
BMA – Boolean Matrices as Model for Motif Kernels 
 

Jan Schröder, Manfred Schimmler, Heiko Schröder, Karsten Tischer 
 

Christian Albrechts Universität, Institut für Informatik, Kiel, Germany 
{jasc|masch}@informatik.uni-kiel.de 

RMIT University, NICTA VRL, Melbourne, Australia 
heiko@cs.rmit.edu.au 

Freie Universität, Institut für Virologie, Berlin, Germany 
k.tischer@fu-berlin.de 

 
 

Abstract 
 

We introduce the data model BM, which specifies 
kernels of motifs by means of Boolean matrices. Different 
from position frequency matrices these only specify which 
bases can appear in which position of a motif instance. 
Boolean matrices describe motifs still more precisely than 
models based on consensus strings and Hamming 
distance and thus allow keeping the number of false 
positives low.  

Based on the BM model we introduce a new algorithm 
BMA for motif discovery that attempts to reduce the 
number of false positives as much as possible. The main 
idea is to start with small kernels of motif instances and 
iteratively enlarge the kernels with sets of strings which 
have a high expected signal to noise ratio, thus keeping 
the signal to noise ratio as high as possible.  Only after a 
kernel of substantial size has been found, we use position 
frequency matrices and add in the final stage of the 
algorithm BMA strings that are close to the kernel to 
form the final list of potential motif instances. 

The data model BM simplifies theoretical analysis. 
For this we restrict ourselves further to Boolean matrices 
which have either one or two “1”s in each column, i.e. 
the positions are either preserved or semi-preserved. 
Finally we compare BMA to other word based 
approaches on synthetic data fitting the BM model. 
 
1 Introduction 
 
1.1 Background 
 

In [4] the algorithm IGOM has been presented, which 
is based on the SP-model (also allowing only preserved 
and semi-preserved positions in a model of a motif). 
While the performance of IGOM came close to the 
performance of BMA, BMA has the advantage of being 
simpler and being able to be expanded easily to cases 
where more than two different bases can appear in a 
position of a motif instance. BMA is also closer to what 

seems intuitively right, e.g. if all motif instances have a G 
in position i and an A or a T in position j, then a C in 
position i is met with the same penalty as a C in position 
j. This is very different from the way PWMs are typically 
applied. 

For a detailed overview on the topic of finding motifs 
in DNA sequences we also refer to [4] where the problem 
itself and the scientific approaches to its solution are 
discussed. The reader might consider [4] as well to fully 
understand some of the ideas developed in this article 
because the BMA is a enhancement of the IGOM-
algorithm. 

In this paper we give a close comparison to the 
projection algorithm and demonstrate on synthetic data 
that BMA significantly outperforms the projection 
algorithm.  

 
1.2 Major features of BMA 
 

Theoretical analysis of the algorithms we base on 
modelling motifs by means of Boolean matrices in which 
all positions within a motif are either preserved or semi-
preserved, i.e. the matrix has either one or two “1”s in 
each column. The main characteristics of the BMA 
algorithm are:  

1. It is based on Boolean matrices, which 
provide a relatively precise description of sets 
of motif instances. 

2. It builds up motif kernels iteratively starting 
with small motif kernels (typically of size 1). 

3. In each of its steps it keeps the signal to noise 
ratio high and thus minimizes the number of 
false positives. 

Applying BMA to a dataset from Staphylococus 
Aureus [3] has shown that we were able to detect a range 
of previously unnoticed motif instances – a case where 
popular motif finding methods had failed to detect these. 
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1.3 Content 
 
In Chapter 2 we present basic notation and techniques 

used in BMA. In Chapter 3 we present BMA. Chapter 4 
demonstrates that BMA maximizes the signal to noise 
ratio. Chapter 5 presents some simulation results that 
demonstrate that BMA outperforms the projection 
algorithm and finally Chapter 6 discusses further research 
needed in this area. 
 
2. Notation and elementary techniques 

 
 
 
 
 
 
 
 

 
Throughout this paper we use l for the motif length, m 

for the number of motif instances present in the input data 
and n for the size of input data. The algorithm we present 
iteratively generates sets of potential motif instances, 
starting from sets of strings of size one. We call sets of 
potential motif instances motif kernels. 

The projection algorithm is based on the assumption 
that motifs (or sets of motif instances) are appropriately 
described using a consensus string and a maximal 
Hamming distance. But the Hamming distance is not a 
good metric for measuring distance between motifs, 
which can easily be understood by looking at position 
frequency matrices (PFM) [2]. They describe better (with 
more flexibility and also more precision), whether a string 
is likely to be an instance of a motif or not. Thus within 
BMA we model motifs using PFMs and in the first stages 
of BMA we use substantially simplified versions of PFM, 
i.e. we use Boolean matrices instead. 

In the final stage of BMA we use the PFM to score 
strings (in order to judge, whether they should be 
considered as motif instances or not). Let X=(x1, x2, ... , 
xl), be a string. Let PFM be a l by 4 matrix PFM(i,j)  with 
1≤i≤l and j in {A, C, G, T}. The score of X is defined as 

∑ =
=

l

i ixiPFMXPFMscore
1

),(:),( . We also need 

the maximal possible score for a PFM, which is the sum 
of the maxima of all its columns.  

Several researchers have converted Position Frequency 
Matrices into Position Weight Matrices (PWM) for 
scoring purposes [2]. For our purpose PFMs seem to be 
sufficient and it would only be a minor and probably 
insignificant change to use PWMs within our approach. 
We intend to include an examination of the use of 
different types of PWMs in a later project in order to 
substantiate the above claim. 

 
2.1. The data model BM 

 
Throughout this paper we assume that the Boolean 

matrices that describe motif kernels have either one or 
two “1”s in each column. This could be relaxed, but it 
would result in changes to the corresponding algorithm 

BMA. We use p for the number of preserved positions 
(those that have only one “1”) and sp for the number of 
semi-preserved positions (those that have two “1”s), 
p+sp=l. Within BM the performance of motif finding 
algorithms can in some cases be analyzed theoretically 
and it is particularly easy to calculate signal to noise 
ratios within this model. 

Let the number of “0”s in column i of a Boolean 
matrix be Zi and the number of “1”s be Ni then the 
number of different strings that have exactly one 
mismatch with the matrix is given by Σi (Zi * ∏j≠i Nj). 
This makes it very simple to calculate the expected 
number of false positives within the BM model (see 
Section 2.2).  

The following notation is used in order to describe 
BMA. 

 
Notation:  

Let K be any set of strings of length l.  
1) K defines a 4xl Boolean matrix BMK such that 

BMK(i,b)=1 if and only if there is a string X in K 
with X(i)=b, (0 otherwise). 

2) A string X has exactly one mismatch with a Boolean 
matrix BM if and only if there is exactly one position 
i with BM(i, Xi)=0 (BM(j,Xj)=1 for j≠i) 

3) Whenever we search for strings in the input data, we 
regard two identical strings in different positions of 
the input data as two strings (i.e. they are 
distinguished by their positions). 

4) D1K:= set of all strings of length l of the input data, 
which have exactly one mismatch with BMK.  

5) We use the term “applying a BM” for finding all l-
mers within the input data, that match the BM. 

 
2.2. Signal to noise ratio in motif discovery 
algorithms 

 
Signal to noise ratio is an important term to describe 

the quality of acoustical signals, where (often due to 
transmission problems) the desired data, is “polluted” 
with noise and thus not recognisable anymore. Motif 
discovery algorithms deal with sets of strings of which we 
hope the majority to be motif instances, but even 
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algorithms of highest quality are likely to also return 
strings that match the given search criteria, but actually 
are not motif instances. Such strings we call false 
positives, they correspond to the noise in acoustical 
signals. Different from acoustics, in motif finding and 
motif discovery a signal to noise ratio of 1 might well be 
acceptable, even slightly smaller values might be 
accepted, but the smaller the signal to noise ratio is the 
more experimental work the biologist will have to do in 
order to verify the findings of the motif discovery 
software.    

Assume that we look for motifs by searching for 
strings in a given dataset, which satisfy a certain set of 
criteria. Then the signal to noise ratio is the ratio of the 
number of strings we find due to the fact that the motifs 
exist in the dataset over the number of strings that we can 
expect to find if the dataset is a random string. We 
typically do not know the number of strings that come 
from motifs. Instead we can determine the number of 
strings that satisfy given criteria, which is the number of 
strings due to the existence of motifs plus the random 
matches.   

Let EPM be the expected number of matches we find 
due to the presence of the motif instances (given certain 
search criteria). For any search criteria let x be the 
number of different strings of length l that match the 
search criteria (amongst all possible strings of length l), 
the expected number of false positives is EFP=x*n/4l (the 
expected number of occurrences of any string of length l 
within a random string of length n is close to n/4l). EFP is 
the number of strings we expect to find without any 
motifs being present and the input data being a random 
string.  

We define the expected signal to noise ratio to be 
ESNR=EPM/EFP.  EFP is obviously determined by the 
search criteria used in the algorithm. If we aim at finding 
all m motif instances, let k be the number of different 
motif instances, then EFP is at least (i.e. even for the best 
possible algorithm) k *n/4l. Thus even the best algorithm 
is expected to return a set of at least m+ k *n/4l  motif 
instances. Using the PFM to characterise a motif, we need 
to be sure that the majority of the strings that define the 
PFM are actually motif instances. If the signal to noise 
ratio is low, we obviously include many strings, that are 
actually not motif instances, in the process of creating the 
PFM which means that the lower the SNR, the lower the 
quality of the PFM.  

If we compare our approach (i.e. using Boolean 
matrices to model motifs) with the approach underlying 
the projection algorithm [1], we can see that we reduce 
the number of false positives significantly. This is 
expressed in Lemma 1 (below). Here we assume that the 
motif is perfectly describable by a Boolean matrix, i.e. 
each of its positions is either totally preserved or semi-

preserved (with two bases appearing with equal 
probability). 
 
Lemma 1: 

Applying a BM with sp semi-preserved positions 
increases the expected signal to noise ratio by 2sp 
compared to the projection algorithm. 
Proof: 

In the BM model, applying the correct BM to all input 
data, all m motif instances will be detected. Similarly 
selecting all fully preserved positions within the 
projection algorithm will find all m motifs. There are 2sp 
different l-mers that match the BM, but there are 4sp  
different l-mers that agree on all fully preserved positions 
in case we use the projection algorithm. Thus using the 
BM we expect to find 2sp*n/4l false positives, while we 
expect to find 4sp*n/4l false positives using the projection 
algorithm.  Thus within BM we get ESNR=m*4l / (n*2sp) 
and for the projection algorithm we get ESNR=m*4l / 
(n*4sp). Thus for the projection algorithm the resulting 
expected signal to noise ratio is worse by a factor  2sp. 

 
Lemma 1 is the main reason for the fact that the 

algorithm BMA presented in this paper outperforms 
competitors that do not use BMs as their motif model. 
 
2.3. Maximal impact enlargement 
 

In the iterative algorithm presented below, we select in 
each of its iterations a set of strings K that we consider to 
be a set of motif instances. We iteratively enlarge this set 
by subsets of l-mers of the input data that have only one 
mismatch with the current Boolean matrix BM and in 
addition have high impact, defined as follows. 

 
Definition: 

Let D:=D1K (i.e. all appearances of all l-mers in the 
input data that have exactly one mismatch with BMK). Let 
(i,b) be a position in BMK such that BMK(i,b)=0 and BMK 
contains exactly one “1” in column i then Di,b is the subset 
of all appearances of strings from D that have a b in 
position i (here we restrict ourselves to motifs that have 
only preserved and semi-preserved positions).  Amongst 
these sets we select the largest set (in case there are 
several sets of maximal size we select one of them 
randomly) and call it MIMP(K). 

 
MIMP(K) has maximal expected signal to noise ratio 

amongst all Di,b as for all of these sets the expected 
number of false positives is identical. 
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3. The motif discovery algorithm BMA 
 
The algorithm BMA starts with a single string that it 

regards to be a set of potential motif instances (a set of 
size 1). It expands this set of strings iteratively a fixed 
number of times (this number being the number of semi-
preserved positions of the motif, often an estimated 
number) with sets of maximal impact. The sets of 
maximal impact are also the sets that have highest 
expected signal to noise ratio.  

In realistic data (as demonstrated in Section 2.1.) these 
iterations will result only in a kernel (i.e. a proper subset) 
of a set of motif instances, but in the synthetic data used 
in simulations below (i.e. within the BM model) it will 
return all motif instances. In order to cope better with 
realistic data, we add a final stage to our algorithm, in 
which we select as additional candidates for motif 
instances further strings from all strings that are close (in 
terms of PFMs).  

Before the algorithm BMA is applied, several 
parameters have to be selected: the motif length l, the 
number of semi-preserved positions sp, the number of 
kernels that will be selected in the first round of the 
algorithm r, the number of motif instances to be returned 
mi and the number of complete sets of complete motif 
sets to be mc.  
 
The Boolean matrix algorithm for motif discovery 
(BMA): 

1) For each l-mer in the input data firstly form a 
kernel K of size 1. Then repeat sp times: 
K:=K∪MIMP(K). 

2) Amongst all sets K found in step 1, select the 
r largest. 

3) For each of the r sets determine the PFM and 
amongst all l-mers from the input set select 
the mi strings with highest score. 

4) Sort the r sets of motif candidates by the 
minimal score of their motif instances and 
select the mc sets with highest minimal 
score. 

 
In Step 1) of BMA we from a kernel out of each l-mer 

of the input data (In [4] we have discussed alternatives to 
this approach). In each of the sp iterations of Step 1.) one 
preserved position is converted into a semi-preserved 
position.  Step 2) selects the r “best” motif kernels (the 
size of the kernel is proportional to its expected signal to 
noise ratio). Step 3) expands the kernels, such that motif 
instances can be included that do not match the Boolean 
matrices in all positions. Step 4) selects the sets of motif 
instances that are least likely to have been generated 
randomly (the higher the score, the smaller the number of 
false positives that match the score).  
  

4. Analysing the performance of BMA 
 

4.1. Highest impact and highest SNR 
 
BMA works by starting with a kernel of size 1, in fact 

it tries all strings from the input data of a fixed length, 
this includes all motif instances. Thus, if we happen to 
start with a kernel that consists of a motif instance, we 
start with a signal to noise ratio of infinity. Then BMA 
iteratively enlarges the kernel by including sets of strings 
with high expected signal to noise ratio.  

 
Lemma 2: 
Joining two disjoint sets 1S  and 2S  with expected signal 
to noise ratios ESNR1= EPM1/EFP1 and ESNR2= 
EPM2/EFP2 results in a set with expected signal to noise 
ratio  

EPRM1,2=(EPM1+ EPM2)/( EFP1+ EFP2). 
Proof: Trivial. 

 
It is clear from Lemma 2, that as soon as we allow a 

low expected signal to noise ratio, we are including 
strings in the kernel, that are actually not motif instances. 
The more such strings are included in the kernel, the more 
likely it becomes that also in the next iteration many false 
positives are included and the algorithm diverges. In [4] 
we have demonstrated the impact using MIMP instead of 
including all strings of a given Hamming distance has on 
the expected signal to noise ratio. Here we only give the 
corresponding result. 

 
Lemma 3: 

If BMA is applied to a set of motif instances that 
belongs to the BM data model, then in every iteration of 
the BMA algorithm the ESNR is (m/2sp)/(n/4l).  
Proof: 

After iteration s (s=1,...,sp) of BMA there are l-s 
preserved positions in the corresponding BM. Thus for 
each of the not yet converted sp-s semi-preserved 
positions there are 2s*m/2sp motif instances that differ 
from the current kernel strings only in this position; while 
the number of false positives that satisfy the same criteria 
is 2s*n/4l. This results in the ESNR given in the lemma.  

 
Lemma 4: 

Selecting from the set D1 (all strings that differ in 
exactly one of the (still) preserved positions) the subset 
MIMP improves the corresponding expected signal to 
noise ratio by a factor of at least 3l/sp. 
Proof: 

The expected number of different strings that differ in 
exactly one position from the current matrix is (3(l-
s)*2s+2*s*2s-1)*n/4l, while the number of corresponding 
motif instances is  
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(sp-s)*2s*m/2sp. The ESNR for BMA is given in 
Lemma 3. Thus the quotient of these two ESNRs is (3l-
2s)/(sp-s). It can easily be seen that this quotient is larger 
than 3l/sp for s≠0. 

This proves lemma 4. 
 
While Lemma 3 gives the expected signal to noise 

ration of every set that is joined to the kernel in each 
iteration of BMA, Lemma 4 states how much better this 
approach is compared to including all strings of Hamming 
distance 1 in any step. 
  
4.2. Evaluating the solutions 

 
After the algorithm has been applied to a large set of 

kernels we need to evaluate and rank the solutions. 
Different ways of evaluating solutions have been 
discussed in [4]. Within BMA the parameters r, mi and 
mc specify the ranking of the solutions. Each of these 
parameters is data dependent and will need finetuning in 
each application. Higher signal to noise ratio allows to 
make each of these three parameters smaller. The 
parameter mi is related to (and could be specified as such) 
the expected number of motif instances plus the expected 
number of false positives. Thus in many applications it 
will be possible to estimate mi reliably. We have chosen 
in the case of the SigmaB data r=20 and mc=10, but we 
have not done any analysis to justify this choice. More 
applications to real data are needed in order to see how 
critical the choice of these parameters is.   
 
5. Experiment: Finding motifs in synthetic 
datasets 

 
In order to substantiate our claims related to the 

performance of BMA we present some simulation results. 
As motif model we use BM, embedding 32 motifs in 
random strings of length 48=65,536. We vary sp, the 
number of semi-preserved positions, from 0 to 5.  On the 
same data we apply also the projection algorithm. The 
projection algorithm will always find all 32 motif 
instances, as we try out all possible projections (typically 
this is not done as it is rather compute intensive). But in 
addition, as predicted via Lemma 1, it finds many more 
false positives than BMA and with low signal to noise 
ratio it often returns results that have nothing to do with 
the implanted motifs.  

Table 1 below contain in the first column sp, the 
number of semi-preserved positions of the set of 
implanted motif instances. The second column 
(ENRPFM) is the expected number of returns if the 
correct PFM is found, which is m+2sp*n/4l. The third 
column (BMA result) gives the number of returns 
averaged over 10 experiments with different input data 

(both background and motif instances are generated 
randomly). The fourth column (ENRPRO) gives the 
expected number of returns for the projection algorithm 
provided that the projection coincides with the preserved 
positions of the PFM, these are m+4sp*n/4l. The fifth 
column (Projection results) is the average result over 10 
experiments. The sixth column gives the ranking of the 
optimum result (ranked by the number of strings 
returned).  

 
Table 1 (n=48): 

sp ENRPFM BMA 
results 

ENRPRO Proj. 
results 

Proj. 
rank 

0 33 33 33 33 1 
1 34 33 36 36 1 
2 36 36 48 50 1 
3 40 41 96 101 4 
4 48 49 

* 
288 >300 > 

10
5 64 68 

** 
1060 >1000 > 

10
  
* :  in one out of 10 runs no motif instances were 

amongst the first 20 returned strings (49is the average 
over the remaining 9 cases) 

**: in two out of 10 cases no motif instances were 
found and in further two case only about half the number 
of instances were found (68 is the average over the 
remaining 6 cases) 

 
 
If the number of returned strings is much higher than 

32 (32 is the number of implanted motif instances) then it 
is probably quite difficult for the biological researcher to 
spot these motif instances and reject all the false 
positives. We also present the position amongst the 
ranking of all returned solutions, i.e. in case of BMA the 
correct solution is also always ranked highest but in case 
of the projection algorithm it happens that other 
projections have returned more candidates (and thus be 
ranked above the correct solution). They will be candidate 
sets that are regarded as more interesting initially, until it 
has been detected that they mainly contain false positives. 
The ranking for sp=4 and sp=5 is given as “below 10”. 
This says that the 10 highest ranked solutions did not 
contain any motif instance, while the number of returned 
strings for these solutions were more than 300 for sp=4 
and more than 1000 for sp=5. In both these cases BMA 
still returned meaningful results. We expect that further 
fine-tuning of BMA will lead to even better results. 

As already mentioned in the introduction, we also did 
apply this new method to real datasets. We have been 
able to discover already reported motif instances in the 
genome sequences of bazillus subtilis and staphylococcus 
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aureus and several new instances most likely belonging to 
the transcription factor sigma B. A List of these new 
regulatory sequences can be found on [5]. 

 
6. Summary and further research 

 
We have demonstrated in this paper that the algorithm 

BMA significantly outperforms in particular the well 
known projection algorithm [2]. One of the reasons for 
this is that it is based on and tailored towards the BM data 
model, which is more realistic than data models based on 
consensus strings and Hamming distance. Our main goal 
has been to show that we need to address the concept of 
signal to noise ratio in order to develop and finetune 
motif discovery algorithms. The algorithm BMA does just 
that:  

• By choosing the motif kernels ,i.e. in the 
cases where we start with a motif instance we 
start with infinite signal to noise ratio. 

• By the way motif kernels are enlarged, i.e. we 
make a small enlargement with a set that has 
highest signal to noise ratio. 

• By the final stage of BMA, which selects the 
sets of motif candidates by the minimal score 
of all its members. 

At the end it will be those researchers who are able to 
do corresponding biological experiments, who verify 
whether the sets of motif candidates that have been 
returned by a motif discovery algorithm are likely to be of 
biological value.  

Close collaboration with the “Institut für 
Infektionsmedizin” at the Christain Albrechts Universität 
in Kiel we were able to apply the BMA algorithm to 
different sets of known motif instances and their sources. 
Here we detected a wide range of strings that are likely to 
be motif instances and had not been detected before.  

It is (even though not dealt with in this paper) worth 
looking at how to reduce computation time. We could do 
so by reducing initially the dataset drastically (by using 
auxiliary information), i.e. we might know that even 
though the range of distances of the motifs from the start 
position of its gene is wide, most of the motifs are likely 
to be located in a much shorter interval in front of the 
gene. In this case we might firstly search for motifs only 
in this restricted area. This will also improve the expected 
signal to noise ratio as this area has a higher density of 
motif instances. 

There is a wide range of further research needed in 
order to establish the results of this paper. BMA has to be 
applied to a wider range of synthetic data and more 
importantly to more real biological datasets. We also plan 
to fine-tune BMA in order to be able to handle datasets 
from a wider range of prokaryotes and eukaryotes.  Partly 
this can happen via choosing the right parameters for 

BMA, but we also expect changes to the algorithm itself, 
in particular we expect to drop the restriction to Boolean 
matrices with at most two “1”s in each column. Through 
such generalization we expect to be able to get good 
performance for a wider range of motifs. 
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