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ABSTRACT

In this contribution we present a novel method, called Evolutionary Acqui-
sition of Neural Topologies (EANT), of evolving the structures and weights
of neural networks. The method introduces an efficient and compact ge-
netic encoding of a neural network onto a linear genome that enables one
to evaluate the network without decoding it. The method uses a meta-level
evolutionary process where new structures are explored at larger time-scale
and the existing structures are exploited at lower time-scale. This enables it
to find minimal neural structures for solving a given learning task.



ii



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Evolution of Connection Weights . . . . . . . . . . . 4
1.1.2 Evolution of Structure and Connection Weights . . . 5

1.2 Contributions of the Work . . . . . . . . . . . . . . . . . . . 6

2. Evolutionary Acquisition of Neural Topologies . . . . . . . . . 9
2.1 Genetic Encoding . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Evaluating a Linear Genome . . . . . . . . . . . . . . . . . . 13
2.3 Generating the Initial Linear Genome . . . . . . . . . . . . . 16
2.4 Variation Operator: Structural Mutation . . . . . . . . . . . 18
2.5 Variation Operator: Parametric Mutation . . . . . . . . . . 19
2.6 Exploitation and Exploration of Structures . . . . . . . . . . 21

3. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 XOR Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Crawling Robotic Insect . . . . . . . . . . . . . . . . . . . . 26
3.4 Pole Balancing . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . 31
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Reactive Navigation with Obstacle Avoidance . . . . . . . . 36

4. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . 39



iv Contents



1. INTRODUCTION

A meaningful combination of the principles of neural networks, reinforce-
ment learning and evolutionary computation is useful for designing agents
that learn and adapt to their environment through interaction [28, 29]. The
combination results in an evolutionary reinforcement learning system where
each of the components of the learning system plays an important role.

Neural networks are useful for evolving the control system of an agent
[39, 41, 28]. They provide a straight forward mapping between sensors and
motors and this enables them to represent directly the policy (control) or the
value function to be learned. Moreover, they can accommodate continuous
(analog) or discrete input signals and provide either continuous or discrete
motor outputs, depending on the transfer function chosen. Gradual changes
to the parameters defining a neural network (synaptic weights, architecture,
etc) will often correspond to gradual changes of its behavior i.e they offer a
relatively smooth search space. In addition to this, they are robust to noise.
Since their units are based upon a sum of several weighted signals, oscillations
in the individual values of these signals do not drastically affect the behavior
of the network. They have been used in combination with other methods in
solving inherently unstable control tasks [16, 57, 8, 40, 26, 50], in learning
obstacle avoidance and navigation paths [22, 25], and in representing a value
function while learning to play games without human expertise [53, 9].

Reinforcement learning is useful as a type of learning where the agent is
not told directly what to do but fed with a signal (reward) that measures the
quality of executing an action in a given state [5, 52, 22]. The purpose of the
agent is to act optimally in its environment so as to maximize its rewards.
It is one form of learning through interaction. Learning through interac-
tion underlines nearly all the principles of intelligence [41]. This property
of reinforcement learning makes it important in evolutionary reinforcement
learning. In reinforcement learning, an agent tries to estimate value function.
This function shows how good it is for an agent to be in a given state or how
good it is for an agent to execute a given action in a given state. It is possible
to generate the policy directly from value function. In reinforcement evolu-
tionary learning, the policy or the value function is represented by a neural
network.
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Like neural networks, evolutionary algorithms are inspired from biology.
Populations of organisms have been adapting to their particular environ-
mental conditions through evolutionary selection (survival of the fittest) and
variablity among them. From these principles of adaptation in nature, it
is possible to drive a number of concepts and strategies for solving learning
tasks and develop optimization strategies for artificial intelligent systems. An
example of an optimization problem that can be solved using the principles
of evolution is a model based object recognition system [30].

There are many forms of evolutionary algorithms. The major ones are
genetic algorithms [24, 56], genetic programming [35], evolution strategy
[42, 45] and evolutionary programming [14]. Most of the evolutionary algo-
rithms have the following important components: representation (definition
of individuals), evaluation function (fitness function), population, parent se-
lection mechanism, variation operators (recombination and mutation) and
survivor selection mechanism [11].

Evolutionary algorithms can be considered as a kind of reinforcement
learning. In evolutionary algorithms, the fitness function is a kind of a re-
ward signal of an agent that has operated and lived in a given environment.
But reinforcement learning algorithms and evolutionary algorithms have the
following major differences:

1. Reinforcement learning algorithms have only one agent while evolution-
ary algorithms have population of agents at a time.

2. In reinforcement learning, signals (rewards) are provided after each
action is executed by the agent. In evolutionary algorithms, fitness
values (rewards) are provided to the agent at the end of the life of
the agent or after the individual has performed or operated in the
environment.

3. Reinforcement learning algorithms update the policy or value function
of an agent while the agent is operating in the environment. Evolution-
ary algorithms, however, update the policy of an agent after the agent
has lived and operated in the environment. That means, evolution-
ary algorithms search for optimal value functions or optimal policies
directly in space of value functions or policies.

The evolutionary reinforcement learning that combines the principles of
neural networks, reinforcement learning and evolutionary algorithms is shown
in figure 1.1. The evolutionary algorithm contains genotypes of neural net-
works to be evaluated in a given environment. Each neural network is evalu-
ated and assigned a given fitness value (reward). Through genetic operators
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of the evolutionary algorithm, the agents will be improved and evaluated in
the environment. The process continues until a certain number of generations
or until an agent is found that solves a given task. The neural network may
represent a policy or a value function depending on the task that is going to
be solved. It may even represent a regression or classification function for
supervised training of neural networks with evolutionary algorithms.

Fig. 1.1: Evolutionary reinforcement learning system. The agents, where the
neural networks are embedded in, are evaluated in the environment
and their fitness values are returned to the evolutionary algorithm
as rewards.

1.1 Related Works

The evolution of neural networks can be divided into two major categories:
the evolution of connection weights and the evolution of both the structure
and connection weights. In the first category, the structure of neural networks
is fixed and is determined by the domain expert before the evolution begins.
In the second category, both the structure and the connection weights are
determined automatically by the evolutionary process. A detailed review of
the evolution of neural networks is given by Yao [59]. In this section, we
will give a review of evolutionary reinforcement methods that are applied to
reinforcement learning tasks.



4 1. Introduction

1.1.1 Evolution of Connection Weights

Wieland [58] studied the evolutionary optimization of a fully connected re-
current neural networks on different pole balancing problems. He encoded
the weights of the neural networks by eight bits and used genetic algorithm
for optimization. The structure of the recurrent neural network is determined
manually.

An Evolutionary Programming (EP) to parameter optimization of feed-
forward neural networks is used by Saravanan and Fogel for double pole
balancing tasks [44]. The structure of the neural network especially the
number of hidden units are determined a priori.

Moriarty and Miikkulainen [38] developed a method of evolving neural
networks, called Symbiotic, Adaptive Neuroevolution (SANE), where the
system evolves population of neurons instead of population of networks. A
fully connected hidden layers of networks are formed by a combination of
neurons selected randomly from population of neurons. A neuron individual
receives an average fitness value of networks in which it takes part in.

The Enforced Subpopulations (ESP) [15, 16, 17] is based on SANE, but
it specializes neurons to specific tasks. Each non-input unit of the neural
network is assigned to a separate subpopulation and a neuron is recombined
with the members of its own subpopulation. Unlike SANE the networks
formed by ESP consists of a representative from each evolving specialization
and this allows it to evolve recurrent networks since a neuron’s behavior in
a recurrent network is critically dependent upon the neurons to which it is
connected.

Floreano and Urzelai [12, 13] evolved a fully connected recurrent neural
network for learning a light-switching task. The genotype is made up of genes
that either code the synaptic strength of the connections, or the learning rate
and learning rule that may be used in modifying the synaptic strengths of
the connections while the agent is operating in the environment. In the latter
case, they used four different Hebbian rules and four different learning rates.

Igel [26] applied a specialized evolutionary strategy called CMA-ES [23]
for evolving a fixed-topology neural network. The CMA-ES uses important
concepts like derandomization and cumulation. The concept derandomiza-
tion shows the deterministic way of altering the mutation distribution such
that the probability to reproduce steps in search space that have led to bet-
ter population is increased. Moreover, the algorithm detects correlations
between object variables and is invariant under orthogonal transformation
of the search space. The search path of population over a number of past
generations is used in order to use the information from previous generations
more efficiently. In CMA-ES this is known as cumulation.
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1.1.2 Evolution of Structure and Connection Weights

These methods evolve both the connection weights and the structure of the
neural networks. They are divided into two major groups depending on the
type of genetic encoding used. The two types of genetic encoding are the
direct and indirect encoding types.

Direct Genetic Encoding

The methods that use direct encoding scheme must specify explicitly every
connection and nodes that will appear in the phenotype.

Angeline et al. [1] developed a system called GNARL (GeNeralized Acqui-
sition of Recurrent Links) that uses only structural mutation on the topology,
and parametric mutations on the weights as genetic search operators. The
system is based on evolutionary programming where crossover operator is
not used as a search operator. The system tries to maintain the behavior of
the network in order to avoid a radical jump from parent to offspring. New
links are initialized with zero weight, leaving the behavior of the modified
network unchanged and hidden nodes are added to the network without any
incident connections. The main problem of this method is that genomes
may end up in many extraneous disconnected structures that do not have
any contribution to the solution.

The Neuroevolution of Augmenting Topologies (NEAT) developed by
Stanley and Miikkulainen [50, 49] evolves both the structure and weights of
neural networks using both crossover and mutation operators. It starts with
networks of minimal structures and complexifies them along the evolution
path. Every node and connection of the phenotype is encoded by the geno-
type. The algorithm keeps track of the historical origin of every gene that is
introduced through structural mutation. The history is used by a specially
designed crossover to match up genomes encoding different network topolo-
gies, and to create a new structure that combines the overlapping parts of
the two parents as well as their different parts. Structural discoveries of the
evolutionary process are protected by niching (speciation). The speciation
in NEAT is achieved by explicit fitness sharing, where organisms in the same
species share the fitness of their niche.

Indirect Genetic Encoding

The methods that use indirect encoding specify rules that are used in con-
structing the phenotype. Every connection and node is not specified in the
genome but can be derived from it.
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Kitano’s [34] grammar based encoding of neural networks use Linden-
mayer systems (L-systems), which were introduced by Lindenmayer [37] and
used to describe the morphogenesis of linear and branching structures in
plants. L-systems are parallel string rewriting systems that rewrite a starting
string into a new string by applying a set of production rules to all symbols
of the string in parallel. Sendhoff et al. [47] extended Kitano’s grammar
encoding with their recursive encoding of modular neural networks. Their
system provides a means of initialization of the network weights. Networks
are trained using the standard back-propagation and the encoding itself is
variable and optimized on a larger time-scale. Kitano and Sendhoff used
their systems for evolution of feed-forward networks.

Gruau’s Cellular Encoding (CE) method [19, 20, 21] is a language for
local graph transformations that controls the division of cells which grow into
artificial neural network. Through cell division, one cell called the parent cell
is replaced by two cells called child cells. During division, a cell must specify
how the two child cells must be linked. The genetic representations in CE are
compact because genes can be reused multiple times during the development
of the network and this saves space in genome since every connection and
node does not need to be explictly specified in the genome.

Vaario et al. [55] have developed a biologically inspired neural growth
based on diffusion field modeling combined with genetic factors for controlling
the growth of the network. The neural structures are grown in either a
two-dimensional or three-dimensional grid resulting in a two-dimensional or
three-dimensional tree-based neural structure. One weak point of the method
is that it can not generate networks with recurrent connections or networks
with connections between neurons on different branches of the resulting tree
structure.

1.2 Contributions of the Work

The method presented in this work is closely related to the works of Angeline
et al. [1] and to the works of Stanley and Miikkulainen [50, 49]. It is related
to the works of Angeline et al. in that the method uses structural mutation
as a main search operator for structural discoveries, and parametric muta-
tion that is based on evolution strategies or evolutionary programming with
adaptive step sizes for optimization of the weights of the neural networks.
Complexification of structures along the evolution path starting from a min-
imum structure makes it related to the works of Stanley and Miikkulainen.
But it has the following important features which makes it different from the
earlier works:
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1. A compact genetic encoding of a neural network that enables one to
evaluate the neural network without decoding it. The topology of the
network is implicitly encoded in the order of genes in the linear genome.

2. A meta-level evolutionary process where exploration of structures is
executed at a larger time-scale and exploitation of existing structures
is done at smaller time-scale.
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2. EVOLUTIONARY ACQUISITION OF

NEURAL TOPOLOGIES

Evolutionary Acquisition of Neural Topologies (EANT) is an evolutionary
reinforcement learning system that is suitable for learning and adaptation to
the environment through interaction. The system evolves both the structures
and weights of neural networks. With respect to the goal of self-organizing
learning machines which start from minimal specification and rise to great
sophistication, EANT starts with neural networks of minimal structures, and
increases their complexity along the evolution path.

2.1 Genetic Encoding

A flexible encoding method enables one to design an efficient evolutionary
method that can evolve both the structures and weights of neural networks.
The genome in EANT is designed by taking this fact into consideration. A
genome in EANT is a linear genome consisting of genes (nodes) that can take
different forms (alleles). The forms that can be taken by a gene can either
be a neuron, or an input to the neural network, or a jumper connecting two
neurons. The jumper genes are introduced by the structural mutation along
the evolution path. A jumper gene can either encode a forward or a recurrent
connection. A jumper gene encoding a forward connection represents a con-
nection starting from a neuron at a higher depth and ending at a neuron at a
lower depth. On the other hand, a jumper gene encoding a recurrent connec-
tion represents a connection between neurons having the same depth, or a
connection starting from a neuron at a lower depth and ending at a neuron at
a higher depth. Every node in a linear genome has a weight associated with
it. The weight encodes the synaptic strength of the connection between the
node coded by the gene and the neuron to which it is connected. Moreover,
every node can save the results of its current computation. This is useful
since the results of signals at recurrent links are available at the next time
step. In addition to the synaptic weight, a neuron node has a unique global
identification number and number of input connections to it. A jumper node
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has also additionally a global identification number, which shows the neuron
to which it is connected. An example of a linear genome encoding a neural
network is shown in figure 2.1.

(a) (b)

(c)

Fig. 2.1: An example of encoding a neural network using a linear genome.
(a) The neural network to be encoded. It has one forward and one
recurrent jumper connection. (b) The neural network interpreted
as a tree structure, where the jumper connections are considered
as terminals. (c) The linear genome encoding the neural network
shown in (a). In the linear genome, N stands for a neuron, I for an
input to the neural network, JF for a forward jumper connection,
and JR for a recurrent jumper connection. The numbers beside N
represent the global identification numbers of the neurons, and x or
y represent the inputs coded by the input gene (node).

The linear genome can be interpreted as a tree based program if we con-
sider all the inputs to the network and all jumper connections as terminals.
Terminals are sources of signals either from the inputs or from other parts
of the neural network. On the other hand, neurons are processing units that
map the signals at their inputs to signals at their outputs. Terminals are
analogous to the terminal set and neurons are analogous to the function set
in a standard GP program [4, 35]. The linear genome is a prefix ordering
of genes (nodes) where the ordering implicitly represents the topology of the
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neural network encoded by it. The term prefix ordering stands for the fact
that in the ordering the neuron nodes (operators) come before the inputs and
jumper connections (operands). Figure 2.2 shows the equivalence between a
neural network, a linear genome representing it, and a tree-based program
representing the neural network. Starting from a neural network it is pos-
sible to generate a linear genome that encodes it or a tree-based program
representing it. The converse is also true; starting from a linear genome or a
tree-based program, it is possible to generate the neural network.

Fig. 2.2: The linear genome is equivalent to the neural network it encodes
or a tree based program representing the neural network. One
can generate the tree based program or the linear genome starting
from the neural network or vise-versa. The tree-based program is
coded in XML like commands. The commands <NeuralNetwork>

and </NeuralNetwork>, <Neuron> and </Neuron>, <Input> and
</Input>, <Connection> and </Connection>, <Recurrent> and
</Recurrent>, and <GId> and </GId> stand for the start and end
of a program representing a neural network, a neuron, an input,
a forward jumper connection, a recurrent jumper connection, and
global identification number, respectively.

The linear genome has some interesting properties that makes it useful
for evolution of the structure of neural networks. Assume that integer values
are assigned to the nodes of a linear genome encoding a neural network such
that the integer values show the difference between the number of outputs of
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the nodes and the number of arguments of the nodes (inputs to the nodes).
Note that every node in the linear genome has only one output. If a node
is an input to the neural network, the integer assigned to it is 1 since an
input to a neural network has only one output and no arguments (inputs)
at all. An integer value of 1 is also assigned to the forward and recurrent
jumper nodes since they are sources of signals from other neurons in the
neural network encoded by the linear genome. A neuron node will take an
integer value which is the same as one minus the number of inputs to the
neuron. In EANT, since there is no neuron without an input, the maximum
value of an integer assigned to a neuron node is zero. This is true for all
neurons with only one input. One important property of a linear genome is
that the sum of the integer values assigned to each of the nodes in a linear
genome encoding a neural network is the same as the number of outputs of
the neural network.

After assigning the integer values to the nodes of the linear genome, it is
possible to detect a sub-linear genome (sub-network) of a linear genome. A
sub-linear genome (sub-network) in EANT is defined as a collection of nodes
starting from a neuron node and ending at a node where the sum of integer
values assigned to the nodes between and including the start neuron node
and the end node is one. An example is shown in figure 2.3.

Fig. 2.3: An example of the use of assigning integer values to the nodes of
the linear genome. The linear genome encodes the neural network
shown in figure 2.1. The numbers in the square brackets below
the linear genome show the integer values assigned to the nodes
of the linear genome. Note that the sum of the integer values is
one showing that the neural network encoded by the linear genome
has only one output. The shaded nodes form a sub-network. Note
also that the sum of the integer values assigned to a sub-network is
always one.

The linear genome is complete in that it can be used to represent any type
of neural network. It is also a compact encoding of neural networks since the
length of the linear genome is the same as the number of synaptic weights
in the neural network. Moreover, the encoding scheme used is closed. An
encoding scheme is said to be closed if all genotypes produced are mapped
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into a valid set of phenotype networks [3, 27]. It is closed under structural
mutation operator since every new linear genome produced by structural mu-
tation is mapped into a valid phenotype network. It is also closed under a
special crossover where the crossover operator exploits the fact that struc-
tures which originate from the initial minimal structures have some parts in
common. By aligning the common parts of two randomly selected structures,
it is possible to generate a third structure which contains the common and
disjoint parts of the two mother structures. The resulting structure formed
in this way maps to a valid phenotype network. This type of crossover is
introduced and used by Stanley [49]. An example is shown in figure 2.4. The
number of inputs to a neuron node which is common to the parent structures
is updated using

n(s1 × s2) = n(s1) + n(s2) − n(s1 ∩ s2), (2.1)

where n(s1 × s2) is the number of inputs to the neuron node in the offspring,
n(s1∩s2) is the number of input nodes to the neuron node which are common
to both structures, and n(s1) and n(s2) are the number of input nodes to the
neuron node in the parent structure s1 and s2 respectively. In addition to
this, the genetic encoding is scalable. Scalability is defined by how decoding
and genotype space complexity are affected by a single change in a phenotype
[3, 27]. The encoding takes O(1) time and space in node addition and deletion
and no time is incurred during the genotype-phenotype mapping because
of the equivalence of the linear genome to the neural network it encodes.
Similarly, addition and deletion of node-to-node connection in phenotype
will cost O(1) space and time in genotype and again incurs no time in the
genotype-phenotype mapping. Hence it can be said that the encoding scheme
is O(1) scalable with respect to the nodes and connectivity.

2.2 Evaluating a Linear Genome

There are two methods of evaluating a linear genome. In the first method,
one decodes the linear genome into a neural network it represents and then
evaluates the neural network directly. In other words, in this method there
is a physical difference between the genotype (the linear genome) and the
phenotype (the neural network encoded by the linear genome). The first
method is especially useful if one wants to evaluate the network using some
type of parallel computation. In the second method, it is not necessary to
decode the neural network into the neural network but one can use the linear
genome directly to evaluate the neural network represented by the genome.
The second method emphasizes the fact that it is not always necessary to



14 2. Evolutionary Acquisition of Neural Topologies

Fig. 2.4: Performing crossover between two linear genomes. The genetic en-
coding is closed under this type of crossover operator since the re-
sulting linear genome maps to a valid phenotype network. The
weights of the nodes of the resulting linear genomes are inherited
randomly from both parents.

create a separate phenotype structure from genotype by some sort of onto-
logical process [4]. In other words, it is not always necessary to decode the
linear genome into a neural network for the purpose of evaluating it.

For the purpose of evaluating or computing the output of the neural
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network without decoding the genome, we use a first in last out stack and
the following rules:

1. Start from the right most node of the linear genome.

2. Move from right to left in computing the output of the neural network.
This is the same as incrementing a program counter while running a
program.

3. If the current node is an input node, push its current value and the
weight associated with it onto the stack.

If the current node is a neuron node, pop n values with their associated
weights from the stack and push the result of computation with its
associated weight onto the stack, where n is the number of inputs of
the neuron being evaluated. The output of a neuron node is computed
using

O = g

(

n
∑

i=1

wi ai

)

, (2.2)

where O is the result of computation for the current neuron node, vi

and wi are the popped values and their associated weights. g (.) is the
activation function of the neuron node.

If the current node is a recurrent jumper node, get the last value of
the neuron node whose global identification number is the same as the
global identification number of the recurrent jumper node. Then push
the value obtained with the weight associated with jumper node onto
the stack.

If the current node is a forward jumper node, first copy the sub-linear
genome (sub-network) starting from a neuron whose global identifi-
cation number is the same as the global identification number of the
forward jumper node. Then compute the response of the sub-linear
genome in the same way as that of the linear genome. Finally, push the
result of computation with the weight associated with forward jumper
node onto the stack. This is analogous to calling a function in a pro-
gram or jumping to an interrupt service routine.

4. After traversing the genome from right to left completely, pop the re-
sulting values from the stack. The number of the resulting values is
the same as the number of outputs of the neural network coded by the
linear genome.



16 2. Evolutionary Acquisition of Neural Topologies

Figure 2.5 shows an example of evaluating a linear genome encoding the
neural network shown in figure 2.1. As can be seen from the figure, one does
not need to decode the neural network in order to evaluate it.

Fig. 2.5: An example of evaluating a linear genome without decoding the
neural network encoded by it. The linear genome encodes the neural
network shown in figure 2.1. For this example, the current values of
the inputs to the neural network, x and y, are both set to 1. In the
example, all neurons have a linear activation function of the form
z = a, where a is the weighted linear combination of the inputs to
a neuron. The overlapped numbers above the linear genome show
the status of the stack after computing the output of a node. The
numbers in brackets are the weights associated with the nodes.

The evaluation of a linear genome discussed above is equivalent to the
evaluation of a decoded neural network represented by the genome, where
the activation of a neuron of the network is given by

ai(t) = g





nf
∑

j=1

wijaj(t) +
n
∑

j=nf+1

wijaj(t − 1)



 . (2.3)

In the equation, g is the activation function of the neuron and n is the number
of input connections to the neuron. The number of forward connections
and the number of recurrent connections to the neuron are nf and n − nf ,
respectively.

2.3 Generating the Initial Linear Genome

The first step in generating the initial genome is to determine the number
of outputs and number of inputs of the neural network required for a given
task. The initial linear genome contains only neuron nodes and input nodes.
The forward and recurrent connection nodes are introduced by the structural
mutation operator and added to the linear genome along the evolution path.
Two methods are used in the initialization of the initial genome. These are
the grow and full methods [36, 4].
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Grow Method

For a given maximum depth, the grow method produces linear genomes en-
coding neural networks of irregular shape because a node is assigned to a
randomly generated neuron node having a random number of inputs or to
a randomly selected input node. Figure 2.6 shows an example of a linear
genome generated using the grow method. The neural network encoded by
the linear genome has a neuron with repeated inputs.

N 0 N 1 N 3 I x I x I y N 2 I x I y

W=0.6 W=0.8 W=0.9 W=0.1 W=0.4 W=0.5 W=0.2 W=0.7 W=0.8

x y

 0

1 2

3

 Depth = 0

 Depth = 1

 Depth = 2

 0.6

 0.8  0.2

 0.8

 0.9

 0.1

 0.4

 0.5
 0.7

Fig. 2.6: An example of a linear genome generated by using the grow method
and the neural network encoded by it. Note that the linear genome
must be edited since the neural network encoded by it has a neuron
with repeated inputs.

Full Method

This method adds to the linear genome randomly generated neurons con-
nected to all inputs until a node is at the maximum depth and then adds
only random input nodes. This results in neural networks with symmetric
structures where every branch of a tree-based program equivalent of the lin-
ear genome goes to the full maximum depth. In this method, except neurons
at the maximum depth, all neurons are connected to a fixed number of neu-
ron nodes. Figure 2.7 shows an example of a linear genome generated with
full method.
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N 0 N 1 I y I x I y N 2 I x I y

W=0.6 W=0.8 W=0.1 W=0.3 W=0.9 W=0.7 W=0.2 W=0.4 W=0.5

I x

Fig. 2.7: An example of a linear genome generated by using the full method
and the neural network encoded by it.

Editing a Linear Genome

An initially generated genome with either the grow or full method should
be edited so that it has no neuron nodes which have repeated inputs. It is
obvious that repeated inputs can be represented by a single input connection
to the neuron. Editing a linear genome avoids the unnecessary addition of
parameters in the weight space due to repeated inputs, and hence reducing
the number of evaluations necessary during optimization of the weights of
the neural network. Figure 2.8 shows an example of editing a linear genome.

2.4 Variation Operator: Structural Mutation

The structural mutation used by EANT adds or removes a forward or a re-
current jumper connection between neurons, or adds a new sub-network to
the linear genome. The initial weight of a newly added jumper connection
or the initial weight of the first node of a newly added sub-network is set to
zero so as not to disturb the performance or behavior of the neural network.
The structural mutation operator does not remove a sub-network because re-
moving a sub-network results in a removal of all jumper connections that are
coming to or going out of the sub-network. This would cause a tremendous
loss of the performance of the neural network.

The structural mutation operates only on neuron nodes of a linear genome
encoding a neural network. Figure 2.9 shows the case where the structural
property of a neuron node N3 is changed through the structural mutation.
The neuron node losses an input x and gains a self-recurrent connection. In
applying the structural mutation, each neuron node is tested if it is going to
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Fig. 2.8: An example of editing a linear genome. The editing replaces repeat-
ing inputs with non-repeating ones.

be mutated or not by drawing a random number from a uniform distribution
between 0 and 1. If the currently drawn random number is less than the
structural mutation probability pm, the neuron node will be mutated. Once
it is known that the neuron node is going to be mutated, a random number
is again drawn from a uniform distribution between 0 and 1 for determining
the kind of structural mutation to execute. Adding connections, adding
sub-networks, and removing connections are all given equal probabilities of
execution.

2.5 Variation Operator: Parametric Mutation

Parametric mutation is accomplished by perturbing the synaptic weights of
the networks according to the uncorrelated mutation in evolution strategy or
evolutionary programming [45, 11, 14]. In addition to the associated weight,
each node in a linear genome encoding a neural network has an associated
mutation step size or learning rate. Figure 2.10 shows a linear genome with n
nodes where every node has in addition to weight a learning rate associated
with it.
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Fig. 2.9: An example of structural mutation. Note that the structural muta-
tion deleted the input connection to N1 and added a self-recurrent
connection to it.

Fig. 2.10: Every node of a linear genome has in addition to weight an asso-
ciated learning rate.

The mutation mechanism is specified as follows:

σ′
i = σi e

τ ′ N(0,1)+τ Ni(0,1), (2.4)

w′
i = wi + σi Ni (0, 1) , (2.5)

where τ ′ = 1/
√

2n and τ = 1/
√

2
√

n, and N (0, 1) is a random number drawn
from a Gaussian distribution of zero mean and unity standard deviation. A
boundary rule given by the following equation is used to force learning rates
not to be smaller than a threshold value:

σ′
i < ǫ0 ⇒ σ′

i = ǫ0. (2.6)
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The main advantages of using the parametric mutations of synaptic
weights of the neural networks in the style of evolution strategies or evo-
lutionary programming are:

1. Unlike genetic algorithms, evolution strategies and evolutionary pro-
gramming perform search in the space of networks. Offspring created
by mutation remain within a locus of similarity to their parents [1].

2. Self-adaptation of mutation step sizes of learning rates is inherent in
both evolution strategies and evolutionary programming [45, 14, 2].

2.6 Exploitation and Exploration of Structures

The algorithm starts with networks of minimal structures whose initial com-
plexity is specified by the domain expert through the maximum depth that
can be assumed by the initial structures. The depth of a neuron node in a
linear genome is the minimal number of neuron nodes that must be traversed
to get from the output neuron to the neuron node, where the output neuron
and the neuron node lie within the same sub-network that starts from the
output neuron. The initial structures are generated either with the grow or
full method.

The structures that are already in the system are exploited. By exploita-
tion, we mean the optimization of the weights of the existing structures. At
the beginning of the exploitation of structures, each of the existing structures
is parametrically perturbed to form a population of µ individuals. Then each
of the individuals is evaluated to determine its fitness value. After that, the
standard survivor selection, the truncation or (µ, λ) selection [46], is used for
generating the individuals of the next generation. In truncation selection, µ
parents are allowed to breed λ offspring, out of which the µ best are used
as parents for the next generation. The (µ, λ) selection does not depend on
the absolute fitness values of individuals in the population. The first µ best
individuals remain best, regardless of the absolute fitness differences between
individuals. The process of generating new individuals through parametric
mutation and using the (µ, λ) selection continues for certain number of gen-
erations N . This is an evolutionary process that occurs at smaller time-scale
for optimization of the weights of a particular structure. The number of eval-
uations that is necessary per structure is µN . An example of the exploitation
process is shown in figure 2.11.

Exploration of structures is accomplished by structural mutation which is
performed at larger time-scale. It is used to create new species or introduce
new structures. From each of the existing structures, a new structure is
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Fig. 2.11: The weight trajectory of the linear genome shown at the right side
while it is being exploited. The quantities t and t+1 are time units
with respect to the larger time-scale. The weights of the existing
structures are optimized between two consecutive time units with
respect to the larger time-scale. The point clouds at t and t + 1
show populations of individuals from the same species.

formed and added to the existing ones. The weights of the newly acquired
structural parts of the new structure are initialized to zero so as not to form
(get) a new structure whose fitness value is less than its parent. This type of
initialization scheme for newly acquired structures is also used by Angeline
et al. [1].

The structural selection operator begins by sorting the exploited struc-
tures in descending order according to their fitness value. Then the first
half of the population are selected. Young structures which are less than
M generations old with respect to the larger time scale and which are not
selected are carried on along the evolution regardless of the results of the
selection operator. This will give them time to optimize their newly acquired
structures before they compete with other individuals globally. This way it
is possible to maintain the new structural discoveries of the evolution before
they get extinct pretty much earlier. The number of structures in any given
generation is not allowed to be larger than some pre-specified number. The
limit will keep the number of structures being entertained not to explode as
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the evolution proceeds.
Figure 2.12 summerizes the evolutionary process of EANT at larger time

scale. As can be seen in the diagram, the evolutionary process continues
until a structure is found that solves a given task. The flow diagram reflects
the philosophy behind EANT in that different structures represent different
species and all species compete for resources in an environment in which they
live and operate. One can identify two types of competitions. The first is
the competition within a species and the other is the competition between
species. Competition within a species occurs between individuals having the
same structure while optimizing the weights of a structure. Species which
are strong enough survive and continue to live while others get extinct.

The main search operators at larger time-scale are the structural mutation
and structural crossover. The structural operator used in EANT exploits
the fact that structures (species) which originate from the initial structure
(species) have some genetic material in common. By aligning the common
parts of two randomly selected species, it is possible to generate a third
species which contains the common and disjoint parts of the two mother
species. Structural mutation operates on a single species and creates a new
species by changing the structure of the mother species. At smaller time-
scale, parametric mutation and recombination between individuals of the
same species are used as search operators.

New structures are introduced through structural mutation and those
structures that are better according to the fitness evaluations survive and
continue to exist in the population. Since sub-networks that are introduced
by structural mutation are not removed, there is a gradual increase in the
complexity of the structures along the evolution. This allows EANT to search
for a solution starting from a minimum structural complexity specified by the
domain expert. The search stops when a structure with the necessary mini-
mal structure that solves a given task is obtained. In EANT complexification
is an emergent property that depends on the task to be solved.
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Fig. 2.12: EANT’s evolutionary process at larger time-scale. Crossover does
not occur between structures since they represent different species.



3. EXPERIMENTAL EVALUATION

3.1 Introduction

In this chapter the performance of EANT is examined. In the first part of the
experiment, EANT’s ability of evolving the necessary minimal structure for
a given task is considered. The standard XOR problem is used for this case.
In the second part, an experiment on learning to move forward using a single
legged robotic insect is considered. The third part of the experiment discusses
the efficiency of EANT on the standard benchmark problem of balancing two
poles attached to a moving cart. Comparison with other algorithms tested
on the same problem is also given. Finally, the performance of EANT is
investigated on the problem of reactive navigation with obstacle avoidance.

3.2 XOR Problem

The exclusive-OR (XOR) problem is a simple example of a data set which
is not linearly separable [6]. It consists of four inputs which are divided into
two classes. An example of exclusive-OR (XOR) is shown in figure 3.1. The
inputs (0, 0) and (1, 1) belong to class C1, while the inputs (0, 1) and (1, 0)
belong to C2.

Fig. 3.1: The XOR problem. It is a simple example of a problem which is
not linearly separable.

At least one hidden node is required to solve the problem since there is
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no linear decision boundary which can classify all four points correctly. That
means the minimal neural structure for solving the XOR problem has at least
one hidden node. The aim of this experiment is to prove if EANT is able
to find the necessary minimal neural structure required to solve the XOR
problem starting from a neural structure having only one output neuron.

The experiment is run for 100 times and EANT is able to find networks
having on the average 1.52 hidden nodes, and it takes the algorithm 1234
network evaluations to get a solution. Moreover, EANT has found a solution
all the time. From the results of the experiment, one can say that EANT is
consistent in finding the minimal neural structure required to solve the XOR
problem.

The problem has been used to measure the performance of several other
algorithms that evolve both the architecture and weights of the neural net-
works [34, 10, 49]. The NeuroEvolution of Augmenting Topology developed
by Stanley [49] found the solution to the XOR problem after 4755 network
evaluations and on the average found a solution network that has 2.35 hidden
nodes. It is clear to see that our algorithm performs better in this simple
problem. However, the XOR problem is such a simple task that it is not a
good benchmark for measuring the performance of an algorithm or comparing
the performance of the algorithm with other algorithms.

3.3 Crawling Robotic Insect

The crawling robotic insect has one arm having two joints where the joints
are controlled by two servo motors. It has also a touch sensor which detects
whether the tip of the arm is touching the ground or not. The robot was
introduced and used by Tsuchiya and Kimura for reinforcement learning
tasks [54, 33, 32]. They used the robot for learning to move forward through
trial and error. The schematic diagram of the robot is shown in figure 3.2.

The robot has bounded continuous and discrete state variables. The
continuous state variables are the joint angles and the discrete state variable
is the state of the touch sensor. The controller observes the joint angles
and the state of the touch sensor. Depending on the state it perceives, the
controller is expected to change the angles of the joints appropriately so
that the robot can move forward as fast as possible. The first joint angle
θ1 is bounded between 55̊ and 94̊ , and the second joint angle θ2 lies in the
range [−34̊ , 135̊ ]. For both of the joints, the angles are measured from the
vertical as shown in figure 3.2. The angles ranges are chosen so that they are
equivalent to the angle ranges chosen by Tsuchiya and Kimura. In the works
of Tsuchiya and Kimura the first joint angle is measured from the horizontal
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Fig. 3.2: The crawling robotic insect. The robot has one arm with two joints
and a touch sensor for detecting whether the tip of the arm is touch-
ing the ground or not. The joint angles are measured from the
vertical.

while the second joint angle is measured from the first link. The touch sensor
φ takes the value 0 for non-touch state and 1 for touch state.

Let the coordinates of the first and the second joints be (x0, y0) and
(x1, y1), respectively and let the coordinate of the tip of the arm be
(x2, y2). The state of the robot at each time step t = 0, 1, . . . is st =
(x0, y0, x2, y2, θ1, θ2, φ). Since the coordinate (x1, y1) can be calculated given
a state s, it is not listed in the definition of the state of the robot. The
following equations define the state transition of the system.

θ1(t + 1) = θ1(t) + δ1

θ2(t + 1) = θ2(t) + δ2

x0(t + 1) = x0(t)
y0(t + 1) = y0(t)
x2(t + 1) = x0(t + 1) + l1 sin θ1(t + 1) + l2 sin θ2(t + 1)
y2(t + 1) = y0(t + 1) + l1 cos θ1(t + 1) − l2 cos θ2(t + 1)

if φ(t) = 0

θ1(t + 1) = θ1(t) + δ1

θ2(t + 1) = θ2(t) + δ2

x2(t + 1) = x2(t)
y2(t + 1) = y2(t)
x0(t + 1) = x2(t + 1) − l2 sin θ2(t + 1) − l1 sin θ1(t + 1)
y0(t + 1) = l2 cos θ2(t + 1) − l1 cos θ1(t + 1)

if φ(t) = 1

,

(3.1)
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where δ1 and δ2 are the outputs of the neural controller, and l1 and l2 are
the lengths of the first and the second link. The first link is between the first
joint and the second joint while the second link is between the second joint
and the tip of the arm. Care must be taken in using equation (3.1) especially
when the tip touches the ground and loses contact with the ground. For the
experiment, l1 = 34 cm and l2 = 20 cm are chosen. The first joint is located
at right upper corner of the rectangular body of the robotic insect which has
a height of 18 cm and width of 32 cm.

A trial contains 50 time steps and at the beginning of a trial the robot is
placed at the origin. The fitness function used to evaluate a neural controller
is given by

f =
1

N

N
∑

t=1

(x0(t) − x0(t − 1)), (3.2)

where the difference x0(t) − x0(t − 1) is the velocity of the system at time
t+1 in the direction of the x−axis and f is the average velocity of the robot
for a trial. The number of time steps used per trial is represented by N .

Figure 3.3 shows the best controller found and the waveforms of the joint
angles and the touch sensor as the robot moves forward.
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Fig. 3.3: Learning to move forward. (a) The best controller found by our
algorithm that enables the robot to move forward. (b) The wave-
forms of the joint angles and the touch sensor as the robot moves
forward.

Tsuchiya, Kimura and Kobayashi applied their policy learning by ge-
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netic algorithm using importance sampling [54] for learning to move for-
ward. They defined a three dimensional vector X = (x1, x2, x3) for rep-
resenting the state space. The dimensions of the state space is made
up of the joint angles and the state of the touch sensor. The pol-
icy used in their experiment is a 7 dimensional feature vector F =
[x1, x2, x3, x4 (= 1 − x1) , x5(= 1 − x2), x6(= 1 − x3), 1.0]. A weight vector
Θ = (θ1,i, θ2,i, θ3,i, θ4,i, θ5,i, θ6,i, θ7,i) is used to select the action ai(t) from
normal distribution with mean value µi = 1/(1 + exp(−∑6

k=1 θk,ixk)) and
standard deviation σi = 1/(1 + exp(−θ7,i)) + 0.1. If the selected action is
out of range then it is resampled. The number of the policy parameters is
14 and hence the search space for the genetic algorithm has 14 dimensions.

Table 3.1 shows the performance comparison of our method with the
method developed by Tsuchiya, Kimura and Kobayashi. The comparison is
made with respect to the number of steps taken by the agents in learning to
move forward.

Method Average number of steps

GA-IS [54] 10000
EANT [31] 3520

Tab. 3.1: Performance comparison between genetic algorithm using impor-
tance sampling (GA-IS) and EANT.

As compared to the GA-IS, EANT has reduced the number of interactions
with the environment necessary to learn to move forward. The reduction in
the number of interactions is due to the direct search for an optimal policy
in the space of policies, starting minimally and increasing the complexity of
the neural network that represents the policy. The starting neural network
has two output neurons and three input nodes.

3.4 Pole Balancing

The inverted pendulum or the pole balancing system has one or several poles
hinged to a wheeled cart on a finite length track. The movement of the cart
and the poles are constrained within a vertical plane. The objective is to
balance the poles indefinitely by applying a force to the cart at regular time
intervals such that the cart stays within the track boundaries. A trial to
balance the poles fails if either the angle from vertical of any pole exceeds a
certain threshold or the cart leaves the track.
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The problem has been a standard benchmark for the design of controllers
for unstable systems over 30 years [48]. The first reason of using the problem
as a standard benchmark is that it is a continuous real-world task that is
easy to understand and visualize. Moreover, it can be performed manually
by humans and implemented on a physical robot. The second reason is
that it embodies many essential aspects of a whole class of learning tasks
that involve temporal credit assignment [18]. The controller is expected to
discover its own strategy based on the reinforcement signal it receives every
time it fails to control the system.

For modern reinforcement learning methods, the basic pole balancing
problem, which has only one pole hinged to a wheeled cart, is obsolete since
especially for those methods that evolve neural networks the solution is of-
ten found in the initial random population [15, 18]. To make the problem
challenging, the basic pole balancing is extended in two ways [58]. The first
extension is the addition of a second pole next to the other and the second
one is the restriction of the state information received by the controller. In
this case the controller is provided only with the cart position and the angles
from the vertical of both poles. The first extension makes the task more dif-
ficult by introducing non-linear interactions between the poles. The second
makes the task non-Markovian which forces the controller to employ short
term memory to disambiguate underlying process state. Figure 3.4 describes
the double pole balancing problem where the poles have unequal lengths.
This is the most challenging of the pole balancing versions.

The equations of motion of a cart with N poles are given by

ẍ =
F − µcsgn (ẋ) +

∑N
i=1 F̃i

mc +
∑N

i=1 m̃i

θ̈i = − 3

4li

(

ẍ cos θi + g sin θi +
µiθ̇i

mili

)

F̃i = miliθ̇i

2
sin θi +

3

4
mi cos θi

(

µiθ̇i

mili
+ g sin θi

)

m̃i = mi

(

1 − 3

4
cos2 θi

)

(3.3)

for i = 1, . . . , N [58]. In the equation, F is the force applied to the cart, x is
the offset of the cart from the center of the track, and g is the acceleration
due to gravity. The quantities mi, li, θi and µi stand for the mass, the half
of the length, the angle from the vertical, and the coefficient of friction of
the ith pole, respectively. The mass and coefficient of friction of the cart are
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Center

Fig. 3.4: The double pole balancing problem. The poles must be balanced
simultaneously by applying a continuous force F to the cart. The
parameters x, θ1 and θ2 are the offset of the cart from the center
of the track and the angles from the vertical of the long and short
pole, respectively.

denoted by mc and µc, respectively. The effective force from pole i on the
cart is denoted by F̃i and its effective mass is given by m̃i.

For our benchmark double pole experiments, N = 2, mc = 1 kg, m1 = 0.1
kg, l1 = 0.5 m, l2 = 0.1l1, m2 = 0.1m1, µc = 5.10−4 and µ1 = µ2 = 2.10−6.
The length of the track is set to 4.8 m. The parameters are the most common
choices for the double pole experiments. The dynamical system is solved
using the fourth-order Runge-Kutta integration with step size τ = 0.01 s.

3.4.1 Experimental Setup

The experiments are setup in order to be comparable to the results reported
in [38, 17, 50, 26]. The controllers perceive continuous states and produce
continuous control signals rather than jerk left-right or “bang-bang”. Two
balancing configurations with and without complete state information are
used in the experiments.

Double Pole Balancing with Velocities

In this experiment, the controller is provided with full state information
(x, ẋ, θ1, θ̇1, θ2, θ̇2) and the initial state of the long pole is set to θ1 = 10.
The controller is expected to balance the poles for 105 time steps so that the
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angles of the poles from the vertical lie in the range [−36̊ , 36̊ ]. Each time
step corresponds to 0.01s. The descriptions of the experiment are based on
that reported in [17, 50, 26].

Double Pole Balancing without Velocities

In this setup, the controller observes only x, θ1 and θ2. A fitness function
introduced by Gruau et al. [21] together with a termination criterion is used
in this task. The same fitness function is used by Gomez and Miikkulainen
[16], Stanley and Miikkulainen [49], and Igel [26].

The fitness function is the weighted sum of two separate fitness measure-
ments 0.1f1 + 0.9f2 taken over 1000 time steps:

f1 = t/1000, (3.4)

f2 =







0 if t < 100
0.75

∑t

i=t−100
(|xi|+|ẋi|+|θi

1
|+|θ̇i

i
|)

otherwise, (3.5)

where t is the number of time steps the pole is balanced starting from a
fixed initial position. In the initial position, all states are set to zero except
θ1 = 4.5̊ . The angle of the poles from the vertical must be in the range
[−36̊ , 36̊ ]. The fitness function defined favors controllers that can keep the
poles near the equilibrium point and minimize the amount of oscillation.
The first fitness measure f1 rewards successful balancing while the second
measure f2 penalizes oscillations.

The evolution of the neural controllers is stopped when a champion of
a generation passes two tests. First, it has to balance the poles for 105

time steps starting from the 4.5̊ initialization. Second, it has to balance
the poles for 1000 steps starting from at least 200 out of 625 different ini-
tial starting states. Each start state is chosen by giving each state variable
(x, ẋ, θ1, θ̇1, θ2, θ̇2) each of the values 0.05, 0.25, 0.5, 0.75, 0.95, 0, 0, scaled to
the range of input variable (54 = 625). The ranges of the input variables are
±2.16 m for x, ±1.35 m/s for ẋ, ±3.6̊ for θ1, and ±8.6̊ for θ̇1. The number
of successful balances is a measure of the generalization performance of the
best solution.

3.4.2 Results

Table 3.2 shows the average value of network evaluations needed by various
methods in solving a given task. For our algorithm (EANT), the experiments
are done for 120 times for both test scenarios.
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Double pole balancing Double pole balancing
Method with velocity without velocity

Evaluations Evaluations Generalization

CE [21] 34000 840000 300
ESP [18] 3800 169466 289

NEAT [51] 3600 33184 286
CMA-ES [26] 895 6061 250
EANT [31] 1580 15762 262

Tab. 3.2: The average network evaluations (trials) needed by various methods
in solving the double pole balancing tasks. For CMA-ES, results for
a neural network having 3 hidden nodes without a bias are shown.

From table 3.2 one can see that our algorithm is better than other algo-
rithms that evolve both the structure and weights of a neural network (CE,
ESP, NEAT). The results are highly significantly better (p < 0.001) than
the best algorithms which evolve both the network structure and weights of
the neural networks. The CMA-ES has outperformed EANT on both dou-
ble pole balancing tasks. But for CMA-ES the topology (structure) of the
neural network has to be chosen manually before optimizing the weights of
the network. Figures 3.5 and 3.6 show examples of the results obtained for
both test scenarios. For double pole balancing with velocities, our algorithm
found a controller having only one output node. Since the evolution starts
with neural controllers of minimal structures, the algorithm was able to find
this minimal structure for most of the experiments. For double pole balancing
without velocities, the algorithm found a controller having one output neu-
ron and one hidden neuron. Both neurons have a self-recurrent connection
onto themselves. Once again, one can see that because of starting mini-
mally, it is possible to obtain compact, efficient and clever solutions in the
design of controllers. The algorithms found both structures consistently for
both test scenarios. The waveforms generated by the controllers depend on
the connection weights. Since for the same structure there are many weight
combinations that solves a given task, the waveforms of the force exerted or
the waveforms of the angles from the vertical could be different. Figures 3.5
and 3.6 show one possible waveform that can be generated by the structure
shown in the respective figures.
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(a) (b)

Fig. 3.5: Double pole balancing with velocities. (a) The best controller found
by our algorithm. Note that the minimum neural structure neces-
sary to balance double poles with velocities has only one output
neuron. (b) Snapshot of a 2D real-time simulation of the controller
in action. The left oscilloscope above the cart-poles system shows
the waveform of the force exerted onto the cart and the right oscil-
loscope shows the waveforms of the angles from the vertical of both
poles.
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(a) (b)

Fig. 3.6: Double pole balancing without velocities. (a) The best controller
with minimum neural structure found by our algorithm. The con-
troller has one output neuron and one hidden neuron where both
neurons have a self-recurrent connection onto themselves. (b) Snap-
shot of a 2D real-time simulation of the controller in action. The
left oscilloscope above the cart-poles system shows the waveform of
the force exerted onto the cart and the right oscilloscope shows the
waveforms of the angles from the vertical of both poles.
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3.5 Reactive Navigation with Obstacle Avoidance

The aim of this experiment is to demonstrate the automatic design of neural
controllers for robots using EANT. We evolved the structure and weights of
the neural controller which enables B21 robots [43] to autonomously explore
the environment and avoid obstacles. The controller is expected to avoid
dead lock situations where Braitenberg-like controllers [7] have difficulties of
escaping them. In these situations, they either come to a rest or start to
oscillate left to right.

We used the sonar sensors of the B21 robot for detecting the obstacles.
The B21 robot has 24 sonar sensors which are symmetrically distributed
around its cylindrical body. We used the 8 in front and 2 in the rear sonar
sensors as inputs to the neural controller. The sonar sensors give the distance
of obstacles in millimeters measured from the center of the robot. The values
returned by the sonar sensors are transformed using equation (3.6) before
feeding them to the neural controller.

Vn =

{

−Vs+1000
1000

if Vs < 1000
0 otherwise

. (3.6)

In the equation, Vn is the transformed and normalized sonar reading and Vs

is the actual reading returned by a particular sonar sensor. The value Vn lies
between 0 and 1 for obstacles which are located at a distance less than 1 m
from the center of the robot.

The initial controller has two output neurons and each neuron is con-
nected to all sensors. In addition to the sensor inputs, each neuron has
a constant bias input connected to it. The initial controller is similar to
Braitenberg-like controller and is not capable of avoiding dead lock situ-
ations. The algorithm is expected to find a controller which is complex
enough for solving the navigation problem with the ability of avoiding dead
lock situations. The fitness function used to evaluate the controllers is given
by

F =
T
∑

t=1

D(t)e−100(H(t)−H(t−1))2 (1 − Smax(t)), (3.7)

where D(t), H(t) and Smax(t) are the distance traveled, the heading of
the robot, and the maximum value of the currently perceived normalized
sonar readings respectively. The fitness function favors controllers that move
straight as long and as fast as possible and controllers that give the robot the
maximum distance from the obstacles. Figure 3.7 shows the initial neural
controller and the final controller obtained by our algorithm. The ability of
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avoiding the deal lock situations comes because of the recurrent connections.
The result is similar to that obtained by Nolfi and Floreano [39] and Hülse
and Pasemann [25] but in both cases the structure of the neural controller is
determined manually beforehand.

(a) (b)

Fig. 3.7: (a) The initial Braitenberg-like controller (b) The best neural con-
troller found by EANT that is capable of avoiding dead lock situa-
tions.

The initial Braitenberg-like controller and the best neural controller found
are tested in an environment with sharp corners. The sharp corners form dead
lock situations where Braitenberg-like controllers have difficulties of escaping
them. Figure 3.8 shows an example of the performance of both controllers in
a given environment. The best neural controlled found by EANT shows the
behavior of avoiding dead lock situations and exploring the environment.
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(a)

(b)

Fig. 3.8: (a) Trajectory of the robot controlled by the initial Braitenberg-like
controller in a simulated environment. Note that the controller can
not escape the sharp corner. (b) Trajectory of the robot controlled
by the best neural controller. The controller found is capable of
avoiding dead lock situations.



4. CONCLUSION AND OUTLOOK

A system that enables autonomous and situated agents to learn and adapt
to the environment in which they live and operate is developed. The sys-
tem exploits both types of adaptations: namely evolutionary adaptation and
adaptation through learning. Moreover, self-organization is inherent in the
system in that the system starts with networks of minimal structures and
complexifies them along the evolution path. The self-organization process is
an emergent property of the system.

The method introduces a compact genetic encoding that enables one to
evaluate the neural network encoded by it without some type of ontological
process of transforming the genotype into phenotype. In addition to this, a
meta-level evolutionary process is introduced that is suitable to explore new
structures incrementally and exploit the existing ones.

The system can be extended to handle the evolution of hierarchical struc-
tures and modular networks. In addition to this, ways of describing the search
space as well as the final resultant networks can be included in order to direct
the evolution.

In the future, we are planning to extend the system by using the prin-
ciples of developmental biology. These principles are useful in evolving and
representing very large networks and structures, and in designing a compact
and efficient genetic encoding scheme to represent repetitive and recurrent
structures.
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