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KIEL



Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Manipulator and Head Servoing for Tool

Handling and Object Inspection

Josef Pauli

Bericht Nr. 9813

November 1998

e-mail: jpa@ks.informatik.uni-kiel.de

”Dieser Bericht ist als persönliche Mitteilung aufzufassen.”



AbstractWe de�ne image-based robot servoing as a continual process of perception-action cycles for the task of tool handling or object inspection. Imageanalysis techniques and control rules are presented as the basic compo-nents of a behaviour-based robot system. Our robot hardware consistsof a bisight head on a movable platform with several degrees-of-freedom,an articulation manipulator on a stationary platform with a parallel jawgripper including a hand-mounted single camera, and �nally a rotary ta-ble. The approaching, assembling, and continual handling of the grippertool is illustrated. For the purpose of object inspection the head-camerasystem or the manipulator (carrying the object) are controlled to reach adesired size, resolution and orientation of the depicted object. Manipu-lator and head servoing is also used for self-calibration, i.e., determiningthe optical axes, the �elds of visibility and the location of the head inthe manipulator coordinate system. Finally, the signi�cant role of o�inevisual demonstration is exempli�ed for specifying visual goal situationsin robot servoing.1 IntroductionThis work gives a review of the wide application spectrum of image-based robot servoing(IBRS) using a multi-component robot system in a realistic scene. We are convinced thatthe usefulness is far from being su�ciently realized which is due to several reasons. First,the various degrees-of-freedom (DOF) of a robot head, e.g., pan, tilt, vergence, focus, focallength, and aperture of the head-cameras, must be controlled in cooperation in order toexploit their complementary strengths [1]. Our work contributes in several aspects tothis problem. Second, nearly all contributions to robotic visual servoing describe systemsconsisting of just one robot, e.g., exclusively a robot manipulator or a robot head. Insteadof that, we present applications of image-based robot servoing for a multi-component robotsystem consisting exemplary of a movable robot head, a stationary manipulator, and arotary table. Third, for solving robot tasks in realism, perhaps a priori models of objectsand their arrangement are hardly available and consequently model-free exploring robotsare required. The book edited by [2] gives the state of the art of exploratory visionand includes a chapter on robots that explore. Image-based robot servoing must play asigni�cant role especially in model-free exploration of scenes. Our work proposes visualdemonstration as a means for supporting visual exploration.In the following we describe shortly important contributions of IBRS relevant for our work.The book edited by [3] gives an overview of various approaches of automatic control ofmechanical systems using visual sensory feedback. To mention just the introductory workof [4] there two approaches of visual servoing are proposed, the position-based and thefeature-based. In position-based control features are extracted from the image and used inconjunction with a geometric model of the target to determine the pose of the target withrespect to the camera. In image-based servoing the last step is omitted, and servoing1



is done on the basis of image features directly. In our applications geometric objectmodels are hardly available and accordingly the visual feedback controller must be feature-based. A further classi�cation criterion is whether a current robot state (e.g., positionand orientation of a gripper) is used as additional feedback information for successivecontrol. The dynamic look-and-move approaches use it, but the servo approaches onlyrely on visual feedback. In our system we can request the manipulator or head stateduring the movement and can also alter this movement dynamically. Furthermore theimages can be taken and analysed parallel with the control. Therefore our control schemeis a feature-based dynamic look-and-move approach.This approach is also used by [5] who describe a system that positions a robot manipulatorusing visual information from two stationary cameras. The end-e�ector and the visualfeatures de�ning the goal position are simultaneously tracked using a PI controller. Weadopt the idea of using Jacobians for describing the 3D{2D relation but taking projectionmatrices of a poorly calibrated head-camera{manipulatior relation into account insteadof explicit camera parameters.Similary the system of [6] tracks a moving object with a single camera mounted on amanipulator. A visual feedback controller is used which is based on an inverse Jacobianmatrix for transforming changes from image coordinates to robot joint angles. The workis interesting to us because the role of a teach-by-showing method is mentioned. O�ine theuser teaches the robot desired motion commands and generates reference vision-featuredata. In the online playbackmode the system executes the motion commands and controlsthe robot until the extracted feature data correspond to the reference data.The authors [7] present an algorithm for robotic camera servoing around a static targetobject with the purpose of reaching a certain relation to the object. This is done bymovingthe camera (mounted on a manipulator) such that the image projections of certain featurepoints of the object reach some desired image positions. In our work a similar problemoccurs in controlling a manipulator to carry an object towards the head-camera such thata desired size, resolution and orientation of the depicted object is reached.The system of [8] reconstructs the 3D structure of geometric primitives like cylindersfrom controlled motion of a single camera. The intention is to obtain a high accuracyby focusing at the object and generating optimal camera motions. An optimal cameramovement for reconstructing the cyclinder would be a cycle around it. This cameratrajectory is acquired via visual servoing around a cylinder by keeping the object depictionin vertical orientation in the image center. The work is related to our approach of usingIBRS for determining the optical axis and the �eld of visibility of a head-camera.This �rst chapter mentioned important contributions related to our work. In the secondchapter IBRS is discussed in simple general terms. The third chapter presents an ap-proach of self-calibration of the head-camera{manipulator relation and uses image-basedmanipulator servoing (IBMS) to determine the optical axis and �eld of visibility of thehead-camera. In the fourth chapter image-based manipulator servoing is applied to toolhandling (�rst principal goal). The �fth chapter combines image-based manipulator servo-ing with image-based head servoing (IBHS) for object inspection (second principal goal).A summary in chapter six concludes the work.2



2 De�nition of image-based robot servoingImage-based robot servoing is the gradual actuator movement of a robot system contin-ually controlled with visual sensory feedback.This de�nition can best be understood in its wide range by �rst introducing an exemplarycamera-based robot system (see Figure 1).
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FIG. 1: Exemplary architecture of a camera-based robot system.A stationary manipulator is shown with six rotational joints for positioning its hand andone linear joint for opening/closing parallel jaw �ngers. Furthermore a single camera isfastened at the manipulator hand with the viewing direction straight through the �ngers.Beside the manipulator a movable platform for a stereo camera system is shown to observethe scene at variable viewing points. The camera system belongs to a robot head withpan, tilt, vergence DOF, and zooming/focusing facilities. In between the manipulatorand the robot head a rotary table is located which can turn objects if desired. By usingthe inverse manipulator kinematics a goal position (in 3D coordinates X;Y;Z) and goalorientation (in Euler angles yaw, pitch, roll) of the manipulator hand can be transformedinto six joint angles [9]. The working space of the hand, i.e., arbitrary orientation in acertain space, is a cube of about 400mm sidelength. The movement of the platform forthe stereo camera is speci�ed in a local attached 2D coordinate system. The pan and tiltDOF of the robot head are from �90 to +90 degrees each. The vergence DOF for eachcamera is from �45 to +45 degrees. The focal length of the camera can vary between 11and 69mm. The turning angle of the rotary table is speci�ed between 0 and 360 degrees.Generally, a robot system to be controlled can be characterized by a �xed state vector Sfwhich is inherent constant in the system, and by a variable state vector Sv(t) which can3



be changed through a vector of control signals C(t) at time t. For example, the �xed statevector of a robot manipulator contains the Denavit-Hartenberg parameters length, twist,o�set for each link which are constant for rotating joints [9]. On the basis of the variablestate vector Sv(t) and control vector C(t) the transition function f determines the nextstate vector Sv(t+ 1): Sv(t+ 1) := f(C(t); Sv(t)) (1)For example, if the vectors C(t) and Sv(t) are of equal dimension with the componentscorresponding pairwise, and the function f is the vector addition, then C(t) serves as anincrement vector for Sv(t). The vector Sv(t) could be the 6-dimensional state of positionand orientation of the robot hand, and C(t)T := (4X;4Y;4Z; 0; 0; 0), then after themovement the state vector Sv(t+ 1) describes a new position of the hand preserving theorientation. Both state and control vector are speci�ed in the manipulator coordinatesystem.In each state of the robot system the cameras take images from the scene. This is sym-bolized by a function g which produces a current measurement vector Q(t) at time t (incoordinate systems of the cameras).Q(t) := g(Sv(t); Sf ) (2)Given the current measurement vector Q(t), the current state vector Sv(t), and a desiredmeasurement vector Q�, the controller generates a control vector C(t).C(t) := h(Q�; Q(t); Sv(t)) (3)The control rule h describes the relation between changes in di�erent coordinate systems,e.g., Q(t) in the head-camera and C(t) in the manipulator coordinate system. The controlvector C(t) is used to update the state vector into Sv(t+1), and then a new measurementvector Q(t+ 1) is acquired that should be more closer to Q� than Q(t). In the case thatthe desired situation is already reached after the �rst actuator movement, the one-stepcontroller can be thought of as an exact inverse model of the robot system. Unfortunately,in realistic control environments only approximations for the inverse model are available.In consequence of that, it is necessary to run through cycles of gradual actuator movementand continual visual feedback to successive reach the desired situation. Frequently, thecontrol rule h is a linear approximation of the unknown inverse model, i.e., the parametersQ�; Q(t); Sv(t) are linear combined to produce C(t). Some articles in [3] also describenonlinear, fuzzy logic, and neural network control schemes.IBRS is organized into an o�ine-phase and an online-phase. O�ine we specify the ap-proximate head-camera{manipulator relation of coordinate systems and de�ne the controlrule thereof. Online the control rule is applied during which the system recognizes acurrent situation and compares it with a certain goal situation. In case of deviation anactuator is moving to bring the new situation closer to the goal situation. This cycle isrepeated until a certain threshold criterion is reached.3 Calibration of head-camera{manipulator relationThe relation between the coordinate systems of the head-camera and the manipulatoris acquired roughly by taking the agility of the manipulator into account and tracking4



systematic gripper movements. This is the basis for nearly all applications of image-basedmanipulator servoing presented in this work. For example, in this chapter IBMS will beapplied to determine the optical axis and the �eld of visibility of a head-camera. Theseinformations are extraordinary important in the active vision paradigm (see chapter �ve).Finally, we present a strategy for locating the head-camera system in the manipulatorcoordinate system using once again IBMS.3.1 Approximate head-camera{manipulator relationThe approach computes perspective projection matrices describing the head-camera{manipulator mapping. In general this estimated relation is poor because the cameraplatform is movable. The head-camera system is put up in a position and orientationthat the common �eld of visibility of the two cameras contains a large enough subspace of3D working space of the manipulator. A certain reference point of the gripper is de�nedas the tool center point (i.e., the gripper tip) for which the 3D coordinates in the manip-ulator coordinate system are known. From this gripper tip the 2D coordinates must bedetermined in the stereo images.The gripper systematic moves in the working space, stops on equidistant places, and fromthe gripper tip the 3D coordinates and the twice 2D coordinates are recorded. Basedon the resulting samples the head-camera{manipulator mapping can be approximateddirectly without putting a calibration object in between. The number of samples for thismapping is variable due to steerable distances between the stopping places. Furthermorecalibration points both on the surface and within the working space are considered. Theonly serious problem is to extract the gripper tip from the stereo images as accurate aspossible.First, by correlation matching which is based on the sum of squared distances the grippertip is located roughly (see Figure 2). As the manipulator systematic moves we can pre-dict the location of gripper tip in the following image and thus restrict the search area.Second, to verify the place of maximum correlation and locate the position of the refer-ence point exactly we additional extract geometric attributes of the gripper appearance.The gripper reference point is de�ned in the image as the intersection point between themiddle straight line and the end straight line of the parallel jaw gripper (see Figure 3).Hough transformation [10] can be used for extracting straight lines of the �nger contoursrestricted on the gripper tip region. Taking the polar form for representing lines theHough image can be de�ned such that the horizontal axis is for the radial distance andthe vertical axis is for the orientation of a line. According to this agreement an imageline is Hough transformed such that a peak occurs in the Hough image and its positionjust speci�es the line parameters in the grey level image. For example the two pairs oflong lines for the two �ngers occur in the Hough image as four peaks which are nearlyhorizontal due to similar line orientations. Therefore according to the speci�c patternof four peaks the long �nger lines are extracted and from those the middle straight line.Furthermore the Hough image can be used for constructing the end straight line.5



FIG. 2: Gripper, gripper tip region, correlation image.
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FIG. 3: Middle straight and end straight line.For each camera, k 2 f1; 2g, a perspective projection matrix is computed by using corre-sponding 3D points and 2D points (respective for each of the two head-cameras).Mk := 0B@ M1kM2kM3k 1CA ; with M1k := (m11k ;m12k ;m13k ;m14k )M2k := (m21k ;m22k ;m23k ;m24k )M3k := (m31k ;m32k ;m33k ;m34k ) (4)The scalar parameters mijk are determined with linear methods according to ([11], pp.55-58). They represent a combination of extrinsic and intrinsic camera parameters whichwe leave implicit. The usage of the projection matrix is speci�ed within the followingcontext. Given a point in homogeneous manipulator coordinates P := (X;Y;Z; 1)T theposition in homogeneous image coordinates pk := (xk; yk; 1)T can be obtained by solvingpk := 1�k �Mk � P ; with �k :=M3k � P (5)The equations (4) and (5) are easily derived by taking the perspective projection of apinhole camera into account. Next we describe how a certain change in manipulatorcoordinates a�ects a change in image coordinates. The Jacobian Jk for the mapping inequation (5) is used.Jk(P ) :=  @xk@X (P ) @xk@Y (P ) @xk@Z (P )@yk@X (P ) @yk@Y (P ) @yk@Z (P ) ! = 0B@ m11k �M3k �P�m31k �M1k �P(M3k �P )�(M3k �P ) � � �... . . . 1CA (6)3.2 Manipulator servoing for determining the optical axisIBMS can be applied for determining the optical axis of a head-camera. During theprocedure the robot head is motionless and the manipulator gripper will be servoed totwo distinct points located on the optical axis. It is assumed that all points located onthis axis are projected to the image center approximately. Accordingly, we must servo thegripper such that the two-dimensional projection of the gripper tip approaches the imagecenter. In the goal situation the 3D position of the gripper tip (which is the known toolcenter point in ( ~X; ~Y ; ~Z) manipulator coordinate system) is taken as a point on the optical6



axis. For simplifying the servoing task two planes are speci�ed which are parallel to the(~Y ; ~Z) plane with constant o�sets X1 and X2 on the ~X-axis and the movement of thegripper is restricted just on these planes (see Figure 4). Generally, in IBRS the deviationbetween a current situation and a goal situation is speci�ed in image coordinates. Totransform a desired change from image coordinates back to manipulator coordinates theinverse or pseudo inverse of the Jacobian of the projection matrices is computed. In thisapplication the Jacobian Jk; k 2 f1; 2g; in equation (6) for the mapping in equation (5)can be restricted to the second and third columns because the coordinates on the ~X -axis are �xed. Accordingly, the inverse of the quadratic Jacobian matrix is computed,Jy(P ) := Jk(P )�1.
Z x

y

X

X1

2

P1
P2

X

Y

1

1

FIG. 4: Determining the optical axis of a head-camera.The current measurement vector Q(t) is de�ned as the 2D image location of the grippertip and the desired measurement vector Q� as the image center point. The variable statevector Sv(t) consists of the two variable coordinates of the tool center point in the selectedplane (X1; Y; Z) or (X2; Y; Z). Then the control scheme is as followsC(t) := ( s � Jy(Sv(t)) � (Q� �Q(t)) : jQ� �Q(t)j > thresh0 : else (7)with the servoing factor s to control the velocity of approaching the optical axis. Thegripper position is changed by a non-null vector C(t) if desired and current positionsin the image deviate more than a threshold thresh. Actually equation (7) de�nes aproportional control law (P-controller), meaning that the change is proportional to thedeviation between the desired and the current position.1 First the gripper tip is servoedto the intersection point P 1 of the unknown optical axis with the plane (X1; Y; Z), andsecond to the intersection point P 2 with plane (X2; Y; Z). The two resulting positionsof the tool center point specify the axis which is represented in the manipulator system.Figure 5 shows for manipulator servoing on one plane the succession of extracted gripperpositions in the image with the �nal point at the image center (servoing factor s := 0:3).1Alternatively the P-controller can be combined with an integral and a derivative control law toconstruct a PID-controller. However the P-controller is good enough for this simple control task.7
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FIG. 5: Course of detected gripper.3.3 Determining the �eld of visibility and sharpnessIBMS is a means for constructing the �eld of visibility and sharpness of a head-camerawhich can be approximated as a truncated pyramid with top and bottom rectanglesnormal to the optical axis (see Figure 6). The top rectangle is small and near to thecamera, the bottom rectangle is larger and at a greater distance from the camera.
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1FIG. 6: Pyramid �eld of visibility and sharpness.For determining the range of sharp focus the gripper tip is servoed along the optical axisand the sharpness of the depicted gripper is evaluated. As the gripper tip is located in theimage center we extract a small rectangular patch surrounding the center and computethe sharpness in it. For example, a measure of sharpness is obtained by computingthe magnitudes of grey level gradients and taking the mean of 10 percent of maximumresponses. Figure 7 shows these measurements for a head-camera with focal length 69mm.The gripper is starting at a distance of 1030mm to the camera and approaches to 610mmwith stopping places every 30mm (this gives 15 measurements). We specify a thresholdvalue Q� for the measurements Q(t) for de�ning the acceptable level of sharpness. InFigure 7 four measurements surpass the threshold, numbers 9; 10; 11; 12, which means8



that the depth of sharpness is about 90mm, reaching from 700mm to 790mm distancesfrom the camera. The control procedure consists of two stages, �rst reaching the sharp�eld, and second moving through it.
Q

FIG. 7: Sharpness measurements.The variable state vector Sv(t) is just a scalar de�ning the position of the gripper tip onthe optical axis and the control vector C(t) is constant scalar (e.g., r := 30mm).C(t) := ( r : (Q� �Q(t)) > 00 : else ; C(t) := ( r : (Q� �Q(t)) < 00 : else (8)The width and height of visibility must be determined at the top and bottom point ofsharpness which are incident to the top and bottom rectangle of the truncated pyramid.Once again the agility of the manipulator comes into play to determine the rectanglecorners. First the gripper is servoed on the top plane and second on the bottom plane.Sequentially the gripper must reach those four 3D positions for which the gripper tipis projected onto one of the image corners. The control schema is equal to the one fordetermining the optical axis with rede�ned measurement vectors and control vectors.Repeating the procedure for both planes we obtain the eight corners of the truncatedpyramid. For example, using quadratic images from the our head-camera (focal length69mm) the sidelength of the top rectangle is 80mm and of the bottom rectangle 90mm.3.4 Locating the robot headThe perspective projection matrices of the head-camera{manipulator relation are com-puted roughly and therefore a localization of the robot head is inaccurate if using the9



matrices directly. Fortunately, we can construct the optical axes of the head-camerasexactly using IBMS and determine from those the head position in the manipulator co-ordinate system. The tilt rotation axis and the two vergence rotation axes intersect atthe focal points of the two cameras (see Figure 8). Two arbitrary angles �1 and �2 of thetilt DOF are used, and for each the optical axes of the two head-cameras are determined.This gives two pairs of intersecting straight lines, one intersection point PH1 is equal tothe focal point of the left camera and the other point PH2 is the one of the right camera(see Figure 9). The middle point PH between both speci�es the head position.
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φ2 1φFIG. 9: Optical axes under changing tilt.4 Manipulator servoing for tool handlingA principal goal of IBRS is manipulating objects. The manipulator carries a tool forchanging the pose or shape of an object. Tool handling is composed of four successivestages. First the tool approaches the object and second is �ne-controlled until it takes on acertain spatial relation to the object. Third the tool works, i.e., it must be �ne-controlledcontinually and through careful movement the object is manipulated. Fourth the tool willbe decoupled from the object. 10



4.1 Approaching the tool to a objectThe head-cameras are used for taking stereo images from the manipulator working spacecontinually. In the images the object position and the current tool position are detectedand according to the control rule an increment vector for moving the tool nearer to theobject is computed (similar to [5]).Extracting image positions of gripper and objectIn each of the stereo images both the gripper tip and the target object must be located.Gripper detection has already been tackled in chapter 3. The detection of an object alsorequires a speci�c operator which is tuned to speci�c object attributes. In [12] a neuralnetwork of radial basis functions is trained with the grey level images of various objectviews and thus the appearance manifold is represented. Furthermore this network is ex-tended with an output layer in which the weights can be trained such that the wholenetwork computes a value of reliability for the object to be recognized. Alternatively theapproach for object detection in [13] uses geometric features which are invariant under per-spective projection. Based on the Hough transformation a set of invariants are extractedand combined for the purpose of detecting an object of approximate parallelepiped shape.However these approaches are time-consuming and therefore should be applied only priorto the control cycle. For stationary or slow moving objects this is acceptable becauseduring the servoing cycle an e�cient procedure for change detection can be used to verifyor determine the new object position.Determining the control ruleCorresponding object positions in the stereo images must be related to positions in themanipulator coordinate system (i.e., changes of positions). The Jacobians J1(P ) andJ2(P ) of equation (6) for the two head-cameras are simply combined in a (4� 3) matrix.To transform a desired change from stereo image coordinates into manipulator coordinatesthe pseudo inverse Jy(P ) is computed.J(P ) :=  J1(P )J2(P ) ! ; Jy(P ) := (JT (P ) � J(P ))�1 � JT (P ) (9)The variable state vector Sv(t) is de�ned by the 3D coordinate vector P (t) of the grippertip. The desired measurement vector is a 4D vector of the 2D positions of the object inthe stereo images, the current measurement vector represents the stereo 2D positions ofthe gripper tip. Q� :=  p�1p�2 ! ; Q(t) :=  p1(t)p2(t) ! (10)With these de�nitions the control scheme in equation (7) can be applied. The manipula-tor gripper approaches the object, and if the object is moving then the gripper will followit.ExperimentsThe usefulness of servoing is exempli�ed for inaccurate head-camera{manipulator rela-tions. The manipulator working space is a cube of sidelength 400mm. The spatial dis-11



tance between head-camera and manipulator is about 1500mm, the head-camera focallength is taken as 12mm. The self-calibration procedure has been applied for three dif-ferent densities of calibration points (i.e., stopping places of the gripper). Distances of100mm, 200mm, or 400mm yield 125, 27, or 8 calibration points respectively from whichthree projection matrices are computed. In all experiments the gripper starts at a cornerand must be servoed to the center of working space. For a servoing factor s := 0:5 itturns out that at most 10 cycle iterations are necessary until convergence. After con-vergence we make mesurements of the deviation from the 3D center point. First, theservoing procedure is applied under the use of the three mentioned projection matrices.The result is that the �nal deviation from the goal position is at most 5mm with nodirect correlation to the density of calibration points (i.e., the accuracy of the projectionmatrices). According to that it is su�cient to use just eight corners of the working spacefor head-camera{manipulator self-calibration. Second, the servoing procedure is appliedafter changing certain geometric parameters of the robot head respectively. Changingthe head position in a circle of radius 100mm, or changing pan or tilt DOF within angleinterval of 10 degrees yield deviations from goal position of at most 25mm. The errorsoccur mainly due to the restricted image resolution of 256�256 pixels. According to thatthe head-camera{manipulator relation need not be re-calibrated in case of the mentionedchanges of the pre-calibrated arrangement.4.2 Assembling the tool to an objectThe gripper has approached a motionless object such that a safe distance is kept bothover and in fornt of the object (�rst image in Figure 10). Now the manipulator will becarefully servoed to an optimal grasping situation based on the manipulator mountedcamera (fourth image in Figure 10). Using an objective with large focal length the situa-tions are depicted with high resolution which is a precondition to reach a high accuracyduring assembling. To simplify recognition of changing situations �rst a rotation and thena translation takes place.
FIG. 10: Assembling the gripper to an object.Rotational movement of the gripperThe purpose of gripper rotation is to make the �nger orientation equal to the principalorientation of the object (second image in Figure 10). For simplicity it is assumed towork on a horizontal plane and thus deal only with one rotating degree of freedom (i.e.,12



the roll parameter R(t)). Both �ngers and the object are detected in the grey level image(see procedures in chapters 3.1 and 4.1). As a result we assume a binarized image ofgreylevel edges which originate from �ngers and object boundary. We perserve the edgesorientations and construct a histogram thereof. Figures 11 and 12 show these histogramsprior and after the cycles of rotational gripper movement (for �rst and second image inFigure 10). The position of the �rst peak in Figure 11 speci�es the principal orientation roof the object and the second larger peak the gripper orientation rg in the image. Duringthe servoing cycle the gripper orientation changes but due to the mounted camera a changeof the object orientation appears. Accordingly, the �rst histogram peak must move to theright until it uni�es into the second peak (Figure 12).
FIG. 11: Edge orientation histogram prior to rotation.For the control scheme we de�ne the variable state vector Sv(t) := R(t), the currentmeasurement vector Q(t) := ro(t), the desired measurement vector Q� := rg.C(t) := ( r � signum(Q��Q(t)) : jQ� �Q(t)j > thresh0 : else (11)For the case that desired and current orientation deviate more than a threshold threshthe orientation changes by a small value r.Translational movement of the gripperThe gripper will be servoed such that the gripper reference point is collinear with theprincipal axis of the object and then is servoed along the direction of this axis until acertain grasping situation is reached. A constant increment vector r is prefered (similarto the case of rotation) for better surveying the movement. Reasonable values for r13



FIG. 12: Edge orientation histogram after rotation.are obtained by o�ine experimentation. For de�ning grasping situations we can takethe gripper reference point and the object center point into account, e.g., computingthe city block distance between both. If this distance falls below a certain thresholdthresh then the desired grasping situation is reached, else the gripper translates in smallincrements. An alternative approach for evaluating the grasping stability is demonstratedin [12] which avoids the use of geometric features. A neural network learns to evaluatethe stability of grasping situations on the basis of training examples. These examplesituations are represented as patches of �lter responses in which a band pass �lter is tunedto speci�cally respond on certain relationships between grasping �ngers and object. These�lter responses E(t) implicit represent a measurement of distance of the gripper from themost stable position. For example, when the gripper moves step by step to the most stablegrasping pose and then moves o� the network learns a parabolic curve with the maximumat the most stable situation. A precondition for using the approach is that gripper andobject must be in a small neighborhood so that the �lter can catch the relation. Insteadof computing for the vector of �lter responses a value of grasping stability it is possible toassociate an appropriate increment vector for moving the gripper. In that case the controlrule h is implemented as neural network which is applied to a �lter response vector E(t).4.3 Continual handling of a toolFrequently for object manipulation it is required to move the tool along a certain trajec-tory and furthermore keep a certain orientation relative to the object. For example, weassume that a gripper �nger must be servoed at a certain distance over an object surfaceand must be kept normal to the surface. For example, taking the application area of dis-mantling computer monitors a plausible strategy is to detach the front part of a monitor14



case using a laser beam cutter. The trajectory of the cutter is approximately a rectanglewhich surrounds the front part and during this course the beam orientation should bekept orthogonal to the lines of the rectangle. Figure 13 shows stereo images of a monitor(focal length 12mm) and in more detail the �nger{monitor relation (focal length 69mm).For this advanced application of IBMS the control problem is much more complicated.First, the goal situation actually is an ordered sequence of intermediate goal situationswhich must be reached step by step. Second, the measurement vector describung a situ-ation must be partitioned into two subvectors the �rst one consisting of attributes whichshould be kept constant and the second one consisting of attributes which must changesystematically to reach the next goal situation. Third, for specifying criteria under whichthe goal situations are reached it is advantageous to visually demonstrate these situationsin an o�ine stage.
FIG. 13: Stereo images of a monitor, and detailled �nger{monitor relation.Supporting manipulator servoing by visual demonstrationThe control cycles for approaching and assembling a tool to a target object are running aslong as the deviation between current situation and goal situation is larger than a certainthreshold thresh. However the value for this parameter must be speci�ed in terms ofpixels which is inconvenient for system users. Unfortunately in complicated applicationseven a vector of threshold values must be speci�ed. To simplify this kind of user interac-tion it makes sense to manually arrange certain goal situations prior to the servoing cyclesand take images. These images are analysed with the purpose of automatically extract-ing the goal situations and furthermore determining relevant thresholds which describeacceptable deviations. E.g., for servoing the �nger we must specify in terms of pixels thepermissible tolerance for the orthogonality to the surface and for the distance from thesurface. Actually, this tolerances are a priori known in the euclidean 3D space but mustbe determined in the images. Figure 14 shows in the �rst and second image exemplarythe tolerance concerning orthogonality and distance and in the third and fourth imagenon-acceptable deviations. For determining the acceptable variances in both parametersa simple image subtraction and a detailled analysis of the subtraction area is useful.A further even more important aspect of visual demonstration is to acquire operatorsfor situation recognition prior to the servoing cycles. The goal situations (including typ-15



FIG. 14: Acceptable and non-acceptable �nger{monitor relations.ical permissible variations) are manually arranged and by taking images for each goalsituation a manifold of situation apperances is constructed. From that, operators for sit-uation recognition can be learned, e.g., using RBF networks in [12]. The great strengthof this approach is that we don't have to provide geometric models for the recognitiontask. Instead, operators for recognition are learned on the basis of real examples from theappearances of situations.Behaviour-based strategy for continual object handlingThe complex task of continual object handling can best be organized by several behaviourseach one performing perception{action cycles with the purpose of retaining or strivingfor a certain subgoal. To obtain an overall behaviour as desired the basic behavioursmust cooperate appropriately, e.g., working in parallel or exclusive, or one suppressing oranimating the other [14]. For the task of detaching the front part of a monitor case onebasic behaviour is responsible for servoing the tool over the monitor (go{over behaviour)and another one for keeping the tool in a certain relation to a part of the surface (keep{relation behaviour). We assumed an approximate rectangular trajectory over the frontpart of the monitor. The go{over behaviour strives for moving along an exact rectanglebut will be modi�ed slightly by the keep{relation behaviour.For the go{over behaviour four intermediate subgoals are de�ned which are the fourcorners of the monitor front. The head-cameras are used for taking stereo images eachof which containing the whole monitor front and the gripper �nger. In both images weextract the four (virtual) corner points of the monitor, e.g., using one of the recognitionapproaches discussed above. By combining the corresponding 2D coordinates between thestereo images we obtain four 4D vectors which represent the intermediate goal positionsin the stereo images, i.e., we must pass successively four desired measurement vectorsQ�(1); Q�(2); Q�(3); Q�(4). The variable state vector Sv(t) is de�ned as the 3D coordinatevector P (t) of the �nger tip, and the current measurement vector Q(t) represents itsposition in the stereo images. The pseudo inverse Jy(Sv(t)) of the Jacobian is takenfrom equation (9). The control rule for approaching the desired measurement vectorsQ�(i); i 2 f1; 2; 3; 4g; is as follows.C(t) := ( s � Jy(Sv(t))�(Q��Q(t))jJy(Sv(t))�(Q��Q(t))j : jQ� �Q(t)j > thresh0 : else (12)In the application phase parameter i is running from 1 to 4, i.e., as soon as Q�(i) is passedtaking threshold thresh into account then the behaviour is striving for Q�(i + 1). Due16



to the normalization involved in the control rule an increment vector of constant lengthis computed which makes sense because in the application a movement with constantvelocity is favourable.The keep{relation behaviour is responsible for keeping the �nger in an orthogonal ori-entation near to the current part (determined by the go-over behaviour) of the monitorsurface. For taking images from the situations at a high resolution (see Figure 14) themanipulator camera is used. Similar to the assembling task (chapter 4.2) a rotationaland/or a translational movement takes place if the current situation is non-acceptable.For rotational servoing simply histograms of edge orientations are used to distinguishbetween acceptable and non-acceptable angles between �nger and surface. Coming backto the role of visual demonstration it is necessary to acquire three classes of histogramsprior to the servoing cycles. One class consisting of acceptable relations and two otherclasses representing non-acceptable relations with the distinction of clockwise or counter-clockwise deviation from orthogonality. Based on that a certain angle between �nger andsurface will be classi�ed during the servoing cycles using its edge orientation histogram.2For example an RBF neural network [15] can be used in which a collection of hiddennodes represents the three manifolds of histograms and an output node computes anevidence value indicating the relevant class, e.g., value near to 0 for acceptable relationsand values near to 1 or -1 for non-acceptable clockwise or counter-clockwise deviation.As usual the hidden nodes are created on the basis of the c-means clustering algorithmand the link weights to the output node are determined by the pseudo inverse technique.The control rule for the rotation task is similar to equation (11) with the distinctionthat a measure of distance between current and desired measurement vectors (i.e., edgeorientation histograms) is computed by the RBF network.For translating the �nger to reach and then keep a certain distance to the monitor astrategy similar to the translational movement of the gripper can be applied (see chapter4.2). The cooperation between the go{over behaviour and the keep{relation behaviouris according to the principle of alternation. The go{over behaviour follows step by stepthe corners of the monitor und computes in each iteration of its control cycles a smallincrement towards the next monitor corner. Then the control cycles of the keep{relationbehaviour starts to bring the tool into the desired relation to the monitor. Next, againan iteration of the go{over control cycle comes into play, and so on.5 Manipulator and/or head servoing for objectinspectionA further primary goal of image-based robot servoing is to acquire information aboutcertain objects (e.g., object inspection). The optical axes and the �elds of visibility of thehead-cameras are important for this purpose. For example, the manipulator can carry anobject into the �eld of visibility of a head-camera, then move the object along the optical2The strength of applying the learning process to the raw histogram data is that the network cangeneralize from a large amount of data. However, if data compression would be done prior to learning(e.g., computing symbolic values from the histograms) then quantization or generalization errors areunavoidable. 17



axis towards the camera to increase image resolution and �nally rotate the object to viewthe object from various orientations. Alternatively, the degrees-of-freedom of the robothead can be controlled to move the �eld of visibility to the object place.5.1 Role of the optical axis for object inspectionThe optical axis is a useful guideline for manipulator or head servoing in order to extractobject information from adequate images. Taking this optical axis constraint into accountvarious techniques become simpli�ed or even applicable at all.Reasonable size, resolution, and orientation of an objectWe assume that an object of interest is located at a point on the optical axis. For depictingthe object with reasonable size and resolution the focal length of the head-camera can beservoed. An appropriate object orientation is reached with the rotary table. Figure 15shows an object taken under large (left) and small (middle) focal length, and underdegenerate orientation (right).
FIG. 15: Transceiver box, taken under large and small focal length, and under degenerate orientation.The change of the depicted object size can be evaluated by image subtraction, activecontour construction, optical 
ow computation, etc. For example, an active contourapproach [16] is simply started by putting an initial contour at the image center and thenexpanding it step by step until the background image area of the object is reached whichis assumed to be homogeneous. Based on this representation it is easy evaluated whetherthe object silhouette is of a desired size or locally touches the image border and thusmeets an optimality criterion concerning depicted object size.The change of object resolution in the image can be evaluated by frequency analysis,Hough transformation, steerable �lters, etc. For example, using Hough transformationwe extract boundary lines and evaluate distances between approximate parallel lines. Ameasure of resolution is based on the pattern of peaks within a horizontal stripe in theHough image. Figure 16 shows for the images in Figure 15 the Hough image respectively.For the case of low (high) resolution the horizontal distances between the peaks are small(large). Having the object depicted at the image center the straight boundary lines of apolyhedral object can be approximated as straight image lines due to minimal perspectivedistortions. 18



FIG. 16: Hough transformation of binarized images in Figure 15.For the purpose of object recognition we are interested in taking images under a generalobject orientation, e.g., three visible faces of the transceiver box in Figure 15 (left andmiddle). However the degenerate object view in Figure 15 (right) only shows two faces.Taking the peak pattern of the Hough transformation into account we can di�erentiatebetween general and degenerate views (see Figure 16, middle and right). According tothat the object can be rotated appropriately while preserving its position on the opticalaxis.Depth and shape reconstructionFor reconstructing depth or shape of an object once again the optical axis is important.By taking two images under di�erent focal length (see Figure 15, left and middle) we canuse simple constraints for solving the serious matching problem. Corresponding features(e.g., lines) between the images are detected under the reasonable assumption that theymust expand with the image center as the focus of expansion. Alternatively, a depth-from-focus strategy of shape reconstruction can be applied [17] in which the manipulatorcarries the object along the optical axis. The image is partitioned regulary and for eachpatch a measure of sharpness is computed (e.g., see chapter 3.3). During the manipulatormovement we take images at certain positions and evaluate for each patch the sharpness.This gives for each patch a series of sharpness values and from that we look for the max-imum and associate the relevant position of the manipulator gripper to it. Accordingly,for each patch individual positions of the manipulator gripper are determined which in-dicate the depth and shape of the object. Usually the aspect of image point motion mustbe taken into account [18] which is simpli�ed under the assumption that the focus ofexpansion is located at the image center.5.2 View control of the head-camera systemSuppose the head-camera system is used to visually control the actions of the manipulator,e.g., approaching the gripper to an object. As a precondition the task-speci�c workingspace of the manipulator must be contained in the common �eld of visibility of the twohead-cameras.Visibility of a certain working spaceFor simplifying the task we construct a sphere which minimally surrounds the volume of19



the working space. Its position is known in the manipulator coordinate system. On theother hand also the head position is represented in the coordinate system of the manipu-lator (see chapters 3.1, 3.2 and 3.4). Furthermore a relationship is obtained between thequadrupel of pan, tilt, and two vergence values (given in the robot head) and the orien-tation of the optical axes (given in the manipulator coordinate system). Finally, for acertain value of focal length the �eld of visibility, i.e., the size and position of the truncatedpyramid, is determined for each head-camera (see chapter 3.3). If the sphere �ts into thevisibility pyramid of a head-camera then the focal length should be taken as appropriate.Else it must be decreased systematically until the �tting condition is ful�lled. With allthese data the robot head can be steered directly such that both optical axes intersectat the center of the sphere and both vergence angles are equal. This arrangement of therobot head is considered as optimal for observing the manipulator actions.Object inspection with view controlIn contrast to the previous case the head-cameras can be used simultaneously but dis-similar concerning the focal length. If we use a constant small focal length for the leftand a constant large focal length for the right head camera we take a wide range of theenvironment with the left and a small with the right one. For example, in Figure 15 theleft image shows a (large) object as a whole and the right image shows an object partin detail. As opposed to the above arrangement these two images could be taken by thehead-cameras simultaneously. Accordingly the �eld of visibility of the right camera mustbe contained in the �eld of visibility of the left camera. For this arrangement the pan andtilt DOF are servoed systematically such that the left camera always depicts the objectas a whole and the right camera successive inspects certain parts of the object in detail.For an automatic control the visible part of the scene taken by the right camera mustbe known in the image taken by the left camera. Then a strategy similar to continualobject handling in chapter 4.3 can be applied to inspect the front of a monitor case. Therobot head will be servoed such that the right camera inspects successive the border ofthe monitor.6 SummaryThe usefulness of image-based robot servoing was demonstrated for a multi-componentrobot system consisting of a movable robot head, a stationary manipulator, and a ro-tary table. The various degrees-of-freedom can be controlled in cooperation to overcometheir individual restrictions and exploit their complementary strengths. The most seriousproblem is image-based situation recognition as a precondition to determine appropriatecontrol signals (desirable in video frame rate). We are convinced that visual demonstra-tion is a step towards solution. Prior to the servoing cycles certain goal situations aremanually arranged and from the images thereof a set of appropriate operators for imageanalysis must be learned automatically. As these operators are grounded in actual situa-tions the application during the servoing cycles should be successful and e�cient.20



Acknowledgment: Many thanks to Prof. Sommer for the valuable discussions. Thecontributions of S. Kunze, F. Lempelius, M. P�aschke, and A. Schmidt are greatfullyappreciated.References[1] N. Ahuja and A. Abbott. Active stereo - integrating disparity, vergence, focus, aperture,and calibration for surface estimation. IEEE Transactions on Pattern Analysis and MachineIntelligence, 15:1007{1029, 1993.[2] M. Landy, L. Maloney, and M. Pavel, editors. Exploratory Vision { The Active Eye. SpringerVerlag, Berlin, 1995.[3] K. Hashimoto, editor. Visual Servoing. World Scienti�c Publishing, Singapore, 1993.[4] P. Corke. Visual control of robot manipulators { a review. In K. Hashimoto, editor, VisualServoing, pages 1{31. World Scienti�c Publishing, Singapore, 1993.[5] G. Hager, W. Chang, and A. Morse. Robot hand-eye coordination based on stereo vision.IEEE Control Systems, pages 30{39, February 1995.[6] J. Feddema, C. Lee, and O. Mitchell. Model-based visual feedback control for a hand-eyecoordinated robotic system. Computer, pages 21{31, August 1992.[7] P. Papanikolopoulos and P. Khosla. Robotic visual servoing around a static target - anexample of controlled active vision. In Proceedings of the American Control Conference,pages 1489{1494, 1992.[8] F. Chaumette, S. Boukir, P. Bouthemy, and D. Juvin. Structure from controlled motion.IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:492{504, 1996.[9] J. Craig. Introduction to Robotics. Addison-Wesley Publishing Company, Massachusetts,1989.[10] V. Leavers. Survey: Which Hough transform ? Computer Vision, Graphics, and ImageProcessing { Image Understanding, 58:250{264, 1993.[11] O. Faugeras. Three-Dimensional Computer Vision. The MIT Press, Cambridge, Mas-sachusetts, 1993.[12] J. Pauli. Learning to recognize and grasp objects. Autonomous Robots, 5:407{420, 1998.[13] J. Pauli. Learning to recognize and grasp objects. Machine Learning, 31:239{258, 1998.[14] R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Roboticsand Automation, 2:14{23, 1986.[15] D. Hush and B. Horne. Progress in supervised neural networks. IEEE Signal ProcessingMagazine, 10:8{39, January 1993.[16] D. Williams and M. Shah. A fast algorithm for active contours and curvature estimation.Computer Vision, Graphics, and Image Processing { Image Understanding, 55:14{26, 1992.21



[17] T. Darell and K.Wohn. Depth from focus using a pyramid architecture. Pattern RecognitionLetters, 11:787{796, 1990.[18] S. Olsen. Image point motion when zooming and focusing. In The 10th ScandinavianConference on Image Analysis. Finnland, 1997.

22


