
Massively Parallelized DNA Motif Search on the
Reconfigurable Hardware Platform

COPACOBANA
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Abstract. An enhanced version of an existing motif finding algorithm
BMA is presented. Motif finding is a computationally expensive task
which is frequently performed in DNA sequence analysis. The algorithm
has been tailored to fit on the COPACOBANA architecture, which is
a massively parallel machine consisting of 120 FPGA chips. The perfor-
mance gained exceeds that of a standard PC by a factor of over 1750 and
speeds up the time intensive search for motifs in DNA sequences. Also the
cost performance ratio and energy consumption of the COPACOBANA
architecture beat the standard PC significantly.
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1 Introduction

The discovery of regulatory sequences in DNA - called motif-finding - is one of
the most challenging problems in the field of bioinformatics. In fact there are
problem instances of motif-finding which are unsolvable by current techniques.
There are two reasons that make this problem so difficult: first, the parameters of
a given problem instance (like sequence length, motif length, grade of mutation)
can make it impossible to trace the motif in the background noise of the DNA
even if you had all the time you wanted to compute. Second, it is computationally
expensive. So a precise algorithm can fail to discover the motif in a given sequence
because its execution time exceeds rational means. We address both problems
with a new approach to motif finding and making use of a novel massively parallel
architecture to speed up the execution time.

Motif finding has been issue in many publications in the last ten years. As the
most popular approaches to this topic we reference MEME [16] [17] [18] and the
similar Gibbs sampler [14] [15] which iteratively develop matrices representing
motifs in the input sequence using the expectation maximization technique; the
projection algorithm [13] [20] which fast creates a representation of the highly
conserved region over all motif instances; and CONSENSUS [21] - a greedy
approach which constructs likely motif candidates by aligning only small parts
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of the genome at a time. The algorithm IGOM (Iterative Generation of position
frequency matrices) has been published in [22]. This method iteratively develops
a set of strings that are likely to be instances of an underlying motif. It features
two new ideas: it makes use of the structure of the position frequency matrices of
already known motifs which imply a distribution on only one or two nucleotides
in each position rather than all four of them (for several examples see [19].). The
sp-model has been introduced in [22] to describe this restriction. This observation
is utilized to develop a very precise description of the motif in the first few
iterations of the algorithm. This has the advantage that the likelihood of false
positives which fit to this description although not belonging to the motif is
minimized. Regulatory sequences that match the observations of the sp-model
(for example the SigmaB regulator in Bacillus Subtilis [24]) are discovered easier
and more accurately by this algorithm compared to the other methods of motif
finding. So, the second key feature of IGOM is the surveillance of the expected
false positives which could arise from loosening the description of the motif.
The algorithm will only make those changes to the matrix where the quotient
of new candidates allowed to the matrix divided by the expected number of
strings which fit to this change - and appear in any sequence of the given length
without relevance - is maximal. The authors describe this quotient with the term
“signal to noise ratio” (SNR) because of its correlation to signal theory where one
tries to maximize the signal opposing to the background noise of the medium.
Further improvement of the algorithm has been published in [23]. The main idea
of this publication is a Boolean representation of the motif kernels. Instead of
position frequency/weight matrices we use Boolean matrices to describe a motif.
A value of “1” in a Boolean matrix (BM) considers the nucleotide to be a valid
representation for a motif instance in the according position - a value of “0”
doesn’t (see [23] for further details). This leads to a huge improvement of the
complexity and makes the method highly applicable for special architectures.
Most of the methods in Bioinformatics can gain performance when applied to
special hardware because of the small alphabet sizes when dealing with DNA or
protein sequences and often only requiring simple operations on the input data.
We chose to implement the IGOM/BMA algorithm to hardware because of its
ideal qualifications:

1. The input data can be represented in a very efficient way with only two bits
per nucleotide

2. The algorithm can be parallelized in an ideal way because of the independent
search operations on the data.

3. The Boolean matrices used to represent motifs can be stored very efficiently
in hardware allowing a great density of processes working on one FPGA chip
simultaneously.

The amount of biological sequence information is increasing more rapidly [1]
than the exponential performance growth of general purpose microprocessor-
based computers. Due to this observation highly optimized special-purpose com-
puters have been developed. Today, the technology of Field Programmable Gate
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Arrays (FPGAs) exhibit impressive performance compared to microprocessor-
based machines, among other things in the field of bioinformatics. Successful
special purpose hardware is for example SPLASH 2 [2], JBits [3], BEE2 [4],
XD1000 [5], RASC RC100 [6], and DeCypher [7]. The recent massively par-
allel FPGA-based architecture COPACOBANA [8] from SCIENGINES [9] is
chosen as target for the proposed motif finding algorithm. Taking advantage
of the hardware architecture and the highly parallel nature of the algorithm
we can accelerate this method with huge efficiency. Implementing the iterative
development of motif kernels on the COPACOBANA we outperform a single
desktop PC by a factor of over 1.750. Taking into account the higher cost of
the COPACOBANA, a cost performance ratio would be fairer for comparison.
This leads to a performance per cost ratio up to five times higher compared to
desktop PCs and of course accordingly faster execution time. Additionally the
power consumption of PCs for the same task is much higher than that of CO-
PACOBANA. We reach an energy efficiency more than 420 times better than
standard PCs!

Outline This paper is organized as follows. In chapter 2 the COPACOBANA
hardware is specified, in chapter 3 the implemented algorithm in theory. Chapter
4 will discuss the details concerning the implementation of the algorithm on
hardware. Performance analysis, conclusion and outlook will follow in chapters
5 and 6.

2 COPACOBANA

The massively parallel computer COPACOBANA consists of 120 low cost FP-
GAs which are connected to a controller module by a bus system. It can be
integrated in any standard Local Area Network (LAN) environment and is
fully remote controlled. Originally COPACOBANA has been developed as Cost-
Optimized PArallel COde Breaker in 2006. The goal was to break the 56-bit
Data Encryption Standard (DES) in 10 day for production and material cost
of less than $10.000. [10] Actually it breaks DES in 7 days [8] in mean. Due to
the universality of FPGA-chips [11] this machine is suited for all kinds of fine
grained parallel applications with low communication and memory requirements,
and with special attention to the cost/performance ratio.

The FPGAs are of the type Xilinx Spartan-3 1000 [12] (XC3S1000, speed
grade −4, FTG256 packaging). Each comes with 1 million system gates, 17280
equivalent logic cells, 1920 Configurable Logic Blocks (CLBs) equivalent to 7680
slices, 120 kbit distributed RAM, 432 kbit Block RAM (BRAM), 24 dedicated
18x18 multipliers, and 4 digital clock managers (DCMs). Figure 1 depicts the
data path of COPACOBANA. Pluggable cards in DIMM format are holding 6
FPGAs each. Twenty of these cards are plugged into slots of a common backplane
together with a controller card. The latter is the interface to a host computer
via Ethernet LAN. It is transferring data and controlling the single master bus
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Fig. 1. COPACOBANA Data Path

system which is currently operating at up to 1 Mbit/s. The host computer is ex-
ecuting a front-end software which uses an Application Programming Interface
(API) for accessing COPACOBANA. Additionally some parts of the target algo-
rithm are implemented here which for instance are sequential, perform a post- or
preprocessing, or access a hard drive. This software represents the highest con-
trol instance, because it initiates any action of the controller, hence it controls
the entire machine. In other words, communication can not be initialized by one
of the 120 slave FPGAs because COPACOBANA does not support interrupts.
Therefore a static communication scheduling has to be considered for the host
software.

The controller provides the following addressing modes. A single FPGA can
be selected for writing and reading data. Any set of FPGAs on one card up to
all 6 can be written from the controller, and finally by broadcast addressing the
controller can write data to all 120 FPGAs. Each of the FPGAS can be configured
to suit its purpose exactly: small processing units can be implemented on the
chip that are designed only for one specific task.

3 Algorithm

In this section a description of the BMA algorithm is given. Since we aim for
a massively parallel implementation (see section 4) it will be slightly modified
with respect to the scoring function given in [22] [23]. Given the input data -
a whole genome or a particular set of sequences - and a fixed motif length l
the algorithm will develop motif kernels in increasing order by the likelihood
of their occurrence in a randomly distributed sequence. So assuming a normal
distribution of the input data we are interested in the least likely occurrence of
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motif candidates in terms of over-representation. We will analyze the signal to
noise ratio (SNR) to find those candidates:

1. The algorithm starts with a single string of the motif length and specifies
the according Boolean matrix.

2. Each iteration it will modify one column of the matrix so that two nucleotides
will represent the given position of the motif - following the conclusions of
the sp-model. The algorithm chooses the position in the matrix by analyzing
the SNR so it minimizes the probability of false positives and finds the best
representation of the motif.

3. Beneath all the matrices generated each round (one for every start string)
the best (in terms of SNR) are chosen and analyzed further if they are likely
to represent a real motif in the organism represented by the input data. We
won’t discuss this third step in this paper since only the development of
motif kernels is the time consuming part of the method which we apply to
hardware.

For the sake of an efficient implementation we will restrict the algorithm in
the following way: each iteration there will be a change of the matrix - whether
it’s good or not in terms of SNR - and every change will add a “1” to a column
of the matrix where there was exactly one “1” before. This has the great benefit
that every matrix in the same round of the algorithm has exactly the same
value for E · EM (see above). So SNR can be compared easily by analyzing
the term S for each matrix - which is just the number of candidates from the
input data matching the describing matrix. We can take great advantage of this
restriction in the implementation because it allows much simpler and smaller
units processing the matrices. Any further analysis of the best matrices and
their SNR will take place on a host system but due to very little numbers of
motif candidates this step is not computationally expensive as argued above.

4 Hardware Implementation

4.1 Parallel Processing Scheme

Since we are starting without any knowledge about possible motif candidates,
the algorithm requires to analyze any possible position frequency matrix (PFM).
For a motif length of 12 nucleotides there are 412 = 16.777.216 such PFMs. There
is no data dependency between any two of them. So, we can use a trivial par-
allelization scheme where a maximum number of PFMs is computed in parallel.
COPACOBANA contains 120 FPGA chips. Each of them can be configured to
provide 32 independent search entities. This accumulates to 3.840 search entities
to work concurrently.

The DNA is viewed as a sequence over the alphabet {A,C, G, T}. Every
character can be represented with two bits. The restricted size of the local mem-
ory of the Spartan-3 chips does not allow to store the complete DNA sequence
in every search entity. Instead, it is provided by globally broadcasting it to all
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search entities character by character. Each entity continuously accumulates the
relevant information to update its particular PFM using this globally broadcast
data stream.

Since 412 is greater than 3.840 it is necessary to compute the complete prob-
lem in 412/3840 = 4370 subsequent identical computation runs. Each run re-
quires a fixed number of iterations for updating the PFMs. It has turned out
that more than six iterations do not provide useful results anymore. Therefore,
the complete DNA sequence has to be broadcast to all processors a total number
of 4370 · 6 = 26220 times. In our implementation, the DNA sequence is locally
stored in the controller of COPACOBANA in order to reduce the traffic on the
TCP/IP connection.

The PFM analysis is done in four steps:

1. First the host application sends a command to initialize the search entities
on the FPGAs. This command also provides the initialization matrix in form
of an index. The index is in the range from 0 to 16777215, each identifying
a unique PFM.

The following steps will be repeated six times:

2. Second the analysis is done by the search entities while broadcasting the
gene sequence on the COPACOBANA bus.

3. Third the local results are read from the search entities. The best scores are
stored in sorted lists on the host. There is one list for each iteration after
initialization, so there will finally be six lists in this case. The amount of
best results to save could be user defined.

4. Finally the host sends an update command to alter the position frequency
matrices in the search entities.

After all six iterations have finished the next initialization is done with new in-
dices. The algorithm starts again with step 1.

Again to reduce traffic the intermediate results are stored in the local mem-
ory of the COPACOBANA controller first. If the memory utilization reaches a
user defined value the host fetches the data in one big block. Additionally not
all results are fetched from an FPGA but the first three best. The third best
results are marked each. If marked results occur in one of the final result lists it
may be possible that the next best result of the same FPGA could have made it
on the list as well. So in a final run the FPGAs will be initialized with the same
indices which produced these results. This time all results are fetched from the
FPGAs until no score fits for the lists. When the application has finished the
lists with the user defined amount of best results for each of the six iterations
are ready for further analysis.

4.2 FPGA Design

Figure 2 shows a simplified overview of the FPGA design. It is described in the
following.
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Search Entity A set of entities is used to implement the DNA motif search algo-
rithm in hardware. The main processing unit is the search entity which provides
the core functionality of the algorithm. 32 search entities fit on a single FPGA
chip and thus can work in parallel. In the following one of those is described in
detail.

Every search entity has a unique identifier for individualization. The iden-
tifier is a natural number starting with zero. One search entity consists of an
implementation of the boolean position frequency matrix and its matching func-
tionality, a score counter and a counter for differing sequences, further called
“difference counter”. Initially, the search entity gets an index which corresponds
to a gene sequence of size 12, the expected motif size. By adding the identifier of
the search entity to the incoming index every entity has a different initialization
sequence. Hence, an FPGA has to be provided only time with an initialization
index to initialize 32 search entities at once. The initialization sequence is easily
converted to the matrix structure by using lookup tables. “A” is “1000”, “C” is
“0100” etc.

An incoming gene sequence is matched with the position frequency matrix.
If the sequence matches the score counter increments a local stored score value.
If the sequence mismatches in exactly one position the difference counter incre-
ments a counter corresponding to this position. In the case of exactly one miss-
match the corresponding counter value of the missed position is incremented.
This implicates that with a motif size of 12 we need 48 counters for each search
entity. That is a big amount of counters on the whole chip to be stored locally.
Additionally given the fact that only one counter per search entity has to be
accessed at maximum in one clock cycle, the counters could easily be stored in
the local block RAM which is available in every Spartan-3 FPGA.

The only data locally stored by the difference counter is the maximum counter
value and a corresponding gene sequence which caused this counter to increment.
This makes a matrix update fast and easy. On the update command the sequence
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is converted to the matrix structure like for the initialization. The update itself
is a simple or-operation because the matrix structure of the gene sequence stored
by the difference counter differs only in one position.

Every search entity provides its position frequency matrix and score as result.

Search Control The control of the motif search operation is realized by another
entity. It manages the incoming control instructions and user data from the host
application. The user data is read from the bus in 64 bit blocks which equals
32 characters. It is then provided to a special FIFO buffer as a data stream.
The buffer always provides a window of the first 12 characters as data input to
the search entities. The search control entity also provides the best result of the
search entities to the host application. Therefore the results are compared by
their score. The comparison is made by comparators which are aligned to each
search entity in a chain. Every comparator compares the result of its predecessor
and one search entity. If the best result is fetched by the host application its score
is cleared on the corresponding search entity. Hence, the second best result will
be automatically provided to the host.

Use of Block RAM As described above every search entity needs access to
the local block RAM. The Spartan-3 1000 provides 24 block RAM blocks. With
32 search entities there’s a need to share single RAM blocks with two entities.
This is done by a “RAM access manager” entity. The access manager doubles
the RAM clock frequency in relation to the core clock. So both search entities
are able to access the RAM in one core clock cycle.

4.3 Data and Control Flow on the FPGA

The search entities are organized on the FPGA in two chains due to the two
rows of block RAM on the Spartan-3. All user and control data is buffered by
one entity and provided to the successor in its chain in the next clock cycle. This
keeps data paths short and permits higher frequencies. Except for the command
to read a result, all control instructions plus the user data from the host are
provided by the search control entity directly to the first two search entities in
the chains.

The comparators for the results are organized in two chains along the search
entities as well. Every comparator compares the result of its predecessor and
one search entity in one clock cycle. At the beginning of the chain the first
comparators compare the results of the last two search entities. So the data flow
of the results is contrary to the data flow of the sequence data. This is to keep
data paths short because the maximum result of both chains is provided back
to the search control entity after a final comparison. The signal to clear the best
results score after being fetched by the host is routed through the comparator
chain as well.

The overview of the design flow is shown in figure 3.
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5 Performance Analysis and Conclusion

5.1 C++ Implementation

For comparison the DNA motif search algorithm has been implemented in C++.
It has been compiled with the GNU Compiler Collection (GCC) v4.0.2 and the
“−O3”-flag for highest optimization. The testing system is a standard PC with
an Intel Pentium IV at 2.8 GHz running a Linux operating system. The imple-
mentation uses static memory for the gene sequence, the score and the counter
values for the missed matches. So no new memory is allocated dynamically at
runtime except for new results in the lists. Since we store only 100 results for
each iteration the allocations are very scarce and do not significantly delay the
process. Actually the host application using COPACOBANA does the same.

Because the algorithm can not be parallelized for one processing core the ap-
plication takes one initial position frequency matrix at a time. But we made one
significant improvement which could not be applied to the parallelized solution.
This application does not always perform six iterations per initialization index.
It does a further iteration only if the position frequency matrix was updated in
the preceding one. This causes a significant speedup for the iterative solution.

5.2 Performance

The applications were configured to analyze the DNA sequences of Cowpox Virus
(280k bases), Rickettsia canadensis str. McKiel (1.2M bases) and Bacillus Sub-
tilis (5.9M bases) as an example. The desired motif size is 12 and the number
of iterations is set to 6. Table 1 shows the duration of the computation and the
speedup. Figure 4 shows a graphical presentation of these computation times.
To make the results more reasonable the computation time for the Pentium
IV is adapted to match 100 ideally parallelized Pentium IV machines. Figure 5



10 Jan Schröder, Lars Wienbrandt, Gerd Pfeiffer, Manfred Schimmler

shows the speedups vs. one Pentium IV in comparison to 100 ideally parallelized
Pentium IV machines as well.

Table 1. computation times and speedups of the DNA motif search algorithm

COPACOBANA Pentium IV (2.8 GHz) Speedup

Cowpox Virus 1h40m 16 days (380h) > 220
Rickettsia canadensis 4h10m 283.3 days (6800h)1 > 1630

Bacillus subtilis 16h45m 3.5 years (29500h)1 > 1750
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Fig. 4. Computation times for Cowpox Virus, Rickettsia canadensis and Bacillus Sub-
tilis

5.3 Conclusion

Although there have been made significant improvements to the iterative algo-
rithm the parallel solution generates the same results in a much shorter time!
Previously nearly unreachable results due to the length of the computation
time could now be afforded in less than one day! Unfortunately the drawback
is the need of the special hardware, but with the cost of e60.000 for a CO-
PACOBANA and e200 for a standard PC the cost/performance ratio is only
(e60.000/e200)/1750 = 0.17. This means COPACOBANA is more than 5 times
more cost effective than a standard PC. Another advantage of COPACOBANA
is energy efficiency. Due to the short computation time and only 600W power
consumption it consumes about 10.5 kWh to calculate the motif candidates
for Bacillus subtilis. In contrast standard PCs with 150W power each consume
about 4425 kWh for the same task. This is more than 420 times the energy
1 these values is computed by measuring a small part and extrapolating the duration
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costs of COPACOBANA! Additionally the costs to build a cluster out of sev-
eral PCs to reach the performance of one COPACOBANA are not considered.
These are costs for connection cables, switches and the place to deposit these
components. Furthermore the knowledge to get such a PC cluster working with
this application has to be paid for as well.

6 Outlook

The performance analysis for COPACOBANA is made with a slow controller
having a very little bandwidth of approximately 1 Mbit/s. There’s already a
new controller module under development which reaches a bandwidth of about
100 Mbit/s. First tests with this application reached 5 to 7 times the speed of the
slow controller. Hence the controller is still the bottleneck of this application and
even greater speedups could be reached easily. This leads to another improvement
of the cost performance ratio and energy efficiency!

With the speedup gained by the COPACOBANA implementation we can
intensify motif finding on real datasets. We will put it to use by analyzing motifs
in virus datasets in close collaboration with the medical institute of the Free
University of Berlin.
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22. Schröder J, Schimmler M, Tischer K, Schröder H: IGOM - Itera-
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23. Schröder J, Schimmler M, Tischer K, Schröder H: BMA - Boolean Ma-
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