

Abstract

A new approach for an automatic

consistency check in the development of

prototypes in the automotive industry is

presented. It is based on the observation

that inconsistencies between adjacent

parts of the prototype can be located at

the plugs connecting these parts. This

paper describes the PLUG software

system whose idea is to assign

intelligence to every plug in the system in

order to continuously monitor the

consistency of the overall design of the

prototype. It has been implemented as a

multi agent system where each agent is

responsible for supervising a specific

property of the parts adjacent to such a

plug. The properties are structured

according to the so called PLUG

structural model which is a simple but

powerful set theoretical representation of

the interaction between adjacent parts.

The PLUG project is a research project

financed by the Volkswagen AG.

Keywords: CAD, Multi Agent System,
Validation and Verification, Plugs

1. Introduction

Today’s automobile industry faces the
chances and risks of globalisation [2].
More than in earlier years, the
development time and the costs for
prototypes influence the success of the
final product in the market [1]. Therefore,
the design of such a prototype must be a
highly concurrent process. A natural

problem in such a concurrent
environment is the consistency of the
design [3]. A change in one part of the
design implies changes in other parts.
Unfortunately, there is no support for an
automatic consistency check of plugs in
the commercial CAD tools used in the
automotive industry [12].
This problem is addressed by the PLUG
multi agent system which is described in
this paper. The basic idea is to locate the
possible occurrences of inconsistencies. It
turns out that these locations can be
identified with the contact surfaces
between adjacent parts. These contact
surfaces can be represented by the plug
elements (bolts and nuts, welding points,
gaskets, etc.) used to implement the
connection between these adjacent parts.
Therefore, the idea of the PLUG system is
to assign “intelligence” to every plug in
the design [4,13], such that the plug is
able to check the consistency of its
corresponding contact surface. By the
term “intelligence” in this case a piece of
software is meant which is able to
evaluate the current state of the CAD and
to point out technical inconsistencies [8].
The first step to such an assignment is the
development of a generic model of the
prototype under design. The PLUG
structural model takes a set theoretic
approach: All parts are classified as
functional parts, connection parts, or
connection elements according to their
role in the overall design. The interaction
between the different parts can then be
abstracted in a graph oriented way: Every
part is a vertex in an undirected labelled

PLUG: An Agent Based Prototype Validation of CAD-Constructions

S. Baumgart
1
, B. Toledo

2
, K. Spors

3
, M. Schimmler

1

1
 Institute for Computer Science, Christian Albrechts Universität zu Kiel, Germany, {sba, masch} @informatik.uni-kiel.de

2
 gedas Deutschland GmbH, Germany, Begona.Toledo@gedas.de

3
 Volkswagen AG, Germany, karin.spors@volkswagen.de

graph, where the contact surfaces are
represented by edges. With this model,
the whole problem can be reduced to do
the consistency check for every vertex for
a connection element in the graph. This
can be implemented very elegantly by
using a multi agent system [5,11,14,15].
There is one agent for every property of
the corresponding contact surface. Other
agents are required for administration and
for interchanging information between the
“leaf agents” and the agent monitor [6].
The multi agent system provides a natural
solution for the required concurrency and
it is adaptive to any change in the
specification due to the option to add
further agents if possible. It has been
implemented in Java [9,10].
The paper is organised as follows: Section
2 gives an overview over the concept of
the PLUG system. The structural model is
introduced in Section 3. Section 4
provides details of the implementation as
a multi agent system. An Example of a
gear box adaptor is given in Section 5. A
discussion of the problems in the current
implementation concludes the paper in
Section 6.

2. The PLUG Concept

A typical design process consists of three
phases [1, 15]. Phase one is the
conception and the computer aided design
of the constructional element. Phase two
is a first human based validation of the
constructional element and its neighbours.
This validation is done at industry leaders
like VW by using virtual reality [3]. The
third phase is the production of a
prototype and its physical and mechanical
validation. This third phase is very
expensive in time and money. The only
way to avoid multiple iterations between
all three phases is to automatically assist
the designer during design and validation.

An analysis of the connections between
constructional elements shows that there
are common characteristics between all
elements. The concept of PLUG is to
abstract this common characteristic into a
general structural model. The structural
model generates a graph for each
prototype under design. A vertex in this
graph is a constructional element and an
edge describes a plug between the
neighbouring constructional elements and
their attributes. Each characteristic is a
single attribute. By comparing all
attributes a full validation can be
performed.
The PLUG software system implements
the validation process. This process is
characterised by concurrency, autonomy,
reactivity, and interactivity. These are
typical properties of agent based software
systems.
The PLUG multi agent software uses the
agent construct for each edge of the
validation of the graph of the structural
model. Thus, it replaces the human
designer validating the construction
process by hundreds of designers (agents)
without further costs.

3. The PLUG Structural Model

The whole verification process of the
PLUG multi-agent system bases on the
plug structural model. Analysing the
relations and functions of constructional
parts, they can be classified into three
classes:
The first class consists of basic
assemblies like screws, bolts, nuts, and
gaskets. Their function is to act as a so-
called connection elements (ce). They
connect other parts, like the gear box and
the motor or the wheel to the steering
knuckle; in the automotive industry most
of these parts are also called norm parts as
they are internationally standardised.

Part 1 Part 2

The second class consists of
constructional elements connecting other
parts with or without the usage of
connection elements. These assemblies
are called connection parts (cp). An
example of a connection part is a
hydraulic hose or an adaptor connecting
two parts. The hose clamp in the first case
would be the connection element.
The third class of constructional elements
are all other assemblies. These are called
parts (p). Parts are represented as vertices
in the PLUG structural model, where the
shape of the vertex indicates the different
classes: A rectangle is a part, an ellipse is
a connection part, and an Octagon is a
connection element.
An example of this graph theoretic
representation of a gear box adaptor is
shown in Figure 1. The gear box and the
car body are parts, the gear box adaptor is
a connection part, and the required bolts
and nuts are contact elements.

Figure 1: Excerpt of the Graph

representation of a gear box adaptor.

The edges between these vertices
represent the contact surfaces. Every
contact surface is a union of attributes
describing the properties of the
connection. The attributes provide the

elementary information for the
consistency check. Attributes can be on
the one hand elementary like a position in
the space, a normal vector, the size of a
drill, or non geometrical information as
material or weight. On the other hand,
they can be composed like polygons,
planes (consisting of a normal vector and
a position), drills (consisting of a centre
point, a diameter, and a depth). For every
contact surface there is a fixed number of
relations between attributes or the
adjacent parts.
Sometimes the attributes to be matched
are not required to be exactly identical.
For this purpose, the relations between
attributes can have constraints like
tolerances or approximation parameters.
The set theoretical interpretation of the
PLUG structure model allows a simple
but powerful depiction of attributes of a
contact surface. Figure 2 shows an
example for this. Two adjacent parts are
represented as their sets of attributes.
There is a subset of these attributes that
have to be matched in the consistency
check. This subset is exactly the
intersection of the two attribute sets (the
attributes consisting to both attribute
sets).

Figure 2: Set representation of two

adjacent parts

Another key feature of the plug structural
model is the hierarchy in its graph
theoretical representation. A contact
surface can consist of one or more sub
contact plains. For example the inner
surface of a drilling in a steel plate is a
sub contact plain. If a screw with the right
diameter is placed inside the drilling the

screw and the steel plate share multiple
surfaces. Each of those surfaces is a
separated sub contact surface.

4. Implementation as a Multi Agent System

PLUG is a multi agent system (MAS) for
validation of constructional elements
within the computer aided construction
process. A multi agent system is a system
composed of several autonomous,
reactive programs. It is capable of
reaching goals that are difficult to achieve
by monolithic conventional software
systems.
The agents of the PLUG multi agent
system continuously inspect the
constructional elements while the
designers manipulate them. The software
is able to detect an error in the moment it
occurs in the construction process. Sets of
agents forming a collision check engine
verify the fitting accuracy of the
assembly. Others check all members of its
class and the relations within the class
defined by the PLUG structural model.
PLUG works on the basis of the structural
model described in Section 3. For every
contact surface there are several agents
checking the different attributes. The
structure of PLUG reflects the idea of the
structural model of the prototype under
design. Specified in UML, the unified

modelling language, and implemented in
Java (®SUN)[10], PLUG strictly follows
an object oriented software engineering
concept.
PLUG consists of three basic program
elements. The first element is the data

core, storing the constructional elements
being parsed from the computer added
design (CAD) system. Founding on the
industry proved Open-Inventor 2.0 format
PLUG is not restricted to a single CAD-
Software system. A graphical user
interface enables the user to add or
modify additional attributes like the type

of the connection or the geometrical data.
In contrast to a conventional agent based
software system the PLUG multi agent
system uses the centralised data core to
eliminate redundancies in the description
of the design and thus minimises memory
usage. This is necessary because in a
typical prototype constructional elements
and norm parts consume a great amount
of memory (> 150 MB).
The second element of the PLUG multi-
agent system is a special agent named
gatekeeper. The central function of the
gatekeeper is to encapsulate the data core
from the other agents. By substitution of
this agent a databank system can
optionally be added as a replacement for
the data core.
The third element of the software is a
collection of agents for parsing, analysing
and verifying the constructional elements.
The agents of the PLUG multi agent
system are organised in semi-hierarchical
layers. All agents act in a special runtime
environment, the so-called agent universe

like in classical agent designs. Figure 3
shows the structure of the PLUG multi-
agent system. Each agent is implemented
on top of a special framework. It
encapsulates the inner layers of the agent
and provides some basic functions to the
environment.

Figure 3: Structure of the MAS

Following BDI-model (beliefs, desires,
intensions) each agent of the PLUG
software is implemented onto a
framework ensuring a common structure
of all agents. For example all
communication and sensory functions are
encapsulated within the sensor classes. A
head class holds the memory and learning
abilities. A body class holds all work
specific functions. The head chooses the
most capable function for the special
working environment.
PLUG uses a special agent named agent

monitor to control the other agents. The
agent monitor is able to initialise, start,
stop, and even kill other agents. The
insertion of the agent monitor as a
coordinator allows the other agents to
work more efficiently within their
verification space.
Every core aspect of the PLUG structural
model requires a specific sequence of
agents to verify the attributes associated
with the core aspect.
One of the most important aspects is that
of the contact surface. This has already
been discussed in chapter 3. The AgentCP
verifies these contact surfaces as
identified in the structural model. The
AgentSCP verifies sub contact surfaces.
The verification of a match between two
constructional elements is done on the
level of contact surfaces. All CAD data
are stored in the data core. Every shape is
approximated by 3-point facets due to the
Open-Inventor format. Each sub contact
surface consists of one or more facets.
Each facet is verified by an individual
instance of the AgentSurfaceCheck. This
set of three agents realises the whole
check on the surface and facet layer. All
these agents can work concurrently and
multiple instances enable the PLUG
multi-agent system to check complex
constructional elements with more than
5.000.000 facets in less than a minute

with a memory consumption of only few
megabytes.
Another key aspect in the verification of
assemblies is the verification and
detection of drill holes and their inverse
like screws or bolts. This feature
recognition is realised by an
AgentDrillCheck. With support of the
AgentPolygonCheck and several other
logical agents, checking the material and
additional attributes, it is enabled to
recognise functional drills from none
functional drills. Functional drills are drill
hole necessary for the connection of
assemblies. None functional drills are
drills to reduce the weight of a
constructional element or to reduce the
material.
To illustrate the functional and
operational sequence within the PLUG
multi-agent system here an exemplary
sequence is discussed:
A designer has constructed a set of
constructional elements. These elements
are parsed in the background and
imported into the data core. The
gatekeeper informs the agent monitor of
the incoming assemblies. The agent

monitor notifies all agents necessary for
the verification. The communication
between the agents is realised by
notification flags as usual for agents in
KQML (Knowledge Query and

Manipulation Language).
Each notification flag stand for a special
attribute of the constructional element, so
that there are only agents alive and
working which are necessary for the
verification of the actual assembly. If an
agent needs data form the data core it
notifies the agent monitor. The agent

monitor fetches the data form the core
using the gatekeeper agent and transfers
data back to the querying agent. This
access is performed concurrently and
asynchronously. After the completion of

the partial verification each agents
notifies the agent monitor and quits if
possible. The agent monitor informs the
user about the result of the verification.
The AgentHumanInterface reprocesses
and purifies the information in a readable
way and presents the result in three
different ways in a GUI (Graphical User

Interface). One window shows the
geometrically results of the validation, a
second window shows the contact-plains
and a third window shows the graphical
PLUG structural model (Figure 6).
In an ideal scenario all verifications of
contact surfaces and drill holes happen
concurrently. In some scenarios
combinations of constructional elements
with dependencies exist so that there is
only a sequential solution during
verification. The agents memorise such
constellations and try to avoid them if
possible. Globally, the PLUG multi agent
system prefers always a concurrent
verification sequence.

5. Example

Figure 4 shows the function of the PLUG
multi-agent system for the gear box of a
VW Phaeton model.

Figure 4: Gear box adaptor for a VW

Phaeton

It corresponds to the structural model
depicted in Figure 1. The gear box is
marked in bright yellow and the gear box
adapter is marked in bright grey. An
individual agent verifies each plug within
the model.

Figure 5 shows the parts in the CAD
models. A part of the gear box is shown
on the right side the gear box adaptor on
the left side.

Figure 5: Gear box and gear box adaptor

for a VW Phaeton in CAD system

The PLUG multi-agent system inspects
and verifies all contact surfaces. The
result is shown in Figure 6.
The runtime for this small example is less
than a second for more than 250.000
polygons.

Figure 6: GUI of PLUG system

6. Conclusion

In this paper we presented the PLUG
multi agent system. It implements the
concept of an automated agent-based
validation system for computer aided
prototype development. The agent-based
approach has proved as an adequate
software method for solving this
particular problem. The PLUG system is
able to validate and verify a prototype of
high complexity with reasonable time and
memory requirements.
The development of the PLUG multi
agent system created new questions and
problem areas witch are not solved yet.
The main problem is parings the CAD-
Data and the feature recognition. As
circles are interpolated by polygons
within classic industry proved CAD-
formats drills and bent or curved surfaces
have to be approximated. This results in
an approximation error causing wrong
results in the verification process under
extreme conditions. Another problem is
the number of possible representations
generated by exporting data into a
polygon based format. Each export results
in a different combination of polygons
and differs between different CAD-
Software systems. For plain surfaces and
sharp angles these problems have been
solved, for circles and bent edges
approximation algorithms could be
implemented solving over 90 % of the
existing cases. Complex formed surfaces,
like waves, are not solved satisfactorily
yet.
A final solution might be a total
integration within the CAD software with
access to the internal vector based
exposition of the assemblies losing
platform and CAD-Software
independency. These improvements are to
be tackled in a future project. For a
commercial product further

improvements are required, especially for
a solution of the problems discussed
while parsing (transformation of the
CAD-data into the internal data format).

References

[1] Anderl, R.: Parametrics for Product

Modelling. In: Hoschk, J.;
Dankwort, W. (Hrsg.): Parametric
Variational Design. Stuttgart: B. G.
Teubner Verlag.

[2] Anderl, R.; Mengden, R.: Modelling

with constaints: theoretical
foundation and application.
Computer-Aided Design 28 (3).
1996

[3] Bauert, F.; Weise, E.; Salem, N.:

Modellierungsmethoden für
Systeme zur rechnergestützen
Gestaltung. Konstruktion, 42.1990

[4] Baumgart S.: Agentenbasierte

Entwurfsvalidierung bei CAD-
Konstruktionen. Bericht aus dem
Kolloquium „Agentenbasierte
Systeme in der Industrie“.
Volkswagen Auto Uni und Gedas
GmgH. Wolfsburg 28.11.2005

[5] Burkhard, H.D.: Software-Agenten.

Hrsq. Görz, G., Rollinger und C.-R.,
Schneeberger, J.. Handbuch der
Künstlichen Intelligenz. Oldenburg
Wissenschaftsverlag GmbH 2003

[6] Conrad, T.: Agent-Oriented

Software Engeneering for Internet
Applications. FU-Berlin, 1995

[7] Dellschaft, K.: Softwareagenten:

Theorie und Praxis:
Agentenarchitekturen.
Seminararbeit, Institut für

Informatik Universität Koblenz, 12
2002.

[8] Erman, L.D.; Hayes-Roth, F.;

Lesser V.R.; Reddy D.R.; The
Hersay-II Speech Understanding
System: Integrating Kowledge to
Resolve Uncertainty. Computer
Surveys, 2(2), June 1980

[9] Görzig, S.: Eine generische

Software-Architektur für
Multiagentensysteme und ihr
Einsatz am Beispiel von
Fahrerassistenzsystemen. Sharker
Verlag, 2003

[10] González Ordas, J.: Desarrollo de

una Herramienta Case Orientada a
Agentes en Java. ETS Ingenieria de
Telecomunicación, Universidad de
Valladolid, 1999

[11] Iglesias Fernández. C. A.; Garijo,

M.: González, J. C.: A Survey of
Agent-Oriented Methologies.
ESPRIT Basic Reasearch Prodject
MIX: Modular Integration of
Connectionist and Symbolic
Processing in Knowledge Based
Systems, ESPRIT-9119 (1999)

[12] Toledo Muñoz, M. B.; Spors, K.;

Bracht, W.; Schimmler, M.:
Agenten basierte Modellierung und
Analyse von Verbindungen im
Produktentstehungsprozess.
Zeitschrift für wissenschaftliche
Fabrikplanung (ZWF) Jahrg. 100
(2005) 6, S.319-323.

[13] Toledo Muñoz M. B.:

Agentenbasierte Modellierung und
Analyse von Verbindungen im
Produktentstehungsprozess, PhD
thesis, Fakultät für Mathematik /

Informatik und Maschinen der
Technischen Universität Clausthal,
2006

[14] Tveit, A.: A survey of Agent-

Oriented Software Engineering.
Norwegian University of Science
and Technology. First NTNU
CSGSC, May 2001.

[15] Wagner, T. Göhner, P.; Urbano, P.

G. de A.: Softwareagenten-
Einführung und Überblick über eine
alternative Art der
Softwareentwicklung. Part III:
Agentensysteme in der
Automatisierungstechnik: Aufbau,
Struktur und Implementierung an
einem Anwendungsbeispiel. ATP –
Automatisierungstechnische Praxis
45 (2003) no. 46

