
Self-Organisation of Neural Topologies by
Evolutionary Reinforcement Learning

Nils T Siebel, Jochen Krause and Gerald Sommer
Cognitive Systems Group, Institute of Computer Science

Christian-Albrechts-University of Kiel
Olshausenstr. 40, 24098 Kiel, Germany

E-mail: nils@siebel-research.de, {jk,gs}@ks.informatik.uni-kiel.de

Keywords: Neural Networks, Evolutionary Algorithms, Reinforcement Learning

Abstract— In this article we present EANT, “Evolu-
tionary Acquisition of Neural Topologies”, a method that
creates neural networks (NNs) by evolutionary reinforce-
ment learning. The structure of NNs is developed us-
ing mutation operators, starting from a minimal structure.
Their parameters are optimised using CMA-ES. EANT can
create NNs that are very specialised; they achieve a very
good performance while being relatively small. This can
be seen in experiments where our method competes with a
different one, called NEAT, “NeuroEvolution of Augment-
ing Topologies”, to create networks that control a robot in
a visual servoing scenario.

1 Introduction

As universal function approximators, artificial neural net-
works (NNs) are capable of modelling complex mappings
between the inputs and outputs of a system up to an arbi-
trary precision [7, 11]. However, with an increase in com-
plexity of a given task the required complexity of the NN
also increases. Such a complex NN is difficult to develop
due to the high dimensionality of the space in which its
parameters live. This so-called “curse of dimensionality”
has always been a significant obstacle in machine learning
problems [2].

NNs are characterised by their structure (topology) and
their parameters (which includes the weights of connec-
tions) [12]. A number of learning methods exist for gener-
ating them. Most of these methods, like the popular “back-
propagation” algorithm [12, chap. 7], are methods to adjust
the parameters of the network to a given problem, but not
its structure. When using such methods the structure of
the network has to be adjusted to the problem beforehand
and “by hand”, i.e. by the designer of the software. Once
the structure is fixed, its parameters can be learned. Most
of these learning methods can be viewed as a straightfor-
ward application of local optimisation algorithms and/or
statistical parameter estimation. Backpropagation, for in-
stance, is equivalent to optimisation by stochastic gradient
descent [14, chap. 5]. These methods exhibit the following
two problems:

(1) The common approach to pre-design the network
structure can be difficult or even infeasible for com-
plicated tasks. It may also result in overly complex
networks if the designer cannot find a small structure
that solves the task.

(2) Determining the network parameters by local opti-
misation algorithms like gradient descent-type meth-
ods is impracticable for large problems. It is known
from mathematical optimisation theory that these al-
gorithms tend to get stuck in local minima. They only
work well for very simple (e.g., convex) problems or
if an approximate solution is known beforehand.

We have previously developed a method, called EANT,
“Evolutionary Acquisition of Neural Topologies”, that au-
tomatically learns both the structure and the parameters
of a NN to find a solution to a given problem [9, 13].
Both learning parts use evolutionary algorithms (EAs) [3],
global optimisation methods that are less prone to get stuck
in local minima. With these algorithms the NN is learned
from scratch by reinforcement learning [16].

In this article we present recent improvements to EANT
that further accelerate the generation of networks that per-
form well. In order to validate our method we present an
experimental comparison of EANT and NEAT, a similar
method.

The remainder of this article is organised as follows.
Section 2 contains an overview over related methods for
evolutionary NN learning and describes our approach to
a solution. In Section 3 we formulate the visual servoing
problem that is used for testing the NN learning methods.
Section 4 contains results from experiments with EANT
and NEAT; Section 5 concludes the article.

2 Methods for Evolutionary Learn-
ing of Neural Networks

In this section we review existing methods on evolutionary
neural network (NN) learning and present our own algo-
rithm, EANT. The paradigm is to learn both the structure
(topology) and the parameters of NNs with evolutionary al-
gorithms (EAs) without being given any information about



the nature of the problem. The development of networks is
realised through reinforcement learning [16]. This means
that candidate solutions which have been generated by the
EA are evaluated by testing them on the target application.
A scalar value of their “fitness” is fed back to the algo-
rithm to help it judge and determine what to do with this
candidate. These learning algorithm do not depend on the
availability of input-output pairs of the NN as supervised
learning methods do.

2.1 Overview over Existing Methods

Until recently, only small NNs have been evolved by evolu-
tionary means [18]. According to Yao, a main reason is the
difficulty of evaluating the exact fitness of a newly found
structure: In order to fully evaluate a structure one needs
to find the optimal (or, some near-optimal) parameters for
it. However, the search for good parameters for a given
structure has a high computational complexity unless the
problem is very simple (ibid.).

In order to avoid this problem most recent approaches
evolve the structure and parameters of the NNs simul-
taneously. Examples include EPNet [19], GNARL [1]
and NEAT [15]. EPNet uses a modified backpropagation
algorithm for parameter optimisation (i.e. a local search
method). The mutation operators for searching the space
of neural structures are addition and deletion of neural
nodes and connections (no crossover is used). A ten-
dency to remove connections/nodes rather than to add new
ones is realised in the algorithm. This is done to coun-
teract the “bloat” phenomenon (i.e. ever growing networks
with only little fitness improvement; also called “survival
of the fattest” [3]). GNARL is similar in that is also
uses no crossover during structural mutation. However,
it uses an EA for parameter adjustments. Both paramet-
rical and structural mutation use a “temperature” measure
to determine whether large or small random modifications
should be applied—a concept known from simulated an-
nealing [10]. In order to calculate the current temperature,
some knowledge about the “ideal solution” to the problem,
e.g. the maximum fitness, is needed.

The author groups of both EPNet and GNARL are of the
opinion that using crossover is not useful during the evo-
lutionary development of neural networks [19, 1]. The re-
search work underlying NEAT, on the other hand, seems to
suggest otherwise. The authors have designed and used a
crossover operator that allows to produce valid offspring
from two given NNs by first aligning similar or equal
subnetworks and then exchanging differing parts. Like
GNARL, NEAT uses EAs for both parametrical and struc-
tural mutation. However, the probabilities and standard de-
viations used for random mutation are constant over time.
NEAT also incorporates the concept of speciation, i.e. sepa-
rated sub-populations that aim at cultivating and preserving
diversity in the population [3, chap. 9].

?
Initialisation
(minimal networks)

?
Structural Exploitation
(parameter optimisation with CMA-ES)

?
Selection

(rank-based but preserving diversity)

?

��

@@ ��

@@
is

fitness
OK?

Yes-
�� �Finished

No?
Structural Exploration
(new individuals by structural mutation)

-

Figure 1: The EANT algorithm. Please note that CMA-ES
has its own loop which creates a nested loop within EANT.

2.2 Developing Neural Networks with EANT

EANT (“Evolutionary Acquisition of Neural Topologies”)
is an evolutionary reinforcement learning system that re-
alises NN learning with EAs both for the structural and the
parametrical part [9]. EANT features a compact genetic
encoding that uses a linear genome to represent a NN to-
gether with its parameters. The linear genome encodes the
topology of the NN implicitly by the order of its elements
(genes). The following gene types exist: neurons, inputs to
the network, bias neurons, forward connections and recur-
rent connections. Linear genomes can be evaluated, with-
out decoding, similar to the way mathematical expressions
in postfix notation are evaluated. For example, a neuron
gene is followed by its input genes. In order to evaluate
it, one can traverse the linear genome from back to front,
pushing inputs onto a stack. When encountering a neu-
ron gene one pops as many genes from the stack as there
are inputs to the neuron, using their values as input val-
ues. The resulting evaluated neuron is again pushed onto
the stack, enabling this subnetwork to be used as an input
to other neurons. Connection genes make it possible for
neuron outputs to be used as input to more than one neu-
ron. Together with the bias neurons that are implemented
as having a constant value of 1.0, the linear genome can en-
code any NN in a very compact format. The length of the
linear genome is equal to the number of synaptic network
weights.

Figure 1 shows how EANT works. The different steps
of the algorithm are explained in detail below.

Initialisation: EANT usually starts with minimal initial
structures. A “minimal” network has no hidden layers or
recurrent connections, only 1 neuron per output. Each neu-
ron is connected to approx. 50 % of inputs; the exact per-
centage and selection of inputs are random. EANT grad-
ually develops these simple initial network structures fur-
ther using the structural and parametrical EAs discussed
below. On a larger scale new neural structures are added

2



to a current generation of networks. We call this “struc-
tural exploration”. On a smaller scale the current individu-
als (structures) are optimised by changing their parameters:
“structural exploitation”.

Structural Exploitation: At this stage the structures in
the current EANT population are exploited by optimising
their parameters. Parametrical mutation in a previous ver-
sion of EANT was implemented using evolution strategies
(ES) [3]. This means that the strategy parameters in the
EA, e.g. the standard deviation for random mutation, were
themselves adapted by an EA. This has the advantage that
the system needs even less knowledge of the problem than
with a different EA, like evolutionary programming. How-
ever, using ES for parametrical mutation has the following
disadvantages:

(1) After a strategy parameter has been adapted it takes
many applications of the mutation operator on the
corresponding network parameter until the new value
of the strategy parameter can be judged. Even then
it is unclear when looking at the change in fitness
value whether the network performs better/worse be-
cause of this adapted strategy parameter or because of
other changes that happened during those many gen-
erations.

(2) The number of strategy parameters adds to the num-
ber of total parameters in the system, increasing even
further the dimensionality of the space in which ideal
parameters are searched.

Disadvantage 1 can be ignored in settings where a very
large population size is used. However, it does matter in the
context of NN development where large population sizes
are prohibitive unless the problem is very simple.

For these reasons newer versions of EANT use CMA-ES
(“Covariance Matrix Adaptation Evolution Strategy”) [6]
in their parameter optimisation. CMA-ES is a variant of
ES that avoids random adaptation of the strategy parame-
ters. Instead, the search area that is spanned by the mu-
tation strategy parameters, expressed here by a covariance
matrix, is adapted at each step depending on the parameter
and fitness values of current population members. CMA-
ES uses sophisticated methods to avoid things like prema-
ture convergence and is known for fast convergence to good
solutions even with multi-modal and non-separable func-
tions in high-dimensional spaces (ibid.).

When the parameter optimisation with CMA-ES starts it
is given for each variable an initial standard deviation used
in its sampling of values in the search space. These stan-
dard deviations will be used as a starting point only and are
adapted over time. These values are set by EANT depend-
ing on the current age of the corresponding gene. Parame-
ters for newer structural elements are given a wider search
area than older ones. This feature is based on the observa-
tion that over time parameters for existing structures tend to
become more or less constant as they have been optimised
several times. Structural changes a other places may also

influence the optimal parameter values for the older struc-
tural elements, but usually at a relatively small scale. This
is related to the “Cascade-Correlation Learning” paradigm
presented by Fahlman and Lebiere [4].

Selection: The selection operator determines which
population members are carried on from one generation to
the next. Our selection in the outer, structural exploration
loop is rank-based and “greedy”, preferring individuals that
have a larger fitness. If two structures have almost the same
fitness the smaller individual is given a higher rank. A con-
sequence of this is that existing structures may (and often
do) grow smaller if structural elements that do not help the
performance are removed. In order to maintain diversity in
the population, the selection operator also compares indi-
viduals by structure, ignoring their parameters. The opera-
tor makes sure that not more than 1 copy of an individual
and not more than 2 similar individuals are kept in the pop-
ulation. “Similar” in this case means that a structure was
derived from an another one by only changing connections,
not adding neurons. Again, no network parameters are con-
sidered here.

Structural Exploration: In this step new structures are
generated and added to the population. This is achieved by
applying the following structural mutation operators to the
existing structures: Adding a random subnetwork, adding
or removing a random connection and adding a random
bias. Removal of subnetworks (i.e. neurons together with
all their connections) is not done as we found out that this
almost never helps in the evolutionary process. The same is
valid for a crossover operator, modelled after the one used
in NEAT, which is currently not used. New hidden neurons
are connected to approx. 50 % of inputs; the exact percent-
age and selection of inputs are random to enable stochastic
search for new structures.

Differences to Other Methods: EANT is closely re-
lated to the methods described in the related work section
above. One main difference is the clear separation of struc-
tural exploration and structural exploitation. By this we
try to make sure a new structural element is tested (“ex-
ploited”) as much as possible before a decision is made to
discard it or keep it, or before other structural modifications
are applied. Another main difference is the use of CMA-ES
in the parameter optimisation. This should yield more op-
timal parameters more quickly, which is necessary when
large networks are to be created. When EANT’s structural
mutation operator adds a new neuron to a given structure,
it also connects the new neuron to a random number of
other neurons and/or inputs, and the new neuron’s output
as input to other neurons. Further differences of EANT to
other recent methods, e.g. NEAT, are a small number of
user-defined algorithm parameters (the method should be
as general as possible), its compact, linear encoding of the
NN and the explicit way of preserving diversity in the pop-
ulation (unlike speciation in NEAT).

3



Figure 2: Robot Arm with Camera and Object

3 The Visual Servoing Task

In order to study the behaviour of EANT and other algo-
rithms on large problems we simulate the visual servoing
setup shown in Figure 2. A robot is equipped with a camera
at the end-effector and has to be steered towards an object
of unknown pose. This is achieved in the visual feedback
control loop depicted in Figure 3. In our system a NN shall
be used as the controller, determining where to move the
robot on the basis of the object’s visual appearance.

The object has 4 identifiable markings. Its appearance in
the image is described by the image feature vector yn ∈ IR8

that contains the 4 pairs of image coordinates of these
markings. The desired pose relative to the object is defined
by the object’s appearance in that pose by measuring the
corresponding desired image features y? ∈ IR8 (“teach-
ing by showing”). Object and robot are then moved into
a start pose so that the position of the object is unknown
to the controller. The input to the controller is the image
error ∆yn := y? − yn and additionally the 2 distances
in the image of the opposing markings, resulting in a 10-
dimensional input vector. The output of the controller is
a relative movement of the robot in the camera coordinate
system: (∆x,∆y, ∆z) ∈ IR3.

From a mathematical point of view, visual servoing is the
iterative minimisation of an error functional that describes
differences of objects’ visual appearances, by moving in
the search space of robot poses. The traditional solution
is equivalent to an iterative Gauss-Newton method [5] to
minimise the image error, with a linear model (“Image Ja-
cobian”) of the objective function [8, 17].

In our case a NN is developed as a controller by rein-
forcement learning. For the assessment of the fitness (per-
formance) of a network N it is tested by evaluating it in the
simulated visual servoing setup. For this purpose 1023 dif-
ferent robot start poses and 29 teach poses (desired poses)
have been generated. Each start pose is paired with a teach
pose to form a task. These tasks contain all ranges and
directions of movements. For each task, N is given the vi-
sual input data corresponding to the start and teach poses,
and its output is executed by a simulated robot. The fitness
function F (N) measures the negative RMS (root mean

y?
- d+∆yn- Controller -un Coord.

Trans.
-ũn

Robot (with inner control loop)

Inverse
Kinematics

- d+- Joint
Controller

-
�� ��Robot

Dynamics
--

joint angles6
-

�� ��Robot
Kinematics

xn

�
�� ��Scene�

�� ��Camera�Feature
Extraction

η

6
yn

-

Figure 3: Visual Feedback Control Loop

square) of the remaining image errors after the robot move-
ments, over all tasks. This means that our fitness function
F (N) always takes on negative values with F (N) = 0 be-
ing the optimal solution. Let yi denote the new image fea-
tures after executing one robot movement starting at start
pose i. Then F (N) is calculated as follows:

F (N) := −

vuut 1

1023

1023X
i=1

 
1

4

4X
j=1

dj(yi)
2 + b(yi)

!
(1)

where

dj(yi) :=
‚‚‚(y?)2j−1,2j − (yi)2j−1,2j

‚‚‚
2

(2)

is the distance of the jth marker position from its desired
position in the image, and (y)2j−1,2j shall denote the vec-
tor comprising of the 2j− 1th and 2jth component of a
vector y. The inner sum of (1) thus sums up the squared
deviations of the 4 marker positions in the image. b(y) is
a “badness” function that adds to the visual deviation an
additional positive measure to punish potentially danger-
ous situations. If the robot moves such that features are not
visible in the image or the object is touched by the robot,
b(y) > 0, otherwise b(y) = 0. All image coordinates are
in the camera image on the sensor and have therefore the
unit 1 mm. The sensor (CCD chip) in this simulation mea-
sures 8

3 mm× 2 mm. The average (RMS) image error is
−0.85 mm at the start poses, which means that a network N
that avoids all robot movements (e.g. a NN with all weights
= 0) has F (N) = −0.85. F (N) can easily reach values
below -0.85 for networks that tend to move the robot away
rather than towards the target object.

An analysis of the data set used for training the network
was carried out to determine its intrinsic dimensionality.
The dimensionality is (approximately) 4, the Eigenvalues
being 1.70, 0.71, 0.13, 0.04 and the other 6 Eigenvalues
below 1e-15. It is not surprising that the dimensionality is
less than 10, and this redundancy makes it more difficult
to train the NNs. However, we see this challenge as an
advantage for our research, and the problem encoding is a
standard one for visual servoing.

4



0 20000 40000 60000 80000 100000
NEAT generation

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

b
e
st

 f
itn

e
ss

 v
a
lu

e

(a) NEAT (sparse init.): fitness, best NN

0 5 10 15
EANT generation

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

be
st

 fi
tn

es
s 

va
lu

e

0 5 10 15
EANT generation

(b) EANT: fitness, best NN

0 5 10 15
EANT generation

0

20

40

60

80

100

120

si
ze

 o
f b

es
t i

nd
iv

id
ua

l

mean size EANT NNs
size NEAT non-sparse
mean size NEAT sparse

(c) mean NN size, NEAT and EANT

Figure 4: Results from 5 runs each of NEAT and EANT

4 Experimental Comparison of
EANT and NEAT

In order to validate learning methods we use the simu-
lated visual servoing scenario as described in the previ-
ous section, with 1023 start poses and the same definition
of the fitness function F from equation (1). The 10 in-
puts and 3 outputs to the neural networks (NNs) are also
as above. The computationally expensive evaluation of
F which needs 1023 NN evaluations and simulated robot
movements makes it a priority to develop networks with as
few evaluations F (N) as possible.

4.1 The NEAT System

NEAT by Stanley and Miikkulainen [15] has already been
briefly introduced in Section 2.1. It uses one evolution-
ary optimisation loop in which structures and parameters
of NNs are mutated, and networks recombined using a
crossover operator. The implementation of NEAT used
here is the Java-based NEAT4J which is available as a
SourceForge project1. For reference the original NEAT
code by Stanley has also been analysed.

The initial population of NEAT4J consists of randomly
generated networks without hidden layers that are either
fully or sparsely connected (at an option). In each genera-
tion the population is split into a number of species so that
“compatible” individuals belong to the same species. The
split is done using a compatibility measurement that incor-
porates network size, difference of weights and number of
different genes. New species are created if necessary. If
a species has a good average fitness, its size is increased,
otherwise the size is decreased. Species become extinct
if their size becomes zero or they excess a certain age.
The best individual of each species is kept together with
their offspring. New members of a species are spawned by
crossover and mutation from their parents who are selected
among the best individuals in this species. Mutation is done

1http://neat4j.sourceforge.net/

by a stochastic update of weights and structures. Nodes and
connections are added with certain probabilities, but never
removed. Existing connections can, however, be enabled
or disabled by toggling a flag.

Search for Optimal NEAT4J Parameters: Unfortu-
nately, there is no suggestion how NEAT’s 13 evolution and
9 speciation parameters should be set. We have tried many
settings and found out that the values from the examples
of the original NEAT mixed with those of NEAT4J form a
suitable starting point. The settings were then adapted to
tune the system for our visual servoing task.

NEAT tends to enlarge networks if the probability of tog-
gling connections on/off is low and slows down the grow-
ing of networks if it is high. After some test runs we de-
cided to reduce the probability of toggling (PToggleLink
0.0001) so as to enable NEAT4J to sufficiently optimise the
network weights before adding a lot of structure. For the
same reason we also decreased the probabilities for struc-
tural mutation (PAddLink=0.0025, PAddNode=0.00125)
after some test runs but left the probabilities for weight
changes high (PMutation=0.25, PWeightReplaced=0.85).
NEAT reacts very strongly to bias neurons and tends to add
many of them. However, in a few test runs this made the
evolution process get stuck without improving the fitness.
We therefore deactivated biases altogether (which makes
sense, considering the visual servoing task). An appropri-
ate population size is hard to calculate but concerning the
fitness increase over (wall-clock) time a smaller population
size usually works better than a bigger. Hence, we tested
two sizes of populations, 30 and 150. In most cases the
smaller population only performed slightly worse. We did
not note a significant change in the test outcome when vary-
ing parameters for speciation.

4.2 The EANT System

The EANT system which was described in detail in sec-
tion 2.2 was used with the following parameters:
• up to 30 individuals in the structural exploration

(global population size)

5



• each individual spawns 2 children through structural
mutation

• 2 parallel optimisations of the same individual by
CMA-ES

• stop criteria for CMA-ES: maximum standard devia-
tion in covariance matrix less than 0.00005 or iteration
(CMA-ES generation) number over 500.

4.3 Results and Discussion
Figure 4 shows the development of the best individual’s
fitness value and size. Results from 5 experiments each of
EANT and NEAT are shown, plotted against the generation
number. EANT’s (outer) generation number is increasing
much slower than NEAT’s because of the inner loop that is
contained within the structural exploitation with CMA-ES.
The generation spans and the graphs in Figure 4(c) have
therefore been roughly aligned by the number of evalua-
tions of the fitness function, which is the determining factor
for the wall clock time used to run the method.

Development of Fitness: It can be seen that after around
25,000 generations the fitness values in NEAT reach -0.33
(better runs) and -0.38 (worse runs). They do not improve
significantly further until generation 100,000, at which
point the experiments were stopped. In EANT, a signif-
icant increase in fitness can be seen up to generation 15
(and further, as different experiments show). After 5 gen-
erations the average best individual has a fitness of -0.25,
which increases to -0.23 at generation 15.

Let us recall that the fitness values are (modulo b(·)) the
remaining RMS errors in the image after the robot move-
ment. Both methods quickly develop networks that reduce
the image error from the initial -0.85 to as low as -0.23 with
1 robot movement. This is a very good result if one com-
pares to the traditional Image Jacobian approach. Calculat-
ing the robot movement using the (undamped) product of
the Image Jacobian’s pseudoinverse with the negative im-
age error, a standard method [8], yields a fitness of -0.61.
Since both the Image Jacobian and our networks calculate
the necessary camera movement to minimise the image er-
ror in one step this is a meaningful comparison and shows
that these networks can indeed be used for visual servoing2.

Development of Network Sizes: An analysis of the
network sizes shows that NEAT’s resulting networks stay
“sparse” if that initialisation option was used. The best
performing network has 17 genes, with only 2 hidden neu-
rons. Only 1 gene was added between generation 3,000 and
100,000, which explains why the fitness does not increase
any further. However, without the “sparse” option NEAT
generates networks with sizes approx. 80–140 after 3,000
generations; their fitness is around -0.89 to -0.66.

EANT’s networks are larger, in part due to the differ-
ent initialisation. The mean size at generation 5 is 41 (fit-
ness -0.25). Size increases slower as time goes on, with a

2Any dampening, if necessary, can be employed independent of the
method that calculates the optimisation step (robot movement).

mean size of 59 at generation 15 (fitness -0.23). NEAT’s
mean final network size of 17 is reached by EANT at gen-
eration 0 (with no hidden neurons). At this size the aver-
age fitnesses of the best individuals are -0.346 (NEAT) and
-0.312 (EANT).

As time goes on EANT’s structures continue to grow
much further than NEAT’s. Although NEAT does try to
add new structure very often most of these structural ele-
ments are discarded. NEAT has a feature to keep newly
created individuals even if they do not perform well in the
first few generations of their existence but is seems that this
feature does not help here.

The two methods, NEAT and EANT, differ in the way
networks are generated, and NEAT performs worse in this
scenario. Only when the networks are small and the proba-
bility of structural change is low compared to parametrical
change can NEAT optimise networks well with its EA. If
some options influence NEAT to produce larger networks
they have a significantly worse performance compared to
EANT networks of the same size. This could mean that
NN parameters in NEAT are not optimised as well, or that
structural elements exist that do not help the task well, or
both.

Overall, EANT always created better networks than
NEAT and required less parameter tuning to run success-
fully.

5 Conclusions and Future Work

In this article we have presented EANT, a method to
develop both the structure and the parameters of neural
networks (NNs) by evolutionary reinforcement learning.
EANT differs from other recent methods by implementing
a clear separation of structural and parametrical develop-
ment and the use of CMA-ES during parameter optimisa-
tion. It also features a unique and compact genetic encod-
ing of the NN.

In order to validate EANT, it was used with a com-
plete simulation of a visual servoing scenario to learn NNs
by reinforcement learning. The same task was given to
NEAT [15], a similar method. Results from the experi-
ments show that both evolutionary methods can develop
networks that make “useful” robot movements, decreas-
ing the image error and thereby moving towards the goal.
The performance of both methods is also significantly bet-
ter than the traditional visual servoing approach.

A comparison of both methods showed that the NNs cre-
ated by EANT always have a significantly better perfor-
mance. NEAT also performs good when configured to keep
network sizes very small, but then the development of net-
works comes to a halt, showing almost no improvement
over a long runtime. For similar network sizes, EANT’s
NN perform much better.

For these experiments EANT’s parameter optimisation
with CMA-ES has been reduced in complexity to make a

6



fair comparison possible; previous experiments used more
CMA-ES generations [13]. Our current work is to study
the dependence of EANT on CMA-ES’s parameters.

Acknowledgements
The contribution of our colleague Yohannes Kassahun,

i.e. the development of the original version of EANT within
his PhD project in our research group, is gratefully ac-
knowledged. The authors also wish to thank Nikolaus
Hansen, the developer of CMA-ES, and Kenneth Stanley,
the developer of NEAT, for kindly providing source code
which helped us to quickly start applying their methods.

References
[1] P. J. Angeline, G. M. Saunders, and J. B. Pollack. An

evolutionary algorithm that constructs recurrent neu-
ral networks. IEEE Transactions on Neural Networks,
5:54–65, 1994.

[2] R. E. Bellman. Adaptive Control Processes. Princeton
University Press, Princeton, USA, 1961.

[3] Á. E. Eiben and J. E. Smith. Introduction to Evo-
lutionary Computing. Springer Verlag, Berlin, Ger-
many, 2003.

[4] S. E. Fahlman and C. Lebiere. The cascade-
correlation learning architecture. Technical Report
CMU-CS-90-100, Carnegie Mellon University, Pitts-
burgh, USA, August 1991.

[5] R. Fletcher. Practical Methods of Optimization. John
Wiley & Sons, New York, Chichester, 2nd edition,
1987.

[6] N. Hansen and A. Ostermeier. Completely derandom-
ized self-adaptation in evolution strategies. Evolu-
tionary Computation, 9(2):159–195, 2001.

[7] K. Hornik, M. B. Stinchcombe, and H. White. Multi-
layer feedforward networks are universal approxima-
tors. Neural Networks, 2:359–366, 1989.

[8] S. Hutchinson, G. Hager, and P. Corke. A tutorial on
visual servo control. Tutorial notes, Yale University,
New Haven, USA, May 1996.

[9] Y. Kassahun and G. Sommer. Efficient reinforcement
learning through evolutionary acquisition of neural
topologies. In Proceedings of the 13th European Sym-
posium on Artificial Neural Networks (ESANN 2005),
pages 259–266, Bruges, Belgium, April 2005.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671–680, May 1983.

[11] J. W. Melody. On universal approximation using neu-
ral networks. Report from project ECE 480, Deci-
sion and Control Laboratory, University of Illinois,
Urbana, USA, June 1999.

[12] R. Rojas. Neural Networks - A Systematic Introduc-
tion. Springer Verlag, Berlin, Germany, 1996.

[13] N. T. Siebel and Y. Kassahun. Learning neural net-
works for visual servoing using evolutionary meth-
ods. In Proceedings of the 6th International Confer-
ence on Hybrid Intelligent Systems (HIS’06), Auck-
land, New Zealand, page 6 (4 pages), December
2006.

[14] J. C. Spall. Introduction to Stochastic Search and
Optimization: Estimation, Simulation, and Control.
John Wiley & Sons, Hoboken, USA, 2003.

[15] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolution-
ary Computation, 10(2):99–127, 2002.

[16] R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge, USA,
March 1998.

[17] L. E. Weiss, A. C. Sanderson, and C. P. Neuman.
Dynamic sensor-based control of robots with visual
feedback. IEEE Journal of Robotics and Automation,
3(5):404–417, October 1987.

[18] X. Yao. Evolving artificial neural networks. Proceed-
ings of the IEEE, 87(9):1423–1447, September 1999.

[19] X. Yao and Y. Liu. A new evolutionary system for
evolving artificial neural networks. IEEE Transac-
tions on Neural Networks, 8(3):694–713, May 1997.

7


