C+++: User-Defined Operator Symbolsin C++
Christian Heinlein

Dept. of Computer Structures
University of Ulm
Germary
heinlein@informatik.uni-ulm.de

Abstract. The paper presents the basic concepts of C+++tansgon of C++ al-
lowing the programmer to de nev operator symbols with uselefined priorities
by specifying a partial precedence relationship. Furthermore, so-cakedyflep-
erators accepting gnnumber of operands and operators with laziy@ated
operands are supported. The latter are particularly useful to implenverdnds
of control structures.

1. Introduction

Programming languages such as Ada [Ba96] and C++ [St00] support the congept of
erator overloading, i. e., the possibility to redefe the meaning dbuilt-in operators for
user-defined types. Since theuiit-in operators of manlanguages are alreadyenload-

ed to a certain dgee in the language itself g, arithmetic operators which can be ap-
plied to intger and floating point numbers, or the plus operator which is often used for
string concatenation as well), it appears rather natural and straigitfotovetend this
possibility to usedefined types (so that, g., plus can be dgfed to add complenum-

bers, ectors, matrices, etc., too).

Other languages, g., Smalltalk [GR89], Prolog [CM94], and modern functional lan-
guages such as ML [Ul94] and Ha#il{Th96], also allev the programmer to introduce
new operator symbols in order to gpress application-spemifoperations (such as deter
mining the number of elements contained in a colleatiomore directly and naturally
(e. g.,as#c) than with werloaded hilt-in operators (., *c in C++) or with methods
or functions (eg.,c.size() orsize(c)).

The introduction of n& operator symbols (especially if thelenoteinfix operators)
immediately raises the question about th@irding properties, i. e., their precedence
with respect to bilt-in and other usedefined operators, and the@issociativity. In the
above languages, the programmer introducing & pperator symbol is forced to assign
it a fixed precedence &l on a pedefned absolute scale (eg., an intgral number be-
tween 1 and 10). This approach is both kifiee (for example, it is impossible to deg
a rew perator that binds stronger than plus and mindsagaler than mult and d;j if
their is no @p between these operator classes in the pnedeprecedence scale) and
ovely prescriptve (because the programmer isvays forced to establish precedence re-
lationships betweeall operators een though some of them might be completely unre-
lated and neer appear together in a singlggression).

The approach described in this paper (which is not restricted to C++ conceptually) ad-
vances gisting approaches in the folling ways:

» The precedence of new operators need not bixéd on an absolute scalejtionly rela-
tive to other operators, &., the precedence relationship is not a completeply a
partial order on the set of operator symbols which can be incrementaignded on
demand.

* In addition to well-knavn unary and binary operatorfiexary operators connecting
ary number of operands are supported.

« Finally, operators whose operands are onigiatedon demand (roughly comparable
to lazy evaluation in functional languages) are supported in a language such as C++
whose basicxecution model is imperate.

Sec. 2 describes the basic features of C+++xt@ansion of C++ supporting the intro-
duction of nav operator symbols. Secs. 3, 4, and 5 illustrate these with a number of e
amples, demonstrating in particular the attes mentioned before. Finalec. 6 con-
cludes the papeAn accompaning Technical Report [He04] describes the implementa-
tion of C+++ by means of a precompiler for C++.

2. New Operatorsin C+++

New operator symbols in C+++ are introduced typerator declarations at global or
namespace scope €i, outside an function or class dgfition) which start with the
keyword sequenceewoperator . These are bothxesting C++ leywords which cannot
occur in juxtaposition, heever, in the original language [St00]. Therefore, the already
large set of C++ &ywords need not bextended by yet another one to support this lan-
guage gtension. Inside an operator declarationyéar, numerous “local” or “contet-
dependent” &ywords which will not be treated as such wlkere (eg., unary , left ,
right , etc.) can be used to describe properties of teeaperator

New operators are eithddentifiers as deihed in the base language C++efi. se-
guences of letters and digits starting with a lettésere the underscore character is treat-
ed as a letter) or sequences of one or ngpeeial characters (all characters »eept
white space, letters, and digits). Anneperator symbol of the latter kind becomet®-a
ken of the lical analyses as soon as it has been declared,iti.might influence the
subsequent parsing process.give an artifcial example, a sequence afé plus signs
(without intenening white space or comments) is parsed as threadek, ++, and + in
original C++ (i.e., the leical analyzer is “greedy”). If a meoperator+++ is introduced,
the same sequence gets parsed astdkens+++ and++ afterwards. (Of course, such
“operator puzzles” can be@ided by alvays separating t@as by white space.)

Just like aher identifers, nev operator symbols which are idemgifs are recognized
as such only if theare not part of a lger identifer (or other tokn). For exkample, an
operatorabc is not recognized as such in the inpbtd (part of a lager identifer) nor
in the inputOx123abc (part of a hgadecimal intger literal).

In general, hilt-in operators in C++ can be appligdefix, infix, or postfix, and there are
several operators which can be applied both igrahd infx (+, -, *, & and::) or both
prefix and posti (++ and--). In analogynew qerators are cagerized as eitheunary
(meaning prek and posti applicable) otinary (meaning prék and infx applicable).

As in standard C++, the semantics of operators ameatkbyoperator functions, i. e.,
functions whose name consists of tlesword operator followed by an operator sym-
bol. Functions corresponding to preéind infx applications of an operator &kne re-
sp. two arguments representing the operatogherand(s). @ distinguish posik from
prefix applications, operator functions corresponding to the formeneeethimmy ar
gument of typeint in addition to the ajument representing the operasogoerand.
(Since the same operator cannot be applied botk amfd postik, it is always well-
defined whether a tarargument operator function corresponds to aixiof postfx ap-
plication.)

To define generic operators, it is possible toinkefoperator functions as function tem-
plates. Unlile kuilt-in operators, n@ operators cannot be implemented by member func-
tions of a class,ui only by ordinary (ie., global or namespace-scope) functions.

To retain the original C++ rule that the meaning ofitein operators applied touit-
in types must not be changed, it is forbidden tinéedin operator function whose opera-
tor symbol and parameter types are allthn. In other words, only déhitions where ei-
ther the operator symbol or one of the parameter types (or both) idefiged, are al-
lowed.

As in standard C++, postfoperators are applied left to right and bind more tightly than
prefix operators which are applied right to left and bind more tightly thaxapierators.

The latter may be declared left-, right-, or non-assegiaid are oganized in aprece-
dence lattice representing a partial precedence ardieitially, this lattice contains all
built-in operators with appropriate precedence relationships, epressing that the
multiplicative gperatorst, / , and %bind more tightly (ie., hae hgher precedence) than
the additve gerators+t and-. If the meaning of anxgression is ambiguous, either be-
cause of an incomplete precedence lattice or because of conflicting agisiesiabf
equally rankd operators, it is rejected. In such a case, the programmer might either use
parentheses forxplicit grouping or declare additional precedence relationships to re-
solwve the conflict.

3. Unary and Binary Operators

Exponentiation

The following operator declaration introduces avrtgnary, right-associatie gerator™”
that binds stronger than thailt-in multiplicative gperators:

new operator ™ right stronger *;

Since the multiplicatie goerators bind in turn stronger than théltin additive gera-
tors, and because the precedence relationship is tvanglie nev operator binds

stronger than, @., +, too. Therefore, anxpression such as+h™ "¢~ “d*e will be
interpreted aa + ((b™(c™d))*e)

To define the meaning of " "y , a wrresponding operator functiamperator™ tak-
ing two arguments is défied which computes, g., the alue ofx raised to the pwer of

y (using the predéfed library functiorpow):
double operator™ (double x, double y) { return pow(x, y); }

Because of the usual arithmetic eersions, the ng operator cannot only be applied to
double , but also toint values, eg.,2 "~ 1 0. To make sure, havever, that the result of
such an application is also of typ# , an overloaded wariant of the operator function
can be supplied:

int operator™ (int x, int y) { return (int) pow(x, y); }

Because a binary operator cannot only be appliex, ibdit also prék, it is possible to
define a separate meaning for that case binohef an additional operator function taking
only one agument. IBr example, the follawing function deihes the meaning 6fx as
the walue ofe (the base of the natural lagthm) raised to the peer ofx:

double operator™ (double x) { return exp(x); }

Container Operators

To introduce a n& unary operato#l which comweniently returns the size @., number
of elements) of an arbitrary container objeatf the C++ standard library (or iadt ary
object that possesses a parametesdizes member function), the folleing declarations
will suffice:

new operator # unary;

template <typename T>
int operator# (T X, int postfix = 0) { return x.size(); }

By defning the operator functiooperator# as a function template, the operator is ba-
sically applicable to objects of ary type T. If T does not declare a member function
size , howevae, the corresponding template instantiation will be rejected by the compil-
er.

By giving the function an optional second parameter of iyte it can be called with
either one or tw aiguments, ie., it simultaneously diefes the meaning of for prefix
(one agument) and pos¥ applications (additional dummygument of typént).

Even though it is possible in principle to thef completely dierent meanings for prigf
and postik applications of the same unary operatare should bexercised in practice
to avoid confusion. ® give an &xample, where diérent, lut related meanings mak
sense, consider the folling operator@which returns theirfst or last element of a con-

! The fact that# denotes a special symbol for the C++ preprocessor does not matter here, because it is special
only at the bginning of a line and in the replacementttef a macro défition.

tainerx when applied pref (@3 or postfix (x@, respectiely:2
new operator @ unary;

template <typename T>
T operator@ (T x) { return x.front(); }

template <typename T>
T operator@ (T X, int postfix) { return x.back(); }

4. Flexary Operators
Average Values

The following operatoavg computes theverage of two double valuesx andy:
new operator avg left stronger + weaker *;
double operator avg (double x, double y) { return (x +y) / 2; }

When applied to threealuesx avgyavgz , howeve, the result is equalent to(xavg
y)avgz (because the operator is declared left-asswejatihich is usually diierent
from the werall average alue ofx, y, and z. To avoid such accidental misinterpreta-
tions, it would be more reasonable to idefthe operator non-associaicausing the x
pressiorx avgyavgz to be rejected due to ambiguity

Alternatively, avg could be interpreted asféexary operator, i. e., an operator accept-
ing conceptually annumber of operands concatenated byxiapplications of the oper
ator. For that purpose, the ab® qperator functioravg is replaced by the folising def-
nitions which do not directly compute theeeage \alue of their aguments, bt rather
collect the necessary information (number afues and sum of allalues processed so
far) in an auxiliary structure of typkvg:

struct Avg {
int num; double sum;
Avg (int n, double s) : num(n), sum(s) {}
I3
Avg operator avg (double x, double y) {
return Avg(2, X +);

}

Avg operator avg (Avg a, double z) {
return Avg(a.num + 1, a.sum + z);

}

Additionally, a pseudo operator functiooperator... (where... is not a meta-sym-
bol in the tet denoting an omissionubrather a real C++ tek) is deihed which con-

2To avoid unnecessary syntactic comxitg of the examples (and lots ofxplanations for non C++xperts),
the operator functions are not shoin their full generality (as C++xperts might gpect).

verts this intermediate information to the actuarage alue:
double operator... (Avg a) { return a.sum / a.num; }

This pseudo operator function is called automatically ¥eryeexpression or subgpres-
sion containing usedefined operators, whewer al operators of a particular precedence
level havebeen applied, before operators of th&tdewer precedence Vel will be ap-
plied. For example, if the operatoavg is defned as abee (. e., left-associatie with
precedence betweerand*), the follaving expression

a*b avg c/d avg e%f + g avgh
(with double waluesa to h) is equivalent to

operator...(operator avg(operator avg(a*b, c/d), e%f))
+ operator...(operator avg(g, h))

i. e., it computes the sum of theeiage alue ofa*b, c/d , and e%f (e modulof) and
the arerage \alue ofg andh.

Because the compiler actually does notvkmehether an ink operator shall be inter
preted as a normal binary operator (which does neither needcanothve call tmpera-
tor...) or as a lexary operator (which needs it), the calls are actualw inserted
as described albe. Furthermore, the function is predetd as the identical function

template <typename T>
inline T operator... (T x) { return x; }

for ary argument typeT to male are that it has actually nofe€t on the eduation of
the epression, unless it has been specialized for a particulatgpeh asAvg above.
By declaring the predisfed functioninline , the compiler is instructed taxgand its
calls in place, which in this case actually means to eliminate thewoith tnnecessary
runtime penalties.

Chainable Comparison Operators

Comparison operators are another source of potential misinterpretations, at least for
novice programmers. While the C+xpressiora < b corresponds»actly to the mathe-
matical terma < b, the meaning of thexpressiona < b<c is quite diferent from its
mathematical counterpaat< b < c, the latter meaning < b and b < c. The former is
actually interpreted a@<b)<c , which compares the Booleaalued result of com-
paringa andb with ¢. In mary programming languages, this will lead to a compile time
error since Booleanalues and numbers cannot be compared to each tt@r+, how-
eva, the Boolean aluestrue andfalse are implicitly cowerted to the intger \aluesl
andO, respectiely, when necessary causing th@essiora < b < ¢ to be actually well-
defined, hut probably not producing the desired result.

Because “chained” comparisons suclaasb < c or 0<i < n are occasionally useful
and more covenient than their logicab@ansions (such as<0i and i < n), one might
want to defne corresponding operators in a programming language. Similar awvghe

operator abee, such operators must not only return a Boolealu® representing the re-
sult of the current comparisonytbalso the &lue of their right operand which might be
needed as the left operand of the failogy operatgrtoo. This can agjn be achieed by
introducing an appropriate auxiliary structure:

template <typename T>
struct Cmp {

bool res; T val;

Cmp (bool r, T v) : res(r), val(v) {}
)2

template <typename T>

bool operator... (Cmp<T>c) {
return c.res;

}

new operator &< stronger = weaker ||;

template <typename T>

Cmp<T> operator&< (T X, T y) {
return Cmp<T>(x <Y, y);

}

template <typename T>

Cmp<T> operator&< (Cmp<T>¢, T 2) {
return Cmp<T>(c.res && c.val < z, z);

}

Il Likewise for operators &<= &> &>= &== &l=

Now, an expression such as&< b &< ¢ is indeed eqwalenttoa<b && b <c.

5. Operatorswith Lazily Evaluated Operands

The huilt-in operatorst& and|| expressing logical conjunction and disjunction, respec-
tively, are special and diérent from all other tilt-in operators (ecept the een more
special ternary: operator) in that their second operandvaeatedconditionally only
when this is necessary to determine thki@ of the result. If these (oryaather) opera-
tors are werloaded, this special and sometima&g@mely useful property is lost, because
an application of anverloaded operator is equdent to the call of an operator function
whose aguments (ie., operands) are unconditionallyaliated before the function gets
called.

Therefore, it is currently impossible to oef, eg., a nev operator=> denoting logical
implication which gauates its second operand only when necessa&yx =>y should
be exactly equivalent to !x||y . To support such operator deitions, the concept of
lazy evaluation well-known from functional languages is introduced in a restricted man-
ner: If an operator is declaréazy , its applications are equent to function calls

whose aguments do not represent thwaluated operands, Wt rather theirunevaluated
code wrapped irfunction objects (closures) which must bexglicitly invoked inside the
operator function to cause theurakiation on demand. The type of such a function object
is Lazy<T> if T is the type of thev@luated operand.

Using this feature, the operator can indeed be diefed and implemented as fols:

new operator => left equal || lazy;

bool operator=> (Lazy<bhool> x, Lazy<bool>y) {
return !x() || y0;
}

Because the second operand of thitdin operator|| is evaluated conditionallythe in-
vocationy() of the second operanydof => is executed only if the imocationx() of the
first operand returnstrue . Of course, this behd@our could be made moreicit by
rephrasing the body of the operator function with)gslieit if statement:

bool operator=> (Lazy<hool> x, Lazy<bool>y) {

if (x()) return y();
else return true;

}

To keep the declaration of lazy operators simple and general, it is not possible to mix im-
mediately and lazilywaluated operands, ., all operands are eithevauated immedi-
ately (before the operator function is called) or lazily (if the operator is deddaysed.
However, by invoking a function object representing an operand immediately at the be-
ginning of the operator function, the belwaur of an immediately\aluated operand can
be easily achieed.

Because an operand function object can kekied multiple times, operators resem-
bling iteration statements can be implemented, tap; e.

new operator ?* left weaker = stronger , lazy;

template <typename T>

T operator?* (Lazy<bool> cond, Lazy<T> body) {
T res=T();
while (cond()) res = body();
return res;

}

Using operators tox@ress control structures might appear seha strange in a basi-
cally imperatve language such as C++. Wever, C++ already preides huilt-in opera-

tors corresponding to control structures, namely the binary comma opesatessng
sequential xecution of subgpressions similar to a statement sequence and the ternary
?. operator gpressing conditionalxecution similar to an if-then-else statement. There-
fore, introducing operators similar to iteration statements is just a straightéband
logical consequenceoTgive a Smple example of their usage, the greatest commeit di

sor of two numbersx andy can be computed in a singl&peession using the well-
known Euclidian algorithm:

int ged (int x, inty) {
return (X I=y) 2* (X >y ? X —=y:y -=X), X;
}

The possibility to gpress control structures with usiefined operators might appear
even more useful when control fles are needed which cannot be direcipressed with
the huilt-in operators or statements of the language.ékample, operatorsnless and
until might be dehed to epress conditional and iteredi exeutions, respeately,
where the condition is speigtl as the second operand:

new operator unless left equal ?* lazy;
new operator until left equal ?* lazy;

template <typename T>

T unless (Lazy<T> body, Lazy<bool> cond) {
T res=T();
if (lcond()) res = body();
return res;

}

template <typename T>
T until (Lazy<T> body, Lazy<bool> cond) {
T res=T();
do res = body();
while (‘cond());
return res;

}

Using some C++ “acrobatics” @., deining one operator to return an auxiliary structure
that is used as an operand of another operator), iteis @ssible to dehe operator
combinations (sometimes called distbr mixfix operators) such dgst /all /count
—from —where which can be used as folis to epress “database queries” resembling
SQL [MS99]:

struct Person {
string name;
bool male;

set<Person> db; // Or some other standard container.
Person p;

Person ch = first p from db where p.name == "Heinlein";
set<Person> men = all p from db where p.male;
int abcd = count p from db where 'A’ ?<= p.name[0] ?<="D’;

Writing equivalent expressions with C++ standard library algorithms sucfindsif
or count_if would require to write an auxiliary function fovexy search predicate be-

cause the standardilding blocks for constructing function objects (such as predicates,
binders, and adapters, cf. [St00]) are nofi sight to construct them.

6. Conclusion

The paper has presented C+++, aresion of C++ allwing the programmer to dag

new operator symbols with uselefined priorities. Een though the basic idea of this ap-
proach dates back to at least ALGOL 68 [BW79], it has not found widespread dissemi-
nation in mainstream impera pogramming languages. Compared with Prolog and
modern functional languages, which support the concept in principle, the approach pre-
sented here @drs a more flgible way to specify precedence relationships, the additional
concept of fleary operators (which is rather dispensable in these languages as their ef-
fect can be achied in a smilarly corvenient manner with unary operators applied to list
literals), and the concept of lazilyauated operands in an impexatilanguage (which

is of course nothing special in functional languages). It might be interesting to note that
this latter concept has already been present in ALGOL 60 [Ru6#krkae the (ind-

mous “call by nam&W hile this is indeed not well-suited as a general parameter passing
mechanism, thexamples of Sec. 5 shouldvyedemonstrated that the basic principle is
useful when applied with care because it opens the door to implemewieiised con-

trol structures and thus might be considered a stegrds generally @ensible program-

ming languages.

References

[Bag96] J.G. R BarnesProgramming in Ada 95. Addison-Wesle/, Wokingham, England, 1996.

[BW79] D. F. Brailsford, A. N. Walker: Introductory ALGOL 68 Programming. Horwood, Chich-
ester 1979.

[CM94] W. E. Clocksin, C. S. MellishProgramming in Prolog (Fourth Edition). Springe¥erlag,
Berlin, 1994.

[GR89] A. Goldbeg, D. Robson:Smalltalk-80. The Language. Addison-Wésle/, Reading, MA,
1989.

[He04] C.Heinlein: Concept and Implementation of C+++, an Extension of C++ To Support Us-
er-Defined Operator Symbols. Nr. 2004-??, Ulmer Informatik-Berichte akultat fir Informatik,
Universitat Ulm, (in preparation).

[MS99] J. Melton, A. R. Simon:SQL:1999. Understanding Relational Language Components.
Morgan Kaufmann Publishers, San Francisco, CA, 2002.

[Ru67] H. Rutishauser:Description of ALGOL 60 (Including the IFIP Reports on ALGOL).
SpringefVerlag, Berlin, 1967.

[St00] B. Stroustrup: The C++ Programming Language (Special Edition). Addison-@éley,
Reading, MA, 2000.

[Th96] S.Thompson:Haskell. The Craft of Functional Programming. Addison-Wésley, Harlow,
England, 1996.

[U194] J.D. Ullman: Elements of ML Programming. Prentice-Hall, Engleood Cliffs, NJ, 1994.

