops
Defines the module named mod, which imports modules imps and defines types types,
functions funcs and operator fixities ops.

data AFuncDecl a

Datatype for FlatCurry function definitions.

> AFunc :: QName -> Int -> Visibility -> TypeExpr -> ARule a -> AFuncDecl a
AFunc name arity visi type rule
Defines the function named name with arity arity, visibility visi, type type and rule
rule

data ARule a

Datatype for FlatCurry function rules.

> ARule :: [VarIndex] -> AExpr a -> ARule a
ARule parms expr
Defines the a rule with body expression expr. The variables specified in vars are
bound to the corresponding function’s parameters inside the body.

> External :: String -> ARule a
External name
An externally defined rule with name name.
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data AExpr a

data

data
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Datatype for FlatCurry expressions.

AVar :: a -> VarIndex -> AExpr a
Avar a i

Defines an expression that evaluates to the value of the variable with index i, carrying
annotation a.

ALit :: a -> Literal -> AExpr a
ALit a 1
A literal expression that evaluates to the value given in 1. Carries the annotation a.

AComb :: a -> CombType -> QName -> [AExpr a] -> AExpr a
AComb a type name args

A call to the function or constructor (which of the two is specified in type) named
name with arguments args. Carries the annotation a.

ALet :: a -> [(VarIndex, AExpr a)] -> AExpr a -> AExpr a
ALet a bs expr
Let expression; evaluates expr with the bindings bs in effect. Carries the annotation a.

AFree :: a -> [VarIndex] -> AExpr a -> AExpr a
AFree a vs expr

Evaluates expr with the variables in vs declared as free variables. Carries the annotation
a.

AOr :: a -> AExpr a -> AExpr a -> AExpr a
AOr a exl ex2
Evaluates the expressions ex1 and ex2 non-deterministically. Carries the annotation a.

ACase :: a -> CaseType -> AExpr a -> [ABranchExpr a] -> AExpr a
ACase a type subj bs

Rigid or flex (depends on type) case expression that chooses one of the branches in bs
based on the form of subj.

ABranchExpr a

Datatype for branches in case expressions.

ABranch :: APattern a -> AExpr a -> ABranchExpr a
ABranch pat expr

A branch that is chosen if pat matches the parent case’s subject expression; evaluates
to expr if chosen.

APattern a

Datatype for patterns.



A.2. Unification

> APattern :: a -> QName -> [VarIndex] -> APattern a
APattern a name vs
A pattern that matches any value constructed by the constructor with name name. The
original arguments to the constructor are bound to the variables specified in vs when the
parent branch’s expression is evaluated. Carries the annotation a.

D> ALPattern :: a -> Literal -> APattern a
ALPattern a 1
A pattern that matches exactly the value specified in the literal 1. Carries the annotation

A.2 Unification

The Unification module defines datatypes for terms and substitutions and provides functional-
ity for unifying equations between these terms.

Exported types

type VarIdx = Int
The type used for variable term numbers.
data Term

Datatype for representing terms.

> TermVar :: VarIdx -> Term
TermVar i
A variable term with number i.

> TermCons :: String -> [Term] -> Term
TermCons n as
A constructor term with name n and arguments as.

type TermEq = (Term, Term)

The type used for equations between terms.
type TermEqs = [TermEq]

The type used for multiple equations.
data UnificationError

Datatype for the different kinds of errors that can occur during unification.
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> Clash :: TermEq -> UnificationError
Clash (a, b)
The two constructor terms a and b with different constructors are supposed to be
equal.

> OccurCheck :: TermEgq -> UnificationError
OccurCheck (a, b)
Term a occurs in term b but the two are supposed to be equal.

> Unexpected :: TermEq -> UnificationError
Unexpected (a, b)
An unexpected error occurred when unifying the two terms a and b.

type Substitution

The abstract datatype for substitutions.

Exported functions

emptySubstitution :: Substitution
The empty substitution.
extendSubstitution :: (VarIdx, Term) -> Substitution -> Substitution
Extends a substitution by a mapping from a variable to a term.
makeSubstitution :: VarIdx -> Term -> Substitution
Creates a substitution with the single mapping provided.
combineSubstitutions :: Substitution -> Substitution -> Substitution
Combines two substitutions.
lookupSubstitution :: Substitution -> VarIdx -> Maybe Term
Searches the substitution for a mapping from the given variable index to a term.
substitute :: Substitution -> TermEqs -> TermEqs
Applies a substitution to a list of equations.
substituteSingle :: Substitution -> TermEq -> TermEq

Applies a substitution to an equation.
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applySubstitution :: Substitution -> Term -> Term
Applies a substitution to a term.
unify :: TermEqs -> Either UnificationError Substitution

Unifies a list of equations.

A.3 Inference

The Inference module contains functionality for inferring FlatCurry programs.
Exported types
type TypeEnv
A datatype for type environments.
type StringError a = Either String a

Datatype used for return values of functions that can fail.

Exported functions

extractTypeEnv :: Prog -> IO TypeEnv
Generates a type environment for a FlatCurry program.
progWithTypes :: Prog -> I0 (StringError (AProg TypeExpr))
Infers the types of all expressions of all functions of a FlatCurry program.
functionWithTypes :: QName -> Prog -> IO (StringError (AFuncDecl TypeExpr))
Infers the types of all expressions of one function of a FlatCurry program.

progWithTypesUsingTypeEnv :: TypeEnv -> Prog -> StringError (AProg TypeExpr)

Inference

Infers the types of all expressions of all functions of a FlatCurry program. Uses the passed

type environment instead of generating one on its own.

functionWithTypesUsingTypeEnv :: TypeEnv -> QName -> Prog -> StringError (AFuncDecl TypeExpr)

Infers the types of all expressions of one function of a FlatCurry program. Uses the passed type

environment instead of generating one on its own.
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Raw Performance Data

Table B.1. Performance figures for the GUI module

whole module type environment readFlatCurry menu2tcl Compilation using KiCS2

2.90s 1.90s 1.79s 1.87s 5.871s
2.87s 1.90s 1.80s 1.86s 5.825s
2.94s 1.92s 1.84s 1.89s 5.777s
2.89s 1.88s 1.80s 1.89s 5.848s
2.98s 1.87s 1.77s 1.88s 5.823s
2.94s 1.94s 1.84s 1.87s 5.839s
2.98s 1.90s 1.83s 1.90s 5.805s
2.92s 1.91s 1.82s 1.88s 5.828s
2.96s 1.88s 1.81s 1.91s 5.796s
2.90s 1.86s 1.76s 1.86s 5.842s

X =2.928s X =1.896s X = 1.806s X =1.881s X = 5.8254s

o =0.036s o =0.023s o =0.026s o =0.016s o =0.026s

Table B.2. Performance figures for the Char module

whole module type environment readFlatCurry intToDigit Compilation using KiCS2

0.16s 0.14s 0.04s 0.15s 0.584s
0.16s 0.14s 0.04s 0.14s 0.565s
0.16s 0.14s 0.04s 0.14s 0.584s
0.16s 0.14s 0.04s 0.15s 0.564s
0.15s 0.14s 0.04s 0.15s 0.570s
0.16s 0.15s 0.04s 0.14s 0.574s
0.15s 0.14s 0.04s 0.16s 0.571s
0.16s 0.13s 0.04s 0.15s 0.575s
0.14s 0.14s 0.04s 0.16s 0.579s
0.15s 0.14s 0.05s 0.15s 0.582s

X = 0.155s X =0.14s X =0.041s X =0.149s X = 0.5748s

o =0.007s o =0.004s o =0.003s o =0.007s o =0.007s
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BankersQueue in FlatCurry

Prog "BankersQueue" ["Prelude"] [

Type ("BankersQueue", "Queue") Public [0] [
Cons ("BankersQueue", "Q") 4 Public [
TCons ("Prelude", "[]") [Tvar 0],

TCons ("Prelude", "Int") [],
TCons ("Prelude", "[]") [Tvar 0],
TCons ("Prelude", "Int") [111] [

Func ("BankersQueue", "empty") 0 Public
(TCons ("BankersQueue", "Queue") [TVar 0])
(Rule [] (

Comb ConsCall ("BankersQueue", "Q") [
Comb ConsCall ("Prelude", "[1") I[1,
Lit (Intc 0),
Comb ConsCall ("Prelude", "[1") I[1,
Lit (Intc 0)])),
Func ("BankersQueue", "isEmpty") 1 Public
(FuncType (TCons ("BankersQueue", "Queue") [TVar 0])
(TCons ("Prelude", "Bool") [1))
(Rule [171 (
Case Flex (Var 1) [
Branch (Pattern ("BankersQueue", "Q") [2, 3, 4, 5]1) (
Comb FuncCall ("Prelude", "==") [
Var 3,
Lit (Intc 0)1)1)),
Func ("BankersQueue", "queue") 4 Public
(FuncType (TCons ("Prelude", "[1") [TVar 0])
(FuncType (TCons ("Prelude", "Int") [])
(FuncType (TCons ("Prelude", "[1") [TVar 0])
(FuncType (TCons ("Prelude", "Int") [])
(TCons ("BankersQueue", "Queue") [TVar 0])))))
(Rule [1, 2, 3, 4] (
Case Rigid (Comb FuncCall ("Prelude", "<=") [Var 4, Var 2]) [
Branch (Pattern ("Prelude", "True") [1) (
Comb ConsCall ("BankersQueue", "Q") [Var 1, Var 2, Var 3, Var 4]),
Branch (Pattern ("Prelude", "False") []1) (
Case Rigid (Comb FuncCall ("Prelude", "otherwise") []) [
Branch (Pattern ("Prelude", "True") [1) (
Comb ConsCall ("BankersQueue", "Q") [
Comb FuncCall ("Prelude", "++") [
Var 1,
Comb FuncCall ("Prelude", "apply") [
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Comb FuncCall ("Prelude", "reverse") [1,
Var 311,
Comb FuncCall ("Prelude", "+") [Var 2, Var 4],
Comb ConsCall ("Prelude", "[1") I[1,
Lit (Intc 0)]),
Branch (Pattern ("Prelude", "False") []) (
Comb FuncCall ("Prelude", "failed") [1)])1)),
Func ("BankersQueue", "append") 2 Public
(FuncType (TCons ("BankersQueue", "Queue") [TVar 0])
(FuncType (TVar 0) (TCons ("BankersQueue", "Queue") [TVar 01)))
(Rule [1, 21 (
Case Flex (Var 1) [
Branch (Pattern ("BankersQueue", "Q") [3, 4, 5, 6]) (

Comb FuncCall ("BankersQueue", "queue") [

Var 3,

Var 4,

Comb ConsCall ("Prelude", ":") [Var 2, Var 5],

Comb FuncCall ("Prelude", "+") [Var 6, Lit (Intc 1)I1)1)),

Func ("BankersQueue", "head") 1 Public

(FuncType (TCons ("BankersQueue", "Queue") [TVar 0]) (TVar 0))
(Rule [1] (

Case Flex (Var 1) [
Branch (Pattern ("BankersQueue", "Q") [2, 3, 4, 5]) (
Case Flex (Var 2) [
Branch (Pattern ("Prelude", "[1") [1) (
Comb FuncCall ("Prelude", "error") [
Comb ConsCall ("Prelude", ":") [
Lit (Charc 'E’),
Comb ConsCall ("Prelude", "[1") [111),
Branch (Pattern ("Prelude", ":") [6, 7]1) (Var 6)1)]1)),
Func ("BankersQueue", "tail") 1 Public
(FuncType (TCons ("BankersQueue", "Queue") [TVar 0])
(TCons ("BankersQueue", "Queue") [TVar 0]))
(Rule [1]1 (
Case Flex (Var 1) [
Branch (Pattern ("BankersQueue", "Q") [2, 3, 4, 5]) (
Case Flex (Var 2) [
Branch (Pattern ("Prelude", "[1") [1) (
Comb FuncCall ("Prelude", "error") [
Comb ConsCall ("Prelude", ":") [
Lit (Charc 'E’),
Comb ConsCall ("Prelude", "[1") [111),

Branch (Pattern ("Prelude", ":") [6, 71) (
Comb FuncCall ("BankersQueue", "queue") [
Var 7,
Comb FuncCall ("Prelude", "-") [Var 3, Lit (Intc 1)],
Var 4,

Var 51)1)1))1 1
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