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Abstract: 

Finding motifs in DNA sequences is one of the most demanding problems in computational 
biology. There are many algorithms available for motif discovery and none of them is totally 
satisfying. There is scope for improvement and we outline one way that leads to some 
improvements in discovering motifs particularly in cases where the motifs can be described 
adequately using position frequency matrices.  
 
We introduce a new data model to specify kernels of motifs (i.e. significant subsets of the 
motif instances) in which all positions of a motif kernel are either 100% preserved (only one 
element is allowed in that position) or semi-preserved (only two different bases are allowed 
in that position). We call this model the SP-model.  
 
Based on the SP model we have developed a motif discovery algorithm IGOM that attempts 
to keep the signal to noise ratio as high as possible, iteratively growing motif kernels, starting 
with kernels of size 1. In its final stage IGOM uses position frequency matrices as a scoring 
tool expanding the kernels by strings with lowest penalty.  
 
We were able to verify the strength of  IGOM comparing it to the projection algorithm with a 
range of synthetic data fitting the SP-model, and we also were able to demonstrate its ability 
in real datasets. Here we used it for real motif discovery in the cases of SigmaB in Bazillus 
Subtilise and Staphylococus Aureus. 
 

1. Introduction 

1.1 Background 
In 2005 and 2006 Tompa et al [14,19] published analysis of motif finding algorithms and 
more recently Das and Dai [3] provided another survey, which we frequently refer to 
throughout this paper. Readers interested in getting an overview of the various approaches to 
motif finding are referred to these papers. One thing these surveys show clearly is that we 
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urgently need better approaches, as the biological performance of all the algorithms that have 
been tested do not often meet practical requirements. 

This paper attempts to add a new approach which combines ideas from the “word-based 
approaches” [2, 3, 11, 12, 13, 20] and ideas from the “probabilistic sequence models” [3, 1, 
15], basing the motif search on the model of position weight matrices. We call our algorithm 
IGOM: Iterative Generation of position frequency matrices. In this paper, we focus on the 
problem of motif finding without using auxiliary information, as is done in many papers [2, 4, 
5, 12, 16]. In addition we regard the assumption that we should find one motif each in a range 
of input sequences as auxiliary information (and do not make use of it in IGOM), while 
several approaches like Hidden Markov Models, MEME or Gibbs sampling rely substantially 
on this assumption [3]. Instead we only assume to know (or guess) the size of a motif and 
start by viewing every string of the input data as a candidate of being a motif instance and 
iteratively collect similar strings from the input data, building up a Position Frequency 
Matrix. At the end we only return those sets of detected motif candidates that satisfy certain 
criteria. These criteria are related to the likelihood that this set of strings would appear in a 
random input sequence. We show that our approach maximises the signal to noise ratio and 
thus reduces the pollution of the results that stems from false positives.  

The projection algorithm developed by Buhler and Tompa et al [2] is regarded as one of the 
best algorithms for motif finding, without using auxiliary information. But we will show in 
Chapter 2 why it in many cases must fail when applied to real DNA sequences. 
  
In [17] Hon and Jain present MaMF (a motif finding algorithms particularly tailored towards 
finding motifs in mammals and particularly successful). They similarly to our approach 
iteratively build up sets of motif instances starting from small motif kernels, but use a penalty 
function, that assigns the same penalty for every mismatch. Thus they are also not able to 
make use of the additional information contained in PFMs, e.g. in case of semi-preserved 
positions (i.e. two bases are allowed in this position) they give high penalties for one basis 
and no penalty for the other. 
  
In this paper we give a close comparison to the projection algorithm and demonstrate on 
synthetic data that IGOM significantly outperforms the projection algorithm. As stated in 
[14] it is likely to be true that all current motif finding algorithms have strength and 
weaknesses and it is advisable to apply more than one of them. A study by Zaslavsky and 
Singh [17] shows that there are many real datasets where the projection algorithm is 
significantly more successful than Gibbs sampling and the MEME algorithm. Thus we 
compared IGOM only to the projection algorithm. 
 
Our implementation of the presented algorithm doesn’t work on standard formatted input data 
like FASTA or GenBank yet so data has to be preformatted before the program run over it. 
But we are happy to give you the program anyway or run it ourselves over the data you might 
provide us with. Just send an email to jasc@informatik.uni-kiel.de. 
 



1.2 Major features of IGOM 
We base the theoretical analysis of the algorithms on the data model SP for motifs in which 
all positions within a motif are either preserved or semi-preserved – that means all instances 
of a motif have the same nucleotide in a certain position (preserved) or there are two different 
nucleotides to choose from (semi-preserved) (for further explanation see Section 2.1.). For 
the background data we assume random distribution throughout this paper. It could be 
considered incorporating other background models in order to increase the performance of 
IGOM further. The main characteristics of the IGOM algorithm are:  

1. It is based on position frequency matrices, which provide a relatively precise 
description of sets of motif instances 

2. It builds up motifs iteratively starting with small motif kernels 

3. In each of its steps it keeps the signal to noise ratio high and thus reduces the number 
of false positives. 

Applying IGOM to a dataset from Staphylococus Aureus [18] has shown that we were able to 
detect a range of previously unnoticed motif instances – a case where popular motif finding 
methods had failed. 

1.3 Content 
In Chapter 2 we present basic notation and techniques used in IGOM. In Chapter 3 we 
present IGOM and the way we choose seeds (kernels) to start the algorithm. Chapter 4 
demonstrates that IGOM maximises the signal to noise ratio. Chapter 5 presents some 
simulation results that demonstrate that IGOM outperforms the projection algorithm and 
finally Chapter 6 discusses further research needed in this area. 

2. Notation and elementary techniques 
Throughout this paper we use l for the motif length, m for the number of motif instances 
present in the input data and n for the size of input data. The algorithm we present iteratively 
generates motifs from a small set of strings K which we call a motif kernel. 

The projection algorithm is based on the assumption that motifs (or sets of motif instances) 
are appropriately described using a consensus string and a maximal Hamming distance. But 
the Hamming distance is not a good metric for measuring distance between motifs, which can 
easily be understood by looking at position frequency matrices (PFM) [15] which describe 
better (with more flexibility and also more precision), whether a string is likely to be an 
instance of a motif or not. Thus within IGOM we model motifs using PFMs. 

We use the PFM directly to score strings (in order to judge, whether they should be 
considered as motif instances or not). Let x1, x2, ... , xl, be a string. Let PFM be a l by 4 matrix 
PFM(i,j)  with 1  i l and j in {A, C, G, T}(see table 1 for an example of a PFM). The score 

of X is defined as 
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score for a PFM, which is the sum of the maxima of all its columns. Maxscore for the PFM in 
Table 2 is 1000 (for Table 1 it is 946.2). 

Several researchers have converted Position Frequency Matrices into Position Weight 
Matrices (PWM) for scoring purposes [15]. For our purpose PFMs seem to be sufficient and 
it would only be a minor and probably insignificant change to use PWMs within our 
approach. We intend to include an examination of the use of different types of PWMs in a 
later project in order to substantiate the above claim. 

2.1. The data model SP 
As examples for a PFM we show in Table 1 the matrix resulting from the data given in [18]. 
In table 2 we show a simplified version of this matrix, that we will use in order to explain 
some aspects of the algorithms. Of the 78 motif instances given in [18] 19 achieve the 
maximal score of this matrix, 31 have only one mismatch with the PFM of table 2 and only 5 
motif instances have a mismatch in more than 2 positions. Thus table 2 is reasonably close to 
a description of a real set of motif instances. 

This matrix belongs to a set of artificial data that we call the SP model. In it each motif 
position is either perfectly preserved (one basis has the value 100), or it is semi-preserved, i.e. 
two basis have the value 50.  

In SP we use p for the number of preserved positions and sp for the number of semi-
preserved positions, p+sp=l. Within SP the performance of motif finding algorithms can in 
some cases be analysed theoretically and it is particularly easy to calculate signal to noise 
ratios within this model. 

Table 1: The PFM for SigmaB in bazillus subtilis (entries are percentages, the data is based 
on 78 motif instances 

   1  2  3  4  5 6 7 8 9 10  11  12
A  0.0  6.4  3.8  2.6  56.4 51.3 10.3 0.0 3.8 43.6  100  39.7
C  0.0  1.3  0.0  2.6  9.0 10.3 0.0 0.0 3.8 2.6  0.0  9.0
G  100  1.3  5.1  1.3  12.8 10.,3 79.5 98.7 91.,0 1.3  0.0  9.0
T  0.0  91.0  91.0  93.6  21.8 28.2 10.3 1.3 1.3 52.6  0.0  41.0

 

Table 2: Synthetic PFM with similarity to SigmaB 

   1  2  3  4  5 6 7 8 9 10  11  12
A  0  0  0  0  50 50 0 0 0 50  100  50
C  0  0  0  0  0 0 0 0 0 0  0  0
G  100  0  0  0  0 0 100 100 100 0  0  0
T  0  100  100  100  50 50 0 0 0 50  0  50
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In columns 5, 6 and 7 the synthetic matrix of Table 2 diverges most from the real data of 
Table 1. There are entries of over 10 that have been converted into 0s.  

Let Zi be the number of zero entries in column i of a PFM of the type shown in Table 2 and 
let Ni  be the number of non-zero entries in column i, (Ni+Zi = 4). The number of different 
strings that score maximally for this matrix is ∏j Nj  

Lemma 1: 

In the SP model the number of different strings that score in all but one column is    

Σi (Zi * ∏j≠i Nj).  

Proof:  
This follows directly from the fact that there are Zi positions to choose from which don’t 
match the matrix in column i and the product term is the number of the strings that match the 
rest to combine with.  

Thus it is very simple to calculate the expected number of false positives within the SP model 
(see Section 2.2). 

2.2. Signal to noise ratio in motif finding algorithms 
Signal to noise ratio is an important term to describe the quality of acoustical signals, where 
(often due to transmission problems) the desired data, is “polluted” with noise and thus not 
recognisable anymore. Motif finding algorithms deal with sets of strings of which we hope 
the majority to be motif instances, but even algorithms of highest quality are likely to also 
return strings that match the given search criteria, but actually are not motif instances. Such 
strings we call false positives, they correspond to the noise in acoustical signals. Different 
from acoustics, in motif finding a signal to noise ratio of 1 might well be acceptable, even 
slightly smaller values might be accepted, but the smaller the signal to noise ratio is the more 
experimental work the biologist will have to do in order to verify the findings of the motif 
finding software.    

Assume that we look for motifs by searching for strings in a given dataset, which satisfy a 
certain set of criteria. Then the expected signal to noise ratio is the ratio of the number of 
strings we find due to the fact that the motifs exist in the dataset over the number of strings 
that we can expect to find if the dataset is a random string. We typically do not know the 
number of strings that come from motifs. Instead we can determine the number of strings that 
satisfy given criteria, which is the number of strings due to the existence of motifs plus the 
random matches.   

Let EPM be the expected number of matches we find due to the presence of the motif 
instances (given certain search criteria). For any search criteria let x be the number of 
different strings of length l that match the search criteria (amongst all possible strings of 
length l), the expected number of false positives is EFP=x*n/4l (the expected number of 
occurrences of any string of length l within a random string of length n is close to n/4l). EFP 
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is the number of strings we expect to find without any motifs being present and the input data 
being a random string.  

We define the expected signal to noise ratio to be ESNR=EPM/EFP.  EFP is obviously 
determined by the search criteria used in the algorithm. If we aim at finding all m motif 
instances, let k≤m be the number of different motif instances, then EFP is at least (i.e. even 
for the best possible algorithm) k *n/4l. Thus even the best algorithm is expected to return a 
set of at least m+ k *n/4l  motif instances. Using the PFM to characterise a motif, we need to 
be sure that in the process of generating the PFM the majority of the strings that define the 
PFM are actually motif instances. If the signal to noise ratio is low, we obviously include 
many strings, which are actually not motif instances, in the process of creating the PFM. If in 
the iterative process the PFM gets “distorted” too much, i.e. giving high scores to strings that 
are not motif instances, the PFM does not converge anymore to a correct specification of a 
motif. 

Lemma 2: 

Applying a PFM with sp semi-preserved positions within the SP model increases the 
expected signal to noise ratio by 2sp compared to the projection algorithm. 

 

Proof: 

In the SP model, applying the correct PFM to all input data, all m motif instances will be 
detected. As there are 2sp different l-mers that match the PFM we would in addition expect to 
find 2sp*n/4l false positives, resulting in ESNR=m*4l / (n*2sp). Using a projection algorithm 
on p=l-sp positions and having found the correct p positions, will also find all m motif 
instances in the input string, but we would expect to find 4sp*n/4l false positives. Thus for the 
projection algorithm the resulting expected signal to noise ratio is by a factor  2sp worse. 

Lemma 2 is the main reason for the fact that the IGOM algorithm presented in this paper 
outperforms competitors that do not use PFMs as their motif model. Lemma 2 shows how the 
advantage of IGOM over the projection algorithm depends on the number of semi-preserved 
positions in the motif. 

2.3. Maximal impact change 
The algorithm presented below develops a PFM of the hidden motif iteratively. This is done 
by admitting new strings to the set of candidates each round. To keep the SNR at the highest 
possible value throughout the algorithm only very few different strings are admitted to form 
the PFM because every string brings its own probability of false positives. So the strings 
taken into the matrix have to be chosen carefully.  

So each round we chose a set candidates which has the highest expected SNR by analysing 
the impact of positions in the matrix:  



Let K be the set of strings from the dataset that score in every column of the PFM but one 
(strings that score in every column are already part of the matrix). 

Let Ki,b be the set of all strings from K that have a b in position i. Let maxi(PFM) be the 
maximal value in row i of PFM. We define the impact IM(i,b,K), b  {A, C, G, T} as 
IM(i,b,K)=|Ki,b|*|maxi(PFM)  - PFM(i,b)|. We call the set Ki,b with highest impact MIMP(K).  

So the impact of a set of strings Ki,b is mainly defined by its size. The above definition of 
impact gives high priority to changing a preserved position into a semi-preserved position, as 
in this case the difference |maxi(PFM)  - PFM(i,b)| is highest.  The more strings there are that 
mach the current PFM in all but one position that have the same nucleotide (position and 
base) in common the better will be the SNR for this set. Note that Ki,b is not a set that 
includes the same string over and over again. The strings can differ as long there are semi-
preserved positions in the PFM.  

This leaves to consider if all possible strings in Ki,b should be admitted to the matrix or only 
those which have a high number of occurrences in the dataset to maximize the SNR. But our 
experience with real motif data shows that every possible instance of the PFM belonging to a 
motif will be taken. 

The algorithm IGOM, presented next, expands the motif kernel K using the set MIMP(K). 
This way we expect to find an additional semi-preserved position in each iteration. 

3. The motif finding algorithm IGOM 

The algorithmic scheme of IGOM is that it starts with a set K of strings that it regards to be a 
set of potential motif instances. It expands this set of strings iteratively with further strings 
that have high similarity to the current set. The similarity is expressed via a threshold th on 
the score these strings have to achieve. 

This algorithmic scheme can be implemented in a range of ways. We have chosen an 
implementation of this scheme that attempts to maximise the signal to noise ratio, i.e. reduces 
the number of false positives as much as possible, given the SP model.  

We now present the algorithm that we use for motif finding, which can be tuned further in 
particular in cases where auxiliary information is available. 

 
We use the following algorithm, IGOM: 

1.) Select a motif kernel K. s:=1. Select a function size(s) that limits the number of motif 
candidates in each iteration of the algorithm s. Select th as a threshold used to 
terminate the iterations. 

2.) While SNR(K)>th  
a. Determine the PFM(K). 
b. Kold := K. 
c. K:= set of the size(s) strings which score in every except of one position in the 

PFM.  
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d. K:= Kold ∪  MIMP(K). 
e. s:=s+1  

3.) Amongst all strings that score in each of the l positions determine the m+EFP strings 
with highest score. 

 
The first step initializes the Algorithm (more details on this step follow in the next section), 
while the third gathers the results and finishes the Algorithm. The main work is done in the 
second step. The position frequency matrix is developed iteratively by including a set of 
candidates that is estimated to have the best signal to noise ratio as described above (d.). The 
fact that K is chosen amongst strings that don’t match the PFM in every position (c.) ensures 
that K and Kold are always disjoint and no candidates that have already been taken to form the 
PFM will contribute a second time.  
  

3.1. Finding motif kernels 
  
We call a set of strings that we suspect to belong to the same motif a motif kernel.  
The selection of motif kernels in the first step of the algorithm can be executed in different 
ways and is dependent on the parameters of the dataset as well as the expected parameters of 
the motif.  A motif kernel might be given to us, created by biological experiments.  
If m/2l-p>1 then we could use as motif kernels all strings of length l that have at least t 
occurrences in the data set (t = m/2l-p is the threshold, it is important to note that we do not 
know m and p in advance, but we might sometimes have good guesses based on auxiliary 
information. Thus we should use this approach whenever we find l-mers that appear 
significantly more often than n/4l times).  
 
We can instead use every l-mer of the input dataset as 1-element kernel. Depending on the 
size of the input data this approach might not always be practical, but this is what we have 
done in most of our experiments.  
 

4. Analysing the performance of IGOM 

4.1. Highest impact and highest SNR 
IGOM works by starting with a small kernel, in fact it tries all strings of a fixed length from 
the input data, thus if this length is smaller or equal to the length of the motifs we try to find, 
this will include all motif instances. So if we happen to start with a kernel that consists of a 
motif instance, we start with a signal to noise ratio of infinity. Then IGOM iteratively 
enlarges the kernel by including sets of strings with high expected signal to noise ratio.  
 
Lemma 3: 
Joining two disjoint sets  and  with expected signal to noise ratios EPM1/EFP1 and 
EPM2/EFP2 results in a set with expected signal to noise ratio  

1S 2S

(EPM1+ EPM2)/( EFP1+ EFP2). 
Proof:  
The proof follows obviously from the fact that the two sets are disjoint so both the positives 
and the negative (false positive) matches will add up. 
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It is easy to see that as long as we limit the expected signal to noise ratio of all joining sets of 
strings using a lower limit for the expected signal to noise ratio, we will never fall below this 
lower limit for the kernel. It is also clear from Lemma 3, that as soon as we allow a low 
expected signal to noise ratio, we are including strings in the kernel, that are actually not 
motif instances. These will then (step 2. (a) in IGOM) contribute to the entries in the 
intermediate PFM and thus make it more likely that we will continue to include “wrong” 
strings, “damaging” the PFM even further. In the remainder of Section 4.1. we use these 
simple facts in order to motivate the use of MIMP within IGOM. 
 
We could take the approach to search for all strings that have Hamming distance 1 from any 
existing string, as it can be expected that within a set of motifs there is one motif instance that 
has several motif instances within Hamming distance 1. But also the number of random 
matches with these strings increases. Thus this approach is only bound to be successful if the 
signal to noise ratio is sufficiently high.  
  
In the following we assume that the set of motif instances fits the SP model with sp semi-
preserved positions. At the start of the algorithm we select a single string as motif kernel. If 
this string is a motif instance (as IGOM selects all strings of the input data, this will 
sometimes be the case), then there are sp*m/2sp motif instances with exact Hamming distance 
1 from the given string and the expected number of strings in the input sequence that have 
exactly Hamming distance 1 from the given string is 3l*n/4l. This results in an ESNR of 
(sp*m/2sp)/( 3l*n/4l). Any particular motif instance at hamming distance 1 exists m/2sp times 
and we have to expect n/4l matching false positives that match this motif instance. Thus by 
restricting the expansion of the kernel by only including one additional motif instance we get 
an ESNR of (m/2sp)/(n/4l) which is an improvement of the expected signal to noise ratio by a 
factor of 3l/sp. This restriction is performed in step 2.e. of the IGOM algorithm. It can be 
shown that this improvement increases in every iteration of IGOM. The following Lemma 
states that in each iteration of IGOM the ESNR is maintained at the same level. 
 
Lemma 4: 
If IGOM is applied to a set of motif instances that belongs to the SP data model, then in every 
iteration of the IGOM algorithm the ESNR is (m/2sp)/(n/4l).  
Proof: 
After iteration s of IGOM there are l-s preserved positions in the corresponding PFM. Thus 
for each of the not yet converted sp-s semi-preserved positions there are 2s*m/2sp motif 
instances that differ from the current kernel strings only in this position; while the number of 
false positives that satisfy the same criteria is 2s*n/4l. This results in the ESNR given in the 
lemma.  
 
Lemma 5: 
Moving from the set of all strings that differ in exactly one of the (still) preserved positions to 
a set that corresponds to converting exactly one preserved position to a semi-preserved 
position improves the corresponding expected signal to noise ratio by a factor of at least 
3l/sp. 
Proof: 
The expected number of different strings that differ in exactly one position from the current 
matrix is (3(l-s)*2s+2*s*2s-1)*n/4l, while the number of corresponding motif instances is  
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(sp-s)*2s*m/2sp. The ESNR for IGOM is given in Lemma 4. Thus the quotient of these two 
ESNRs is (3l-2s)/(sp-s). It can easily be seen that this quotient is larger than 3l/sp for s≠0. 
This proves lemma 5. 
 
While Lemma 4 gives the expected signal to noise ration of every set that is joined to the 
kernel in each iteration of IGOM, Lemma 5 states how much better this approach is 
compared to including all strings of Hamming distance 1 in any step. 
  

4.2. Evaluating the solutions 

After the algorithm has been applied to a large set of kernels we need to evaluate and rank the 
solutions.  

Methods of ranking the solutions have been discussed in the literature. A most recent paper 
discussing these issues is [6] which uses multiple alignment techniques. 

We use two different approaches. The first method simply uses the score of their m-th 
candidates, where m is the expected number of motif representatives. Let the solution be a 
triple (PFM, C, th) where PFM is a position frequency matrix and C is a set of strings from 
the input data with each string scoring at least th with the given PFM. Let sm be the score of 
the m-th element of C (C, sorted by the score in descending order). For a given PFM 
increasing th coincides with reducing the probability of matching the score with a random 
sequence. But it is not necessarily the case that two solutions with the same score of the m-th 
candidate are equivalent, as can be demonstrated by simple examples (e.g. it is possible to 
construct two PFMs  with identical maximal score but significantly different numbers of 
possible matches). The major advantage of this method is that it requires almost no additional 
computation. 

A more precise and reliable measure is to evaluate each triple (PFM, C, th) by the ratio 
|C|/RSS, where RSS is the expected number of sequences matching the score for a given n 
(assuming that the input is a random sequence). RSS=TSS*n/4l, with TSS being the total 
number of different sequences matching th. Since n/4l is constant for a given motif finding 
problem, we can use |C|/TSS as evaluation criteria. In order to compute TSS we need to score 
all possible sequences of length l, these are 4l sequences. This can be done in acceptable time 
for significant problem sizes. 
  

5. Experiment: Finding motifs in synthetic datasets 
In order to substantiate our claims related to the performance of IGOM we present some 
simulation results. As motif model we use SP, embedding 32 motifs in random strings of 
length 48=65,536. We vary sp, the number of semi-preserved positions, from 0 to 5.  On the 
same data we apply also the projection algorithm. The projection algorithm will always find 
all 32 motif instances, as we try out all possible projections (typically this is not done as it is 
rather compute intensive). But in addition it finds many more false positives than IGOM and 
with low signal to noise ratio it often returns results that have nothing to do with the 
implanted motifs.  
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Tables 3 below contain in the first column sp, the number of semi-preserved positions of the 
set of implanted motif instances. The second column (ENRPFM) is the expected number of 
returns if the correct PFM is found, which is m+2sp*n/4l. The third column (IGOM result) 
gives the number of returns averaged over 10 experiments with different input data (both 
background and motif instances are generated randomly). The fourth column (ENRPRO) gives 
the expected number of returns for the projection algorithm provided that the projection 
coincides with the preserved positions of the PFM, these are m+4sp*n/4l. The fifth column 
(Projection results) is the average result over 10 experiments. The sixth column gives the 
ranking of the optimum result (ranked by the number of strings returned).  

Table 3 (n=48): 
sp ENRPFM IGOM results ENRPRO Projection 

results 
Projection 
rank 

0 33 33 33 33 1 
1 34 34 36 36 1 
2 36 36 48 50 1 
3 40 41 96 101 4 
4 48 49 (2x not all 

found) 
288 >300 below 10 

5 64  23 
with 20 motif 
instances 

1060  >1000 
  

below 10 

  
If the number of returned strings is much higher than 32 (the number of implanted motif 
instances) then it is probably quite difficult for the biological researcher to spot these motif 
instances and reject all the false positives. We also present the position amongst the ranking 
of all returned solutions, i.e. in case of IGOM the correct solution is also always ranked 
highest but in case of the projection algorithm it happens that other projections have returned 
more candidates (and thus be ranked above the correct solution), they will be candidate sets 
that are regarded as more interesting initially, until it has been detected that they mainly 
contain false positives. The ranking for sp=4 and sp=5 is given as “below 10”. This says that 
the 10 highest ranked solutions did not contain any motif instance, while the number of 
returned strings for these solutions were more than 300 for sp=4 and more than 1000 for 
sp=5. In both these cases IGOM still returned meaningful results. We expect that further 
finetuning of IGOM will lead to even better results. 

6. Summary and further research 
In this paper we have demonstrated that the algorithm IGOM significantly outperforms in 
particular the well known projection algorithm [2]. One of the reasons for this is that it is 
based on and tailored towards the SP data model, which is more realistic than data models 
based on consensus strings and Hamming distance. Our main goal has been to show that we 
need to address the concept of signal to noise ratio in order to develop and finetune motif 
finding algorithms. The algorithm IGOM does just that: By choosing the motif kernels, by the 
way motif kernels are enlarged and by the way termination criteria are defined, that make 
sure that sets of strings that are most unlikely to be found in random data are kept as 
candidate sets. At the end it has to be the microbiologist who is able to do corresponding 



biological experiments, who verifies whether the sets of motif candidates that have been 
returned by a motif finding algorithm are likely to be of biological value.  

Close collaboration with the “Institut für Infektionsmedizin” at the Christian-Albrechts-
Universität in Kiel we were able to apply the IGOM algorithm to different sets of known 
motif instances and their sources. Here we detected a wide range of strings that are likely to 
be motif instances and had not been detected before.  

It is (even though not dealt with in this paper) worth looking at how to reduce computation 
time. We could do so by reducing initially the dataset drastically (by using auxiliary 
information), i.e. we might know that even though the range of distances of the motifs from 
the start position of its gene is wide, most of the motifs are likely to be located in a much 
shorter interval in front of the gene. In this case we might firstly search for motifs only in this 
restricted area. This will also improve the expected signal to noise ratio as this area has a 
higher density of motif instances. 

There is a wide range of further research needed in order to establish the findings of this 
paper. IGOM has to be applied to a wider range of synthetic data and more importantly to 
real datasets. We also plan to finetune IGOM in order to be able to handle datasets from 
prokaryotes, eukaryotes and viruses. The SP model introduced in the paper can be further 
generalised and the motif finding strategy can be adopted to this generalisation. Through this 
generalisation we expect to be able to get good performance for a wider range of motifs. 
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