1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
---------------------------------------------------------------------------
--- A tool to prove pre- or postconditions via an SMT solver (Z3)
--- and to remove the statically proven conditions from a program.
---
--- @author  Michael Hanus
--- @version September 2017
---------------------------------------------------------------------------
-- A few things to be done to improve contract checking:
--
-- * eta-expand pre- and postconditions (before contract checking)
--   in order to generate correct SMT formulas
---------------------------------------------------------------------------

module ContractProver where

import Directory    ( doesFileExist )
import FilePath     ( (</>) )
import FlatCurry.Files
import FlatCurry.Types
import IOExts
import List         ( deleteBy, elemIndex, find, intersect, isSuffixOf
                    , maximum, minimum, splitOn )
import Maybe        ( catMaybes )
import State
import System       ( getArgs, getEnviron, system )

-- Imports from dependencies:
import FlatCurry.Annotated.Goodies
import FlatCurry.Annotated.Types
import ShowFlatCurry                     ( showCurryModule )

-- Imports from package modules:
import BoolExp
import Curry2SMT
import PackageConfig ( packagePath )
import ProverOptions
import TypedFlatCurryGoodies

-- Just for testing:
m :: IO ()
m = mf "Fac"

mf :: String -> IO ()
mf p = do
  system $ "rm -f .curry/" ++ p ++ ".fcy"
  eliminateContracts defaultOptions { optVerb = 2 } p

------------------------------------------------------------------------

banner :: String
 = unlines [bannerLine,bannerText,bannerLine]
 where
   bannerText = "Contract Optimization Tool (Version of 19/09/17)"
   bannerLine = take (length bannerText) (repeat '=')

---------------------------------------------------------------------------

main :: IO ()
main = do
  args <- getArgs
  (opts,progs) <- processOptions banner args
  z3exists <- fileInPath "z3"
  if z3exists
    then do
      when (optVerb opts > 0) $ putStrLn banner
      mapIO_ (eliminateContracts opts) progs
    else do
      putStrLn "CONTRACT VERIFICATION SKIPPED:"
      putStrLn "The SMT solver Z3 is required for the contract prover to work"
      putStrLn "but the program 'z3' is not found on the PATH!"

-- Optimize a module by proving its contracts:
eliminateContracts :: Options -> String -> IO ()
eliminateContracts opts mainmodname = do
  prog <- readTypedFlatCurry mainmodname
  eliminateContractsInProg opts prog

eliminateContractsInProg :: Options -> TAProg ->  IO ()
eliminateContractsInProg opts prog = do
  printWhenAll opts $ unlines $
    ["ORIGINAL PROGRAM:", line, showCurryModule (unAnnProg prog), line]
  (postoptprog,stats1) <- eliminatePostConditions opts
                            (makeTransInfo opts (progFuncs prog)) prog initStats
  (newprog,stats2) <- eliminatePreConditions opts
                        (makeTransInfo opts (progFuncs postoptprog))
                        postoptprog stats1
  let unewprog = unAnnProg newprog
  printWhenAll opts $ unlines $
    ["TRANSFORMED PROGRAM:", line, showCurryModule unewprog, line]
  --printWhenAll opts $ pPrint $ ppProg newprog
  when (optReplace opts && isOptimized stats2) $ do
    let newprogname = flatCurryFileName (progName newprog)
    writeFCY newprogname unewprog
    printWhenStatus opts $ "Optimized programm written to: " ++ newprogname
  printWhenStatus opts (showStats stats2)
 where
  line = take 78 (repeat '-')

---------------------------------------------------------------------------

printWhenStatus :: Options -> String -> IO ()
printWhenStatus opts s =
  when (optVerb opts > 0) (printCP s)

printWhenIntermediate :: Options -> String -> IO ()
printWhenIntermediate opts s =
  when (optVerb opts > 1) (printCP s)

printWhenAll :: Options -> String -> IO ()
printWhenAll opts s =
 when (optVerb opts > 2) (printCP s)

printCP :: String -> IO ()
printCP s = putStrLn $ "CONTRACT PROVER: " ++ s

---------------------------------------------------------------------------
-- Suffix of operation without precondition check:
woPreCondSuffix :: String
woPreCondSuffix = "'WithoutPreCondCheck"

dropWoPreCondSuffix :: QName -> QName
dropWoPreCondSuffix (mn,fn) =
  (mn, reverse (drop (length woPreCondSuffix) (reverse fn)))

-- Suffix of operation without postcondition check:
woPostCondSuffix :: String
woPostCondSuffix = "'WithoutPostCondCheck"

dropWoPostCondSuffix :: QName -> QName
dropWoPostCondSuffix (mn,fn) =
  (mn, reverse (drop (length woPostCondSuffix) (reverse fn)))

--- Returns the original name (i.e., without possible xxxCondCheck suffix) of
--- a qualified function name.
orgNameOf :: QName -> QName
orgNameOf qn =
  if woPostCondSuffix `isSuffixOf` (snd qn)
    then orgNameOf (dropWoPostCondSuffix qn)
    else if woPreCondSuffix `isSuffixOf` (snd qn)
           then dropWoPreCondSuffix qn
           else qn

---------------------------------------------------------------------------
-- Some global information used by the transformation process:
data TransInfo = TransInfo
  { tiOptions     :: Options      -- options passall defined operations
  , allFuns       :: [TAFuncDecl] -- all defined operations
  , preConds      :: [TAFuncDecl] -- all precondition operations
  , postConds     :: [TAFuncDecl] -- all postcondition operations
  , woPreCondFuns :: [TAFuncDecl] -- all operations without precond checking
  }

makeTransInfo :: Options -> [TAFuncDecl] -> TransInfo
makeTransInfo opts fdecls = TransInfo opts fdecls preconds postconds woprefuns
 where
  -- Precondition operations:
  preconds  = filter (\fd -> "'pre"  `isSuffixOf` snd (funcName fd)) fdecls
  -- Postcondition operations:
  postconds = filter (\fd -> "'post" `isSuffixOf` snd (funcName fd)) fdecls
  -- Operations without precondition checks:
  woprefuns = filter (\fd -> woPreCondSuffix `isSuffixOf` snd (funcName fd))
                     fdecls

---------------------------------------------------------------------------
-- The state of the transformation process contains
-- * the current assertion
-- * a fresh variable index
-- * a list of all introduced variables and their types:
data TransState = TransState
  { preCond    :: BoolExp
  , freshVar   :: Int
  , varTypes   :: [(Int,TypeExpr)]
  }

makeTransState :: Int -> [(Int,TypeExpr)] -> TransState
makeTransState = TransState bTrue

-- Increments fresh variable index.
incFreshVarIndex :: TransState -> TransState
incFreshVarIndex st = st { freshVar = freshVar st + 1 }

-- Adds variables to the state.
addVarTypes :: [(Int,TypeExpr)] -> TransState -> TransState
addVarTypes vts st = st { varTypes = vts ++ varTypes st }

---------------------------------------------------------------------------
-- Statistical information of the transformation process:
-- kept preconds / removed preconds / kept postconds / removed postconds
data Statistics = Statistics [String] [String] [String] [String]

initStats :: Statistics
initStats = Statistics [] [] [] []

--- Shows the statistics in human-readable format.
showStats :: Statistics -> String
showStats (Statistics keptpre rmpre keptpost rmpost) =
  showStat "REMOVED PRECONDITIONS"    rmpre ++
  showStat "UNCHANGED PRECONDITIONS"  keptpre ++
  showStat "REMOVED POSTCONDITIONS"   rmpost ++
  showStat "UNCHANGED POSTCONDITIONS" keptpost ++
  (if null keptpre && null keptpost then "\nALL CONTRACTS VERIFIED!" else "")
 where
  showStat t fs = if null fs then "" else "\n" ++ t ++ ": " ++ unwords fs

--- Was there some optimization of a contract?
isOptimized :: Statistics -> Bool
isOptimized (Statistics _ rmpre _ rmpost) =
  not (null rmpre && null rmpost)

--- Increments the number of preconditions. If the first argument is true,
--- a precondition has been removed.
addPreCondToStats :: String -> Bool -> Statistics -> Statistics
addPreCondToStats pc removed (Statistics keptpre rmpre keptpost rmpost) =
  if removed then Statistics keptpre (pc:rmpre) keptpost rmpost
             else Statistics (pc:keptpre) rmpre keptpost rmpost

--- Adds an operation to the already processed operations with postconditions.
--- If the second argument is true, the postcondition of this operation
--- has been removed.
addPostCondToStats :: String -> Bool -> Statistics -> Statistics
addPostCondToStats pc removed (Statistics keptpre rmpre keptpost rmpost) =
  if removed then Statistics keptpre rmpre keptpost (pc:rmpost)
             else Statistics keptpre rmpre (pc:keptpost) rmpost

---------------------------------------------------------------------------
-- Eliminate possible preconditions checks:
-- If an operation `f` occurring in a right-hand side has
-- a precondition check, a proof for the validity of the precondition
-- is extracted and, if the proof is successful, the operation without
-- the precondtion check `f'WithoutPreCondCheck` is called instead.
eliminatePreConditions :: Options -> TransInfo -> TAProg -> Statistics
                       -> IO (TAProg,Statistics)
eliminatePreConditions opts ti prog stats = do
  statsref <- newIORef stats
  newfuns  <- mapIO (provePreCondition opts ti statsref) (progFuncs prog)
  nstats   <- readIORef statsref
  return (updProgFuncs (const newfuns) prog, nstats)

provePreCondition :: Options -> TransInfo -> IORef Statistics -> TAFuncDecl
                  -> IO TAFuncDecl
provePreCondition opts ti statsref fdecl = do
  printWhenIntermediate opts $
    "Operation to be optimized: " ++ snd (funcName fdecl)
  newrule <- optPreConditionInRule opts ti (funcName fdecl)
                                           (funcRule fdecl) statsref
  return (updFuncRule (const newrule) fdecl)

optPreConditionInRule :: Options -> TransInfo -> QName -> TARule
                      -> IORef Statistics -> IO TARule
optPreConditionInRule _ _ _ rl@(AExternal _ _) _ = return rl
optPreConditionInRule opts ti (mn,fn) (ARule rty rargs rhs) statsref = do
  let farity = length rargs
      orgqn = if woPreCondSuffix `isSuffixOf` fn
                then dropWoPreCondSuffix (mn,fn)
                else (mn,fn)
      -- compute precondition of operation:
      s0 = makeTransState (maximum (0 : map fst rargs ++ allVars rhs) + 1) rargs
      (precondformula,s1)  = preCondExpOf ti orgqn [1..farity] s0
      s2 = s1 { preCond = precondformula }
  newrhs <- optPreCondInExp s2 rhs
  return (ARule rty rargs newrhs)
 where
  optPreCondInExp pts exp = case exp of
    AComb ty ct (qf,tys) args ->
      if qf == ("Prelude","?") && length args == 2
        then optPreCondInExp pts (AOr ty (args!!0) (args!!1))
        else do
          nargs <- mapIO (optPreCondInExp pts) args
          if addSuffix qf "'pre" `elem` map funcName (preConds ti) &&
             addSuffix qf woPreCondSuffix `elem` map funcName (woPreCondFuns ti)
            then do
              printWhenIntermediate opts $ "Optimizing call to " ++ snd qf
              let ((bs,_)     ,pts1) = normalizeArgs nargs pts
                  (bindexps   ,pts2) = mapS (exp2bool True ti) bs pts1
                  (precondcall,pts3) = preCondExpOf ti qf (map fst bs) pts2
              -- TODO: select from 'bindexps' only demanded argument positions
              pcvalid <- checkImplicationWithSMT opts (varTypes pts3)
                           (preCond pts) (Conj bindexps) precondcall
              modifyIORef statsref
                          (addPreCondToStats (snd qf ++ "("++fn++")") pcvalid)
              if pcvalid
                then do
                  printWhenStatus opts $
                    fn ++ ": PRECOND CHECK OF '" ++ snd qf ++ "': REMOVED"
                  return $ AComb ty ct (addSuffix qf woPreCondSuffix, tys) nargs
                else do
                  printWhenStatus opts $
                    fn ++ ": PRECOND CHECK OF '" ++ snd qf ++ "': unchanged"
                  return $ AComb ty ct (qf,tys) nargs
            else return $ AComb ty ct (qf,tys) nargs
    ACase ty ct e brs -> do
      ne <- optPreCondInExp pts e
      let freshvar = freshVar pts
          (be,pts1) = exp2bool True ti (freshvar,ne) (incFreshVarIndex pts)
          pts2 = pts1 { preCond = Conj [preCond pts, be]
                      , varTypes = (freshvar,annExpr ne) : varTypes pts1 }
      nbrs <- mapIO (optPreCondInBranch pts2 freshvar) brs
      return $ ACase ty ct ne nbrs
    AOr ty e1 e2 -> do
      ne1 <- optPreCondInExp pts e1
      ne2 <- optPreCondInExp pts e2
      return $ AOr ty ne1 ne2
    ALet ty bs e -> do
      nes <- mapIO (optPreCondInExp pts) (map snd bs)
      ne  <- optPreCondInExp pts e
      return $ ALet ty (zip (map fst bs) nes) ne
    AFree ty fvs e -> do
      ne <- optPreCondInExp pts e
      return $ AFree ty fvs ne
    ATyped ty e et -> do
      ne <- optPreCondInExp pts e
      return $ ATyped ty ne et
    _ -> return exp

  optPreCondInBranch pts dvar branch = do
    let (ABranch p e, pts1) = renamePatternVars pts branch
    let npts = pts1 { preCond = Conj [preCond pts1, bEquVar dvar (pat2bool p)] }
    ne <- optPreCondInExp npts e
    return (ABranch p ne)

-- Rename argument variables of constructor pattern
renamePatternVars :: TransState -> TABranchExpr -> (TABranchExpr,TransState)
renamePatternVars pts (ABranch p e) =
  if isConsPattern p
    then let args = map fst (patArgs p)
             minarg = minimum (0 : args)
             maxarg = maximum (0 : args)
             fv = freshVar pts
             rnm i = if i `elem` args then i - minarg + fv else i
             nargs = map (\ (v,t) -> (rnm v,t)) (patArgs p)
         in (ABranch (updPatArgs (map (\ (v,t) -> (rnm v,t))) p)
                     (rnmAllVars rnm e),
             pts { freshVar = fv + maxarg - minarg + 1
                 , varTypes = nargs ++ varTypes pts })
    else (ABranch p e, pts)

---------------------------------------------------------------------------
-- Eliminate possible postconditions checks:
-- If an operation `f` has a postcondition check (inserted by currypp),
-- a proof for the validity of the postcondition is extracted and,
-- if the proof is successful, the operation `f'WithoutPostCondCheck`
-- is deleted and the code of `f` is replaced by the code of the
-- operation `f'WithoutPostCondCheck`.
eliminatePostConditions :: Options -> TransInfo -> TAProg -> Statistics
                        -> IO (TAProg,Statistics)
eliminatePostConditions opts ti prog stats = do
  -- Operations with postcondition checks:
  let fdecls = progFuncs prog
      postfuns = filter (\fd -> woPostCondSuffix `isSuffixOf` snd (funcName fd))
                        fdecls
  (newfuns,nstats) <- provePostConds postfuns (fdecls,stats)
  return $ (updProgFuncs (const newfuns) prog, nstats)
 where
  provePostConds []         (fdecls,sts) = return (fdecls,sts)
  provePostConds (pof:pofs) (fdecls,sts) =
    provePostCondition opts ti pof fdecls sts >>= provePostConds pofs

provePostCondition :: Options -> TransInfo -> TAFuncDecl -> [TAFuncDecl]
                   -> Statistics -> IO ([TAFuncDecl],Statistics)
provePostCondition opts ti wopostfun allfuns stats = do
  maybe (putStrLn ("Operation: " ++ snd (funcName wopostfun) ++ "\n" ++
                   "Operation which invokes postcondition check not found!") >>
         return (allfuns,stats))
        (\ (postfun,postcheckfun) -> provePC postfun postcheckfun)
        (findPostConditionChecker ti wopostfun)
 where
  provePC postfun postcheckfun = do
    --putStrLn $ "Operation with postcondition check:\n" ++
    --           snd (funcName postcheckfun)
    let (postmn,postfn) = funcName postfun
        mainfunc        = snd (funcName postcheckfun)
        orgqn           = (postmn, reverse (drop 5 (reverse postfn)))
    --putStrLn $ "Operation defining postcondition :\n" ++ postfn
    let farity = funcArity wopostfun
    let (bodyformula,s0) = extractPostConditionProofObligation ti [1..farity]
                             (farity+1) (funcRule wopostfun)
        (precondformula,s1)  = preCondExpOf ti orgqn [1..farity] s0
        (postcondformula,s2) = (applyFunc postfun [1 .. farity+1] `bindS`
                                pred2bool) s1
    printWhenStatus opts $
      "Trying to prove postcondition of '" ++ mainfunc ++ "'..."
    pcvalid <- checkImplicationWithSMT opts (varTypes s2)
                                       (Conj [precondformula, bodyformula])
                                       bTrue postcondformula
    let nstats = addPostCondToStats mainfunc pcvalid stats
    if pcvalid
      then do printWhenStatus opts $ mainfunc ++ ": POSTCOND CHECK REMOVED"
              let newpostcheckfun = updFuncRule (const (funcRule wopostfun))
                                                postcheckfun
              return (deleteBy (\f g -> funcName f == funcName g) wopostfun
                               (updFuncDecl newpostcheckfun allfuns), nstats)
      else do printWhenStatus opts $ mainfunc ++ ": POSTCOND CHECK unchanged"
              return (allfuns, nstats)

-- Find the postcondition operation and the operation which invokes
-- the postcondition for a given operation without postcondition check:
findPostConditionChecker :: TransInfo -> TAFuncDecl
                         -> Maybe (TAFuncDecl,TAFuncDecl)
findPostConditionChecker ti wopostcheckfunc =
  let postchkname = dropWoPostCondSuffix (funcName wopostcheckfunc)
  in maybe Nothing
           (\pcfun -> let (ARule _ _ pcexp) = funcRule pcfun
                      in maybe Nothing
                               (\postfun -> Just (postfun,pcfun))
                               (postFuncOfPCExp pcexp))
           (find (\fd -> funcName fd == postchkname) (allFuns ti))
 where
  postFuncOfPCExp e = case e of
    AComb _ _ _ args ->
      case args!!1 of
        AComb _ _ (postname,_) _ ->
                          find (\fd -> funcName fd == postname) (allFuns ti)
        _ -> Nothing
    _ -> Nothing


extractPostConditionProofObligation :: TransInfo -> [Int] -> Int -> TARule
                                    -> (BoolExp,TransState)
extractPostConditionProofObligation _ _ _ (AExternal _ s) =
  (BTerm ("External: "++s) [], makeTransState 0 [])
extractPostConditionProofObligation ti args resvar (ARule ty orgargs orgexp) =
  let exp    = rnmAllVars renameRuleVar orgexp
      rtype  = resType (length orgargs) ty
      state0 = makeTransState (maximum (resvar : allVars exp) + 1)
                              ((resvar, rtype) : zip args (map snd orgargs))
  in exp2bool True ti (resvar,exp) state0
 where
  maxArgResult = maximum (resvar : args)
  renameRuleVar r = maybe (r + maxArgResult + 1)
                          (args!!)
                          (elemIndex r (map fst orgargs))

  resType n te = if n==0
                   then te
                   else case te of FuncType _ rt -> resType (n-1) rt
                                   _ -> error "Internal errror: resType!"

-- Returns the precondition expression for a given operation
-- and its arguments (which are assumed to be variable indices).
-- Rename all local variables by adding the `freshvar` index to them.
preCondExpOf :: TransInfo -> QName -> [Int] -> State TransState BoolExp
preCondExpOf ti qf args =
  maybe (returnS bTrue)
        (\fd -> applyFunc fd args `bindS` pred2bool)
        (find (\fd -> funcName fd == qnpre) (preConds ti))
 where
  qnpre = addSuffix (orgNameOf qf) "'pre"

-- Returns the postcondition expression for a given operation
-- and its arguments (which are assumed to be variable indices).
-- Rename all local variables by adding `freshvar` to them and
-- return the new freshvar value.
postCondExpOf :: TransInfo -> QName -> [Int] -> State TransState BoolExp
postCondExpOf ti qf args =
  maybe (returnS bTrue)
        (\fd -> applyFunc fd args `bindS` pred2bool)
        (find (\fd -> funcName fd == qnpost) (postConds ti))
 where
  qnpost = addSuffix (orgNameOf qf) "'post"

-- Applies a function declaration on a list of arguments,
-- which are assumed to be variable indices, and returns
-- the renamed body of the function declaration.
-- All local variables are renamed by adding `freshvar` to them.
-- Also the new fresh variable index is returned.
applyFunc :: TAFuncDecl -> [Int] -> State TransState TAExpr
applyFunc fdecl args s0 =
  let (ARule _ orgargs orgexp) = funcRule fdecl
      exp = rnmAllVars (renameRuleVar orgargs) orgexp
      s1  = s0 { freshVar = max (freshVar s0)
                                (maximum (0 : args ++ allVars exp) + 1) }
  in (applyArgs exp (drop (length orgargs) args), s1)
 where
  -- renaming function for variables in original rule:
  renameRuleVar orgargs r = maybe (r + freshVar s0)
                                  (args!!)
                                  (elemIndex r (map fst orgargs))

  applyArgs e [] = e
  applyArgs e (v:vs) =
    -- simple hack for eta-expansion since the type annotations are not used:
    let e_v =  AComb failed FuncCall
                     (("Prelude","apply"),failed) [e, AVar failed v]
    in applyArgs e_v vs

-- Translates a Boolean FlatCurry expression into a Boolean formula.
-- Calls to user-defined functions are replaced by the first argument
-- (which might be true or false).
pred2bool :: TAExpr -> State TransState BoolExp
pred2bool exp = case exp of
  AVar _ i              -> returnS (BVar i)
  ALit _ l              -> returnS (lit2bool l)
  AComb _ _ (qf,_) args ->
    if qf == pre "not" && length args == 1
      then pred2bool (head args) `bindS` \barg -> returnS (Not barg)
      else
        if qf == pre "apply" && length args == 2 && isComb (head args)
          then -- "defunctionalization": if the first argument is a
               -- combination, append the second argument to its arguments
               mapS pred2bool args `bindS` \bargs ->
               case bargs of
                 [BTerm bn bas, barg2] -> returnS (BTerm bn (bas++[barg2]))
                 _ -> returnS (BTerm (show exp) []) -- no translation possible
          else mapS pred2bool args `bindS` \bargs ->
               returnS (BTerm (transOpName qf) bargs)
  _     -> returnS (BTerm (show exp) [])


-- Translates a FlatCurry expression to a Boolean formula representing
-- the postcondition assertion by generating an equation
-- between the argument variable (represented by its index in the first
-- component) and the translated expression (second component).
-- The translated expression is normalized when necessary.
-- For this purpose, a "fresh variable index" is passed as a state.
-- Moreover, the returned state contains also the types of all fresh variables.
-- If the first argument is `False`, the expression is not strictly demanded,
-- i.e., possible contracts of it (if it is a function call) are ignored.
exp2bool :: Bool -> TransInfo -> (Int,TAExpr) -> State TransState BoolExp
exp2bool demanded ti (resvar,exp) = case exp of
  AVar _ i -> returnS $ if resvar==i then bTrue
                                     else bEquVar resvar (BVar i)
  ALit _ l -> returnS (bEquVar resvar (lit2bool l))
  AComb ty _ (qf,_) args ->
    if qf == ("Prelude","?") && length args == 2
      then exp2bool demanded ti (resvar, AOr ty (args!!0) (args!!1))
      else normalizeArgs args `bindS` \ (bs,nargs) ->
           -- TODO: select from 'bindexps' only demanded argument positions
           mapS (exp2bool (isPrimOp qf || optStrict (tiOptions ti)) ti)
                bs `bindS` \bindexps ->
           comb2bool qf nargs bs bindexps
  ALet _ bs e ->
    mapS (exp2bool False ti)
         (map (\ ((i,_),ae) -> (i,ae)) bs) `bindS` \bindexps ->
    exp2bool demanded ti (resvar,e) `bindS` \bexp ->
    returnS (Conj (bindexps ++ [bexp]))
  AOr _ e1 e2  ->
    exp2bool demanded ti (resvar,e1) `bindS` \bexp1 ->
    exp2bool demanded ti (resvar,e2) `bindS` \bexp2 ->
    returnS (Disj [bexp1, bexp2])
  ACase _ _ e brs   ->
    getS `bindS` \ts ->
    let freshvar = freshVar ts
    in putS (addVarTypes [(freshvar, annExpr e)] (incFreshVarIndex ts)) `bindS_`
       exp2bool demanded ti (freshvar,e) `bindS` \argbexp ->
       mapS branch2bool (map (\b->(freshvar,b)) brs) `bindS` \bbrs ->
       returnS (Conj [argbexp, Disj bbrs])
  ATyped _ e _ -> exp2bool demanded ti (resvar,e)
  AFree _ _ _ -> error "Free variables not yet supported!"
 where
   comb2bool qf nargs bs bindexps
    | qf == ("Prelude","otherwise")
      -- specific handling for the moment since the front end inserts it
      -- as the last alternative of guarded rules...
    = returnS (bEquVar resvar bTrue)
    | qf == ("Prelude","[]")
    = returnS (bEquVar resvar (BTerm "nil" []))
    | qf == ("Prelude",":") && length nargs == 2
    = returnS (Conj (bindexps ++
                     [bEquVar resvar (BTerm "insert" (map arg2bool nargs))]))
    -- TODO: translate also other data constructors into SMT
    | isPrimOp qf
    = returnS (Conj (bindexps ++
                     [bEquVar resvar (BTerm (transOpName qf)
                                            (map arg2bool nargs))]))
    | otherwise -- non-primitive operation: add contract only if demanded
    = preCondExpOf ti qf (map fst bs) `bindS` \precond ->
      postCondExpOf ti qf (map fst bs ++ [resvar]) `bindS` \postcond ->
      returnS (Conj (bindexps ++ if demanded then [precond,postcond] else []))

   branch2bool (cvar, (ABranch p e)) =
     exp2bool demanded ti (resvar,e) `bindS` \branchbexp ->
     getS `bindS` \ts ->
     putS ts { varTypes = patvars ++ varTypes ts} `bindS_`
     returnS (Conj [ bEquVar cvar (pat2bool p), branchbexp])
    where
     patvars = if isConsPattern p
                 then patArgs p
                 else []


   arg2bool e = case e of AVar _ i -> BVar i
                          ALit _ l -> lit2bool l
                          _ -> error $ "Not normalized: " ++ show e

normalizeArgs :: [TAExpr] -> State TransState ([(Int,TAExpr)],[TAExpr])
normalizeArgs [] = returnS ([],[])
normalizeArgs (e:es) = case e of
  AVar _ i -> normalizeArgs es `bindS` \ (bs,nes) ->
              returnS ((i,e):bs, e:nes)
  _        -> getS `bindS` \ts ->
              let fvar = freshVar ts
                  nts  = addVarTypes [(fvar,annExpr e)] (incFreshVarIndex ts)
              in putS nts `bindS_`
                 normalizeArgs es `bindS` \ (bs,nes) ->
                 returnS ((fvar,e):bs, AVar (annExpr e) fvar : nes)


unzipBranches :: [TABranchExpr] -> ([TAPattern],[TAExpr])
unzipBranches []                 = ([],[])
unzipBranches (ABranch p e : brs) = (p:xs,e:ys)
 where (xs,ys) = unzipBranches brs

---------------------------------------------------------------------------
-- Updates a function definition in a list of function declarations.
updFuncDecl :: TAFuncDecl -> [TAFuncDecl] -> [TAFuncDecl]
updFuncDecl _    []     = []
updFuncDecl newf (f:fs) =
  if funcName f == funcName newf
    then newf : fs
    else f : updFuncDecl newf fs

-- Removes a function definition in a list of function declarations.
rmFuncDecl :: TAFuncDecl -> [TAFuncDecl] -> [TAFuncDecl]
rmFuncDecl _    []     = []
rmFuncDecl oldf (f:fs) =
  if funcName f == funcName oldf
    then fs
    else f : rmFuncDecl oldf fs

-- Adds a suffix to some qualified name:
addSuffix :: QName -> String -> QName
addSuffix (mn,fn) s = (mn, fn ++ s)

---------------------------------------------------------------------------
-- Calls the SMT solver to check whether an assertion implies some
-- (pre/post) condition.
checkImplicationWithSMT :: Options -> [(Int,TypeExpr)] -> BoolExp -> BoolExp
                        -> BoolExp -> IO Bool
checkImplicationWithSMT opts vartypes assertion impbindings imp = do
  let smt = unlines
              [ "; Free variables:"
              , typedVars2SMT vartypes
              , "; Boolean formula of assertion (known properties):"
              , showBoolExp (assertSMT assertion)
              , ""
              , "; Bindings of implication:"
              , showBoolExp (assertSMT impbindings)
              , ""
              , "; Assert negated implication:"
              , showBoolExp (assertSMT (Not imp))
              , ""
              , "; check satisfiability:"
              , "(check-sat)"
              , "; if unsat, we can omit this part of the contract check"
              ]
  let allsymbols = allSymbolsOfBE (Conj [assertion, impbindings, imp])
      allqsymbols = catMaybes (map untransOpName allsymbols)
  unless (null allqsymbols) $ printWhenIntermediate opts $
    "Translating operations into SMT: " ++
    unwords (map showQName allqsymbols)
  smtfuncs   <- funcs2SMT allqsymbols
  smtprelude <- readFile (packagePath </> "include" </> "Prelude.smt")
  let smtinput = smtprelude ++ smtfuncs ++ smt
  printWhenIntermediate opts $ "SMT SCRIPT:\n" ++ smtinput
  printWhenIntermediate opts $ "CALLING Z3..."
  (ecode,out,err) <- evalCmd "z3" ["-smt2", "-in", "-T:5"] smtinput
  when (ecode>0) $ printWhenIntermediate opts $ "EXIT CODE: " ++ show ecode
  printWhenIntermediate opts $ "RESULT:\n" ++ out
  unless (null err) $ printWhenIntermediate opts $ "ERROR:\n" ++ err
  let pcvalid = let ls = lines out in not (null ls) && head ls == "unsat"
  return pcvalid

-- Operations axiomatized by specific smt scripts (no longer necessary
-- since these scripts are now automatically generated by Curry2SMT.funcs2SMT).
-- However, for future work, it might be reasonable to cache these scripts
-- for faster contract checking.
axiomatizedOps :: [String]
axiomatizedOps = ["Prelude_null","Prelude_take","Prelude_length"]

---------------------------------------------------------------------------
-- Translates a FlatCurry type to an SMT type string:
type2SMT :: TypeExpr -> String
type2SMT (TVar _) = "TVar"
type2SMT (FuncType dom ran) = type2SMT dom ++ " -> " ++ type2SMT ran
type2SMT (TCons (mn,tc) targs)
  | mn=="Prelude" && length targs == 0 = tc
  | mn=="Prelude" && tc == "[]" && length targs == 1
  = "(List " ++ type2SMT (head targs) ++ ")"
  | otherwise = mn ++ "." ++ tc -- TODO: complete

-- Translates a list of type variables to SMT declarations:
typedVars2SMT :: [(Int,TypeExpr)] -> String
typedVars2SMT tvars = unlines (map tvar2SMT tvars)
 where
  tvar2SMT (i,te) =
    withBracket (unwords ["declare-const", smtBE (BVar i), type2SMT te])

---------------------------------------------------------------------------
-- Auxiliaries:

--- Checks whether a file exists in one of the directories on the PATH.
fileInPath :: String -> IO Bool
fileInPath file = do
  path <- getEnviron "PATH"
  dirs <- return $ splitOn ":" path
  (liftIO (any id)) $ mapIO (doesFileExist . (</> file)) dirs

---------------------------------------------------------------------------