
Type Safe Programming of XML-based Applications

Martin Kempa
sd&m AG

software design & management
Carl-Wery-Str. 42

D-81739 M̈unchen, Germany
E-mail: martin.kempa@sdm.de

Volker Linnemann
Universiẗat zu L̈ubeck

Institut für Informationssysteme
Ratzeburger Allee 160, Geb. 64

D-23538 L̈ubeck, Germany
E-mail: linnemann@ifis.uni-luebeck.de

Abstract: There is an emerging amount of software for generating and manipulating
XML documents. This paper addresses the problem of guaranteeing the validity of dy-
namically generated XML structures statically at compile time. In the XOBE (XML
OBJECTS) project XML Schema is used for describing sets of valid XML documents.
An XML schema provides a vehicle to define new classes, i.e. each element declara-
tion in a schema defines a new class of objects (XML objects). Each object within
a class represents an XML structure which is valid according to the underlying XML
schema. XML objects are created by a new language construct called XML object con-
structor. XML object constructors are expressed in XML syntax. Previously generated
XML objects can be inserted according to the declared XML schema.

The main focus of the paper is the type system of XOBE. Among others, this type
system provides the basis for checking the validity of assignments of XML objects to
variables. The type system will be described and we present formally a type checking
algorithm based on this type system.

1 Introduction

XML [W3C98b] plays an important role for internet data. Due to this fact, there is an
emerging amount of software for generating and manipulating XML documents. There-
fore, programming language concepts and tools for this purpose are needed. The ap-
proaches that are currently in use are not sufficient because they cannot guarantee that
only valid XML documents are being dealt with. In the XML context a valid XML docu-
ment is a document which is correct according to an underlying XML Schema [W3C01]
or an XML Document Type Definition DTD [ABS00], i.e. the document is an element of
the language defined by the XML schema or XML DTD. Since most current languages
and tools do not allow to guarantee the validity of dynamically generated XML docu-
ments at compile time, extensive runtime checking is necessary in order to achieve valid
documents.

The XML Objects project (XOBE) [LK02] at the University of L̈ubeck addresses this
mismatch by defining XML objects representing XML fragments and by treating them as
first-class data values. We extend Java [AG98] for this purpose. XOBE overcomes the
different representations of XML fragments as strings and as nested object structures in

1



the same source code. Instead, a running XOBE program works only with XML objects.
A text form of XML objects with explicit tagging is constituted for communication with
the outside world only. XML objects are created by a new language construct called XML
object constructor. XML object constructors are expressed in XML syntax. Previously
generated XML objects can be inserted according to the declared XML schema or DTD.
The XML schema is used for typing the XML objects.

The main aspect of this paper is the type system of XOBE. This type system is the basis
for checking the validity of assignments of XML objects to variables. The type system
will be described and we present formally a type checking algorithm based on this type
system.

The paper is organized as follows. In the next section we survey related work summarizing
the state of the art in the field of programming of XML-based applications. Our approach
for programming these applications by using XML objects in Java is introduced in Sec-
tion 3. The corresponding type system is described informally and formally in Section 4.
In Section 5 we present implementation details of the XOBE preprocessor. Concluding
remarks and an outlook for future work conclude the paper. An appendix provides some
performance measures.

2 Related Work

Run time validation. The most elementary way to deal with XML fragments is to treat
XML documents as ordinary strings without any structure. One prominent representative
of this technique is given by Java Servlets [Wil99]. In former CGI scripts [Gai95] the
programming language Perl [WS92] was used. The technique is rather tedious when con-
stant XML fragments are being generated. Java Server Pages [PLC99, FK00] provide an
improvement over pure string operations by allowing to switch between XML parts and
Java. This switching is done by special markings. Java Server Pages share with string
operations the disadvantage that not even well-formedness is checked at compile time. An
improvement is to provide classes for nodes of an XML document tree thus allowing to
access and manipulate arbitrary XML fragments by object-oriented programming. Repre-
sentatives of this approach, sometimes called low-level bindings, are the Document Object
Model (DOM) [W3C98a] and Java DOM (JDOM) [JDO]. Both are widely accepted and
supported. It is the only standardized and language independent way for XML processing.
Constant XML fragments can be programmed in a pure object-oriented manner, which is
rather tedious, or by parsing an XML fragment into the object structure, which requires
runtime validation. Low-level bindings ensure well-formedness of dynamically generated
documents at compile time, but defer validation until runtime.

Partial compile time validation. A series of proposals [Bou02], called high-level bind-
ings, have been presented. With Sun’s JAXB, Microsoft’s .Net Framework, Exolab’s Cas-
tor, Delphi’s Data Binding Wizard, Oracle’s XML Class Generator [Sun01, Mic01, Exo01,
Bor01, Ora01] we only mention the better known products. These approaches assume that
all processed documents follow a given schema. This description is used to map the docu-

2



ment structure onto language types or classes reproducing directly the semantics intended
by the schema. Like low-level binding, high-level binding provides no facilities to cope
with constant XML fragments. Therefore the formulation of constant XML fragments has
to be done by nested constructor or method calls, or by parsing of fixed documents, called
unmarshalling. The first procedure is tedious for the programmer, the second one needs
validation at run-time. High-level bindings ensure well-formedness of dynamically gener-
ated documents at compile time. Validity is only supported to a limited extent depending
on the selected language mapping.

Full compile time validation. The XDuce language [HVP00, HP03] is a special func-
tional language developed as an XML processing language. It introduces so called regular
expression types the values of which are comparable to our XML objects. Elements are
created by specific constructors and the content can be accessed through pattern matching.
XDuce supports type inference for patterns and variables and performs a subtyping analy-
sis to ensure validity of regular expression type instances at compile time. The subtyping
algorithm is implemented on the basis of regular tree automata. It operates on an additional
internal representation for regular expression types which can be a source of inefficiency.
This internal representation is avoided in our approach. Furthermore, because XOBE is
an extension of Java, it is easier to couple it with other components like database systems.
Recently, the Xtatic project [GP03] was founded as the successor of XDuce. The main
purpose of Xtatic is to couple the concepts of XDuce with the object oriented program-
ming language C#. Xtatic has similar goals as XOBE, however, Xtatic is still in an early
stage and, in contrast to XOBE, there seams to be no running prototype available.

BigWig [BMS01, BMS02] is a special programming language for developing interactive
web services. JWig [CMS03] is the successor of BigWig. The main purpose of JWig
is to integrate the XML specific parts of BigWig in Java. In this respect, JWig is quite
close to XOBE. The main difference in JWig is that there is only one XML type. Typed
XML document templates with gaps are introduced. In order to generate XML documents
dynamically, gaps can be substituted at runtime by other templates or strings. For these
templates JWig validates all possibly dynamically computed documents according to a
given abstract DTD. This is done by two data flow analyses constructing a graph which
summarizes all possible documents. This graph is analyzed to determine validity of those
documents. In comparison to our approach templates can be seen as methods returning
XML objects. The arguments of the methods correspond to the gaps of the templates. Be-
cause there is only one XML type and because JWig’s type checking algorithm is based
on data flow analyses it differs totally from ours. Jwig’s data flow analysis is very time
consuming. In contrast, in practice XOBE’s type checking algorithm has linear running
time, see section 4.4. Moreover, we believe that XOBE’s type system is more expressive
because we can incorporate XML Schema’s extension and restriction mechanisms quite
naturally into the subtyping algorithm. This seems to be difficult in JWig. In the Xact
project [KMS04] JWig’s validation algorithm is extended to the problem of static anal-
ysis of XML transformations in Java. As in XOBE, XPath is used for expressing XML
transformations. The efficiency problems are inherited from JWig.

XJ [HRS+03] is a new project pursued by IBM research on the integration of XML into
Java concentrating on traversing XML structures by using XPath. The distinguishing char-

3



acteristic of XJ is its support for inplace updates.

Xen [MSB03] is an integration of XML into popular object-oriented programming lan-
guages such as C# or Java currently under development at Microsoft Company. Xen uses
XML constructors similar as XOBE‘s XML object constructors.

The upcoming standard of an XML query language XQuery [W3C02] has to support va-
lidity as well. Based on XQuery another challenging approach is presented by the XML
programming language XL [FGK02]. XL is a programming language for the implemen-
tation of web services. It provides high-level and declarative constructs adopting XQuery.
Additionally imperative language statements are introduced making XL a combination of
an imperative and a declarative programming language. In contrast to XL, which is a
stand-alone programming language, XOBE is defined as an extension of Java. Java is an
already established programming language for web services. Thus XOBE can significantly
benefit by using already developed Java code.

3 XML Objects in XOBE

In this section we briefly introduce the syntax and semantics of XML Objects in an infor-
mal manner. A more detailed introduction can be found in [KL02, KL03, Kem03]. XOBE
extends the object-oriented programming language Java by language constructs to process
XML fragments. Due to space limitations, we introduce only the construction of XML
objects. Traversing XML objects by XPATH [W3C99] is not needed for describing the
type system of XOBE. Details can be found in [KL03, Kem03].

In XOBE, we represent XML fragments, i.e. trees corresponding to a given schema or a
DTD, by XML objects. Therefore, XML objects are first-class data values that may be
used like any other data value in Java. The given schema or DTD is used to type different
XML objects.

We use the following XML schema describing a bookstore as the basis for our example.
According to this schema, a bookstore contains several books. Each book contains several
authors and one title.

<xsd : schema xmlns : xsd=” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>
<xsd : e lemen t name=” b o o k s t o r e ”>

<xsd : complexType>
<xsd : sequence>

<xsd : e lemen t name=” book ” minOccurs=”0 ” maxOccurs=” unbounded ”>
<xsd : complexType>

<xsd : sequence>
<xsd : e lemen t name=” a u t h o r ” minOccurs=”0 ” maxoccurs=” unbounded ”

t ype =” xsd : s t r i n g ”/>
<xsd : e lemen t name=” t i t l e ” t ype =” xsd : s t r i n g ”/>

</xsd : sequence>
</xsd : complexType>

</xsd : e lement>
</xsd : sequence>

</xsd : complexType>
</xsd : e lement>

</xsd : schema>

Listing 1: XML schema forbookstore

4



The following program shows a method which reads books with their authors and ti-
tles. It subsequently constructs an XML object for these books. The class declaring
collectBooks uses our bookstore schema by importing the corresponding file by a
clause likeimport bookstore.xsd .

1 b o o k s t o r e c o l l e c t B o o k s ( ){
2 XML <book∗> books =<>;
3 i n t countBooks = keyboard . r e a d i n t ( ) ;
4 f o r ( i n t i = 1 ; i <=countBooks ; i ++){
5 XML < a u t h o r∗> a u t h o r s =<>;
6 i n t coun tAu tho rs = keyboard . r e a d i n t ( ) ;
7 f o r ( i n t j = 1 ; j <=coun tAu tho rs ; j ++){
8 S t r i n g a u t h o r = keyboard . r e a d S t r i n g ( ) ;
9 a u t h o r s = a u t h o r s +

10 <au tho r> {a u t h o r} </ au tho r>;
11 }
12 S t r i n g t i t l e = keyboard . r e a d S t r i n g ( ) ;
13 book b = <book>
14 {a u t h o r s}
15 < t i t l e > { t i t l e } </ t i t l e >
16 </book>;
17 books = books + b ;
18 }
19 re turn
20 <books to re>
21 {books}
22 </ books to re>;
23 } / / c o l l e c t B o o k s

Listing 2: MethodcollectBooks

Line 2 declares a variablebooks for XML objects. A corresponding value is a list of
books. books is initialized by the empty list. Line 5 declares a variableauthors for
lists of authors. Lines 9 and 10 append a newly created author element to the list of authors.
The author element is constructed in line 10 by a so calledXML object constructor . An
XML object constructor is an XML fragment where values of other XML objects can
be inserted in places where the corresponding XML element is allowed according to the
underlying XML schema. In line 10, the string content of variable author is inserted.
This conforms with the underlying XML schema because the content of an author element
is a string. In line 13, the declarationbook b is an abbreviation forXML<book> b.
Lines 13-16 use an XML object constructor for constructing a book out of the previously
generated author list and the title.

This finishes our short introduction to XOBE. Due to space limitations, we did not cover
the important aspect of using XPath [W3C99] within XOBE for type safe decompositon
of XML values. More details and more examples can be found in [Kem03, KL02, KL03,
Kra02, LK02].

4 The XOBE Type System

This section is the major part of this paper presenting the XOBE type system. Type anal-
ysis is done in two steps. First, the types of the XML object expressions are determined
usingtype inference. Second, the subtype relationship of the inferred types is checked by
asubtyping algorithm.

5



4.1 Formalizing XML

For a precise definition of our subtyping algorithm we need a formalization of XML. We
useregular hedge expressions[BKMW01] and regular hedge grammarsdescribing sets
of trees.

Definition 4.1Let B andE be a finite sets of simple types and element names respectively
with B ∩ E = ∅. A set of all hedgesT ∗ over a set of terminal symbolsT = B ] E (]
denotes disjoint union) is defined inductively as follows:

ε ∈ T ∗ is the empty hedge,

b ∈ T ∗ with b ∈ B is a hedge,

e[v] ∈ T ∗ with e ∈ E and the hedgev ∈ T ∗ is a hedge and

vw ∈ T ∗ with the hedgesv ∈ T ∗ andw ∈ T ∗ is a hedge. 2

Definition 4.2 The set ofregular hedge expressions Regover a set of terminal symbols
T = B ] E and a setN of nonterminal symbols (names of groups and complex types,
N ∩ T = ∅) is defined recursively by:

∅ ∈ Reg (empty set), ε ∈ Reg (empty hedge),
b ∈ Reg (simple type), n ∈ Reg (complex type),

e[r] ∈ Reg (element), (r|s) ∈ Reg (regular union),
(r; s) ∈ Reg (regular concatenation) (r)∗ ∈ Reg (Kleene star)

for all b ∈ B, n ∈ N , e ∈ E andr, s ∈ Reg. 2

For simplifying parentheses, we assume operator precedence in the decreasing order∗ ; |.
We definer+ = r; r∗ , r? = r|ε and forI = {i1, ..., in}:

∣∣∣
∣∣∣
∣∣∣
i∈I

ri = ri1 | ... | rin .

Definition 4.3 The hedge languageL(r) over a regular hedge expressionr ∈ Regfor a
given set of production rulesP of the formn → r with n ∈ N , r ∈ Reg andn → r ∈ P ,
m → r ∈ P =⇒ n 6= m, is defined by:

L(∅) = {} L(ε) = {ε}
L(b) = {b} L(n) = L(r) with n → r ∈ P

L(e[r]) = {e[u]|u ∈ L(r)} L(r|s) = L(r) ∪ L(s)
L(r; s) = {uv|u ∈ L(r), v ∈ L(s)} L(r∗) = {ε} ∪ L(r; r∗)

for all b ∈ B, n ∈ N , e ∈ E andr, s ∈ Reg. ε denotes the empty hedge. 2

The predicate isnullable? : Reg → {true,false} decidesε ∈ L(r) for r ∈ Reg.
Details can be found in [Kem03].

Definition 4.4 A regular hedge grammaris defined byG = (T,N, s, P ) with T , N , P as
defined in definitions 4.2, 4.3.s ∈ Regis a start expression. Each rulen → r ∈ P has to
fulfill the following two conditions guaranteeing regularity of the grammar:

1. If the nonterminal symboln is defined recursively, the recursive application has to
be in the last position of the regular expressionr.

6



2. If a nonterminal symboln is defined recursively, the expressions in front of the
recursive application has to fulfill¬isNullable?(s).

2

Definition 4.5 A regular inequalityof two regular hedge expressionsr ands is defined
by:

r ≤ s ⇔ L(r) ⊆ L(s)

2

Example 4.1The following regular hedge grammar corresponds to the XML schema in
listing 1. Element names and simple types areboldfaced , nonterminal symbols are
italic. The start expressions is bookstore.

bookstore→ bookstore [book∗] book→ book [author∗ ; title]
author→ author [string ] title → title [string ]

The following regular inequalities hold:

book [author∗ ; title] ≤ book [author∗ ; title]
book [author ; author∗ ; author ; title] ≤ book [author∗ ; title]

4.2 Type Inference

The type corresponding to an XML object constructor is given by a regular hedge expres-
sion. Type inference for XML object constructors is quite simple because all variables
have to be declared in XOBE.

Example 4.2The type of the left hand side of the assignment in lines 13-16 in listing 2 is
book. The type of the right hand side of the assignment isbook [author∗ ; title [string ]]

The subtyping algorithm which is described in the next chapter has to check the regular
inequality book [author∗ ; title [string ]] ≤ book

4.3 Subtyping Algorithm

After inferring the types of the XML objects in an XOBE program, the type system checks
the correctness of the concerned statements using the subtyping algorithm. For this we
adopt Antimirov’s algorithm [Ant94] for checking inequalities of regular expressions and
extend it to the hedge grammar case. The idea of the algorithm is that for every invalid
regular inequality there exists at least one reduced inequality which istrivially inconsistent,
a notion which is defined by the functioninc as follows.

Definition 4.6 A regular inequalityr ≤ s is calledtrivially inconsistentif

inc(r ≤ s) = (isNullable?(r) ∧ ¬isNullable?(s))

7



holds. 2

Definition 4.7 For r ∈ Reg the set of leading terminal symbols is defined by
term(r) = {t | t ∈ T, t · σ ∈ L(r) for a σ}. More details are given in [Kem03] 2

The reduction of regular inequalities is expressed by partial derivativesder of regular
hedge expressions. They formalize the set of hedges which can follow after an already
recognized terminal symbol. A partial derivative consists of a pair of expressions. The
first component stands for the element content of the reduced terminal symbol, i.e. the
child dimension. The second component represents the expression part after the reduced
terminal symbol, i.e. the sibling dimension. The exact definition is given in [Kem03]. Due
to space limitations, we present only some examples in this paper..

In the following example the regular expressionauthor [string ]; author∗ is reduced
by the given terminal symbolauthor :

derauthor (author [string ]; author∗) = {(string , author∗)}
The result is a set of regular hedge expression pairs because we can receive multiple pairs
as the following example shows:

derbook (book [title]|book [author; title]) = {(title, ε), (author; title, ε)}
Please notice that in the case of Kleene star operations the length of the resulting expres-
sions can increase:

derauthor ((author [string ]; title)∗) = {(string , title; (author [string ]; title)∗)}

Based on the partial derivatives of regular expressions we can define partial derivatives of
regular inequalities. This definition is quite complex in the hedge grammar case because of
the two dimensions. For the definition we adopt a set-theoretic observation from [HVP00].
Examples will follow in example 4.3

Definition 4.8 A partial derivativeof a regular inequalityr ≤ s with r, s ∈ Regwith
respect to a terminal symbolx ∈ T is defined by

partx(r ≤ s) = {(cr ≤
∣∣∣
∣∣∣
∣∣∣

i∈I

ci
s) ∨ (rr ≤

∣∣∣
∣∣∣
∣∣∣

i∈I

ri
s)|

(cr, rr) ∈ derx(r) ∧
derx(s) = {(c1

s, r
1
s), . . . , (cn

s , rn
s )} with

I ∈ P({1, . . . , n}) andI = {1, . . . , n}\I}
with cr, rr, c

i
s, r

i
s ∈ Reg and P(I) = {J | J ⊆ I}. 2

The subtyping algorithm is defined by twosubtyping judgementsΓ ` r ≤ s ⇒ Γ
′

and
Γ `∗ r ≤ s ⇒ Γ

′
with a setΓ of regular inequalities of typet ≤ u. Both judgements have

to be interpreted as: ”The algorihm provesr ≤ s and all inequalitiest ≤ u in Γ are not
trivially inconsistent. All results are returned in the setΓ

′
with all regular inequalities of

the partial derivatives ofr ≤ s. ”

8



Definition 4.9 Given a set of regular inequalitiesΓ, the following twosubtyping judge-
mentshave to be distinguished:

Γ ` r ≤ s ⇒ Γ
′

r ≤ s is a valid inequality inΓ

Γ `∗ r ≤ s ⇒ Γ
′

r ≤ s is a valid inequality inΓ

with r, s ∈ Reg. Γ
′

is the resulting set of regular inequalities. 2

Because the production rules of the hedge grammar can be defined recursively it can hap-
pen that an already calculated inequality appears during the algorithm later on. To ensure
termination in that case we save all already seen inequalities in the setΓ. For this reason
we have to introduce the two subtyping judgements. With judgement`∗ we indicate that
an inequality has been added toΓ.

Definition 4.10Thesubtyping algorithmis defined by the following rules:

r ≤ s ∈ Γ
Γ ` r ≤ s ⇒ Γ

(HYP)

r ≤ s /∈ Γ,

Γ ∪ {r ≤ s} `∗ r ≤ s ⇒ Γ
′

Γ ` r ≤ s ⇒ Γ′
(ASSUM)

¬inc(r ≤ s),

For allx ∈ term(r) and for all i ∈ {1, . . . , k}
with partx(r ≤ s) = {(cr,1 ≤ cs,1 ∨ rr,1 ≤ rs,1), ..., (cr,k ≤ cs,k ∨ rr,k ≤ rs,k)} is

Γi−1 ` cr,i ≤ cs,i ⇒ Γi ∨ Γi−1 ` rr,i ≤ rs,i ⇒ Γi

Γ0 `∗ r ≤ s ⇒ Γk
(REC)

2

With rule HYP we test if the inequality in question is already in the set of all calculated
inequalitiesΓ terminating that recursion branch. RuleASSUM switches between the two
judgements̀ and`∗ adding the inequality toΓ. The ruleREC is applicable if the inequal-
ity is not trivially inconsistent. With operationpart all partial derivatives are calculated
and checked recursively.

Example 4.3Consider the regular inequalityauthor∗; title ≤ author; author∗; title|title.
We start withΓ0 = ∅. The computations and the derivation tree of the execution are given
in figure 1. The inequality is accepted finally.

Due to the regularity of the production rules the subtyping algorithm is guaranteed to
terminate. For a detailed correctness proof we refer to [Kem03].

9



term(author∗; title) = {author , title }
derauthor (author∗; title) = {(string , author∗; title), (string , title)}

derauthor (author; author∗; title|title) = {(string , author∗; title)}
dertitle (author∗; title) = {(string , ε)}

dertitle (author; author∗; title|title) = {(string , ε)}
partauthor (author∗; title ≤ author; author∗; title|title) =

{ (string ≤ string ∨ author∗; title ≤ ∅), (1)

(string ≤ ∅ ∨ author∗; title ≤ author∗; title) } (2)

parttitle (author∗; title ≤ author; author∗; title|title) =

{ (string ≤ string ∨ ε ≤ ∅), (3)

(string ≤ ∅ ∨ ε ≤ ε) } (4)

REC

Γ7 `∗ ε ≤ ε ⇒ Γ3

Γ6 ` ε ≤ ε ⇒ Γ3
∨ Error

Γ6 ` ε ≤ ∅ ,

Error

Γ3 ` ε ≤ ∅ ∨ HYP

Γ3 ` ε ≤ ε ⇒ Γ3

Γ6 `∗ string ≤ string ⇒ Γ3

Γ1 ` string ≤ string ⇒ Γ3
∨

Error

.

.

.
Γ1 ` author∗; title ≤ ∅ , (1)

Error

Γ3 ` string ≤ ∅ ∨

HYP

.

.

.
Γ3 ` author∗; title ≤ author∗; title ⇒ Γ5

, (2)

HYP

Γ5 ` string ≤ string ⇒ Γ5
∨ Error

Γ5 ` ε ≤ ∅ , (3)

Error

Γ5 ` string ≤ ∅ ∨ HYP

Γ5 ` ε ≤ ε ⇒ Γ5
(4)

Γ1 `∗ author∗; title ≤ author; author∗; title|title ⇒ Γ5

Γ0 ` author∗; title ≤ author; author∗; title|title ⇒ Γ5

Figure 1: Proving inequalityauthor∗; title ≤ author; author∗; title|title

4.4 Complexity and Extensions

The complexity of the subtyping algorithm is EXPTIME complete as shown in [Sei90].
This means that in the worst case the number of checked inequalities depends exponen-
tially on the length of the given inequality. Nevertheless, in contrast to the classic proce-
dure using a tree automaton the algorithm works more efficiently in some cases. In the
classic procedure both automata representing the regular hedge expression of both sides of
the inequality in question have to be made deterministic. In our algorithm the right hand
side of the inequality has to be made deterministic lazily, i.e. only as much as needed.

In XML Schema and DTDs restrictions to general hedge grammars are assumed. First all
element types with the same element name in one content model have to have the same
content model. As shown in [Kem03] this simplifies the subtyping algorithm to a PSPACE
complete complexity, which is the same as comparing regular string expressions [Ant94].

10



The second restriction is that the content models have to be one-unambiguous. This leads
to a linear subtyping algorithm.

The subtyping algorithm described so far deals with thestructural typingin XML. How-
ever, in XML Schema additional concepts like substitution groups, type extensions and
type restrictions sometimes callednamed typingexist. This requires an extension of our
regular hedge grammars. Therefore we introduce a reflexive and transitivesubstitution
group relation SubGrholding the relations of element names as defined as substitution
groups in the schema. Additionally thenamed type relation Inhis defined were the non-
terminal types of the hedge grammar are in relation corresponding to the specified type
extensions and type restrictions. Further the strategy of the subtyping algorithm has to be
more sophisticated as well, because during the calulations we have to take care of the two
relations. The idea is to reduce the regular inequality by appropriate nonterminal symbols
also instead of reducing only by terminal symbols. This allows to take the relationsSubGr
andInh into account. This extended algorithm is described in detail in [Kem03].

5 Implementation

XOBE is realized as a Java preprocessor [Kra02]. The general architecture is shown in
Figure 2. In our implementation we use the Java compiler compiler JavaCC [Web02]

Java compiler

Java transformation

Type checking

Schema parserProgram parser

Java with DOM

XOBE preprocessor

XOBE program XML schema

Figure 2: Architecture of the XOBE precompiler

to generate the XOBE parser. Additionally we use the XML parser Xerces [Apa01] to
recognize the used schemas. The internal representation of the processed XOBE program
is done with the Java tree builder JTB [TWP00].

XML objects are internally stored by using the standard representation of the Document
Object Model (DOM) [W3C98a], recommended by the W3Consortium. Please note that

11



even though DOM is an untyped XML implementation not guaranteeing validity at com-
pile time, the transformed XML objects in the XOBE program are valid. This holds be-
cause our type checking algorithm guarantees this property.

The XOBE system including the type checking system was, among others, successfully
used in a web based real estate broker system [Kra02] and in a web based academic exer-
cise administration system [Spi04].

6 Concluding Remarks, Outlook for Future Work

This paper presented a short overview over the XOBE project and concentrated on the type
system of XOBE. XOBE is an extension of the programming language Java, addressing
the programming purposes of web applications and web services. The language extension
combines Java with XML by introducing XML objects which represent XML fragments.
XML objects are created using XML object constructors. In XML object constructors,
previously generated XML objects can be inserted in places which are allowed according
to the declared schema. The validity of all XML objects within a program is checked by
the XOBE type system at compile time.

In the future we plan to extend XOBE by language constructs allowing to modify XML
objects. Additionally we will use XOBE in various application areas. One area will be the
media archive software developed in Lübeck [Beh00]. The media archive implementation
in its present state primarily uses Java Server Pages for generating HTML and XML.
Other application areas will be looked at also. Moreover, we are currently working on the
integration of XQuery [W3C02] into the language. Allowing XML objects to be persistent
results then in an XML-based database programming language [SL04].

References

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu.Data on the Web, From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, San Francisco, Califor-
nia, 2000.

[AG98] Ken Arnold and James Gosling.The Java Programming Language. The Java Series.
Addison Wesley Longman, Inc., 2. edition, 1998.

[Ant94] Valentin Antimirov. Rewriting Regular Inequalities. In Reichel, editor,Fundamentals of
Computation Theory, volume 965 ofLecture Notes in Computer Science (LNCS), pages
116–125, Berlin Heidelberg New York, 1994. Springer-Verlag.

[Apa01] The Apache XML Project. Xerces Java Parser.http://xml.apache.org/
xerces-j/index.html , 15. November 2001. Version 1.4.4.

[Beh00] Ralf Behrens. MONTANA: Towards a Web-based infrastructure to improve lecture and
research in a university environment. InProceedings of the 2nd Int. Workshop on Ad-
vanced Issues of E-Commerce and Web-Based Information Systems (WECWIS 2000),
Milpitas, California, pages 58–66. IEEE Computer Society, June 2000.

12



[BKMW01] Anne Br̈uggemann-Klein, Makoto Murata, and Derick Wood. Regular Tree and Reg-
ular Hedge Languages over Unranked Alphabets: Version 1. Technical Report HKUST-
TCSC-2001-05, Hong Kong University of Science & Technology, April 3 2001. Theo-
retical Computer Science Center.

[BMS01] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static Validation of Dy-
namically Generated HTML. InProceedings of Workshop on Program Analysis for Soft-
ware Tools and Engineering (PASTE 2001), June 18-19, Snowbird, Utah, USA, pages
38–45. ACM, 2001.

[BMS02] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The BIGWIG project. In
ACM Transactions on Internet Technology, volume 2(2), pages 79–114. ACM, 2002.

[Bor01] Borland.XML Application Developer’s Guide, JBuilder. Borland Software Corporation,
Scotts Valley, CA, 1997,2001. Version 5.

[Bou02] Ronald Bourret. XML Data Binding Resources. web document,http://
www.rpbourret.com/xml/XMLDataBinding.htm , 28. July 2002.

[CMS03] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending Java
for High-Level Web Service Construction. InACM Transactions on Programming Lan-
guages and Systems, volume 25(6), pages 814–875. ACM, 2003.

[Exo01] ExoLab Group. Castor. ExoLab Group,http://castor.exolab.org/ , 2001.

[FGK02] Daniela Florescu, Andreas Grünhagen, and Donald Kossmann. XL: An XML Program-
ming Language for Web Service Specification and Composition. InProceedings of
International World Wide Web Conference (WWW 2002), May 7-11, Honolulu, Hawaii,
USA, pages 65–76. ACM, 2002. ISBN 1-880672-20-0.

[FK00] Duane K. Fields and Mark A. Kolb.Web Development with Java Server Pages, A practi-
cal guide for designing and building dynamic web services. Manning Publications Co.,
32 Lafayette Place, Greenwich, CT 06830, 2000.

[Gai95] M. Gaither. Foundations of WWW-Programming with HTML and CGI. IDG-Books
Worldwide Inc., Foster City, California, USA, 1995.

[GP03] Vladimir Gapayev and Benjamin C. Pierce. Regular Object Types. InECOOP 2003,
Lecture Notes in Computer Science 2743, pages 151–175. Springer-Verlag, 2003.

[HP03] Haruo Hosoya and Benjamin C. Pierce. XDuce: A Statically Typed XML Processing
Language. InACM Transactions on Internet Technology, volume 3(2), pages 117–148.
ACM, 2003.

[HRS+03] Matthew Harren, Mukund Raghavachari, Oded Shmueli, Michael Burke, Vivek Sarkar,
and Rajesh Bordawekar. XJ: Integration of XML Processing into Java.IBM Research
Report RC23007 (W0311-138), November 18, 2003.

[HVP00] Haruo Hosoya, J́erôme Vouillon, and Benjamin C. Pierce. Regular Expression Types
for XML. In Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming (ICFP ’00), Montreal, Canada, volume 35(9) ofSIGPLAN
Notices, pages 11–22. ACM, September 18-21 2000. ISBN 1-58113-202-6.

[JDO] JDOM Project. JDOM FAQ.http://www.jdom.org/docs/faq.html .

[Kem03] Martin Kempa.Programmierung von XML-basierten Anwendungen unter Berücksichti-
gung der Sprachbeschreibung. PhD thesis, Institut f̈ur Informationssysteme, Universität
zu Lübeck, 2003. Aka Verlag, Berlin, (in German).

13



[KL02] Martin Kempa and Volker Linnemann. VDOM and P-XML – Towards A Valid Pro-
gramming Of XML-based Applications.Information and Software Technology, Elsevier
Science B. V., pages 229–236, 2002. Special Issue on Objects, XML and Databases.

[KL03] Martin Kempa and Volker Linnemann. Type Checking in XOBE. In Gerhard Weikum,
Harald Scḧoning, and Erhard Rahm, editors,Proceedings of Datenbanksysteme für Busi-
ness, Technologie und Web (BTW), 10. GI-Fachtagung,, volume P-26 ofLecture Notes
in Informatics, pages 227–246. Gesellschaft für Informatik, 26.-28. Februar 2003.

[KMS04] Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static Analysis of
XML Transformations in Java.IEEE Transactions on Software Engineering, 30(3):181–
192, March 2004.

[Kra02] Jens-Christian Kramer. Erzeugung garantiert gültiger Server-Seiten für Dokumente der
Extensible Markup Language XML. Master’s thesis, Institut für Informationssysteme,
Universiẗat zu L̈ubeck, 2002. (in German).

[LK02] Volker Linnemann and Martin Kempa. Sprachen und Werkzeuge zur Generierung von
HTML- und XML-Dokumenten. Informatik Spektrum, Springer-Verlag Heidelberg,
25(5):349–358, 2002. (in German).

[Mic01] Microsoft Corporation. .NET Framework Developer’s Guide. web document,http://
msdn.microsoft.com/library/default.asp , 2001.

[MSB03] Erik Meijer, Wolfram Schulte, and Gavin Biermann.
Programming with Circles, Triangles and Rectangles.
http://www.cl.cam.ac.uk/ ∼gmb/Papers/vanilla-xml2003.html ,
2003.

[Ora01] Oracle Corporation.Oracle9i, Application Developer’s Guide – XML, Release 1 (9.0.1).
Redwood City, CA 94065, USA, June 2001. Shelley Higgins, Part Number A88894-01.

[PLC99] Eduardo Pelegrı́-Llopart and Larry Cable. JavaServer Pages Specification,
Version 1.1. Java Software, Sun Microsystems,http://java.sun.com/
products/jsp/download.html , 30. November 1999.

[Sei90] Helmut Seidl. Deciding equivalence of finite tree automata.SIAM Journal of Comput-
ing, 19(3):424–437, June 1990.

[SL04] Henrike Schuhart and Volker Linnemann. XOBE-DB: A statically typed XML Database
Programming Language Based on JAVA and XQUERY, in preparation, 2004.

[Spi04] Torben Spiegler.Übungsdatenverwaltungssystem mit XOBE. Master’s thesis, Institut
für Informationssysteme, Universität zu L̈ubeck, 2004. (in German).

[Sun01] Sun Microsystems, Inc. Java 2 Platform, Standard Edition, v 1.3.1, API Specifica-
tion. http://java.sun.com/j2se/1.3/docs/api/index.html , Decem-
ber 2001.

[TWP00] Kevin Tao, Wanjun Wang, and Dr. Jens Palsberg. Java Tree Builder JTB.http://
www.cs.purdue.edu/jtb/ , 15. May 2000. Version 1.2.2.

[W3C98a] W3Consortium. Document Object Model (DOM) Level 1 Specification, Version
1.0. Recommendation,http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001/ , 1. October 1998.

[W3C98b] W3Consortium. Extensible Markup Language (XML) 1.0. Recommendation,http:
//www.w3.org/TR/1998/REC-xml-19980210/ , 10. February 1998.

14



[W3C99] W3Consortium. XML Path Language (XPath), Version 1.0. Recommendation,http:
//www.w3.org/TR/xpath , 16. November 1999.

[W3C01] W3Consortium. XML Schema Part 0: Primer. Recommendation,http://
www.w3.org/TR/2001/REC-xmlschema-0-20010502/ , 2. May 2001.

[W3C02] W3Consortium. XQuery 1.0: An XML Query Language. Working Draft,http://
www.w3.org/TR/2002/WD-xquery-20021115/ , 15. November 2002.

[Web02] WebGain. Java Compiler Compiler (JavaCC) – The Java Parser Generator.http://
www.webgain.com/products/java cc/ , 2002. Version 2.1.

[Wil99] A. R. Williamson. Java Servlets by Example. Manning Publications Co., Greenwich,
1999.

[WS92] L. Wall and R. L. Schwartz.Programming Perl. O’Reilly & Associates, Inc., Sebastipol,
California, 1992.

Appendix: Performance Measurements

Our interest concerning the performance of the XOBE implementation is twofold. First, we want to
know the time which is spent for precompiling XOBE programs and especially for the type checking
algorithm. Second, we measure the evaluation time of our resulting DOM-based servlets which we
compare to a standard non-DOM servlet implementation. The programs are executed on a Sun Blade
1000 with two Ultra Sparc 3 (600 Mhz) processors running Solaris 8 (SunOS 5.8).

The program Estate generates XHTML web pages out of the data of a plain XML file following a
small non-standard schema. UDV (UebungsDatenVerwaltung) realizes a web-based academic ex-
ercise administration system based on XHTML servlets. The application communicates over JDBC
with an Informix database management system. A WML connection to a medical media archive
is realized by the servlet-based web application MobileArchive (MoArch). The program which
accesses the archive through a given API allows navigation in the archive structure, searching for
objects, and viewing of media objects in specific media formats. UDV and MobileArchive have been
migrated from a standard Java servlet implementation.

Application code schema compilation standard XOBE

Estate 158 1231 2.16 - 0.9
UDV 195 1196 4.61 0.01 0.01
MoArch 1045 355 4.49 0.03 0.04

In the table the number of lines of the whole XOBE programs and the number of lines of the imported
schemas are presented in the first two columns. The third column of the table shows the time (in s)
spent for precompiling the XOBE program. The last two columns give an impression of how the
performance of the servlets is affected by the DOM-based implementation. The column “standard”
shows the time (in s) which has elapsed evaluating the standard non-XOBE servlet implementation.
The last column gives the running time (in s) of the XOBE program. All the times are averages
determined by multiple runs.

As indicated by the table our precompiler runs at acceptable speed for these applications. Even
the applications which use quite large types from the XHTML or WML schema are compiled in
encouraging time. The execution speed of our DOM-based servlet implementations is slower than
the standard servlets as expected but still in a convenient range. The reason for this is that the
standard servlets neither guarantee well-formedness nor validity at compile time for the generated
XML fragments.

15


