
C+++: User-Defined Operator Symbols in C++

Christian Heinlein

Dept. of Computer Structures
University of Ulm

Germany
heinlein@informatik.uni-ulm.de

Abstract. The paper presents the basic concepts of C+++, an extension of C++ al-
lowing the programmer to define new operator symbols with user-defined priorities
by specifying a partial precedence relationship. Furthermore, so-called flexary op-
erators accepting any number of operands and operators with lazily evaluated
operands are supported. The latter are particularly useful to implement new kinds
of control structures.

1. Introduction

Programming languages such as Ada [Ba96] and C++ [St00] support the concept ofop-
erator overloading, i. e., the possibility to redefine the meaning ofbuilt-in operators for
user-defined types. Since the built-in operators of many languages are already overload-
ed to a certain degree in the language itself (e.g., arithmetic operators which can be ap-
plied to integer and floating point numbers, or the plus operator which is often used for
string concatenation as well), it appears rather natural and straightforward to extend this
possibility to user-defined types (so that, e.g., plus can be defined to add complex num-
bers, vectors, matrices, etc., too).

Other languages, e.g., Smalltalk [GR89], Prolog [CM94], and modern functional lan-
guages such as ML [Ul94] and Haskell [Th96], also allow the programmer to introduce
new operator symbols in order to express application-specific operations (such as deter-
mining the number of elements contained in a collectionc) more directly and naturally
(e. g.,as#c) than with overloaded built-in operators (e.g., *c in C++) or with methods
or functions (e.g., c.size() or size(c)).

The introduction of new operator symbols (especially if they denoteinfix operators)
immediately raises the question about theirbinding properties, i. e., their precedence
with respect to built-in and other user-defined operators, and theirassociativity. In the
above languages, the programmer introducing a new operator symbol is forced to assign
it a fixed precedence level on a predefined absolute scale (e.g., an integral number be-
tween 1 and 10). This approach is both inflexible (for example, it is impossible to define
a new operator that binds stronger than plus and minus but weaker than mult and div, if
their is no gap between these operator classes in the predefined precedence scale) and
overly prescriptive (because the programmer is always forced to establish precedence re-
lationships betweenall operators even though some of them might be completely unre-
lated and never appear together in a single expression).

The approach described in this paper (which is not restricted to C++ conceptually) ad-
vances existing approaches in the following ways:

• The precedence of new operators need not be fixed on an absolute scale, but only rela-
tive to other operators, i.e., the precedence relationship is not a complete, but only a
partial order on the set of operator symbols which can be incrementally extended on
demand.

• In addition to well-known unary and binary operators,flexary operators connecting
any number of operands are supported.

• Finally, operators whose operands are only evaluatedon demand (roughly comparable
to lazy evaluation in functional languages) are supported in a language such as C++
whose basic execution model is imperative.

Sec. 2 describes the basic features of C+++, an extension of C++ supporting the intro-
duction of new operator symbols. Secs. 3, 4, and 5 illustrate these with a number of ex-
amples, demonstrating in particular the advances mentioned before. Finally, Sec. 6 con-
cludes the paper. An accompanying Technical Report [He04] describes the implementa-
tion of C+++ by means of a precompiler for C++.

2. New Operators in C+++

New operator symbols in C+++ are introduced byoperator declarations at global or
namespace scope (i.e., outside any function or class definition) which start with the
keyword sequencenew operator . These are both existing C++ keywords which cannot
occur in juxtaposition, however, in the original language [St00]. Therefore, the already
large set of C++ keywords need not be extended by yet another one to support this lan-
guage extension. Inside an operator declaration, however, numerous “local” or “context-
dependent” keywords which will not be treated as such elsewhere (e.g., unary , left ,
right , etc.) can be used to describe properties of the new operator.

New operators are eitheridentifiers as defined in the base language C++ (i.e., se-
quences of letters and digits starting with a letter, where the underscore character is treat-
ed as a letter) or sequences of one or morespecial characters (all characters except
white space, letters, and digits). A new operator symbol of the latter kind becomes ato-
ken of the lexical analyses as soon as it has been declared, i.e., it might influence the
subsequent parsing process. To giv e an artificial example, a sequence of fiv e plus signs
(without intervening white space or comments) is parsed as three tokens++, ++, and + in
original C++ (i.e., the lexical analyzer is “greedy”). If a new operator+++ is introduced,
the same sequence gets parsed as two tokens+++ and++ afterwards. (Of course, such
“operator puzzles” can be avoided by always separating tokens by white space.)

Just like other identifiers, new operator symbols which are identifiers are recognized
as such only if they are not part of a larger identifier (or other token). For example, an
operatorabc is not recognized as such in the inputabcd (part of a larger identifier) nor
in the input0x123abc (part of a hexadecimal integer literal).

In general, built-in operators in C++ can be appliedprefix, infix, or postfix, and there are
several operators which can be applied both prefix and infix (+, −, * , &, and ::) or both
prefix and postfix (++ and−−). In analogy, new operators are categorized as eitherunary
(meaning prefix and postfix applicable) orbinary (meaning prefix and infix applicable).

As in standard C++, the semantics of operators are defined byoperator functions, i. e.,
functions whose name consists of the keyword operator followed by an operator sym-
bol. Functions corresponding to prefix and infix applications of an operator take one re-
sp. two arguments representing the operator’s operand(s). To distinguish postfix from
prefix applications, operator functions corresponding to the former receive a dummy ar-
gument of typeint in addition to the argument representing the operator’s operand.
(Since the same operator cannot be applied both infix and postfix, it is always well-
defined whether a two argument operator function corresponds to an infix or postfix ap-
plication.)

To define generic operators, it is possible to define operator functions as function tem-
plates. Unlike built-in operators, new operators cannot be implemented by member func-
tions of a class, but only by ordinary (i.e., global or namespace-scope) functions.

To retain the original C++ rule that the meaning of built-in operators applied to built-
in types must not be changed, it is forbidden to define an operator function whose opera-
tor symbol and parameter types are all built-in. In other words, only definitions where ei-
ther the operator symbol or one of the parameter types (or both) is user-defined, are al-
lowed.

As in standard C++, postfix operators are applied left to right and bind more tightly than
prefix operators which are applied right to left and bind more tightly than infix operators.
The latter may be declared left-, right-, or non-associative and are organized in aprece-
dence lattice representing a partial precedence order. Initially, this lattice contains all
built-in operators with appropriate precedence relationships, e.g., expressing that the
multiplicative operators* , / , and %bind more tightly (i.e., have higher precedence) than
the additive operators+ and−. If the meaning of an expression is ambiguous, either be-
cause of an incomplete precedence lattice or because of conflicting associativities of
equally ranked operators, it is rejected. In such a case, the programmer might either use
parentheses for explicit grouping or declare additional precedence relationships to re-
solve the conflict.

3. Unary and Binary Operators

Exponentiation

The following operator declaration introduces a new binary, right-associative operator̂ ˆ
that binds stronger than the built-in multiplicative operators:

new operator ˆˆ right stronger *;

Since the multiplicative operators bind in turn stronger than the built-in additive opera-
tors, and because the precedence relationship is transitive, the new operator binds

stronger than, e.g., +, too. Therefore, an expression such asa + b ˆ ˆ c ˆ ˆ d * e will be
interpreted asa + ((b ̂ˆ (c ̂ˆ d)) * e) .

To define the meaning ofx ˆ ˆ y , a corresponding operator functionoperatorˆˆ tak-
ing two arguments is defined which computes, e.g., the value ofx raised to the power of
y (using the predefined library functionpow):

double operatorˆˆ (double x, double y) { return pow(x, y); }

Because of the usual arithmetic conversions, the new operator cannot only be applied to
double , but also toint values, e.g., 2 ˆ ˆ 1 0. To make sure, however, that the result of
such an application is also of typeint , an overloaded variant of the operator function
can be supplied:

int operatorˆˆ (int x, int y) { return (int) pow(x, y); }

Because a binary operator cannot only be applied infix, but also prefix, it is possible to
define a separate meaning for that case by defining an additional operator function taking
only one argument. For example, the following function defines the meaning ofˆˆx as
the value ofe (the base of the natural logarithm) raised to the power ofx :

double operatorˆˆ (double x) { return exp(x); }

Container Operators

To introduce a new unary operator#1 which conveniently returns the size (i.e., number
of elements) of an arbitrary container objectx of the C++ standard library (or in fact any
object that possesses a parameterlesssize member function), the following declarations
will suffice:

new operator # unary;

template <typename T>
int operator# (T x, int postfix = 0) { return x.size(); }

By defining the operator functionoperator# as a function template, the operator is ba-
sically applicable to objectsx of any type T. If T does not declare a member function
size , howev er, the corresponding template instantiation will be rejected by the compil-
er.

By giving the function an optional second parameter of typeint , it can be called with
either one or two arguments, i.e., it simultaneously defines the meaning of# for prefix
(one argument) and postfix applications (additional dummy argument of typeint).

Even though it is possible in principle to define completely different meanings for prefix
and postfix applications of the same unary operator, care should be exercised in practice
to avoid confusion. To giv e an example, where different, but related meanings make
sense, consider the following operator@which returns the first or last element of a con-

1 The fact that# denotes a special symbol for the C++ preprocessor does not matter here, because it is special
only at the beginning of a line and in the replacement text of a macro definition.

tainerx when applied prefix (@x) or postfix (x@), respectively:2

new operator @ unary;

template <typename T>
T operator@ (T x) { return x.front(); }

template <typename T>
T operator@ (T x, int postfix) { return x.back(); }

4. Flexary Operators

Av erage Values

The following operatoravg computes the average of two double valuesx andy :

new operator avg left stronger + weaker *;

double operator avg (double x, double y) { return (x + y) / 2; }

When applied to three valuesx a vg y avg z , howev er, the result is equivalent to(x avg
y) avg z (because the operator is declared left-associative) which is usually different
from the overall average value ofx , y , and z . To avoid such accidental misinterpreta-
tions, it would be more reasonable to define the operator non-associative causing the ex-
pressionx a vg y avg z to be rejected due to ambiguity.

Alternatively, avg could be interpreted as aflexary operator, i. e., an operator accept-
ing conceptually any number of operands concatenated by infix applications of the oper-
ator. For that purpose, the above operator functionavg is replaced by the following defi-
nitions which do not directly compute the average value of their arguments, but rather
collect the necessary information (number of values and sum of all values processed so
far) in an auxiliary structure of typeAvg:

struct Avg {
int num; double sum;
Avg (int n, double s) : num(n), sum(s) {}

};

Avg operator avg (double x, double y) {
return Avg(2, x + y);

}

Avg operator avg (Avg a, double z) {
return Avg(a.num + 1, a.sum + z);

}

Additionally, a pseudo operator functionoperator... (where... is not a meta-sym-
bol in the text denoting an omission, but rather a real C++ token) is defined which con-
2 To avoid unnecessary syntactic complexity of the examples (and lots of explanations for non C++ experts),
the operator functions are not shown in their full generality (as C++ experts might expect).

verts this intermediate information to the actual average value:

double operator... (Avg a) { return a.sum / a.num; }

This pseudo operator function is called automatically for every expression or subexpres-
sion containing user-defined operators, whenever all operators of a particular precedence
level hav ebeen applied, before operators of the next lower precedence level will be ap-
plied. For example, if the operatoravg is defined as above (i. e., left-associative with
precedence between+ and*), the following expression

a*b avg c/d avg e%f + g avg h

(with double valuesa to h) is equivalent to

operator...(operator avg(operator avg(a*b, c/d), e%f))
+ operator...(operator avg(g, h))

i. e., it computes the sum of the average value ofa*b , c/d , and e%f (e modulo f) and
the average value ofg andh.

Because the compiler actually does not know whether an infix operator shall be inter-
preted as a normal binary operator (which does neither need nor want the call toopera-
tor...) or as a flexary operator (which needs it), the calls are actually always inserted
as described above. Furthermore, the function is predefined as the identical function

template <typename T>
inline T operator... (T x) { return x; }

for any argument typeT to make sure that it has actually no effect on the evaluation of
the expression, unless it has been specialized for a particular typeT such asAvg above.
By declaring the predefined functioninline , the compiler is instructed to expand its
calls in place, which in this case actually means to eliminate them to avoid unnecessary
runtime penalties.

Chainable Comparison Operators

Comparison operators are another source of potential misinterpretations, at least for
novice programmers. While the C++ expressiona < b corresponds exactly to the mathe-
matical terma < b, the meaning of the expressiona < b < c is quite different from its
mathematical counterparta < b < c, the latter meaninga < b and b < c. The former is
actually interpreted as(a < b) < c , which compares the Boolean-valued result of com-
paringa andb with c . In many programming languages, this will lead to a compile time
error since Boolean values and numbers cannot be compared to each other. In C++, how-
ev er, the Boolean valuestrue andfalse are implicitly converted to the integer values1
and0, respectively, when necessary causing the expressiona < b < c to be actually well-
defined, but probably not producing the desired result.

Because “chained” comparisons such asa < b < c or 0 ≤ i < n are occasionally useful
and more convenient than their logical expansions (such as 0≤ i and i < n), one might
want to define corresponding operators in a programming language. Similar to theavg

operator above, such operators must not only return a Boolean value representing the re-
sult of the current comparison, but also the value of their right operand which might be
needed as the left operand of the following operator, too. This can again be achieved by
introducing an appropriate auxiliary structure:

template <typename T>
struct Cmp {

bool res; T val;
Cmp (bool r, T v) : res(r), val(v) {}

};

template <typename T>
bool operator... (Cmp<T> c) {

return c.res;
}

new operator &< stronger = weaker ||;

template <typename T>
Cmp<T> operator&< (T x, T y) {

return Cmp<T>(x < y, y);
}

template <typename T>
Cmp<T> operator&< (Cmp<T> c, T z) {

return Cmp<T>(c.res && c.val < z, z);
}

// Likewise for operators &<= &> &>= &== &!=

Now, an expression such asa &< b &< c is indeed equivalent toa < b && b < c .

5. Operators with Lazily Evaluated Operands

The built-in operators&& and|| expressing logical conjunction and disjunction, respec-
tively, are special and different from all other built-in operators (except the even more
special ternary?: operator) in that their second operand is evaluatedconditionally only
when this is necessary to determine the value of the result. If these (or any other) opera-
tors are overloaded, this special and sometimes extremely useful property is lost, because
an application of an overloaded operator is equivalent to the call of an operator function
whose arguments (i.e., operands) are unconditionally evaluated before the function gets
called.

Therefore, it is currently impossible to define, e.g., a new operator=> denoting logical
implication which evaluates its second operand only when necessary, i. e., x => y should
be exactly equivalent to !x || y . To support such operator definitions, the concept of
lazy evaluation well-known from functional languages is introduced in a restricted man-
ner: If an operator is declaredlazy , its applications are equivalent to function calls

whose arguments do not represent theevaluated operands, but rather theirunevaluated
code wrapped infunction objects (closures) which must be explicitly invoked inside the
operator function to cause their evaluation on demand. The type of such a function object
is Lazy<T> if T is the type of the evaluated operand.

Using this feature, the operator=> can indeed be defined and implemented as follows:

new operator => left equal || lazy;

bool operator=> (Lazy<bool> x, Lazy<bool> y) {
return !x() || y();

}

Because the second operand of the built-in operator|| is evaluated conditionally, the in-
vocationy() of the second operandy of => is executed only if the invocationx() of the
fi rst operandx returnstrue . Of course, this behaviour could be made more explicit by
rephrasing the body of the operator function with an explicit if statement:

bool operator=> (Lazy<bool> x, Lazy<bool> y) {
if (x()) return y();
else return true;

}

To keep the declaration of lazy operators simple and general, it is not possible to mix im-
mediately and lazily evaluated operands, i.e., all operands are either evaluated immedi-
ately (before the operator function is called) or lazily (if the operator is declaredlazy).
However, by inv oking a function object representing an operand immediately at the be-
ginning of the operator function, the behaviour of an immediately evaluated operand can
be easily achieved.

Because an operand function object can be invoked multiple times, operators resem-
bling iteration statements can be implemented, too, e.g.:

new operator ?* left weaker = stronger , lazy;

template <typename T>
T operator?* (Lazy<bool> cond, Lazy<T> body) {

T r es = T();
while (cond()) res = body();
return res;

}

Using operators to express control structures might appear somewhat strange in a basi-
cally imperative language such as C++. However, C++ already provides built-in opera-
tors corresponding to control structures, namely the binary comma operator expressing
sequential execution of subexpressions similar to a statement sequence and the ternary
?: operator expressing conditional execution similar to an if-then-else statement. There-
fore, introducing operators similar to iteration statements is just a straightforward and
logical consequence. To giv e a simple example of their usage, the greatest common divi-
sor of two numbersx and y can be computed in a single expression using the well-
known Euclidian algorithm:

int gcd (int x, int y) {
return (x != y) ?* (x > y ? x −= y : y −= x), x;

}

The possibility to express control structures with user-defined operators might appear
ev en more useful when control flows are needed which cannot be directly expressed with
the built-in operators or statements of the language. For example, operatorsunless and
until might be defined to express conditional and iterative executions, respectively,
where the condition is specified as the second operand:

new operator unless left equal ?* lazy;
new operator until left equal ?* lazy;

template <typename T>
T unless (Lazy<T> body, Lazy<bool> cond) {

T r es = T();
if (!cond()) res = body();
return res;

}

template <typename T>
T until (Lazy<T> body, Lazy<bool> cond) {

T r es = T();
do res = body();
while (!cond());
return res;

}

Using some C++ “acrobatics” (i.e., defining one operator to return an auxiliary structure
that is used as an operand of another operator), it is even possible to define operator
combinations (sometimes called distfix or mixfix operators) such asfirst /all /count
−− from −− where which can be used as follows to express “database queries” resembling
SQL [MS99]:

struct Person {
string name;
bool male;
......

};

set<Person> db; // Or some other standard container.
Person p;

Person ch = first p from db where p.name == "Heinlein";
set<Person> men = all p from db where p.male;
int abcd = count p from db where ’A’ ?<= p.name[0] ?<= ’D’;

Writing equivalent expressions with C++ standard library algorithms such asfind_if
or count_if would require to write an auxiliary function for every search predicate be-

cause the standard building blocks for constructing function objects (such as predicates,
binders, and adapters, cf. [St00]) are not sufficient to construct them.

6. Conclusion

The paper has presented C+++, an extension of C++ allowing the programmer to define
new operator symbols with user-defined priorities. Even though the basic idea of this ap-
proach dates back to at least ALGOL 68 [BW79], it has not found widespread dissemi-
nation in mainstream imperative programming languages. Compared with Prolog and
modern functional languages, which support the concept in principle, the approach pre-
sented here offers a more flexible way to specify precedence relationships, the additional
concept of flexary operators (which is rather dispensable in these languages as their ef-
fect can be achieved in a similarly convenient manner with unary operators applied to list
literals), and the concept of lazily evaluated operands in an imperative language (which
is of course nothing special in functional languages). It might be interesting to note that
this latter concept has already been present in ALGOL 60 [Ru67], known as the (in)fa-
mous “call by name.” While this is indeed not well-suited as a general parameter passing
mechanism, the examples of Sec. 5 should have demonstrated that the basic principle is
useful when applied with care because it opens the door to implement user-defined con-
trol structures and thus might be considered a step towards generally extensible program-
ming languages.

References

[Ba96] J.G. P. Barnes:Programming in Ada 95. Addison-Wesley, Wokingham, England, 1996.

[BW79] D. F. Brailsford, A. N. Walker: Introductory ALGOL 68 Programming. Horwood, Chich-
ester, 1979.

[CM94] W. F. Clocksin, C. S. Mellish:Programming in Prolog (Fourth Edition). Springer-Verlag,
Berlin, 1994.

[GR89] A. Goldberg, D. Robson:Smalltalk-80. The Language. Addison-Wesley, Reading, MA,
1989.

[He04] C.Heinlein:Concept and Implementation of C+++, an Extension of C++ To Support Us-
er-Defined Operator Symbols. Nr. 2004-??, Ulmer Informatik-Berichte, Fakultät für Informatik,
Universität Ulm, (in preparation).

[MS99] J. Melton, A. R. Simon:SQL:1999. Understanding Relational Language Components.
Morgan Kaufmann Publishers, San Francisco, CA, 2002.

[Ru67] H. Rutishauser:Description of ALGOL 60 (Including the IFIP Reports on ALGOL).
Springer-Verlag, Berlin, 1967.

[St00] B. Stroustrup:The C++ Programming Language (Special Edition). Addison-Wesley,
Reading, MA, 2000.

[Th96] S.Thompson:Haskell. The Craft of Functional Programming. Addison-Wesley, Harlow,
England, 1996.

[Ul94] J.D. Ullman:Elements of ML Programming. Prentice-Hall, Englewood Cliffs, NJ, 1994.

