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ABSTRACT

The presented thesis work deals with several mathematical and practical aspects of
the monocular pose estimation problem. Pose estimation means to estimate the po-
sition and orientation of a model object with respect to a camera used as a sensor el-
ement. Three main aspects of the pose estimation problem are considered. These are
the model representations, correspondence search and pose computation. Free-form
contours and surfaces are considered for the approaches presented in this work.
The pose estimation problem and the global representation of free-form contours
and surfaces are defined in the mathematical framework of the conformal geomet-
ric algebra (CGA), which allows a compact and linear modeling of the monocular
pose estimation scenario. Additionally, a new local representation of these entities
is presented which is also defined in CGA. Furthermore, it allows the extraction of
local feature information of these models in 3D space and in the image plane. This
local information is combined with the global contour information obtained from
the global representations in order to improve the pose estimation algorithms. The
main contribution of this work is the introduction of new variants of the iterative
closest point (ICP) algorithm based on the combination of local and global features.
Sets of compatible model and image features are obtained from the proposed local
model representation of free-form contours. This allows to translate the correspon-
dence search problem onto the image plane and to use the feature information to
develop new correspondence search criteria. The structural ICP algorithm is de-
fined as a variant of the classical ICP algorithm with additional model and image
structural constraints. Initially, this new variant is applied to planar 3D free-form
contours. Then, the feature extraction process is adapted to the case of free-form
surfaces. This allows to define the correlation ICP algorithm for free-form surfaces.
In this case, the minimal Euclidean distance criterion is replaced by a feature corre-
lation measure. The addition of structural information in the search process results
in better conditioned correspondences and therefore in a better computed pose. Fur-
thermore, global information (position and orientation) is used in combination with
the correlation ICP to simplify and improve the pre-alignment approaches for the
monocular pose estimation. Finally, all the presented approaches are combined to
handle the pose estimation of surfaces when partial occlusions are present in the
image. Experiments made on synthetic and real data are presented to demonstrate
the robustness and behavior of the new ICP variants in comparison with standard
approaches.



ii



ACKNOWLEDGMENT

I thank to all the people who in a way or another helped me in the elaboration of
this thesis work. First at all, I thank to my supervisor Prof. Dr. Gerald Sommer for
giving me the opportunity to collaborate in the Cognitive System Group. I thank
him for supporting me to obtain my scholarship, for suggesting me this interesting
research topic, for his advice and comments to solve the different research problems
and for supporting the conferences I visited. Especially, I want to thank him for his
patience also in the difficult moments.

Furthermore, I thank all the members and ex-members of the Cognitive System
Group for their help and support. Especially to Bodo Rosenhahn and Oliver Granert
with whom I had the first discussions about geometric algebras and the pose estima-
tion problem. That helped me a lot to understand the main theoretical and practical
aspects of the pose estimation problem. I thank the help and support of Nils Siebel,
Christian Perwass, Yohannes Kassahun, Di Zang, Florian Hoppe, Herward Prehn
and Christian Gebken who always were ready to answer my questions and to share
valuable comments, which in some way or another are reflected in this work. The
friendly and pleasant atmosphere in the group made the research work very stimu-
lating. I also thank to my colleagues Sven Buchholz, Lennart Wietzke and Stephan
Zeitschel for proofreading the different chapters of this thesis work and for sug-
gesting me improvements of the contents and redaction. I appreciate the help of
the technical staff, Henrik Schmidt, Gerd Diesner and the secretaries of the group
Françoise Maillard and Armgard Wichmann. A special thank to the staff of the In-
ternational Center of the Christian Albrechts University for their help during my
stay at the University of Kiel.

I thank the Mexican Council of Science and Technology (CONACYT) for giving
me the scholarship (number of registry: 144161) to support of my doctoral studies.
In a similar way, I thank the German Service of Academic Exchange (DAAD) for
giving me the opportunity me to participate in a language course, where I started to
learn more about the culture of the German people.

Last, but not at least, I thank my family for their unconditional support and
encouragement. Thanks to my parents Martin and Gloria, to my sister Diana and
to my brother Efrain. I dedicate this thesis work to my family and especially to my
beloved wife Caterina Maria Carrara, whose encouraging and loving words during
these years gave me the strength to accomplish this work.



iv



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Pose Estimation in the Language of Geometric Algebra . . . . . . . . . . 13

2.1 Definition of Geometric Algebra . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Geometric Product . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Euclidean Geometric Algebra . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Geometric Algebra of Projective Space . . . . . . . . . . . . . . . . . . 20

2.3.1 Points, Lines and Planes in Projective Geometric Algebra . . . 21

2.3.2 Camera Model in Projective Geometric Algebra . . . . . . . . 23

2.4 Conformal Geometric Algebra . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Definition of the Conformal Geometric Algebra . . . . . . . . 27

2.4.2 Geometric Entities in Conformal Geometric Algebra . . . . . 28

2.4.3 Rigid Body Motions . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Pose Estimation in the Language of Geometric Algebra . . . . . . . . 33

2.5.1 Change of Representations of Geometric Entities . . . . . . . 34

2.5.2 Incidence Equations . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.3 Pose Estimation Constraints . . . . . . . . . . . . . . . . . . . . 37

2.5.4 Linearization of the Pose Parameters . . . . . . . . . . . . . . . 39

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vi Contents

3. Global and Local Representation of Contours and Surfaces . . . . . . . . 43

3.1 Definition and Properties of Free-Form Model Objects . . . . . . . . . 44

3.2 Coupled Twist Rotations as basic Contour and Surface Generators . 45

3.3 Twist based Free-form Model Representations . . . . . . . . . . . . . 49

3.3.1 Free-form 3D Contours . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Free-form 3D Surfaces . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3 Quaternion Fourier Descriptors for 3D Contours and Surfaces 52

3.3.4 Real valued Hartley Approximations . . . . . . . . . . . . . . 53

3.3.5 Time Performance Comparison . . . . . . . . . . . . . . . . . . 56

3.4 Pose Estimation of Twist Generated Models . . . . . . . . . . . . . . . 57

3.4.1 Correspondence Search with Model Approximations . . . . . 59

3.5 Local Model Representation in Conformal Geometric Algebra . . . . 61

3.5.1 Osculating Circle . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Construction of the Local Motor . . . . . . . . . . . . . . . . . 62

3.5.3 Local Motors as Contour and Surface Descriptors . . . . . . . 65

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4. Structural ICP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 ICP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Exact and Well Conditioned Correspondences . . . . . . . . . 72

4.2 Description Levels of Contour Models . . . . . . . . . . . . . . . . . . 74

4.3 Image Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Monogenic Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Phase Congruency for Edge Detection . . . . . . . . . . . . . . 80

4.3.3 Multi-Scale Contour Extraction . . . . . . . . . . . . . . . . . . 81

4.4 Model Feature Compatibility . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Transition Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.2 Contour Segmentation . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Structural ICP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Structural Constraints . . . . . . . . . . . . . . . . . . . . . . . 93



Contents vii

4.5.2 Contour based Structural ICP Algorithm . . . . . . . . . . . . 97

4.5.3 Correspondence Search Direction . . . . . . . . . . . . . . . . 98

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5. Correlation ICP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Pose Estimation of Free-form Surface Models . . . . . . . . . . . . . . 102

5.1.1 Silhouette Extraction . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.2 Silhouette-Based ICP Algorithm . . . . . . . . . . . . . . . . . 104

5.2 Correlation ICP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Feature Computation with the Virtual 2D Silhouette . . . . . . 106

5.2.2 Correlation as Similarity Criterion . . . . . . . . . . . . . . . . 108

5.2.3 Correspondence Search Criteria based on Feature Correlation 110

5.2.4 Silhouette-based Correlation ICP Algorithm . . . . . . . . . . 114

5.3 Pre-Alignment of 3D Surfaces . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Pre-alignment for the Monocular Pose Estimation . . . . . . . 116

5.4 Feature Alignment in the Image Plane . . . . . . . . . . . . . . . . . . 118

5.4.1 Exact Correspondences for Pre-alignment . . . . . . . . . . . . 119

5.4.2 Local Orientation Alignment . . . . . . . . . . . . . . . . . . . 121

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 Experimental Setup to Generate Artificial Images . . . . . . . . . . . 125

6.2 Comparisons With the Classical ICP Algorithm . . . . . . . . . . . . 126

6.2.1 Pose under Bad-conditioned Correspondences . . . . . . . . . 127

6.2.2 Convergence Behavior . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.3 Tracking Assumption . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Pose with Noisy and Missing Contours . . . . . . . . . . . . . . . . . 137

6.4 Pose with a Robot Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5 Pre-alignment Experiments . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Experiments on Real Images . . . . . . . . . . . . . . . . . . . . . . . . 143



viii Contents

6.6.1 Occlusion under Tracking Assumption . . . . . . . . . . . . . 144

6.6.2 Pose with Interpolated Model Points . . . . . . . . . . . . . . . 147

6.6.3 Pose with the Structural and Correlation ICP Algorithms . . . 147

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7. Combination of the New ICP Variants . . . . . . . . . . . . . . . . . . . . 153

7.1 Combination of Correspondence and Outlier Elimination Criteria . . 154

7.2 Pre-alignment With Partial Occlusions . . . . . . . . . . . . . . . . . . 156

7.2.1 Possible Combinations . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3 Selective Pose Estimation for Real Images . . . . . . . . . . . . . . . . 161

7.3.1 Examples of Surfaces with Partial Occlusions . . . . . . . . . . 163

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.1 Further Extensions and Applications . . . . . . . . . . . . . . . . . . . 170



Chapter 1

INTRODUCTION

Computer vision and robotic systems are among the most innovative and impor-
tant research topics with an enormous potential of practical applications. No other
technical innovation has developed so fast than computers in the recent years. Since
the first personal computer developed in the seventy years, every new generation of
computers is faster, cheaper and more compact. Hence, efficient applications based
on computer systems are available nowadays for almost every institution, industry
and individuals in almost all aspects of modern life. This has also allowed the use
of robots in a wide variety of applications, e.g. in entertainment systems, industrial
applications and missions to explore other planets among others. Robots are used in
those situations where the work is too dangerous, hard and repetitive and in cases
where humans can not perform a certain task with high accuracy. In this context,
a big challenge for research has been to emulate in robots the basic human behav-
ior to solve problems. That means, the way that humans perceive information and
take decisions to solve a specific problem. In this framework, the perception-action
cycle defines the way that robots interact with their environment to solve a certain
task. Once that all possible informations of the environment have been acquired and
interpreted in the perception phase, a set of decisions are taken in the action phase.

Let us concentrate on the perception phase. A description about the size and
structure of the robot’s environment must be generated. On the other hand, the
location of the robot and any other objects must be determined in order to plan a
possible action strategy. In order to obtain this information, modern robot systems
are equipped with a large variety of sensor elements. The most adequate sensors
are chosen depending on the specific task to be solved. Infrared or ultrasonic sen-
sors are commonly used for robot navigation applications. Thermal and humidity
sensors are also used to work in industrial environments. Modern sensors based
on GPS (global positioning systems) are used for robot localization and navigation.
Although these systems are able to deliver very precise measurements, they are lim-
ited to a specific parameter of the world.

In contrast to the above mentioned sensor elements, the use of visual information
has become more popular in the last years. The most important way to get infor-
mation about the world is through vision. Vision allows humans to perceive a huge
amount of information, e.g. shape, color, dimension, etc. It is the principle to con-
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struct more general and abstract interpretations of the world. That means, humans
learn and take decisions basically from visual information. Because of that, the aim
is to simulate the human eye as sensor element by video cameras. Similarly, the
function of the human brain as visual processing center is simulated by a computa-
tional system. The processing and interpretation of visual information has become
an important research topic in the fields of artificial intelligence and cognitive sys-
tems. Among the most common applications are controlling processes, detection
of events, organization of information, modeling of objects and environments and
human-machine interaction.

As mentioned before, one of the main tasks that a robot system must solve to
interact with its environment is to determine its location and the location of addi-
tional objects. This is known as ”Pose Estimation Problem”. Roughly speaking, it is
defined in [49] as follows:

Definition 1.1 Pose estimation is defined as the transformation (rigid body motion) to map
an object model from its initial position to the actual position in agreement with the sensor
data.

According to the last definition, the pose estimation problem is classified de-
pending on how model and sensor data are defined as 2D-2D, 3D-3D and 2D-3D,
see [28]. If sensor and model data are defined in the image plane, the problem is de-
fined as 2D-2D. In this case, a rigid body motion in the image plane is obtained from
the pose computation. If model and sensor data are defined in 3D space, the prob-
lem is considered as 3D-3D and the computed rigid body motion is also defined
in 3D space. The pose estimation problem is defined as 2D-3D if 3D information
is recovered from the image and the rigid body motion is computed in 3D space.
Many authors refer to the pose estimation problem with different names, although
the idea of computing a rigid body motion with respect to sensor data remains the
same. When the pose is computed for a sequence of images, it is known as 2D or 3D
tracking respectively [61]. The pose estimation problem is also known as 3D regis-
tration [64] when two clouds of points in 3D, or a cloud of points and a given model
are matched.

In the context of this work, the monocular 2D-3D pose estimation for 3D free-
form contours and surfaces is considered in the mathematical framework of geo-
metric algebras. Recently, geometric algebras have been introduced in computer vi-
sion as a problem adaptive algebraic language in case of modeling geometry related
problems, see [55, 102]. The main advantage of geometric algebras over standard
representation methods is that they allow linear and compact symbolic representa-
tions of higher order entities. In the context of the algebra, a higher order entity
can be interpreted as a subspace of a given vector space. For example, lines and
planes can be considered higher order entities since they represent one and two di-
mensional subspaces of IR3. Several geometric concepts and operations defined in
different algebras are unified in geometric algebra. For instance, the principle of
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duality in projective geometry, Lie algebras and Lie groups, Plücker representation
of lines, real numbers and quaternions among others. Because of the last properties,
the use of geometric algebra allows to define linear operators acting on these differ-
ent geometric entities. Furthermore, it is also possible to define the image formation
process in the case of projective cameras, see [9, 33, 85].

As it was discussed by Rosenhahn in [87], several aspects must be considered
in order to define the pose estimation problem. First, a mathematical framework
must be defined in order to model the geometry and mathematical spaces involved
in the problem. Based on that mathematical framework, rigid body motions and the
respective free-form models must be accordingly described. Additionally, operators
to define the best way to fit 3D object data to image information are needed. Finally,
image features must be extracted (originally, points, lines and planes) according to
the available model object and pose scenario. The main contribution of Rosenhahn’s
work was the unification of all these concepts in the mathematical framework of the
conformal geometric algebra (CGA). Roughly speaking, the conformal space (on
which the conformal geometric algebra is defined) is a vector space generated as a
geometrical embedding of the Euclidean space by a stereographic projection [44].
It turned out that the conformal geometric algebra is especially useful because its
ability of handling stratified geometrical spaces, which is an essential property for
the definition of the pose estimation problem, see [92].

In a further work, Rosenhahn extended the pose estimation approaches in CGA
for model objects like circles, ellipses, spheres, free-form contours and surfaces, see
[89, 90, 91]. To achieve that, the idea of twist rotations plays a significant role to
represent contours and surfaces. Initially, twists were used to model rigid body
motions in CGA. By exploiding their similarity with the exponential representation
of the Fourier transform of closed contours, a set of twist descriptors (geometrically
similar to a set of coupled rotations) are obtained. Then, it was possible to define
the pose estimation constraints in CGA of free-form objects.

It is worth to mention that geometric algebras have been applied to other com-
puter vision problems. The image formation process based on catadioptric and
stereographic projections has been defined in [107]. Then, the 2D-3D pose estima-
tion problem with catadioptric cameras was formulated for applications to mobile
robots, see [46]. In the case of multidimensional signal theory, a local geometrical
modeling of image signals was proposed to develop new edge and corner detectors
[110, 111]. The theoretical basis for neuronal network applications with geometric
algebras has been introduced in [21].

1.1 Motivation

The aim of the present work is to propose mathematical and practical approaches to
improve the monocular pose estimation problem. In a first instance, the monocular
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pose estimation problem is divided in the following three main tasks: acquisition
of data from the image, correspondence search and pose computation. In the ac-
quisition step, feature information is extracted from the image and from the object
model. This feature information is used to find correspondence pairs (model and
image). Finally, the correspondences are used to define constraints in order to com-
pute the pose parameters. In this work, several strategies are proposed to obtain
compatible feature information from image and model data. The main contribu-
tions are focused on the development of correspondence search strategies which
use such feature information. The efficient integration of these tasks may result in
good quality pose estimation algorithms in terms of robustness, convergence behav-
ior and time performance.

For the pose estimation problem, finding proper correspondences is one of the
major challenges to solve. In general, the correspondence search problem is defined
as follows:

Definition 1.2 Given two sets of points A and B, correspondence pairs of ”similar” points
must be found. Additionally, the functional f measures the similarity of points with respect
to their feature information. Therefore, for every point xi ∈ A, its corresponding point
yj ∈ B is the one which follows the criterion

corr(xi ,B) = max
j=1,...,n

{f (xi , yj )} . (1.1)

According to the last definition, two points form a correspondence pair if their
similarity measure is maximal. Analog to the classification of the pose estimation
problem, the correspondence search can be also classified depending on how model
and sensor data are defined, i.e. between image data (2D-2D), data in Euclidean
space (3D-3D) and between image and Euclidean space data (2D-3D). In general, the
classical variant of ICP (iterative closest point) algorithm [13] is the most common
approach which is used in most of the scenarios. It uses the Euclidean distance
between model and sensor data as correspondence search criterion.

If the correspondences are correct, any pose estimation algorithm will deliver a
correct pose within ceratin limits. In real applications, false correspondences due
to occlusions, noise or other perturbations are present during the estimation pro-
cess. Therefore, a correspondence search criterion must be defined which makes
possible to find better correspondences. To achieve that, new variants of the ICP
algorithm are presented in this work which combine Euclidean distance with addi-
tional global and local feature information. The choice of the best strategy to define
a correspondence search criterion based on feature information depends in general
on the following considerations:

1. Global and local object representations. For applications in robotics and
computer vision, it is desirable to gain as much information as possible about
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the objects of interest in order to solve a certain task. The object representa-
tion must satisfy certain mathematical and geometric properties. Ideally, it
must be able to define the object by a complete, unique and if possible com-
pact representation. In most of the cases, a compromise between these prop-
erties must be made for practical applications. One important question is how
to represent such objects (free-form contours and surfaces), which eventually
must be detected and segmented in the images. On the other hand, the con-
cept and representation of an object can be regarded as global or local. Each
representation offers certain advantages in a mathematical point of view and
for its implementation. Intuitively, the global concept refers to representations
which involve the complete model and therefore useful information can only
be extracted if the complete model is available. On the other hand, a local
representation does not need the complete object to approximate patches or
regions of interest of the objects. As mentioned before, a global representation
of free-form contours and surfaces was proposed by Rosenhahn. Hence, a new
local representation in CGA is proposed which is able to deliver local feature
information.

2. Global and local features. Feature based approaches are well known in the
context of computer vision problems. Evermore, the concept of fusing global
and local approaches can be also applied to the correspondence search prob-
lem. Global features describe a complete object or image information in a way
which can be useful to certain applications. Sensitiveness to occlusions, clutter
and the need of segmentation approaches are the main drawbacks of global
feature based algorithms. In contrast to that, local features do not need a com-
plete segmentation procedure and they are robust against occlusions and clut-
ter. Since local features describe structures of different nature and sometimes
the locally described region may have different ranges, the combination of sev-
eral kinds of local features into standard techniques may be difficult. Accord-
ing to these properties, local and global feature approaches provide essentially
independent structural information. Such information can be combined in or-
der to get a better description of model objects and image data. In the case
of 3D free-form contour and surfaces, it is only possible to obtain global and
local features from contour segments or complete contours in 3D space or in
the image plane according to its global and local model representations. Then,
several methods are proposed in this work to obtain adequate contour features
which can be used in the correspondence search problem.

3. Tracking assumption. In the context of the pose estimation problem, the track-
ing assumption defines the inherent convergence limits within which a pose
estimation algorithm is able to compute a correct pose. In some applications,
sequences of pictures are previously captured. Then, the conditions to get
proper correspondences and a correct pose are in general in advance predeter-
mined. That means, the tracking assumption condition is considered. A model
object is considered to be under tracking assumption conditions if its position
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and orientation difference with respect to the image data is small enough to
avoid convergence to a local minimum. Other possible scenario is when the
system has to locate the objects in order to make decisions, for example for
robot navigation or object manipulation with a robot arm. In these cases, the
information of the image has to be processed, the decision must be made and
a new information must be acquired to continue the loop (perception action
cycle). During this cycle, unexpected changes in the robot work environment
or rapid movements of robot or objects may cause larger displacements be-
tween model and image. In these cases, the tracking assumption is not met
any more. In both of the described situations, the application of a different
correspondence search strategies is needed. Therefore, the proposed solutions
to the correspondence search problem must be robust against the tracking as-
sumption.

1.2 Literature Overview

In this section, a review of the most representative contributions in the literature
regarding to the main aspects of the correspondence search problem in context of
the pose estimation problem are presented.

Model Representations

Point and line information are commonly used to represent model objects for the
monocular pose estimation problem. In consequence, the same information is ex-
tracted from the image plane, see [3, 51, 71, 86]. In contrast to the model representa-
tion of free-form objects in CGA, most of the typical object representations presented
in the literature use more intuitive geometrical concepts than formal mathemati-
cal representations to describe these entities. In general, the term free-form object
[24, 38, 60, 112] is applied to such contours or surfaces which can not be easily de-
scribed by an explicit parametric function or by a set of planar and regular patches.
Human faces and organs, car models, ships, airplanes, terrain maps and industrial
parts among others are typical examples of objects modeled as free-form objects (see
Besl [13] and Stein and Medioni [105]).

A review of free-form object representations and their applications to computer
vision problems was presented by Cambell and Flynn in [24]. Surfaces can be im-
plicitly modeled as the zero-set of an arbitrary function [106]. In general, these func-
tions are defined by a polynomial of certain degree. One main disadvantage of
this approach is that the coefficients of the polynomial are in general not invariant
to pose transformations. Surfaces are also defined by implicit functions called su-
perquadrics where a surface is defined by volumetric primitives [101]. In this case,
the simplest primitive is the sphere. Then more complex surfaces are generated by
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modifying and adding extra parameters to the basic superquadric equation like ta-
pering, twisting and bending deformations. Due to the basis equations to generate
the curves, superquadrics are able to model coarse shapes of models. Because of
that, superquadrics lack of the ability to describe fine details of models and there-
fore they can not deliver good quality local structural features. Other possibility is to
model surfaces as generalized cylinders [1, 81]. Once that the main orientation axis
of the 3D points are obtained, a set of contours are constructed in the planes normal
to this axis defining the boundary of the surface. It is clear that this approach is well
suitable to define elongated objects. Finally, other common object representation im-
portant for our purposes is based on polygonal meshes [24]. A mesh consists of a set
of triangles, rectangles or any polygonal patches which define a surface. Due to the
possibility of defining the resolution of the polygonal patches, complex free-form
objects can be modeled with a relatively good accuracy.

Local and Global Contour Features

In the case of free-form contours and surfaces, local features are commonly com-
puted from the curvature of contour segments or surface patches respectively, see
[14, 53]. In the case of the image plane, digital 8-neighbor connected curves are ob-
tained. Then, an angular measure based on the reference point pi and its neighbors
pi+k and pi−k is used to estimate the curvature in [52]. According to that, the curva-
ture is defined with respect to changes in the orientations of the tangent of a point
pi . The approach presented in [73] approximates the digital curve at the interest
point by second order polynomials. With this local approximation, the curvature
is computed by applying derivatives of the curve. The complete digital curve is
approximated by cubic B-splines in [77] in order to compute the curvature with re-
spect to the approximated curve. Osculating circles are used in [31] to compute the
curvature of discrete contour points. In this case, a circle is constructed with three
contour points where the curvature is defined by the length of its radius.

In the case of images, segmentation procedures must be applied in order to ex-
tract contour information and eventually to compute the local features. To achieve
that, approaches based on the monogenic scale space for two-dimensional signal
processing introduced by Felsberg and Sommer are used, see [40, 41]. The mono-
genic signal is a generalization of the analytic signal [43] which delivers feature
information of image points in terms of local amplitude, phase and orientation.
The local amplitude encodes information about local energy (presence of structure)
while the phase refers to the local structure (symmetry of the signal). That means,
additional local structure is used to describe contours in the image plane.

Global features can be computed from closed contours. Global position and
orientation are computed by different approaches depending of the kind of object
models, sensor devices and pose estimation scenarios. Among the most common
approaches are the principal component analysis (PCA) as proposed in [20]. In this



8 Chapter 1. Introduction

case, the main orientation axes correspond to the distribution directions derived
from the eigenvectors and eigenvalues of the covariance matrix computed with the
set of points in 3D. For image contours, the main distribution axes can be extracted
from the elliptic Fourier descriptors as defined in [58, 63].

Correspondence Search and ICP Algorithm

The ICP algorithm was originally used for correspondence search by Besl and McKay
[13]. Because of its relatively low computation complexity, variants of the classical
ICP algorithm are applied for tracking and pose estimation applications where real
time performance is expected. From this original idea, several variations and im-
provements have been made. Chen and Medioni [29] use the sum of square distance
between scene and model points in their ICP variant. An extension of this work was
made by Dorai and Jain [35], where an optimal uniform weighting of points is used.
Other variants define as error measure the absolute difference for each coordinate
component of the point pairs [108]. Zhang [112] uses a modified ICP algorithm
which includes robust statistics and adaptive thresholding to deal with the occlu-
sion problem. Instead of a point-point distance metric, correspondences are found
by the minimal distance between points and tangent planes of surfaces in the ap-
proach proposed by Dorai et al. [35]. In order to accelerate the search process,
Benjemaa and Schmitt use z-buffers of surfaces [10] where the search is translated to
a specific area of the z-buffers. A comparison of variants of the ICP algorithm is pre-
sented in [94], where the different variants are applied to align artificially generated
3D meshes.

Other variants of the ICP algorithm perform a selection of corresponding points.
Once that all the correspondences are found, only a certain number of points are se-
lected by a given criterion. Chetverikov et al. developed the trimmed ICP algorithm
[30] based on the Least Trimmed Squares (LTS) approach [6]. In this case, correspon-
dence pairs are sorted by their least square errors and only a certain number of them
are used to compute the pose. This selection process is repeated in all steps of the
algorithm. A hierarchical control point selection is used in the work of Zinsser et
al. [113]. The iteration process is divided in h + 1 hierarchy levels, where only ev-
ery 2h − i points are used as control points for each level. Once that the algorithm
converges for a set of control points, the pose is computed with the control points of
the next level. A similar idea is used in the ICP algorithm proposed by Masuda and
Yokoya [75] where control points are chosen randomly to define correspondences.
Once that the pose is computed, it is evaluated with a given error measure. This is
repeated in an internal loop until the pose with the minimal error is found. Then,
this optimal pose is applied to the model for the next iteration. The last ICP variants
are useful for incomplete sensor data especially for 2D-2D and 3D-3D pose estima-
tion scenarios. Most of these above cited methods seem to be robust and suitable
for real time applications. Since all of them are based on information obtained from
a single point, the tracking assumption must be considered in order to ensure an ef-
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ficient performance and to guarantee that the algorithms do not converge to a local
minimum.

The ICP algorithm is combined with additional features obtained from relatively
complex image processing approaches like optical flow [19, 88] or bounded Hough
transform [98]. In these cases, the algorithms show a better performance in com-
parison with the normal ICP algorithm in a monocular pose estimation scenario.
The tracking assumption can be slightly overcome but the computational cost in-
creases considerably. In some cases, computation times up to 2 minutes per frame
are reported.

An evaluation of 2D-3D correspondences is made in the work of Liu [66]. Ad-
ditional rigid body motion constraints are defined which determine the necessary
conditions for a point par to form a good correspondence. A further extension of
this work exploits the collinearity and closeness (point-line and point-point) con-
straints without the need of any feature extraction [65, 67]. The approach proposed
by Shang et al. [99] uses known information about the limits of the object velocity
and the image frame rate to reduce the transformation space between every frame.
Then, the tracking is transformed into a classification problem.

In the work of Najafi et al. [80], appearance models (more realistic models which
include colors, textures and the effect of light reflections) are used to find correspon-
dences. Panin and Knoll [83, 84] presented a system that combines active contours
[57] and appearance models. This system uses a global pose estimation module
based on a robust feature matching procedure. A reference image of the object is
used as model to compare and globally match the features with the current image
of the sequence. On the other hand, a local contour tracking is used to compute
the exact pose. After every frame, the coherence of the computed pose is checked
by the normalized cross correlation index. Once that the reference image (model)
is rendered onto the image plane at the computed pose, the cross correlation index
between image and reference is computed. If it is below a given reference value, the
computed pose is considered a good initialization for the next frame. Otherwise,
the global pose estimation is used. A quite similar idea is used by Ladikos et al. [59]
where feature and template-based tracking systems are combined. In this case, the
3D objects are modeled by a set of planar textured patches. The system switches to
feature tracking if the cross correlation index between model patches and image are
above a threshold value.

The most relevant approach for this thesis work is the contribution of Sharp et al.
[100], where additional invariant features like curvature, moment invariants [95, 50]
and spherical harmonics [23] are used to define a variant of ICP algorithm for 3D
registration. The particularity of this method is that an extended similarity measure
function is defined as a combination of point and feature Euclidean distance. Al-
though this combination improves the correspondence search, it can not be applied
to the monocular pose estimation since curvature and moments are not invariant
under perspective projection.
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1.3 Contributions and Outlook

Once that the general concepts of the correspondence search problem have been
presented, the main contributions of this work are summarized. In order to find
correspondences between model and image points, two strategies are possible:

1. Reconstruct 3D information from the 2D image feature information in order to
solve the correspondence problem in 3D space.

2. Project the 3D contour or surface points of the object model onto the image
plane and translate the correspondence search problem completely to 2D.

Essentially, information in 3D space is different than the information in the image
plane. 3D features are in general not invariant against perspective projections. If
only one image is used to compute the pose, 3D information can not be completely
reconstructed from the image. If the 3D models are projected onto the image plane,
there are more possibilities to exploit more image information and to find equivalent
features from the projected models. Because of that, the second strategy is followed
in order to develop the new variants of the ICP algorithm. A schematic diagram of
the general strategy is presented in figure 1.1.

Fig. 1.1: General strategy to translate the correspondence problem from the 3D Eu-
clidean space to the 2D image plane.

The present thesis work is organized as follows:

In chapter 2, the pose estimation problem is introduced in the framework of
geometric algebras. Initially, the basic definitions and properties of geometric alge-
bras are presented. The associated algebras of Euclidean, projective and conformal
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space are defined. Basic geometric entities like points, lines and planes as well as
the image formation process are defined in projective geometric algebra. On the
other hand, rigid body motions are modeled in conformal geometric algebra. Then,
the interaction of these entities is described in order to define the pose estimation
constraints.

The use of twist rotations as global and local contour and surface generator ele-
ments is discussed in chapter 3. In a first instance, the concepts of free-form models
and Fourier contour and surface approximations are introduced. Then, they are
coupled with the pose estimation constraints in CGA. Additionally, contour and
surface approximations are obtained from the quaternion valued Fourier transform
and Hartley transform which offer an alternative to the complex valued Fourier ap-
proximations for practical applications. For instance, they allow the extraction of
global orientation information. By following the idea of twist rotations, a new local
representation of free-form contours and surfaces in the framework of the confor-
mal geometric algebra is proposed in this chapter (published in [25]). This new
representation allows to generate and describe the vicinity of a model point, larger
segments or even the complete model by a pivot point and a set of concatenated
twist rotations. Therefore, it can be used in the pose minimization constraints de-
fined by Rosenhahn. Additionally, this local representation allows to extract local
features information from contour segments.

One of the central contributions of this work is presented in chapter 4. In order to
extract feature information of the image, the monogenic scale space is used to detect
local structure and edge information at different scales. Then, a contour search al-
gorithm is applied to extract iteratively contours from the image at different scales.
Based on the geometrical properties of the proposed local model representation in
the image plane, a set of analog local features to that of the monogenic scale space
are extracted. From the local orientation of model points, a local feature defined
as transition index is presented. It represents an artificially generated structural
feature analog to the local phase. Additional to these features, model and image
contours are segmented according to their structure in straight, convex and concave
segments. Additional constraints are defined with these features in order to define
the structural ICP algorithm (published in [26]) for the case of planar 3D free-form
contours.

The procedures for the contour feature extraction were extended for the case of
free-form surfaces in chapter 5. Under some considerations, the local features are ex-
tracted from the projected silhouette of the model with respect to the image plane.
Then, the structural ICP algorithm can be applied. In contrast to the normal ICP
variants, the feature information of larger contour segments is used to define pro-
file vectors. Then, each contour point has an associated profile vector that describes
its structural information. Other variant of ICP algorithm is presented in this chap-
ter where the Euclidean distance is replaced by a feature measurement based on
the correlation matrix defined by profile vectors of model and image points (pub-
lished in [27]). For cases where the displacement between model and image data
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is too large (non-tracking assumption conditions), the local orientation information
is combined with the global orientation obtained from the Hartley transform in 2D.
Instead of a normal pre-alignment approach, a simple feature pre-alignment in the
image plane is done in order to place the model under tracking-assumption condi-
tions. A set of experiments done with artificially generated data and real images are
presented in chapter 6. Those experiments focus on testing of the main properties of
the new variants of ICP algorithm: robustness against the tracking assumption and
convergence behavior. The new ICP variants were extensively compared with the
classical variants of the ICP algorithm.

In chapter 7, the problem of the pose estimation of free-form surfaces with par-
tial occlusions under non-tracking assumption conditions is discussed. Additional
positional features are combined with the correlation ICP algorithm as outlier elimi-
nation criterion. In this case, the angular position of silhouette points with respect to
its global main orientation is used. Several combinations of correspondence search
criteria and outlier elimination are analyzed which have several properties and be-
haviors. A system that selects the best combination according to the global position,
orientation and absolute pose error is presented.

Finally, the discussion is presented in chapter 8. Several possibilities are men-
tioned in order to improve the presented algorithms and to apply them to more
general scenarios of the pose estimation problem.



Chapter 2

POSE ESTIMATION IN THE LANGUAGE

OF GEOMETRIC ALGEBRA

Geometric algebras have become an important mathematical framework to model
geometrically related problems by focusing on the geometrical interpretation of al-
gebraic entities. Prior to the introduction of the Clifford algebra, Hamilton (1805-
1865) proposed quaternions as a generalization of complex numbers and applied
them to model rotations in 3D space. Other important contribution is the exterior
(also called outer) algebra developed by Grassman (1809-1877). In this case, the
outer product of vectors is an algebraic construction that generalizes certain fea-
tures of the cross product to higher dimensions. Those ideas were taken by Clifford
(1845-1879) in order to develop his Clifford algebra. Essentially, Clifford made a
slight modification of the exterior product (he introduced the geometric product),
which allowed him to define quaternions and Grassman’s exterior algebra into the
same algebraic framework.

In this chapter, an introduction to geometric algebras and the definition of the
pose estimation problem in this mathematical framework are given. For a more gen-
eral and detailed introduction, the reader should refer to [8, 15, 37, 85, 92, 93, 102].
Since this chapter serves as an introduction, the reader may also refer to the above
mentioned bibliography for details about the presented definitions and properties.
The notation and definitions used in this chapter are based on the last cited works.
Initially, the geometric algebra of Euclidean space IR3 as well as its relation with the
algebra of quaternions is presented. Then, the corresponding algebras of projec-
tive and conformal spaces are introduced. The image formation process and basic
geometrical entities (points, lines and planes) are defined in projective geometrical
algebra. On the other hand, rigid body motions and operations defining points-line
and point-plane incidence relations are defined in conformal geometric algebra. Fi-
nally, all these concepts are used to define two different pose estimation constraints.
They are based on minimization in 3D space and a projective variant based on min-
imization in the image plane respectively.
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2.1 Definition of Geometric Algebra

In this section, the definition of geometric algebra, its elements (multivectors) and its
associated product (geometric product) are presented. A geometric algebra denoted
by Gp,q ,r is a linear space spanned by 2n , with n = p + q + r, basis elements con-
structed from a vector space IRp,q ,r . This linear space is defined by subspaces called
blades which represent elements called multivectors as higher grade entities.1 The
indices p, q, r refer to the signature of the corresponding basis vectors. The vector
space is formed by p, q and r basis vectors which square to 1,−1 and 0, respectively.
According to that, a proper signature can be chosen to define spaces with certain
geometrical properties.

2.1.1 Geometric Product

The product operation associated with the geometric algebra is the geometric prod-
uct. For two vectors a and b, the geometric product is defined by

ab = a · b + a ∧ b. (2.1)

Then, the geometric product is constructed by the combination of an inner ”·”
and an outer product ”∧”. Let us consider the case of two orthonormal elements
ei , ej ∈ IRp,q ,r of a given vector space. In general, the geometric product of these
elements leads to a scalar eiej := 1 ∈ IR if i = j . The last implies that the vectors
are the same. Otherwise, the geometric product leads to a new entity called bivector
(grade two) representing the space spanned by these two vectors: eij = ei ∧ ej =
−ej ∧ ei if i 6= j . These elements are the basis elements of geometric algebra. Then,
geometric algebras are expressed on the basis of graded elements.

A general multivector M is formed by a linear combination of elements of differ-
ent grades as

M =
n∑

i=0

〈M〉i , (2.2)

where each element 〈M〉i represents each part of the multivector with respect to its
grade i. According to that, 〈M〉0 is the scalar part of M, 〈M〉1 and 〈M〉2 are the vector
and bivector parts respectively. If an element is constructed as the outer product of
k independent vectors, it is called a blade of grade k. Then, the blade of the vectors
e1, e2, ..., ek is defined as

A〈k〉 := e1 ∧ e2 ∧ ... ∧ ek . (2.3)

By using the properties of the geometric product (see [85]), it is possible to ex-
press the inner and outer product of two vectors in terms of their geometric product.

1 Note that vectors are considered as first grade entities.



2.1. Definition of Geometric Algebra 15

For two vectors a,b ∈ 〈Gp,q〉1, its respective inner and outer products are defined as

a · b :=
1

2
(ab + ba) (2.4)

a ∧ b :=
1

2
(ab − ba). (2.5)

In order to clarify the operations used in the examples presented during this
chapter, some rules for the computation of the inner product between blades are
presented. According to [85], the inner product of a vector x (grade 1) with a blade
A〈k〉 (with grade k ≥ 1) results in a blade of grade k − 1. The last can be expressed
in the next equation:

x · A〈k〉 = (x · e1)(e2 ∧ e3 ∧ e4 ∧ . . . ∧ ek)

−(x · e2)(e1 ∧ e3 ∧ e4 ∧ . . . ∧ ek )

+(x · e3)(e1 ∧ e2 ∧ e4 ∧ . . . ∧ ek)

− . . .

=

k∑

i=1

(−1)i+1(x · ei)[A〈k〉\ei ], (2.6)

where [A〈k〉\ei ] is the blade A〈k〉 without the vector ei .

A more general operation is the inner product of two blades A〈k〉 and B〈k〉 (with
0 < k ≤ l ≤ n). It can be computed as

A〈k〉 · B〈l〉 = e1 ·
(
e2 · (. . . · (ek · B〈l〉))

)
, (2.7)

with the resulting blade of grade l − k . In general, the inner product reduces the
grade of a blade while the outer product increases its grade.

A generalization of the geometric product of vectors can be done for the product
of general multivectors. Thus, the geometric product as the combination of inner
and outer product of two vectors is extended by applying the properties or the geo-
metric product (see [85]). For two general multivectors A,B ∈ G3, the definition of
equations (2.4) and (2.5) is used to define the geometric product as

AB =
1

2
(AB + BA) +

1

2
(AB −BA)

:= A×B + A×B, (2.8)

where the analog operators of the inner and outer products for the case of general
multivectors are called commutator × and anticommutator × product respectively.

Additional to the inner and outer product, other important operations with blades

are defined in the algebra. One of these operations is the reverse Ã〈k〉 of a blade
A〈k〉 = e1 ∧ e2... ∧ ek−1 ∧ ek, defined as

Ã〈k〉 = ek ∧ ek−1 ∧ ... ∧ e2 ∧ e1. (2.9)
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Because of the associative and noncommutative properties of the outer product,
the reordering of vectors in a blade changes only its sign. Then, the reverse can be
computed as

Ã〈k〉 = (−1)k(k−1)/2A〈k〉. (2.10)

The reverse operation is used to define the inverse of a blade as

A−1
〈k〉 :=

Ã〈k〉
‖A〈k〉‖2

, with ‖A〈k〉‖2 6= 0. (2.11)

An important element of each algebra is the unit pseudoscalar, denoted by I,
which is defined by the unit blade of highest grade. The inverse of the pseudoscalar
is used to define the dual of a blade. For a blade A of grade r, the dual A∗ is defined
as follows

A∗ := AI−1. (2.12)

If n is the dimension of the complete space, the grade of the dual blade A∗ will be
n− r. Thus, the dual of a blade results in a blade complementing the whole space.

An operation that evaluates the intersection of subspaces represented by blades
is the ”meet”. The generalization of this operation for general multivectors is the
basis to describe the camera perspective projection process and to define point-line
and point-plane incidence equations. The meet operation for two arbitrary blades
A,B, denoted by the operator ”∨”, is defined as

A ∨ B := (AJ−1 ∧ BJ−1)J, (2.13)

where J is the result of the ”join” operator of the blades.

For two blades A and B, the join J = A∧̇B is defined as the pseudoscalar of
the space spanned by the blades A and B (see [85] for more details). According
to the last definition, the join is an adapted version of the pseudoscalar. Instead
of considering the pseudoscalar I of the entire space, a ”reduced” pseudo scalar J

is constructed. For example, the join of the vector e2 with the bivector e2 ∧ e3 is
simply the bivector e2∧e3. It is clear that these elements are defined in the subspace
spanned by e2 ∧ e3. Since the vector e1 does not play any role in this example, it is
not considered in the definition of the join for this particular example.

2.2 Euclidean Geometric Algebra

In order to facilitate the reader to follow the interaction of elements in the different
spaces, the following notation will be used in next sections. Points in Euclidean
space will be represented with the notation x ∈ IRn . The embedding of points in
projective space with X ∈ IRn+1\{0}, while elements of conformal space will be
denoted X ∈ IRn+1,1\{0}.
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Fig. 2.1: Left: outer product of two vectors expanding an oriented plane segment.
Right: outer product of three basis vectors expanding an oriented segment
of the complete space.

The Euclidean space, denoted by IR3, is spanned by the orthonormal basis vectors
{e1, e2, e3}. Its associated geometric algebra G3 is spanned by the following 23 = 8
basis elements

G3 = span{1, e1, e2, e3, e23, e31, e12, e123}. (2.14)

As can be seen, the algebra is spanned by one scalar, there vectors (e1, e2, e3),
three bivectors (e23, e31, e12) and a trivector (e123) . This trivector is also known as
unit pseudoscalar (IE ). It squares to -1 and commutes with all other elements of the
algebra.

A multivector M ∈ G3 is the combination of all these basis elements:

M = a0 + a1e1 + a2e2 + a3e3 + a4e23 + a5e31 + a6e12 + a7e123. (2.15)

The geometrical interpretation of these elements can be seen in figure 2.1. The
outer product of two vectors defines the area of the parallelogram formed by them.
Then, the outer product represents the oriented segment of a plane spanned by these
two vectors (the orientation is represented by the arrows in the figure). In a similar
way, the outer product of three basis elements represents the oriented unit volume
and therefore a segment of the complete space.

Geometrically, the inner and outer products serve as operators that increase or
decrease the grade of a given blade or multivector. While the outer product of two
blades results in a blade of higher grade, the inner product decreases its grade. By
following the definition of equation (2.6), the result of the inner product of the bivec-
tor e1 ∧ e2 with the vector e1 is

e1 · (e1 ∧ e2) = (e1 · e1)e2 − (e1 · e2)e1 = e2.

Since e1 ·e1 = 1 and e1 ·e2 = 0 are scalars, it is clear that the outer product of a vector
with a bivector results in a vector. As can be seen in the example, this operation
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can be interpreted as a ”subtraction” of the subspace spanned by e1 from the space
spanned by e1 ∧ e2.

It has been shown in [92] that the dual operation of a blade defined in equation
(2.12) plays an important roll to construct an algebraic representation of points, lines
and planes based on their geometrical representations. This will be described in the
next sections. Let us consider one of the examples presented in [85] in order to
clarify how the dual works in Euclidean geometric algebra. As described before, the
bivector e2 ∧ e3 describes a plane. By the definition of equation (2.12) and according
to the inner product rules of equations (2.6) and (2.7), it follows that

(e2 ∧ e3)
∗ = (e2 ∧ e3) · I−1

E

= (e2 ∧ e3) · (e3 ∧ e2 ∧ e1)

= e2 · [e3 · (e3 ∧ e2 ∧ e1)]

= e2 · [(e3 · e3)(e2 ∧ e1) − (e3 · e2)(e3 ∧ e1) + (e3 · e1)(e3 ∧ e2)]

= e2 · [e1 ∧ e2]

= e1. (2.16)

It is clear that the vector e1 is the dual element of the plane e2 ∧ e3. On the
other hand, let us remember how to represent a plane in the Euclidean space IR3.
According to the Hessian representation of a plane, it is described by the normal
unit vector of the plane and the distance from the origin to the plane. As can be
seen in the last example, the result of the dual operation provides the normal vector
e1 which is also used by the Hessian representation. The Hessian representation
describes a plane only in IR3. In contrast to that, the bivector or its dual always
describe a plane independent of the dimension of the space they are embedded in.
This simple example gives a hint of how the dual operation can provide an algebraic
element which can be used to represent a geometrical entity. As it will we shown
in the next sections, the dual operator is used to find dual representations of points,
lines and planes which can be embedded from projective to conformal space and
viceversa.

2.2.1 Quaternions

In this section, the ideas presented in [85] to define an isomorphism between quater-
nions and geometric algebras are summarized. In the next chapter, quaternions will
be used as an alternative to model 3D free-form objects as a combination of rotations
in the context of geometric algebras.

Quaternions are a non-commutative extension of the complex numbers. They
are defined by the combination of a scalar with three imaginary components i, j and
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k satisfying the following rules

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j

ij = −ji, jk = −kj, ki = −ik, ijk = −1.
(2.17)

A general quaternion q has the form q = q0+q1i+q2j+q3k with q0, q1, q2, q3 ∈ IR.
A quaternion which does not have a scalar component is called a pure quaternion
p = q1i + q2j + q3k. The complex conjugate of a quaternion q is denoted by q∗ =
q0 − q1i − q2j − q3k. Similar to the complex numbers, a quaternion can be also
expressed in exponential form as

q = r exp(θp̂), (2.18)

where r =
√

qq∗, θ = atan(
√

pp∗

q0

) and p̂ = p√
pp∗ . The exponential representation of a

unit quaternion can be interpreted as a rotation operation. A vector represented by
the pure quaternion a is rotated by the following operation

b = r a r∗, (2.19)

with r = exp
(

1
2
θp̂
)

and p̂ the unit quaternion representing the rotation vector. Then,
the vector a is rotated by an angle θ around the vector represented by p̂.

Since quaternions are formed by a combination of a scalar component and three
imaginary components, an isomorphism can be defined between quaternions IH and
geometric algebra. The key idea of this isomorphism is that bivectors of G3 have the
same properties as the imaginary quaternion units i, j and k. Thus, the imaginary
units can be identified with the following bivectors:

i → e23, j → e12, k → e31. (2.20)

Then, quaternions can be considered as elements of the subalgebra G+
3 ⊂ G3

spanned by the basis vectors:

G+
3 = span{1, e23, e12, e31}. (2.21)

Since the subalgebra G+
3 is isomorphic to the quaternion algebra IH, all properties

of equation (2.17) are valid for the bivectors defining G+
3 . By using the geometric

product, it ha been shown in [85] that the known relations between the imaginary
units are preserved,

ij → (e2e3)(e1e2) = (e3e1) → k , (e3e1)
2 = −1

jk → (e1e2)(e3e1) = (e2e3) → i , (e2e3)
2 = −1

ki → (e3e1)(e2e3) = (e1e2) → j , (e1e2)
2 = −1.

(2.22)
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Let us consider the rotation operation of equation (2.19) with the unit quaternion
p̂ = x1i + x2j + x3k defining the rotation axis. According to the basis identification
of equation (2.20), this unit quaternion can be directly related to the unit bivector
n = x1e23 + x2e12 + x3e31 ∈ G+

3 . Then, the analog rotation operation called ”rotor” of
equation (2.19) can be written as

R = exp

(
−1

2
θn

)
∈ G+

3 . (2.23)

Notice that p̂ represents a rotation vector in IH while n represents a plane in G+
3 .

That means, the rotation is performed around a rotation axis in IH while the same
rotation is performed with respect to a plane in G+

3 .2 Although n and p̂ are different
geometrical entities defined in different algebras, there is a relation between their
parameters. To make this idea clear, the dual operation is applied to the bivector n.
Similar to the example of equation (2.16), the dual of each basis element of n are

(e2e3)
∗ = e1, (e1e2)

∗ = e3, (e3e1)
∗ = e2.

Therefore, the dual n∗ = x1e1 + x2e3 + x3e2 corresponds to the rotation vector repre-
sented by the unit quaternion x1i+x2j+x3k according to the identification of equation
(2.20). If quaternions are used to represent vectors in Euclidean space, each imag-
inary unit i, j and k is identified with the three x , y and z axes respectively. In G3

these axes are denoted by e1, e2 and e3. Notice that the axes e2 and e3 of n∗ are
changed. Then, the corresponding change of axes produces the change of sign in
the rotation of equation (2.23).

One advantage of using rotors over quaternions is that rotors can be defined in
any dimension. While rotations can be only applied to vectors in quaternion algebra
IH, rotations in G+

3 can be applied to blades of any grade e.g. lines and planes.

2.3 Geometric Algebra of Projective Space

Essential for the pose estimation problem is the representation of basic geometric
entities like points, lines, planes as well as their interaction with the image formation
process. This is not possible in Euclidean geometric algebra G3. Therefore, the use
of projective geometry is required.

The projective space IPIRn (with dimension IRn+1\{0} excluding the origin) is de-
fined by all elements X and Y, which form a set of equivalence classes ∼ such that

∀X,Y ∈ IPIRn : X ∼ Y ⇔ ∃λ ∈ IR\{0} : X = λY. (2.24)

2 This fact is the principle for the construction of rotations in geometric algebra that will be ex-
plained in detail in the next sections.



2.3. Geometric Algebra of Projective Space 21

The projective space is illustrated in figure 2.2 for IR2. All the points of the line
defined by X and the origin represent the same point in the projective plane. Thus,
the entire equivalence class is collapsed into a single object, for this example in a
single point. The basis elements of projective space are the orthonormal vectors
{e1, e2, . . .en , en+1}, where the basis vector en+1 is known as homogeneous compo-
nent.

The operators P and P−1 are defined in [85], which denote the transformations
of an element from Euclidean (x ∈ IRn) to projective space (X ∈ IPIRn) and vice versa
as

P(x) = x + en+1 ∈ IPIRn (2.25)

P−1(X) =
1

X · en+1

n∑

i=1

(X · ei)ei ∈ IRn . (2.26)

As can be seen in the last equation, the homogeneous component of X is always
the unity. These transformations are illustrated in figure 2.2.

Then, the Euclidean space IR3 is embedded in projective space IPIR3 by adding
a homogeneous component denoted by e−, with the property that e2

− = −1. The
corresponding geometric algebra of projective space G3,1 is spanned by the following
24 = 16 elements

G3,1 = span{1, e−, e1, e2, e3, e23, e31, e12, e−1, e−2, e−3,

e123, e−23, e−31, e−12, e−123},
(2.27)

with the pseudoscalar IP := e−123 with the property that with e2
−123 = −1.

The outer product is important in the definition of the projective geometric alge-
bra. It has been discussed in [87] that the outer product is used to define the equiva-
lence class of equation (2.24). Since X∧X = 0, it is clear that X∧λX = 0∀λ ∈ IR\{0}.
Hence, all vectors X represent a point A if A ∧X = 0.

2.3.1 Points, Lines and Planes in Projective Geometric Algebra

The idea of representing a point in projective space is shown in the left graphic of
figure 2.2 for IR2. Because of the homogeneous representation of X ∈ IPIR2, all points
along this vector excluding the origin represent the same point x ∈ IR2. A point
x = x1e1 + x2e2 + x3e3 ∈ G3 is represented in projective geometric algebra G3,1 just
by adding the homogeneous coordinate e− as

X = x + e− = x1e1 + x2e2 + x3e3 + e−. (2.28)

The right graphic of figure 2.2 shows the idea of representing lines. Let us consider
two points x1,x2 ∈ IR2 and their respective homogeneous vectors X1,X2 ∈ IPIR2.
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Fig. 2.2: Left: example of the embedding of an Euclidean vector in projective space
and the opposite projection of a homogeneous vector to Euclidean space.
Right: representation of a line in projective space by two homogeneous
vectors.

Then, a plane is spanned by these homogeneous vectors (see [85]). The points that
result from the intersection of this plane with the projective plane define a line in
IPIR2. As can be seen in the figure, this line does not pass through the origin. Finally,
the orthographic projection of the intersection gives a line in IR2.

In order to define lines and planes in projective geometric algebra, the outer
product of points is used as defined [92]. Let us consider the case of a line L ∈ G3,1. It
is obtained by the outer product of two points X1,X2. This operation in the algebra
to obtain a line is summarized as described in [92] as follows

L = X1 ∧X2

= (x1 + e−) ∧ (x2 + e−)

= x1 ∧ x2 + (x1 − x2)e−

= m− re−,

(2.29)

where the parameters m (moment) and r (direction) are same parameters used by
the Plücker representation of a line [15].

Similarly, a plane in projective space is represented by the outer product of three
points X1,X2,X3 ∈ G3,1. This operation is summarized as presented in [92] as fol-
lows

P = X1 ∧ X2 ∧X3

= (x1 + e−) ∧ (x2 + e−) ∧ (x3 + e−)

= x1 ∧ x2 ∧ x3 + (x1 − x2) ∧ (x1 − x3)e−

= dIE + ne−.

(2.30)

with the pseudoscalar of Euclidean space IE = e123.
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Fig. 2.3: Left: coordinate systems involved in the complete camera model. Right:
definition of the image plane according to the normalized camera model.

In this case, the parameters n (normal of the plane) and d ∈ IR (distance to the ori-
gin) are the parameters used in the Hesse representation of planes. In comparison
with the elements of the algebra of Euclidean space G3, algebraic linear represen-
tations are gained from the basic geometrical concept of construction of lines and
planes: two points define a line and three points a plane.

2.3.2 Camera Model in Projective Geometric Algebra

The pinhole camera model defines the perspective projection of spatial points onto
the image plane. More detailed information about the pinhole camera model can
be found in [37]. For a given number of world points and their corresponding im-
age points, the calibration matrix defining the projection is computed. Additionally,
it can be can decomposed in a set of external and internal parameters (known as
complete camera model, see [45]). As shown in figure 2.3, this set of parameters
defines the relation between the different coordinate systems involved in the pro-
jection process: world Ow , camera Oc and image Oim . In the next equations, the
corresponding origin points of these coordinate systems are denoted as Ow , Oc and
Oim respectively. The external parameters are encoded in the matrix Mext which
defines the rigid body motion needed to represent a point in the camera coordinate
system. From this matrix, the location of the optical center of the camera Oc can be
obtained. The internal parameters are defined by the scale factors fku, fkv in the u
and v image axes directions and the coordinates of the principal point in the image
(u0, v0). The principal point is the point where the optical axis intersects the image
plane (note that this point may not necessary be the center of the image). Based on
these parameters, a point Xn ∈ IPIR3 is projected onto the image plane in two steps.
First, it is transformed to the camera coordinate system X′

n = x1e1 + x2e2 + x3e3 + e−
by the rigid body motion Mext . Finally, it is projected onto the image plane by the
internal parameters to the point

Ximg
n =

(
fkux1 + u0

x3

)
e1 +

(
fkux2 + v0

x3

)
e2 + e3 + e− ∈ G3,1. (2.31)
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The camera model is constructed and normalized in such a way, that the image
center intersects the optical axis at the point with coordinates (0, 0, 1) in the camera
coordinate system Oc (notice that its origin point corresponds to (0, 0, e3)). Since the
u and v image axes are parallel to the basis vectors e1 and e2 respectively, the image
plane is spanned in projective space by the points

X1 = αe3 + e− ∈ G3,1

X2 = α(e1 + e3) + e− ∈ G3,1

X3 = α(e2 + e3) + e− ∈ G3,1,

(2.32)

with the factor α ≥ 1 ∈ IR. Notice that the exact position of the image plane can be
found since the internal and external parameters are known.

It is possible to define the perspective projection of equation (2.31) as the result
of intersection of the image plane and a line defined by the point and the optical
center. Then, the image plane is defined according to equation (2.30) by the outer
product of the points X1,X2 and X3 as

Pim = X1 ∧ X2 ∧ X3

= e3 ∧ (e1 + e3) ∧ (e2 + e3) + (e3 − (e1 + e3)) ∧ (e3 − (e2 + e3)) ∧ e−

= −e1 ∧ e2 ∧ e3 + (e1 ∧ e2)e−

= −IE + (e1 ∧ e2)e−. (2.33)

Since the optical center is considered as the origin of the coordinate system, it
has the form Oc = 0 + e− ∈ G3,1. The line defined from the optical center and the
point Xn = xn + e− ∈ G3,1 is computed according to equation (2.29) by

Ln = xn ∧ 0 + (xn − 0)e−

= xne−. (2.34)

According to equation (2.13), the intersection of this line and the image plane is
computed by the meet operation ”∨”

Ximg
n = Ln ∨ Pim

= (Oc ∧Xn) ∨ (X1 ∧ X2 ∧ X3)

= (−IE + (e1 ∧ e2)e−) ∨ (xne−)

= p1e1 + p2e2 + e3 + e−.

(2.35)

To find its corresponding pixel coordinates in the image, the internal camera pa-
rameters are used as it was shown in equation (2.31) to scale the point coordinates
as follows

Ximg
n = (fkup1 + u0)e1 + (fkvp2 + v0)e2 + e3 + e−. (2.36)
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Important for the pose estimation problem is to recover information in IR3 from
information of the image plane. The basic entity that can be recovered is an optical
ray. According to equation (2.29), a line can be represented as the outer product of
two points in projective space. If X ∈ G3,1 is a point in projective space, a line throw
these points can be calculated as the outer product L = Oc∧X. With the scale factors
fku, fkv and the coordinates of the image center (u0, v0), the coordinates of an image
point (u, v) can be re-scaled to get the coordinates of that point in projective space
as follows

X =
u − u0

fku

e1 +
v − v0

fkv

e2 + e3 + e− ∈ G3,1. (2.37)

Then, the optical ray may be directly computed with equation (2.29). Similarly, a
plane can be defined with the optical center and the image points x1 = (u1, v2) and
x2 = (u2, v2). Once that these points have been re-scaled to X1 ∈ G3,1 and X2 ∈ G3,1,
the plane is computed by

P = Oc ∧ X1 ∧X2 ∈ G3,1. (2.38)

2.4 Conformal Geometric Algebra

Several spaces and its associated algebras have been discussed in the last sections. It
has been shown that the projective geometric algebra is useful for the construction
of basic geometrical entities (points, lines and planes) and to define the image for-
mation process. In order to formulate the pose estimation problem, it is necessary
to relate rigid body motions with these entities from an algebraic point of view. Al-
though it is possible to represent rotations as linear operations in Euclidean space,
translations do not have this property. This may be a problem in order to define a
rigid body motion as linear operation in the algebra.3 In order to get a linear repre-
sentation of combined rotations and translations, the dual quaternion algebra [8] has
been used. Despite of that, the duality concept needed to define projective geome-
try can not be applied in this algebra. To overcome these problems, it is necessary
to perform a further geometric embedding. In this section, the embedding process
which is presented in [87] and [85] is introduced.

The Euclidean space is embedded in a higher dimensional space (conformal
space). The resulting conformal geometric algebra (CGA) is a general algebra where
the Euclidean and projective geometric algebras are subsets of it. Additionally, it has
the property of containing an artificially generated null space (constructed from a
Minkowski space [62]). Because of that, it is possible to change between the elements
of the null space and the non-null space. As it will be shown later, this property is
important because it allows to change the representation of elements from projective
to conformal algebra and vice versa.

3 Let be x and y two vectors of G3. A rotation R follows the linearity property R(x + y) = R(x) +
R(y). The translation T(x+y) 6= T(x)+T(y) is not linear. Therefore, their combination is not linear.
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The geometrical embedding of Euclidean space into conformal space is done by
using a special kind of projection called stereographic projection (commonly used
to generate maps). It is called conformal since the projection is done by preserving
the angles between projected curves. The main idea is illustrated in figure 2.4 for
the projection of a one dimensional point, where the vectors {e1, e+} define an or-
thonormal basis. Let us imagine that a ray of light coming from the reference point

Fig. 2.4: Example of a stereographic projection of a 1D point.

e+ incides with the point on the unit sphere X′. Then, its shadow is projected onto
the e1 axis at the point x ∈ IR1. As presented in [87], a point X′ = cos(θ)e1 + sin(θ)e+

is projected onto the axis e1 as

X′ ⇒ x =

(
cos(θ)

1 − sin(θ)

)
e1 + 0e+. (2.39)

The opposite projection of an Euclidean point xe1 onto the unit circle (see [87]) is
performed by the following operation

x ⇒ X′ =
2x

x 2 + 1
e1 +

x 2 − 1

x 2 + 1
e+. (2.40)

Let us notice that the extra basis vector e+ with properties that e2
+ = e2

1 = 1 has
been added as an additional basis vector to the one-dimensional Euclidean space.
A point projected on the point e+ represents the point at infinity. If the point is
projected on −e+, it represents the origin.

In general, the conformal space is denoted by IKn and represents the space IRn+1.
Similar to the homogenization of the Euclidean space, the conformal space is also
homogenized by adding the component e− with negative signature e2

− = −1. That
means, IKn is embedded in projective space PIKn , which is represented by the space
IRn+1,1\{0}. Then, a point X′ = ae1 + be+ is embedded as

P(X′) = ae1 + be+ + e−. (2.41)
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Fig. 2.5: Example of the homogenization of the conformal space by adding the com-
ponent e− (left). Additional null basis of the null cone (right).

This is illustrated in figure 2.5. As can be seen in the figure, the embedded point
lies on a unit circle. A direct consequence that follows from the addition of a ho-
mogeneous component is that the embedded points square to zero ((X′)2 = 0). The
mathematical prove of the last property can be consulted in [85]. Then, all vectors
in PIKn that result from the embedding of a vector in Euclidean space square to zero
and they are called null vectors. For the example presented in this section, the set
of points in PIK1 which satisfy this condition lie on a null cone as it is can be seen
in figure 2.5. That means, only the vectors of the null cone can be projected back
to the Euclidean space and only this vectors have a geometrical meaning back in
Euclidean space.

2.4.1 Definition of the Conformal Geometric Algebra

Once that the concept of orthographic protection has been briefly introduced, the
basis elements of conformal geometric algebra and their main properties are intro-
duced in this section. The conformal vector space derived from IR3 is denoted as IR4,1.
In addition to the basis elements of Euclidean space, the basis elements described in
last section are considered in the algebra. Then, the basis vectors {e1, e2, e3, e+, e−}
span the conformal space IR4,1. Therefore, the corresponding algebra denoted by G4,1

contains 25 = 32 elements.

It has been mentioned before that only the elements of the null cone can be pro-
jected back to Euclidean space. Therefore, two additional basis vectors associated
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with the null cone (see figure 2.5) are defined as

e0 : = 1
2
(e− − e+)

e : = (e− + e+).
(2.42)

Similar to the algebras of Euclidean and Projective spaces, the conformal algebra
has its pseudoscalar element defined by IC = e+−123 = EIE . In this case IE = e123

denotes the pseudoscalar of G3 and E := e ∧ e0 = e+ ∧ e−.

According to the stereographic projection model and after a proper homogeniza-
tion and scaling of the elements (see [87]), points in Euclidean space x ∈ IR3 are
embedded into the null cone as

X = x +
1

2
x2e + e0. (2.43)

The last representation of a point in will be used in this and the next chapters.
Finally, the main mathematical properties of the basis elements in the algebra are
summarized as follows

e2
0 = e2 = 0 e · e0 = −1 E = e+e−

Ee = −e Ee0 = e0 E2 = 1

e+E = e− e−E = e+ e+e = E + 1

e−e = −(E + 1) e ∧ e− = E e+ · e = 1.

(2.44)

2.4.2 Geometric Entities in Conformal Geometric Algebra

It is clear that points are the are the basic geometric entities which can be described
in Euclidean space. In contrast to that, spheres are the basic entities of the conformal
geometric algebra G4,1. In fact, a point in CGA is a degenerate sphere. A detailed in-
troduction about the derivation of basic geometric entities in CGA can be consulted
in [36, 85, 102]. In this section, the basic principle of constructing spheres, points,
lines and planes in CGA is presented.

In this and the next sections, the notation X will be used to denote elements of
G4,1. One of the advantages of using conformal geometric algebras is their ability
to represent geometric entities in a linear and compact way. Let us start with the
case of a sphere. Spheres can not be represented in a compact and linear way in
Euclidean space4. In contrast to that, it has been shown in [87] that a sphere S ∈ G4,1

can be represented in CGA as

S = p +
1

2
(p − p2)e + e0, (2.45)

4 In fact, a sphere in IR3 can be only characterized by the constraint equation (x − p)2 − p2 = 0,
where x ∈ G3 is a point on the sphere and p ∈ G3 is the center of the sphere.
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where p ∈ G3 is the center of the sphere and p ∈ IR, p ≥ 0 is its radius.

If the radius p = 0, the equation is reduced to the point representation of equa-
tion (2.43). That means, a point can be seen as a degenerate sphere. In a similar way,
a plane can eventually be regarded as a sphere with infinite radius. The intersection
of two spheres define a circle, while the intersection of three spheres results in a
point pair.

As it was shown in the examples of sections 2.2 and 2.2.1, dual representations
of certain entities were found which represented interesting geometrical properties.
A similar idea is used in [87] to define dual representations of the entities derived
from spheres in CGA. If A,B,C,D ∈ G4,1 are four points on a sphere, its dual is
defined by the outer product of these points as

S∗ = A ∧B ∧ C ∧D. (2.46)

Similarly, the dual representation of a circle Z∗ ∈ G4,1 is defined by the outer
product of three points

Z∗ = A ∧ B ∧C. (2.47)

As can be seen in the last equations, the dual is used to represent these entities
based on points contained on them. This property is also valid to get dual represen-
tations of points, lines and planes useful for the formulation of the pose estimation
problem. Initially, the dual representation of a point X ∈ G4,1 is constructed with the
point at infinity e (see [36, 102]) as

X∗ = e ∧ X

= e ∧ (x +
1

2
x2e + e0)

= e ∧ x +
1

2
x2e ∧ e + e ∧ e0

= e ∧ x + E = ex + E. (2.48)

A line can be interpreted as a circle passing through the point at infinity e. By
using the dual representation of a circle of equation (2.47), the dual of a line is com-
puted with the points X1,X2 ∈ G4,1 as

L∗ = e ∧X1 ∧ X2

= (e ∧X1) ∧ (x2 +
1

2
x2

2e + e0)

= (e ∧X1) ∧ x2 + (e ∧X1) ∧
1

2
x2

2e + (e ∧X1) ∧ e0

= (e ∧ x1 + E) ∧ x2 + (e ∧ x1 + E) ∧ e0

= e ∧ x1 ∧ x2 + E ∧ x2 − E ∧ x1

= e ∧ x1 ∧ x2 + (x2 − x1) ∧ E

= em + rE, (2.49)
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where the vectors m and r are the moment and direction of the Plücker representa-
tion of lines. This is a similar representation to the representation of lines in projec-
tive space of equation (2.29).

Analog to lines, planes can be defined from the dual representation of spheres
by the outer product of three points and the point at infinity e. By following a
similar procedure as in equation (2.49), the dual of a plane is defined with de points
X1,X2.X3 ∈ G4,1 by

P∗ = e ∧ X1 ∧ X2 ∧X3

= (e ∧ X1 ∧ X2) ∧ (x3 +
1

2
x2

3e + e0)

= e ∧ x1 ∧ x2 ∧ x3 + E(x2 − x1) ∧ (x3 − x1)

= eIEd + En, (2.50)

with IE = e123. Similar to the representation of planes in projective space (equation
(2.30)), the dual of a plane is represented by its Hesse form with the normal n and
the distance to the origin d ∈ IR.

2.4.3 Rigid Body Motions

Other important entities which can be defined in conformal geometric algebra as
linear operations are rigid body motions. To achieve that, the concept of conformal
transformation is used5. This section summarizes the most relevant contributions of
[62, 79, 85, 87], which describe how conformal transformations can be used to define
rigid body motions6.

It has been mentioned before that only elements of the null cone can be related to
elements in Euclidean space. Because of that, it is important that rigid body motions
in CGA can be applied to elements of the null cone. Then, the result may be another
element of the null cone. As can be seen in [87], elements of the null cone have the
property of been invariant under conformal transformations. In consequence, a con-
formal transformation on the null cone has a respective transformation in Euclidean
space.

On the other hand, transformations in G3 can be defined as a combination of
reflections as basic operations as shown in [54]. By following this principle, rotations
can be defined as a combination of reflection operations also in G4,1. This is shown
in figure 2.6 for the 2D case. It is clear that a rotation of the point a with respect to
the plane is exactly the same rotation for its projected point on the sphere a. On the

5 A conformal transformation is defined as the product σX′ = GXG−1, where G is a versor and σ

a scalar. The conformal transformations are: reflections, inversions, rotations, translations, transver-
sions, dilatation and involution operations.

6 Let us remember that rigid body motions correspond to the special Euclidean transformation
group SE (3), which are contained in the group of conformal transformations.
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other hand, the translation of the point a to a′ corresponds to a special rotation of a

to a′ on the unit sphere. That means, rotations are basically the same operations in G3

and G4,1. Since translations can be regarded as special rotations, the combined rigid
body motions (rotation plus rotation) can be described in G4,1 as linear operations.

In a first instance, the construction of a rotor as a combination of reflections is
presented in G3. Then, the combination of rotors and translators are represented in
G4,1 where rigid body motions are defined by twist rotations [79]. An example of

Fig. 2.6: Example of the translation and rotation of a point in the plane and its cor-
responding transformation in the sphere (left). Combination of reflections
to form a rotation (right).

the reflection of a vector is shown in figure 2.6. As it was shown in [85], a vector
a ∈ G3 can be reflected with respect to a reference vector n ∈ G3 by simply applying
the product nan. In fact, rotations are defined as a combination of two consecutive
reflection operations. As can be seen in figure 2.6, the reflection of the vector a with
respect to the vector n followed by a reflection with respect to m results in a rotation
of a with respect to the plane spanned by m ∧ n. Notice that the vector is rotated
by an angle of 2θ, with θ defining the angle between the vectors m and n. Thus, this
rotation can be written as

b = (mn)a(nm). (2.51)

From the definition of the geometric product, it was shown in [85] that the re-
verse of the product (nm)∼ = mn. Then, equation (2.51) can be rewritten as

b = RaR̃, with R := mn, RR̃ = 1. (2.52)

The defined operator R ∈ G3 is called rotor. By expanding this rotor by the
definition of the geometric product, it follows that

R = mn = m · n + m ∧ n
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= cos θ + sin θ(m ∧ n)

= exp (θl) , (2.53)

where l ∈ G3 is a bivector which represents the normalized version of m∧n with the
property that it squares to −1. R represents a clockwise rotation by an angle 2θ with
respect to the pane l. In order to make a counter clockwise rotation of θ degrees and
therefore a mathematically positive rotation, the rotor is written as

R = exp

(
−θ

2
l

)
. (2.54)

In the following, this exponential representation will be used to express rotors in
conformal space. Since the Euclidean space was initially embedded in the conformal
space, it can be seen that the unit bivector l ∈ G3 is contained in G4,1. Therefore, the
rotor R ∈ G3 is also contained in G4,1. Additionally, an operation called translator is
defined as a special rotation acting at infinity by using the point at infinity e. These
basic rotation and translation operations are represented in exponential form by

R = exp

(
−θ

2
l

)
∈ G4,1 (2.55)

T =

(
1 +

et

2

)
= exp

(
et

2

)
∈ G4,1, (2.56)

with the vector t ∈ G3 representing the translation vector.

By combining rotors and translators, rigid body motions are defined as M :=
TR. This operation is called motor and it is defined as the consecutive application of
a rotation followed by a translation. Thus, the rigid body motion of a point X ∈ G4,1

is done by the operation X′ = MXM̃.

It has been proved in [79] that rigid body motions can be defined as a rotation
around a line in space combined by a translation along this line. This is known as
”screw” operation, see figure 2.7. In a first instance, a general rotation of a point
around a line is defined as follows. Initially, the point X ∈ G4,1 is translated by T

with the distance vector between the line and the origin. At this position, a normal
rotation as defined in equation (2.55) is applied. Finally, the point is translated back

to its original position by T̃. This is known as ”twist” operation and it is summa-
rized in the following motor representation

M = TRT̃

=

(
1 +

et

2

)
exp

(
−θ

2
l

)(
1 − et

2

)

= exp

(
−θ

2
(l + e(t · l))

)
. (2.57)
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Once that the rotation around the line has been done, a translation along this line
is performed by applying the translator Tdn, where d represents the amount of the
translation. The complete operation is summarized as follows

Ms = TdnTRT̃

= exp

(
edn

2

)
exp

(
−θ

2
(l + e(t · l))

)

= exp

(
−θ

2

(
l + e(t · l − d

θ
n)

))
. (2.58)

Fig. 2.7: General screw motion defined as a general rotation around a line. It is
shown that the parameters of a general rotation around a line correspond
to the parameters of this line.

One property of the motor representation of equation 2.57 is that the parameters
of the exponential part encode the parameters of a line. A formal prove of this prop-
erty can be seen in [87]. The geometrical interpretation of this property can be seen
in figure 2.7. Let us remember that the dual representation of a line is denoted as
L∗ = em+rE. The rotor R is so defined that the direction vector r of L∗ corresponds
to the dual of the rotation plane l∗. Note that the rotation plane is perpendicular to
the line L∗. If we recall the example of the dual of a bivector presented in section
2.2.1, it can be seen that the parameters of the vector r correspond to that of l∗ and
therefore to the rotation plane defined by the bivector l. On the other hand, the inner
product of the bivector l and the vector t results in a vector contained in the plane l.
It is also perpendicular to the line L∗ and it contains the parameters of the moment
m of the line.

2.5 Pose Estimation in the Language of Geometric Algebra

Until this point, all entities involved in the pose estimation problem were described
(points, lines, planes, rigid body motions and camera model) as well as the different
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spaces and algebras where they are defined. In this section, the interaction between
elements of those spaces needed for the formulation of pose estimation constraints
is presented. This allows to use the advantages of each algebra for each step of
the pose estimation problem. For a set of model points and their corresponding
sensor measurements, the pose is computed by minimizing the average Euclidean
distance between model and extracted image data. In that sense, appropriate ex-
pressions are needed to model such distance measures. Finally, the final constraint
equations are presented for two different pose estimation scenarios shown in figure
2.8. The pose estimation based on 3D minimization constraints was presented in
[92]. In this approach, 3D information is projectively reconstructed from the image
data and compared with model information. The second scenario describes a pro-
jective variant based on 2D minimization constraints in the image plane [2, 4]. In
this case, model points are projected onto the image plane where they are compared
with data extracted from the image. One major difference of this method is that it
integrates the perspective projection geometry (in terms of the camera parameters)
within the minimization task.

Fig. 2.8: Pose estimation constraints for the 3D case (left). Projective variant of the
pose estimation (right).

2.5.1 Change of Representations of Geometric Entities

In this section, the change of representation of geometrical entities (points, lines
and planes) between the different spaces will be presented. Depending of the used
pose estimation strategy, these entities must be changed from projective to confor-
mal space and vice versa. It has been discussed in last sections that the algebras of
Euclidean and projective space are subalgebras of the conformal geometric algebra.
Then, the change of an element from one to the other space is done by applying a
special operator.

First, the interaction of a point x ∈ G3 in Euclidean space with the corresponding
point X ∈ G3,1 in projective space as defined in [62] is described as

x ∈ G3 → x + e− = X ∈ G3,1 (2.59)



2.5. Pose Estimation in the Language of Geometric Algebra 35

X ∈ G3,1 →
(X ∧ e−) · e−

X · e−
= x ∈ G3. (2.60)

By applying an operator called projective conformal extension (defined in [87]),
an entity is changed from projective to conformal representation. According to the
embedding described in section 2.4, this is only valid for entities that are contained
in the null cone. To change the representation of elements Ap ∈ {X,L,P} ∈ G3,1 to
the corresponding dual representations in conformal algebra A∗

c ∈ {X∗,L∗,P∗} ∈
G4,1, the following operation is applied

A∗
c = e ∧ Ap. (2.61)

To make clear how the projective conformal extension operator works, let us
consider the following example for a point X = x + e− ∈ G3,1

X∗ ∈ G4,1 = e ∧ (x + e−)

= e ∧ x + e ∧ e−

= ex + E,

(2.62)

which corresponds to the dual representation of a point of equation (2.48). The same
operation is valid for lines L ∈ G3,1 and planes P ∈ G3,1

e ∧ L = e ∧ (e−r + m) = Er + em = L∗ ∈ G4,1

e ∧P = e ∧ (e−n + dIE ) = En + edIE = P∗ ∈ G4,1.
(2.63)

It can be clearly seen in the last equations that the parameters of points, lines
and planes defined in the projective space (equations (2.28), (2.29) and (2.30) respec-
tively) are preserved in the dual representation in conformal space. Only the basis
vectors were changed by the projective conformal extension operators.

The opposite operation is done by applying the conformal projective split (de-
fined in [87]). An element A∗

c ∈ {X∗,L∗,P∗} ∈ G4,1 is changed to its projective
representation Ap ∈ {X,L,P} ∈ G3,1 by applying

Ap = e+ · Ac. (2.64)

The following example makes this clear. According to equation (2.6) and the
properties of the basis vectors in CGA of equation (2.44), the inner product of a
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point X∗ = ex + E ∈ G4,1 with e+ is computed as

e+ ·X∗ = e+ · (ex + E)

= e+ · ex + e+ · E
= x + e+ · (e0 ∧ e−)

= x + (e+ · e0)e− − (e+ · e−)e0

= x + e− ∈ G3,1.

(2.65)

2.5.2 Incidence Equations

Constraint equations to model incidence of entities in the framework of the dual-
quaternion algebra were developed by W. Blaschke [15]. In [93], the commutator ×
and anti-commutator × products (see section 2.1.1) are used to express collinearity
and coplanarity of points, lines an planes. One advantage of this formulation is that
Euclidean distance measures can be expressed and computed without adding extra
non-linear operators. In consequence, the final constraint equations are also linear.

As an illustrative example7, let us consider the case of two points X1 = ex1 + E

and X2 = ex2 + E. Their commutator product is given by

X1×X2 = 1
2
(X1X2 − X2X1)

= 1
2
((ex1 + E)(ex2 + E) − (ex2 + E)(ex1 + E))

= 1
2
((ex1ex2 + ex1E + Eex2 + E2) − (ex2ex1 + ex2E + Eex1 + E2))

= 1
2
(−x1e + ex1 − ex2 + x2e)

= (x2 − x1)e.

(2.66)

It is clear that the product X1×X2 will be zero when the two points are the same.
Otherwise, the magnitude of vector x2 −x1 gives the distance between these points.

The point-line and point-plane incidence equations defined in [93] are summa-
rized as follows. A point X = E+ex ∈ G4,1 is collinear with a line L = Er+em ∈ G4,1

if the following constraint is satisfied

0 = X × L = −(m − x×r)e. (2.67)

To make clear the geometrical meaning of the expression m−x×r, it is necessary
to remember again the Plücker representation of a line [15]. The moment m of a line

7 Note that only dual representations of points, lines and planes will be used for the next formula-
tions. The *-sign will be omitted to simplify the notation.
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is computed by the outer product of its direction vector r with any point x′ on the
line. If the point x belongs to the line, it is clear to see that the result of the product
will be the same moment m and the difference will become zero. Otherwise, the
magnitude of the resulting bivector m − x×r will describe the distance from the
point x to the line.

Similarly, a point X = ex + E ∈ G4,1 is coplanar to a plane P = En + edIE ∈ G4,1

if

0 = X × P = (dIE − (x×n))e. (2.68)

The anti-commutator product of the normal n and the vector x results in a trivec-
tor d ′IE which represents the orthogonal projection of x onto n. The factor d ′ is the
distance form the origin to the projected point along the normal n. If x belongs to
the plane, then d = d ′. Otherwise, the difference d −d ′ is the distance from the point
x to the plane.

Since e2 = 0, the products X×L and X×P are elements of the null cone. As it
was described in the last sections, if an element is contained in the null cone, it also
has a geometrical meaning in the Euclidean space. Thus, these incidence equations
are changed to projective space by applying the conformal projective split. By fol-
lowing the definition of projective space (see equation (2.24)), a scaling parameter is
applied to express a distance measure in Euclidean space. The complete operation
is summarized as follows

−(m − x×r)e · e+ = m − x×r → λlm− x×(λlr)

dIE − (x×n)e · e+ = dIE − (x×n) → λpdIE − x×(λpn),
(2.69)

with λl = 1
‖r‖ ∈ IR and λp = 1

‖n‖ ∈ IR.

2.5.3 Pose Estimation Constraints

Once that the interaction between spaces and the incidence equations have been
presented, the pose estimation constraints can be constructed. For both pose esti-
mation constraints described in this section, the initial position of the model points
and the complete camera model are assumed to be known. The pose estimation
scenario for the 3D point-line minimization constraint is shown in figure 2.8. The
aim is to compute the unknown motor M ∈ G4,1 that transforms the model point
X ∈ G4,1 to its actual position X′ ∈ G4,1 by minimizing the distance from that point
to the reconstructed line L ∈ G4,1.

From its initial position, the model point is rotated and translated by the un-
known motor M ∈ G4,1 by the operation

X′ = M X M̃. (2.70)
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In this position, an image is acquired and the corresponding feature point Ximg ∈
G3,1 is extracted. Then, the optical ray Lx ∈ G3,1 is computed with the optical center
Oc ∈ G3,1 by

Lx = Oc ∧ Ximg . (2.71)

Since this line is defined in G3,1, the projective conformal extension operator e∧
(see equation (2.61)) must be applied to transform it to G4,1. Once that the line is
transformed, the commutator product is applied to express the collinearity of the
translated point and the reconstructed line as

X′ × Lx = (M X M̃) × e ∧ (Oc ∧ Ximg). (2.72)

In order to get the complete constraint equation and the distance measurement
back to Euclidean space, it is first multiplied by the conformal projective split oper-
ator e+ and then scaled with the factor λ ∈ IR (see equations (2.64) and (2.69)). Then,
the final point-line constraint equation as defined in [87] has the form

λ
((

M X M̃
)

× e ∧
(
Oc ∧ Ximg

))
· e+ = 0. (2.73)

It is also possible to define point-plane and line-plane constraint equations, see
[87]. In those cases, the optical rays are replaced by 3D planes reconstructed from
the image plane. If the object model is defined by a set of 3D lines, the equation is
known as line-plane constraint. Once that each line is transformed by the operation,

MLM̃, the commutator product with the reconstructed plane is computed and the
pose constraint is obtained as described before.

The second pose estimation strategy is also shown in figure 2.8. Instead of mini-
mizing the Euclidean distance in 3D space, the problem is translated onto the image
plane. The unknown pose parameters are computed by minimizing the Euclidean
distance between detected feature image points and projected model points. As it
was described in section 2.3.2, the projection of world points onto the image plane
is done by the meet operation in G3,1. If a complete camera model is used, the image
plane Pimg ∈ G3,1 is defined according to equation (2.33).

Similar to the first strategy, the model point X ∈ G4,1 is translated by the un-
known motor M ∈ G4,1 to its actual position X′ ∈ G4,1. At this position, the line
between this point and the optical center is computed by

L = Oc ∧ (M X M̃) · e+. (2.74)

Note that the operator e+ is applied to transform the translated point to projec-
tive space. Then, the projection of the point is computed as the intersection of the
image plane and the line (see equation (2.35)) as

Xp = Pimg ∨ (Oc ∧X′) = Pimg ∨
(
Oc ∧ (MXM̃) · e+

)
. (2.75)
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Finally, the constraint equation in the image plane is defined by expressing the
distance between the extracted image point and the projected model point,

0 =
{
Ximg − Xp

}
λ

=
{
Ximg − [Pimg ∨ (Oc ∧X′)]

}
λ

=

{
Ximg −

[
Pimg ∨

(
Oc ∧ (MXM̃) · e+

)]}
λ. (2.76)

In this case, only the rigid body motion of the model point is defined in G4,1.
The projection of the transformed point and the distance measure are modeled in
projective space. Thus, it is not necessary to apply the commutator product to ex-
press incidence for this particular case. If needed, a point-line constraint can be
constructed by expressing point-line collinearity in the image plane. Despite of that,
only the 3D point-line constraint defined in equation (2.73) and the minimization
constraint of equation (2.76) in the image plane are considered in the experimental
part of this work.

2.5.4 Linearization of the Pose Parameters

Until now, the equations of both pose minimizations constraints were described. All
parameters (object model, camera model and extracted image features) are known,
while the unknown motor M containing the motion parameters has to be found.
Since the motor is expressed by its exponential representation, its pose parameters
are also encoded in an exponential function. According to the Taylor series power
expansion of the exponential function8, the pose parameters are part of the non-
linear polynomial. In this case, the numerical computation of the pose parameters
by a standard method may be difficult and time consuming.

As mentioned in the last sections, all the operations involved in the pose es-
timation constraints are described as linear operators. Therefore, the unknown
motor must be also represented or approximated in a linear way to facilitate the
computation of the pose parameters. It has been shown in [93], that linear equa-
tions are found with respect to the generators of the motor. If the motor M =
exp

(
−θ

2
(l + em)

)
is approximated by its Taylor series power expansion the follow-

ing expression is obtained:

M = 1 − θ
2
(l + em) +

(− θ

2
(l+em))2

2!
+

(− θ

2
(l+em))3

3!
+ · · · (2.77)

The idea is to use only the first order approximation of the last equation to ap-
proximate the motor (first two terms of last equation). Then, the rigid body motion

8 The Taylor series power expansion of the exponential function is defined as: exp(x) =∑
∞

n=0

1

n!
xn = 1 + x + x

2

2!
+ x

3

3!
+ · · ·
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of a point X is approximated in the following way

MXM̃ ≈
(
1 − θ

2
(l + em)

)
(ex + E)

(
1 + θ

2
(l + em)

)

≈ E + e(x − θ(l · x) − θm),
(2.78)

It has been discussed in [93] that the last approximation implies a mapping of
the global rigid body transformation to its generator elements. Therefore, the search
of the unknown motion parameters is not done with respect to the Lie group SE(3)
but with respect to the Lie algebra se(3).

The approximation of equation (2.78) can be directly used in any of the con-
straints equations described in last section. For example, if L ∈ G3,1 is a recon-
structed line from the image plane, the constraint takes the form

λ (( E + e(x − l′ · x − m′) ) × e ∧ L) · e+ = 0, (2.79)

where l′ := θl and m′ := θm. The unknown motion parameters l′,m′ and therefore
the complete constraint equation is linear as result of the approximation. For a given
set of point-line correspondences, this linear equation can be solved for the motion
parameters by applying any standard numeric approach like Householder or QR
decomposition methods [47]. Finally, the respective motor M can be evaluated by
applying the Rodriguez formula [79].

This kind of approximation is known as gradient decent method. A detailed
analysis of the convergence of this method and a comparison with other approaches
are presented in [87]. Roughly speaking, the pose parameters are found in an itera-
tive process, where the computed pose changes incrementally until it converges by
fulfilling a given criterion.

2.6 Summary

An introduction to geometric algebras has been presented in this chapter. Once
that the geometric algebra of Euclidean space was defined, its relation with other
algebras was shown. Then, it was shown that the Euclidean space IR3 is embedded in
projective space IPIR3 resulting on the algebra of projective space G3,1. In this algebra,
the image formation process and basic geometric entities (points, lines and planes)
are defined. A stereographic projection is used to perform a second embedding to
define the conformal geometric algebra G4,1. This allows to represent rigid body
motions as linear multiplicative operations. In this algebra, additional operators
to define the interaction between elements of projective and conformal space are
defined. Finally, all these concepts are combined to define the 3D and projective
pose estimation constraints.

Based on the subspace structure of geometric algebra, the interaction of entities
in Euclidean, projective and conformal spaces is described in a very natural way.
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In comparison with the classical vector algebra, geometrical entities defined in dif-
ferent spaces are unified in geometric algebra. This allows to model the described
strategies to solve the pose estimation estimation problem and to obtain linear re-
lations which can be easily implemented in practice. The presented definitions and
properties of the different elements serve as background for the definition of the
global and local model representations of free-form models presented in the next
chapter.



42 Chapter 2. Pose Estimation in the Language of Geometric Algebra



Chapter 3

GLOBAL AND LOCAL REPRESENTATION

OF CONTOURS AND SURFACES

The mathematical framework of the pose estimation problem in CGA has been in-
troduced in the last chapter for cases where the model is represented by a set of
points or lines. The next step is to extend the pose estimation constraints for ex-
tended model objects like circles, ellipses, spheres, free-form contours and surfaces.
Therefore, suitable representations in CGA of those entities are needed. To achieve
that, the properties of twist rotations are used. In that context, the relation be-
tween curves generated from combinations of twists rotations and Fourier descrip-
tors have been proposed by Rosenhahn et al., see [89, 90, 91]. The properties of
the Fourier transform have been used to find a mathematical equivalence between
Fourier descriptors and twist rotations. This leads to a global twist-based represen-
tation of model objects. For the case of free-form models, the Fourier transform is
applied to the parametric representation of free-form contours and surfaces to ob-
tain their corresponding Fourier descriptors. For practical applications, this allows
to obtain low-frequency approximations of models used during the iterative process
to avoid the local minimum problem.

The idea of twist rotations is essential to define the pose estimation of free-form
models from a geometrical and mathematical point of view. On the other hand, it
will serve as a basis to define the local representation of such entities. Because of
that, the first part of this chapter focuses on describing the relationship between
twist rotations and free-form models. Initially, a brief introduction of the basic defi-
nitions and properties of free-form models is presented in this chapter. Then, Rosen-
hahn’s idea of using twist rotations to represent extended model objects and free-
form contours and surfaces is introduced. It will be shown that twist representa-
tions of free-forms contours and surfaces can be also obtained from quaternion and
real-valued Hartley transforms, which have some advantages for practical imple-
mentations of the algorithms. Once that free-form models are represented in CGA,
the combination of the pose estimation constraints with the twist representation of
free-form models is described. With a practical example of the pose estimation of a
free-form contour model, the effect of using low-frequency approximations during
the iterative process is analyzed. One disadvantage of using low-frequency approx-
imations is that the local structure of contour and surface models is lost during the
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first iterations.

Let us remember that the aim of the approaches presented in this work is to com-
bine global and local information to improve the pose estimation problem. Because
of that, a new local representation of free-form objects in CGA is proposed in this
chapter. The twist rotation concept is used to locally approximate the vicinity of con-
tour and surface points. Since segments of contours and surfaces are represented by
the action of concatenated twist rotations over a starting point, this local represen-
tation is compatible with the pose estimation constraints in CGA. Furthermore, it
allows to extract local information which complements the global information ob-
tained from the twist-based global representations.

3.1 Definition and Properties of Free-Form Model Objects

Computer models of free-form objects have been used in a wide range of applica-
tions including computer graphics, visualization, robotics and computer vision. In
this section, a general overview of the definition and properties of free-form objects
is given. Then, examples of parametric contours and surfaces are presented since
they will be used to get the twist representation presented in the next sections.

Several authors have defined free-form objects in similar ways. Campbell defines
in [24] a free-form object as a composition of one or more nonplanar, nonquadric sur-
faces.1 According to Besl [12], a free-form surface has a well defined surface normal
which is continuous in almost every point of the surface except at vertices, edge and
peak points. The choice of a specific kind of model depends on its specific prop-
erties and the application context where it will be applied. Ambiguity, conciseness
and uniqueness are the main properties of free-form object representation defined
by Brown [18]. Ambiguity refers to the ability of the model to represent the complete
object. A model representation is said to be concise if an object is compactly and effi-
ciently described by a given model. Uniqueness is used to determine if there is more
than one way to represent the same object given the construction methods of this
particular representation. Some computer graphics applications require complete
models to generate realistic synthetic images of the represented objects. In contrast
to that, an efficient execution of the application is more important for computer vi-
sion applications like navigation, recognition or tracking. Therefore, visual fidelity
may be sacrificed in those cases. In the context of the monocular pose estimation
problem, object models may be represented in 3D space and in the image plane. Be-
cause of that, the choice of a given model must also consider adequate techniques
for extracting compatible global and local features from objects and input images.

In the following, a description of parametric representations of contours and sur-
faces is given which are later used to get a twist representation of those entities. The

1 Roughly speaking, a quadric surface is a surface defined as the locus or zeros of a quadratic
polynomial.
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simplest and more natural way to describe a 3D free-form contour or surface is by
a set of chained points or by a set of parametrical functions (one function for every
coordinate axis, see [112]). This representation is also known as CAD (computer
aided design) model and is widely used in computer graphics and computer vision
applications.

Thus, 3D contours and surfaces are represented by

c(φ) =
3∑

i=1

f i(φ)ei (3.1)

c(φ1, φ2) =
3∑

i=1

f i(φ1, φ2)ei. (3.2)

A 3D contour is generated by a set of three functions f i(φ) : IR → IR, while a
surface is defined by three functions f i(φ1, φ2) : IR2 → IR acting on the different basis
vectors ei . This corresponds to 1D and 2D manifolds embedded in 3D respectively.
This reduction of the domain where the model is defined has some advantages for
feature computation procedures. Instead of computing features directly in 3D space
(which in some cases is not straight forward), a larger variety of standard mathe-
matical tools can be directly applied for the analysis of parametrical functions. For
example, 1D and 2D Fourier transforms can be used to get spectral representations
of contours and surfaces as it will be shown later. An example of a 3D surface and
its corresponding parametric functions is shown in figure 3.1. More complex objects
can be represented by the combination of several surface models.

Note that the model of figure 3.1 is considered to be a simplified model since it
does not cover all surfaces of the object. Despite of that, the model is constructed
in such a way that it is possible to represent all edges of the original object. Then,
it is possible to generate adequate artificial images for any arbitrary pose where the
projected model edges represent the projected edges of the original object. As it was
explained before, this is the key point to extract compatible image and model fea-
tures derived from edge and contour information. On the other hand, this reduced
model is also suitable for visualization purposes and for the experimental validation
of the proposed correspondence search approaches for pose estimation presented in
the next chapters.

3.2 Coupled Twist Rotations as basic Contour and Surface

Generators

The representation of points, lines and planes was discussed in the last chapter as
elements of conformal geometric algebra (CGA). These elements were also used to
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Fig. 3.1: Surface model (upper left) and its corresponding parametric functions.

define the pose estimation constraints in 3D and in the image plane. Those con-
straints were defined for cases where the model object is defined by a set of points
or eventually lines. It is also possible to define the pose estimation constraints for
extended object concepts like circles, ellipses and spheres. Then, suitable represen-
tations of these entities must be found in CGA in order to incorporate them in the
pose equations. To achieve that, twist rotations are used in [93] as basic contour
and surface generator elements to define these extended objects. In this section, the
principles for the construction of curves and surfaces by coupled twist rotations are
briefly introduced.

In order to generate a circle, a twist rotation and a starting point are needed.
The idea is shown in figure 3.2. The twist rotation is defined with respect to the
rotation axis Lφ. Let us remember that the parameters of the dual representation of
a line Lφ = em + rE correspond to the parameters of a rotation around this line, see
section 2.4.3 and [87]. Then, the motor which performs a rotation around this line
can be directly derived by

Mφ = exp

(
−φ

2
(LφIc)

)

=

(
−φ

2
(r′ + em′)

)
, (3.3)

with Ic = EIE = (e+e−)e1e2e3.

The circle is defined by the orbit of the initial point Xp resulting from the action
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Fig. 3.2: A circle generated by a single twist rotation and a starting point (left). Two
coupled rotations with perpendicular rotation axes to generate a sphere
(middle). Example of an ellipse generated by two couples twist rotations
(right).

of a single motor. All points of the circle are simply generated as follows:

X′
p = MφXpM̃φ : φ ∈ [0, . . . , 2π]. (3.4)

A sphere is defined by two coupled twists with perpendicular rotation axes as
can be seen in figure 3.2. The corresponding motors with respect to each rotation
axes have the form

Mφ = exp

(
φ

2
(r′φ + em′

φ)

)
(3.5)

Mθ = exp

(
θ

2
(r′θ + em′

θ)

)
. (3.6)

An example of a generated sphere is shown in figure 3.3. The points on the
sphere result from the action of these motors by

X′
p = MθMφXpM̃φM̃θ : φ ∈ [0, . . . , 2π], θ ∈ [0, . . . , 2π]. (3.7)

A sphere is the basic element which can be constructed by the action of two
twist rotations. More general curves and surfaces can be generated by coupling two
or three twist rotations in a proper way. Those curves are commonly known as cy-
cloidal curves. Roughly speaking, cycloidal curves are generated from circles rolling
on circles or lines. In fact, an ellipse is an example of a cycloidal curve generated by
two coupled twists. Several examples of such curves can be consulted in [68]. Ac-
cording to that, the idea for the construction of an ellipse is shown in figure 3.2. In
this case, two twist rotations with parallel rotation axes are coupled to generate the
ellipse. While the rotation axis of M1 is fixed, M2 is rotated by M1. The initial point
Xp is first rotated by an angle of −2φ around M2 and then by φ around M1.
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In general, a curve generated by two coupled twists (with parallel rotation axes)
is defined as:

X′
p = M2

λ2φM
1
λ1φXpM̃

1
λ1φM̃

2
λ2φ : λ1, λ2 ∈ IR, φ ∈ [0, . . . , 2π], (3.8)

where the scalars λ1, λ2 define the ratio of angular frequencies between the twist
and the initial point Xp . Several examples are shown in figure 3.3. Ellipses are
generated if λ1 = −2 and λ2 = 1. If λ1 = λ2 = 1, the resulting curve is a cardioid and
λ1 = 2, λ2 = 1 leads to nephroids among others.

Finally, a third twist rotation perpendicular to the plane in which the curve is de-
fined is added. This results in a 3D surface generated by the following combination
of twists:

Xφ1,φ2

p = M3
λ3φ2

M2
λ2φ1

M1
λ1φ1

XpM̃
1
λ1φ1

M̃2
λ2φ1

M̃3
λ3φ2

, (3.9)

with λ1, λ2, λ3 ∈ IR and φ1, φ2 ∈ [0, . . . , 2π]. In this case, the surface is parameterized
by two rotation angles which correspond to a parametrical representation of a sur-
face as described in section 3.1. The combination of the motors M1

λ1φ1
,M2

λ2φ1
defines

the corresponding contour in the plane. The resulting surface is generated by the
action of the motor M3

λ3φ2
for all angles φ2. Examples of a 3D sphere, an ellipsoid

and a hypocycloid are shown in figure 3.3.
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Fig. 3.3: Example of twist generated curves and surfaces.

A large variety of contours and surfaces can be modeled by the combination of a
relatively small number of twist rotations. Complex models can be represented by
the combination of lines, planes, circles, spheres, etc., where each element must be
constructed separately. Despite of that, the representation of models is still limited
to objects which can be described by the combination of these geometric entities. In
fact, cycloidal curves and surfaces are the intermediate stage for the representation
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of 3D free-from contours and surfaces in CGA which are introduced in the next
section.

3.3 Twist based Free-form Model Representations

The modeling of a curve or surface by a set of coupled twists was described in the
last section. The next step is to find the combination of twist rotations needed to
approximate a general 3D curve or surface. This problem is related to Fourier de-
scriptors which are widely used for object recognition applications, see [5, 97, 109].
It has been proved that a set of coupled twists modeling general rotations is equiv-
alent to a sum over a set of rotors which act on different phase vectors. This can
be interpreted as a Fourier series expansion which leads to a trigonometric inter-
polation of a set of contour points. Therefore, Fourier descriptors can be used to
model 3D contours and surfaces within the context of the pose estimation problem
in conformal geometric algebra.

In this section, the coupling of twist rotations and Fourier descriptors is intro-
duced to describe 3D free-form contours and surfaces. Then, alternative variants to
find suitable twist model representations based on the quaternion Fourier transform
and the real-valued Hartley transform in 3D and in the image plane are presented.
It will be shown that these variants are mathematically consistent with the concept
of twist generated curves. On the other hand, the real-valued Hartley transform in
the image plane can be used to obtain global orientation information of projected
contour and silhouette models. The reader should refer to [89, 90, 91] to get a more
detailed introduction to the concepts presented in this section.

3.3.1 Free-form 3D Contours

Let us consider the case of a planar 2D curve to recall the definition of the Fourier
series expansion. For a parametric representation of a closed curve f(t) ∈ IR2, its
Fourier series representation is defined as:

f(t) =
1

M

u=∞∑

u=−∞
F(u) exp

(
2πiut

M

)
, (3.10)

where F(u) are the Fourier coefficients, u ∈ Z the frequency, i the imaginary unit,
with i2 = −1, and M the length of the curve. The idea is to find a relation between
this Fourier representation and a twist generated curve. In a first instance, the case of
a curve generated by two coupled twists is considered. According to equation (3.8),

a curve generated by two twist rotations is defined as Xφ
p = M2

λ2φM
1
λ1φXpM̃

1
λ1φM̃

2
λ2φ.

Since equation (3.10) is only valid in Euclidean space, the curve is initially repre-
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sented in Euclidean space2 as

xφ
p = R2

λ2φ

(
(R1

λ1φ(xc − t1)R̃
1
λ1φ + t1) − t2

)
R̃2

λ2φ + t2. (3.11)

After some algebra and reordering of the terms, the last equation can be rewritten
as

xφ
p = p0 + V1

λ1φp1Ṽ
1
λ1φ + V2

λ2φp2Ṽ
2
λ2φ, (3.12)

with p0 = t2, p1 = t1 − t2, p2 = xc − t1, V1
λ1φ = R2

λ2φ, V2
λ2φ = R2

λ2φR
1
λ1φ and

λi = 2πui/M .

If a vector x lies in the rotation plane of a rotor, the relation Rx = xR̃ is valid
(see [90]). The square of a rotor is equal to a rotor of twice the angle if both rotors are

defined in the same rotation plane, then Ṽi
φṼ

i
φ = Ṽi

2φ. Based on the last properties,
the curve can be rewritten by expressing the rotors in their exponential form

xφ
p = p0 + p1Ṽ

1
2φ + p2Ṽ

2
2φ

= p0 + p1 exp

(
2πu1φ

M
l

)
+ p2 exp

(
2πu2φ

M
l

)
. (3.13)

This representation of a curve is equivalent to the Fourier series expansion of
equation (3.10). The imaginary unit has been replaced by the unit bivector l rep-
resenting the rotation plane and the Fourier coefficients by the phase vectors pi

which are also defined in the plane. If we express every exponential function as
Rk ,φ = exp

(
2πkφ
M

l
)
, any closed plane curve c(φ) can be expressed as a series expan-

sion

c(φ) = lim
n→∞

n∑

k=−n

pk exp

(
2πkφ

M
l

)
= lim

n→∞

n∑

k=−n

Rk ,φpkR̃k ,φ. (3.14)

According to the last equation, there is a unique set of phase vectors {p0, . . . ,pk}
that describe the curve. In [90], they are also called Fourier descriptors of a closed
curve. The set of phase vectors are generator elements of the curve, since it is de-
scribed as the combination of twist rotations acting on them.

Let us remember that the last procedure is only valid for planar curves. For the
case of a general non-planar curve in 3D space, the phase vectors are computed
separately for each signal f i(φ) of the parametrical representation of a contour of
equation (3.1). This is equivalent to project the 3D curve onto each plane defined by
e12, e23 and e31 respectively. On the other hand, discrete curves representing object
models or image extracted contours are used for practical applications. If a finite

2 The motor M1

λ1φ represents a general rotation defined by a translation of the point xc by the

vector −t1 followed by a rotation R1
λ1φ and finally a translation t1.
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number of twists are considered, the Fourier series expansion becomes the inverse
discrete Fourier transform. Then, every parametric function f i(φ) is approximated
as

f i(φ) =
N∑

k=−N

pi
k exp

(
2πkφ

2N + 1
li

)
, (3.15)

where the phase vectors are computed by the discrete Fourier transform as

pi
k =

1

2n + 1

N∑

j=−N

f i(j ) exp

(
− 2πkj

2N + 1
li

)
. (3.16)

This leads to the following representation of a general 3D curve

c(φ) =
3∑

i=1

N∑

k=−N

pi
k exp

(
2πkφ

2N + 1
li

)
ei

=

3∑

i=1

(
N∑

k=−N

Ri
k ,φpkR̃

i
k ,φ

)
ei . (3.17)

where l1 = e12, l2 = e23 and l3 = e31.

3.3.2 Free-form 3D Surfaces

Similar to the case of 3D contours, the parametric representation of a surface intro-
duced in equation (3.1) is used to get the corresponding Fourier descriptors. Then,
a parametric surface is defined by three functions f i(φ1, φ2) : IR2 → IR over each
base vector ei . Each function f i is orthogonal to one of the planes spanned by the
bivectors e12, e23 and e31. Thus, the 2D discrete Fourier transform can be applied to
each function f i(φ1, φ2) to compute the phase vectors as follows

pi
k1,k2

=
1

(2N1 + 1)(2N2 + 1)
N1∑

n1=−N1

N2∑

n2=−N2

f i(n1, n2)exp

(
− 2πk1n1

2N1 + 1
li

)
exp

(
− 2πk2n2

2N2 + 1
li

)
, (3.18)

where the imaginary unit has been replaced by three different rotation planes de-
fined by the bivectors li , with the property l2i = −1. The Fourier descriptors of each
parametric function are contained in the phase vectors pi

k1 ,k2
which lie on the plane

spanned by li .
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Once that the Fourier descriptors are known, the surface can be approximated as
a series expansion as

c(φ1, φ2) =

3∑

i=1

(
N1∑

k1=−N1

N2∑

k2=−N2

pi
k1,k2

exp

(
2πk1φ1

2N1 + 1
li

)
exp

(
2πk2φ2

2N2 + 1
li

))
ei

=

3∑

i=1

(
N1∑

k1=−N1

N2∑

k2=−N2

R
1,i
k1,φ1

R
2,i
k2,φ2

pi
k1 ,k2

R̃
2,i
k2,φ2

R̃
1,i
k1,φ1

)
ei . (3.19)

Each parametric function is defined with the phase vectors as generator elements
under the concatenated action of the twists rotations R

1,i
k1,φ1

and R
2,i
k2,φ2

.

3.3.3 Quaternion Fourier Descriptors for 3D Contours and

Surfaces

The quaternion Fourier transform (QFT) has been used for image processing appli-
cations including spectral analysis of color images, see [96]. In this case, each of
the three components of the image (RGB) are encoded in a pure quaternion element
and the 2D quaternion Fourier transform is applied. Since 3D contours and sur-
faces are represented by a set of three parametric functions, the discrete QFT can
be also applied to them [7]. Furthermore, the relation between Quaternion Fourier
transform and Clifford algebras has been studied in [56]. Since the quaternion al-
gebra is isomorphic to the rotor subalgebra G+

3 ∈ G3, the QFT also delivers a twist
representation of contours and surfaces.

In a first instance, let us consider the case of 3D contours. According to the ap-
proach presented in [7], the parametric functions must be arranged in a pure quater-
nion function as: fφ1

= f 1(φ1)i + f 2(φ1)j + f 3(φ1)k. In [96], the discrete quaternion
Fourier transform of fφ1

has been defined by

qk1
=

1

N1

N1∑

n1=−N1

fn1
exp

(
−2πk1n1

N1
h̄

)
, (3.20)

where h̄ is a unit pure quaternion with h̄2 = −1. In section 2.2.1, the imaginary
quaternion units were identified with the following bivectors i → e23, j → e12 and
k → e31, with e23, e12, e31 ∈ G3. The equivalent operation in G+

3 ∈ G3 can be done if
the pure quaternion containing the parametric functions is rewritten as

fφ1
= f 1(φ1)e23 + f 2(φ1)e12 + f 3(φ1)e31.

Similarly, the pure unitary quaternion is replaced with the bivector h = e23 +
e12 + e31, with h̄ = h/‖h‖, representing the rotation plane. Instead of computing
three separate sets of phase vectors (one for each projection of the curve onto the
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plane eij ), only one set of quaternion phase vectors is computed. Furthermore, the
obtained quaternion phase vectors represent 3D generator elements of the curve
which are not necessarily defined in the rotation plane h̄. Once that the quaternion
phase vectors are known, the contour is approximated as series expansion by

c(φ1) =

N1∑

k1=−N1

qk1
exp

(
2πk1φ1

N1
h̄

)

=

N1∑

k1=−N1

Rk1,φ1
qk1

R̃k1,φ1

= f 1(φ1)e23 + f 2(φ1)e12 + f 3(φ1)e31. (3.21)

This twist representation can be considered to be more general than the one ob-
tained from the Fourier transform. In contrast to equation (3.17), the twist rotation
Rk1,φ1

is defined with respect to the general plane h̄ in 3D instead of each plane eij .
Then, the action of this rotation over the 3D phase vectors approximates the curve
directly in 3D.

In order to apply the quaternion Fourier transform to 3D surfaces, each 2D para-
metric function is arranged in a pure quaternion as

fφ1,φ2
= f 1(φ1, φ2)e23 + f 2(φ1, φ2)e31 + f 3(φ1, φ2)e12.

Then, the quaternion phase vectors are computed by applying a 2D discrete quater-
nion Fourier transform as

qk1,k2
=

1

N1N2

N1∑

n1=−N1

N2∑

n2=−N2

fn1,n2
exp

(
−2πk1n1

N1
h̄

)
exp

(
−2πk2n2

N2
h̄

)
. (3.22)

Finally, the surface is approximated as a series expansion

c(φ1, φ2) =

N1∑

k1=−N1

N2∑

k2=−N2

qk1,k2
exp

(
2πk1φ1

N1
h̄

)
exp

(
2πk2φ2

N2
h̄

)

=

N1∑

k1=−N1

N2∑

k2=−N2

R1
k1,φ1

R2
k2,φ2

qk1,k2
R̃2

k2,φ2
R̃1

k1,φ1

= f 1(φ1, φ2)e23 + f 2(φ1, φ2)e12 + f 3(φ1, φ2)e31. (3.23)

3.3.4 Real valued Hartley Approximations

Ralph Hartley (1942) developed a symmetrical real valued Fourier transform known
in the literature as Hartley transform. In contrast to the Fourier transform, the in-
tegral kernel of the Hartley transform is a real kernel defined by the ”cas” function
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as cas(t) = cos(t) + sin(t). Originally, the discrete Hartley transform (DHT) was
proposed in [16]. Its properties have been studied to develop fast and efficient algo-
rithms for applications in computer science [17, 22]. The real and imaginary parts
of the Fourier transform can be directly obtained as the even and odd parts of the
DHT. That means, Fourier contour and surface descriptors can be obtained directly
from the DHT without explicitly calculating the Fourier transform. Therefore, the
Hartley transform is a suitable substitute of the Fourier transform.

Let us consider the case of a 3D curve. The corresponding Hartley descriptors
of a 3D contour are obtained by applying the DHT to the parametric representation
of a contour of equation (3.1). Then, the corresponding Hartley descriptors for each
function f i(φ) are computed as follows

pi
k =

1

2N + 1

N∑

n=−N

f i(n)

(
cos

(
2πkn

2N + 1

)
+ sin

(
2πkn

2N + 1

))
. (3.24)

With this set of Hartley descriptors, the contour is approximated as

c(φ) =
3∑

i=1

[
N∑

k=−N

pi
k

(
cos

(
2πkφ

2N + 1

)
+ sin

(
2πkφ

2N + 1

))]
ei . (3.25)

The Hartley descriptors of last equation are also known as elliptic Fourier de-
scriptors. They have been used in the literature for recognition of 2D closed con-
tours, see [58, 63]. These descriptors have a quite different geometrical interpre-
tation than the complex or quaternion Fourier descriptors. Instead of describing
closed curves as a set of coupled circles as described in last sections, closed curves
are described with sets of coupled ellipses. In order to clarify this idea, let us con-
sider the case of 2D contours in the image plane with the following parametric rep-
resentation

c(φ) = f 1
p (φ)e1 + f 2

p (φ)e2. (3.26)

The last parametric functions that define a closed contour parameterized within
the range 0 ≤ φ < 2π can be expressed by Fourier series expansions in matrix form
as


 f 1

p (φ)

f 2
p (φ)


 =


 a0

b0


+

∞∑

k=1


 ak bk

ck dk




 cos(kφ)

sin(kφ)




= m0 +

∞∑

k=1

Ek


 cos(kφ)

sin(kφ)


 , (3.27)

where the coefficients are defined as:

a0 =
1

2π

∫ 2π

0

f 1
p (φ)dφ b0 =

1

2π

∫ 2π

0

f 2
p (φ)dφ
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ak =
1

π

∫ 2π

0

f 1
p (φ) cos(kφ)dφ bk =

1

2π

∫ π

0

f 1
p (φ) sin(kφ)dφ

ck =
1

π

∫ 2π

k=0

f 2
p (φ) cos(kφ)dφ dk =

1

π

∫ π

0

f 2
p (φ) sin(kφ). (3.28)

Let us notice that the last coefficients correspond to the even and odd parts of
the Hartley transform of equation (3.24).

The parameters of each ellipse can be obtained from the set of coefficients ak , bk , ck , dk

arranged in the matrix Ek of equation (3.27). The vector m0 is the center of gravity
of the contour. An example to illustrate the approximation of a curve with elliptic
descriptors is shown in figure 3.4. If only one elliptic descriptor is used, the contour
is approximated by the ellipse E1. The center of the ellipse E2 revolves along the or-
bit defined by E1. Then, the contour is approximated by the concatenated rotations
of an initial point of the curve along the orbits of E2 and E1. As more descriptors are
used, a better approximation of the contour is obtained.

Fig. 3.4: Left: approximation of a 2D curve with elliptic descriptors. Middle and
right: geometrical features of the elliptic twist descriptors: Ak and Bk are
the major and minor axis respectively, θk orientation of the major axes and
ψk the phase angle.

By applying the singular value decomposition to the matrix Ek , the parameters
of each ellipse can be recovered as follows

svd (Ek ) =


 cos(θk) − sin(θk )

sin(θk) cos(θk)




 Ak 0

0 Bk




 cos(ψk ) − sin(ψk)

sin(ψk) cos(ψk )


 .(3.29)

An example of the geometrical interpretation of such parameters is shown in
figure 3.4. The scalars Ak and Bk are the lengths of the major and minor axes respec-
tively. The angle θk stands for the orientation of the major axis with respect to the
x image axis and ψk is the phase angle. In this context, phase refers to the position
of the initial point of the contour with respect to the major axis. As can be seen in
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figure 3.4, the first ellipse can be considered a global rough approximation of the
curve with the major and minor axes describing the main distribution directions of
the contour points.3 Then, the point (a0, b0) together with the angle θk are considered
the global position and orientation of the contour in the image plane. This global in-
formation is relevant for the approaches presented in the next chapters since it will
be used to define new strategies to solve the correspondence search problem in the
image plane.

3.3.5 Time Performance Comparison

The presented Fourier, quaternion Fourier and Hartley transforms deliver suitable
twists descriptors of contours and surfaces with their corresponding low-frequency
approximations. The question now is, which of these variants is better suited for
practical applications. As an example, a comparison of the computation times for
the presented Fourier, quaternion valued Fourier transform and Hartley transform
was done for the power socket model in 3D as it is shown in figure 3.5.

Fig. 3.5: Low-frequency approximations of the power socket model.

This model consists of three different surfaces with a total number of 1043 points.
For practical pose estimation applications, low-frequency approximations must be
computed during the iterative process. The set of descriptors are computed and
stored off-line for the complete model. Only the computation times of the inverse
transformations were compared in this experiment. In this case, discrete versions of
the transforms were implemented (better computation times can be achieved with

3 This is analog to compute the eigenvectors of a covariance matrix defined with the 2D contour
points.



3.4. Pose Estimation of Twist Generated Models 57

Transform 2 descriptors 5 descriptors 10 descriptors 15 descriptors

Fourier 6 ms 56 ms 158 ms 242 ms

Quaternion 5 ms 45 ms 139 ms 210 ms

Hartley 3 ms 31 ms 95 ms 142 ms

Tab. 3.1: Time comparison of the low-frequency approximation of the power socket
model for 2, 5, 10 and 15 descriptors.

the use of fast algorithms). Low-frequency approximations were computed with 2,
5, 10 and 15 descriptors for every inverse transform.

A direct comparison of the computation times is shown in table 3.1. All variants
were tested on a Linux based system with a 3 GHz Intel Pentium 4 processor. As
expected, the fastest approximations are obtained with the Hartley transform since
no complex calculations are needed. Although the quaternion variant uses special
functions to perform quaternion multiplications, the computation time is even lower
than that of the Fourier approximations. Let us remember that only one quaternion
inverse Fourier transform is needed to approximate the surface, while three inverse
transforms are needed in the complex valued Fourier transform case. This simple
time performance comparison of the different variants shows the convenience of
using the real valued Hartley transform for practical applications. Better time per-
formance can be achieved by applying fast Fourier transform algorithms.

3.4 Pose Estimation of Twist Generated Models

The combination of the pose estimation constraints (see section 2.5.3) with the twist
based model representations is described in this section. Since all elements have
been compactly represented in their respective algebra, the interpretation of the con-
straint equations is quite intuitive and simple. Although several constraints have
been defined, see [92], only the 3D point-line constraint is used in this section to
describe the pose estimation of twist generated models. The same principle is used
to define 3D point-plane constraints or 2D projective constraints. Finally, the use of
Fourier approximations for a practical correspondence search and pose estimation
example is also presented in this section.

Let us recall the point-line constraint equation in conformal space

0 =
(
M X M̃

)
× e ∧

(
Oc ∧ Ximg

)
. (3.30)

The model point X is transformed by the unknown motor M by the operation

MXM̃. Then, the collinearity of the transformed point is computed with respect
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to the reconstructed line L = e ∧ (Oc ∧ Ximg) by the operator ×. Finally, the pose
is found by finding the motor that minimizes this collinearity measure. In order
to adapt this constraint equation for extended model objects, the model point X is
replaced in the equation by a given twist generated entity in a proper way.

To define the constraint equation for two and three-twists generated models (pla-
nar curves and surfaces), equations (3.8) and (3.9) are directly substituted in the
point-line constraint equation as

0 =
(
M(M2

λ2φM
1
λ1φXpM̃

1
λ1φM̃

2
λ2φ)M̃

)
× L (3.31)

0 =
(
M(M3

λ3φ2
M2

λ2φ1
M1

λ1φ1
XpM̃

1
λ1φ1

M̃2
λ2φ1

M̃3
λ3φ2

)M̃
)

× L. (3.32)

In this case, the last equations express the rigid body motion M of a curve or
surface incident to a reconstructed optical ray. The last equations consider the initial
point Xp and the generator twists of the curve or surface respectively. Since the
generator elements are also twist rotations, they can be directly incorporated in a
linear way in the constraint equations. Thus, the unknown parameters of the last

equations are the motor M and the motors M̃1
λ1φ1

, M̃2
λ2φ1

and M̃3
λ3φ2

which define
the curve.

In a similar way, the point-line constraint equation is defined for free-form con-
tours and surfaces as

0 =
(
M M3D M̃

)
× e ∧

(
Oc ∧ Ximg

)
, (3.33)

where the approximated model M3D is defined by

M3D = e ∧
((

3∑

i=1

(
n∑

k=−n

Ri
k ,φpkR̃

i
k ,φ

)
ei

)
+ e−

)

for the case of 3D free-form contours and

M3D = e ∧
((

3∑

i=1

(
N1∑

k1=−N1

N2∑

k2=−N2

R
1,i
k1,φ1

R
2,i
k2,φ2

pi
k1 ,k2

R̃
2,i
k2,φ2

R̃
1,i
k1,φ1

)
ei

)
+ e−

)

for 3D free-form surfaces.

In a first instance, every contour or surface point is approximated by the action
of the twist rotations over the phase vectors. In this case, the contour and surface
approximations of equations (3.17) and (3.19) are defined in Euclidean space. There-
fore, the approximated contour or surface point is first embedded in projective space
by adding the vector e− and finally in conformal space by applying the operator e∧.
Once that the approximated point is defined in conformal space, the motor M can
be applied. Finally, the product of the transformed curve or surface with the corre-
sponding reconstructed optical ray is applied to define the constraint.
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3.4.1 Correspondence Search with Model Approximations

For practical applications, correspondences must be found between extracted im-
age features and model information. Once that feature information (point, lines or
planes) have been extracted from the image, their corresponding model points must
be found in order to construct the constraint equation and to compute the unknown
pose parameters. Usually, the iterative closest point (ICP) algorithm is used in this
cases to find image-model correspondences, see [13]. For each image point, the
closest model point (in terms of the Euclidean distance) is used to form a correspon-
dence pair. If the model has relatively complex structure, it is possible that wrong
correspondence pairs affect drastically the computed pose. In the worst of the cases,
the minimization algorithm converges to a local minimum. One of the main advan-
tages of the representation of free-form models derived from Fourier or quaternion
Fourier descriptors is that low-frequency approximations of contours and surfaces
can be obtained. This property is used in order to avoid the local minimum problem
up to a certain limit, see [91].

Fig. 3.6: Examples of exact correspondences for the cactus model (left figure) and
real correspondences obtained by the ICP algorithm (left picture).

An example of correspondences between a 3D contour model and contour points
from the image is shown in figure 3.6. Model and image points are presented sepa-
rately for a better visualization of the correspondences. An exact correspondence set
can be seen in the middle picture. In this ideal example, the algorithm will converge
within a few number of iterations to the real pose. However, this may not be the case
for real applications. The correspondence set found with the ICP algorithm (min-
imal distance criterion) is shown in the right picture. As can be seen, many of the
correspondences do not correspond to the ideal ones. Therefore, it may take more
iterations to the algorithm to converge to the actual pose or it may not converge at
all. This fact is discussed theoretically and experimentally in more detail in the next
chapters.

An example of the use of low-frequency approximations of the model during
the iterative minimization process is shown in figure 3.7. The number of descriptors
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used to approximate the model increases with the number of iterations. A rough ap-
proximation of the model is used to get correspondences in the first iteration. With
this correspondence set, a first approximation of the pose is computed. As more
Fourier descriptors are used, the detail level of the model increases. Therefore, the
correspondences found in the next iterations are closer to the ideal correspondences
and the pose is computed more accurately.

Fig. 3.7: Examples of a convergence sequence by using low-frequency approxima-
tions of the cactus model during the iterative process.

As it was mentioned before, this approach is applied to models with a relatively
complex structure ass it has been discussed in [91]. When the contour model is
defined by line or slight curved segments, the use of such approximations is not
necessary. Although the use of low-frequency approximations offers an alternative
to avoid the local minimum problem, it also has some drawbacks for practical ap-
plications. In a first instance, the computation time increases considerably as more
Fourier descriptors are used to approximate the model during the iterations. The
use of low-frequency approximations during the first iterations implies a loss of lo-
cal structure of the model. In that case, no additional information derived from
local structure (for example local orientation and curvature) can be used to improve
the correspondence search or to decide if a correspondence pair should be rejected
as outlier. Then, the correspondence search is limited to the minimal Euclidean
distance criterion of the normal ICP algorithm. Because of that, the tracking as-
sumption must be considered in these cases. That mens, the difference between the
initial and the actual position of the object must be small enough to ensure that the
corresponding closest point is a good correspondence.

The correspondence search problem can be a very complex problem, which has
not a general solution for all possible scenarios. Low-frequency approximations
of the model may be suitable for certain scenarios and for certain object models.
On the other hand, the use of local structure will increase the probability to find
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better correspondences as it will be shown in the next chapters. Therefore, the ap-
proaches presented in this the next chapters consider model objects without the use
of low-frequency approximations. Then, the local structure is preserved during the
complete correspondence search process.

3.5 Local Model Representation in Conformal Geometric Algebra

The idea of coupling twist rotations and Fourier descriptors to get a geometrical
and mathematical representation of free-form models in CGA was introduced in the
last sections. Fourier based twist representations are considered to be global model
representations, since the model generator elements (phase vectors) are computed
by considering the complete model information.

It is desirable to have a local representation that complements the information
obtained from global models. In that sense, a new local model representation of
free-form contours and surfaces is presented in this section. In a first instance, this
representation describes the local geometry of contours and surfaces by preserving
the central idea of a twist model representation in the framework of the CGA. This
makes possible to incorporate this local model in the pose estimation constraints as
shown in the last sections. Secondly, the local model allows to extract local structural
information which will be used to improve the correspondence search problem. The
local neighborhood of contour points is described by a set of local motors (a motor
operation defines a general rotation around a given axis). The geometry involved
in the process of finding the parameters of the local motors is closely related to
the concept of osculating circles which is initially introduced. Then, a local motor
describing locally a contour point is derived from the parameters of the osculating
circle. Once that a set of local motors are obtained for the complete contour, contour
segments are described by the action of concatenated local motors over an initial
point. Finally, some examples of the description of contour and surface segments
are presented.

3.5.1 Osculating Circle

The concept of osculating circle has been used in boundary and contour analysis
as a tool to extract local feature information from planar contours, see [31, 53]. The
basic idea is shown in figure 3.8. Given a contact point of a curve, a tangent line at
this point can be computed. If a circle is constructed in such a way that its tangent is
the same as the tangent of the curve at this point, this circle is called the osculating
circle of the point. According to that, it is easy to see that both curve and circle have
the same orientation and curvature at the contact point. Furthermore, the circle can
be considered as an infinitesimal approximation of the curve at the contact point.

By using three points of a curve in 2D, the parameters of the osculating circle,
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Fig. 3.8: Left: osculating circle of a curve point. Right: definition of the local coordi-
nate system needed to compute the parameters of the circle in 3D.

radius r and coordinates of the center (x, y) can be computed by applying planar
geometry. According to the definition of the osculating circle, the curvature |k(φ)|
at the contact point is simply computed as the inverse of the radius |k(φ)| = 1

r
.

According to this, the osculating circle can be interpreted as local descriptor of a
curve since it represents its local features.

3.5.2 Construction of the Local Motor

The question is now, how to use the parameters of the osculating circle to obtain the
parameters of a twist rotation describing the local vicinity of the contact point. Sev-
eral possibilities to describe circles in CGA were mentioned in last chapter. A circle
can be constructed by the intersection of two spheres or by its dual representation
defined by the outer product of three points on the circle. Despite of that, these de-
scriptions do not deliver information about the parameters of the circle (center and
radius) and therefore about their local features. On the other hand, these representa-
tions describe a circle as a complete entity. It is not possible to describe only a section
of the circle. Let us remember that only the vicinity of the point in the osculating
circle is part of the contour. Then, only this infinitesimal section must be approxi-
mated. Other important property of the local model representation in CGA is the
ability to approximate more than a point, a contour segment or the complete con-
tour. This is not possible with the osculating circle or with the equations of the circle
in CGA. As it was described in section 3.2, twist rotations can be used as contour
and surface generator elements. If a point is rotated by a given angle around an axis,
the perimeter of a circle is constructed. The same idea is used to construct the local
motor. Instead of approximating the complete perimeter, the motor approximates
only the section defined by the contact point and its left and right neighbors.

Let us notice that computing the circle parameters as shown in equation (??) is
valid only when the curve is defined in 2D. On the other hand, we want to construct
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local motors defining curves and surfaces for general 3D curves. Then, the problem
is first translated to 2D and then the corresponding motor parameters are recovered
in 3D as follows:

• Select three points on the curve, the contact point and its left and right neigh-
bors.

• Construct the plane defined by these points.

• Define a local coordinate system in this plane where the center and the radius
of the osculating circle are computed.

• With the normal vector to the plane and the center of the circle define the
rotation axis of the local motor back in 3D.

Figure 3.8 shows the scenario for the local motor construction. According to
equation (2.50), the local plane related to the contact point Xi is computed by the
outer product of the point at infinity e and the points Xi−1,Xi ,Xi+1 ∈ G4,1

Ploc
i = e ∧Xi−1 ∧Xi ∧ Xi+1

= Eni + edIE ∈ G4,1, (3.34)

with ni the normal of the plane and d its distance to the origin.

For simplicity, the following operations will be presented in Euclidean space.
Once that the parameters of the circle are found, the corresponding motor will be
constructed in G4,1. In order to map the points (3D) onto the plane (2D), a local co-
ordinate system must be defined. If the contour points are considered in Euclidean
space, xi ,xi−1,xi+1 ∈ IR3, and the origin is fixed at the point xi , the local basis vec-
tors are given by:

i1 =
xi − xi−1

‖xi − xi−1‖
i2 = ni (3.35)

i3 =
i1 × i2

‖ii × i2‖
.

The process to find the parameters of the circle is presented in figure 3.9. Once
that the local coordinate system is defined, it is possible to get the coordinates of the
points in the plane defined by the basis vectors i1 and i3. Then, the points in the
local coordinate system have the following coordinates:

xloc
i−1 = [−‖xi − xi−1‖, 0, 0]

xloc
i = [0, 0, 0] (3.36)

xloc
i+1 = [‖xi+1 − xi‖ cosβ, ‖xi+1 − xi‖ sin β, 0].



64 Chapter 3. Global and Local Representation of Contours and Surfaces

Fig. 3.9: Process to compute the parameters of the circle in the local plane defined
by the basis vectors i1 and i3.

As can be seen in figure 3.9, the i2 component of the three points is zero. There-
fore, basic planar geometry can be directly applied to find the circle parameters. The
problem is reduced to the classical problem of finding the circle that passes trough
three points. Basically this is done in two steps. The first step is to find the perpen-

dicular bisectors of the segments defined by xloc
i xloc

i−1 and xloc
i xloc

i+1 respectively. The
second step is to find the intersection point of these bisectors, which corresponds to
the center of the circle. Once that the i1, i3 coordinates of the center (b, a) are found,
the radius is directly obtained by subtracting the coordinates of the contact point
xloc

i . Then, the center and radius of the osculating circle at the point xloc
i are defined

by

ci = bi1 + ai3

ri = ci − xloc
i . (3.37)

The osculating circle is still defined in the local coordinate system. It is necessary
to find the coordinates of the center ci in 3D space. According to the definition of the
local coordinate system of equation (3.35), each basis vector i defines a direction in
3D space. Then, the coordinates of the center in 3D are simply computed by adding
ci to the point xi in its original 3D coordinates as

c3D
i = xi + bi1 + ai3. (3.38)

The rotation axis of the motor is obtained directly from center of the circle and
any other point in the direction of the normal vector n. If Ci ∈ G4,1 is the center
of the circle embedded in conformal space and Pi ∈ G4,1 a point in direction of the
normal vector, the rotation axis is defined by the line passing through Ci and Pi .
By applying equation (2.49), the dual representation of a line is obtained as

Lloc
i = e ∧Ci ∧Pi

= Eri + emi , (3.39)



3.5. Local Model Representation in Conformal Geometric Algebra 65

with ri and mi defined as the direction and moment of the line, respectively.

As can be seen in figure 3.9, the angle θi is the rotation angle defined by the
segment xi−1cpxi+1. It was shown in [87] that the parameters of a line correspond
to the parameters of a motor performing a general rotation around this line. Then,
the local motor is obtained as

Mi = exp

(
±θi

4
(Lloc

i Ic)

)

= exp

(
±θi

4
(r′i + em′

i)

)
, (3.40)

with Ic = EIE = (e+e−)e1e2e3. According to the definition of a motor of equation
(2.57), a rotation from the point xi−1 to xi+1 is performed with θ

2
. Sine a rotation from

xi to xi+1 is needed, the angle θ
4

is used. The next neighbor point in clockwise or

counter clockwise direction can be obtained by rotating the contact point Xi by + θi

4

or −θi

4
, respectively. In cases where the points Xi−1, Xi and Xi+1 define a straight

line segment, the computed motor becomes a pure translation.

3.5.3 Local Motors as Contour and Surface Descriptors

Once that a set of local motors describing a 3D contour is obtained, we proceed
to describe how they can be used to approximate segments of contour and surface
models. In a first instance, let us consider the case of 3D contours. A contour seg-
ment is generated by the action of a set of concatenated motors. In fact, this is analog
to kinematic chains used to model robot manipulators. For a given 3D contour of
length n, a set of local motors Dloc = {Mθ1

, . . . ,Mθn
} associated to every contour

point is computed. The next neighbor in clockwise direction of a reference point
Xr ∈ G4,1 is approximated as

Xr+1 = Mθr
XrM̃θr

. (3.41)

Then, all points of a contour segment of length s ≤ n are approximated by

Xr+j = Mθj
· · ·Mθ1

XrM̃θ1
· · ·M̃θj

: j ∈ [1, . . . , s ]. (3.42)

This local description of contours and surfaces is based on the combination of
twist rotations in conformal space. Therefore, the approximated local segments can
be directly combined with the pose estimation constraints as shown in section 3.4.
Some examples of contour segments approximated by local motors are shown in
figure 3.10. In the first example, the corresponding local motors for several contour
points are shown. The next figures show the set of local motors used to approximate
larger contour segments. In the last row, an example of a contour containing straight
lines is shown. In this case, local motors approximate straight segments as a pure
translation.
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Fig. 3.10: Examples of the local motors which are used to approximate contour seg-
ments of the mouse and cactus models.

According to the geometrical construction of the local motors, it is possible to
obtain local information describing the contour segments. For every contour point
Xi , the following local features are directly extracted from its corresponding local
motor:

F 3D
i = {Oi ,±

θi
4
, ‖ri‖}, (3.43)

where the line Oi ∈ G4,1 represents the local orientation of the contour segment in
3D. The angle ±θi

4
is the amount of rotation needed to approximate the neighbor

points and ‖ri‖ is the radius of curvature. This local information will be used in the
next chapters to extract additional structural information. Local structure combined
with the Euclidean distance search criterion of the ICP algorithm will be used to
improve the correspondence search problem.

Similar to the contour approximation, a segment of a surface is approximated by
two local motors. According to the parametric representation of a surface of equa-
tion (3.2), a surface point is connected with its four neighbor points. In order to
approximate this local neighborhood, two motors with perpendicular rotation axes
are constructed as can be seen in figure 3.11. For every surface point, its correspond-

ing local motors are defined as {Mφ1

θ1
,Mφ2

θ2
}. Each motor approximates the neighbor
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points in the directions defined by φ1 and φ2 respectively. If the point Xφ1,φ2
is used

as a reference, a neighbor point is approximated by

Xφ1+i ,φ2+j = M
φ2

j θ2
M

φ1

iθ1
Xφ1,φ2

M̃
φ1

iθ1
M̃

φ2

j θ2
, (3.44)

where the rotation angles of the local motors are defined by the terms iθ2 and j θ1.

For example, to approximate the point Xφ1+1,φ2
(i = 1, j = 0), only the rotation M

φ1

iθ1

in the direction φ1 is applied for this case. The action of both rotations approximates
the complete surface patch around the point Xφ1,φ2

.

Fig. 3.11: Local motor construction of a point on a surface and its neighbor points
(left picture). Example of a 3D silhouette extracted from a surface model
and some of its corresponding local motors (right picture).

For some applications, it is convenient to extract 3D contours from surface mod-
els. In the context of the pose estimation problem, the 3D contour defining the sil-
houette of a surface model with respect to the image plane is extracted. The surface
pose is computed by aligning its 3D silhouette and the image contour information,
see [89]. Than means, the model is reduced from the complete 3D surface to a non-
planar 3D contour. According to that, only the local motors and local features of the
3D silhouette must be computed to describe it. An example of an extracted silhou-
ette and some of its local motors is shown in figure 3.11.

It has been shown that the construction of local motors delivers local feature
information of 3D contour segments. Similarly, local feature information must be
obtained from contours extracted from the image. Then, osculating circles must be
obtained from digital contour segments in order to obtain the corresponding local
motors. Essentially, the same process discussed in the last section is used to con-
struct local motors for contours in the image plane. As can be seen in figure 3.12,
the parameters of the osculating circle are computed from three points in the image.
To construct the local motor, the rotation axis is defined by the optical ray passing
through the optical center of the camera and the center of the circle.
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Fig. 3.12: Examples of the construction of local motor from digital contours in the
image plane.

3.6 Summary

In this chapter, several mathematical and practical aspects of the twist-based rep-
resentation of free-form models in CGA were introduced. Complex, quaternion
Fourier transforms and Hartley transforms were used to gain global twist repre-
sentations of free-form surfaces which have different geometrical properties. It was
shown that the real valued Hartley transform offers an alternative to the complex
valued Fourier transform to obtain model approximations for practical applications.
Furthermore, a new local representation of free-form contours and surfaces based on
twist rotations was presented. The local vicinity of contour points is approximated
by a twist rotation, while larger segments are approximated by concatenated twist
rotations over a starting point. Since both model representations were defined in
the framework of CGA, they can be combined with the pose estimation constraints.
In addition to a mathematical consistent description, it was shown that global and
local representations deliver features describing the model objects.

In general, it can not be said that a certain model representation is the best for
all possible pose estimation scenarios. For practical applications, the choice of de-
scribing a model by global or local model features depends on many factors. When
complete model and image data are available and the model displacement is small
enough, the use of global features make sense. On the other hand, local features
are more suitable when only segments of the image contour information can be ex-
tracted because of the presence of occlusions. The question is, how to use global and
local models and their derived features to find correspondences between model and
image points in order to define the pose estimation constraints. This central part of
the pose estimation problem will be discussed in the next chapters.



Chapter 4

STRUCTURAL ICP ALGORITHM

All elements involved in the pose estimation problem have been described in the
last chapters. The different pose estimation scenarios based on 3D point-line and 2D
projective constraints were described in the framework of geometric algebra. Ad-
ditionally, global and local representations of free-form contour and surfaces were
used to extend the pose estimation constraints to these entities. Since these model
representations are able to deliver global and local contour features, it is desirable
to use this information to improve the correspondence search problem for practical
applications.

In the present chapter, the Structural ICP Algorithm is presented for the case
of 3D planar contour models. In a first instance, the classical ICP algorithm is in-
troduced for the pose estimation scenarios described in the last chapters. Then, the
main idea of the description levels of model objects in context of the correspondence
search problem is discussed. For the image feature extraction step, the monogenic
signal response proposed by Felsberg and Sommer [41] is described. This approach
allows to extract local structural information of image signals at different scales,
which is used in a multi-scale contour extraction algorithm. A local feature extrac-
tion approach based on the local contour representation presented in chapter 3 is
introduced. The local features computed by this approach are geometrically ana-
log to that of the monogenic signal. Based on these local features, model points are
segmented and labeled according to their local structure. Finally, the structural ICP
algorithm is presented as a combination of the Euclidian distance search criterion
and structural information of image and model.

4.1 ICP Algorithm

The ICP algorithm has been used in a large variety of robotic and computer vision
applications and for different pose estimation scenarios. The general concept for
any tracking and pose estimation algorithm is illustrated in figure 4.1. As input
data, the ICP algorithm requires a set of entities defining the model and a set of
data measurements acquired by a sensor device. In a first instance, every sensor
measurement must be related to its corresponding model entity by a given corre-
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spondence search criterion. The obtained correspondences are the input elements
of the minimization constraints used to compute the pose parameters.

Fig. 4.1: General concept of the ICP algorithm.

The general definition of the ICP algorithm proposed by Besl and McKay [13]
is given in this section. Based on this definition, the different elements of the ICP
algorithm are identified with the pose estimation scenarios used in this work. Let
M ∈ IRn and S ∈ IRn be two sets representing model and sensor elements defined
as

M = {mi} : i = 1 . . .nM

S = {si} : i = 1 . . .nS ,
(4.1)

where nM and nS are the size of model and sensor sets respectively. In an ideal
pose estimation scenario, two main assumptions are made regarding these sets. The
number of elements is the same nM = nS . Additionally, each element of the set S
corresponds to only one element of the set M. These ideal assumptions are com-
monly made to analyze the minimization constraints without considering the corre-
spondence search step, see [70].

For real applications, correspondences must be found by a given criterion. In the
case of the ICP algorithm, a measure function d is defined to compute the distance
between two elements of M and S according to a given metric. For a given sensor
element sj ∈ S, its closest neighbor of the set M is computed by

d(sj ,M) = min
i=1,...,nM

{d(sj ,mi)} , (4.2)

where the measure function d is selected depending on the geometric entities that
define model and sensor elements. As it was shown in the last chapters, point-
point, point-line and line-plane metrics are commonly used in many pose estimation
algorithms. For all elements of S = {si}nM

i=1, their corresponding closest elements are
arranged in the set X = {xi}nS

i=1, with xi ∈ M. Since the set S is taken as a reference,
the size of both sets is always nS .

In the case of the monocular pose estimation problem, the sensor elements can
be defined as points, lines or planes. Let us consider the case that si and their cor-
responding closest elements xi are defined as points in 3D Euclidean space. In this
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case, the unknown pose parameters R and t are computed by minimizing the fol-
lowing general equation

E (R, t) =

nS∑

i=1

‖si − (R(xi) + t)‖2. (4.3)

The iterative closest point algorithm can be summarized as follows. Given the
initial position of the model set M1 and the acquired sensor elements S, repeat for
j = 1 to m iterations

Iterative Closest Point Algorithm.

1. For each element of S, find its closest element of Mj and form the correspon-
dence set {S,X}.

2. With this set, compute the pose parameters R, t with the minimization task
E (R, t).

3. With the computed pose parameters, actualize the position of the model set
Mj+1.

4. Compute the average error between sensor and actualized model elements
Emean = d(S,M).

5. If the error Emean < thres or j = m exit, else goto 1.

As it was mentioned before, the last definition of the ICP algorithm is valid for
general pose estimation scenarios. Thus, it is convenient to link the ICP algorithm
with the pose estimation scenarios presented in the last chapters. The minimiza-
tion task E (R, t) corresponds to one of the minimization constraints in conformal
geometric algebra defined in section 2.5.3. To facilitate the reader following the in-
teraction between world and image entities, points in the image plane are denoted
by lower case letters x. Elements in Euclidean and conformal space are denoted
with capital letters X and X respectively.

Let us consider the case of finding point-line correspondences in 3D space as
shown in figure 4.2. In this case, the model set is defined by M = {Xi}n

i=1 ∈ G4,1

with n model points. From each image point ximg ∈ G2,1, an optical ray is computed
and embedded in conformal space by the operation Li = e ∧ (Oc ∧ ximg). Then, the
set of sensor elements is defined as S = {Li}n

i=1 ∈ G4,1.

According to the point-line incidence relation of equation (2.67), the distance
between a point and a line is represented as (X × L) where × is the commutator
product. Then, the closest model point to each reconstructed optical ray is computed
by

d(L,M) = min
i=1,...,n

{L × Xi} . (4.4)
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Fig. 4.2: Finding correspondences in 3D space by a point-line distance criterion (left
image) and in the image plane by a 2D point-point distance criterion (right
image).

Once that the correspondence set {Li ,Xi}n
i=1 is found, the corresponding n min-

imization constraint equations are defined as

0 = λ
((

M Xi M̃
)

× Li

)
· e+ : i = 1 . . .n . (4.5)

where the motor M ∈ G4,1 encodes the pose parameters.

The scenario of the correspondence search problem in the image plane is shown
in the right picture of figure 4.2. According to the projective pose constraints defined
in equation (2.76), the model points are projected onto the image plane. To simplify
the notation, the projection operation of a model point Xi ∈ G4,1 will be written as
P(Xi) ∈ G2,1. Then, the model set is defined as M = {P(Xi)}n

i=1 ∈ G2,1. For each
detected image point ximg , its closest projected model point is obtained as

d(ximg ,M) = min
i=1,...,n

{
‖ximg − P(Xi)‖2

}
. (4.6)

Finally, the minimization constraints are defined with the correspondence set of
image and projected points {ximg

i ,P(Xi)}n
=1 as

0 = λ

{
x

img
i − P(MXiM̃)

}
: i = 1 . . .n. (4.7)

4.1.1 Exact and Well Conditioned Correspondences

Besl and McKay proposed the ICP algorithm for registration of 3D shapes. This was
possible since they assumed that the sensor data are approximately aligned with
the model data. The last implies that the initial pose is close enough to the global
minimum to ensure a proper convergence behavior. In the case of the monocular
pose estimation, this is possible if the motion of an object between two images is
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small enough (tracking assumption condition). This occurs if the images are taken
in a short time period or when the object moves sufficiently slow. Once that the
definition of the ICP has been given, it is convenient to make some general remarks
about the tracking assumption and the correspondence search problem when the
closest distance criterion is used.

Any variant of pose estimation algorithm will deliver a correct pose if an exact
set correspondences set is used. An example of exact correspondences for 2D objects
can be seen in figure 4.3. In the upper left example, the arrows show the exact
correspondences of points of the square. The upper right figure shows an example
of exact correspondences for a 2D contour. When the correspondence set is correct,
only a few iterations are needed for the algorithm to converge to the correct pose.
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Fig. 4.3: Upper row: examples of exact correspondence sets of 2D objects. Lower
row: example of well (left) and bad (right) conditioned correspondences
for a 2D contour.

Ideally, a correspondence search algorithm should find correspondences close
to the exact ones. For each possible pose estimation scenario, the correspondence
search problem can be well conditioned or not. In general, the complexity of mod-
els and the initial pose are the main factors that determine if a correspondence set
is well conditioned. Figure 4.3 shows several examples of correspondences for 2D
models. The lower left picture shows an example of well conditioned correspon-
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dences. For most of the contour points, their initial correspondences are relatively
close to the exact ones. Then, the correspondence set is considered to be well condi-
tioned. Because of that, the computed pose with this correspondence set will be also
well conditioned for the next iterations. This has the effect that a larger number of
well correspondences are found in the following iterations. Eventually, the correct
pose will be computed for this scenario. An example of extreme bad-conditioned
correspondences is shown in the lower right picture of figure 4.3. If these corre-
spondences are used, there is a high probability that the computed pose would be
bad conditioned for the next iterations. The algorithm may need a relatively large
number of iterations to reach the correct pose. In the worst of the cases, it may
converge to a local minimum.

4.2 Description Levels of Contour Models

The examples presented in the last section consider only the Euclidean distance cri-
terion to find correspondences between contour points. In order to improve the
correspondence search problem, more information about the nature and structure
of models elements and image data must be considered. Then, the general idea of
describing contour models at different levels based on their local feature informa-
tion is presented in this section. In this context, the level of description refers to the
size of a segment around a contour point needed to define its features.

One important question regarding contour features is how ”local” or ”global”
they should be for a given task, e.g. for the correspondence search problem. The
general idea is shown in figure 4.4. The inverted triangle represents the description
levels of a point according to its features. On the other hand, the triangle of the right
represents the amount of possible correspondence candidates of a contour point at
each description level. Let us suppose the case of an ideal system with the ability
to get ”all” possible information from image and model points. In this case, an
image point is represented at the highest possible level of description as shown in
the figure. Since all information of the point is known, the only correspondence
candidate is the exact corresponding model point. Notice that such an ideal scenario
is one of the major challenges for computer and robot vision applications.

The lower vertex of the left triangle represents the lowest level of description
of a point. In this case, it is described only by its position in 3D or 2D Euclidean
space. If a scene point is described at this lowest level, all model points are pos-
sible correspondence candidates. Then, the most suitable point is selected by ap-
plying a specific criterion (e.g. minimal Euclidean distance for the ICP algorithm).
As the description level increases, more feature information is used to describe the
point. Since more information about the point is available, a correspondence search
criterion based on that information can be used. The possible correspondence can-
didates of an image point are all model points described by the same feature in-
formation. Therefore, the amount of possible correspondence candidates decreases
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Fig. 4.4: Relationship between the description level of contour points according to
their feature information and their possible correspondence candidates.

and the probability to find the correct correspondences increases. At the same time,
the dependence of the correspondence search criterion on the tracking assumption
decreases.

Let us consider the example of figure 4.5 for the case of contour models. The ba-
sic geometric entity which can be described is a point. From this point, only its 3D
or 2D position is available. Thus, a single point does not deliver more information
about its structure. Instead, according to the local representation of free-form con-
tours introduced in section 3.5.3, contour segments can be approximated by a set of
concatenated local motors. Furthermore, local orientation and curvature is directly
obtained from this representation.

Fig. 4.5: Feature description levels of contour points.

The notation used to refer the description of contour points at different levels is
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introduced. In a first instance, the set of local features obtained from the vicinity of
a contour point is denoted as

f loc
i = {Xi , αi , ki}, (4.8)

where Xi , αi and ki stand for the 3D or 2D spatial position of the point, orientation
and curvature respectively.

At the next description level, a larger contour segment around a given point is
considered to compute its features. As can be seen in figure 4.5, the local vicinity of
a point is extended in order to compute ”semi-local” features. The term semi-local
is used since these features are a combination of the local features obtained within
the segment. For a segment of length n around a contour point xi , the semi-local
features are defined by

f
avg
i =

{
1

n

n∑

i=1

αi ,
1

n

n∑

i=1

ki

}
, (4.9)

where, they represent the average orientation and curvature around a contour point.

Other possibility is to use the local features to define ”profile” feature vectors.
According to that, the orientation and curvature profile vectors for a contour point
Xi are defined as

Fα
i = {αi−n . . . αi . . . αi+n} (4.10)

Fk
i = {ki−n . . . ki . . . ki+n}. (4.11)

As can be seen in figure 4.5, profile vectors can be used to describe contour seg-
ments of different lengths. That means, the description level of a contour point can
be extended from the local vicinity of a model point up to the complete contour
length.

4.3 Image Feature Extraction

So far the ICP algorithm in context of the monocular pose estimation problem has
been introduced. The object models used for the pose estimation are represented by
free-form contours with their corresponding local features. Therefore, it is necessary
to detect local feature information of contours in the image. To achieve that, image
analysis approaches based on local signal representations can be used [48]. The
main idea of such approaches is to assign structural and geometrical information
around an image point. One of this approaches is the monogenic signal. From
the monogenic signal response, features describing the local structure of the image
signal are obtained (local amplitude and phase) as well as geometric feature as local
orientation. The foundations of the monogenic signal can be consulted in [39, 41,
104].
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In this section, a brief introduction to the concepts of amplitude and phase of
1D signals is given. An extension of this concepts to 2D signals is used to define
the monogenic signal. If the monogenic signal is defined at different scale values,
the monogenic scale space is obtained. Then, an approach to detect image edge in-
formation at different scales known as ”phase congruency” is presented. Finally,
contour segments are extracted from the image by a multi-scale contour extraction
algorithm. The phase concept plays an important role for the definition of the struc-
tural ICP algorithm. As it will be shown later, it will be used to define additional
correspondence search constraints.

In order to clarify the concepts of amplitude and phase, lets us consider the def-
inition of the analytic signal for 1D signals f : IR −→ IR, see [43]. The analytic signal
fA : IR −→ C is defined as the combination of the original signal with its Hilbert
transform as follows

fA(x ) = f (x ) + i

(
1

πx
∗ f (x )

)
= f (x ) + ifH (x ), (4.12)

where 1
πx

refers to the Hilbert convolution kernel. The components f (x ) and fH (x )
are phase shifted by −π

2
, that means they are in quadrature phase relation, see [39].

In fact, fA(x ) is a complex valued function which can be rewritten by the Euler for-
mula as the exponential function fA = A(x ) exp{p(x )i}, with the local amplitude
and phase defined respectively by

A(x ) =
√
f 2(x ) + f 2

H (x ) (4.13)

p(x ) = arg(fA(x )). (4.14)

By means of the analytic signal, the local structure of a point is characterized by
the phase response. The local phase provides information about the kind of struc-
ture contained in the signal. An example of typical phase responses for a 1D signal
is shown in figure 4.6. If the local energy is zero, it is not possible to make a phase
analysis. In the case that its value exceeds a given threshold, the local phase deliv-
ers information about the local symmetry of the signal. A peak corresponds to the
phase value p(x ) = 0 and a pit to p(x ) = π. Descending or increasing slopes have
the phase responses p(x ) = π/2 and p(x ) = −π/2 respectively. Peak and Pit indicate
even symmetry, while slopes indicate odd symmetry.

4.3.1 Monogenic Signal

The monogenic signal is a vector function composed by three components derived
from the extension of the analytical signal for the multidimensional case. For a 2D
image signal f(x) : IR2 → IR, the monogenic signal is defined as the combination of
the original signal with its Riesz transform (composed by an x -component and an
y-component)

fM = f(x) + (h2 ∗ f)(x) = f(x) + fR(x), (4.15)
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where h2 = x

2π|x|3 is the Riesz convolution kernel.

The real part f(x) is known as the even component of the monogenic signal,
while the Riesz transform fR(x), known as image flow, is considered the odd com-
ponent. Similar to the analytic signal, even and odd parts are in quadrature relation.
Thus, amplitude and phase are similarly obtained as shown in equation 4.13.

In practice, Poisson and conjugate Poisson filter kernels are used as can be seen in
[41]. If these Poisson kernels are applied to the original image signal f(x) : IR2 → IR,
the Poisson scale-space and its harmonic conjugate Poisson scale-space are formed
as

p(x; s) = (f ∗ P)(x) with P(x) =
s

2π(|x|2 + s2)3/2
(4.16)

q(x; s) = (f ∗ Q)(x) with Q(x) =
x

2π(|x|2 + s2)3/2
, (4.17)

where s denotes the scale value and P(x) and Q(x) the Poisson and conjugate Pois-
son kernels respectively.

The monogenic scale space is formed by combining the Poisson scale-space with
its harmonic conjugate scale-space at all scale values s as shown in figure 4.6 1 .
If the scale parameter is set to zero, the conjugate Poisson kernel corresponds to
the Riesz kernel. That means, the monogenic signal is obtained at the lowest scale
value. In fact, the monogenic scale-space can be interpreted as the combination
of the monogenic signals at all scales, where the monogenic signals are formed by
the smoothed original signals p(x; s) and the image flow q(x; s). One important
property of the monogenic scale-space is that the smoothed signal and the image
flow preserve the quadrature phase relation for all scale values.

Fig. 4.6: Typical phase responses for a 1D signal (left figure). Monogenic scale
space defined by the combination of Poisson and conjugate Poisson filter
responses (right figure).

1 Image taken from [41].
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From the filter responses of equations (4.16) and (4.17), features describing the
local structure are computed in terms of the local amplitude and phase as follows

A(x; s) =
√

|q(x; s)|2 + |p(x; s)|2 (4.18)

r(x; s) =
q(x; s)

|q(x; s)| arctan

( |q(x; s)|
p(x; s)

)
. (4.19)

The amplitude A(x; s) is related to the local energy of the signal. That means,
high amplitude responses indicate the presence of local structure. Phase and orien-
tation information are combined in the phase vector r(x; s). As described before, the
phase describes the local symmetry of the 2D image signal. For instance, edges in
the image are considered to have odd local symmetry, while lines have even local
symmetry. The orientation information corresponds to direction of the highest sig-
nal variance. An example of the phase and orientation responses for a real image is

Fig. 4.7: Example of the monogenic signal response of an image. Original image
(left), local orientation (center) and phase (right).

shown in figure 4.7. In the right image, the phase response can be seen. Note that
the minimal and maximal phase responses correspond to edge points of the original
image. As it was mentioned before, an edge point has locally odd symmetry with
phase values π/2 and −π/2 respectively. This can be interpreted as a change from
a high to a low gray value or viceversa in the image signal. Thus, the local phase
vector characterizes the local gray level transition of an image signal. Finally, the
orientation response is shown in the center image of the figure.

The local features of an edge point obtained from the monogenic scale-space at
a given scale value s are summarized as

F im
i = {x im , y im , αim

i , ‖ r x
i ‖, ‖ r

y
i ‖}, (4.20)

where x im , y im are its Euclidean coordinates, αim
i is the local orientation and ‖ rx

i ‖, ‖
ry
i ‖ are the phase responses in x and y directions. As described in section 4.3.1, the

monogenic signal is defined by an x - component and an y-component. Therefore,
two phase responses are obtained in the direction of these components.
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4.3.2 Phase Congruency for Edge Detection

Scale-space techniques have been widely investigated and used for image process-
ing applications. In a similar way that a linear scale-space is constructed with Gaus-
sian kernels, the linear scale-space based on Poisson kernels presented in [41] can
be used for edge detection and image restoration applications. Edge detection by
applying quadrature filters can be performed in two different ways: either by de-
tecting local maxima of the amplitude information or by detecting points of station-
ary phase in scale-space. The first option is convenient for cases where the image
has relatively high contrasted edges, like the example of figure 4.7. The second ap-
proach is called ”phase congruency”. Roughly speaking, this method is based on
comparisons of the local phase at certain different scales.

For the local phase vector r(x; s) of the monogenic scale-space representation of
equation (4.19), points that satisfy the condition

∂sr(x; s) = 0 (4.21)

are known as points of differential phase congruency. Those points correspond to
image edges, see [41].

The question is how to approximate this expression in suitable way for practical
applications. One possibility may be to compute the derivative by applying classical
approximations based on finite differences. Due to the unification of scale-space and
phase-based approaches in the context of the monogenic scale-space, it was proved
in [41] that the scale derivative can be directly computed as

∂sr(x; s) =
p(x; s)∂sq(x; s) − q(x; s)∂sp(x; s)

|p(x; s)|2 + |q(x; s)|2 . (4.22)

In comparison with a finite differences approach, this method allows a higher
accuracy and a faster computation of the derivative. In order to find the points of
phase congruency, the solution of equation (4.21) must be found. In this case, it is
only necessary to find the zeros of the two components of the numerator in equation
(4.22). Then, the expression to solve becomes

p(x; s)∂sq(x; s) − q(x; s)∂sp(x; s) = 0. (4.23)

Once that the derivatives are computed, the zeros of last equation can be detected
by applying a linear regression approach. Finally, the edges at a given scale are
detected by removing those zeros where the slope of last equation is smaller than a
given threshold value. An example of a real image and the corresponding detected
edges at different scales is shown in figure 4.8. Since only high contrasted edges are
detected at high scale values, several segments of the object are not detected. Those
segments appear gradually as the scale decreases. At the lowest scales, almost all
the object edges are detected as well as many noisy (in the sense that they do not
belong to the object) edges caused by non-uniform illumination.
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Fig. 4.8: Detected edges of an image model at different scales.

4.3.3 Multi-Scale Contour Extraction

Once that edges are detected in the image, contour search algorithms are usually
applied to extract contour segments of different sizes. Let us consider the case of the
image shown in figure 4.8 and its corresponding detected edges at different scales.
All edges of the object including noisy edges are detected at the lowest scale. In
contrast to that, only high contrasted edges are detected at higher scales. Then, the
choice of a given scale value where contour segments of the object can be extracted
without the presence of noisy edges is not easy. Instead of selecting a given scale to
extract the edge segments, the detected edges are analyzed at different scales. The

Fig. 4.9: Idea of finding the image edges by taking the highest scale edges as a ref-
erence.
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set of images containing the detected edges at n scale values is defined as

I = {f1(x), . . . , fn(x)} . (4.24)

The idea of the edge extraction algorithm at different scales is shown in figure
4.9. The image fn(x) containing the detected edges at the highest scale value is used
as a reference, fR(x) = fn(x) . In order to find the edges that appear at the next lower
scale n − 1, the image difference is computed as

fdiff (x) = fn−1(x) − fn(x). (4.25)

With this substraction operation, the common edges of both images are removed.
Therefore, only the edges at the lower scale are present in fdiff (x). The next step is to
determine if the points in the difference image are connected with the points of the
reference image. For every point in fdiff (x), a neighborhood of a given range around
this point is analyzed in the reference image fR(x). If more than one point is found,
it is considered to be connected to the previous detected edges and it is added to
the reference image. If no pixel is found, the edge is considered to be isolated. This
procedure is iteratively repeated for all the images at all scales.

The result for the image of figure 4.8 can be seen in figure 4.10. For this example,
a set of images containing the detected edges at ten different scale levels were used.
The image of the left is the reference image fR(x). As the following images are
processed, the most representative edges of the object are gradually extracted and
most of the noisy edges of the lower scales are eliminated. The picture of the right
shows the result after processing all images, where the outer contour of the object
and partial information of the inner contours are obtained.

Fig. 4.10: Result of the multi-scale edge detection algorithm.

A proper extraction of the outer contour is essential for the new variants of the
ICP algorithm presented in the next chapters, since it allows the computation of
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global features in the image plane (see section 3.3.4). On the other hand, the inner
contour information can be used if the inner contours are also represented in the
object model, see [87].

As described in this section, the monogenic scale space approaches are only used
as a tool to extract contour information from the images. Hence, the concept of scale-
space is not directly used in the correspondence search strategies presented in this
and the next chapters.

4.4 Model Feature Compatibility

According to the pose estimation scenarios described in section 4.1, the correspon-
dence search problem can be defined in 3D space or in the image plane. In order
to use additional feature information in the correspondence search problem, com-
patible model and image features must be obtained. The main question is, in which
space it is possible to find better compatible features. A first option is to extract
3D features from image information and to compare them with model 3D features.
If we consider that only one image is used, the reconstruction of 3D features from
image information is restricted to lines and planes. The curvature of a 3D contour
segment can not be reconstructed from the curvature of image segments. On the
other hand, the concept of phase obtained from the monogenic signal is only valid
for image signals. The second possibility is to project the 3D model onto the im-
age plane to find 2D features in order to compare them with the image features. In
the case of 3D contour models, local orientation and curvature are obtained from
the local model representation. This information is not invariant under perspective
projection. Thus, it can not be directly used as correspondence search criterion as
proposed in [100]. Despite of that, features derived from orientation and curvature
of projected contour segments are used to improve the correspondence search prob-
lem.

In this section, it is shown that the projection of model contour segments onto
the image plane allows to find compatible local features to that of the image plane.
In a first instance, an analog structural feature to the monogenic phase response
called ”transition index” is presented. It defines an artificially generated grey level
transition similar to the monogenic phase. Then, the local curvature of image and
contour models is used to compute semi-local structure. If a neighborhood around
a given point is considered, it is decided if that point belongs to a straight, concave
or convex segment. That means, contour points are segmented according to their
structure. Finally, several examples of this segmentation process are presented.
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4.4.1 Transition Index

It is necessary to get compatible features between the monogenic phase and local
model features in the image plane. The most natural solution would be to project
the object model onto the image plane and to compute directly the monogenic sig-
nal response. Let us remember that the monogenic phase response encodes struc-
tural information corresponding to the local symmetry of the image signal. On the
other hand, the local representation of contour models presented in section 3.5 and
its corresponding local features are derived from sets of discrete points. Thus, the
corresponding projected model points are also sets of discrete image points. This
implies that the local structure of the projected points can not be obtained from the
monogenic signal, since a single image point does not have local symmetry at all.

A direct computation of the monogenic signal would be only possible if an arti-
ficial image is generated for each iteration of pose estimation algorithm. In practice,
this will increase significatively the computation time. Instead of that, an analog fea-
ture to the phase response can be easily derived from the local orientation of model
points. Let us remember that phase and orientation are encoded in the phase vec-
tor, see equation (4.19). That means, the local orientation can be obtained for points
whose phase response correspond to edges. In the case of contour models, only the
local orientation is directly computed from the local contour representation. Based
on the local orientation, the transition index is defined as an artificially generated
transition value of a projected contour segment. It simulates the gray level transi-
tion of the image signal encoded in the monogenic phase response.

In order to define the transition index, the following assumptions are made with
respect to the 3D contour models and their local features:

• The orientation computed from three contour points in 3D space is preserved
after the projection of these points onto the image plane. That means, the
projected model points must allow to compute local orientation in the image
plane. If two or more 3D points of a segment are projected onto the same
image point, it is not possible to compute the local 2D orientation. Therefore,
only planar 3D contour models are considered for this initial approach. An
extreme case occurs when the planar contour is perpendicular to the image
plane. Then, all points are projected to a line onto the image and no feature
extraction is possible.

• In the case of an object modeled by a 3D free-form contour, every point repre-
sents implicity an edge of the real object. The phase response encodes informa-
tion about the local structure of edges (even or odd symmetry) that depends
on the gray value level of the real object and background. Then, the problem
is reduced to identify to which kind of edge the model points correspond (in-
creasing or decreasing slope as shown in figure 4.6). To achieve that, the gray
level of the model object and background are considered to be known.
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Let us remember the local feature set obtained from the local representation of
3D contours introduced in section 3.5. As can be seen in figure 4.11, the following
local features are obtained from a 3D model point Xi ∈ G4,1

F 3D
i = {Oi ,±

θi
2
, ‖ri‖}, (4.26)

where Oi ∈ G4,1 is the local orientation line. It represents the orientation of the
contour segment in the 3D coordinate system as the tangent line of the point Xi .
The rotation angle θi describes the amount of rotation needed to approximate this
segment and ‖ri‖ is the radius of curvature.

Fig. 4.11: Upper row: features obtained from the local motor in 3D (left figure) and
its corresponding local features in the image plane (right figure). Lower
row: example of the assignation of the transition indexes for different im-
age points with respect to their local orientation.

Once that the 3D model points are projected onto the image plane, the corre-
sponding local motor is computed with the points xi−1,xi ,xi+1 ∈ G2,1. The last
is also shown in the upper right picture of figure 4.11. From the local motor con-
struction in the image plane, the orientation line and radius of curvature are also
obtained. As mentioned before, only the orientation information is needed to define
the transition index. From the orientation line, the normalized orientation vector Oi

with orientation angle αi is obtained.
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The upper right picture of figure 4.11 shows the principle to assign the transition
values tx and ty . For the example presented in the figure, the model corresponds
to a dark object in a white background. Then, the gray value transition tx for the
point xi goes from black to white in the x direction. If black corresponds to a grey
value of 0 and white to 255, this can be interpreted as an increasing slope. In the
y direction, the transition goes from white to black corresponding to a decreasing
slope. The bottom figure shows examples of the transition values in both directions
for four points x1, . . . ,x4. Depending on the orientation αi , the transition values are
assigned according to the following criterion

tx
i , t

y
i ⇒





txi = +π
2

tyi = +π
2

: αi ∈ [0, π
2
)

txi = +π
2

tyi = −π
2

: αi ∈ [π
2
, π]

txi = −π
2

tyi = −π
2

: αi ∈ [−π,−π
2
]

txi = −π
2

tyi = +π
2

: αi ∈ (−π
2
, 0).

(4.27)

The transition index takes the values π
2

and −π
2

since those values are obtained
from the monogenic phase response. In case that the model is defined by a white
object on a dark background, the transition values of last equation take the opposite
sign. An example of the computation of the transition index for the cactus model
is shown in figure 4.12. The pictures show a comparison of the phase response
‖ rx

i ‖ computed from equation (4.19) with the computed transition index tx from
the projected cactus model.

Fig. 4.12: Comparison of the monogenic phase response and the transition index.
Left picture: original image of the cactus. Middle image: monogenic phase
response in x direction. Right image: computed transition index for all
model points in x direction.

Other possible scenario has been considered for the computation of the transition
index. Suppose a gray object moving on a background with some dark and white
regions as shown in the artificially generated image of figure 4.13. In this case, it
is not possible to compute the transition values directly from equation (4.27). The
transition index of a model point is different if the background is white or dark. For
these scenarios, the same principle used in the background subtraction techniques
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[76] is applied. A background image is used as a reference to compute the transition
index. In a first instance, the model points are projected and the transition index is
computed assuming a white background by equation 4.27. Then, the average gray
value level of a region of size n around the point xi is computed in the background
image fref (x) as

avg(xi) =
1

(2n + 1)2

n∑

j=−n

n∑

i=−n

fref (u + i , v + j ), (4.28)

where u, v are the image coordinates of the point xi . If Gmod is the gray value of the
contour model, the transition values change their sign according to the next criterion

tx
i , t

y
i ⇒

{
txi = −txi , tyi = −tyi : avg(xi) < Gmod . (4.29)

This criterion simply changes the sign of the transition indexes if the average
gray level of the reference image is smaller than the grey value of the contour model.
A comparison of the monogenic phase response and the transition index for this
scenario is shown in figure 4.13. For this example, the cactus model was projected
onto the background image to generate an artificial image. The monogenic phase
response of this artificial image in the x direction is shown in the lower left picture.
In order to compare the phase and the transition index with respect to the reference
background image, the transition values where projected onto the phase response
image of the background as shown in the lower right image.

Fig. 4.13: Upper row: background image (left) and artificially projected cactus
model (right). Lower row: phase response of the artificial image (left) and
transition index projected onto the background phase response (right).
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As can be seen in the presented examples, the transition index is easily computed
without the need of generating complete artificial images of the projected model.
This will allow to compare the transition index and the phase information extracted
from the image during each iteration of the ICP algorithm without a considerable
increase of the computation time. In normal tracking and pose estimation estimation
scenarios, the color of object and background does not change drastically during a
sequences of images. Then, the assumptions made to compute the transition index
are consistent for the most standard scenarios. As mentioned before, only planar 3D
contours are considered for this initial approach. The computation of the transition
index for projected non-planar and surface models will be discussed in the next
chapter where extra considerations are made for those cases.

4.4.2 Contour Segmentation

As mentioned in section 4.2, semi-local features are computed from model and im-
age contour segments which describe their average local orientation and curvature.
Although these features are not invariant in a monocular pose estimation scenario,
they can be used to classify contour segments according to their structure. In this
case, contour segments can be classified in straight, concave or convex segments
[34, 69]. Since 3D planar contour models are considered, it can be assumed that the
projection of a 3D straight segment results in a 2D straight segment. The same is
assumed for concave and convex segments. This is valid for a relatively large num-
ber of poses except in the case that the contour model is perpendicular to the image
plane. Therefore, the semi-local structure of models is preserved after the perspec-
tive projection under this assumption. In order to perform the contour classification,
the local curvature of contour segments is used.

Let us remember that only 3D or projected contour models may be approximated
by twist rotations in order to define the pose estimation constraints (see section 3.4).
Local curvature of contour models is directly obtained from the local motor repre-
sentation introduced in section 3.5.3. According to the pose constraints, there is no
need to compute local motors from image contours. On the other hand, no local cur-
vature is obtained from the monogenic signal response. Then, a simplified method
is applied in order to obtain local curvature from image contours.

The idea of computing the curvature for a point xi and its two neighbors is
shown in figure 4.14. Once that the points are defined in a local coordinate sys-
tem2 constructed by the basis vectors i1 and i3, the curvature is simply defined as
the rate of change of the angle between the vectors xi −xi−1 and xi+1−xi . Then, the
bending angle βi representing the curvature and curvature vector ki are computed

2 Note that this local coordinate system is the same as the one used to define the local motor for
3D contours as described in section 3.5.2.
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Fig. 4.14: Local curvature defined by the bending angle β (left and center) and ex-
tended neighborhood to compute robust features (right).

as follows

βi = arccos
(xi − xi−1) · (xi+1 − xi)

‖(xi − xi−1)‖‖(xi+1 − xi)‖
(4.30)

ki = (xi − xi−1) × (xi+1 − xi). (4.31)

In this case, the curvature vector takes the form ki = x1e1 + x2e2 + x3e3, where x3

changes its sign when the three points correspond to a concave or convex segment.
Based on the bending angle and the sign of x3, the structure index si is defined
according to the criterion

si :=





1 : sign(x3) > 0 ∧ βi > thres

−1 : sign(x3) < 0 ∧ βi > thres

0 : βi ≤ thres,

(4.32)

where thres is a given threshold value. si = 1 means local convexity, while si = −1
stands for local concavity. If the bending angle βi has a value closed to zero, the
point is considered to be a part of a straight line.

An extended feature calculation allows to compute more robust features, espe-
cially in the image plane where noise is present and digital contours are extracted.
As can be seen in figure 4.14, the bending angle and curvature vector are computed
not only from the two neighbor points around xi . This neighborhood is extended
to larger segments of a given range m. By taking the point xi as a reference, the
average feature values are computed as follows:

βi =
1

m

m∑

j=1

arccos
v1 · v2

‖v1‖‖v2‖
(4.33)

ki =
1

m

m∑

j=1

v1 × v2, (4.34)
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with v1 = xi − xi−j and v2 = xi+j − xi .

It is important to select an appropriate range value m to compute the average
features. Examples of the segmentation of the cactus and puzzle models for dif-
ferent range values m are presented in figure 4.15. The contours were extracted
from the test images to visualize the segmentation results. At lower range values,
some points are clearly wrong classified for both models. Several points that are
part of concave or convex segments are classified as straight lines. For range values
around m = 10, the result of the classification shows better results. At larger ranges
(m = 20), some straight line segments of the cactus model are classified as con-
cave. That means, large range values may cause the lost of the structure of certain
segments.

In the next experiment, the robustness of the segmentation was tested in the
presence of noise. Different levels of Gaussian white noise were added to the ex-
tracted contours. Some examples of noisy contours and their corresponding bend-
ing angle profiles are shown in figure 4.16. The graphics show the distortion of the
bending angle profiles for different levels of noise. The angle β is multiplied by
the factor sign(x3) (this is done to visualize the effect of the conditions sign(x3) > 0
and sign(x3) < 0 of equation (4.33)). Both lines represent the positive and negative
threshold values which determine if a point is considered concave or convex.

The behavior of the classification of noisy contours was analyzed at several range
values. For a given range m, a reference vector sref = {s1 · · · sn} containing the
computed structure indexes without noise is defined according to equation (4.32).
Similarly, a vector containing the noisy classification indexes is defined as sm =
{s1 · · · sn}. This was done for noise levels from σ = 0 to σ = 2. By using the vector
sref as a ground truth, the error is computed as

E (sref , sm) = ‖sref − sm‖2. (4.35)

The results are shown in figure 4.17. As expected, the segmentation is more
sensitive to noise at lower range values for all models. At larger ranges, the error
remains relatively constant for the different noise levels. An adequate range value
for all contour models can be defined between m = 10 and m = 15. Within these
range values, the classification is performed without loosing important structure of
the segments. This simple experiment shows that the presence of noise always adds
a certain level of error in the segmentation. In practice, the same range value must
be used to segment contour models and contours extracted from the image.

4.5 Structural ICP Algorithm

The procedures to obtain compatible local features from contour models and ex-
tracted image contours were presented in the last sections. Image contour segments
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Fig. 4.15: Examples of the contour segmentation procedure. Top row: original im-
ages of the cactus and puzzle. From second to fourth rows: segmented
models for range values m = 5, m = 10 and m = 20 respectively.

and their local feature information are extracted from the monogenic scale space.
On the other hand, compatible features are obtained from contour models. As dis-
cussed in section 4.1, the correspondences are computed in accordance with a given
similarity criterion. Then, a new variant of ICP algorithm is presented in this section.
This variant is called the ”structural iterative closest point algorithm”, see [26]. It is
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Fig. 4.16: Noisy profiles and contour examples for noise levels: sigma=0 (upper),
sigma=0.9 (middle) and sigma=1.9 (lower).

an adapted version of the normal ICP algorithm for the monocular pose estimation
problem, where the local structure of model and image points is combined with the
Euclidean distance to define new correspondence search constraints. Initially, the
structural constraints are defined with the sets of model and image contour features
obtained in the last sections. Finally, the structural ICP algorithm is defined for the
3D-2D and projective pose estimation constraints defined in section 2.5.3.
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Fig. 4.17: Results of the segmentation error experiment for the cactus (upper left
figure), puzzle (upper right figure) and mouse (lower figure).

4.5.1 Structural Constraints

According to the notation introduced in section 4.1, the group of model points in 3D
space is defined as M3D = {Xi}n

i=1. Once that each model point is projected onto the
image plane, the group of projected model points M2D = {xmod

i }n
i=1 is formed. On

the other hand, the group of image detected points is denoted as S2D = {ximg
j }m

i=1.

For every projected model point xmod
i and image point x

img
j , their respective struc-

tural feature sets are defined as

f2Dm
i = {αi , t

x
i , t

y
i ,k

2Dm
i , β2Dm

i } (4.36)

f
2Dp
j = {φj , ‖ r x

j ‖, ‖ r
y
j ‖,k2Dp

j , β2Dp
j }, (4.37)

where the pair (αi,φi) corresponds to the local orientation of model and image points
and the pairs (tx

i , ‖ r x
i ‖), (tyi , ‖ ry

i ‖) denote the phase-transition indexes in x and y

directions. The features related to the semi-local structure of the contour segments

are the curvature vectors ( k2Dm
i , k2Dp

i ) and the bending angles (β2Dm
i , β2Dp

i ).

Based on these features, three main structural constraints are defined for a point
pair (xmod

i ,ximg
j ). The phase-transition index constraint is defined as follows

C1 =





1 if ‖ rx
j ‖= tx

i and ‖ ry
j ‖= t

y
i

0 otherwise.
(4.38)
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The following constraints are defined according to the segmentation criterion
of equation 4.32. The second constraint is called straightness constraint and it is

defined with the local bending angles β2Dm
i and β2Dp

j by

C2 =





1 if β2Dm
i < t and β2Dp

j < t

0 otherwise,
(4.39)

where t is a threshold value that determines if a point is selected as a straight line
(see figure 4.16). Finally, the concavity-convexity constraint is defined from the sign

of the e3 component of the vectors k2Dm
i = x1e1 +x2e2 +x3e3 and k

2Dp
j = y1e1 +y2e2 +

y3e3 (see equation 4.31) by

C3 =





1 if sign(x3) = sign(y3) and C2 = 0

0 otherwise.
(4.40)

Notice that the condition C2 = 0 was added in the last constraint. It simply
ensures that the constraint will be fulfilled only on those cases where the image and
model points are not previously considered to be part of straight segments.

Once that the constraints are defined, their combination with the Euclidean dis-
tance criterion is quite simple and easy to interpret. Then, for each image detected
point x

img
j ∈ S2D , its corresponding model point is found with the combination of

the Euclidean distance and the structural constraints defined as follows

d(ximg
i ,M2D) = min

j=1···n

{
d(ximg

i ,xmod
j )

}
(4.41)

if C1 ∧ (C2|C3) = 1,

where the symbols ∧ and | stand for the ”and” and ”or-exclusive” logical operations
respectively. Only one of the constraints C2 or C3 can be equal to one at the same
time. That means, two corresponding points must be part of a straight line segment
C2 = 1 or part of a concave or convex segment C3 = 1.

The correspondence set {S2D ,M2D} is formed with the last equation. With the
addition of the structural constraints, the correspondence search process is restricted
to subgroups of elements of M2D and S2D with the same structure. Therefore, corre-
sponding points will be the closest points which have the same semi-local structure.

Figure 4.18 shows the general idea of the minimal Euclidean distance criterion
combined with the structural constraints. The upper left figure shows the case
where only the minimal distance is considered. It is evident that many of the cor-
respondence pairs are not well conditioned. In the upper right figure, the same
example is shown with the structural constraints C2 and C3. A similar example is
shown for the cactus model with the phase-transition index constraint C1.
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Fig. 4.18: Example of correspondence pairs for normal (upper left) and structural
(upper right) ICP variants. Correspondence example for the cactus model
by considering only the Euclidean distance (lower left) and with the
phase-transition constraint (lower right). The lines show the correspond-
ing pairs of image and model.

Figure 4.19 shows the result of the segmentation of two artificially generated
contours. The pictures show the segmentation of both contours according to its
structure (concavity, convexity and straightness) as well as the transition indexes in
x and y directions. With this segmentation results, correspondences were found by
combining the Euclidean distance with each constraint C1,C2 and C3. The computed
correspondences with the minimal Euclidean distance criterion are shown in the up-
per left picture of figure 4.20. In the next picture, the correspondences with the com-
bination of the concavity-convexity constraints are shown. For this position of the
contours, the correspondences with C2 and C3 are more similar than the correspon-
dences with the minimal distance criterion. Let us notice that the structure of this
contour is relatively complex. Therefore, the closest point with the same concavity-
convexity structure is not enough to improve significatively the correspondences for
this example. According to the segmented contours shown in figure 4.19, it can be
clearly seen that closest points with the same concave, convex or straight structure
result in bad conditioned correspondences.

The lower left picture of figure 4.20 shows the combination of the minimal dis-
tance with the phase-transition index constraint C1. As mentioned before, the cor-
responding point in this case is the closest point with the same phase and transition
indexes. As can be seen in the example, better conditioned correspondences are
found with the addition of the constraint C1. According to the classification of fig-
ure 4.19, closest points with the same phase and transition indexes tend to be better
conditioned. Finally, the lower right picture shows the correspondences with the
combination of all constraints. This simple example shows the advantage to com-



96 Chapter 4. Structural ICP algorithm

bine all constraints in the correspondence search process.

Fig. 4.19: Upper row: model and image detected contours (left) and result of the seg-
mentation according to the concavity-convexity constraint (right). Lower
row: transition indexes in the x (left) and y directions (right).

Fig. 4.20: Correspondences with the minimal distance criterion (upper left). Corre-
spondences with the combination of minimal distance and the concavity-
convexity constraint (upper right). Combination of minimal distance and
phase-transition index constraints (lower left). Combination of minimal
distance, phase-transition index and concavity-convexity constraints.
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4.5.2 Contour based Structural ICP Algorithm

A correspondence set of image and projected model points C2D = {ximg
i ,xmod

i }n
i=1

is obtained with the combination of the minimal Euclidean distance criterion and
the structural constraints. Although this set has been obtained in the image plane,
the correspondence sets needed to compute the pose according to the minimization
constraints of section 4.1 are directly obtained. The idea is shown in figure 4.21.
Let us remember that the point xmod

i is the projection of the point Xmod
i . Then, a

2D-3D point correspondence set C1 = {ximg
i ,Xmod

i }n
i=1 is directly obtained. With the

corresponding image point x
img
i , an optical ray is computed by Li = e ∧ Oc ∧ x

img
j

and the point-line correspondence set C2 = {Li ,X
mod
i }n

i=1 is defined.

Fig. 4.21: Recovering the 2D-3D point-point and 2D-3D point-line correspondence
sets from the correspondences obtained in the image plane.

Similar to the classical ICP algorithm, the structural ICP variant is summarized
for the different pose estimation scenarios as follows: given the model and image
sets M3D ,S2D and the local features obtained from the image points S2D , repeat for
j = 1 to n iterations

Structural Iterative Closest Point Algorithm.

1. Project the model points M3D onto the image plane to obtain the set M2D and
its corresponding local features.

2. For each point of S2D , find the corresponding projected model point of M2D

with the search criterion of equation (4.41).

3. With the correspondence set C1, compute the pose parameters M with the 2D-
3D constraint

0 = λ

{
ximg − P(MXiM̃)

}
,
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or compute M with the correspondence set C2 and the projective constraint

0 = λ
((

M Xi M̃
)

× Li

)
· e+.

4. Actualize the position of the model points M3D with the computed pose pa-
rameters M.

5. Compute the positional error in the image plane err = d(S2D ,M2D) between
the projection of the model and the image points. If err < thres , exit; else goto
1.

4.5.3 Correspondence Search Direction

The structural ICP algorithm was defined to find correspondences by taking the
image set S2D as a reference with respect to the model set M2D . It is also possible
to find correspondences in the opposite direction [94]. By taking a model point as
a reference, its corresponding image point is found. Then, correspondence sets in
image-model and model-image directions are defined by

d(ximg
i ,M2D) → CI = {ximg

i ,xmod
i } (4.42)

d(xmod
i ,S2D) → CD = {xmod

i ,ximg
i }. (4.43)

Depending on the search direction, different correspondence sets are obtained.
An example is shown in figure 4.22. The fine line represents the detected image
points S2D and the rough line represents the projected model points M2D . Corre-
spondence sets were found as described in the last equations with the combination
of Euclidean distance criteria and structural constraints. As can be seen in the lower
left picture, the correspondence set CI is better conditioned than the set CD shown in
the lower right picture. In practice, it is not possible to determinate if the computed
correspondences will be better conditioned in a specific direction. Therefore, the use
of any of these correspondence sets may not necessary ensure a better behavior of
the algorithm for a given pose scenario. Despite of that, the change of the search di-
rection during the iterations may increase the probability to find better conditioned
correspondences in some cases.

The choice of the correspondence set can be made according to the measured
error err = d(S2D ,M2D). If the error increases with respect to the computed error
of the last iteration, the correspondence set is changed and the pose parameters are
computed again.

4.6 Summary

In this chapter, the structural ICP algorithm was presented for the pose estimation
of planar free-form contours. Sets of compatible model and contour image features
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Fig. 4.22: Upper figure: model contour (rough line) and image contour (fine line).
Lower right: correspondences in image-model direction. Lower left: cor-
respondences in model-image direction.

have been obtained. This compatibility is gained by computing features based on
local orientation and curvature. Since the correspondence problem has been com-
pletely translated onto the image plane, it is possible to use additional structural
features that are only available for image contours. In that sense, the local orienta-
tion of projected model contours was used to find a compatible feature to the image
phase response. On the other hand, contours are classified according to their semi-
local structure in straight, concave and convex segments depending on their average
local curvature. For the case of planar contours, it was assumed that the semi-local
structure is preserved after perspective projection up to some limits. This allowed
to define additional constraints which were used in the definition of the structural
ICP algorithm.

The presented examples consider relatively large displacements between model
and image contours. In this case, the use of the concavity-convexity constraint is
not enough to obtain a significant improvement of the correspondence sets with
respect to the normal ICP algorithm. With the addition of the phase-transition in-
dex constraint, better conditioned correspondence sets are obtained. As mentioned
in section 4.2, the structural features allow to describe contours on a higher level
than the simple Euclidean distance. Then, the probability to find better conditioned
correspondences with the structural constraints increases in comparison to the min-
imal distance criterion. For the structural ICP algorithm, the model objects were
restricted to planar 3D contours. Under some considerations, the structural ICP al-
gorithm can be applied to free-form surfaces as will be shown in the next chapter.
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Chapter 5

CORRELATION ICP ALGORITHM

All variants of the ICP algorithm use the Euclidean distance as main correspondence
search criterion. Therefore, the search process is limited within a region where the
correct correspondence pairs may be found (tracking assumption condition). This
fact implies a natural limitation of the algorithms. Despite of that, better condi-
tioned correspondences are found with the structural ICP algorithm. Furthermore,
it is possible to combine global and local features of model and image contours in or-
der to improve the pose estimation algorithms. As mentioned in the last chapter, the
more information is available about model and image data, the better is the proba-
bility to find better correspondences. If more feature information is used to describe
contour segments, their description level increases as it was discussed in section
4.2. Contour information (spatial 2D or 3D position) is not sufficient to describe the
structure of contour segments and to use this information to improve significatively
the correspondence search problem. A natural way to overcome this problem is to
upgrade the algorithms from contour-based to feature-based approaches. Instead
of considering the position of points, a direct comparison of their local and global
features is done in order to find correspondences.

In this chapter, the correlation based ICP algorithm is presented for the pose es-
timation of free-form surface models. Initially, the silhouette-based pose estimation
algorithm is described. Instead of considering the complete surface model, its 3D
silhouette with respect to the image plane is used to compute features, find cor-
respondences and compute the pose. The correlation matrix is used to define a
similarity measure between model and image feature information. One option is
to combine the Euclidean distance criterion with the feature correlation as an extra
structural constraint. A second variant replaces the Euclidean distance with the cor-
relation measure. In the second part of this chapter, the adaptation of the classical
pre-alignment approaches for the monocular pose estimation is introduced. Finally,
a technique to simplify the pre-alignment is presented. This is achieved by using a
combination of global and local features obtained from projected model information
and extracted image contours.
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5.1 Pose Estimation of Free-form Surface Models

The pose estimation constraints for free-form surfaces have been defined in section
3.4. However, suitable model-image correspondences must be found in order to
define these pose estimation constraints. A typical pose estimation example of a
free-form surface is shown in figure 5.1. Surface models are more complex than free-
form contours. As can be seen in the right picture of the figure, all surface points are
projected onto the image containing all detected edge points. Trying to find suitable
image-model correspondences is not a trivial task if only the position of surface
model and image points is available. Notice that the edge points corresponding
to the contour of the object in the image (middle picture) can be easily extracted.
Then, the correspondence problem can be simplified if the points which define the
silhouette of the surface model are determined.

Fig. 5.1: Surface model of the power socket (left). Captured image (middle). Pro-
jected surface points and detected image contour segments (right).

Instead of considering all surface points, correspondences are found between
image points and the 3D silhouette of the surface model with respect to the image
plane. With this correspondence set, the pose of the complete surface model is com-
puted. In this section, the process to extract 3D silhouettes from surface models is
initially described. Finally, the ”silhouette-based ICP algorithm” see [89], is intro-
duced.

5.1.1 Silhouette Extraction

A surface model can be interpreted as a set of 3D free-form contours. In that sense,
the external 3D contour of the surface with respect to the image plane is known as
3D silhouette. Figure 5.2 shows an example of a surface model in 3D space and its
projection onto the image plane. As can be seen in the figure, only the node points
of the surface are part of the model. The lines that join every node point allow a
better visualization in 3D space or in the image plane. Such lines generate a set of
”virtual” contours. They are called virtual because they are not implicitly part of
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the surface model. In that sense, the marked contour shown in the right picture of
figure 5.2 defines the virtual 2D silhouette SIL2D .

Fig. 5.2: Surface model in 3D space (left) and virtual 2D silhouette defining the con-
tour of the projected model (right).

The group containing all 3D surface model points is defined as M3D and the
corresponding 2D projected points is denoted by M2D . If this virtual silhouette is
used as a reference, the 3D silhouette with respect to the image plane is defined as

SIL3D = {Xi ∈ M3D |P(Xi) ∈ SIL2D}, (5.1)

where the operation P(Xi) stands for the perspective projection of the model point
onto the image plane. The problem of finding the 3D silhouette is reduced to find
the projected surface points which are part of the virtual 2D silhouette SIL2D .

In order to extract the 3D silhouette, the surface model is projected onto a refer-
ence image IMref . For every model point Xi ∈ M3D with coordinates in 3D space
(xi , yi , zi), its corresponding projected point is denoted as xi ∈ M2D with image
coordinates (ui , vi). As can be seen in figure 5.3, every projected model point is
marked on the reference image with a different gray level value. This will serve as
a reference to select only the projected points which are part of the 2D silhouette.
Simultaneously to the projection onto the reference image, the 3D coordinates of
every node point are stored in three 2D arrays Xm×n , Ym×n and Z m×n as follows

X[ui ][vi ] = xi (5.2)

Y [ui ][vi ] = yi

Z[ui ][vi ] = zi ,

where the dimension of the arrays (m, n) is the same as the dimension of the refer-
ence image.

The coordinates of each projected point (ui , vi) define the position in the array
where each 3D coordinate is stored. These arrays can be interpreted as three dif-
ferent images, where the gray value of each point has been replaced by each 3D
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coordinate x , y and z respectively. Once that the model has been completely pro-
jected onto the auxiliary image, a contour search algorithm is applied to the refer-
ence image IMref as can be seen in figure 5.3. This algorithm recovers all points of
the virtual 2D silhouette SIL2D

im . Let us remember that only the marked pixels in this
virtual silhouette are part of the 3D silhouette. As the algorithm follows the contour,
it detects the 2D coordinates of all marked pixels (ui , vi). Since the corresponding
3D coordinates of these points are stored in the arrays, they are directly recovered
from equation (5.2).

Fig. 5.3: Left image: reference image used to detect the 2D virtual silhouette by a
contour search algorithm. Right image: marked pixels which correspond
to the 3D silhouette points.

Several examples of extracted silhouettes for different poses are presented in fig-
ure 5.4. The left column shows the surface model in 3D. At these poses, the surface
model was projected onto the image plane and its corresponding 3D silhouette was
extracted. As can be seen in the middle column, some regions of the surface model
are almost perpendicular to the image plane. Thus, several surface points are pro-
jected onto the same point of the virtual 2D silhouette. Because of that, these points
are also detected as part of the 3D silhouette. In these cases, the extracted silhou-
ette results in an irregular 3D contour. The extracted silhouettes are shown in the
right column of figure 5.4. Let us notice that the power socket model used for this
example is constructed by three different surfaces. Hence, the segments of the sil-
houette belong to different surface parts. For segments of the same surface part, the
sampling distance between silhouette points is in general constant. At points where
the silhouette changes from one to other surface part, the sampling distance is not
regular anymore (see marked points of right column).

5.1.2 Silhouette-Based ICP Algorithm

In this and the next sections, the same notation introduced in sections 4.1 and 4.5.2
will be used. Then, the silhouette based ICP algorithm used in [89] is summarized.
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Fig. 5.4: Examples of the silhouette extraction of a surface model at different poses
(left column) with respect to the camera plane. Projected silhouettes onto
the image plane (middle column). Extracted silhouettes (right column).

Given the set M3D = {Xi}n
i=1 containing all surface model points and the set of

image detected points S2D = {xi}m
i=1, repeat for j = 1 to n iterations

Silhouette-based ICP Algorithm

1. Generate the reference image IMref with the model points M3D and extract the
silhouette points SIL3D .

2. With all image points xi ∈ S2D , define the group S3D = {Li}n
i=1 containing the

reconstructed optical rays Li .

3. For every optical ray Lj ∈ S3D , find its corresponding 3D silhouette point
Xi ∈ SIL3D with the search criterion

d(Lj , SIL3D) = min
i=1,...,n

{
Lj × Xi

}
.

4. With the correspondence pairs {Li ,Xi}n
i=1, find the pose parameters M with
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the 2D-3D minimization constraint

0 = λ
((

M Xi M̃
)

× Li

)
· e+.

5. Actualize the position of the surface model points M3D with the computed
pose parameters M.

6. Compute the average error err = d(S3D , SIL3D) between the reconstructed
optical rays and the silhouette points. If err < thres , exit; else goto 1.

As can be seen in the last algorithm, the pose is computed during the iterations
only with the 3D silhouette. With this pose, the position of the complete surface
model is actualized in the next iterations. Therefore, this algorithm can be inter-
preted as a partial reduction of the pose estimation of free-form surfaces to the pose
estimation of free-form contours.

5.2 Correlation ICP Algorithm

Similar to the case of the correspondence problem for planar contours, the aim is to
find correspondences between projected surface model points and detected image
contours by considering their local features. As described in the last section, the
3D silhouette of the surface model with respect to the image plane is used to find
correspondences and compute the pose with the classical ICP algorithm. Because of
the irregularity of the extracted 3D silhouettes, it is not possible to extract local and
semi-local features as in the case of 3D planar contours. To overcome this problem,
local features are extracted from the projected surface model with respect to its 2D
virtual silhouette. As shown in figure 5.5, this makes possible to compute local and
averaged local features at different description levels as described in section 4.2. Ac-
cording to this description levels, profile vectors containing the feature information
of larger contour segments are defined.

A similarity measure between profile vectors is used to define the correlation
ICP algorithm which is presented in this section. Initially, several examples of local
and semi-local features computed from projected 3D silhouettes and real images are
presented. Then, the idea of using the correlation matrix as similarity criterion and
its application to find correspondences in two possible scenarios are introduced. Fi-
nally, the correlation ICP algorithm is summarized for the pose estimation of surface
models with the 2D-3D and projective minimization constraints.

5.2.1 Feature Computation with the Virtual 2D Silhouette

The extracted 3D silhouette of a surface model is a 3D closed contour which is in
general not planar. Let us consider the example of figure 5.6. In this case, some
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Fig. 5.5: Description level of a projected surface model with respect to its virtual
silhouette.

points of the 3D silhouette are part of a straight line which is perpendicular to the
image plane. Therefore, all these points are projected onto the same point in the
image plane and no local structure can be computed. Similarly, it is also possible
that convex and concave segments would be projected as straight segments. The
same effect can be seen in the extracted silhouettes of figure 5.4. Since the semi-
local structure (convexity, concavity and straightness) is not preserved under the
perspective projection anymore, the assumption made in the last chapter for planar
contours it is not valid for 3D silhouettes.

Fig. 5.6: Lost of structure due to the perspective projection (left). Projected model
points used as a reference on the virtual silhouette (right).

Because of that, it is not possible to compute local and semi-local features di-
rectly from the projected model points. Therefore, some considerations have to be
done to compute compatible image and silhouette features. As mentioned in sec-
tion 5.1, a contour search algorithm is used to detect the projected silhouette points
in the reference image. This algorithm delivers a virtual 2D silhouette SIL2D in the
image plane. Let us remember that the model is defined in such a way that a virtual
silhouette is obtained for every possible pose. On the other hand, every projected
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silhouette point belongs to the virtual silhouette. Instead of computing the local and
semi-local features directly from the projected silhouette points, they are computed
with respect to the virtual silhouette. This idea is shown in figure 5.6. For every
3D silhouette point Xi ∈ SIL3D , a contour segment in the 2D virtual silhouette is
defined as

vi = {xi−n , · · · ,P(Xi), · · · ,xi−n}, xi ∈ SIL2D , (5.3)

where n is the range of the segment and P(Xi) denotes the projection of the silhou-
ette point onto the image plane.

Local and semi-local features can be computed from the segment vi according to
the procedures presented in section 4.4. For a projected 3D silhouette point P(Xi)
and a detected image point xj , the following sets of local features are obtained

Fm
i =

{
αi, t

x
i , t

y
i , s

mod
i

}
(5.4)

F p
j =

{
βj , ‖ rx

j ‖, ‖ ry
j ‖, s img

j

}
, (5.5)

where αi, βj are the local orientations of projected silhouette and image points re-
spectively. The pairs tx

i , ‖ r x
j ‖ and t

y
i , ‖ r

y
j ‖ stand for the transition index and

phase responses in x and y directions respectively. Finally, the structure coefficients
smod
i , s img

j define if projected and image points are part of straight, concave or convex
segments.

In the examples of figure 5.7, the projected silhouette points were segmented ac-
cording to the local structure with respect to the 2D silhouette. The upper row shows
the projected surface model, the segmentation of the points in concave, convex and
straight segments and the transition indexes in x and y directions. A contour ex-
tracted from a real image of the power socket model is shown in the middle row.
The bottom rows shows the segmentation of the image contour and its correspond-
ing phase responses. As can be seen in these examples, computing features with
respect to the 2D silhouette will deliver suitable features. This makes possible to
apply the structural ICP algorithm for the pose estimation of surface models. Addi-
tionally, the local features can be used to define the profile vectors of contour points
needed for the definition of the correlation ICP algorithm.

5.2.2 Correlation as Similarity Criterion

Once that vectors containing local feature information are constructed, it is neces-
sary to have a measure function to define a correspondence search criterion. A well
known technique to find the statistical similarity between two variables is the com-
putation of their correlation matrix. In the case of model and image contour seg-
ments, the correlation measures the similarity of these segments in terms of their
local features. In contrast to the Euclidean distance measure, the correlation coef-
ficient is invariant under linear transformations of the data. Two segments with
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Fig. 5.7: Upper row: segmentation of a projected surface according to its semi-local
structure (left) and transition indexes in x (middle) and y (right) directions.
Middle row: real image of the power socket (left) and its extracted contour
(right). Bottom row: semi-local structure of the image contour (left) and
phase responses in x (middle) and y (right) directions.

identical feature structure, but different magnitude, will have a strong correlation
after rotation and translation in the image plane.

Two profile vectors defined by the local orientation of model points αi and image
contours βi are denoted by

o
img
i = {βi−n, . . . , βi, . . . , βi+n} (5.6)

omod
j = {αi−n, . . . , αi, . . . αi+n} . (5.7)

The similarity of these vectors is computed by the correlation matrix as follows

corr(oimg
i , omod

j ) =
cov(oimg

i , omod
j )√

VimgVmod

, (5.8)

where cov(omod
i , oimg

j ) is the covariance matrix and Vmod , Vimg are the respective vari-
ances of image and model local features. The correlation may vary in a range of
−1 ≤ corr(omod

i , oimg
j ) ≤ 1, where -1 indicates perfect negative correspondence, 0 in-

dicates no correspondence and 1 indicates perfect correspondence. An example of
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two profile vectors containing the local orientation information of contour segments
can be seen in figure 5.8. In the left graphic, the profiles are not strongly correlated,
while in the right graphic the correlation is higher.
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Fig. 5.8: Example of two not correlated (left graphic) and strongly correlated (right
graphic) orientation profiles.

When the semi-local structure of contour segments is computed in the image
plane (concavity, convexity and straightness), the neighborhood around each pro-
jected point is constructed by considering pixels around this point with respect to
the virtual 2D silhouette. In the case of the profile vectors, larger neighborhoods are
used to describe the structure (in terms of the local features) of a projected model
point. The use of larger profile vectors implies that the description level of contour
segments is extended from local features or semi-local structure to a feature struc-
tural description (see section 4.2).

In practice, contour points are sampled every s pixels from the projected model
point to the left and right directions as illustrated in figure figure 5.9. The respective
local features of these sampled points are taken to construct the profile vectors. This
allows to describe larger contour segments without increasing the dimension of the
corresponding profile vectors. Notice that larger profile vectors would increase the
computation times of the correlation matrix. Thus, for an image or projected model
point xi , its profile vector of range n is defined by o = {xi−(ns), · · · ,xi , · · · ,xi−(ns)}.

5.2.3 Correspondence Search Criteria based on Feature

Correlation

The first possibility to use the feature correlation to find correspondences is to com-
bine the Euclidean distance criterion with the correlation measure as an additional
structural constraint. Thus, for an image point x

img
i ∈ S2D with its corresponding

profile vector o
img
i , its corresponding silhouette point xsil

j = P(Xj ) ∈ SIL2D is found
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Fig. 5.9: Range of the neighborhood used for the computation of the semi-local
structure (left) and to define the profile vectors (right).

by the next criterion

d(ximg
i , SIL2D) = min

j=1···n

{
d(ximg

i ,xsil
j )
}

(5.9)

if corr(oimg
i , osil

j ) > thres,

where the vector osil
i denotes the profile vector of the silhouette point xsil

j .

As can be seen in the last equation, the corresponding point will be the closest
point whose correlation measure will be larger than a given threshold value. Sim-
ilar to the normal variants of the ICP algorithm, the main correspondence search
criterion is the Euclidean distance. This variant is useful in pose estimation scenar-
ios where occlusions are present in the image. An example of this pose scenario is
shown in figure 5.10. Under these conditions, several image contour segments have
more similar feature profiles than the model segments. Then, a model point may
have several possible correspondence candidates. Because of that, it is necessary
to include the minimal distance criterion. The last implies that this variant may be
applied for scenarios under tracking assumption conditions until certain limits.

Fig. 5.10: Example of a contour model with occlusions (left) and the extracted image
contour segments (middle). Correspondences by combining Euclidean
distance with the correlation constraint (right).

In the second variant, the Euclidean distance is replaced by the correlation mea-
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sure as follows

corr(oimg
i , SIL2D) = max

j=1,···,n

{
corr(oimg

i , osil
j )
}

(5.10)

if C1 ∧ (C2|C3) = 1,

where the constraints C1, C2 and C3 are the structural constraints defined in section
4.5.1. According to that, two image and silhouette points form a correspondence
pair if the correlation of their respective profile vectors is maximum. Additionally,
it is possible to combine the structural constraints (phase-transition index, straight-
ness, concavity and convexity) with the correspondence measure. Similar to the
case of the structural ICP variant, the addition of these extra features will increase
the probability to find better conditioned correspondence sets.

In the next examples, all correspondence search criteria (minimal distance, struc-
tural and correlation) were compared. Additionally, the correspondences with the
feature invariant ICP algorithm, see [100], are obtained. Each variant was initially
applied to projected 3D contours as shown in figure 5.11. It is evident that the com-
puted correspondences with the minimal distance and the feature invariant criteria
are bad conditioned. The feature invariant ICP algorithm uses the combination of
Euclidean distance plus feature distance d = dE +αd1

f +αd2
f . In this case, the feature

distances d1
f and d2

f are defined by the Euclidean distance measure of vectors con-
taining local curvature and invariant moments respectively. Since these features are
not invariant under perspective projection, the obtained correspondences are still
bad conditioned.

Better correspondences are found with the structural variant. Despite of that,
some correspondences are still bad conditioned. The best correspondences are found
with the correlation criterion. A similar comparison was done to find correspon-
dences between the projected surface model and the image contour of figure 5.12.
The top row shows the correspondences with the minimal distance and feature in-
variant criteria. The correspondences found with the structural and correlation cri-
teria are shown in the bottom row of the figure. As can be seen in the pictures, the
best correspondences are found with the correlation variant.

An important parameter in the definition of the orientation profile vectors is the
range of the neighborhood around each contour point. The correct choice of this
parameter will have a direct effect on the quality of the computed correspondences.
Since the image contour was artificially generated for these examples, the exact cor-
respondences between the projected silhouette points si and image contour points
pi are known. As shown in figure 5.13, a vector containing the positions of the
image contour points p1, p2, p3, . . . , pn is defined as pini = [1, 2, 3, . . . , n]. Accord-
ing to the computed correspondences, the sequence of this points may change to
p1, p3, p2, . . . , pn and the vector containing the new point positions pend = [1, 3, 2, . . . , n]
is defined. Finally, the error in the correspondence set is defined by the Euclidean
distance of these vectors

E(pini ,pend) = ‖pini − pend‖2. (5.11)
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Fig. 5.11: Upper row: correspondences with the Euclidean distance criterion (left)
and with the invariant features variant (right). Lower row: correspon-
dences with the structural (left) and correlation (right) correspondence
search variants.

Fig. 5.12: Correspondences of a surface model and an artificially generated image
contour. Upper row: correspondences with the minimal distance (middle)
and invariant feature criteria (right). Lower row: correspondences with
the structural (left) and correlation variants (right).

The left graphic of figure 5.13 shows the error of the correspondence computa-
tion when the range of the neighborhood was varied from 0 to 40 points. It can be
clearly seen that the error is considerably reduced for range values larger than 20
pixels. In the next experiment, different levels of gaussian noise were added to the
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contour points coordinates. The correspondences were computed with profile vec-
tors of ranges 20 and 30 points respectively. The result of this experiment is shown
in the right graphic of figure 5.13. Larger variations of the error are obtained for
smaller range values. Although larger range values would increase the robustness
against noise, the computation time of the correspondence would be also increased.
From the results of both experiments, it can be concluded that the optimal range
values to define the profile vectors are between 20 and 30 points.
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Fig. 5.13: Construction of the vectors for the computation of the correspondence
error (upper figure), correspondence error for range values from 0 to 40
points (lower left figure) and correspondence error in the presence of
Gaussian noise (lower right figure).

5.2.4 Silhouette-based Correlation ICP Algorithm

Once that the feature computation with respect to the virtual silhouette and the
correlation search criterion have been described, the correlation ICP algorithm is
summarized for the 3D-2D point-line and projective point-point minimization con-
straints of section 2.5.3. Similar to the silhouette-based ICP algorithm presented in
section 5.1.2, the sets M3D = {Xi}n

i=1 and S2D = {xi}m
i=1 containing surface and im-

age detected points are defined as input of the algorithm. The local features of the
image points are computed and the set containing their respective profile vectors
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Vimg = {oimg
j }n

j=1 is defined. If the point-line minimization constraint is used, the set
containing the reconstructed optical rays Li from every image point is defined by
S3D = {Li}n

i=1. For j = 1 to n iterations the following steps are repeated:

Silhouette-based Correlation ICP Algorithm

1. Extract the 3D silhouette SIL3D ∈ M3D and the virtual silhouette SIL2D .

2. Compute the local features of the projected silhouette points P(Xi) with re-
spect to SIL2D and define the set of profile vectors Vsil = {osil

i }n
i=1.

3. For every image point xj ∈ S2D with profile vector o
img
i ∈ Vimg , find its corre-

sponding projected silhouette point P(Xi) with the search criterion

corr(oimg
i ,Vsil) = max

j=1,···,n

{
corr(oimg

i , osil
j )
}
,

and define the correspondence sets {Li ,Xi}n
i=1 or {xi ,Xi}n

i=1.

4. With the defined correspondence sets, find the pose parameters M with the
2D-3D minimization constraint

0 = λ
((

M Xi M̃
)

× Li

)
· e+

or with the projective pose minimization constraint

0 = λ

{
xi − P(MXiM̃)

}
.

5. Actualize the position of the surface model points M3D with the computed
pose parameters M.

6. Compute the average error err = d(S2D , SIL2D) between image points and
silhouette points. If err < thres , exit; else goto 1.

5.3 Pre-Alignment of 3D Surfaces

Pre-alignment approaches are commonly used in the context of 3D surface registra-
tion problems. Sensor information is matched to a model object by applying variants
of the classical ICP algorithm in most of the cases. If the distance between sensor
and model data is too large, the ICP algorithm can not be applied anymore. In this
case, the problem is divided in two steps. First, a rough approximation of the pose
is computed by aligning model and sensor data in 3D space. Once that model and
sensor data are aligned, the classical ICP algorithm can be applied to find the exact
pose. The last implies that a pre-alignment step is used to gain tracking assump-
tion conditions in order to ensure the computation of the real pose by applying the
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ICP algorithm. In practice, the computation of the pre-alignment and the exact pose
imply the estimation of two rigid body motions by two minimization processes.

When a pre-alignment approach is needed, global features of model and sensor
data are used. In general, the global orientation and position of a set of 3D points
are defined by its major and minor distribution axes and their respective centers of
mass, see [20]. For specific pose estimation scenarios, thinning algorithms in 3D are
applied to sensor and model points in order to reduce them to a 3D skeleton, see
[78]. The sets of arms and joints defining the skeleton are used to find the needed
correspondences to compute the rough pose.

In this section, the pre-alignment problem for the monocular pose estimation
is introduced. According to the correspondence search strategies and pose estima-
tion constraints defined in this and the last chapters, a variation of the classical pre-
alignment approaches is introduced for the monocular pose estimation of surface
models.

5.3.1 Pre-alignment for the Monocular Pose Estimation

Classical pre-alignment approaches are in general proposed for pose scenarios where
model and sensor data are defined in 3D space. For the monocular pose estimation
problem, some considerations must be done to apply these approaches. Let us re-
member that 3D-2D and projective pose minimization constraints are available. On
the other hand, the correspondence search problem for contour and surface models
can be solved in 3D space or in the image plane. Similarly, finding correspondences
to perform the pre-alignment can be done either in 3D space or in the image plane.

The first variant is shown in figure 5.14. In this case, it is assumed that the major
and minor distribution axes of the model in 3D space are known. Similarly, the main
orientation axes of the detected image contour are obtained. Then, a plane Pm is re-
constructed from the image major axis as it is shown in the figure. The rough pose
is computed by aligning the model major axis to its corresponding reconstructed
plane. Correspondence pairs are formed between points lying along the main axis
of the model and the plane Pm . With this set, a 3D point-plane minimization con-
straint can be applied to compute the rough pose, see [87]. If only the major axis is
aligned, the pre-alignment is computed with certain uncertainty. Let us remember
that normal pre-alignment approaches align three distribution axes in 3D. Never-
theless, this is not possible for the monocular pose estimation problem since only
two axes are obtained from the image plane. If the minor axis of the image contour
is also considered to reconstruct a second plane, a better alignment is obtained.

The pre-alignment can be also done in the image plane. The main idea is shown
in figure 5.15. Once that the 3D silhouette of the surface is projected onto the image
plane, its main axes are obtained. Similar to the pre-alignment in 3D space, the
rough pose is computed by the alignment of the image and silhouette main axes. In
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Fig. 5.14: Alignment in 3D space. The model is aligned to a plane which is recon-
structed from the image.

this case, 2D point-point correspondences are defined with points along both axes.
Finally, the rough pose is computed by the projective pose estimation constraints.

Fig. 5.15: Alignment in the image plane. The model is projected onto the image
plane, where a 2D alignment is performed.

In both cases, the pre-alignment is done with respect to projected or extracted
data from the image plane. In consequence, the computed motor Mr = exp

(
−θ

2
L
)

describing the rough pose is formed by rotation and translation with respect to the
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image plane. As can be seen in figure 5.16, the rotation axis of the motor L is per-
pendicular to the image plane. On the other hand, the translational component of
the motor is parallel to the image plane.

Fig. 5.16: Rotation axis and translation vector of the computed rough pose with re-
spect to the image plane (left) and different positions of the camera with
respect to the 3D surface model (right).

When the surface model moves parallel to the image plane, the result of the
alignment with respect to the image may be better conditioned. To clarify that, let
us suppose that the surface moves within a plane P as shown in the right picture of
figure 5.16. At the camera position C1, the computed rough pose results in a rigid
body motion around the rotation axis L1 which is perpendicular to image plane and
to the plane P. At this position, the rough pose corresponds to the real movement
of the surface model as long as the model is within the view range of the camera. At
the position C2, the model is aligned by a rotation around the axis L2. This rotation
aligns the main axes of the model with the main axes of the image contour. Never-
theless, it rotates the surface model outside of the plane P . Therefore, the computed
alignment does not correspond to the real movement of the surface anymore.

Let us remember that it is only possible to reconstruct planes from the image or to
project the silhouette onto the image plane. Both cases imply that the pre-alignment
is done with respect to only two orientation axes. Therefore, the pre-alignment for
the monocular pose estimation is performed with larger uncertainty than the pre-
alignment in 3D space.

5.4 Feature Alignment in the Image Plane

As it was already mentioned in the last section, the pose estimation problem is di-
vided in two steps for larger model displacements. In both steps, correspondences
must be determined by a given strategy. Similarly, different pose minimization con-
straints must be applied for each step. Then, the pose estimation algorithm must
switch between the pre-alignment and the fine pose estimation. Although this may
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not directly imply a loss of quality of the computed pose, it is desirable to use
only one pose estimation constraint. In this section, a strategy to simplify the pre-
alignment computation is presented. In a first instance, the pre-alignment algorithm
is reduced to one single iteration by constructing exact correspondences from pro-
jected silhouette points. This is done by considering the global position and orienta-
tion of contours in the image plane derived from the extracted distribution axes, see
section 3.3.4. Finally, the correlation correspondence search criterion is combined
with this global orientation in order to simplify the pre-alignment problem to a 2D
feature alignment.

5.4.1 Exact Correspondences for Pre-alignment

For projected silhouette points M2D and image points S2D , the following global
features are obtained

Gsil =
{
θsil ,msil

}
(5.12)

G img =
{
θimg ,mimg

}
, (5.13)

with the global orientation angles of the projected silhouette and the image contour
denoted as θsil and θimg respectively. The global positions are defined by the respec-
tive centers of mass msil and mimg . With this set of global features, the angle φ is
defined as the difference of the projected silhouette and image contour orientations.
On the other hand, the translation vector tr is defined with the respective centers of
mass.

The first step in order to simplify the pre-alignment computation is to reduce
the number of iterations needed to compute the rough pose. As it was discussed in
section 4.1.1, only one iteration is needed to compute the pose if an exact correspon-
dence set is available. To achieve that, the projected silhouette points are simply
rotated with respect to the image plane by the angle φ and translated by the vector
tr . This is done for all projected points xi ∈ M2D as

x′
i = T(φ, tr)xi , (5.14)

where the transformation T(φ, tr) is defined by a homogeneous matrix represent-
ing a combined rotation and translation in the image plane. As shown in figure
5.17, the correspondence set is directly formed with the points {xi ,x

′
i} in the image

plane. Then, the rough pose can be computed with one of the pose minimization
constraints described in the last chapters.

Some examples of the pre-alignment with exact correspondences are presented
in figure 5.18. The left column shows the initial position of the projected surface
model and the detected image contour. The pictures also show the extracted main
orientation axes. As can be seen in the middle column, each silhouette point is
rotated and translated to define the exact correspondences. The computed rough
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Fig. 5.17: Exact correspondence set for a projected surface model.

Fig. 5.18: Left column: initial position of the surface model with respect to the de-
tected image contour. Middle column: sets of exact correspondences.
Right column: computed rough pose.

pose is shown in the right column. It turned out that the rough pose computed
with exact correspondences is practically the same as the pose computed by the
alignment of the main axes with the approaches described in section 5.3. There is no
significant difference between these variants for the presented examples. Despite of
that, the pre-alignment computation has been reduced to only one iteration.
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5.4.2 Local Orientation Alignment

The idea of the 2D orientation alignment is similar to that of the procedure described
in the last section. This can be seen in figure 5.19, where the dotted object represents
the projected surface model and the solid object is the detected contour in the image.
Once that the corresponding main axes are computed, the 2D transformation matrix
of equation (5.14) is defined with the global positions and orientations {mmod , θmod}
and {mimg , θimg}. Instead of using an exact set of correspondences, the projected
silhouette points xi are aligned (rotated and translated in 2D) by the matrix T(φ, tr).
With the aligned points x′

i , the local orientation is computed and a set of aligned
orientation profile vectors osil is defined. Finally, the correlation criterion of equation
(5.10) is applied with the aligned profile vectors as

corr(oimg
i , SIL3D) = max

j=1,···,n

{
corr(oimg

i , osil
j )
}
. (5.15)

Fig. 5.19: 2D feature alignment based on the difference of global orientation angles
and position in the image plane.

A comparison of the computed correspondences with the simple correlation cri-
terion and with the feature alignment is shown in the top row of figure 5.20. The
effect of the alignment in the orientation profiles can be seen in figure 5.21. In the
graphic of the left, the superposition of silhouette and image orientation profiles is
shown. If only the correlation criterion is applied, the computed correspondences
are bad conditioned and in some cases are completely wrong. When the projected
silhouette points are aligned, the orientation profiles are globally more similar (see
right graphic of figure 5.21). Therefore, a better conditioned correspondence set is
obtained. Finally, the computed rough poses with exact correspondences and with
the feature alignment are shown in the lower row of figure 5.20. It can be clearly
seen that a better rough pose is obtained with the orientation alignment.

In contrast to the classical pre-alignment approaches, the rotation and transla-
tion components of the transformation matrix T(φ, tr) are directly computed from
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Fig. 5.20: Examples of correspondences between an object model and an image con-
tour. Upper row: initial position of the surface model and image con-
tour (left), correspondences with the simple correlation criterion (middle)
and correspondences with aligned orientation profiles (right). Lower row:
alignment results with exact correspondences (middle) and with aligned
orientation profiles (right).
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Fig. 5.21: Orientation profiles of two corresponding points with simple correlation
(left) and with aligned orientation profiles (right).

the global orientation and position differences. In this approach, the pre-alignment
is done only for the first iteration of the correlation ICP algorithm. Then, there is
no need to switch to a different pose estimation constraint as done by the classical
pre-alignment variants described in section 5.3. Conceptually, this approach can be
considered as a combination of local and global features to solve the correspondence
search problem.
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5.5 Summary

In this chapter, the correlation based ICP algorithm was presented for the pose es-
timation of free-form surfaces. Instead of using the complete surface model, only
the extracted 3D silhouette is considered. As a consequence, the pose estimation of
free-form surfaces is reduced to the pose estimation of free-form contours for each
iteration of the algorithm. A virtual 2D silhouette is generated for the visualiza-
tion of the surface in the image plane and it is used for the silhouette extraction
process. Since the global and local features are computed with respect to this vir-
tual silhouette, it is possible to apply the structural and correlation ICP algorithms
for non-planar free-form 3D contours and consequently for free-form surfaces. The
minimal Euclidean distance search criterion of the classical variants of the ICP algo-
rithm has been replaced with a feature correlation measure. A direct consequence
of the use of the feature correlation is that better correspondence sets are obtained.
Therefore, a better pose is computed in comparison to the normal ICP algorithm.

For cases where the tracking assumption is not considered, the pre-alignment
problem for the monocular pose estimation was discussed. Global position and ori-
entation features of projected silhouette and detected image contours were com-
bined with local orientation information to simplify the pre-alignment step. To
achieve that, a direct 2D feature alignment is done for the first iteration of the cor-
relation ICP algorithm. This has the advantage that better correspondence sets are
obtained also in the cases where a pre-alignment step is needed. In contrast to the
classical pre-alignment approaches, no extra pose estimation algorithm is needed to
compute the pre-alignment.
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Chapter 6

EXPERIMENTS

So far the local model representations for 3D free-form contours and surfaces have
been discussed. The global and local feature extraction procedures were introduced
and finally, the proposed variants of the ICP algorithm were presented. In this chap-
ter, several experiments to analyze the main properties of the pose estimation algo-
rithms in a monocular pose estimation scenario are presented. Initially, the exper-
imental setup used to generate a ground truth pose and artificial images for the
different tests is presented. Then, the structural and correlation ICP algorithms are
compared with the classical ICP algorithm. The behavior of the pose estimation al-
gorithms during the iterative process and their robustness are analyzed for image
sequences of different contour and surface models. An experiment of a pose sce-
nario is presented where the camera is mounted on a robot arm. In this case, the
purpose is to recover the position of the camera as it moves around the object. In a
further experiment, the 2D pre-alignment approach is compared with the classical
pre-alignment approaches for cases where the tracking assumption is not consid-
ered. Finally, examples of the application of the proposed algorithms to sequences
of real images are presented.

6.1 Experimental Setup to Generate Artificial Images

In order to perform an analysis and a suitable comparison of the behavior of the
proposed ICP algorithms, a ground truth pose must be generated. If the object and
camera models are known, a synthetic image of the object in any desired position
and environment can be created. Since only contour-based features are needed for
the proposed variants of the ICP algorithm, the generation of an image where con-
tour information can be extracted will be sufficient to perform representative exper-
iments. Several contour and surface models with different characteristics and sizes
have been used for the experiments as shown in figure 6.1. Models relatively rich
in structure are used. For example, the cactus and planar puzzle models consist of
several concave, convex and straight segments. On the other hand, contour mod-
els with less structure are also considered, e.g. the mouse model. The triangle and
house models are defined by a single surface, while the power socket, motor part
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and 3D puzzle models are defined by several surfaces.

The idea of generating a ground truth pose in 3D can be seen in figure 6.1. Once
that the main distribution axes are extracted from the different contour and surface
models, twist rotations are defined around each axis as well as translations along
them. Then, the ground truth pose is defined as a combination of twist rotations
and it is applied to the model. At this actual position, the model is projected onto
the image plane to generate artificial images as shown in figure 6.2. Notice that
these images allow to apply the monogenic scale space approaches described in
section 4.3.1 in order to extract local image features. Therefore, it is possible to apply
the structural or correlation ICP algorithms with these artificially generated images.
Finally, the computed pose is compared with the ground truth for each iteration and
at the end of the pose estimation algorithm. This allows to analyze the convergence
behavior and the quality of the final pose.

Fig. 6.1: Upper row: examples of contour models (cactus, puzzle and mouse). Mid-
dle row: examples of surface models (triangle, motor part, power socket,
house and 3D puzzle). Lower row: setup for the experiments to generate
the ground truth poses (rotation plus rotation).

6.2 Comparisons With the Classical ICP Algorithm

In this section, the experimental results regarding convergence behavior and robust-
ness against the tracking assumption are presented. In a first instance, the computa-
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Fig. 6.2: Examples of artificially generated images of a contour model (left image)
and a surface (right image) model.

tion of the pose is analyzed for bad-conditioned correspondence sets when different
pose estimation constraints are used. The structural ICP variant was compared with
the classical ICP algorithm for the case of 3D free-form contour models. Similarly,
the convergence and robustness of the correlation ICP algorithm are analyzed for
the case of 3D surface models. Finally, experiments showing the robustness of these
algorithms in the presence of noise and missing contours are presented.

6.2.1 Pose under Bad-conditioned Correspondences

This first experiment shows the behavior of the different pose estimation constraints
introduced in the last chapters for the case of bad-conditioned correspondences. The
two principal pose estimation algorithms described in section 2.5.3 were compared:
the 2D-3D [93] (minimization in 3D space) and projective constraints [4] (minimiza-
tion in the image plane). Additionally, the pose estimation algorithm called ”or-
thogonal iteration” algorithm [71] was considered. Instead of the gradient decent
methods used by the other variants, this algorithm performs a minimization in 3D
space based on a singular value decomposition (SVD). The setup of this experiment
is shown in figure 6.3. Initially, the pose was computed with a set of exact corre-
spondences. Then, random false correspondences were added to the set as can be
seen in the top row of figure 6.3. The pose was computed with the different pose
constraints without searching the correct correspondences during the iterations.

The graphics show that the error of the pose increases as more bad-conditioned
correspondences are added to the set. According to the graphics, the orthogonal
iteration algorithm is more sensitive to bad correspondences in comparison with
the other algorithms. On the other hand, the 2D-3D and projective constraints are
less sensitive to bad correspondences. In both graphics, the absolute error of the
projective constraint is smaller than the error computed with the 2D-3D variant.
These results show that the minimization in the image plane is more robust against
bad-conditioned correspondences than the other variants.
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Fig. 6.3: Upper figures: examples of the generated bad-conditioned correspon-
dences of the cactus model. Lower figures: comparison of the computed
pose for the different pose estimation algorithms for the cactus (left) and
puzzle (right) models.

As discussed in section 2.5.4, the motor M ∈ G4,1 expressing the rigid body mo-
tion is approximated by its Taylor series power expansion in order to define linear
equations with respect to the motor parameters. According to that, a linear system
of equations of the form Ax = y is obtained, where the vector x contains the pose
parameters. In the case of the 2D-3D pose constraint, the pose parameters are found
by minimizing a 3D point-line error measure. According to the linearized equations,
see [87], the dimension of the matrix A increases in three additional rows for every
correspondence pair. For the projective variant, a 2D point-point error measure in
the image plane is used. Therefore, the dimension of A increases only two rows
for every correspondence pair, see [4]. With the same number of correspondences,
the dimension of the linear system derived with the 2D-3D constraint is larger than
the one of the projective constraint. Numerical solutions of linear systems based
on standard approaches of like Householder or QR decomposition methods [47] are
able to solve systems of higher dimensions in a proper and stable way. Despite of
that, these approaches are more sensitive to numerical errors as the dimension of
the system increases.

Let us remember that the algorithm converges to a local minimum in the pres-
ence of bad-conditioned correspondences. As the linear system is defined, each
bad-conditioned correspondence implies that bad-conditioned rows are also added
to the matrix A and to the vector y. For the same number of bad-conditioned corre-
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spondences, a reduced number of bad-conditioned rows are added to A in the case
of the projective constraint (two instead of three for the 2D-3D constraint). In conse-
quence, the uncertainty in the pose computation is smaller with the projective pose
estimation constraints.

6.2.2 Convergence Behavior

In the sequence of images of figure 6.4, the convergence behavior of the classical ICP
algorithm is compared with the structural variant. Each image shows the result-
ing pose and the correspondence pairs (denoted by the lines) for certain iterations.
The normal variants of the ICP algorithm consider only the Euclidean distance as
correspondence search criterion. Thus, many bad-conditioned correspondences are
found in the first iterations and therefore the convergence is slower. In some cases,
the algorithm does not converge at all. The structural variant also considers semi-
local features (concavity, convexity and phase-transition index) as extra correspon-
dence search criteria, see section 4.5.1. Although some bad-correspondences are also
found in the first iterations, the use of the structural constraints increases the prob-
ability to find better conditioned correspondences during the iterations. Therefore,
the convergence rate of the algorithm is increased in every iteration.

Fig. 6.4: Convergence sequence for normal (first and third rows) and structural (sec-
ond and fourth rows) ICP variants applied to the cactus model.

The same comparison was made for the case of surface models. In the sequences
of figure 6.5, an example of the convergence is presented when the displacement of
the model and image data is not large. In this case, the initial position of the model
is denoted by the gray surface and the ground truth by the dark surface. As can
be seen in the example, the normal ICP algorithm does not converges to the correct
pose. On the other hand, the structural ICP algorithm converges to the correct pose.
The same behavior can be observed for the 3D puzzle model, although it has a more
complex structure than the power socket model. For the presented examples, the
ICP algorithm does not converge even if the pose is computed for a larger number
of iterations. It can be considered that the tracking assumption is not met for these
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examples. Then, the structural ICP algorithm is more robust against the tracking
assumption than the normal ICP.

Fig. 6.5: Convergence sequence for normal (top row) and structural (bottom row)
ICP variants applied to surface models.

A quantitative comparison of the convergence behavior can be seen in figure
6.6. For these experiments, a rotation around the axis perpendicular to the planar
contour was defined. Then, the ground truth pose was defined by a rotation around
this axis. The ground truth was defined small enough to ensure that both variants
of the ICP algorithm converge to the real pose. Once that the correspondence sets
were found, the pose was computed with two different pose estimation algorithms:
the 2D-3D [93] and projective [4] ones.

The graphics show the absolute error of the computed pose for every iteration
when the correspondence search directions defined in section 4.5.3 are used: model
to image, image to model and combined search. The error was measured by com-
puting the average Euclidean distance in 3D between the model points at the ground
truth position and the model position for every iteration. The graphics of the left
column show the results for the 2D-3D minimization approach, while the results
for the projective algorithm are shown in the right column. As expected from the
experiments of the last section, the computed pose errors are in general smaller for
the projective algorithm. The structural ICP algorithm improves the convergence
behavior of the algorithms. Less iterations are needed for the algorithm to converge
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Fig. 6.6: Comparison of the convergence behavior for the 2D-3D algorithm (left col-
umn) and for the projective algorithm (right column).

to the real pose than the classical ICP variant. As can be seen in the graphics, the
convergence during the iterations differs depending on the correspondence search
direction (model to picture or vice versa). For a given direction, the correspondence
search may be better or worse conditioned. The graphics of the lower row show the
comparison when the search direction is switched for every iteration.

An interesting effect can be seen in the example of combined search directions
for the 2D-3D algorithm. For the third iteration, the correspondence search is bad-
conditioned and therefore the pose error increases with respect to the previous iter-
ation. In the next iteration, the search direction is changed. Better conditioned cor-
respondences are found and the error decreases. If the search direction is switched,
a better convergence behavior can be achieved for both ICP variants and both pose
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estimation algorithms. Nevertheless, the structural ICP variant still shows a better
performance.

In the next experiment, the convergence behavior of the correlation ICP algo-
rithm was compared against the classical and structural variants for the case of sur-
face models. It was already shown that the projective algorithm delivers a better
pose than the other variants. Then, only this variant is considered for this exper-
iment. At the initial position of the surface model, its main orientation axes were
extracted in 3D. Each one defines the rotation axes α, β and γ as can be seen in
figure 6.1. The model was rotated by −30 degrees around the γ axis to generate
the ground truth pose. In this new position, the corresponding artificial image was
generated and the pose was computed with the three variants of the ICP algorithm.
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Fig. 6.7: Convergence behavior comparison for the power socket (left) and motor
part (right) models.

The graphics of figure 6.7 show a comparison of the convergence behavior for
the motor and power socket models. Because of the rotation around the different
axes, the local structure of the 2D silhouette changes with respect to the initial posi-
tion. For this example, the normal ICP algorithm was not able to converge anymore
to the ground truth pose as can be seen in the graphics. In contrast to that, the struc-
tural ICP algorithm allows to recover the correct pose. Then, the extra structural in-
formation provide enough well-conditioned correspondences during the iterations
to overcome the change of the silhouette caused by the rotation. By considering
the semi-local structure (concavity, convexity and phase-transition index), the cor-
respondences are in general well-conditioned but not very precise. However, the
algorithm needs more iterations depending on the amount of the rotation (around
15 for these examples). On the other hand, the number of iterations needed to con-
verge to the ground truth pose is significatively reduced with the correlation ICP
algorithm (around 7 iterations). If the orientation profiles of contour segments are
considered, better correspondences are found during all iterations and the algorithm
converges faster than the structural ICP variant.
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6.2.3 Tracking Assumption

The next experiments were made to test the robustness of the new ICP algorithms
against the tracking assumption. Different tests have been done to compare the con-
vergence ranges of the algorithms. That mens, the amount of rotations and trans-
lations with respect to the initial position within which the algorithms are able to
converge to the ground truth pose. In a first instance, the case of pure translations
was tested. As can be seen in figure 6.1, the contour model was translated to all di-
rections in the plane where it is defined. For every position, the absolute pose error
of the classical and structural ICP algorithms was compared. Similar to the conver-
gence experiments, the projective and 2D-3D pose estimation algorithms were used.
The comparison results for the puzzle model are shown in the graphics of figure 6.8.
Analog to the experimental results of the convergence case, the structural ICP algo-
rithm allows larger translations in both x and y directions. This can be observed for
both pose minimization algorithms. Furthermore, the robustness is significatively
improved with the combination of the structural ICP algorithm and the projective
pose estimation.

An interesting effect can be seen in the graphic corresponding to the translation
along the x direction with the projective algorithm. In general, the structural ICP
algorithm allows a larger translation range (up to 40 mm against 12 mm with the
classical ICP). There is an uncertainty region from 40 mm to 74 mm within which
the error of the structural variant is still significatively reduced. Despite of that,
the algorithm does not converges to the correct pose. After 74 mm, the algorithm
tends to converge again. For this region, the semi-local structure is not enough to
generate well-conditioned correspondences and to compute the correct pose. Let us
notice that only one search direction was used for this experiment. One possibility
to avoid such uncertainty regions is to switch the search direction in case that the
error increases during the iterations.

The 2D graphics of figure 6.9 show the convergence regions of the structural ICP
algorithm when translations in all directions are applied. This graphics show that
the convergence region of the algorithm depends on the symmetry of the objects
and on their complexity in terms of their semi-local structure. For the cactus model,
the algorithm is more sensitive to translations in the y direction. This corresponds to
translations in the major axis direction (see figure 6.1), while relatively large trans-
lations are allowed in the x direction (minor axis direction). The same effect can be
seen for the puzzle model. Since both models are larger in their major axis direc-
tions, more segments with the same local structure can be found along them. Model
and image points are initially perfectly aligned. Therefore, the algorithm finds al-
most perfect correspondences for smaller translations. As the model moves along
the major axis, the pose error tends to increase. This uncertainty is smaller along
the minor axis, since there are less points with the same semi-local structure in this
direction. Thus, the convergence region is larger.
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Fig. 6.8: Comparison of the robustness against translations for the contour case with
the 2D-3D (upper graphics) and projective algorithms (bottom graphics).

The puzzle and cactus models are complex objects with enough structure to deal
with relatively large translations. In contrast with these contour models, many seg-
ments of the mouse model have the same local structure. The effect on the con-
vergence region can be seen in the bottom graphic of figure 6.9. Many correspon-
dence pairs found with the structural ICP algorithm are similar to the correspon-
dences found with the normal ICP algorithm. Therefore, the region of convergence
is smaller and more irregular than the one of the other contour objects. Conse-
quently, the error increases considerably for large translations.

In order to test the robustness against rotations, the ground truth pose was gener-
ated by rotating the contour model from zero to 50 degrees around its z axis, which
is the perpendicular axis to the plane in which the contour is defined. As can be
seen in figure 6.10, the pose error with the structural ICP algorithm is minimal for
rotations up to 30 degrees for the 2D-3D algorithm and up to 40 degrees for the pro-
jective one. The convergence regions of the classical ICP algorithm are smaller in
both cases. This shows that the structural ICP variant allows larger model rotations
than the normal ICP.

The last experiment was made to compare the robustness of the correlation ICP
algorithm with the other variants for surface models. In this experiments, the power
socket model was used. If the surface model is translated along the different axes,



6.2. Comparisons With the Classical ICP Algorithm 135

0

50

100

−100
0  

100 
0

5

10

15

Translation in X 
         (mm)

Pose error for the translation case 

Translation inY 
        (mm)         

P
os

e 
er

ro
r 

(m
m

)

0

50

100

−100
0

100
0

5

10

15

Translation in X 
          (mm)

Pose error for the translation case 

Translation in Y 
         (mm)         

P
os

e 
er

ro
r 

(m
m

)

0
20

40
60

80

−50
0

50

50

100

150

Translation in X 
       (mm)    

Pose error for the translation case 

Translation in Y
       (mm)        

P
os

e 
er

ro
r 

(m
m

)

Fig. 6.9: Pose error for the translation case for the cactus model (top left), for the
puzzle model (top right) and for the mouse model (bottom).
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Fig. 6.10: Comparison of the robustness against rotations for the contour case with
the 2D-3D (left) and projective (right) algorithms.

its 2D silhouette does not changes significatively with respect to the image plane.
Thus, similar results as the ones obtained for the contour case can be obtained. As
it was already mentioned in the last chapter, the structure is computed with respect
to the 2D silhouette of the surface model. In the case of a rotation, the 2D silhouette
and its corresponding structure change with respect to the image plane. Because of
that, it is interesting to analyze the ranges (maximal rotation ranges) within which
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the algorithms are able to converge to the ground truth pose. Thus, only the rotation
case is considered for these experiments.
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Fig. 6.11: Setup for the experiment for the 3D surface case with the correlation based
ICP algorithm (upper left). Convergence ranges for rotations around the
α (upper right), β (bottom left) and γ (bottom right) axes.

Figure 6.11 shows the comparison of the convergence ranges for the power socket
model when the classical, structural and correlation ICP algorithms are applied. Ro-
tations from −60 to 60 degrees around the β and γ axes were applied to the model
to generate the ground truth. The rotation range around the α axis goes from −50 to
50 degrees. In the case of rotations around α and γ, the extracted silhouette changes
drastically with respect to the image plane as the angle increases. Therefore, the re-
gion where the algorithms converge is smaller. The β axis is oriented in direction to
the image plane (not exactly perpendicular). Rotations performed around this axis
does not cause larger changes in the model silhouette and therefore, the convergence
region is larger than the other cases.

In general, the classical variant of the ICP algorithm converges for relatively
small rotations around all axes. These results show that the use of the classical ICP
algorithm implies a strong dependence to the tracking assumption in the case of
free-form surfaces. Similar to the results of the 3D contour experiments, the struc-
tural ICP variant shows larger convergence ranges for all cases. An even better per-
formance is achieved with the correlation ICP algorithm. In some cases, the ranges
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are significatively increased as can be seen in the graphic corresponding to the ro-
tation around the γ axis. Although the power socket model is symmetric with re-
spect to its major distribution axis, its projected 2D silhouette is not symmetric in
the image plane. Because of that, the convergence regions in the graphics are not
symmetric for positive and negative rotation angles.

6.3 Pose with Noisy and Missing Contours

The next experiments show the behavior of the different ICP algorithms in the pres-
ence of noisy contours and in the case where incomplete contours are considered.
In order to have a better comparison, the rigid body motion used to generate the
ground truth ensures the convergence of all the variants of the ICP algorithm. As
described in section 5.2.2, a range value of 30 pixels was used to compute the semi-
local features of image contours and projected silhouettes for this experiment. The
same number of points are used to define the profile vectors with a sampling step
of 5 pixels.
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Fig. 6.12: Upper row: power socket model and image contours with different levels
of noise (from right to left σ = 1, σ = 4 and σ = 7 respectively). Lower row:
comparison of the computed pose with noisy contours for the normal,
structural and correlation ICP variants.

Once that the image contours were extracted, Gaussian noise was added as can
be seen in the examples of figure 6.12. Local and semi-local features were extracted
from the noisy contours. By adding Gaussian noise to the contours, the local struc-
ture is evidently distorted. As discussed in section 4.4.2, the robustness against noise
depends on the range of the neighborhood used to compute the features around a
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point. Larger contour segments allow to obtain more robust features and better
correspondences. Therefore, the pose computation is more robust as shown in the
graphic of figure 6.12. The graphic shows that the correlation ICP variant is more
robust against noise than the classical and structural ICP variants. Since larger con-
tour segments are described by the profile vectors, the pose can be computed with
larger levels of noise. In the case of the normal ICP algorithm, the error of the es-
timated pose does not show a larger variation when the level of noise is increased.
The normal ICP algorithm finds the closest image point to every model point with-
out considering the structure. On the other hand, the Gaussian noise distorts all
points in x and y directions. Thus, the algorithm always finds a correspondence
point (a distorted point) relatively close to the real correspondence.

For some pose estimation scenarios, it is not always possible to use the com-
plete contour extracted from the image. For example, when partial occlusions are
present in the image. In these cases, some segments of the detected contour must
be eliminated as outliers. The next experiment was done to test the ability of the
ICP algorithms to compute a correct pose if incomplete contours are considered.
Once that the image contour was extracted, a segment of it was deleted. With the
remaining points, semi-local features and profile vectors were extracted. The pose
was computed with the normal, structural and correlation ICP variants. The results
are shown in figure 6.13 for the power socket and motor part models. Similar to the
results of the experiment with noisy contours, the correct pose can be still recovered
with the structural and correlation ICP algorithms for larger missing segments.
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Fig. 6.13: Results of the missing contour experiment for the power socket (left) and
motor part (right) models.

For points close to the begin and end sections of the partial contour, it is not pos-
sible to consider contour segments of the same length than segments in the middle
section of the contour. The semi-local features and profile vectors must be computed
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from smaller segments. Therefore, the features are less robust in such sections. Be-
cause of that, the difference of the pose error between the structural and correlation
ICP algorithms is quite similar for this experiment.

6.4 Pose with a Robot Arm

In this section, an experiment is presented where the silhouette-based pose estima-
tion algorithm was applied in the case that the camera in mounted on a robot arm.
This experiment was made in order to include the silhouette-based pose estimation
algorithm in the final demonstrator of the VISATEC project. The VISATEC project
(Vision-based Integrated Systems Adaptive to Task and Environment with Cogni-
tive abilities) was developed in collaboration with the Christian Albrechts Univer-
sity of Kiel (Germany), the University Linköping (Sweden) and ISRA Vision System
AG (Germany) (see [103]). The aim of this project was to develop a system with
cognitive capabilities able to recognize objects by using visual information in an
optimal manner depending on the specific task and environment. Several new tech-
niques for feature extraction, object recognition and classification applications were
developed during the project. These new algorithms, as well as all the libraries for
the control of the robot and video cameras, were integrated in the software infras-
tructure PACLlib [82] (Perception Action Libraries).

Fig. 6.14: Scenario of the experiment for the final demonstrator of the VISATEC
project.

As can be seen in figure (6.14), the camera was mounted on the robot arm where
its initial position is known. Initially, the camera was aligned with the world Z axis.
In this position, the camera was calibrated with respect to the world coordinate
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system. All camera parameters were extracted from the calibration matrix (internal
plus external) including the coordinates of the projection center Oc (see [45]). The
object was placed in the origin of the world coordinate system and a sequence of
images was acquired. Notice that the algorithm computes the pose of the object
with respect to the world coordinate system.

For this experiment, the camera was moved around the object with the trajectory
being on a half-sphere (with respect to the world coordinate system). That means,
the camera was initially rotated around the Y axis (pitch rotation) from 0 to 30 de-
grees with a step of 5 degrees. Then, it was rotated around the Z axis (yaw rotation)
from 0 to 360 degrees with the same step width. In this particular case, the camera
moves in the space while the object remains static. In terms of the pose estima-
tion, getting the pose with respect to the camera or the world coordinate system is
an equivalent problem under some considerations. Let us notice that the camera
and end effector move simultaneously. Then, the position of the optical center also
moves describing the trajectory within the half-sphere.
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Fig. 6.15: Pose results for the test done with the motor part sequence. Comparison
of the computed pitch and jaw angles with the ground truth (left column)
and absolute errors for each frame (right column).

The external camera parameters give the orientation and position of the optical
center with respect to the world coordinate system. These parameters define a trans-
formation between the world coordinate system and the camera coordinate system.
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As the pose is computed for each frame, the external parameters must be updated
according to that movement in order to get the new position of the optical center.
Finally, the rotation angles (pitch and yaw) are calculated by decomposing the up-
dated external parameters matrix in its pitch, roll and jaw components. In figure
(6.15), the comparison between the real camera movement and the estimated pose
is shown. The graphics show the real and estimated angles (pitch and yaw respec-
tively) for every frame as well as the absolute error. For this experiment, the mean
errors of the pitch and jaw angles were 1.45 and 1.88 degrees respectively.

In the tested sequences, the camera was rotated by 5 degrees between every
frame. This small rotation step ensures that also the normal ICP algorithm con-
verges to the real pose. However, this will restrict the movements of the robot arm in
a normal application. With the structural and correlation ICP variants, the robot arm
has a larger range of movements (see results of figure 6.7). The errors of the pitch
and jaw angles computed with the silhouette-based algorithm are larger in a range
from 0.6 to 1.3 degrees than the errors reported by the algorithms of the VISATEC
system. The experimental results obtained by the algorithms of the VISATEC project
are the results of the combination of several approaches in a more complex system
with cognitive abilities. Our results show that the quality of the pose computation
is acceptable considering the conditions of the experiment, the size of the tested
objects and the fact that only contour feature information is considered.

6.5 Pre-alignment Experiments

The experiment presented in this section shows the quality of the alignment com-
putation when the correlation ICP algorithm is used to compute a rough pose to get
tracking assumption conditions. In this case, the 2D feature pre-alignment approach
proposed in section 5.4.2 has been compared with the standard pre-alignment algo-
rithm (see [20] and [78]) based on the PCA (Principal Component Analysis). These
approaches have been adapted for the monocular pose estimation problem in order
make suitable comparisons. The set up for this experiment is shown in figure 6.16
for the motor part and power socket models. The model was initially translated and
rotated from 0 to 50 degrees around the γ axis to generate the ground truth pose. As
can be seen in the left column of the figure, this rotation is too large that even the
correlation ICP algorithm does not converge to the correct pose.

As it was discussed in section 5.4.2, only one iteration is needed to compute the
rough pose with the 2D feature alignment. Thus, the computed pose after the first
iteration of the correlation ICP algorithm is compared with the pre-alignment based
on the principal component analysis. The middle column of figure 6.16 shows the
result of the pre-alignment with the PCA approach, while the right column shows
the result with the correlation ICP algorithm. In contrast to the alignment in 3D
space, only two principal axes can be extracted and aligned in the image plane.
This loss of information has the effect that, although the major and minor axes are
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Fig. 6.16: Pre-alignment comparison of PCA and 2D feature alignment. Initial po-
sition (left column), PCA pre-alignment result (middle column) and com-
puted pose after the first iteration of the correlation ICP algorithm (right
column).

Rotation (degree) Absolute error (mm) Major axis difference (degree)

PCA CORR + 2D Align. PCA CORR + 2D Align.

0 14.9172 3.1682 10.2715 1.0845

10 15.8307 3.4555 10.9774 1.1382

20 17.0352 3.4002 11.6436 1.5795

30 18.6300 2.7695 11.8687 1.1854

40 20.5412 6.6615 11.6005 3.9551

50 22.6003 5.2424 11.2610 7.0052

Tab. 6.1: Error comparison for the pre-alignment step (motor part).

roughly aligned, the error in 3D is significantly larger. On the other hand, the com-
bination of the correlation ICP algorithm and the 2D feature alignment results in a
better computation of the pre-alignment. Tables 6.1 and 6.2 show the absolute error
and the difference angle of the major orientation axes in 3D for the motor part and
power pocket models respectively.
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Rotation (degree) Absolute error (mm) Major axis difference (degree)

PCA CORR + 2D Align. PCA CORR + 2D Align.

0 12.4174 6.9135 4.0596 1.5261

10 13.8881 7.2764 2.7424 0.2738

20 14.5451 6.3372 7.0082 1.1097

30 17.0028 6.4017 8.0718 0.8097

40 21.8211 11.5085 3.8095 0.8627

50 26.6258 12.3943 4.2856 2.0066

Tab. 6.2: Error comparison for the pre-alignment step (power socket).

6.6 Experiments on Real Images

In this section, examples of the computed pose with the proposed ICP variants are
presented for real images. In a first instance, experiments on image sequences un-
der the tracking assumption are presented. The correlation ICP algorithm is used to
handle occlusions in the image. With a simple interpolation technique, the computa-
tion of the pose parameters can be improved in cases where more model point than
image points are available. Finally, the result of the pose computed with the struc-
tural and correlation ICP algorithms is presented for sequences of different model
objects.

Different modules were implemented in the platform PAClib (Perception and
Action Libraries, [82]) under C++ in a Linux based system with a 3 Ghz. Pentium
4 processor. Several object oriented libraries were developed to handle and visu-
alize 3D contours and surfaces in the image, for the image processing and feature
extraction. Similarly, libraries were written to find correspondences with the dif-
ferent search criteria presented in this work and to define the pose minimization
constraints. For each image sequence, the camera was calibrated with the pattern
shown in figure 6.17. Six reference points must be manually selected by the user
in order to recover all the corner points of the pattern and to construct the 2D-3D
point correspondences needed for the calibration. The point P2 of the calibration
pattern defines the origin of the world coordinate system. Once that the camera is
calibrated, the initial position of the contour or surface model is defined as shown in
the upper pictures of the figure. For image sequences where the tracking assump-
tion is considered, the computed pose for one image is used as initial position for
the next image. As shown in the examples of figure 6.18, the model displacement
between each frame is small. Then, the classic ICP variant is sufficient in this cases
to compute the pose for the complete sequence.
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Fig. 6.17: Pattern used for the camera calibration and examples of the initial condi-
tions for the sequences (upper pictures). Computed pose for these exam-
ples (lower pictures).

Fig. 6.18: Classical sequences of pose estimation with free-form contours and sur-
faces.

6.6.1 Occlusion under Tracking Assumption

In this section, several experiments to test the pose estimation of free-form contours
with general occlusions in the image are presented. An example of this pose sce-
nario is shown in the upper pictures of figure 6.20. The pictures show the initial
position of the projected mouse model with respect to the real 3D mouse contour. It
is evident that the image contour can not be extracted as a closed contour for these
examples. The local structure of the extracted contour segments corresponds par-
tially to the real contour and to the additional occluding objects. The main difficulty
for this scenario is to decide which segments should be considered as part of the
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model and which ones eliminated as outliers. An example of this scenario can be
seen in figure 6.19 for a syntectic image with an occluding object. If the correspon-
dences are found with the normal ICP algorithm, the only possibility to eliminate
possible outliers is by considering the distance from model to image points. Point
pairs whose Euclidean distance is larger than a certain threshold value can be even-
tually eliminated. Nevertheless, the correct choice of the threshold may be in prac-
tice difficult for these scenarios. A proper threshold can be selected in cases where
the model is nearly aligned to the image contour and the occlusion appears for the
next sequences. For this experiment, the occlusion is present since the beginning of
the sequence and the same initial position is considered for all the images.

Fig. 6.19: Syntectic generated image of the mouse model with an occluding object
(left). Correspondences with the minimal Euclidean distance criterion
(middle). Possible correspondences with the Euclidean distance plus cor-
relation criterion (right).

Due to the large number of possible contour segments in the image, the corre-
spondences are found in directions from the projected model points to the image
points. The Euclidean distance combined with the feature correlation defined in
section 5.2.3 was used as correspondence search criterion. Since it is not possible
to get the complete image contour, smaller segments are considered to define the
profile vectors. An example can be seen in the right image of figure 6.19. As dis-
cussed in section 4.2, the description level of contours decreases if smaller segments
are considered. In consequence, the correspondence search is more dependent on
the tracking assumption.

The result of this experiment can be seen in figure 6.20. The initial position for
some images is shown in the upper row. Some examples of the detected image
segments can be seen in the pictures of the middle row. Only the segments of similar
orientation profiles are considered to form correspondence pairs, while the non-
correlated contour segments are eliminated as outliers. For a given model point,
the closest image point with similar local structure (in terms of the local orientation
profiles) is selected as correspondence pair. Finally, the result of the pose estimation
is presented in the bottom row of figure 6.20. Despite of the amount of occlusion
and the complexity of the occluded objects (e.g. the hand in the right column), the
algorithm is able to find the correct pose.
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Fig. 6.20: The top images show the initial pose, the middle row shows the detected
segments and the bottom row shows the pose results.
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Fig. 6.21: Absolute error in millimeters for the mouse model (left) and the cactus
model (right) while increasing the occlusion rate.

In a further experiment, occlusions were simulated in a syntectic image as shown
in figure 6.19. Once that the correspondences were found, the pose was computed
with the minimization constraints used in the last experiments: 2D-3D [93], projec-
tive [4] and orthogonal iteration [71]. As can be seen in figure 6.21, the 2D-3D and
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orthogonal iteration algorithms have an acceptable error at about 30% of occlusion
for the mouse model and about 20% in case of the cactus model. In cases where
the contour model is rich in structure, it is possible that several segments of the
model have the same orientation profiles than the occluding object. Therefore, the
correspondence search algorithms are more sensitive to errors and they are less ro-
bust against occlusions for the cactus model. Notice that the mouse contains mostly
curved segments. If the occluded object is defined by straight segments, the corre-
spondences can be found more properly. Since the mouse model is poor in structure,
the error is similar for all pose minimization constraints. In contrast to that, the al-
gorithm is more robust with the projective constraint for the cactus model since this
constraint is better conditioned in the image plane.

6.6.2 Pose with Interpolated Model Points

An important factor that affects the quality of the pose parameters in real pose sce-
narios is the number of available image and model points. For a pose scenario simi-
lar to that of the figure 6.20, the size of the extracted contours segments can be larger
than the projected model points. In cases where more image points than model
points are available (most real applications), several image points correspond to a
single model point as can be seen in the upper left picture of figure 6.22. The middle
and right pictures show an example of the computed pose with these correspon-
dence sets for the next iterations. Image and model points are matched with respect
to the image plane during the iterations. Despite of that, the pose converges to a
local minimum region where the computed pose is slightly shifted from the ground
truth.

If the computed pose is decomposed in its corresponding rotation and transla-
tion components, the error becomes more evident that the perceptible error in the
image plane. This can be seen in the comparison presented in table 6.3. To overcome
this effect, it is desirable to have the same number of image and model points to find
the correspondences. Once that an image segment of a given length is extracted, the
respective closest model points are interpolated in the image plane to obtain a seg-
ment of the same length. For every point of this image segment, it is possible to
construct only one correspondence pair with the interpolated model points. Table
6.3 shows the computed pose parameters for the example of figure 6.22. A notori-
ous difference in the pose parameters can be seen for the correspondences without
interpolation, while this error is reduced if interpolated model points are used.

6.6.3 Pose with the Structural and Correlation ICP Algorithms

For the experiments presented in this section, the new variants of the ICP algorithm
are used in combination with the projective minimization constraint. Examples of
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Fig. 6.22: Upper row: correspondences of contour segments without interpolation.
Lower row: examples of correspondences with interpolated model points.

Pose parameters α[◦] β[◦] γ[◦] x[mm] y[mm] z[mm]

Ground truth 10 -10 0 0 0 5

Without interpolation 10.7500 -6.5833 1.4971 -5.1075 -11.7413 14.0040

With interpolation 9.9976 -10.0092 -0.0151 0.1728 -0.1844 5.0172

Tab. 6.3: Comparison of the pose parameters of interpolated and non-interpolated
model points.

the different sequences with the contour and surface models are shown. In contrast
to the sequences where the tracking assumption is considered, the same initial po-
sition of the model is used for all the images. In a first instance, several examples
of the pose estimation of free-form contours with the structural ICP algorithm are
presented. For this examples, the different 3D contour models (puzzle, cactus and
mouse) were used. Images of 230×240 pixels were acquired for these sequences. On
the other hand, the contour models consist of 110, 95 and 90 points for the mouse,
cactus and puzzle model respectively.

Figure 6.23 shows the initial position of the model and the computed pose for the
different sequences. The average computing time per frame was 225 milliseconds
for the image processing module. Due to the relatively large displacement of the
object, more iterations are needed by the algorithm to converge and therefore the
computational time increases. For these image sequences, the average computation
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time (image processing plus pose estimation) was 2.65 seconds.

Fig. 6.23: Upper pictures: initial position of the contour model for all sequences.
Lower pictures: results of the pose estimation.

Examples of the experiments where the correlation criterion is combined with
the 2D feature pre-alignment are shown in figure 6.24 for different surface models.
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Similar to the contour experiments, the initial position of the surface models and the
computed poses can be seen in the figure. In this case, images of 620 × 540 pixels
were acquired for the sequences. In contrast to the 3D contour examples, larger
images were used for these sequences. Examples with the triangle, power socket
and motor part models are presented. The triangle model is defined by one surface
with 612 points. On the other hand, the motor part and power socket models are
defined by two and three surfaces with 369 and 1043 points respectively.

Module Range=30 Range=20 Range=10

Image Processing 92

Sillhouethe Extraction 44

Global Feature 76 23 11

Local Feature 58 41 20

Pose Calculation (10 it) 4739 4430 4149

Tab. 6.4: Computation times for the motor part model.

The computation time was measured when the profile orientation vectors are
defined with ranges of 10, 20 and 30 pixels (see section 5.2.1). The average comput-
ing time per frame for the image processing module (contour extraction, global and
local feature extraction) was 364 milliseconds and the complete pose computation
process (image processing plus pose estimation) was 4.73 seconds for 10 iterations.
The computation times of the different modules for different ranges can be seen in
table 6.4. Let us remember that the image processing and feature extraction of the
image contours are done only once at the beginning of the algorithm. The global fea-
tures are computed only for the first iteration while the local and semi-local features
are computed for all iterations. Real time computation times for each frame are not
reached with the proposed new variants of the ICP algorithm. Despite of that, the
reported times can be considered a good tradeoff considering the robustness of the
algorithms.

In real images, the presence of noise or slight illumination changes may pro-
duce a higher uncertainty in the feature computation and therefore in the corre-
spondences search. In order to eliminate false correspondence points as outliers,
the Euclidean distance criterion defined in [74] is used. Correspondence pairs are
rejected if their point-to-point distance is larger than 2.5 times the standard devia-
tion of the complete correspondence set. A deeper analysis of use of different outlier
elimination criteria is presented in the next chapter, which is the basis for the pose
estimation with partial occlusions.



6.7. Summary 151

6.7 Summary

Experiments to test the properties and robustness of the new variants of the ICP
algorithm were presented in this chapter for the monocular pose estimation. The
experiments were made to test the convergence behavior of the algorithms and
their robustness against the tracking assumption. Additionally, the algorithms were
tested in the presence or noise, missing contours and occlusions. It has been shown
that the presented algorithms perform efficiently for artificial and real pose estima-
tion scenarios. The new variants of the ICP algorithm improve the pose computation
process for the different minimization constraints considered in the experiments.
Furthermore, a better performance is obtained in combination with the projective
pose estimation constraints. Let us remember that the feature extraction process,
correspondence search and minimization constraints are essentially defined in the
image plane. This proves that translating all steps of the pose estimation problem to
the image plane allows to obtain better-conditioned correspondences and therefore
a more robust pose computation.
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Fig. 6.24: Upper pictures: initial position of the surface model for all sequences.
Lower pictures: results of the pose estimation.



Chapter 7

COMBINATION OF THE NEW ICP

VARIANTS

Two new variants of the ICP algorithm have been presented in the last chapters. In
order to find correspondences, local, semi-local and global information have been
combined with the minimal Euclidean distance and maximal correlation criteria.
All these possible variants offer advantages for certain pose estimation scenarios,
e.g. large displacements, general and partial occlusions. From the experiments pre-
sented in the last chapter, it can be concluded that it is not possible to have only one
general correspondence search criterion for all possible pose estimation scenarios.
This statement is valid especially in the case that only contour information is used.

One of the major challenges of tracking and pose estimation applications is to
develop autonomous and robust systems, which have self-adaptation capabilities
at the beginning and during the tracking sequences. Examples of these systems
which use a combination of strategies for the pose estimation problem can be seen
in [59, 80, 83, 84]. Ideally, these systems may be able to perform an automatic initial-
ization and re-initialization of their initial parameters. That means, the system may
be able to choose a proper initial position of the object model at the beginning of the
tracking sequences. Eventually, this initial position can be updated if the tracking is
lost during the sequences. On the other hand, the tracking system may not need the
same correspondence search criterion during all the sequence. Therefore, it is de-
sirable to establish several criteria to define which correspondence search approach
should be used. The same idea can be applied to choose the most appropriate search
criterion also during the iterative process for each single image.

The above cited methods are the combination of several standard and novel tech-
niques based on more complete model objects than free-from contours and surfaces.
Despite of that, it is possible to use these ideas to combine the presented variants
of the ICP algorithm to solve the correspondence problem when only contour in-
formation is available. In this chapter, the combination of the different ICP variants
is presented for the pose estimation of surfaces with partial occlusions when the
tracking assumption is not considered. In a first instance, the combination of the
correlation ICP algorithm with an outlier elimination criterion is introduced. Then,
a pose estimation strategy is presented that selects the most adequate combination
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of correspondence search and outlier elimination criteria. Finally, several experi-
ments with synthetic and real images are shown to test the presented strategies.

7.1 Combination of Correspondence and Outlier Elimination

Criteria

The general concept of the combination of correspondence search and outlier elim-
ination strategies is shown in figure 7.1. By following the notation used in the last
chapters, the sets of projected model M2D and image contour S2D points define
the input of the algorithm. Additionally, the sets Fmod and Fimg correspond to the
model and image features respectively. Additionally to the Euclidean distance C1

and feature correlation criteria C2, the correspondence search criterion C3 based on
a positional feature is defined. Since these variants use local, semi-local or global
features, they deliver different correspondence sets and therefore different poses.
It has been shown in the last chapters that better correspondences are obtained if
more information from model and image contours is used. At the beginning or dur-
ing the image sequence, the algorithm selects the most appropriate search criterion
depending on the initial conditions for a given image.

Fig. 7.1: General concept for the combination of the ICP variants.

Let us consider the case when the tracking assumption is not considered at the
beginning of the algorithm. In this case, the algorithm must decide if a pre-alignment
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step is needed to get tracking assumption conditions. If only contour information
is used, the only possibility to make this decision is by comparing the position and
orientation of the projected model with respect to the contour extracted from the im-
age. Once that the correspondence set is obtained, the next step is to decide if these
correspondences are correct or not. In practice, there is no direct method to evaluate
if a correspondence set is completely correct or not. Despite of that, the Euclidean
distance between model and image points can be used to detect possible outliers.
This outlier elimination criterion is denoted as O1. Additionally, a positional elim-
ination criterion O2 is also considered. It relates two contour points according to
their angular position with respect to the main orientation of the complete contour.
Similar to the correspondence search criteria, the use of O1 or O2 depends on the
initial conditions of the sequence.

In order to define the correspondence search C3 and the outlier elimination cri-
terion O2, a positional feature of contour points is used as can be seen in figure 7.2.
Since the principal axes and centers of mass have been computed from the elliptical
Fourier descriptors (see section 3.3.4), it is possible to describe each contour point by
its angular position. That means, the angle between the principal axis and the vector
formed with the center of mass and the point itself. In fact, the angular position can
be considered as a global feature since it is obtained from the global position and
orientation of the contour.

Fig. 7.2: Angular position of contour points with respect to the major axis (left).
Interval within which the corresponding image point should be defined
(right).

The correspondence search criterion C3 is introduced as follows. For an image
point x

img
i ∈ S2D with angular position θimg

i , its corresponding model point xmod
j ∈

M2D is defined by

ang(ximg
i ,M2D) = min

j=1,···,n
{‖ θimg

i − θmod
j ‖}, (7.1)

where θmod
j denotes the angular position of the model point xmod

j . According to
this criterion, two points correspond to each other if the difference between their
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angular positions is minimal. Eventually, this criterion can be also combined with
the structural constraints defined for the structural ICP algorithm.

Once that a correspondence set {ximg
i ,xmod

i }n
i=1 has been found, the Euclidean

distance is used to select or reject possible correspondence pairs. Then, the outlier
elimination criterion O1 is defined by

d(ximg
i ,xmod

j ) > a(σ), (7.2)

where σ is the standard deviation of the distance of the complete correspondence
set and a is a scaling factor. Correspondence pairs are rejected if their distance is
larger than the standard deviation multiplied by the scaling factor. In practice, this
factor is set between 1 and 2.5, see [74].

Finally, a correspondence pair is rejected by the criterion O2 according to their
respective angular positions θimg

i and θmod
j if the following condition is fulfilled

‖ θimg
i − θmod

j ‖> t, (7.3)

where the value t stands for a threshold value that defines the interval within which
the correct correspondence pair must be defined, seen figure 7.2.

7.2 Pre-alignment With Partial Occlusions

In this section, the combination of the correspondence search and outlier elimina-
tion criteria is applied for the pose estimation problem in the presence of partial
occlusions. Several possibilities to combine the criteria defined in the last section
are defined. Then, experiments are presented to test the behavior of the algorithms
during the iterations and with respect to the final pose.

One drawback of the presented variants of the ICP algorithm is the high sen-
sitivity of the correspondence search process to partial occlusions. An example of
the power socket with an occluded object is shown in figure 7.3. It is clear that this
kind of occlusion distorts the local and global structure of the detected image con-
tour. The additional concave, convex and straight segments cause bad-conditioned
correspondences if the structural ICP algorithm is applied. This correspondences
will not be corrected in the next iterations since there are no model segments that
correspond to the occluded object. An example of correspondences computed with
the correlation ICP algorithm and the 2D feature alignment is shown in the lower
row of the figure. It can be seen that many bad-conditioned correspondences are
found since the profile vectors containing local orientation are distorted. The use of
a simple outlier elimination criterion based on the Euclidean distance is not enough
for the structural and correlation ICP algorithms to handle these occlusions.
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Fig. 7.3: Upper row: examples of partial occlusions of the power socket model and
examples of artificially generated image contours with occlusions. Lower
row: model and detected image contours (right) and correspondences with
the correlation criterion with the 2D feature correlation (right).

7.2.1 Possible Combinations

Several possibilities to combine the presented correlation and outlier elimination
criteria are considered to handle partial occlusions. They are defined as follows

• M0: dist(ximg
i ,M2D) with (S img

i = Smod
j ) and O2.

• M1: corr(oimg
i ,M2D) with (S img

i = Smod
j ) and O1.

• M2: corr(oimg
i ,M2D) with (S img

i = Smod
j ) and O2.

• M3: ang(ximg
i ,M2D).

• M4: ang(ximg
i ,M2D) with (S img

i = Smod
j ) and O1.

• M5: ang(ximg
i ,M2D) with (S img

i = Smod
j ) and O2.

The variant M0 stands for the structural ICP algorithm. The variants M1 and M2
use the correlation search constraint in combination with the structural constraints
defined in section 4.5.1. In order to simplify the notation, the indexes Simg

i and
Smod

j are used to denote the semi-local structure (concavity, convexity, straightness
and phase-transition index) of image and model respectively. Thus, the condition
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S
img
i = Smod

j implies that model and image points have the same semi-local struc-
ture. In order to eliminate correspondences, the variant M1 uses the Euclidean dis-
tance criterion O1 while M0 and M2 use the angular position criterion O2. Only the
angular position is used to find correspondences with the variant M3 without con-
sidering any outlier elimination criterion. Finally, the variants M4 and M5 use the
angular position and local structure to find correspondences in combination with
O1 and O2 respectively.

7.2.2 Experimental Results

The purpose of the next experiments is to determine which one of the combinations
defined in the last section is able to deliver a better pre-aligned pose. Therefore,
only the result of the computed pose after the first iteration is presented in the first
experiment. For these experiments, partial occlusions were simulated in the images
as can be seen in the examples of figure 7.3.

A comparison of the correspondences and computed poses in 3D space is shown
in figure 7.4. The initial and the actual position (ground truth) of the power socket
model are shown in the upper row. In the following rows, correspondences and
computed poses in 3D are shown for the variants M1 to M5. The worst-conditioned
correspondences are obtained with the variant M1 (this variant corresponds to the
correlation search criterion in combination with the 2D feature alignment). There-
fore, the computed pose is completely wrong as can be seen in the figure. A better
pose is computed with the variants M3 and M4. The use of the angular position as
correspondence search criterion (variant M3 without outlier elimination) allows to
find better conditioned correspondences. Although the algorithm does not elimi-
nate the wrong correspondences that are part of the occluded segments, the com-
puted pose is acceptable.

In contrast to the last variants, the correspondences of the occluded segments
are better eliminated with the addition of the angular position as elimination crite-
rion by the variants M2 and M5. Although the variant M2 reduces significatively
the number of correspondences, there are still enough well-conditioned correspon-
dences to compute an acceptable pose. On the other hand, a larger number of corre-
spondences are found by the variant M5 while the correspondences of occluded seg-
ments are better eliminated. Therefore, the best correspondences and pre-alignment
poses have been obtained with the variants M2 and M5. A numerical comparison of
the absolute error in 3D and the difference of the main orientation axes of the surface
model is shown in table 7.1. It can be seen that all variants are able to align the main
axes with an acceptable error rate. Despite of that, the absolute error differs in every
case (let us remember that the alignment is done with respect to the image plane).

Several of the presented variants seem to deliver an acceptable pre-alignment
pose. Despite of that, the convergence behavior may differ if the pose is computed
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Fig. 7.4: Initial and actual position of the surface in 3D (fist row). Computed cor-
respondences in the image plane (second row) and computed pose in 3D
(third row).
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Method Absolute error (mm) Major axis difference (degree)

M1 265.04 38.09

M2 21.75 1.1438

M3 20.4702 0.5980

M4 18.2343 4.7797

M5 7.6833 1.7230

Tab. 7.1: Error comparison of the pre-alignment with occlusions for the different
pre-alignment variants.

for a larger number of iterations. A comparison of the variants M2 to M5 for 10
iterations is shown in figure 7.5. The error computed with the variants M3 and M4
remains relatively constant during the iterations. Although the computed corre-
spondences with the angular position are close to the correct correspondences, the
addition of the structural constraints is not enough to ensure a proper convergence.
In the case of the variant M5, the error is even smaller than the error computed
with the other variants only for the first two iterations. At the third iteration, the
error increases similarly to the other variants. This particular phenomenon appears
depending on the complexity of the object and its position with respect to the im-
age contour. In this case, the angular position and Euclidean distance criteria refer
only to position information. The algorithm may not ensure a stable convergence in
the presence of occlusions if the local structure is not considered by the correspon-
dence search criteria. Therefore, the angular position is a suitable option for the
pre-alignment but it is not necessarily well-conditioned as a correspondence search
criteria for all the algorithm. As can be seen in figure 7.5, the variant M2 (correlation
search criterion plus angular position as outlier elimination) performs better and
more stable during the iterations.

An important parameter that affects the behavior of pose computation is the
range defined by the threshold value t, see equation (7.3). In the next experiment,
the threshold value was varied from 10 to 50 degrees and the pose was computed
for several iterations. The results of this experiment are shown in figure 7.6. If t is
chosen too large, the algorithm does not converge to the real pose. For smaller range
values, a better convergence is achieved. Smaller range values will ensure a better
elimination of the correspondences formed with the occluded contour segments.
On the other hand, the number of correspondences used to compute the pose are
considerably reduced at smaller range values. The right graphic of figure 7.6 shows
the number of correspondences for every iteration. From initially 96 pairs, the num-
ber of correspondences is considerably reduced. As the algorithm converges to the
real pose, the number of correspondences tend to be similar for each case (around
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Fig. 7.5: Convergence of the different variants for the occlusion case.

20 pairs for all cases). In terms of convergence and number of correspondences, an
optimal behavior of the algorithm is achieved with range values between 20 and 30
degrees.
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Fig. 7.6: Left graphic: convergence behavior of the algorithm for the occlusion case
with different range values t. Right graphic: number of correspondences
for each iteration.

7.3 Selective Pose Estimation for Real Images

Once that the different combinations of correspondence search and outlier elimina-
tion criteria have been introduced, a pose estimation strategy that performs a selec-
tive pose estimation is presented in this section. The selection is done depending on
the initial conditions for each frame and the error during the iterations.

In real pose estimation and tracking applications, the choice of a specific variant
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for every possible scenario may be in practice not trivial. Due to large movements of
the objects between every captured image, the feature alignment approach may be
required. In the case of small movements, it may be sufficient to apply the correla-
tion ICP or even the structural ICP variant. Although the correlation search criterion
combined with the angular position as outlier elimination performs more stable, it
may be convenient to switch between the different combinations depending on the
conditions of a particular sequence.

Fig. 7.7: General diagram for the selective pose estimation system.

As can be seen in figure 7.7, the initial error is used to decide which correspon-
dence search criteria must be selected for the first iteration. This initial error is com-
puted in terms of the absolute distance error between the detected image contour
and the 2D silhouette of the model. Similarly, the difference between the extracted
major distribution axes is used as an estimation of the initial error. If this error is
smaller than a given threshold value, the pose can be computed with the structural
ICP variant in combination with the angular position as outlier elimination (M0).
Otherwise, one of the variants combined with the feature pre-alignment should be
used. If a pre-alignment is needed, the most robust variant is initially chosen for the
first iteration (M2).

Depending of the amount of possible occlusions, the variant M2 may not deliver
enough correspondences to find the pose in extreme cases. In this case, a different
variant is selected to find enough correspondences. The order in which the vari-
ants are selected depends on their robustness. As can be seen in the examples of
figure 7.4, better-conditioned correspondences are found with M5, M4 and M3 re-
spectively. In the worst of the cases, the pre-alignment would be computed with the
variant M3 and the error is computed again. This is repeated at least for the first
two iterations to ensure the best possible pre-alignment pose. If the error is smaller
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than the initial pose error, the system switches to the structural variant M0 for the
next iterations.

When occlusions are present, the risk to converge to a local minimum is larger.
Therefore, the error computed in the last iteration elast is compared with the error
of the actual iteration eit. If this error increases, the pose is computed with a more
robust variant combined with a change of the correspondence search direction as
defined in section 4.5.3. In the case that the error increases with respect to the last
error or it remains relatively constat, the algorithm converges to a local minimum.
That means, the initial position of the model is out of the convergence rage that the
structural and correlation ICP variants are able to handle.

7.3.1 Examples of Surfaces with Partial Occlusions

In this section, several examples of the pose estimation of free-form surfaces with
partial occlusions are presented. The system described in the last section was tested
with sequences of the motor part and power socket. For these examples, several
occluding objects were drawn in the images as shown in the upper row of figure 7.8.
This results in the addition of extra concave and convex segments to the extracted
image contours as can be seen in the second row of the figure. Since a pre-alignment
is needed for these examples, the correspondences were initially obtained with the
variant M2. In some cases, some of the correspondences of the distorted contour
segments are not eliminated in the first iteration of the algorithm. This can be seen
in the marked regions of the images. Despite of that, the algorithm is able to elimi-
nate these bad-conditioned correspondences during the next iterations. An example
of a sequence of the power socket model is shown in figure 7.9. In this case, the oc-
clusions in the images are generated by adding several squares randomly at two
different positions of the contour. The same initial position was used for all images
of the sequence. As can be seen in the pictures, the correct pose is computed for all
images.

Figure 7.10 shows some examples of the sequences where the algorithm is not
able to deliver a correct the pose. That means, cases where the initial position of the
model is bad-conditioned or out of the convergence region for this pose scenario.
Essential for the feature pre-alignment is the proper extraction of the main orienta-
tion axes in the image plane. In the first two rows, examples are shown where the
orientation of the projected model drastically differs with respect to the orientation
of the image contour. Since the global orientation can not be properly recovered,
the feature alignment fails and bad-conditioned correspondences are obtained. In
the examples of the next two rows, the main orientation and correspondences are
consistently computed. Despite of that, the obtained pose at the end of the itera-
tions is not correct. In both examples, the rotation between model and image is out
the converge region of the algorithm. This results in very similar sets of local fea-
tures for such poses. Therefore, the algorithm may converge to a wrong pose (local
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Fig. 7.8: Examples of the initial position of the model with respect to the image data
with occlusions (upper row). Obtained correspondences (middle row) and
computed poses (lower row).

minimum).

The last row of figure 7.10 shows an example of a large rotation. Let us remember
that the minimization process based on a gradient decent method would be able to
compute a correct pose up to rotations about 180 degrees, see section 2.5.4. Never-
theless, this is valid only when exact correspondences are available. In practice, the
gradient decent minimization is more sensitive to bad-conditioned correspondences
at larger rotations. Although the rotation is smaller than 180 degrees, the computed
pre-alignment pose is still not optimal. Such larger rotations rarely appear in a nor-
mal tracking sequence. If necessary, the pre-alignment can be done in two steps if
the major axes difference is larger than 90 degrees.

7.4 Summary

In this chapter, a selective pose estimation strategy was presented for the pose es-
timation problem of free-form surfaces with partial occlusions. The presented ex-
amples show that the correlation search criterion, combined with a distance outlier
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Fig. 7.9: Examples with the sequence of the power socket model with partial occlu-
sions. Initial position of the model (first and third rows) and computed
pose (second and fourth rows).

minimization criterion is not sufficient to obtain an adequate pre-alignment pose.
To overcome this problem, the angular position of contour points was used as out-
lier elimination criterion. Since this feature is computed with respect to the main
orientation axis (global orientation) of contour and projected model points, it can be
considered as a global positional feature. Several combinations of correspondence
search and outlier elimination criteria were analyzed. It turned out that the best
pre-alignment pose is computed with the correlation criterion combined with the
angular position as outlier elimination. Because of the robustness of the correlation
criterion, it is sufficient to apply it only at the beginning of the algorithm in most of
the cases. The structural ICP algorithm can be applied for the rest of the iterations
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Fig. 7.10: Examples of initial positions of the surface model where the pose compu-
tation with pre-alignment fails.

to find the fine pose.

The presented pose estimation strategy performs efficiently for the tested image
sequences. Depending on the amount of occlusions, the most robust combination
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may eliminate too many correspondences. Thus, the pose can not be computed
anymore. In such cases, the system selects another combination to get a sufficient
number of correspondences and to compute an acceptable pre-alignment. If the er-
ror during the iterations increases, the system changes the correspondence criterion
and the search direction to avoid the local minimum problem. The proposed algo-
rithms use the main orientation of projected model and image contours. Therefore,
the operational limits of the presented algorithms are defined by those initial posi-
tions where the main orientation axes can be computed in a proper way.



168 Chapter 7. Combination of the New ICP Variants



Chapter 8

CONCLUSION

Several mathematical and practical techniques have been presented to solve the cor-
respondence problem based on local and global features for the monocular pose es-
timation problem. In this context, the main contributions of this work are a new
local representation of contours and surfaces and different variants of the ICP algo-
rithm. The first and more evident conclusion derived from this work is that there
is no general solution for the correspondence search problem. Each variant offers
certain advantages over the other ones for a given pose estimation scenario.

A local representation of free-form contours and surfaces was presented in chap-
ter 2. Since contour segments are approximated as a combination of local motor ro-
tations, they can be combined with the pose estimation constraints in CGA. As the
local motors approximate contour and surface segments, structural information is
computed from them. Therefore, the proposed local representation offers a suitable
mathematical and geometrical description of such entities.

The monogenic signal was used to obtain local features from the image (ampli-
tude, phase and orientation) and to define a contour detection algorithm in section
4.3.3. It allows to extract low and high contrast contour segments of the objects
more efficiently and it avoids noise until certain limits. Similar local features were
obtained from the contour model points. This was achieved by the introduction of
the transition index in section 4.4.1. First, the contour model points are projected
onto the image plane and their corresponding local motors are constructed. Based
on the local orientation, the transition index is computed as an analog feature to the
local monogenic phase. Additionally to these features, the motors also allow a direct
computation of the local curvature. This was combined with a strategy to classify
the extracted image contour segments and projected model segments in concave,
convex and straight segments (semi-local features).

With the sets of image and model features, new variants of ICP algorithms were
presented. The Euclidean distance criterion of the classical ICP was combined with
additional structural constraints derived from local features in order to define the
structural ICP algorithm in section 4.5. For the second variant, the Euclidean dis-
tance was replaced by a feature correlation measure as it was described in section
5.2.3. For cases where the tracking assumption is not considered, a new strategy
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for the pre-alignment was presented in section 5.4.2. Global orientation information
obtained from the Hartley transform and the local orientation are combined in an
approach that simplifies the classical pre-alignment procedure. In this case, a 2D
feature alignment is done in combination with the correlation ICP algorithm.

According to the experimental results presented in chapter 6, the proposed ICP
algorithms perform better than the classical variants. In general, the algorithms
are robust against the tracking assumption and in the presence of noise and miss-
ing contour information. Furthermore, a better convergence behavior is achieved
in comparison with the classical ICP variants. Translating the minimization con-
straints, feature extraction and correspondence search problem to the image plane
results in an important improvement of the monocular pose estimation algorithm.
Similarly, the proposed feature alignment approach performed better than the clas-
sical pre-alignment based on the principal component analysis (PCA).

The presence of partial occlusions causes a significant distortion in the local and
semi-local features. Therefore, the structural and correlation ICP variants are sen-
sitive to partial occlusions. To overcome this problem, several outlier elimination
strategies were presented in section 7.2.1. In this case, the angular position of each
contour point with respect to its mayor distribution axis was used as an additional
feature. Once that the correspondences are found by the correlation ICP algorithm,
corresponding points that are outside of a range defined by the angular position are
eliminated as outliers.

In section 7.3, a system which integrates several possible correspondence search
strategies for the case of the pose estimation with partial occlusions was presented.
The selection of the most adequate strategy for the initialization of the pose compu-
tation (in order to place the model under tracking assumption conditions) was cho-
sen depending on the distance and orientation between the image contour and the
projected model. The presented experiments show the natural limits within which
the proposed algorithms are able to find adequate correspondences and therefore a
correct pose. Since global and local features are considered by the algorithms, these
limits are defined by the range of the poses within which the computation of local
and global features is possible with only one image.

8.1 Further Extensions and Applications

The possible extensions of this work are focused on the following problems. First,
the presented algorithms can be adapted for articulated objects like robotic arms or
human models. In this case, local deformations should be considered that allow
to recover more realistic model movements and poses. Secondly, more complete
and realistic model objects can be eventually used. Since a large variety of efficient
rendering techniques are available, structural information extracted from model and
image textures can be used to complement and extend the proposed correspondence
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search constraints.

For the presented experiments, only one camera was used. The addition of a
stereo or a multiple camera system will consequently increase the converge regions
of the algorithms. In these cases, the object can be observed from different view
angles. A possible extension for navigation applications is the use of catadioptric
camera systems. Because of the catadioptric projection, the structure of 3D models
is distorted with respect to the image. Despite of that, the model can be eventually
projected onto the image by a catadioptric projection model and the features can be
computed from the resulting distorted contour segments.

State of the art tracking and pose estimation systems are intended to work in real
time and under general scenarios. In order to improve the computation times of the
algorithms and reach real time performance, the standard nearest-neighbor search
strategy used in the presented experiments must be further optimized. This can be
achieved by the incorporation of search strategies like multidimensional KD-trees
[11] which reduce considerably the complexity of the search process.

The use of an algorithm for fitting model to experimental data called Random
Sample Consensus (RANSAC, see [42]) has been recently used for tracking and pose
estimation applications (see for example [32, 59, 72]). It offers an efficient alternative
to fit observed data to a given model in the presence of outliers. The incorporation
of RANSAC to the proposed correspondence search and outlier elimination criteria
may allow to handle more general occlusions in different pose scenarios.

Because of the variety of possible pose estimation scenarios, complexity of ob-
ject models and acquisition devices, the ICP algorithms are in most of the cases
restricted to a specific application. Since there is no general solution for the corre-
spondence problem, the use of different tracking strategies and the integration of
systems based on different kinds of feature information are needed. This represents
the natural tendency on the research about this topics, see [57, 59, 80, 83]. It is nec-
essary to mention that more work has to be done in order to develop a complete
fully-optimized system based on the presented ICP variants. Despite of that, the ap-
proaches presented in this work have the potential to be incorporated in these kind
of complex and more robust systems.
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