1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
-------------------------------------------------------------------------
--- This is the implementation of the currycheck tool.
--- It performs various checks on Curry programs:
---
--- * Correct usage of set functions, non-strict unification,
---   default rules, DET annotations, contracts
--- * All EasyCheck tests are extracted and checked
--- * For all functions declared as deterministic,
---   determinism properties are generated and checked.
--- * For functions with postconditions (f'post), checks for postconditions
---   are generated (together with possible preconditions)
--- * For functions with specification (f'spec), checks for satisfaction
---   of these specifications are generated
---   (together with possible preconditions).
---
--- @author Michael Hanus, Jan-Patrick Baye
--- @version February 2018
-------------------------------------------------------------------------

import AnsiCodes
import Char                    ( toUpper )
import Distribution
import FilePath                ( (</>), pathSeparator, takeDirectory )
import GetOpt
import List
import Maybe                   ( fromJust, isJust )
import System                  ( system, exitWith, getArgs, getPID, getEnviron )

import AbstractCurry.Types
import AbstractCurry.Files
import AbstractCurry.Select
import AbstractCurry.Build
import qualified AbstractCurry.Pretty as ACPretty
import AbstractCurry.Transform ( renameCurryModule, trCTypeExpr
                               , updCProg, updQNamesInCProg )
import Analysis.Termination    ( Productivity(..) )
import qualified FlatCurry.Types as FC
import FlatCurry.Files
import qualified FlatCurry.Goodies as FCG
import Text.Pretty             ( pPrint )

import CC.AnalysisHelpers      ( getTerminationInfos, getProductivityInfos )
import CC.Config               ( packagePath, packageVersion )
import CC.Options
import CheckDetUsage           ( checkDetUse, containsDetOperations)
import ContractUsage
import DefaultRuleUsage        ( checkDefaultRules, containsDefaultRules )
import PropertyUsage
import SimplifyPostConds       ( simplifyPostConditionsWithTheorems )
import TheoremUsage
import UsageCheck              ( checkBlacklistUse, checkSetUse )

-- Banner of this tool:
ccBanner :: String
ccBanner = unlines [bannerLine,bannerText,bannerLine]
 where
   bannerText = "CurryCheck: a tool for testing Curry programs (Version " ++
                packageVersion ++ " of 12/02/2018)"
   bannerLine = take (length bannerText) (repeat '-')

-- Help text
usageText :: String
usageText = usageInfo ("Usage: curry-check [options] <module names>\n") options

--- Maximal arity of check functions and tuples currently supported:
maxArity :: Int
maxArity = 5

-------------------------------------------------------------------------
-- The names of suffixes added to specific tests.

defTypeSuffix :: String
defTypeSuffix = "_ON_BASETYPE"

postCondSuffix :: String
postCondSuffix = "SatisfiesPostCondition"

satSpecSuffix :: String
satSpecSuffix = "SatisfiesSpecification"

isDetSuffix :: String
isDetSuffix = "IsDeterministic"

-------------------------------------------------------------------------
-- Internal representation of tests extracted from a Curry module.
-- A test is
-- * a property test (with a name, type, source line number),
-- * an IO test (with a name and source line number), or
-- * an operation equivalence test (with a name, the names of both operations,
--   and their type, and the source line number).
data Test = PropTest  QName CTypeExpr Int
          | IOTest    QName Int
          | EquivTest QName QName QName CTypeExpr Int

-- Is the test an IO test?
isIOTest :: Test -> Bool
isIOTest t = case t of IOTest _ _ -> True
                       _          -> False
-- Is the test a unit test?
isUnitTest :: Test -> Bool
isUnitTest t = case t of PropTest _ texp _ -> null (argTypes texp)
                         _                 -> False

-- Is the test a property test?
isPropTest :: Test -> Bool
isPropTest t = case t of PropTest _ texp _ -> not (null (argTypes texp))
                         _                 -> False

-- Is the test an equivalence test?
isEquivTest :: Test -> Bool
isEquivTest t = case t of EquivTest _ _ _ _ _ -> True
                          _                   -> False

-- Returns the names of the operations of an equivalence test.
equivTestOps :: Test -> [QName]
equivTestOps t = case t of EquivTest _ f1 f2 _ _ -> [f1,f2]
                           _                     -> []

-- The name of a test:
testName :: Test -> QName
testName (PropTest  n _     _) = n
testName (IOTest    n       _) = n
testName (EquivTest n _ _ _ _) = n

-- The line number of a test:
testLine :: Test -> Int
testLine (PropTest  _ _     n) = n
testLine (IOTest    _       n) = n
testLine (EquivTest _ _ _ _ n) = n

-- Generates a useful error message for tests (with module and line number)
genTestMsg :: String -> Test -> String
genTestMsg file test =
  snd (testName test) ++
  " (module " ++ file ++ ", line " ++ show (testLine test) ++ ")"

-- Generates the name of a test in the main test module from the test name.
genTestName :: Test -> String
genTestName test =
  let (modName, fName) = testName test
  in fName ++ "_" ++ modNameToId modName

-------------------------------------------------------------------------
-- Representation of the information about a module to be tested:
-- * the original name of the module to be tested
-- * the name of the transformed (public) test module
-- * static errors (e.g., illegal uses of set functions)
-- * test operations
-- * name of generators defined in this module (i.e., starting with "gen"
--   and of appropriate result type)
data TestModule = TestModule
  { orgModuleName  :: String
  , testModuleName :: String
  , staticErrors   :: [String]
  , propTests      :: [Test]
  , generators     :: [QName]
  }

-- A test module with only static errors.
staticErrorTestMod :: String -> [String] -> TestModule
staticErrorTestMod modname staterrs =
 TestModule modname modname staterrs [] []

-- Is this a test module that should be tested?
testThisModule :: TestModule -> Bool
testThisModule tm = null (staticErrors tm) && not (null (propTests tm))

-- Extracts all user data types used as test data generators.
-- Each type has a flag which is `True` if the test data should contain
-- partial values (for checking equivalence of operations).
userTestDataOfModule :: TestModule -> [(QName,Bool)]
userTestDataOfModule testmod = concatMap testDataOf (propTests testmod)
 where
  testDataOf (IOTest _ _) = []
  testDataOf (PropTest _ texp _) =
    map (\t -> (t,False)) (filter (\ (mn,_) -> mn /= preludeName)
                                  (unionOn tconsOf (argTypes texp)))
  testDataOf (EquivTest _ _ _ texp _) =
    map (\t -> (t,True)) (unionOn tconsOf (argTypes texp))

-- Extracts all result data types used in equivalence properties.
equivPropTypes :: TestModule -> [QName]
equivPropTypes testmod = concatMap equivTypesOf (propTests testmod)
 where
  equivTypesOf (IOTest _ _) = []
  equivTypesOf (PropTest _ _ _) = []
  equivTypesOf (EquivTest _ _ _ texp _) = tconsOf (resultType texp)

-------------------------------------------------------------------------
-- Transform all tests of a module into operations that perform
-- appropriate calls to EasyCheck:
genTestFuncs :: Options -> (QName -> Bool) -> (QName -> Productivity) -> String
             -> TestModule -> IO [CFuncDecl]
genTestFuncs opts terminating productivity mainmod tm =
  liftM (filter (not . null . funcRules))
        (mapM genTestFunc (propTests tm))
 where
  genTestFunc test = case test of
    PropTest  name t _       -> testFuncWithRules (propBody   name t test)
    IOTest    name   _       -> testFuncWithRules (ioTestBody name test)
    EquivTest name f1 f2 t _ ->
      -- if the test name has suffix "'TERMINATE" or the operations
      -- to be tested are terminating, the test for terminating
      -- operations is used:
      if "'TERMINATE" `isSuffixOf` map toUpper (snd name) ||
         (isTerminating f1 && isTerminating f2)
        then do putStrLnIfDebug opts $
                  "Generating equivalence test for TERMINATING " ++
                  "operations for test: " ++ snd name
                testFuncWithRules $ equivBodyTerm f1 f2 t test
        else
          -- if the test name has suffix "'PRODUCTIVE" or the
          -- operations to be tested are productive,
          -- the test for arbitrary operations is used
          -- (which limits the size of computed
          -- results but might find counter-examples later),
          -- otherwise the test is omitted if we are in the "safe"
          -- mode:
          if "'PRODUCTIVE" `isSuffixOf` map toUpper (snd name) ||
             optEquiv opts /= Safe ||
             (isProductive f1 && isProductive f2)
            then do putStrLnIfDebug opts $
                      "Generating equivalence test for PRODUCTIVE " ++
                      "operations for test: " ++ snd name
                    testFuncWithRules $ equivBodyAny f1 f2 t test
            else testFuncWithRules []
   where
     testFuncWithRules rs =
       return $ cfunc (mainmod, genTestName test) 0 Public
                      (emptyClassType (ioType (maybeType stringType))) rs

  isTerminating f = terminating f || productivity f == Terminating

  isProductive f = productivity f `notElem` [NoInfo, Looping]

  msgOf test = string2ac $ genTestMsg (orgModuleName tm) test

  testmname = testModuleName tm

  easyCheckFuncName arity =
    if arity>maxArity
    then error $ "Properties with more than " ++ show maxArity ++
                 " parameters are currently not supported!"
    else (easyCheckExecModule,"checkWithValues" ++ show arity)

  -- Operation equivalence test for terminating operations:
  equivBodyTerm f1 f2 texp test =
    let xvars = map (\i -> (i,"x"++show i)) [1 .. arityOfType texp]
        pvalOfFunc = ctype2pvalOf mainmod "pvalOf" (resultType texp)
    in propOrEquivBody (map (\t -> (t,True)) (argTypes texp)) test
         (cLambda (map CPVar xvars)
            (applyF (easyCheckModule,"<~>")
                    [applyE pvalOfFunc [applyF f1 (map CVar xvars)],
                     applyE pvalOfFunc [applyF f2 (map CVar xvars)]]))

  -- Operation equivalence test for arbitrary operations:
  equivBodyAny f1 f2 texp test =
    let xvars = map (\i -> (i,"x"++show i)) [1 .. arityOfType texp]
        pvar  = (2,"p")
        pvalOfFunc = ctype2pvalOf mainmod "peval" (resultType texp)
    in propOrEquivBody
         (map (\t -> (t,True)) (argTypes texp) ++
          [(ctype2BotType mainmod  (resultType texp), False)])
         test
         (CLambda (map CPVar xvars ++ [CPVar pvar])
            (applyF (easyCheckModule,"<~>")
               [applyE pvalOfFunc [applyF f1 (map CVar xvars), CVar pvar],
                applyE pvalOfFunc [applyF f2 (map CVar xvars), CVar pvar]]))

  propBody qname texp test =
    propOrEquivBody (map (\t -> (t,False)) (argTypes texp))
                    test (CSymbol (testmname,snd qname))

  propOrEquivBody argtypes test propexp =
    [simpleRule [] $
      CLetDecl [CLocalPat (CPVar msgvar) (CSimpleRhs (msgOf test) [])]
               (applyF (easyCheckExecModule, "checkPropWithMsg")
                 [ CVar msgvar
                 , applyF (easyCheckFuncName (length argtypes)) $
                    [configOpWithMaxFail, CVar msgvar] ++
                    (map (\ (t,genpart) ->
                          applyF (easyCheckModule,"valuesOfSearchTree")
                            [if isPAKCS || useUserDefinedGen t || isFloatType t
                             then type2genop mainmod tm genpart t
                             else applyF (searchTreeModule,"someSearchTree")
                                         [constF (pre "unknown")]])
                         argtypes) ++
                    [propexp]
                 ])]
   where
    useUserDefinedGen texp = case texp of
      CTVar _       -> error "No polymorphic generator!"
      CFuncType _ _ -> error $ "No generator for functional types:\n" ++
                               showCTypeExpr texp
      CTApply _ _   ->
        maybe (error "No generator for type applications!")
              (\ ((_,tc),_) -> isJust
                         (find (\qn -> "gen"++tc == snd qn) (generators tm)))
              (tconsArgsOfType texp)
      CTCons (_,tc) -> isJust
                         (find (\qn -> "gen"++tc == snd qn) (generators tm))

    configOpWithMaxTest =
      let n = optMaxTest opts
       in if n==0 then stdConfigOp
                  else applyF (easyCheckExecModule,"setMaxTest")
                              [cInt n, stdConfigOp]

    configOpWithMaxFail =
      let n = optMaxFail opts
       in if n==0 then configOpWithMaxTest
                  else applyF (easyCheckExecModule,"setMaxFail")
                              [cInt n, configOpWithMaxTest]

    msgvar = (0,"msg")

  stdConfigOp = constF (easyCheckConfig opts)

  ioTestBody (_, name) test =
    [simpleRule [] $ applyF (easyCheckExecModule,"checkPropIOWithMsg")
                            [stdConfigOp, msgOf test, CSymbol (testmname,name)]]

-- The configuration option for EasyCheck
easyCheckConfig :: Options -> QName
easyCheckConfig opts =
  (easyCheckExecModule,
   if isQuiet opts     then "quietConfig"   else
   if optVerb opts > 2 then "verboseConfig"
                       else "easyConfig")

-- Translates a type expression into calls to generator operations.
-- If the third argument is `True`, calls to partial generators are used.
type2genop :: String -> TestModule -> Bool -> CTypeExpr -> CExpr
type2genop _ _ _ (CTVar _)       = error "No polymorphic generator!"
type2genop _ _ _ te@(CFuncType _ _) =
  error $ "No generator for functional types:\n" ++ showCTypeExpr te
type2genop mainmod tm genpart (CTCons qt) =
  constF (typename2genopname mainmod (generators tm) genpart qt)
type2genop mainmod tm genpart te@(CTApply _ _) =
  maybe (error "No generator for type applications!")
        (\ (qt,targs) ->
           applyF (typename2genopname mainmod (generators tm) genpart qt)
                  (map (type2genop mainmod tm genpart) targs))
        (tconsArgsOfType te)

isFloatType :: CTypeExpr -> Bool
isFloatType texp = case texp of CTCons tc -> tc == (preludeName,"Float")
                                _         -> False

-- Translates the name of a type constructor into the name of the
-- generator operation for values of this type.
-- The first argument is the name of the main module.
-- The second argument contains the user-defined generator operations.
-- If the third argument is `True`, generators for partial values are used.
typename2genopname :: String -> [QName] -> Bool -> QName -> QName
typename2genopname mainmod definedgenops genpart (mn,tc)
  | genpart  -- we use our own generator for partial values:
  = (mainmod, "gen_" ++ modNameToId mn ++ "_" ++ transQN tc ++ "_PARTIAL")
  | isJust maybeuserdefined -- take user-defined generator:
  = fromJust maybeuserdefined
  | mn==preludeName
  = (generatorModule, "gen" ++ transQN tc)
  | otherwise -- we use our own generator:
  = (mainmod, "gen_" ++ modNameToId mn ++ "_" ++ transQN tc ++
              if genpart then "_PARTIAL" else "")
 where
  maybeuserdefined = find (\qn -> "gen"++tc == snd qn) definedgenops

-- Transform a qualified (typ) constructor name into a name
-- with alpha-numeric characters.
transQN :: String -> String
transQN tcons | tcons == "[]"     = "List"
              | tcons == ":"      = "Cons"
              | tcons == "()"     = "Unit"
              | tcons == "(,)"    = "Pair"
              | tcons == "(,,)"   = "Triple"
              | tcons == "(,,,)"  = "Tuple4"
              | tcons == "(,,,,)" = "Tuple5"
              | otherwise         = tcons

-------------------------------------------------------------------------
-- Turn all functions into public ones.
-- This ensures that all tests can be executed.
makeAllPublic :: CurryProg -> CurryProg
makeAllPublic (CurryProg modname imports dfltdecl clsdecls instdecls
                         typedecls functions opdecls) =
  CurryProg modname stimports dfltdecl clsdecls instdecls
            typedecls publicFunctions opdecls
 where
  stimports = if generatorModule `elem` imports &&
                 searchTreeModule `notElem` imports
              then searchTreeModule : imports -- just to be safe if module
                                              -- contains generator definitions
              else imports

  publicFunctions = map makePublic $ map ignoreComment functions

  -- since we create a copy of the module, we can ignore unnecessary data
  ignoreComment :: CFuncDecl -> CFuncDecl
  ignoreComment (CmtFunc _ name arity visibility typeExpr rules) =
    CFunc name arity visibility typeExpr rules
  ignoreComment x@(CFunc      _     _          _        _     _) = x

  makePublic :: CFuncDecl -> CFuncDecl
  makePublic (CFunc name arity _      typeExpr rules) =
              CFunc name arity Public typeExpr rules
  makePublic (CmtFunc cmt name arity _      typeExpr rules) =
              CmtFunc cmt name arity Public typeExpr rules

-- classify the tests as either PropTest or IOTest
classifyTests :: Options -> CurryProg -> [CFuncDecl] -> [Test]
classifyTests opts prog = map makeProperty
 where
  makeProperty test =
    if isPropIOType (typeOfQualType (funcType test))
      then IOTest tname 0
      else maybe (PropTest tname (typeOfQualType (funcType test)) 0)
                 expsToEquivTest
                 (isEquivProperty test)
    where
     tname = funcName test

     expsToEquivTest exps = case exps of
       (CSymbol f1,CSymbol f2) ->
         EquivTest tname f1 f2 (defaultingType (funcTypeOf f1)) 0
       (CTyped (CSymbol f1) qtexp, CSymbol f2) ->
         EquivTest tname f1 f2 (defaultingType qtexp) 0
       (CSymbol f1, CTyped (CSymbol f2) qtexp) ->
         EquivTest tname f1 f2 (defaultingType qtexp) 0
       (CTyped (CSymbol f1) qtexp, CTyped (CSymbol f2) _) ->
         EquivTest tname f1 f2 (defaultingType qtexp) 0
       (e1,e2) -> error $ "Illegal equivalence property:\n" ++
                          showCExpr e1 ++ " <=> " ++ showCExpr e2

  defaultingType = poly2defaultType (optDefType opts) . typeOfQualType
                                                      . defaultQualType

  funcTypeOf f = maybe (error $ "Cannot find type of " ++ show f ++ "!")
                       funcType
                       (find (\fd -> funcName fd == f) (functions prog))

-- Extracts all tests from a given Curry module and transforms
-- all polymorphic tests into tests on a base type.
-- The result contains a triple consisting of all actual tests,
-- all ignored tests, and the public version of the original module.
transformTests :: Options -> String -> CurryProg
               -> IO ([CFuncDecl],[CFuncDecl],CurryProg)
transformTests opts srcdir
               prog@(CurryProg mname imps dfltdecl clsdecls instdecls
                               typeDecls functions opDecls) = do
  theofuncs <- if optProof opts then getTheoremFunctions srcdir prog
                                else return []
  simpfuncs <- simplifyPostConditionsWithTheorems (optVerb opts) theofuncs funcs
  let preCondOps  = preCondOperations simpfuncs
      postCondOps = map ((\ (mn,fn) -> (mn, fromPostCondName fn)) . funcName)
                        (funDeclsWith isPostCondName simpfuncs)
      specOps     = map ((\ (mn,fn) -> (mn, fromSpecName fn)) . funcName)
                        (funDeclsWith isSpecName simpfuncs)
      -- generate post condition tests:
      postCondTests = concatMap (genPostCondTest preCondOps postCondOps) funcs
      -- generate specification tests:
      specOpTests   = concatMap (genSpecTest preCondOps specOps) funcs

      (realtests,ignoredtests) = partition fst $
        if not (optProp opts)
        then []
        else concatMap (poly2default (optDefType opts)) $
               -- ignore already proved properties:
               filter (\fd -> funcName fd `notElem` map funcName theofuncs)
                      usertests ++
               (if optSpec opts then postCondTests ++ specOpTests else [])
  return (map snd realtests,
          map snd ignoredtests,
          CurryProg mname
                    (nub (easyCheckModule:imps))
                    dfltdecl clsdecls instdecls
                    typeDecls
                    (simpfuncs ++ map snd (realtests ++ ignoredtests))
                    opDecls)
 where
  (usertests, funcs) = partition isProperty functions


-- Extracts all determinism tests from a given Curry module and
-- transforms deterministic operations back into non-deterministic operations
-- in order to test their determinism property.
-- The result contains a triple consisting of all actual determinism tests,
-- all ignored tests (since they are polymorphic), and the public version
-- of the transformed original module.
transformDetTests :: Options -> [String] -> CurryProg
                  -> ([CFuncDecl],[CFuncDecl],CurryProg)
transformDetTests opts prooffiles
                  (CurryProg mname imports dfltdecl clsdecls instdecls
                             typeDecls functions opDecls) =
  (map snd realtests, map snd ignoredtests,
   CurryProg mname
             (nub (easyCheckModule:imports))
             dfltdecl clsdecls instdecls
             typeDecls
             (map (revertDetOpTrans detOpNames) functions ++
              map snd (realtests ++ ignoredtests))
             opDecls)
 where
  preCondOps = preCondOperations functions

  -- generate determinism tests:
  detOpTests = genDetOpTests prooffiles preCondOps functions

  -- names of deterministic operations:
  detOpNames = map (stripIsDet . funcName) detOpTests

  stripIsDet (mn,fn) = (mn, take (length fn -15) fn)

  (realtests,ignoredtests) = partition fst $
    if not (optProp opts)
    then []
    else concatMap (poly2default (optDefType opts))
                   (if optDet opts then detOpTests else [])

-- Get all operations with a defined precondition from a list of functions.
preCondOperations :: [CFuncDecl] -> [QName]
preCondOperations fdecls =
  map ((\ (mn,fn) -> (mn,fromPreCondName fn)) . funcName)
      (funDeclsWith isPreCondName fdecls)

-- Filter functions having a name satisfying a given predicate.
funDeclsWith :: (String -> Bool) -> [CFuncDecl] -> [CFuncDecl]
funDeclsWith pred = filter (pred . snd . funcName)

-- Transforms a function type into a property type, i.e.,
-- t1 -> ... -> tn -> t  is transformed into  t1 -> ... -> tn -> Prop
propResultType :: CTypeExpr -> CTypeExpr
propResultType te = case te of
  CFuncType from to -> CFuncType from (propResultType to)
  _                 -> baseType (easyCheckModule,"Prop")

-- Transforms a function declaration into a post condition test if
-- there is a post condition for this function (i.e., a relation named
-- f'post). The post condition test is of the form
-- fSatisfiesPostCondition x1...xn y = always (f'post x1...xn (f x1...xn))
genPostCondTest :: [QName] -> [QName] -> CFuncDecl -> [CFuncDecl]
genPostCondTest prefuns postops (CmtFunc _ qf ar vis texp rules) =
  genSpecTest prefuns postops (CFunc qf ar vis texp rules)
genPostCondTest prefuns postops
                (CFunc qf@(mn,fn) _ _ (CQualType clscon texp) _) =
 if qf `notElem` postops then [] else
  [CFunc (mn, fn ++ postCondSuffix) ar Public
    (CQualType clscon (propResultType texp))
    [simpleRule (map CPVar cvars) $
      if qf `elem` prefuns
       then applyF (easyCheckModule,"==>")
                   [applyF (mn,toPreCondName fn) (map CVar cvars), postprop]
       else postprop
    ]]
 where
  ar       = arityOfType texp
  cvars    = map (\i -> (i,"x"++show i)) [1 .. ar]
  rcall    = applyF qf (map CVar cvars)
  postprop = applyF (easyCheckModule,"always")
                    [applyF (mn,toPostCondName fn)
                            (map CVar cvars ++ [rcall])]

-- Transforms a function declaration into a specification test if
-- there is a specification for this function (i.e., an operation named
-- f'spec). The specification test is of the form
-- fSatisfiesSpecification x1...xn =
--   f'pre x1...xn  ==> (f x1...xn <~> f'spec x1...xn)
genSpecTest :: [QName] -> [QName] -> CFuncDecl -> [CFuncDecl]
genSpecTest prefuns specops (CmtFunc _ qf ar vis texp rules) =
  genSpecTest prefuns specops (CFunc qf ar vis texp rules)
genSpecTest prefuns specops
            (CFunc qf@(mn,fn) _ _ (CQualType clscon texp) _) =
 if qf `notElem` specops then [] else
  [CFunc (mn, fn ++ satSpecSuffix) ar Public
    (CQualType (addShowContext clscon) (propResultType texp))
    [simpleRule (map CPVar cvars) $
       addPreCond (applyF (easyCheckModule,"<~>")
                          [applyF qf (map CVar cvars),
                           applyF (mn,toSpecName fn) (map CVar cvars)])]]
 where
  cvars = map (\i -> (i,"x"++show i)) [1 .. ar]
  ar    = arityOfType texp

  addPreCond exp = if qf `elem` prefuns
                   then applyF (easyCheckModule,"==>")
                          [applyF (mn,toPreCondName fn) (map CVar cvars), exp]
                   else exp

-- Revert the transformation for deterministic operations performed
-- by currypp, i.e., replace rule "f x = selectValue (set f_ORGNDFUN x)"
-- with "f = f_ORGNDFUN".
revertDetOpTrans :: [QName] -> CFuncDecl -> CFuncDecl
revertDetOpTrans  detops (CmtFunc _ qf ar vis texp rules) =
  revertDetOpTrans detops (CFunc qf ar vis texp rules)
revertDetOpTrans detops fdecl@(CFunc qf@(mn,fn) ar vis texp _) =
  if qf `elem` detops
  then CFunc qf ar vis texp [simpleRule [] (constF (mn,fn++"_ORGNDFUN"))]
  else fdecl

-- Look for operations named f_ORGNDFUN and create a determinism property
-- for f.
genDetOpTests :: [String] -> [QName] -> [CFuncDecl] -> [CFuncDecl]
genDetOpTests prooffiles prefuns fdecls =
  map (genDetProp prefuns) (filter isDetOrgOp fdecls)
 where
  isDetOrgOp fdecl =
   let fn = snd (funcName fdecl)
    in "_ORGNDFUN" `isSuffixOf` fn &&
       not (existsProofFor (determinismTheoremFor (take (length fn - 9) fn))
                           prooffiles)

-- Transforms a declaration of a deterministic operation f_ORGNDFUN
-- into a determinisim property test of the form
-- fIsDeterministic x1...xn = f x1...xn #< 2
genDetProp :: [QName] -> CFuncDecl -> CFuncDecl
genDetProp prefuns (CmtFunc _ qf ar vis texp rules) =
  genDetProp prefuns (CFunc qf ar vis texp rules)
genDetProp prefuns (CFunc (mn,fn) ar _ (CQualType clscon texp) _) =
  CFunc (mn, forg ++ isDetSuffix) ar Public
   (CQualType (addShowContext clscon) (propResultType texp))
   [simpleRule (map CPVar cvars) $
      if (mn,forg) `elem` prefuns
       then applyF (easyCheckModule,"==>")
                   [applyF (mn,toPreCondName forg) (map CVar cvars), rnumcall]
       else rnumcall ]
 where
  forg     = take (length fn - 9) fn
  cvars    = map (\i -> (i,"x"++show i)) [1 .. ar]
  forgcall = applyF (mn,forg) (map CVar cvars)
  rnumcall = applyF (easyCheckModule,"#<") [forgcall, cInt 2]

-- Generates auxiliary (base-type instantiated) test functions for
-- polymorphically typed test function.
-- The flag indicates whether the test function should be actually passed
-- to the test tool.
poly2default :: String -> CFuncDecl -> [(Bool,CFuncDecl)]
poly2default dt (CmtFunc _ name arity vis ftype rules) =
  poly2default dt (CFunc name arity vis ftype rules)
poly2default dt fdecl@(CFunc (mn,fname) arity vis qftype rs)
  | isPolyType ftype
  = [(False,fdecl)
    ,(True, CFunc (mn,fname++defTypeSuffix) arity vis
                  (emptyClassType (poly2defaultType dt ftype))
                  [simpleRule [] (applyF (mn,fname) [])])
    ]
  | otherwise
  = [(True, CFunc (mn,fname) arity vis (CQualType clscon ftype) rs)]
 where
  CQualType clscon ftype = defaultQualType qftype

poly2defaultType :: String -> CTypeExpr -> CTypeExpr
poly2defaultType dt texp = p2dt texp
 where
  p2dt (CTVar _)         = baseType (pre dt)
  p2dt (CFuncType t1 t2) = CFuncType (p2dt t1) (p2dt t2)
  p2dt (CTApply t1 t2)   = CTApply (p2dt t1) (p2dt t2)
  p2dt (CTCons ct)       = CTCons ct

-------------------------------------------------------------------------
-- Try to default a qualified type by replacing Num/Integral-constrained
-- types by Int and Fractional-constrained types by Float.
defaultQualType :: CQualTypeExpr -> CQualTypeExpr
defaultQualType (CQualType (CContext allclscon) ftype) =
  CQualType (CContext deffractxt) deffratype
 where
  (numcons,nonnumcons) =
    partition (\ (cls,te) -> (cls == pre "Num" || cls == pre "Integral")
                             && isTVar te)
              allclscon
  defnumtype = def2TConsInType numcons (pre "Int") ftype
  defnumctxt = removeNonTVarClassContexts
                 (map (\ (cls,con) ->
                                (cls, def2TConsInType numcons (pre "Int") con))
                      nonnumcons)

  (fracons,nonfracons) =
    partition (\ (cls,te) -> cls == pre "Fractional" && isTVar te) defnumctxt
  deffratype = def2TConsInType fracons (pre "Float") defnumtype
  deffractxt = removeNonTVarClassContexts
                 (map (\ (cls,con) ->
                              (cls, def2TConsInType fracons (pre "Float") con))
                      nonfracons)

  -- remove constant type class contexts
  removeNonTVarClassContexts = filter (\ (_,te) -> isTVar te)

  -- replace all type variables (occurring in the first list of class
  -- constraints) by the type constructor (second argument) in a given
  -- type expression (third argument)
  def2TConsInType clscons tcons texp =
    foldr (tvar2TCons tcons) texp (map snd clscons)

  -- substitute a type variable by type Int in a type
  tvar2TCons tcons texp = case texp of
    CTVar tv -> substTVar tv (CTCons tcons)
    _        -> id

  -- substitute a type variable by a type expression in a type expression:
  substTVar tvariname texp =
    trCTypeExpr (\tv -> if tv==tvariname then texp else CTVar tv)
                CTCons CFuncType CTApply

  isTVar te = case te of CTVar _ -> True
                         _       -> False

-- Add a "Show" class context to all types occurring in the context.
addShowContext :: CContext -> CContext
addShowContext (CContext clscons) =
  CContext (nub (clscons ++ (map (\t -> (pre "Show",t)) (map snd clscons))))

-------------------------------------------------------------------------

-- Transforms a possibly changed test name (like "test_ON_BASETYPE")
-- back to its original name.
orgTestName :: QName -> QName
orgTestName (mn,tname)
  | defTypeSuffix `isSuffixOf` tname
  = orgTestName (mn, stripSuffix tname defTypeSuffix)
  | isDetSuffix `isSuffixOf` tname
  = orgTestName (mn, take (length tname - 15) tname)
  | postCondSuffix `isSuffixOf` tname
  = orgTestName (mn, stripSuffix tname postCondSuffix)
  | satSpecSuffix `isSuffixOf` tname
  = orgTestName (mn, stripSuffix tname satSpecSuffix)
  | otherwise = (mn,tname)

-- This function implements the first phase of CurryCheck: it analyses
-- a module to be checked, i.e., it finds the tests, creates new tests
-- (e.g., for polymorphic properties, deterministic functions, post
-- conditions, specifications)
-- and generates a copy of the module appropriate for the main operation
-- of CurryCheck (e.g., all operations are made public).
-- If there are determinism tests, it also generates a second copy
-- where all deterministic functions are defined as non-deterministic
-- so that these definitions are tested.
analyseModule :: Options -> String -> IO [TestModule]
analyseModule opts modname = do
  putStrIfNormal opts $ withColor opts blue $
                        "Analyzing module '" ++ modname ++ "'...\n"
  catch (readCurryWithParseOptions modname (setQuiet True defaultParams) >>=
         analyseCurryProg opts modname)
        (\_ -> return [staticErrorTestMod modname
                         ["Module '"++modname++"': incorrect source program"]])

-- Analyse a Curry module for static errors:
staticProgAnalysis :: Options -> String -> String -> CurryProg
                   -> IO ([String],[(QName,String)])
staticProgAnalysis opts modname progtxt prog = do
  putStrIfDetails opts "Checking source code for static errors...\n"
  useerrs <- if optSource opts then checkBlacklistUse prog else return []
  seterrs <- if optSource opts then readFlatCurry modname >>= checkSetUse
                               else return []
  let defruleerrs = if optSource opts then checkDefaultRules prog else []
  untypedprog <- readUntypedCurry modname
  let detuseerrs   = if optSource opts then checkDetUse untypedprog else []
      contracterrs = checkContractUse prog
      staticerrs = concat [seterrs,useerrs,defruleerrs,detuseerrs,contracterrs]
      missingCPP =
       if (containsDefaultRules prog || containsDetOperations untypedprog)
          && not (containsPPOptionLine progtxt)
       then ["'" ++ modname ++
           "' uses default rules or det. operations but not the preprocessor!",
           "Hint: insert line: {-# OPTIONS_CYMAKE -F --pgmF=currypp #-}"]
       else []
  return (missingCPP,staticerrs)

-- Analyse a Curry module and generate property tests:
analyseCurryProg :: Options -> String -> CurryProg -> IO [TestModule]
analyseCurryProg opts modname orgprog = do
  -- First we rename all references to Test.Prop into Test.EasyCheck
  let prog = renameProp2EasyCheck orgprog
  (topdir,srcfilename) <- lookupModuleSourceInLoadPath modname >>=
        return .
        maybe (error $ "Source file of module '"++modname++"' not found!") id
  let srcdir = takeDirectory srcfilename
  putStrLnIfDebug opts $ "Source file: " ++ srcfilename
  prooffiles <- if optProof opts then getProofFiles srcdir else return []
  unless (null prooffiles) $ putStrIfDetails opts $
    unlines ("Proof files found:" : map ("- " ++) prooffiles)
  progtxt <- readFile srcfilename
  (missingCPP,staticoperrs) <- staticProgAnalysis opts modname progtxt prog
  let words      = map firstWord (lines progtxt)
      staticerrs = missingCPP ++ map (showOpError words) staticoperrs
  putStrIfDetails opts "Generating property tests...\n"
  (rawTests,ignoredTests,pubmod) <-
        transformTests opts srcdir . renameCurryModule (modname++"_PUBLIC")
                                   . makeAllPublic $ prog
  let (rawDetTests,ignoredDetTests,pubdetmod) =
        transformDetTests opts prooffiles
              . renameCurryModule (modname++"_PUBLICDET")
              . makeAllPublic $ prog
  unless (not (null staticerrs) || null rawTests && null rawDetTests) $
    putStrIfNormal opts $
      "Properties to be tested:\n" ++
      unwords (map (snd . funcName) (rawTests++rawDetTests)) ++ "\n"
  unless (not (null staticerrs) || null ignoredTests && null ignoredDetTests) $
    putStrIfNormal opts $
      "Properties ignored for testing:\n" ++
      unwords (map (snd . funcName) (ignoredTests++ignoredDetTests)) ++ "\n"
  let tm    = TestModule modname
                         (progName pubmod)
                         staticerrs
                         (addLinesNumbers words
                            (classifyTests opts pubmod rawTests))
                         (generatorsOfProg pubmod)
      dettm = TestModule modname
                         (progName pubdetmod)
                         []
                         (addLinesNumbers words
                            (classifyTests opts pubdetmod rawDetTests))
                         (generatorsOfProg pubmod)
  when (testThisModule tm) $ writeCurryProgram opts topdir pubmod ""
  when (testThisModule dettm) $ writeCurryProgram opts topdir pubdetmod ""
  return (if testThisModule dettm then [tm,dettm] else [tm])
 where
  showOpError words (qf,err) =
    snd qf ++ " (module " ++ modname ++ ", line " ++
    show (getLineNumber words qf) ++"): " ++ err

  addLinesNumbers words = map (addLineNumber words)

  addLineNumber :: [String] -> Test -> Test
  addLineNumber words (PropTest name texp _) =
    PropTest   name texp $ getLineNumber words (orgTestName name)
  addLineNumber words (IOTest name _) =
    IOTest name $ getLineNumber words (orgTestName name)
  addLineNumber words (EquivTest name f1 f2 texp _) =
    EquivTest name f1 f2 texp $ getLineNumber words (orgTestName name)

  getLineNumber :: [String] -> QName -> Int
  getLineNumber words (_, name) = maybe 0 (+1) (elemIndex name words)

-- Extracts all user-defined defined generators defined in a module.
generatorsOfProg :: CurryProg -> [QName]
generatorsOfProg = map funcName . filter isGen . functions
 where
   isGen fdecl = "gen" `isPrefixOf` snd (funcName fdecl) &&
                 isSearchTreeType (resultType (typeOfQualType (funcType fdecl)))

   isSearchTreeType (CTVar _)       = False
   isSearchTreeType (CFuncType _ _) = False
   isSearchTreeType (CTCons _)       = False
   isSearchTreeType te@(CTApply _ _) =
     maybe False ((==searchTreeTC) . fst) (tconsArgsOfType te)

-------------------------------------------------------------------------
-- Auxiliaries to support equivalence checking of operations.

-- Create data type with explicit bottom constructors.
genBottomType :: String -> FC.TypeDecl -> CTypeDecl
genBottomType _ (FC.TypeSyn _ _ _ _) =
  error "genBottomType: cannot translate type synonyms"
genBottomType mainmod (FC.Type qtc@(_,tc) _ tvars consdecls) =
  CType (mainmod,t2bt tc) Public (map transTVar tvars)
        (simpleCCons (mainmod,"Bot_"++transQN tc) Public [] :
         if isBasicExtType qtc
           then [simpleCCons (mainmod,"Value_"++tc) Public [baseType qtc]]
           else map transConsDecl consdecls)
        [(pre "Eq"),(pre "Show")]
 where
  transConsDecl (FC.Cons (_,cons) _ _ argtypes) =
    simpleCCons (mainmod,t2bt cons) Public (map transTypeExpr argtypes)

  transTypeExpr (FC.TVar i) = CTVar (transTVar i)
  transTypeExpr (FC.FuncType t1 t2) =
    CFuncType (transTypeExpr t1) (transTypeExpr t2)
  transTypeExpr (FC.TCons (_,tcons) tes) =
    applyTC (mainmod,t2bt tcons) (map transTypeExpr tes)
  transTypeExpr (FC.ForallType _ _) =
    error "genBottomType: cannot handle forall types"

  transTVar i = (i,'a':show i)

-- Is the type name an external basic prelude type?
isBasicExtType :: QName -> Bool
isBasicExtType (mn,tc) = mn == preludeName && tc `elem` ["Int","Float","Char"]

-- Default value for external basic prelude types.
defaultValueOfBasicExtType :: String -> CLiteral
defaultValueOfBasicExtType qn
  | qn == "Int"   = CIntc   0
  | qn == "Float" = CFloatc 0.0
  | qn == "Char"  = CCharc  'A'
  | otherwise     = error $ "defaultValueOfBasicExtType: unknown type: "++qn

ctype2BotType :: String -> CTypeExpr -> CTypeExpr
ctype2BotType _ (CTVar i) = CTVar i
ctype2BotType mainmod (CFuncType t1 t2) =
  CFuncType (ctype2BotType mainmod t1) (ctype2BotType mainmod t2)
ctype2BotType mainmod (CTApply t1 t2) =
  CTApply (ctype2BotType mainmod t1) (ctype2BotType mainmod t2)
ctype2BotType mainmod (CTCons qtc) =
  CTCons (mainmod, t2bt (snd qtc))

-- Translate a type constructor name to its bottom type constructor name
t2bt :: String -> String
t2bt s = "P_" ++ transQN s

-- Create `peval_` operation for a data type with explicit bottom constructors
-- according to the following scheme:
{-
peval_AB :: AB -> P_AB -> P_AB
peval_AB _ Bot_AB = Bot_AB                 -- no evaluation
peval_AB A P_A    = P_A
peval_AB B P_B    = P_B

peval_C :: C -> P_C -> P_C
peval_C _     Bot_C   = Bot_C              -- no evaluation
peval_C (C x) (P_C y) = P_C (peval_AB x y)

f_equiv_g x p = peval_C (f x) p <~> peval_C (g x) p
-}











genPeval :: String -> FC.TypeDecl -> CFuncDecl
genPeval _ (FC.TypeSyn _ _ _ _) =
  error "genPeval: cannot translate type synonyms"
genPeval mainmod (FC.Type qtc@(_,tc) _ tvars consdecls) =
  cmtfunc ("Evaluate a `"++tc++"` value up to a partial approxmiation.")
    (mainmod,"peval_"++transQN tc) 1 Public
    (emptyClassType
      (foldr1 (~>) (map (\ (a,b) -> CTVar a ~> CTVar b ~> CTVar b)
                        (zip polyavars polyrvars) ++
                    [applyTC qtc (map CTVar polyavars),
                     applyTC (mainmod,t2bt tc) (map CTVar polyrvars),
                     applyTC (mainmod,t2bt tc) (map CTVar polyrvars)])))
    (simpleRule (map CPVar (polyavars ++ [(0,"_")]) ++ [CPComb botSym []])
                (constF botSym) :
     if isBasicExtType qtc
       then [valueRule]
       else map genConsRule consdecls)
 where
  botSym = (mainmod,"Bot_"++transQN tc) -- bottom constructor

  -- variables for polymorphic type arguments:
  polyavars = [ (i,"a"++show i) | i <- tvars]
  polyrvars = [ (i,"b"++show i) | i <- tvars]

  genConsRule (FC.Cons qc@(_,cons) _ _ argtypes) =
    let args  = [(i,"x"++show i) | i <- [0 .. length argtypes - 1]]
        pargs = [(i,"y"++show i) | i <- [0 .. length argtypes - 1]]
        pcons = (mainmod,t2bt cons)
    in simpleRule (map CPVar polyavars ++
                   [CPComb qc (map CPVar args), CPComb pcons (map CPVar pargs)])
         (applyF pcons
                 (map (\ (e1,e2,te) ->
                        applyE (ftype2pvalOf mainmod "peval" polyavars te)
                               [e1,e2])
                      (zip3 (map CVar args) (map CVar pargs) argtypes)))

  valueRule =
    let xvar    = (0,"x")
        yvar    = (1,"y")
        valcons = (mainmod,"Value_"++tc)
    in guardedRule [CPVar xvar, CPComb valcons [CPVar yvar]]
                   [(constF (pre "True"), --applyF (pre "=:=") [CVar xvar, CVar yvar],
                     applyF valcons [CVar xvar])]
                   []

-- Create `pvalOf` operation for a data type with explicit bottom constructors
-- according to the following scheme:
{-
pvalOf_AB :: AB -> P_AB
pvalOf_AB _ = Bot_AB
pvalOf_AB A = P_A
pvalOf_AB B = P_B

pvalOf_C :: C -> P_C
pvalOf_C _     = Bot_C
pvalOf_C (C x) = P_C (pvalOf_AB x)

f_equiv_g x = pvalOf_C (f x) <~> pvalOf_C (g x)
-}











genPValOf :: String -> FC.TypeDecl -> CFuncDecl
genPValOf _ (FC.TypeSyn _ _ _ _) =
  error "genPValOf: cannot translate type synonyms"
genPValOf mainmod (FC.Type qtc@(_,tc) _ tvars consdecls) =
  cmtfunc ("Map a `"++tc++"` value into all its partial approxmiations.")
    (mainmod,"pvalOf_"++transQN tc) 1 Public
    (emptyClassType
      (foldr1 (~>) (map (\ (a,b) -> CTVar a ~> CTVar b)
                        (zip polyavars polyrvars) ++
                    [applyTC qtc (map CTVar polyavars),
                     applyTC (mainmod,t2bt tc) (map CTVar polyrvars)])))
    (simpleRule (map CPVar (polyavars ++ [(0,"_")]))
                (constF (mainmod,"Bot_"++transQN tc)) :
     if isBasicExtType qtc
       then [valueRule]
       else map genConsRule consdecls)
 where
  -- variables for polymorphic type arguments:
  polyavars = [ (i,"a"++show i) | i <- tvars]
  polyrvars = [ (i,"b"++show i) | i <- tvars]

  genConsRule (FC.Cons qc@(_,cons) _ _ argtypes) =
    let args = [(i,"x"++show i) | i <- [0 .. length argtypes - 1]]
    in simpleRule (map CPVar polyavars ++ [CPComb qc (map CPVar args)])
         (applyF (mainmod,t2bt cons)
            (map (\ (e,te) ->
                   applyE (ftype2pvalOf mainmod "pvalOf" polyavars te) [e])
                 (zip (map CVar args) argtypes)))

  valueRule =
    let var = (0,"x")
    in simpleRule [CPVar var] (applyF (mainmod,"Value_"++tc) [CVar var])

-- Translate a FlatCurry type into a corresponding call to `pvalOf`:
ftype2pvalOf :: String -> String -> [(Int,String)] -> FC.TypeExpr -> CExpr
ftype2pvalOf mainmod pvalname polyvars (FC.TCons (_,tc) texps) =
  applyF (mainmod,pvalname++"_"++transQN tc)
         (map (ftype2pvalOf mainmod pvalname polyvars) texps)
ftype2pvalOf _ _ _ (FC.FuncType _ _) =
  error "genPValOf: cannot handle functional types in as constructor args"
ftype2pvalOf _ _ polyvars (FC.TVar i) =
  maybe (error "genPValOf: unbound type variable")
        CVar
        (find ((==i) . fst) polyvars)
ftype2pvalOf _ _ _ (FC.ForallType _ _) =
  error "genPValOf: forall type occurred"

-- Translate an AbstractCurry type into a corresponding call to `pvalOf`:
ctype2pvalOf :: String -> String -> CTypeExpr -> CExpr
ctype2pvalOf mainmod pvalname (CTCons (_,tc)) =
  constF (mainmod,pvalname++"_"++transQN tc)
ctype2pvalOf mainmod pvalname te@(CTApply _ _) =
  maybe (error "genPValOf: cannot handle type applications")
        (\ ((_,tc),targs) -> applyF (mainmod,pvalname++"_"++transQN tc)
                                    (map (ctype2pvalOf mainmod pvalname) targs))
        (tconsArgsOfType te)
ctype2pvalOf _ _ (CFuncType _ _) =
  error "genPValOf: cannot handle functional types in as constructor args"
ctype2pvalOf _ _ (CTVar _) = error "genPValOf: unbound type variable"


-- Translate an AbstractCurry type declaration into a FlatCurry type decl:
ctypedecl2ftypedecl :: CTypeDecl -> FC.TypeDecl
ctypedecl2ftypedecl (CTypeSyn _ _ _ _) =
  error "ctypedecl2ftypedecl: cannot translate type synonyms"
ctypedecl2ftypedecl (CNewType _ _ _ _ _) =
  error "ctypedecl2ftypedecl: cannot translate newtype"
ctypedecl2ftypedecl (CType qtc _ tvars consdecls _) =
  FC.Type qtc FC.Public (map fst tvars) (map transConsDecl consdecls)
 where
  transConsDecl (CCons _ _ qc _ argtypes) =
    FC.Cons qc (length argtypes) FC.Public (map transTypeExpr argtypes)
  transConsDecl (CRecord _ _ _ _ _) =
    error "ctypedecl2ftypedecl: cannot translate records"

  transTypeExpr (CTVar (i,_)) = FC.TVar i
  transTypeExpr (CFuncType t1 t2) =
    FC.FuncType (transTypeExpr t1) (transTypeExpr t2)
  transTypeExpr (CTCons qtcons) = FC.TCons qtcons []
  transTypeExpr te@(CTApply _ _) =
    maybe (error "ctypedecl2ftypedecl: cannot translate type applications")
          (\ (qtcons,tes) -> FC.TCons qtcons (map transTypeExpr tes))
          (tconsArgsOfType te)

-------------------------------------------------------------------------
-- Create the main test module containing all tests of all test modules as
-- a Curry program with name `mainmod`.
-- The main test module contains a wrapper operation for each test
-- and a main function to execute these tests.
-- Furthermore, if PAKCS is used, test data generators
-- for user-defined types are automatically generated.
genMainTestModule :: Options -> String -> [TestModule] -> IO [Test]
genMainTestModule opts mainmod testmods = do
  let equivtestops = nub (concatMap equivTestOps (concatMap propTests testmods))
  terminfos <- if optEquiv opts == Autoselect
                 then getTerminationInfos opts (nub (map fst equivtestops))
                 else return (const False)
  prodinfos <- if optEquiv opts == Safe
                 then getProductivityInfos opts (nub (map fst equivtestops))
                 else return (const NoInfo)
  let testtypes = nub (concatMap userTestDataOfModule testmods)
  (fcprogs,testtypedecls) <- collectAllTestTypeDecls opts [] [] testtypes
  equvtypedecls <- collectAllTestTypeDecls opts fcprogs []
                     (map (\t->(t,True))
                          (nub (concatMap equivPropTypes testmods)))
                     >>= return . map fst . snd
  let bottypes  = map (genBottomType mainmod) equvtypedecls
      pevalfuns = map (genPeval mainmod) equvtypedecls
      pvalfuns  = map (genPValOf mainmod) equvtypedecls
      generators   = map (genTestDataGenerator mainmod)
                         (testtypedecls ++
                          map (\td -> (ctypedecl2ftypedecl td,False)) bottypes)
  testfuncs <- liftM concat
                 (mapM (genTestFuncs opts terminfos prodinfos mainmod) testmods)
  let mainFunction = genMainFunction opts mainmod testfuncs
      imports      = nub $ [ easyCheckModule, easyCheckExecModule
                           , searchTreeModule, generatorModule
                           , "AnsiCodes","Maybe","System","Profile"] ++
                           map (fst . fst) testtypes ++
                           map testModuleName testmods
  appendix <- readFile (packagePath </> "src" </> "TestAppendix.curry")
  writeCurryProgram opts "."
    (CurryProg mainmod imports Nothing [] [] bottypes
               (mainFunction : testfuncs ++ generators ++ pvalfuns ++ pevalfuns)
               [])
    appendix
  let (finaltests,droppedtests) =
         partition ((`elem` map (snd . funcName) testfuncs) . genTestName)
                   (concatMap propTests testmods)
  unless (null droppedtests) $ putStrIfNormal opts $
    "\nPOSSIBLY NON-TERMINATING TESTS REMOVED: " ++
    unwords (map (snd . testName) droppedtests) ++ "\n"
  return finaltests

-- Generates the main function which executes all property tests
-- of all test modules.
genMainFunction :: Options -> String -> [CFuncDecl] -> CFuncDecl
genMainFunction opts testModule testfuncs =
  CFunc (testModule, "main") 0 Public (emptyClassType (ioType unitType))
        [simpleRule [] body]
 where
  body = CDoExpr $
     (if isQuiet opts
        then []
        else [CSExpr (applyF (pre "putStrLn")
                             [string2ac "Executing all tests..."])]) ++
     [ CSPat (cpvar "x1") $ -- run all tests:
          applyF (testModule, "runPropertyTests")
                 [constF (pre (if optColor opts then "True" else "False")),
                  constF (pre (if optTime  opts then "True" else "False")),
                  list2ac $ map (constF . funcName) testfuncs]
     , CSExpr $ applyF (pre "when")
                  [applyF (pre "/=") [cvar "x1", cInt 0],
                   applyF ("System", "exitWith") [cvar "x1"]]
     ]

-------------------------------------------------------------------------
-- Collect all type declarations for a given list of type
-- constructor names, including the type declarations which are
-- used in these type declarations.
-- To cache already read FlatCurry programs, it gets a list of
-- FlatCurry programs (second argument) and returns a list of
-- FlatCurry programs.
collectAllTestTypeDecls :: Options -> [FC.Prog] -> [(FC.TypeDecl,Bool)]
                        -> [(QName,Bool)]
                        -> IO ([FC.Prog],[(FC.TypeDecl,Bool)])
collectAllTestTypeDecls opts fcprogs tdecls testtypenames = do
  newprogs <- readFlatProgsIfNecessary fcprogs (map (fst . fst) testtypenames)
  let newtesttypedecls = map (findTypeDecl newprogs) testtypenames
      alltesttypedecls = tdecls ++ newtesttypedecls
      newtcons = filter (\ ((mn,_),genpart) -> genpart || mn /= preludeName)
                        (nub (concatMap allTConsOfType newtesttypedecls)
                         \\ map (\(t,p) -> (FCG.typeName t,p)) alltesttypedecls)
  if null newtcons
    then return (newprogs,alltesttypedecls)
    else collectAllTestTypeDecls opts newprogs alltesttypedecls newtcons
 where
  readFlatProgsIfNecessary progs [] = return progs
  readFlatProgsIfNecessary progs (mn:mns) =
    if mn `elem` map FCG.progName progs
      then readFlatProgsIfNecessary progs mns
      else do putStrIfDetails opts $
                "Reading data types defined in module '" ++ mn ++ "'...\n"
              fprog <- readFlatCurry mn
              readFlatProgsIfNecessary (fprog:progs) mns

  -- gets the type declaration for a given type constructor
  -- (could be improved by caching programs that are already read)
  findTypeDecl :: [FC.Prog] -> (QName,Bool) -> (FC.TypeDecl,Bool)
  findTypeDecl fcyprogs (qt@(mn,_),genpartial) =
    let fprog = maybe (error $ "Cannot find module " ++ mn)
                      id
                      (find (\p -> FCG.progName p == mn) fcyprogs)
    in maybe (error $ "Definition of type '" ++ FC.showQNameInModule "" qt ++
                      "' not found!")
             (\td -> (td,genpartial))
             (find (\t -> FCG.typeName t == qt) (FCG.progTypes fprog))

  allTConsOfType :: (FC.TypeDecl,Bool) -> [(QName,Bool)]
  allTConsOfType (td,genpart) = map (\t->(t,genpart)) (allTConsInDecl td)

  -- compute all type constructors used in a type declaration
  allTConsInDecl :: FC.TypeDecl -> [QName]
  allTConsInDecl = FCG.trType (\_ _ _ -> concatMap allTConsInConsDecl)
                              (\_ _ _ -> allTConsInTypeExpr)

  allTConsInConsDecl :: FC.ConsDecl -> [QName]
  allTConsInConsDecl = FCG.trCons (\_ _ _ -> concatMap allTConsInTypeExpr)

  allTConsInTypeExpr :: FC.TypeExpr -> [QName]
  allTConsInTypeExpr =
    FCG.trTypeExpr (\_ -> []) (\tc targs -> tc : concat targs) (++) (flip const)

-- Creates a test data generator for a given type declaration.
-- If the flag of the type declaration is `True`, a generator
-- for partial values is created.
genTestDataGenerator :: String -> (FC.TypeDecl,Bool) -> CFuncDecl
genTestDataGenerator mainmod (tdecl,part) = type2genData tdecl
 where
  qt       = FCG.typeName tdecl
  qtString = FC.showQNameInModule "" qt

  type2genData (FC.TypeSyn _ _ _ _) =
    error $ "Cannot create generator for type synonym " ++ qtString
  type2genData (FC.Type _ _ tvars cdecls)
    | null cdecls && (fst qt /= preludeName || not part)
    = error $ "Cannot create value generator for type '" ++ qtString ++
              "' without constructors!"
    | otherwise
    = cmtfunc
        ("Generator for " ++ (if part then "partial " else "") ++
         "`" ++ qtString ++ "` values.")
        (typename2genopname mainmod [] part qt) (length tvars) Public
        (emptyClassType
          (foldr (~>) (CTApply (CTCons searchTreeTC) (applyTC qt ctvars))
                      (map (\v -> applyTC searchTreeTC [v]) ctvars)))
        [simpleRule (map CPVar cvars)
          (let gencstrs =  foldr1 (\e1 e2 -> applyF choiceGen [e1,e2])
                                  (map cons2gen cdecls)
           in if part
                then applyF choiceGen
                            [ applyF (generatorModule, "genCons0")
                                     [constF (pre "failed")]
                            , if null cdecls
                                then constF (generatorModule,
                                             "gen" ++ transQN (snd qt))
                                else gencstrs ]
                else gencstrs)]
   where
    cons2gen (FC.Cons qn@(mn,cn) ar _ ctypes)
      | ar>maxArity
      = error $ "Test data constructors with more than " ++ show maxArity ++
                " arguments are currently not supported!"
      | not part && mn == mainmod && "Value_" `isPrefixOf` cn
        -- specific generator for bottom types of external basic types
        -- like Int (actually, do not generate values in order to reduce
        -- search space):
      = applyF (generatorModule, "genCons1")
               [CSymbol qn,
                applyF (searchTreeModule,"Value")
                       [CLit (defaultValueOfBasicExtType (drop 6 cn))]]
      | otherwise
      = applyF (generatorModule, "genCons" ++ show ar)
               ([CSymbol qn] ++ map type2gen ctypes)

    type2gen (FC.TVar i) = CVar (i,"a"++show i)
    type2gen (FC.FuncType _ _) =
      error $ "Type '" ++ qtString ++
              "': cannot create value generators for functions!"
    type2gen (FC.TCons qtc argtypes) =
      applyF (typename2genopname mainmod [] part qtc) (map type2gen argtypes)
    type2gen (FC.ForallType _ _) =
      error $ "Type '" ++ qtString ++
              "': cannot create value generators for forall types!"

    ctvars = map (\i -> CTVar (i,"a"++show i)) tvars
    cvars  = map (\i -> (i,"a"++show i)) tvars

-------------------------------------------------------------------------
-- remove the generated files (except if option "--keep" is set)
cleanup :: Options -> String -> [TestModule] -> IO ()
cleanup opts mainmod modules =
  unless (optKeep opts) $ do
    removeCurryModule mainmod
    mapIO_ removeCurryModule (map testModuleName modules)
 where
  removeCurryModule modname = do
    (_,srcfilename) <- lookupModuleSourceInLoadPath modname >>=
        return .
        maybe (error $ "Source file of module '"++modname++"' not found!") id
    system $ installDir </> "bin" </> "cleancurry" ++ " " ++ modname
    system $ "rm -f " ++ srcfilename

-- Show some statistics about number of tests:
showTestStatistics :: [Test] -> String
showTestStatistics tests =
  let numtests  = sumOf (const True)
      unittests = sumOf isUnitTest
      proptests = sumOf isPropTest
      equvtests = sumOf isEquivTest
      iotests   = sumOf isIOTest
   in "TOTAL NUMBER OF TESTS: " ++ show numtests ++
      " (UNIT: " ++ show unittests ++ ", PROPERTIES: " ++
      show proptests ++ ", EQUIVALENCE: " ++ show equvtests ++
      ", IO: " ++ show iotests ++ ")"
 where
  sumOf p = length . filter p $ tests

-------------------------------------------------------------------------
main :: IO ()
main = do
  argv <- getArgs
  pid  <- getPID
  let (funopts, args, opterrors) = getOpt Permute options argv
  opts <- processOpts (foldl (flip id) defaultOptions funopts)
  unless (null opterrors)
         (putStr (unlines opterrors) >> putStrLn usageText >> exitWith 1)
  putStrIfNormal opts ccBanner
  when (null args || optHelp opts) (putStrLn usageText >> exitWith 1)
  let mods = map stripCurrySuffix args
  mapIO_ checkModuleName mods
  testModules <- mapIO (analyseModule opts) mods
  let staticerrs       = concatMap staticErrors (concat testModules)
      finaltestmodules = filter testThisModule (concat testModules)
      testmodname = if null (optMainProg opts)
                      then "TEST" ++ show pid
                      else optMainProg opts
  if not (null staticerrs)
   then do showStaticErrors opts staticerrs
           putStrLn $ withColor opts red "Testing aborted!"
           cleanup opts testmodname finaltestmodules
           exitWith 1
   else if null finaltestmodules then exitWith 0 else do
    putStrIfNormal opts $ withColor opts blue $
                          "Generating main test module '"++testmodname++"'..."
    putStrIfDetails opts "\n"
    finaltests <- genMainTestModule opts testmodname finaltestmodules
    showGeneratedModule opts "main test" testmodname
    putStrIfNormal opts $ withColor opts blue $ "and compiling it...\n"
    ecurrypath <- getEnviron "CURRYPATH"
    let currypath = case ecurrypath of ':':_ -> '.':ecurrypath
                                       _     -> ecurrypath
    let runcmd = unwords $
                   [ installDir </> "bin" </> "curry"
                   , "--noreadline"
                   , ":set -time"
                   , ":set " ++ if optVerb opts > 3 then "v1" else "v0"
                   , ":set parser -Wnone"
                   , if null currypath then "" else ":set path " ++ currypath
                   , ":l "++testmodname,":eval main :q" ]
    putStrLnIfDebug opts $ "Executing command:\n" ++ runcmd
    ret <- system runcmd
    cleanup opts testmodname finaltestmodules
    unless (isQuiet opts || ret /= 0) $
      putStrLn $ withColor opts green $ showTestStatistics finaltests
    exitWith ret
 where
  showStaticErrors opts errs = putStrLn $ withColor opts red $
    unlines (line : "STATIC ERRORS IN PROGRAMS:" : errs) ++ line

  checkModuleName mn =
    when (pathSeparator `elem` mn) $ do
      putStrLn $ "Module names with path prefixes not allowed: " ++ mn
      exitWith 1

  line = take 78 (repeat '=')

showGeneratedModule :: Options -> String -> String -> IO ()
showGeneratedModule opts mkind modname = when (optVerb opts > 3) $ do
  putStrLn $ '\n' : line
  putStrLn $ "Generated " ++ mkind ++ " module `" ++ modname ++ ".curry':"
  putStrLn line
  readFile (modname ++ ".curry") >>= putStr
  putStrLn line
 where
  line = take 78 (repeat '=')

-------------------------------------------------------------------------
-- Auxiliaries

-- Rename all module references to "Test.Prop" into "Test.EasyCheck"
renameProp2EasyCheck :: CurryProg -> CurryProg
renameProp2EasyCheck prog =
  updCProg id (map rnmMod) id id id id id id
           (updQNamesInCProg (\ (mod,n) -> (rnmMod mod,n)) prog)
 where
  rnmMod mod | mod == propModule = easyCheckModule
             | otherwise         = mod

-- Extracts the first word of a string
firstWord :: String -> String
firstWord = head . splitOn "\t" . head . splitOn " "

-- Strips a suffix from a string.
stripSuffix :: String -> String -> String
stripSuffix str suf = if suf `isSuffixOf` str
                      then take (length str - length suf) str
                      else str

-- Translate a module name to an identifier, i.e., replace '.' by '_':
modNameToId :: String -> String
modNameToId = intercalate "_" . split (=='.')

-- Computes the arity from a type expression.
arityOfType :: CTypeExpr -> Int
arityOfType = length . argTypes

--- Name of the SearchTree module.
searchTreeModule :: String
searchTreeModule = "SearchTree"

--- Name of SearchTree type constructor.
searchTreeTC :: QName
searchTreeTC = (searchTreeModule,"SearchTree")

--- Name of the SearchTreeGenerator module.
generatorModule :: String
generatorModule = "SearchTreeGenerators"

choiceGen :: QName
choiceGen = (generatorModule,"|||")

-- Writes a Curry module (together with an appendix) to its file.
writeCurryProgram :: Options -> String -> CurryProg -> String -> IO ()
writeCurryProgram opts srcdir p appendix = do
  let progfile = srcdir </> modNameToPath (progName p) ++ ".curry"
  putStrLnIfDebug opts $ "Writing program: " ++ progfile
  writeFile progfile
            (ACPretty.showCProg p ++ "\n" ++ appendix ++ "\n")

isPAKCS :: Bool
isPAKCS = curryCompiler == "pakcs"

-- Does a program text contains a OPTIONS_CYMAKE line to call currypp?
containsPPOptionLine :: String -> Bool
containsPPOptionLine = any isOptionLine . lines
 where
   isOptionLine s = "{-# OPTIONS_CYMAKE " `isPrefixOf` s -- -}
                    && "currypp" `isInfixOf` s

tconsOf :: CTypeExpr -> [QName]
tconsOf (CTVar _)           = []
tconsOf (CFuncType from to) = union (tconsOf from) (tconsOf to)
tconsOf (CTCons tc)         = [tc]
tconsOf (CTApply tc ta)     = union (tconsOf tc) (tconsOf ta)

unionOn :: Eq b => (a -> [b]) -> [a] -> [b]
unionOn f = foldr union [] . map f

-- Pretty print an AbstractCurry type expression:
showCTypeExpr :: CTypeExpr -> String
showCTypeExpr = pPrint . ACPretty.ppCTypeExpr ACPretty.defaultOptions

-- Pretty print an AbstractCurry expression:
showCExpr :: CExpr -> String
showCExpr = pPrint . ACPretty.ppCExpr ACPretty.defaultOptions

-- Builds a lambda abstraction. If the argument list is empty,
-- it builts an expression.
cLambda :: [CPattern] -> CExpr -> CExpr
cLambda pats body | null pats = body
                  | otherwise = CLambda pats body

-------------------------------------------------------------------------