
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

A Theory of Neural Computation

with

Clifford Algebras

Sven Buchholz

Bericht Nr. 0504

Mai 2005

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL

Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

A Theory of Neural Computation

with

Clifford Algebras

Sven Buchholz

Bericht Nr. 0504

Mai 2005

e-mail: sbh@ks.informatik.uni-kiel.de

Dieser Bericht gibt den Inhalt der Dissertation wieder, die der Verfasser im
November 2004 bei der Technischen Fakultät der

Christian–Albrechts–Universität zu Kiel eingereicht hat.
Datum der Disputation: 16. März 2005.

1. Gutachter Prof. Dr. Gerald Sommer (Kiel)

2. Gutachter Prof. Dr. Reinhold Schneider (Kiel)

3. Gutachter Prof. Dr. Thomas Martinetz (Lübeck)

Datum der mündlichen Prüfung: 16.03.2005

Abstract

The present thesis introduces Clifford Algebra as a framework for neural compu-

tation. Clifford Algebra subsumes, for example, the reals, complex numbers and

quaternions. Neural computation with Clifford algebras is model–based. This

principle is established by constructing Clifford algebras from quadratic spaces.

Then the subspace grading inherent to any Clifford algebra is introduced, which

allows the representation of different geometric entities like points, lines, and so on.

The above features of Clifford algebras are then taken as motivation for introducing

the Basic Clifford Neuron (BCN), which is solely based on the geometric product of

the underlying Clifford algebra. Using BCNs the Linear Associator is generalized

to the Clifford associator. As a second type of Clifford neuron the Spinor Clifford

Neuron (SCN) is presented. The propagation function of a SCN is an orthogonal

transformation. Examples of how Clifford neurons can be used advantageously

are given, including the linear computation of Möbius transformations by a SCN.

A systematic basis for Clifford neural computation is provided by the important

notions of isomorphic Clifford neurons and isomorphic representations. After the

neuron level is established, the discussion continues with (Spinor) Clifford Multi-

layer Perceptrons. The treatment is divided into two parts according to the type

of activation function used. First, (Spinor) Clifford Multilayer Perceptrons with

real–valued activation functions ((S)CMLPs) are studied. A generic Backpropaga-

tion algorithm for CMLPs is derived. Also, universal approximation theorems for

(S)CMLPs are presented. The efficency of (S)CMLPs is shown in a couple of sim-

ulations. Finally, the class of Clifford Multilayer Perceptrons with Clifford–valued

activation functions is studied.

ii

Acknowledgments

The making of this thesis would not have been possible without the support of a

lot of people. It is my great pleasure to thank them here.

First of all I thank my supervisor Professor Gerald Sommer for his confidence in

my work and for the encouraging discussions during all the years. From the very

first ideas to this final version of the text he has been a constant source of advise

and inspiration.

I also thank the co–referees Professor Thomas Martinetz and Professor Reinhold

Schneider for their interest in my work and their helpful comments.

Furthermore, I thank all members of the Cognitive Systems Group, Kiel for their

support and help. My very special thanks go to Vladimir Banarer, Dirk Kukulenz,

Francoise Maillard, Christian Perwass and Nils Siebel.

Last, but not least, I thank my parents Claus and Jutta, to whom I dedicate this

thesis.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 4

1.3 Structure of the Thesis . 5

2 Clifford Algebra 7

2.1 Preliminaries . 8

2.2 Main Definitions and Theorems . 13

2.3 Isomorphisms . 18

2.4 The Clifford Group . 21

3 Basic Clifford Neurons 25

3.1 The 2D Basic Clifford Neurons . 30

3.1.1 The Complex Basic Clifford Neuron 31

3.1.2 The Hyperbolic Basic Clifford Neuron 34

3.1.3 The Dual Basic Clifford Neuron 38

3.2 Isomorphic BCNs and Isomorphic Representations 41

3.2.1 Isomorphic Basic Clifford Neurons 41

3.2.2 Isomorphic Representations . 45

3.2.3 Example: Affine Transformations of the Plane 48

v

CONTENTS

3.3 The Clifford Associator . 50

3.4 Summary of Chapter 3 . 53

4 Spinor Clifford Neurons 55

4.1 The Quaternionic Spinor Clifford Neuron 57

4.2 Isomorphic Spinor Clifford Neurons 61

4.3 Linearizing Möbius Transformations 65

4.4 Summary of Chapter 4 . 70

5 Clifford MLPs with Real–Valued Activation Functions 71

5.1 Backpropagation Algorithm . 74

5.2 Universal Approximation . 79

5.3 Experimental Results . 84

5.3.1 2D Function Approximation 84

5.3.2 Prediction of the Lorenz Attractor 96

5.4 Summary of Chapter 5 . 102

6 Clifford MLPs with Clifford–Valued Activation Functions 105

6.1 Complex–Valued Activation Functions 106

6.2 General Clifford–Valued Activation Functions 112

6.3 Experimental Results . 116

6.4 Summary of Chapter 6 . 117

7 Conclusion 119

7.1 Summary . 119

7.2 Outlook . 121

A Supplemental Material 123

vi

CONTENTS

A.1 Dynamics of the Linear Associator . 123

A.2 Update Rule for the Quaternionic Spinor MLP 126

A.3 Some Elements of Clifford Analysis 127

vii

CONTENTS

viii

Chapter 1

Introduction

The three stages of intelligent action according to [22] are conversion of the stimu-

lus into an internal representation, manipulation of that representation by a cogni-

tive system to produce a new one, and conversion of that new representation into a

response. This clearly maps well onto (feed–forward) neural networks. However,

such networks rather process unstructured data than structured representations.

Many problems arise from that lack of structure, most important the integration of

prior knowledge. This thesis introduces Clifford Algebra as a framework for the

design of neural architectures processing representations advantageously.

1.1 Motivation

Thinking about mind, consciousness, and thinking itself is the root of all philoso-

phy. Therefore philosophy was the first discipline challenging the question

What is intelligence?

In the first half of the 20th century other disciplines started their own challenge

of particular versions of the above question. Each one driven by its own special

origins, methods and hopes.

A psychological approach was undertaken in 1938 by Skinner. In [81] he showed

how the environment could be used to train an animal’s behavior. A refinement of

that principle, reinforcement learning, is widely used today for mobile robots and

multi–agent systems [43].

1

1.1 MOTIVATION

Already in 1933 Thorndike presumed [85] that learning accounts in the brain by

the change of connectivity patterns among neurons. For this postulated principle

he had coined the term connectionism. Some years later Hebb reported in [35] bi-

ological evidence for connectionism. From brain slice experiments he inferred the

following rule: If two neurons on either side of a synapse (i.e. connection) are ac-

tivated simultaneously, then the strength of that synapse is selectively increased.

This can be seen as the offspring of unsupervised learning, which is the general

theory of learning without (external) feedback (from a teacher).

Meanwhile the seeds of a new era were sown. Many mathematicians were chal-

lenged by Hilbert’s Entscheidungsproblem

What are the intuitively computable functions?

The work of Church [17] and Kleene [46] cumulated in 1936 in what is now famous

as the Church thesis: The computable functions are the general recursive function. In the

same year Turing proposed in his famous paper [86] a hypothetical device capable

of computing every general recursive function.

Inspired by both neurophysiology and Turing’s work McCulloch and Pitts pub-

lished in 1943 a highly influential paper [58]. Their idea was to view biological

neurons as sort of logical gates. Thus way biological neurons were ”turned into”

processing units for the first time. This was the birth of neural computation — a

biologically inspired paradigm for computation.

Well, there was another computational model which also emerged in that period

of time. That is of course the computer itself. When the computer era started in the

1950s neural computation was one of the first research fields participating from its

benefits. Computers allowed for simulation of neural models, for which [28] is a

very early example.

The next milestone in neural computation was set in 1958 when Rosenblatt [72] pro-

posed a neural architecture that he called Perceptron. The Perceptron was intended

as a model for human perception and recognition. Later in [73] he introduced as

modification an error correction procedure for it. Learning by error correction is

termed supervised learning. Perceptrons created much excitement and interest in

neural computation. Neural networks like Perceptrons seemed to deliver what

Turing once defined to be the creative challenge of artificial intelligence (AI) [21]

What we want is a machine that can learn from experience.

2

CHAPTER 1. INTRODUCTION

That interest was abruptly stopped at the end of the 1960s. Whether this was

caused by the 1969 book Perceptrons [59] by Minsky and Papert has been a con-

troversial question ever since. The book contained many examples for the limited

power of single Perceptrons, among them the famous exclusive–or (XOR) prob-

lem. For Perceptrons with several layers an efficient learning procedure was still

not known at that time. It was not until the mid 1980s that neural networks trained

by supervised learning entered the stage again. But this time it meant a real revo-

lution.

That new chapter in the history of neural computation is attributed with the names

of Rumelhart and McClelland [77, 57]. One particular contribution by these au-

thors [76] introduced an error correction procedure for multi–layer neural net-

works. Since then the procedure is known as Backpropagation and the associated

network as Multilayer Perceptron (MLP). The MLP soon turned out to be very pow-

erful for almost any type of applications. Theoretically, it was proven to be able to

learn any reasonable function [23]. Around that time neural networks were widely

recognized as leading directly towards real artificial intelligence. Or, as stated in

[34]

The neural network revolution has happened. We are living in the aftermath.

That statement remains true. However, many of the enthusiasm originally directed

to neural networks seems to be gone today. Sure, like everything else, science

has its modes. But there are better optimization techniques than Backpropaga-

tion. Learning from examples has theoretical bounds — one being the so-called

bias/variance dilemma [31]. New players have entered the scene - like Support Vector

Machines [88] or approximative algorithms. So, has neural computation lost itself

in too many technical details? Of course, neural networks are well established and

things are still away from a crisis. Nevertheless some important roots seem fallen

into oblivion. Those being the cognitive ones, i.e. representational aspects.

Cognitive science studies the processes and representations underlying intelligent

action. One particular question arising is

How can it be that a representation means something for the cognitive systems itself?

We believe that this question , although casted very philosophically, is of high rel-

evance for neural computation. The integration of prior knowledge is the widely

accepted ”solution” to the bias/variance dilemma mentioned above. However,

3

1.2 RELATED WORK

this requires nothing less than to solve the representation problem — how to en-

code knowledge. If one wants to come up with a fairly general solution one has to

tackle the previous question.

From the system design perspective this calls for an appropriate mathematical

framework. Here we propose Clifford algebra which allows the processing of geo-

metric entities like points, lines and so on. It is a very efficient language for solving

many tasks connected to the design of intelligent systems [24, 74, 82]. To establish

the theory of Clifford neural computation from the outlined motivation as a pow-

erful model–based approach is the main goal of this thesis. We will start with the

design of Clifford neurons for which weight association is interpretable as a geo-

metric transformation. Then it is demonstrated how different operation modes of

such neurons can be selected by different data representations. From the neuron

level we then proceed to Clifford Multilayer Perceptrons.

1.2 Related Work

Technically speaking, a Clifford algebra is a generalization of complex numbers

and quaternions. Neural networks in such domains are not new. The history of

complex neural networks already started in 1990 with a paper by Clarke [18]. Soon

this was followed by Leung and Haykin [54] presenting the complex Backpropaga-

tion algorithm. The most influential paper was published by Georgiou and Kout-

sougeras [32] in 1992. Therein the topic of suitable activation functions for Complex

Multilayer Perceptrons was discussed for the first time. In particular, Georgiou and

Koutsougeras proved a list of requirements that complex–valued activation func-

tions have to fulfill in order to be applicable. Unfortunately, the complex version

of the standard sigmoidal activation function mostly used in the real MLP was ex-

cluded by those requirements. Another rather trivial complex–valued activation

function (z
1+|z|

) was proposed, and, also the use of real–valued activation functions

for Complex MLPs was suggested in this paper. In 1995 Arena et al. [2] proved the

universal approximation property of a Complex MLP with real sigmoidal activa-

tion function. They also revealed drawbacks of the only known complex activation

function proposed in [32]. Complex MLPs with real–valued activation became the

standard notion of complex neural networks, and complex neural computation re-

mained unattractive for most researchers.

Meanwhile Clifford neural networks had entered the stage. Pearson [62] intro-

duced Clifford MLPs utilizing a Clifford version of the complex activation function

4

CHAPTER 1. INTRODUCTION

from [32]. The same function claimed to be useless by Arena et al. a year later. In

1997 Arena et al. introduced the Quaternionic MLP, a MLP formulated in terms of

quaternions using real–valued activation functions again. The same year saw a pa-

per of Nitta [61] on Complex MLPs which did not add anything new to the case. A

new attempt to vitalize complex–valued activation functions was started recently

by Kim and Adali [44].

Most of the above mentioned literature will be reviewed in this thesis. Clifford

MLPs with both real–valued and Clifford–valued activation functions will be stud-

ied for algebras not considered before in the literature. Moreover, new propagation

functions for Clifford MLPs will be presented. However, all this is not the main

goal of this thesis, it results from it. As outlined in the previous section, this thesis

tries to establish Clifford neural computation as a generic model–based approach

to design neural networks capable of processing different geometric entities. In

particular, data is not viewed as ,say, complex numbers, but as points in the plane.

Consequently, a Complex MLP is viewed as transforming such data in some certain

geometric way. That way we will have a new, different and unified look at those

networks. In that sense, also work like [16, 29] can be seen as roughly related.

Closely related is the work of our colleague V. Banarer [5, 4, 64]. However, his work

focuses on classification and practical applications.

1.3 Structure of the Thesis

After this introduction the thesis starts with an outline of Clifford algebra in chap-

ter two. The material is presented in a self–contained way. Special emphasis is

given to the geometric interpretation of the algebraical framework. In particular,

the Clifford group is studied which acts as geometric transformation group on dif-

ferent geometric entities. The insights gained are then directly used for the design

and motivation of Clifford neurons in the two subsequent chapters.

Chapter three introduces neurons based on one single geometric product, which

are the atoms of all Clifford neural computation. Many illustrations for the model–

based nature of Clifford neurons are worked out. A complete overview over the

two–dimensional case in terms of algorithms and dynamics is given. The funda-

mental topic of isomorphic Clifford neurons and isomorphic representations is also

covered in detail. Finally, a linear architecture utilizing a line representation for Eu-

clidean transformations of the plane is presented.

5

1.3 STRUCTURE OF THE THESIS

The fourth chapter is devoted to Clifford neurons based on two geometric prod-

ucts that perform orthogonal transformations on arbitrary geometric entities by

mimicking the operation of the Clifford group. Efficient learning algorithms for

such neurons are derived. As a representative of that class of Clifford neurons the

Quaternionic Spinor Neuron is studied in detail. Again, a discussion of isomor-

phic issues is provided. In the last section of the chapter an architecture linearizing

the computation of Möbius transformations is introduced. For this architecture a

conformal embedding of the data is utilized.

Based on the methodical and algorithmical foundations of chapter three and four

the thesis proceeds with the study of Clifford Multilayer Perceptrons. The focus

thereby is set to the topic of function approximation. According to the type of

activation functions used the material is divided into two separate chapters.

Clifford Multilayer Perceptrons with real–valued activation functions are studied

in chapter five. The chapter begins with reviewing the literature on the subject in-

cluding the complex and quaternion case. The architecture is then generalized to

arbitrary Clifford algebras and also extended to networks based on the new neu-

rons developed in chapter four. Universal approximation is proved for all new

derived networks with underlying Clifford algebras up to dimension four. The

chapter concludes with an extensive section of experiments comparing the perfor-

mance of the architectures known from the literature with the new developed ones.

Chapter six deals with Multilayer Perceptrons with Clifford–valued activation func-

tions. In contrast to the architectures of chapter five real analysis is no longer suf-

ficient for the mathematical treatment of such networks. The case of complex–

valued activation functions is examined first using the available literature. Then

the theory of hyperbolic–activation functions is developed. Analysis in higher di-

mensional Clifford algebras is still an ongoing field of mathematical research rather

than an established theory. Therefore, the topic of general Clifford–valued activa-

tion function is only outlined.

Each of the chapters three to six cover one particular Clifford neural architecture.

Therefore all of them are provided with an individual summary. The thesis con-

cludes with chapter seven, which reviews the proposed methods and obtained re-

sults upon the whole. The benefits of the chosen approach, but also open problems

and directions for further work are discussed.

Part of the work in this thesis has been presented in the following publications

[11, 12, 13, 14, 15].

6

Chapter 2

Clifford Algebra

Clifford algebras are named after the British mathematician William K. Clifford. In

the 1960s David Hestenes started to extend Clifford Algebra with geometric con-

cepts. His broader mathematical system is nowadays known as Geometric Alge-

bra, a term originally coined by Clifford himself.

This introductory chapter on Clifford Algebra has the following structure. Al-

though the definition of an algebra is pretty much common knowledge, that will

be exactly our entrance into the world of Clifford Algebra. This is simply due to

the fact that there is no better way to understand what a (Clifford) algebra is all

about. A vector space is endowed with an additional structure by introducing a

product on it.

After reviewing some basic facts about algebras and rings we proceed by looking

at complex numbers and quaternions as algebras. That way the generalization

to Clifford algebras is prepared. The distinguished role of complex numbers and

quaternions is well pointed out by recalling a famous theorem of Frobenius.

Then the main definition and theorems of Clifford algebras will be presented fol-

lowing mostly the books by Porteus [67] and Lounesto [56]. By doing so Clifford

algebras will be constructed from quadratic spaces, and, hence, will have a metric

structure right from the beginning1. The two–dimensional Clifford algebras will

be studied in greater detail including the only degenerate algebra concerned in

this thesis. In the last section of the chapter the Clifford group is introduced which

1There is and will always be an ongoing discussion in the Clifford (Geometric) Algebra com-

munity, if this is a good idea and how important metric aspects are for the very first foundation

of Clifford (Geometric) Algebra [40]. For our approach, since being heavily based on the idea of

transformation groups, they are mandatory.

7

2.1 PRELIMINARIES

will provide a first geometrical interpretation for many of the Clifford neural archi-

tectures developed later then.

The mathematical material is presented in a self–contained way. Since we believe

that the theory of Clifford neural computation is in large parts an algebraic theory,

algebraic aspects are the focus of this introduction. For a more geometrical intro-

duction to Clifford (Geometric) Algebra we refer to the original work of Hestenes

[39, 40].

2.1 Preliminaries

To begin at the beginning, let us start with the definition of a real algebra.

Definition 2.1 (Real Algebra) A real algebra is a real linear space (A,+, ·) endowed

with a bilinear product

⊗ : A×A → A, (a, b) 7→ a⊗ b .

Hence, a real algebra is a pair ((A,+, ·),⊗) .

Since we only consider real algebras throughout this thesis, we shall often speak

loosely of algebras hereafter. Also, when there is no danger of confusion, we will

just write ab instead of a⊗ b in order to shorten expressions.

An algebra may, or may not, have the following additional properties.

Definition 2.2 (Types of Algebras) An algebra ((A,+, ·),⊗) is called

(i) associative, if for all a, b, c ∈ A : (a⊗ b) ⊗ c = a⊗ (b⊗ c) ,

(ii) commutative, if for all a, b ∈ A : a⊗ b = b⊗ a ,

(iii) an algebra with identity, if there exists 1 ∈ A such that for all a ∈ A :

1⊗ a = a⊗ 1 = 1 .

Note that all of the properties listed above are independent of each other.

The real numbers considered as algebra ((R,+, ·), ·), for example, do comprise all

the attributes of Definition 2.2.

8

CHAPTER 2. CLIFFORD ALGEBRA

The bilinearity of the product of an algebra has two important consequences. The

first one will be used frequently in this chapter.

Proposition 2.3 For any algebra ((A,+, ·),⊗), the product ⊗ is already uniquely deter-

mined given only the products for an arbitrary basis of A.

The second one relates algebras to another well known algebraic concept.

Proposition 2.4 Any algebra ((A,+, ·),⊗) is distributive by definition, or, equivalently,

(A,+,⊗) is always a ring.

Thus, known results from ring theory are also applicable to algebras.

Proposition 2.5 Two finite dimensional algebras A and B are isomorphic, written as

A ∼= B, if they are isomorphic as rings, that is if there exists a bijective mappingφ : A → B

such that, for all a, b ∈ A

(i) φ(a+ b) = φ(a) + φ(b) ,

(ii) φ(a⊗ b) = φ(a) ⊗ φ(b) .

Also, a tensor product for algebras can be easily established.

Definition 2.6 (Tensor Product) Let A be a finite dimensional real associative algebra

with identity. If there exist subalgebras B and C of A such that

(i) for any b ∈ B, c ∈ C, bc = cb ,

(ii) A is generated as an algebra by B and C ,

(iii) dim A = dim B dim C

then A is said to be the tensor product of B and C, written as B ⊗ C.

Two special types of rings are introduced in the next definition.

Definition 2.7 (Field) Let (R,+,⊗) be a ring. If (R \ {0},⊗) is a (non–)commutative

group, then (R,+,⊗) is called a (skew) field.

Let us now study how complex numbers and quaternions fit into the algebraic

concepts developed so far. Nowadays complex numbers are mostly introduced in

the following way.

9

2.1 PRELIMINARIES

Definition 2.8 (The Field of Complex Numbers) Consider the set of all ordered pairs

of real numbers

R
2 = {z = (a, b) | a, b ∈ R}

together with addition and multiplication defined for all z1 = (a1, b1), z2 = (a2, b2) ∈ R
2

as

z1+ z2 = (a1+ a2, b1+ b2) (2.1)

z1⊗ z2 = (a1a2− b1b2, a1b2+ a2b1) . (2.2)

Then C := (R2,+,⊗) is called the field of complex numbers.

The above modern definition is free of any myth regarding the nature of complex

numbers. In particular, the imaginary unit i is obtained by setting i := (0, 1). The

law i2 = −1 then is just a direct consequence of (2.2). Furthermore, the usual notion

of a complex number z = a+ ib is easily obtained from the identity

z = (a, b) = (a, 0) + (0, 1)⊗ (b, 0) . (2.3)

It is also easy to check that C is indeed a field. Obviously, the multiplication of

complex numbers is both associative and commutative. Moreover, for all complex

numbers z = (a, b) ∈ C \ (0, 0) the following holds

(a, b)⊗ (a/(a2+ b2), b/(a2+ b2)) = (1, 0) . (2.4)

The complex numbers C, although mostly viewed as a field, comprise yet another

algebraic structure. C contains infinitely many subfields isomorphic to R. Choos-

ing one also defines a real linear structure on C. The obvious choice for that distin-

guished copy of R in C is given by the map

α : R → C, a 7→ (a, 0) . (2.5)

For any λ ∈ R and any z = (a, b) ∈ C we then get

α(λ) ⊗ (a, b) = (λ, 0) ⊗ (a, b) = (λa, λb) , (2.6)

which turns C also into a real algebra. More precisely, C thereby becomes a real

associative and commutative algebra of dimension 2 with (1, 0) as identity element.

The geometric view of complex numbers as points in the complex plane actually

depends only on that real linear structure [56]. Hamilton, the famous Irish mathe-

matician, was well aware of that fact. He therefore used (2.6) to motivate the mul-

tiplication rule (2.2) in his construction of complex numbers [27]. We now proceed

to study his most famous invention — the quaternions [33].

10

CHAPTER 2. CLIFFORD ALGEBRA

Definition 2.9 (The Algebra of Quaternions) Consider the linear space (R4,+, ·) with

standard basis {1 := (1R, 0, 0, 0), i := (0, 1R, 0, 0), j := (0, 0, 1R, 0), k := (0, 0, 0, 1R)} and

define a multiplication ⊗ on it according to the following table

⊗ 1 i j k

1 1 i j k

i i -1 k -j

j j -k -1 i

k k j -i -1
.

Then H := ((R4,+, ·),⊗) is a real associative algebra of dimension 4, which is called the

algebra of quaternions. Obviously, 1 is the identity element of H.

In honor of Hamilton, quaternions are sometimes also called Hamiltonian numbers

in the literature. Any quaternion q ∈ H can be written in the form

q = q0+ iq1+ jq2+ kq3 (2.7)

with q, q1, q2, q3 ∈ R. Analogously as in C, the basis vectors {i, j, k} are often named

imaginary units. In particular, the following relations hold among them

j k = − k j = i k i = − i k = j i j = − j i = k , (2.8)

which shows that multiplication in H is not commutative. Moreover, it can be

concluded from (2.8) that there exists no other real linear structure in H than the

one already introduced in Definition 2.9.

A quaternion q is often split into its so–called scalar part q0, and its so–called vector

part ~q = iq1 + jq2 + kq3. A quaternion whose scalar part is zero is called a pure

quaternion.

For the multiplication of two general quaternions we obtain

(q0+ iq1+ jq2+ kq3) ⊗ (r0+ ir1+ jr2+ kr3) = (q0r0− q1r1− q2r2− q3r3)

+ i(q0r1+ q1r0+ q2r3− q3r2)

+ j(q0r2+ q2r0− q1r3+ q3r1)

+ k(q0r3+ q3r0+ q1r2− q2r1) .

(2.9)

11

2.1 PRELIMINARIES

The multiplication of quaternions is associative, which can be checked directly.

However, we just refer to [27] for a proof. The multiplicative inverse of any non–

zero quaternion q = q0+ iq1+ jq2+ kq3 is given by

q−1 = (q0− iq1− jq2− kq3)/(q
2
0+ q21+ q22+ q23) , (2.10)

which is much easier to verify. Thus, (H,+,⊗) is a skew field.

In both C and H a division is defined. If this holds for a general algebra one speaks

of a division algebra.

Definition 2.10 (Division Algebra) An algebra A is called a division algebra if, for all

a ∈ A \ {0}, both of the following two equations

ax = b (2.11a)

ya = b (2.11b)

are uniquely solvable for all b ∈ A.

Any division algebra is free of zero divisors.

Definition 2.11 (Zero Divisor) Let A be an algebra. An element a ∈ A is called zero

divisor, if there exists b ∈ A\{0} such that

ab = 0 or ba = 0. (2.12)

According to a famous theorem of Frobenius, finite dimensional division algebras

are quite exceptional.

Theorem 2.12 (Frobenius)

Any finite dimensional real associative division algebra is isomorphic to either R, C, or H.

Even if associativity is dropped only one further algebra, the so-called octonions

[27], would be obtained. The following result holds for any finite dimensional

algebra.

Proposition 2.13 Let A be a finite–dimensional algebra. Then A is a division algebra, if

and only if, A is free of zero divisors.

As a consequence, any Clifford algebra contains zero divisors in general.

12

CHAPTER 2. CLIFFORD ALGEBRA

2.2 Main Definitions and Theorems

There are many geometric concepts that are not covered by the structure of a linear

space alone. These are all metric concepts such as , for example, distance and angle.

Equipping a linear space with such an additional metric structure, however, leads

naturally to a new specific algebra. This algebra, being itself a linear space, then

has to be an embedding of larger dimension of the original linear space. Also, it

has to comprise, somehow, the metric structure within its multiplication.

What we outlined above is exactly the notion behind Clifford algebras. We shall

now turn it, step by step, into a formal concept. The first step is to introduce some

metric structure, from which the algebras are then constructed.

Definition 2.14 (Quadratic Form) Let X be a real linear space endowed with a scalar

product, i.e. with a symmetric bilinear form,

F : X× X → R, (a, b) 7→ a · b .

Then the map

Q : X → R, a 7→ a · a

is called the quadratic form of F. Furthermore, the pair (X,Q) is called a real quadratic

space.

Note that Q is uniquely determined by F, and vice versa, in virtue of

F(a, b) =
1

2
· (Q(a+ b) −Q(a) −Q(b)) . (2.13)

Thus, one can arbitrarily switch between Q and F. Any finite dimensional real

quadratic space does possess a distinguished basis.

Proposition 2.1 Let (X,Q) be an n–dimensional real quadratic space. Then there exists

a basis {e1, ..., en} of (X,Q) and uniquely determined p, q, r ∈ {0, . . . , n} such that, for all

i, j ∈ {1, . . . , n}, the following two conditions are fulfilled

(i) Q(ei) =

1, i ≤ p

−1, p+ 1 ≤ i ≤ p+ q

0, p+ q+ 1 ≤ i ≤ p+ q + r = n,

(ii) Q(ei+ ej) −Q(ei) −Q(ej) = 0 .

A basis with the above properties is called an orthonormal basis of (X,Q), and the triple

(p, q, r) is called the signature of (X,Q).

13

2.2 MAIN DEFINITIONS AND THEOREMS

Quadratic spaces are further distinguished by the value of r.

Definition 2.15 (Degenerate Space) Let (X,Q) be a finite dimensional real quadratic

space. Then (X,Q) is said to be a degenerate space if

{a ∈ X |Q(a) = 0} 6= ∅ , (2.14)

and to be a non–degenerate space otherwise.

Clifford algebras inherit their metric properties from quadratic spaces.

Main Definitions and Theorems

The most general definition of a Clifford algebra is as follows.

Definition 2.16 (Clifford Algebra [67]) Let (X,Q) be an arbitrary finite dimensional

real quadratic space and let A be a real associative algebra with identity. Furthermore, let

α : R → A and ν : X → A be linear injections such that

(i) A is generated as an algebra by its distinct subspaces

{ν(v) | v ∈ X} and {α(a) | a ∈ R} ,

(ii) ∀v ∈ X : (ν(v))2 = α(Q(v)) .

Then A is said to be a Clifford algebra for (X,Q). The elements of a Clifford algebra are

called multivectors. The product of a Clifford algebra is named geometric product. The

signature of the quadratic space is also the signature of the algebra.

The mappings α and ν embed the reals (likewise as in (2.5)) and the quadratic

space, respectively. Usually, one simply identifies R and Q with their correspond-

ing copies in A. We shall do the same from now on. The name multivector for the

elements of a Clifford algebra will be explained soon. As indicated by the name

geometric product, every Clifford algebra models a certain geometry [38, 39, 40].

For example, the algebras of signature (n, 0) model Euclidean spaces.

Since any Clifford algebra is a real associative algebra by definition, the following

important theorem holds.

Theorem 2.17 Any Clifford algebra is isomorphic to some matrix algebra.

From condition (ii) of Definition 2.16 further results follow.

14

CHAPTER 2. CLIFFORD ALGEBRA

Proposition 2.18 Let (X,Q) be an n–dimensional real quadratic space with an orthonor-

mal basis {ei | 1 ≤ i < n}. Furthermore, let A be a real associative algebra with identity

containing R and X as distinct linear subspaces. Then x2 = Q(x), for all x ∈ X, if and

only if

e2i = Q(ei) ∀i ∈ {1, . . . , n} (2.15)

eiej+ ejei = 0 ∀i 6= j ∈ {1, . . . , n} . (2.16)

Equation (2.16) allows directly to draw the following conclusion.

Proposition 2.19 Any commutative Clifford algebra is of dimension ≤ 2.

The steps necessary to derive the following statement from Proposition 2.18 can be

found in [67].

Proposition 2.20 Let A be a Clifford algebra for an n–dimensional quadratic space X.

Then dim A ≤ 2n.

The special role of Clifford algebras of dimension 2n is highlighted by the next

definition.

Definition 2.21 (Universal Clifford Algebra) A Clifford algebra of dimension 2n is

called universal.

Let us next introduce those spaces deriving from the standard scalar products.

Definition 2.22 (Standard Quadratic Space) For any p, q, r ∈ {0, . . . , n} define the

following scalar product

F : R
p+q+r× R

p+q+r → R, (a, b) 7→
p∑

i=1

aibi−

q∑

p+1

aibi .

Then the corresponding standard quadratic space (Rp+q+r, Q) is denoted by Rp,q,r.

Note that any real quadratic space is isomorphic to some space Rp,q,r. In that sense

the next theorem gives all real universal Clifford algebras.

Theorem 2.23 For any quadratic space Rp,q,r there exists a unique universal Clifford al-

gebra. This algebra shall be denoted by Cp,q,r, and its geometric product by ⊗p,q,r.

15

2.2 MAIN DEFINITIONS AND THEOREMS

A proof of Theorem 2.23 can be found in many sources (see e.g. [40, 56, 67]). The

basic idea is to proof first, that, for each n, the full matrix algebra R(2n) of all

2n × 2n matrices with real entries is a unique universal Clifford algebra for the

spaces R
n,n,0. Then this result is extended to quadratic spaces of arbitrary signature

by forming tensor products with appropriate matrices.

This indicates that both matrix isomorphisms and tensor products play a crucial

role in the theory of Clifford algebras. We shall return to both concepts later on.

All what follows deals with Clifford algebras Cp,q,r. Since the algebras Cp,q,r are

universal by definition, we will drop that attribute from now on. Also, if r = 0 the

shorter notations Cp,q and ⊗p,q will be used.

Subspace Grading

Our next goal is to construct a basis of Cp,q,r. For that purpose let us introduce the

following notation. Let

I := {{i1, . . . , is} ∈ P({1, . . . , n}) | 1 ≤ i1 ≤ . . . ≤ is ≤ n} (2.17)

denote the set of all naturally ordered subsets of the power set P({1, · · · , n}). Fur-

thermore, let (e1, · · · , en) be an orthogonal basis of Rp,q,r. Now define, for all I ∈ I,

eI to be the product

eI := ei1 . . . eis . (2.18)

In particular, let e∅ be identified with 1.

In case of n = 3, for example, we get the following set of vectors from (2.18)

{1, e{1}, e{2}, e{3}, e{1,2}, e{1,3}, e{2,3}, e{1,2,3}} .

It is convenient to write just e12 and so on, if there is no danger of confusion. By

construction, the generated set of vectors by the above method is always of dimen-

sion 2n. Since all of the vectors are also linearly independent of each other, we have

already achieved our goal2.

Proposition 2.24 Let (e1, · · · , en) be an orthogonal basis of Rp,q,r. Then,

{eI | I ∈ I} , (2.19)

2Note that our construction of a basis slightly differs from the common one involving the outer

product. However, it greatly simplifies many notations.

16

CHAPTER 2. CLIFFORD ALGEBRA

with I defined according to (2.17), is a basis of the Clifford algebra Cp,q,r. In particular,

any multivector in Cp,q,r can be written as

x =
∑

I∈I

xIeI , (2.20)

whereby all xI ∈ R.

From this follows that any Clifford algebra has an inherent subspace grading.

Definition 2.25 (K–Vector Part) Let (e1, · · · , en) be an orthogonal basis of Rp,q,r. For

every k ∈ {0, · · · , n} the set

{eI | eI ∈ I, |I| = k} (2.21)

spans a linear subspace of Cp,q,r. This linear subspace, denoted by Ckp,q,r, is called the k–

vector part of Cp,q,r.

From the above definition we get

Cp,q,r =

n∑

k=0

Ckp,q,r . (2.22)

We also obtain, in particular, C0p,q,r = R and C1p,q,r = Rp,q,r. Any subspace Ckp,q,r is of

dimension
(

n

k

)

. Thus, a Clifford algebra can also be seen as an algebra of subspaces.

All subspaces of even dimension form a subalgebra of Cp,q,r.

Proposition 2.26 The subspace sum given by

C+
p,q,r :=

n∑

k=0,
k even

Ckp,q,r (2.23)

is a subalgebra of Cp,q,r of dimension 2n−1, which is called the even subalgebra of Cp,q,r.

The grading induced by (2.23) is a Z2 grading, whereas the whole subspace grad-

ing (2.22) is sometimes referred to as Zn grading [56]. The subspace grading also

induces the following operator.

Definition 2.27 (Grade Operator) Define the following grade operator

< · >k: Cp,q,r → Cp,q,r, x 7→
∑

I∈I ,
|I|=k

xIeI ,

for any k ∈ {0, · · · , n}.

17

2.3 ISOMORPHISMS

Using the grade operator any multivector can be written as

x =

n∑

k=0

< x >k . (2.24)

A multivector fulfilling x=< x >k is called a homogeneous multivector of grade

k, or simply a k–vector. Common names for the lowest grade k–vectors are scalar,

vector, bivector, and trivector (in ascending order). Thus, the name multivector for

the elements of a Clifford algebra is pretty much true.

The grade operator allows a very intuitive definition of the most fundamental auto-

morphisms for non–degenerate Clifford algebras Cp,q, for which the next definition

will serve as preparation.

Definition 2.28 (Involution) An algebra automorphism f is said to be an involution if

f2 = id.

All automorphisms covered by the following definition are involutions.

Definition 2.29 (Main Involutions) For any Clifford algebra Cp,q define three distin-

guished maps as follows

(i) Inversion ˜ : Cp,q → Cp,q, x 7→
∑n
k=0(−1)

k < x >k ,

(ii) Reversion ^: Cp,q → Cp,q, x 7→
∑n
k=0(−1)

k(k−1)

2 < x >k ,

(iii) Conjugation ¯ : Cp,q → Cp,q, x 7→
∑n

k=0(−1)
k(k+1)

2 < x >k .

2.3 Isomorphisms

In Definition 2.5 the concept of isomorphic algebras was introduced. From Theo-

rem 2.17 we know that any Clifford algebra is isomorphic to some matrix algebra.

It is quite easy to check that the only one–dimensional Clifford algebra C0,0,0 is iso-

morphic to the reals considered as algebra ((R,+, ·), ·). Actually, both algebraic

objects are identical. In particular, the geometric product of C0,0,0 is the ordinary

multiplication of R.

There are three possible signatures for an one–dimensional quadratic space. The

multiplication tables of the corresponding commutative (Proposition 2.19) two–

dimensional Clifford algebras are given in table 2.1. The multiplication tables fol-

low directly from Definition 2.16.

18

CHAPTER 2. CLIFFORD ALGEBRA

⊗ 1,0,0 1 e1

1 1 e1

e1 e1 1

⊗ 0,1,0 1 e1

1 1 e1

e1 e1 −1

⊗ 0,0,1 1 e1

1 1 e1

e1 e1 0

Table 2.1: Multiplication tables for the Clifford algebras C1,0,0 (left), C0,1,0 (mid-

dle) and C0,0,1 (right).

Obviously, the algebra C0,1,0 is isomorphic to the complex numbers C (identify e1
with the complex imaginary unit i). The algebras C1,0,0 and C0,0,1 are isomorphic

to the so–called hyperbolic numbers and dual numbers, respectively (see [93] for a

detailed treatment of both number systems). Theorem 2.12 implies the existence of

zero divisors for both algebras.

The geometric product of C1,0,0 reads

(x0+ x1e1) ⊗1,0,0 (y0+ y1e1) = (x0y0+ x1y1) + (x0y1+ x0y1)e1 , (2.25)

which yields

{x0+ x1e1 | |x0| = |x1|} (2.26)

as the set of zero divisors.

The degenerate algebra C0,0,1 possess the geometric product

(x0+ x1e1) ⊗0,0,1 (y0+ y1e1) = (x0y0) + (x0y1+ x1y0)e1 , (2.27)

which results in the following set of zero divisors

{x0+ x1e1 | x1 = 0} . (2.28)

All two–dimensional Clifford algebras have very simple matrix representations.

Proposition 2.30 The following isomorphism hold

C0,1,0 ∼=

{(
a −b

b a

)

| a, b ∈ IR

}
(2.29)

C1,0,0 ∼=

{(
a b

b a

)

| a, b ∈ IR

}
(2.30)

C0,0,1 ∼=

{(
a 0

b a

)

| a, b ∈ IR

}
. (2.31)

19

2.3 ISOMORPHISMS

The algebra C0,0,1 will be the only degenerate Clifford algebra considered in this

work3. In the remainder of this section we proceed with the study of non-degenerate

Clifford algebras, for which the following theorem is of fundamental importance.

Theorem 2.31 ([67]) Any Clifford algebra Cp,q is isomorphic to a full matrix algebra over

K or 2K := K ⊕ K, where K := {R,C,H}.

An overview of the Clifford algebras Cp,q for p+ q ≤ 8 is given in table 2.2 below.

p\
q 0 1 2 3 4

0 R C H 2H H(2)

1 2
R R(2) C(2) H(2) 2

H(2)

2 R(2) 2R(2) R(4) C(4) H(4)

3 C(2) R(4) 2R(4) R(8) C(8)

4 H(2) C(4) R(8) 2R(8) R(16)

Table 2.2: The Clifford algebras Cp,q for p+ q ≤ 8. Redrawn from [67].

In particular, the hyperbolic numbers C1,0,0 are isomorphic to the double field 2
R,

which is the algebra ((R ⊕ R,+, ·),⊗) with ordinary real componentwise multipli-

cation (a, b) ⊗ (c, d) = (a, c) + (b, d). This isomorphism is more of algebraical

importance, whereas the isomorphism (2.30) is more useful in practice.

Another result from table 2.2 is C0,2 ∼= IH.

Also, there are many isomorphic Clifford algebras. For example, C2,0 ∼= C1,1, which

generalizes as follows.

Proposition 2.32 The Clifford algebras Cp+1,q and Cq+1,p are isomorphic.

Many other isomorphisms are utilizing tensor products4. The following one will

be used frequently in this thesis.

Proposition 2.33 The following relation holds for Clifford algebras

Cp+1,q+1
∼= Cp,q⊗ C1,1 . (2.32)

3Degenerate Clifford algebras are of little interest from the pure algebraical point of view. Any

degenerate Clifford algebra can be embedded in a larger non-degenerate one [40].
4Among them is the famous periodicity theorem Cp,q+8

∼= Cp,q ⊗ R(16).

20

CHAPTER 2. CLIFFORD ALGEBRA

2.4 The Clifford Group

At the very beginning of this chapter we studied complex numbers and quater-

nions. That way we got a first algebraic intuition of Clifford algebras. A similar

approach is taken again in this section. In the following, however, we are inter-

ested in getting geometrical insights about Clifford algebras.

Any complex number z can be represented in polar coordinates as

z = r(cosφ+ i sinφ) , (2.33)

with r ≥ 0 and 0 ≤ φ < 2π. If z 6= 0 then (2.33) is a unique representation. The

multiplication of two complex numbers in polar coordinates reads

z1z2 = r1r2(cos(φ1+ φ2) + i sin(φ1+φ2)) . (2.34)

Thus, a unit complex number (r = z̄z = 1) represents an Euclidean rotation in the

plane. This can also be concluded from applying the isomorphism (2.29) to (2.33),

which yields the well known rotation matrix

(

cos(φ) − sin(φ)

sin(φ) cos(φ)

)

. (2.35)

The set of unit complex numbers S1 := {z ∈ C | z̄z = 1} forms the so-called circle

group, and all of the above sums up to

S1 ∼= SO(2) . (2.36)

The following definition introduces a very important notion.

Definition 2.34 (Action of a Group) Let G be a group and M be a non–empty set. The

map

⋆ : G×M → M; (a, x) 7→ a ⋆ x (2.37)

is called the action of G on M, if 1G ⋆ x = x and a ⋆ (b ⋆ x) = (a ⋆ b) ⋆ x for all

x ∈M, a, b ∈ G.

Technically, S1 acts on C and SO(2) acts on R2. Geometrically, however, these are

identical actions of the same transformation group.

The following connection between the group SO(3) of 3D Euclidean rotations and

quaternions is well known too.

21

2.4 THE CLIFFORD GROUP

Proposition 2.35 Let q be a unit quaternion, r be a pure quaternion. Then

qrq−1 (2.38)

describes a 3D Euclidean rotation of the point r.

Both aforementioned groups have a Clifford counterpart.

Definition 2.36 (Clifford Group) The Clifford group Γp,q of a Clifford algebra Cp,q is

defined as

Γp,q := {s ∈ Cp,q | ∀x ∈ R
p,q : sxŝ−1 ∈ R

p,q} . (2.39)

This actually looks already quite similar to (2.38). Note that the elements of Γp,q

are linear transformations by definition. More precisely, they act on the underlying

quadratic space Rp,q by virtue of

Γp,q × R
p,q → R

p,q, (s, x) 7→ sxŝ−1 . (2.40)

Since consisting of linear transformations, any Clifford group has to be isomorphic

to some classical group. In fact, the following theorem holds.

Theorem 2.37 ([67]) Consider for all s ∈ Γp,q the following map

ωs : R
p,q → R

p,q, x 7→ sxŝ−1 . (2.41)

Then the map Ω : Γp,q → O(p, q), s 7→ ωs is a group epimorphism.

It is not hard to verify that ωs is an orthogonal automorphism of R
p,q. Since the

kernel of Ω is R \ {0}, it then follows that Γp,q is indeed a multiple cover of the

orthogonal group O(p, q).

Normalizing the Clifford group Γp,q yields

Pin(p, q) = {s ∈ Γp,q | ss̃ = ±1} . (2.42)

The group Pin(p, q) is a two–fold covering of the orthogonal group O(p, q). Further

subgroups of Pin(p, q) are

Spin(p, q) = Pin(p, q) ∩ C+
p,q (2.43)

and (in case of p 6= 0 and q 6= 0)

Spin+(p, q) = {s ∈ Spin(p, q) | ss̃ = 1} . (2.44)

22

CHAPTER 2. CLIFFORD ALGEBRA

Both groups are again two–fold covers of their classical counterparts. The whole

situation can be summarized as

Pin(p, q)\{±1} ∼= O(p, q) (2.45a)

Spin(p, q)\{±1} ∼= SO(p, q) (2.45b)

Spin+(p, q)\{±1} ∼= SO+(p, q) . (2.45c)

Thereby SO+(p, q) is formed by those elements which are connected with the iden-

tity. This does not carry over to the covering groups, i.e. Spin+(p, q) does not have

to be connected [56].

The elements of the group Spin(p, q) are named spinors. Spinors also operate on

so–called paravectors.

Proposition 2.38 ([56]) Define for any Clifford algebra Cp,q the space of paravectors as

λRp,q :=

1∑

k=0

Ckp,q. (2.46)

Then

{s ∈ Cp,q | ∀x ∈ λRp,q : sxŝ−1 ∈ λRp,q} (2.47)

is a group isomorphic to Spin(p, q).

For complex numbers one has C0,1 = λR0,1 and (2.47) reduces to sxŝ−1 = xsŝ−1 =:

xs ′ in accordance to what was stated in the beginning of this section.

23

2.4 THE CLIFFORD GROUP

24

Chapter 3

Basic Clifford Neurons

Neurons are the atoms of neural computation. Out of those simple computational

units all neural networks are build up. An illustration of a generic neuron is given

in figure 3.1. The output computed by a generic neuron reads

y = g(f(w, x)) . (3.1)

f g

1
x

y

x
n

w

wn

1

Figure 3.1: Model of a generic neuron.

The details of computation are as follows. In a first step the input to the neuron,

x := {xi}, is associated with the weights of the neuron, w := {wi}, by invoking the

so–called propagation function f. This can be thought as computing the activation

potential from the pre–synaptic activities. Then from that result the so-called acti-

vation function g computes the output of the neuron. The weights, which mimic

synaptic strength, constitute the adjustable internal parameters of the neuron. The

process of adapting the weights is named learning. In accordance to the thesis

introduction only supervised learning will be considered here.

Supervised learning is often characterized as learning with a ”teacher”. This means

25

that full feedback on the performance is provided throughout the learning process

and learning itself is goal–driven. Technically, ”the teacher” is realized in the fol-

lowing way. A training set {(xp, dp)}Pp=1 consisting of correct input–output patterns

is provided. Performance is measured by evaluating some given error function E.

The most common error function is

E :=
1

2P

P∑

p=1

‖ dp− yp ‖2 , (3.2)

which measures the derivation between desired and actual output in the mean–

squared sense. Learning is then formulated as finding the optimal weights that

minimize E on the given training set. The actual goal of learning, however, is gen-

eralization. That is to perform well on unseen data. Generalization performance is

therefore measured on a test set, which is disjoint from the training set. The accu-

rate partition of data into the two sets is a complex problem both theoretically [89]

and practically [92], especially when there is ”not enough” data available.

Searching the weight space is done iteratively. This is a consequence of the neural

computation paradigm itself. Which iterative technique is applicable depends on

the properties of the error function E. If all partial derivatives ∂E
∂wi

exist error mini-

mization can be done by performing gradient descent. In that case the weights are

changed according to

w(t+ 1) = w(t) − η
∂E

∂w
. (3.3)

In the rule above η is a real positive constant controlling the steepness of the update

step. An update step is usually called an epoch. Using (3.3) requires a full scan

through the training set. An alternative to this batch learning is to update the

weights after each presented pattern p

w(t+ 1) = w(t) − η
∂Ep

∂w
, (3.4)

whereby the true gradient (3.2) is replaced by

Ep :=
1

2
‖ dp− yp ‖2 . (3.5)

Ep, which is only an approximation of E, is referred to as the stochastic gradient

and therefore the weight update (3.4) is also named stochastic. Another common

name for learning using (3.4) is online learning, which highlights the fact that no

internal storage of training patterns is required. Each of the two learning regimes

has its own advantages and disadvantages. Batch learning allows a deeper and

26

CHAPTER 3. BASIC CLIFFORD NEURONS

easier understanding of the dynamics of neurons and is therefore the appropriate

choice for most theoretical studies.

From the biological point of view it is advisable to use an integrative propagation

function. A therefore convenient choice would be to use the weighted sum of the

input

f(w, x) =
∑

i

wixi , (3.6)

that is the activation potential equals the scalar product of input and weights

f(w, x) = 〈w, x〉 . (3.7)

In fact, (3.6) is the most popular propagation function since the dawn of neural

computation, however it is often used in the slightly different form

f(w, x) =
∑

i

wixi+ θ . (3.8)

Obviously, setting w := (wi, θ) and x := (xi, 1) yields (3.7) again. The special

weight θ is called bias. Applying

Θ(x) =

{
1 : x > 0

0 : x ≤ 0
(3.9)

as activation function to (3.8) yields the famous perceptron of Rosenblatt. In that

case θ works as a threshold. Besides (3.8) there are of course many other possi-

ble propagation functions. Another function of theoretical importance and some

broader practical use is

f(w, x) =
∏

i

xwii , (3.10)

which aggregates the input signals in a multiplicative manner. A learning rule

for neurons based on (3.10) is given in [52]. Mostly, such neurons are studied in

boolean domains only. Summation as in (3.8) can be viewed as modelling linear

correlation of the inputs. In pattern recognition so-called higher–order neurons

y = g(w0+
∑

i

wixi+
∑

i,j

wi,jxixj+
∑

i,j,k

wi,j,kxixjxk+ . . .) (3.11)

are known for a long time. Such neurons allow, to some extend, geometrically in-

variant learning of patterns. The drawback lies in the number of required weights,

which for a k–th order neuron with n inputs equals

k∑

i=0

(

n + i− 1

i

)

=

(

n+ k

k

)

. (3.12)

27

To overcome that exponential explosion of higher–order terms sigma–pi units were

proposed, in which only a certain small number of higher–order terms is used.

Unfortunately, that either requires to hard–wire appropriate terms in advance or

to restrict the order of neurons to a small number, say 2 or 3, in advance. Due to

such issues the practical use of higher–order neurons is limited, even in the field of

pattern recognition.

If (3.8) is supplemented with the identity as activation function and real–valued

domains are given a real linear neuron

y =
∑

i

wixi+ θ (3.13)

is obtained. When used together with the error function (3.2) ordinary linear re-

gression is computed. The real linear neuron (3.13) can be seen as the first example

of a Clifford neuron. This is simply due to the isomorphism R ∼= C0,0,0 (section

2.2), which, in particular, also gives equivalence of real multiplication and geomet-

ric product in that case. Changing all underlying domains from real–valued to

Clifford–valued gives the generalization of (3.13) to neurons in arbitrary Clifford

algebras.

Definition 3.1 (Clifford Neuron) A Clifford Neuron (CN) computes the following func-

tion from (Cp,q,r)n to Cp,q,r

y =

n∑

i=1

wi⊗p,q,r xi+ θ . (3.14)

From the purely formal point of view Clifford neurons share with higher–order

neurons (3.11) the capability to process polynomial functions of the input. Also,

CNs could be formally interpreted as kind of a tensorial approach. However, these

are rather technical issues of little interest caused by top–level algebraic coherence.

The aim of this thesis is to demonstrate the usefulness of Clifford algebra for neural

computation due to its geometric nature. To actually start this challenge the special

case of a ”one–dimensional” Clifford Neuron shall be the first subject of detailed

study.

Definition 3.2 (Basic Clifford Neuron) A Basic Clifford Neuron (BCN) is derived from

a Clifford Neuron in the case of n = 1 in (3.14) and therefore computes the following func-

tion from Cp,q,r to Cp,q,r
y = w⊗p,q,r x + θ . (3.15)

To denote a BCN of a particular algebra Cp,q,r the abbreviation BCNp,q,r will be used.

28

CHAPTER 3. BASIC CLIFFORD NEURONS

Clifford–valued error functions analog to (3.2) and (3.5) can be easily derived.

However, the simplified error function

Ep,q,r =
1

2
‖ d−w⊗p,q,r x + θ ‖2

=
1

2
‖ d− y ‖2

=
1

2
‖ error ‖2 (3.16)

is used in this chapter in order to reduce the notational complexity of update rules.

For the bias θ of a BCN a generic update rule can be formulated.

Proposition 3.3 For any BCNp,q,r the update rule for the bias θ reads

θ(t+ 1) = θ(t) + ∆θ

= θ(t) + error . (3.17)

Of course, Basic Clifford Neurons are only of interest for Clifford algebras of di-

mension greater than 1, in which case every quantity becomes a multi–dimensional

object itself. The real–valued ”counterpart” to which a BCN can be related is a

feed–forward neural network consisting of one layer of linear neurons. It is con-

venient to define such a network with linear neurons as in (3.7), that is without an

explicit bias weight. As mentioned before this is always possible without any loss

of generality.

Definition 3.4 (Linear Associator) A Linear Associator (LA) is a neural network con-

sisting of n inputs and m output neurons computing the following function from Rn to

Rm

y = Wx . (3.18)

Thereby the weight matrix W is of size m × n and an entry wij represents the weight

connecting the i–th input to the j–th output neuron.

The abbreviation LAn,m will be used to refer to a Linear Associator of a particular

size. An illustration of a LA3,2 is given below in figure 3.2. More material on the

Linear Associator is provided in appendix A.1.

Any Basic Clifford Neuron can be viewed as a certain LA. This is a simple conse-

quence of Theorem 2.17, which stated that any Clifford algebra is isomorphic to

some matrix algebra. Thus, using a BCN means to apply a certain algebraic model

to the data, namely that of the underlying Clifford algebra, instead of a general lin-

ear model when using a LA instead. In that sense a BCN is the most trivial example

29

3.1 THE 2D BASIC CLIFFORD NEURONS

W

y

x

{

{
{

Figure 3.2: Linear Associator LA3,2with 3 inputs and 2 output neurons.

for the model–based nature of the Clifford algebra approach to neural computa-

tion. Moreover, this algebraic model becomes also a geometric model whenever a

geometric interpretation for the general operation of the geometric product in use

is at hand.

Linear algebra can always be used in Clifford algebra if needed. This advantage

just carries over to Clifford neurons. In the next section the corresponding Basic

Clifford Neurons of the two–dimensional Clifford algebras (2D Basic Clifford Neu-

rons) are studied. This is the natural entry point for all Clifford neural computation.

It allows to become familiar with the topic. To elucidate the model-based nature of

the Clifford approach will be the main aim of the section. Also, the algorithmic ba-

sis for the later chapters on Clifford MLPs will be introduced there. Basic Clifford

Neurons are also the subject of section 3.2. However, the point of view is slightly

moved from neurons itself to inherent attributes of Clifford neural computation. In

particular, issues of data representation and isomorphisms will be discussed. Then

a section on Clifford Associators follows before the chapter will be concluded by a

summary of the obtained results.

3.1 The 2D Basic Clifford Neurons

The Basic Clifford Neuron (BCN), as introduced in (3.15), is the most simple possi-

ble Clifford neuron. The propagation function of a BCN is a certain linear transfor-

mation. Hence the BCN can be viewed as a model–based architecture (compared

to a generic Linear Associator). The Complex Basic Clifford Neuron, for exam-

ple, computes a scaling–rotation (Euclidean) followed by a translation (section 2.4).

Translation is a generic component common to all BCNs. Therefore the specific part

of the propagation function of a BCN is fully determined by the geometric prod-

30

CHAPTER 3. BASIC CLIFFORD NEURONS

uct of the underlying Clifford algebra. In this section all three 2D Basic Clifford

Neurons are studied from this point of view.

3.1.1 The Complex Basic Clifford Neuron

The geometric interpretation of the propagation function of the Complex Basic Clif-

ford Neuron (BCN0,1) was already reviewed at the beginning of this section. It is,

technically, based on the isomorphism of the circle group, formed by all complex

numbers of modulus one, and the group SO(2) (2.36). Hence, the transformation

group SO(2) can be identified as the computational core of the Complex BCN.

From (3.3) the following update rule

∆w0,1 = −
∂E0,1

∂w
= −

∂E01

∂w0
e0−

∂E01

∂w1
e1

= −((−y0+w0x0−w1x1)x0+ (−y1+w0x1+w1x0)x1) e0

−((+y0−w0x0+w1x1)x1+ (−y1+w0x1+w1x0)x0) e1

= (error0x0+ error1x1) e0+ (−error0x1+ error1x0) e1

= error⊗ 0,1 x̄ . (3.19)

derives for the Complex Basic Clifford Neuron. The rule has a very simple form.

The error made by the neuron multiplied with the conjugate of the input yields the

amount of the update step.

For a CBCN with error function

ECBCN =
1

2
‖ d−w⊗ 0,1 x ‖2 (3.20)

the following result holds.

Proposition 3.5 The Hessian matrix of a Complex BCN with error function (3.20) is a

real matrix of the form

HCBCN =

(

a 0

0 a

)

. (3.21)

If the input is denoted by {x
p
0 + x

p
1e1}

P
p=1 then

a =
1

P

(

P∑

p=1

(x
p
0)
2+

P∑

p=1

(x
p
1)
2

)

. (3.22)

This can be concluded from Proposition A.1, which states the general linear case.

Since the matrix (3.21) has only one eigenvalue the following nice result is obtained.

31

3.1 THE 2D BASIC CLIFFORD NEURONS

Corollary 3.6 Batch learning for a Complex BCN with error function (3.20) converges in

only one step (to the global minimum of (3.20)) if the optimal learning rate (A.4) is used.

Proposition 3.5 says that a Complex BCN with error function (3.20) applies an in-

trinsic one–dimensional view to the data. That is the orientation parameterized by

the angle of rotation. In particular, this requires that the error function measures

the Euclidean distance.

For demonstration a little experiment was performed. A random distribution of

100 points {(x
p
1, x

p
2)}
100
p=1 with zero mean, variance one and standard deviation one

was created as input set. Then this set of points was rotated about an angle of 63

degrees and scaled by a factor of 4.5 yielding the output set of the experiment. A

Complex BCN and a Linear Associator LA2,2were trained on that data using batch

learning with optimal learning rates according to (A.4). The observed learning

curves are reported in figure 3.3. Additionally, figure 3.4 shows the error surface of

the Complex BCN.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Epochs

M
S

E

Linear Associator
Complex BCN

7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1x 10
−4

Epochs

M
S

E

Linear Associator
Complex BCN

Figure 3.3: Training errors of the Complex BCN and the Linear Associator

LA2,2. Learning curves over all epochs (left) and epochs 7 to 12 (right).

As stated by Corollary 3.6 the Complex BCN did indeed converge in one epoch. In

further steps of training Gaussian noise of different levels was added. Both archi-

tectures were then tested on the original noise–free data. The obtained results are

reported below in figure 3.5. The Linear Associator has more degrees of freedom

than the Complex BCN and no suitable model of the data. The performance of the

32

CHAPTER 3. BASIC CLIFFORD NEURONS

3
4

5

1

2

3
0

1

2

Figure 3.4: Error surface of the Complex BCN.

0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4

0.5

σ2

M
S

E

LA (10 points)
LA (100 points)
CBCN (10 points)

Figure 3.5: Comparison of the test performance of the Complex BCN and the

Linear Associator LA2,2 as the MSE (measured on the original noise–free data)

versus the present Gaussian noise with variance σ2 during training.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 3.6: Learned transformations by the Complex BCN (left) and the Linear

Associator LA2,2 (right) from noisy data (σ2 = 0.4). Points (learned output)

should lie on the grid junctions (expected output).

33

3.1 THE 2D BASIC CLIFFORD NEURONS

LA2,2 is clearly worse than that of the Complex BCN on a training set of only 10

points. Even if then trained on 100 points the LA2,2 performance is still worse than

that of the Complex BCN trained on only 10 points, which is also illustrated in

figure 3.6.

3.1.2 The Hyperbolic Basic Clifford Neuron

The computational properties of the Complex BCN were shown to be induced by

the group of unit complex numbers, or, equivalently, SO(2). This way a geomet-

ric interpretation for the propagation function of a Complex BCN could be easily

achieved.

The matrix representation of a unit hyperbolic number x = x0+ x1e1, which can be

derived from (2.30), reads [37]

x =

(

ǫ cosh(φ) ǫ sinh(φ)

ǫ sinh(φ) ǫ cosh(φ)

)

(3.23)

for some φ ∈ R and ǫ = ±1. Thus there are actually two types of unit hyperbolic

numbers. If |x0| > |x1| then ǫ = 1 in (3.23), and, if |x1| > |x0| then ǫ = −1 in (3.23)1.

Unit hyperbolic numbers form a group which is isomorphic to SO(1, 1). Moreover,

the numbers with ǫ = 1 in (3.23) form a subgroup being isomorphic to SO(1, 1)+.

Only the transformations belonging to SO(1, 1)+ are orientation preserving, and,

are therefore called hyperbolic rotations. The elements of SO(1, 1)\SO(1, 1)+ are

called anti–rotations. An illustration of the above is given in figure 3.7. Both type

of transformations form the computational core of the Hyperbolic BCN (BCN1,0).

−5 0 5
−6

−4

−2

0

2

4

6

1 2

34

1’

2’

3’

4’

−5 0 5
−6

−4

−2

0

2

4

6

1 2

34

1’

2’

3’

4’

Figure 3.7: Illustration of hyperbolic numbers acting as transformations in the

plane. Hyperbolic rotation about 30 degrees (left) and hyperbolic anti–rotation

about 30 degrees (right) of the unit square.

1|x0| = |x1| is not possible for a unit hyperbolic number.

34

CHAPTER 3. BASIC CLIFFORD NEURONS

The update rule for the Hyperbolic BCN is given by

∆w = −
∂E1,0

∂w
= −

∂E1,0

∂w0
e0−

∂E1,0

∂w1
e1

= −((−y0+w0x0+w1x1)x0+ (−y1+w0x1+w1x0)x1) e0

−((−y0+w0x0+w1x1)x1+ (−y1+w0x1+w1x0)x0) e1

= (error0x0+ error1x1) e0+ (error0x1+ error1x0) e1

= error⊗ 1,0 x . (3.24)

The product of the error made by the neuron with the input yields the amount of

the update step. Next, the dynamics of a Hyperbolic BCN with error function

EHBCN =
1

2
‖ d−w⊗ 1,0 x ‖2 (3.25)

are outlined.

Proposition 3.7 The Hessian matrix of a Hyperbolic BCN with error function (3.25) is a

real matrix of the form

HHBCN =

(

a b

b a

)

. (3.26)

If the input is denoted by {x
p
0 + x

p
1e1}

P
p=1 then

a =
1

P

(

P∑

p=1

(x
p
0)
2+

P∑

p=1

(x
p
1)
2

)

and b =
2

P

P∑

p=1

x
p
0x
p
1 . (3.27)

The dynamics of a Hyperbolic BCN and a Linear Associator (on the same input set)

are related as follows.

Proposition 3.8 Assuming the same input set, batch learning, and the use of optimal

learning rates, a LA2,2 with standard error function ELA (A.1) will not converge faster

than a Hyperbolic BCN with error function (3.25).

This is a rather technical result from Proposition 3.7. Some more insights of the

dynamics for a Hyperbolic BCN can be gained by a little experiment, for which a

similar setup as in section 3.1.1 was chosen.

The input set was created from a random distribution of 100 points {(x
p
1, x

p
2)}
100
p=1

with zero mean, variance one and standard deviation one. From that the output

set was created by applying the anti-rotation induced by the hyperbolic number

35

3.1 THE 2D BASIC CLIFFORD NEURONS

2 + 4e1. The learning curves for the Hyperbolic BCN and the LA2,2 are shown in

figure 3.8.

0 1 2 3 4 5
0

1

2

3

4

5

Epochs

M
S

E

Linear Associator
Hyperbolic BCN

Figure 3.8: Training errors of the Hyperbolic BCN and the Linear Associator

LA2,2.

The Hyperbolic BCN converged faster than the Linear Associator. In figure 3.9

(left) the error surface of the Hyperbolic BCN is plotted. The contour lines are el-

lipses which are rotated about 45 degrees w.r.t. to the origin. Actually, this is a

consequence of Proposition 3.7, i.e. it holds for any Hyperbolic BCN. That is the

eigenvectors of the Hessian (3.26) are always predetermined. Unfortunately, this is

not the case for the ratio of its eigenvalues. Therefore no generic coordinate trans-

formation can be applied in advance. Since all of the above depends on the used

error function a more ”hyperbolic” error function seems tempting. Of course, the

hyperbolic norm is the first candidate to look at. The hyperbolic norm, however,

does not induce a metric on the whole R2, and, is therefore not applicable as can be

seen from figure 3.9 (right).

3
4

5

1

2

3
0

1

2

3
4

5

1

2

3
0

0.5

1

1.5

Figure 3.9: Error surface of the Hperbolic BCN as induced by the Euclidean

norm (left) and the hyperbolic norm (right).

36

CHAPTER 3. BASIC CLIFFORD NEURONS

As outlined above, the geometric model (based on the group SO(1, 1)) by which

a Hyperbolic BCN looks at the data is not intrinsically one–dimensional. How-

ever, its presence can be clearly observed from the results presented in figure 3.10.

The Hyperbolic BCN trained on 10 points outperformed the Linear Associator on

noisy data. Even if the LA was trained with 100 points. This can also be seen

from figure 3.11 which gives a visualization of the learned transformations for one

particular noise level.

0.01 0.02 0.03 0.04
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

σ2

M
S

E

LA (10 points)
LA (100 points)
HBCN (10 points)

Figure 3.10: Comparison of the test performance of the Hyperbolic BCN and

the Linear Associator LA2,2 as the MSE (measured on the original noise–free

data) versus the present Gaussian noise with variance σ2 during training.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 3.11: Learned transformations by the Hyperbolic BCN (left) and the

Linear Associator LA2,2 (right) from noisy data (σ2 = 0.4). Points (learned

output) should lie on the grid junctions (expected output).

37

3.1 THE 2D BASIC CLIFFORD NEURONS

3.1.3 The Dual Basic Clifford Neuron

The Dual Basic Clifford Neuron (BCN0,0,1) remains as the last object for exami-

nation. In contrast to the other two 2D Basic Clifford Neurons it is based on a

degenerate Clifford algebra. However, there is also a pretty easy interpretation of

dual numbers as transformations acting in the plane. Every dual number induces

a shear transformation having the y–axes as fixed–line (see figure 3.12 for an illus-

tration). This also gives a geometric derivation for the set of zero divisors of C0,0,1
(2.28).

−5 0 5
−6

−4

−2

0

2

4

6

1 2

34

1’

2’

3’

4’

Figure 3.12: Illustration of dual numbers acting as transformations in the

plane. The unit square transformed by the shearing transformation induced

by the dual number 4+ 1e1.

The degenerate nature of C0,0,1 also effects the update rule for the Dual BCN which

reads

∆w = −
∂E0,0,1

∂w
= −

∂E0,0,1

∂w0
e0−

∂E0,0,1

∂w1
e1

= −((−y0+w0x0)x0+ (−y1+w0x1+w1x0)x1) e0

−(0 + (−y1+w0x1+w1x0)x0) e1

= (error0x0+ error1x1) e0+ (0+ error1x0) e1 . (3.28)

In contrast to the previous neurons the update rule can not be formulated in terms

of the underlying geometric product ⊗ 0,0,1. Also, no quantitative statement inde-

pendent of a particular data set can be made for the dynamics of a Dual BCN. The

Hessian of a Dual BCN can not be narrowed down to a particular form. Therefore,

the only thing that remains to check about a Dual BCN is the performance on noisy

data. For that purpose a little experiment was performed again.

As in the previous experiments of this section the input set consisted of 100 2D–

points drawn from a distribution having zero mean, variance one and standard

38

CHAPTER 3. BASIC CLIFFORD NEURONS

deviation one. For the output set those points were transformed by the shearing

induced by the dual number 2+ 4e1. The error surface of the Dual BCN computed

for the input set is shown in figure 3.13, which is of course a paraboloid.

3
4

5

1

2

3
0

1

2

Figure 3.13: Error surface of the Dual BCN.

For the given data the Linear Associator did converge faster than the Dual BCN as

can be seen from figure 3.14.

0 2 4 6 8
0

1

2

3

4

5

Epochs

M
S

E

Linear Associator
Dual BCN

Figure 3.14: Training errors of the Dual BCN and the Linear Associator LA2,2.

However, for training in the presence of noise similar numerical results as in the

previous experiments were obtained. The Dual BCN, possessing the right model

for the data, outperformed the Linear Associator, which, without such a model, fol-

lowed much more the noise in the data. This becomes even more clear by looking

at the visualizations of the learned transformations provided in figure 3.16.

39

3.1 THE 2D BASIC CLIFFORD NEURONS

0.01 0.02 0.03 0.04
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

σ2

M
S

E

LA (10 points)
LA (100 points)
DBCN (10 points)

Figure 3.15: Comparison of the test performance of the Dual BCN and the

Linear Associator LA2,2 as the MSE (measured on the original noise–free data)

versus the present Gaussian noise with variance σ2 during training.

From all the introduced 2D Basic Clifford neurons the Dual BCN implies internally

the strongest constraints to the fitted data. This makes it2 obviously weaker than

the other neurons in the following sense. Suppose we want to approximate a gen-

eral linear mapping. This seems intuitively easier by a superposition of scaling–

rotations, i.e. by an architecture based on Complex BCNs than by a superposition

of shearing transformation, i.e. by an architecture based on Dual BCNs. For the

case of Hyperbolic BCNs it is hard to come up with any such intuition.

−2 −1 0 1 2
−6

−4

−2

0

2

4

6

−2 −1 0 1 2
−6

−4

−2

0

2

4

6

Figure 3.16: Learned transformations by the Dual BCN (left) and the Linear

Associator LA2,2 (right) from noisy data (σ2 = 0.4). Points (learned output)

should lie on the grid junctions (expected output).

2More precisely, architectures based on it.

40

CHAPTER 3. BASIC CLIFFORD NEURONS

3.2 Isomorphic BCNs and Isomorphic Representations

For every natural numbern > 1 there exist Clifford algebras of dimension 2nwhich

are isomorphic to each other (see table 2.2). Basic Clifford Neurons (BCNs) are

solely determined by the geometric product of the underlying algebra. Therefore

it is quite natural to assume that isomorphic Clifford algebras also induce ”isomor-

phic” BCNs. Proving this assumption and determining its precise meaning is the

first goal of this section. The closely related topic of isomorphic representations is

then discussed afterwards.

3.2.1 Isomorphic Basic Clifford Neurons

Isomorphic Clifford algebras first occur in dimension four, namely C1,1 and C2,0 (see

table 2.2). Those two algebras will serve as an example throughout this section.

Their multiplication tables are given below in table 3.1 and table 3.2, respectively.

⊗ 1,1 1 e1 e2 e1e2

1 1 e1 e2 e1e2

e1 e1 1 e1e2 e2

e2 e2 −e1e2 −1 e1

e1e2 e1e2 −e2 −e1 1

Table 3.1: Multiplication table of the Clifford algebra C1,1.

⊗ 2,0 1 e1 e2 e1e2

1 1 e1 e2 e1e2

e1 e1 1 e1e2 e2

e2 e2 −e1e2 1 −e1

e1e2 e1e2 −e2 e1 −1

Table 3.2: Multiplication table of the Clifford algebra C2,0.

The multiplication tables do only slightly differ. Therefore the two algebras are

related by a rather simple isomorphism.

Proposition 3.9 The map φ : C1,1 → C2,0

x0+ x1e1+ x2e2+ x12e12 7→ x0+ x12e1+ x1e2− x2e12 (3.29)

41

3.2 ISOMORPHIC BCNS AND ISOMORPHIC REPRESENTATIONS

is an isomorphism.

Proof: Let a := a0e0+ a1e1+ a2e2+ a12e12, b := b0e0+ b1e1+ b2e2+ b12e12. Then

yields

φ(a⊗ 1,1 b) = φ
(

(a0b0+ a1b1− a2b2+ a12b12) e0

+ (a0b1+ a1b0− a2b12− a12b2) e1

+ (a0b2+ a1b12+ a2b0− a12b1) e2

+ (a0b12+ a1b2− a2b1+ a12b0) e12
)

= (a0b0+ a1b1− a2b2+ a12b12) e0

+ (a0b12+ a1b2− a2b1+ a12b0) e1

+ (a0b1+ a1b0+ a2b12− a12b2) e2

− (a0b2+ a1b12+ a2b0− a12b1) e12

= (a0e0+ a12e1+ a1e2− a2e12) ⊗ 2,0 (b0e0+ b12e1+ b1e2− b2e12)

= φ(a) ⊗ 2,0 φ(b)

2

In order to be able to perform actual experiments the update rules for the corre-

sponding Clifford neurons are derived next. The weight update for the BCN1,1

reads

∆w1,1 = −∇E1,1

= (error · (x0, x1, x2, x12)
T) e0

+ (error · (x1, x0, x12, x2)
T) e1

+ (error · (−x2, x12, x0,−x1)
T) e2

+ (error · (x12,−x2,−x1, x0)
T) e12

= error⊗ 1,1 (x0e0+ x1e1− x2e2+ x12e12) . (3.30)

It is possible do derive the update rule for the BCN2,0 from (3.30) and the isomor-

phism (3.29). The direct approach, however, is much easier and yields the follow-

ing rule

42

CHAPTER 3. BASIC CLIFFORD NEURONS

∆w2,0 = −∇E2,0

= (error · (x0, x1, x2, x3)
T) e0

+ (error · (x1, x0, x12, x2)
T) e1

+ (error · (x2,−x12, x0,−x1)
T) e2

+ (error · (−x12, x2,−x1, x0)
T) e12

= error⊗ 2,0 (x0e0+ x1e1+ x2e2− x12e12) . (3.31)

To get an understanding of isomorphic Clifford neurons the following experiment

was performed with the neurons BCN1,1 and BCN2,0. As input set for the BCN1,1

four3 4–dimensional points were randomly drawn. Any input point (regarded as

a multivector in C1,1) was multiplied from the left with 1e0 + 2e1 + 3e2 + 4e12 via

the geometric product ⊗ 1,1. That way the BCN1,1 output set was created. Then the

isomorphism φ (3.29) was applied to both sets yielding the input and output data

for the BCN2,0. Both neurons were trained by batch learning with optimal learning

rate. The optimal learning rate for the two neurons turned out to be identical. The

initial multivector weights of the neurons were set according to table 3.3.

w(0) e0 e1 e2 e12

BCN1,1 +0.3462 +0.0252 -0.2974 +0.2721

BCN2,0 +0.3381 -0.4804 +0.1813 -0.1205

Table 3.3: Initial multivector weights for the BCN1,1 and the BCN2,0.

The obtained learning curves (see figure 3.17) only differ at the very first epochs of

training.

3That small number of points was chosen to exclude any kind of averaging effects.

43

3.2 ISOMORPHIC BCNS AND ISOMORPHIC REPRESENTATIONS

0 1 2 3 4 5 6
1

2

3

4

5

Epochs

M
S

E

BCN
1,1

BCN
2,0

Figure 3.17: Training errors of the BCN1,1 and the BCN2,0.

Training was finished after 50 epochs and the neurons converged indeed to ”iso-

morphic” solutions as reported in table 3.4. In addition, isomorphic initial multi-

vector weights resulted in totally identical learning dynamics.

w(50) e0 e1 e2 e12

BCN1,1 +1.0000 +1.9999 +2.9994 +3.9999

BCN2,0 +1.0000 +3.9994 +1.9999 -2.9994

Table 3.4: Multivector weights for the BCN1,1 and the BCN2,0 after 50 epochs

of training. Equivalence of the results follows from the isomorphism (3.29).

A formal notion for identical dynamics of isomorphic Basic Clifford Neurons is

presented in the next theorem. The result holds for both online and batch learning.

Theorem 3.10 Let φ be an isomorphism from Cp,q to Cp′,q′ . Let BCNp,q be a neuron

trained on a training set (xp, dp)
P

p=1 with learning rate η and initial multivector weight

w0p,q. Furthermore, letwtp,q denote the multivector weight of BCNp,q after t training steps.

Then the neuron BCNp′,q′ trained on the training set (φ(xp), φ(dp))
P

p=1 with learning

rate η and initial multivector weight φ(w0p′,q′) has the multivector weight φ(wtp′,q′) after

t steps of training.

Besides being very powerful, the statement of Theorem 3.10 seems very intuitive

at first sight. However, it is only valid because every isomorphism of two Clifford

algebras is of particular simple nature (likewise (3.29)). This can be seen more

clearly from the following important corollary.

44

CHAPTER 3. BASIC CLIFFORD NEURONS

Corollary 3.11 Let the assumptions of Theorem 3.10 be valid. Then two neurons BCNp,q
and BCNp′,q′ have the same optimal learning rate for batch learning.

This corollary, taken into account Proposition A.2, puts some restrictions on the

nature of the underlying algebra isomorphism. Therefore Theorem 3.10 results

from the very insights of Clifford algebra.

All of the above motivates the following definition.

Definition 3.12 The two neurons BCNp,q and BCNp′,q′ are called isomorphic if Cp,q ∼=

Cp′,q′ holds.

Anything that can be computed by a Basic Clifford Neuron can also be computed

with equivalent dynamics (Theorem 3.10) by any other isomorphic BCN. In that

sense, two isomorphic Basic Clifford Neurons are identical neural architectures.

Then, so being all Clifford neural architectures that only differ by isomorphic neu-

rons.

3.2.2 Isomorphic Representations

There are many fundamental differences between Clifford neural networks and

standard real–valued ones. Many of them are related to how the data is seen by

them, or, how the data can be represented to them. In what follows the technical

basis for data representation inside the Clifford framework is outlined. Many pow-

erful applications of this feature of Clifford neural computation will be given later

in this thesis.

For a fully–connected real–valued neural network neither the order of the compo-

nents of a presented input vector nor the order of the components of a presented

output vector has a semantical meaning. Consider for example the Linear Asso-

ciator LA4,4 trained on a training set {(x
p
1, x

p
2, x

p
3, x

p
4), (d

p
1, d

p
2, d

p
3, d

p
4)}
P
p=1. Present-

ing the training set {(x
p
4, x

p
1, x

p
2, x

p
3), (d

p
4, d

p
1, d

p
2, d

p
3)}
P
p=1 is obviously the same task.

Therefore both data representations can be viewed as ”isomorphic” for a LA4,4.

Nothing new or different is gained by using the second one instead of the first one.

This is very similar to the notion of isomorphic neurons we have discussed before.

However, the same data representations as above

{(x1e0+ x2e1+ x3e2+ x4e12)
p, (d1e0+ d2e1+ d3e2+ d4e12)

p}Pp=1 (3.32)

45

3.2 ISOMORPHIC BCNS AND ISOMORPHIC REPRESENTATIONS

and

{(x4e0+ x1e1+ x2e2+ x3e12)
p, (d4e0+ d1e1+ d3e2+ d3e12)

p}Pp=1 (3.33)

are not isomorphic for the BCN1,1. The order of components is relevant for Clifford

neurons. Multivectors are, for Clifford neurons, tuples, and, a geometrical semantic

is induced by the graded subspace structure of the underlying Clifford algebra. In

order to proceed the next rather technical definition is needed.

Definition 3.13 (Isomorphic Representations for Basic Clifford Neurons) Two rep-

resentations f : R
2p+q+r

→ Cp,q,r and g : R
2p+q+r

→ Cp′,q′,r′ are called (left–)isomorphic if

for all x ∈ R2
p+q+r

and for all y ∈ Cp,q,r there exists some y ′ ∈ Cp′,q′,r′ such that

f(x) ⊗p,q,r y = g(x) ⊗p ′,q ′,r ′ y
′ . (3.34)

Obviously the algebras have to be of same dimension for (3.34) to hold. Isomorphic

representations define equivalence classes of data representations. For example,

one might be interested in isomorphic representations to (3.32) for the BCN1,1. This

translates to Cp,q,r = Cp′,q′,r′ = C1,1,0 , f = id and then asking for permutations g

fulfilling (3.34).

Of course, the most interesting thing about isomorphic representations are the un-

derlying data representations itself. The most important class of representations

for Clifford neural computation arises from presenting lower–dimensional data to

higher–dimensional Clifford neurons. This may be the normal case since every

Clifford algebra is particularly of dimension 2n. Moreover, representing data in

such a way may often be intended, since it allows for many uses of the subspace

grading of a Clifford algebra. Then it is much more precise to speak of lower–

dimensional objects (having a semantical meaning, say vectors, for example) that

are presented. The next chapter will introduce a new Clifford neuron solely de-

signed for that purpose.

Knowledge of isomorphic representations for the above type of representations is

therefore essential. However, in its general form the problem of determining all

possible isomorphic presentations cannot be treated efficiently. This is simply due

to the following combinatorial argument. It is a common fact that the number of

combinations of n things taken k at a time is
(

n

k

)

=
n!

k!(n − k)!
. (3.35)

There are
(

n

k

)2
possibilities for representing a k–dimensional data set to a Basic Clif-

ford Neuron of dimension n. For example, 3–dimensional data can be presented to

46

CHAPTER 3. BASIC CLIFFORD NEURONS

a 8–dimensional BCN, say BCN1,1,1, in 3136 ways. Plugging k = 4 and n = 16 into

(3.35) yields 3312400 possibilities.

Let us consider the following two–dimensional data representations

(1) : {(x1e0+ x2e1+ 0e2+ 0e12)
p, (d1e0+ d2e1+ 0e2+ 0e12)

p}

(2) : {(x1e0+ 0e1+ x2e2+ 0e12)
p, (d1e0+ 0e1+ d2e2+ 0e12)

p}

(3) : {(x1e0+ 0e1+ 0e2+ x2e12)
p, (d1e0+ 0e1+ 0e2+ d2e12)

p}

(4) : {(0e0+ x1e1+ x2e2+ 0e12)
p, (0e0+ d1e1+ d2e2+ 0e12)

p}

(5) : {(0e0+ x1e1+ 0e2+ x2e12)
p, (0e0+ d1e1+ 0e2+ d2e12)

p}

(6) : {(0e0+ 0e1+ x1e2+ x2e12)
p, (0e0+ 0e1+ d1e2+ d2e12)

p} .

for the BCN1,1 as a walk–trough example.

Proposition 3.14 The following relations hold

BCN1,1(1) ∼= BCN1,1(6) (3.36)

BCN1,1(2) ∼= BCN1,1(5) (3.37)

BCN1,1(3) ∼= BCN1,1(4) . (3.38)

Proof: Statement (3.36) is verified by the following little computation

(x1e0+ x2e1+ 0e2+ 0e12) ⊗1,1 (ae0+ be1+ ce2+ de12)

= (x1a+ x2b)e0+ (x1b+ x2a)e1+ (x1c+ x2d)e2+ (x1d + x2c)e12

= (0e0+ 0e1+ x1e2+ x2e12) ⊗1,1 (ce0− de1− ae2+ be12)

The other results follow by similar simple computations. 2

Note that

(x1e0+ x2e2) ⊗1,1 (ae0+ be2) = (x1− a)e0+ (x2+ b)e2 (3.39)

and

(x1e1+ x2e2) ⊗1,1 (ae1+ be2) = (x1+ a)e1+ (x2+ b)e2 . (3.40)

Thus (3.39) is the multiplication of complex numbers and (3.40) is the multiplica-

tion of hyperbolic numbers. Both types are therefore encoded in the BCN1,1.

In the remainder of this section we will now deal with representations of affine

transformations of the plane. This is a useful class of propagation functions and a

nice way to summarize all the topics of this section in one example.

47

3.2 ISOMORPHIC BCNS AND ISOMORPHIC REPRESENTATIONS

3.2.3 Example: Affine Transformations of the Plane

An affine transformation of the plane is a mapping from R2 to R2 of the form

(x, y)T 7→
(

a b

c d

)

(x, y)T +

(

tx

ty

)

. (3.41)

In Clifford algebra such transformation can be expressed in either of the two iso-

morphic algebras C1,1 and C2,0. The algebra C2,0 will be treated first. The direct

approach of using the vector representation x1e1 + x2e2, however, does not work.

Suitable representations can be found by utilizing the fact R(2) ∼= C2,0 (table 2.2).

Proposition 3.15 The map

R(2) → C2,0,

(

a b

c d

)

7→
1

2
((a+ d)e0+ (a− d)e1+ (b+ c)e2+ (b− c)e12) (3.42)

is an isomorphism.

The application of the transformation matrix in (3.41) can also be written in the

slightly more complicated way

(

a b

c d

)

(x, y)T =

(

a b

c d

)(

x 0

y 0

)

. (3.43)

Transforming

(

x 0

y 0

)

by (3.42) yields 1
2
(xe0+xe1+ye2−ye12), which allows the

following statement4.

Proposition 3.16 For any real data {(x
p
1, x

p
2), (d

p
1, d

p
2)}
P
p=1 the BCN2,0 trained on the train-

ing set {(x1e0+x1e1+x2e2−x2e12)
p, (d1e0+d1e1+d2e2−d2e12)

p}Pp=1 converges to the

best affine approximation of the data (assuming the use of an appropriate learning rate).

Note that nothing inside the neuron has to be changed. Applying the isomorphism

(3.42) to the multivector weight w of the trained neuron gives the transformation

matrix of (3.41). Similarly, applying (3.42) to the multivector bias θ yields the trans-

lation vector of (3.41).

From the definition of an affine transformation (3.41) and with the methods out-

lined above the following result is easily obtained.

4The factor 1
2

can be neglected.

48

CHAPTER 3. BASIC CLIFFORD NEURONS

Proposition 3.17 The representations

{(x1e0+ x1e1+ x2e2− x2e12)
p, (d1e0+ d1e1+ d2e2− d2e12)

p}Pp=1 (3.44)

and

{(x2e0+ x2e1+ x1e2− x1e12)
p, (d2e0+ d2e1+ d1e2− d1e12)

p}Pp=1 (3.45)

are the only isomorphic representations for a BCN2,0 representing affine transformations

(in the sense of Proposition 3.16).

The existence of suitable presentations of affine transformations for the BCN1,1 is

guaranteed by Theorem 3.10, and, all such presentation can be directly derived by

applying the inverse isomorphism of (3.29) to (3.44) and (3.45).

Proposition 3.18 The representations

{(x1e0+ x2e1+ x2e2+ x1e12)
p, (d1e0+ d2e1+ d2e2+ d1e12)

p}Pp=1 (3.46)

and

{(x2e0+ x1e1+ x1e2+ x2e12)
p, (d2e0+ d1e1+ d1e2+ d2e12)

p}Pp=1 (3.47)

are the only isomorphic representations for a BCN1,1 representing affine transformations

(in the sense of Proposition 3.16).

Of course, the same representations derive from the following isomorphism from

R(2) to C1,1.

Proposition 3.19 The map

R(2) → C1,1,

(

a b

c d

)

7→
1

2
((a+ d)e0+ (b+ c)e1+ (c− b)e2+ (a− d)e12) (3.48)

is an isomorphism.

Applying (3.48) to

(

x 0

y 0

)

and

(

y 0

x 0

)

yields (3.46) and (3.47), respectively.

A lot of new technical terms for Clifford neural computation were introduced in

this section. Most important, we saw how Basic Clifford Neurons incorporate dif-

ferent propagation functions, which are ”selectable” from the outside by applying

different representations.

49

3.3 THE CLIFFORD ASSOCIATOR

3.3 The Clifford Associator

So far we have been studying only single Basic Clifford Neurons. Technically, a

Basic Clifford Neuron (Definition 3.2) was introduced as one–dimensional special

case of a Clifford Neuron (Definition 3.1). The latter will be used now to introduce

the first Clifford neural network of this thesis.

Definition 3.20 (Clifford Associator) A Clifford Associator (CA) is a Clifford neural

network consisting of n inputs and m output Clifford Neurons computing the following

function from (Cp,q,r)
n to (Cp,q,r)

m

y = W ⊗ x , (3.49)

with x and y both being tuples of multivectors and W being a weight matrix of sizem× n

having multivector entries. An entrywij represents the multivector weight connecting the

i–th input to the j–th output Clifford Neuron. The weight matrixW is applied to the input

x by means of the tensor product ⊗.

The above definition is only heavy–weighted with respect to the amount of needed

formalism. A Clifford Associator is the natural generalization of a Linear Associa-

tor as introduced in Definition 3.4. In particular, the latter is obtained by plugging

C0,0,0 into Definition 3.20. From the pure technical point of view the Clifford Asso-

ciator can also be seen as a tensor network [63].

Obviously, isomorphic Clifford algebras give isomorphic Clifford Associators. The

number of real parameters of a Clifford Associator of size m× n is given by

NCAm,n = m · n · 2p+q+r . (3.50)

The update rule for the multivector weightwij of a Clifford Associator with under-

lying algebra Cp,q,r is the same as for the Basic Clifford Neuron BCNp,q,r having xi,

yj and dj as its input, actual computed output and expected output, respectively.

In this section only one particular Clifford Associator will be studied. This will be

the Dual Clifford Associator of size 3× 3 (shortly referred to as DCA3,3). This spe-

cific architecture is chosen in order to highlight another feature of Clifford neural

computation. It offers the possibility to directly process other geometric entities

besides points. In the following an example for the processing of lines is worked

out.

There are many ways to represent lines [68]. A very old one are Plücker coordinates

[66].

50

CHAPTER 3. BASIC CLIFFORD NEURONS

Definition 3.21 (Plücker Coordinates) Let l be a line in Euclidean 3D space repre-

sented by a point p = {p1, p2, p3} lying on l and the direction vector q = {q1, q2, q3}

of l. Let q′ := p× q be the moment vector. Then the six element vector

L := (q, q′) (3.51)

gives the so–called Plücker coordinates of l.

The following connection between Plücker coordinates and dual numbers trace

back to Clifford himself [19].

Proposition 3.22 Let L1 = (q11, q12, q13, q11′, q12′, q13′), L2 = (q21, q22, q23, q21′, q22′,

q23′) be Plücker coordinates of two lines related by an Euclidean transformation. Then

there exists a 3× 3 dual number matrix W such that

q21+ q21′e1
q22+ q22′e1
q23+ q23′e1

 = W

q11+ q11′e1
q12+ q12′e1
q13+ q13′e1

 . (3.52)

The explicit matrix representation of the 3D Euclidean group E(3) in terms of dual

number matrices is given, for example, in [78]. A detailed discussion about the

advantages of (3.52) over the common representation of E(3) by homogenous coor-

dinates and 4× 4 matrices for robotics can be found in [71].

Transformations of lines under E(3) can be learned by a Dual Clifford Associator

DCA3,3 if the lines are presented in accordance to Proposition 3.22. This is also

possible by a Linear Associator LA6,6. Note that the DCA3,3 has 18 real parameters

and the LA6,6 has 36 real parameters (3.50). Both architectures were compared in

the following experimental setup.

0
5

10

0

5

10
0

2

4

6

Figure 3.18: Training set for the Clifford Associator DCA3,3 and the Linear

Associator LA6,6 consisting of 6 lines.

51

3.3 THE CLIFFORD ASSOCIATOR

The input set consisted of the 6 lines shown in figure 3.18. A rotation about the axis

(2, 2, 3) and through 30 degrees followed by a translation by (1, 2, 3) was chosen as

learning task. Using batch learning with optimal learning rate the Linear Associa-

tor needed around 12000 epochs to reach a training error (MSE) less than 0.01. The

same error level was reached by the DCA3,3 in about 100 epochs. A comparison

of the two learning curves as provided by figure 3.19 also shows, that the DCA3,3
came up with a very good approach already after the first epoch. For the DCA3,3
the same learning rate as for the LA6,6 was used.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

Epochs

M
S

E

Linear Associator
Dual Clifford Associator

Figure 3.19: Training errors of the Dual Clifford Associator DCA3,3 and the

Linear Associator LA6,6.

The Dual Clifford Associator also outperformed the Linear Associator in terms of

generalization. Both networks were trained on data corrupted by Gaussian noise

of different levels and then tested on the original noise–free data. The obtained

results averaged over 20 runs are reported in figure 3.20. Not surprisingly, the

Linear Associator basically learned the noise and only weak generalization did

happen. In contrast, the Dual Clifford Associator was able to still generalize well

even for higher levels of noise. This can be concluded from the fact that the MSE on

the test set was always below the MSE on the training set, which has the following

simple explanation. The DCA3,3 computes the best fitting dual–number matrix W

(3.52), and therefore representing the data in terms of Plücker coordinates (lines)

forces a constraint optimization. Applying the same data to the LA6,6, however,

has noch such effect.

52

CHAPTER 3. BASIC CLIFFORD NEURONS

0.01 0.02 0.03 0.04
0

0.05

0.1

0.15

0.2

0.25

σ2

M
S

E

Linear Associator
Dual Clifford Associator

0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ2

M
S

E

Linear Associator
Dual Clifford Associator

Figure 3.20: Performance of the Dual Clifford Associator DCA3,3 and the Lin-

ear Associator LA6,6 when trained on data with added Gaussian noise with

variance σ2. The left plot shows training performance and the right plot shows

test performance (also in correspondence to the level of noise on the training

set) on the original noise–free data.

The above experiment showed that, even if it is always theoretical possible to use a

Linear Associator instead of a Clifford Associator, it may be totally unpractical for a

particular task. Also, there is no generic way to present lines in an only real–valued

architecture. However, this is exactly the sort of prior knowledge one might wish to

communicate to a neural architecture. For example, many algorithms in computer

vision are line based and deliver results in terms of lines (e.g. edge detection).

One Clifford neural architecture can handle different geometric entities, or, more

precisely, this feature is encoded via the geometric product inside the propagation

function. The Dual Clifford Associator as introduced above can handle points as

well. Everything only depends on the way the data is represented.

3.4 Summary of Chapter 3

In this chapter we undertook the first steps into the theory of Clifford neural com-

putation. As its atom the Basic Clifford Neuron (BCN) was introduced. The com-

putation of a BCN is solely determined by one geometric product associating one

multivector weight with the received input. Particulary, the BCNs corresponding

to the three two–dimensional Clifford algebras have been studied in great detail.

Those neurons were compared in several experiments to the Linear Associator in

order to highlight the model–based nature of Clifford neural computation. Theo-

retically, this was demonstrated by deriving the different optimal learning rates for

those neurons (Proposition 3.7, Corollary 3.8, and Proposition 3.10) based on the

53

3.4 SUMMARY OF CHAPTER 3

classical work of LeCun [51] for the Linear Associator. The standard error func-

tions (SSE/MSE) were shown to be also the appropriate choice for the Clifford

framework. From the particular nature of the derived update rule (3.28) for the

Dual BCN the influence of the underlying degenerate Clifford algebra could be

made visible.

The new theoretical concepts of isomorphic Basic Clifford Neurons and isomorphic

representations have been presented. The first allows to identify equivalent neural

Clifford architectures. This was proven theoretically and shown experimentally for

the isomorphic neurons BCN1,1 and BCN2,0. Equivalence was shown to be hold up

to the level of learning dynamics (Theorem 3.10) and (Corollary 3.11). Any Clifford

neuron applies to the data it sees a certain geometric model induced by the under-

lying Clifford algebra. That fact allows a rich variety of data representations which

then can be classified by the concept of isomorphic representations. As an example

different representations for affine transformations have been studied. With both

mentioned concepts the core set of tools for the systematic study of Clifford neural

computation has been laid.

Finally, the Linear Associator was generalized to the Clifford Associator. The Dual

Clifford Associator based on the algebra C0,0,1was compared with the Linear Asso-

ciator on data represented by lines. In an experiment that illustrates the capability

of a Clifford architecture to intrinsical process lines, the Dual Clifford Associator

outperformed the Linear Associator, with respect to both the number of needed

training epochs and generalization capability.

54

Chapter 4

Spinor Clifford Neurons

In the previous chapter we utilized Clifford algebra to introduce neurons allow-

ing for the computation of transformations of different geometric entities. Both the

type of entities to process and the transformations to compute could be commu-

nicated to the neuron just by presenting the data in a certain specific way. Thus,

although everything remained on a numerical level, structural a priori knowledge

could be integrated. The study of this key feature of Clifford neural computation

continues in this chapter. A second type of Clifford neuron is introduced, which

has the following motivation.

The step from 2D Basic Clifford Neurons to Basic Clifford Neurons of higher di-

mensions yields only generalization in algebraical terms. What is still missing is

generalization in terms of geometry. The propagation function of a Complex Basic

Clifford Neuron, for example, is representing a 2D Euclidean transformation plus

scaling, or, equivalently, the action of the corresponding transformation group on

points in the plane. No Basic Clifford Neuron has a 3D Euclidean transformation

as propagation function. This is due to the in general two–sided operation of the

Clifford group (section 2.4), which prompts for the following new type of Clifford

neuron.

Definition 4.1 (Spinor Clifford Neuron) For any p+ q > 1 a Spinor Clifford Neuron

(SCN) computes the following function from Cp,q to Cp,q

y = w⊗p,q x⊗p,q φ(w) + θ , (4.1)

with φ being either inversion ˜, reversion ^, or conjugation ¯, respectively. For a particular

Spinor Clifford Neuron the acronym SCNφp,q is used.

A Spinor Clifford Neuron, basically, mimics the action of the Clifford group. There-

55

fore a SCN is only defined for non–degenerate Clifford algebras. Also, the propa-

gation function (4.1) is only useful for non–commutative algebras, hence the con-

dition p+ q > 1. A SCN is a neural architecture based on two geometric products.

However, its multivector weights, coupled by the involution φ, are not indepen-

dent. Therefore a Spinor Clifford Neuron has actually only one independent mul-

tivector weight. Consequently, a SCN has the same number of free parameters as

a BCN of same dimension. It is of course possible to study Clifford neurons with

two uncoupled weights

y = w1⊗p,q x⊗p,q w2+ θ . (4.2)

Here we will only consider SCNs due to their distinctive geometric properties,

which do not apply for the more general neurons of the form (4.2).

To every Spinor Clifford Neuron the standard error function

Esp,q =
1

2
‖ d −w⊗p,q x⊗p,q φ(w) + θ ‖2

=
1

2
‖ d − y ‖2

=
1

2
‖ error ‖2 (4.3)

is associated. The bias term in (4.1) is common to all SCNs. The generic bias up-

date rule for the Basic Clifford Neuron (3.3) does also apply in case of a SCN. The

dynamics of the BCN and the SCN, however, differ as follows.

Proposition 4.2 Let HBCNp,q be the Hessian of a Basic Clifford Neuron BCNp,q. Then

H
SCN

φ
p,q

= 2HBCNp,q (4.4)

is the Hessian of the Spinor Clifford Neuron SCNφp,q.

This gives immediately the following result.

Corollary 4.3 Let ηopt be the optimal learning rate for a Basic Clifford NeuronBCNp,q.Then
1
2
ηopt is the optimal learning rate for the Spinor Clifford Neuron SCNφp,q.

Both statements above are very intuitive because a SCN is linear and based on two

geometric products.

The following discussion of Spinor Clifford Neurons follows the same structure

used in chapter three for Basic Clifford Neurons. First, we will study the most

56

CHAPTER 4. SPINOR CLIFFORD NEURONS

simple representative of a Spinor Clifford Neuron. That way all relevant aspects of

Spinor Clifford Neurons can be introduced in an illustrative manner. Afterwards,

the topic of isomorphic SCNs and isomorphic representations is studied in detail.

The last section of this chapter presents a method for linearizing the computation

of Möbius transformations by a single SCN using a conformal data representation.

4.1 The Quaternionic Spinor Clifford Neuron

The most simple Spinor Clifford Neurons are those of dimension four. Among

them the SCN derived from the algebra of quaternions C0,2 is of particular interest

and importance.

Definition 4.4 (Quaternionic Spinor Clifford Neuron) The Quaternionic Spinor Clif-

ford Neuron (Quaternionic SCN) computes the following function from C0,2 to C0,2

y = w⊗ 0,2 x⊗ 0,2 w̄+ θ . (4.5)

The Quaternionic SCN is also the most exceptional Spinor neuron since it has the

following unique properties. First, it can be used in the following canonical way

(in accordance to the given motivation of SCNs). For any vector x1e1 + x2e2 the

Quaternionic SCN computes a 2D orthogonal transformation followed by a trans-

lation. If the multivector weightw of a Quaternionic SCN is a unit quaternion then

the propagation function is a 4D Euclidean transformation [27, 56]. If in the latter

case a multivector x1e1+ x2e2+ x12e12 is presented a 3D Euclidean transformation

results. Taken into account that quaternions are nowadays established as a fast way

for computing 3D rotations the last presented fact is of most practical relevance.

Surprisingly, only ordinary quaternionic multiplication was considered as propa-

gation function by Arena et al. [1] when proposing their Quaternionic MLP. Net-

works based on (4.5) will be introduced later in chapter five. At the moment we

are only interested in the Quaternionic Spinor Clifford Neuron itself, for which the

following update rule can be derived

57

4.1 THE QUATERNIONIC SPINOR CLIFFORD NEURON

∆w0,2¯ =
(

error0w0x0+ error1(w0x1+w2x12−w12x2)

+ error2(w0x2−w1x12+w12x1) + error12(w0x12+w1x2−w2x1)e0
)

+
(

error0w1x0+ error1(w1x1+w2x2+w12x12)

+ error2(w2x1−w0x12−w1x2) + error12(w12x1+w0x2−w1x12)e1
)

+
(

error0w2x0+ error1(−w2x1+w1x2+w0x12)

+ error2(w1x1+w2x2+w12x12) + error12(w12x2−w0x1−w2x12)e2
)

+
(

error0w12x0+ error1(w1x12−w0x2−w12x1)

+ error2(w0x1+w2x12−w12x2) + error12(w1x1+w2x2+w12x12)e12
)

.

(4.6)

This rule is rather lengthly. Also, it is more complicated than necessary. As already

mentioned, the architecture of a Spinor Clifford Neuron allows to think of the one

multivector weight as two coupled multivector weights. In particular, it is then

sufficient to derive only an update rule for the ”right” weight in (4.1), and, then

just set the ”left” weight accordingly. That way only the update rule for one single

geometric product is needed. This means that in principle the same update rule

can be used for a BCN and a SCN with the same underlying algebra. For the

Quaternionic SCN the BCN0,2 update rule applies, which reads

∆w0,2 = −∇E0,2

= (error · (x0, x1, x2, x12)
T) e0

+ (error · (−x1, x0,−x12, x2)
T) e1

+ (error · (−x2, x12, x0,−x1)
T) e2

+ (error · (−x12,−x2, x1, x0)
T) e12

= error⊗ 0,2 (x0e0+ x1e1+ x2e2− x12e12)

= error⊗ 0,2 x̄ . (4.7)

The precise procedure for determining ∆w0,2¯ from ∆w0,2 is then as follows. First

determine the update of the ”right” weight according to (4.7), whereby the order

of the factors has to be reversed. This yields

wc := (w⊗ 0,2 x) ⊗ 0,2 error , (4.8)

and, finally

∆w0,2¯= wc . (4.9)

58

CHAPTER 4. SPINOR CLIFFORD NEURONS

In order to demonstrate the equivalence of the two update methods (4.6) and (4.7)

the following experiment was performed using online learning1. A random distri-

bution of 100 4D points {(x
p
1, x

p
2, x

p
3, x

p
4)}
100
p=1 with zero mean, variance one and stan-

dard deviation one was created. Interpreted as quaternions, this set of points was

conjugated by a unit quaternion corresponding to a rotation about the axis (2, 2, 3)

and through 30 degrees and finally translated about (0, 2, 2,−1). On that created

training set several runs of a Quaternionic SCN with the two different update meth-

ods (4.6) and (4.7) were performed using a fixed initial multivector weight and a

fixed learning rate η = 0.2. All runs converged to the solution in the same number

of iterations. Differences of the learning curves could only be observed by explicitly

studying absolute deviation between runs. Two examples are reported in figure 4.1

below. As can be seen from that plot the deviation for runs with different update

methods was in the same range as that in between runs using (4.6). Thus both up-

date methods are indeed equivalent. The observed differences between the runs

were caused by using training data with precision of 15 digits, which means that

training took place close to machine precision.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1x 10
−3

Iterations

D
ev

ia
tio

n
(a

bs
ol

ut
e)

Setting I
Setting II

Figure 4.1: Absolute difference of training errors between two runs of the

Quaternionic Spinor Clifford Neuron. In one case (referred to as setting I) up-

date rule (4.6) was used for both runs, in the other case (referred to as setting II)

update rules (4.6) and (4.7) were used in the first and second run, respectively.

In a second experiment only the last three components of the above training data

sets were used. Thus the learning task was changed to be a 3D Euclidean transfor-

mation. On that task the Quaternionic SCN was compared with a Linear Associator

LA4,4 for which the bias term was incorporated as described in chapter three. On-

line learning was used with a learning rate η = 0.2 for the LA4,4 and a learning rate

1Remember that in the regime of online learning a weight update is performed after every single

presentation of a pattern, which is referred to as one iteration of the training.

59

4.1 THE QUATERNIONIC SPINOR CLIFFORD NEURON

η = 0.1 for the Quaternionic SCN, respectively. The resulting learning curves are

presented in figure 4.2.

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

Epochs

M
S

E

Linear Associator
Quaternionic SCN

Figure 4.2: Training errors of the Quaternionic SCN and the Linear Associator

LA4,4.

Although oscillating at the beginning of training the Quaternionic SCN converged

faster than the LA4,4. After 50 training patterns the Quaternionic SCN has reached

an error below 10−5, for which the LA4,4 needed about 70 patterns. Numerical re-

sults for noisy data are reported below in figure 4.3. The results are pretty similar to

all the ones obtained in previous experiments. The Quaternionic SCN outperforms

the general linear architecture in terms of generalization from noisy data. Clearly,

this is due to the Quaternionic SCN possesses the right model for the data.

0.01 0.02 0.03 0.04
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ2

M
S

E

Linear Associator
Quaternionic SCN

0.01 0.02 0.03 0.04
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

σ2

M
S

E

Linear Associator
Quaternionic SCN

Figure 4.3: Performance of the Quaternionic SCN and the Linear Associa-

tor LA4,4 when trained on data with added Gaussian noise with variance σ2.

The left plot shows training performance and the right plot shows test per-

formance (in correspondence to the level of noise on the training set) on the

original noise–free data.

60

CHAPTER 4. SPINOR CLIFFORD NEURONS

The amount of outperforming, however, becomes really impressive when looking

at the transformed test data itself, which consisted of the vertices of the 3D object

already known from section 3.3, figure 3.18. The position and orientation of the

object is not well recovered by the LA4,4 (see figure 4.4 (right)), whereas the task

was still managed satisfactory by the Quaternionic SCN.

Figure 4.4: Learned transformations by the Quaternionic SCN (left) and the

Linear Associator LA4,4 (right) from noisy data (σ2 = 0.03). Points (learned

output) should lie on the vertices of the shaded object (expected output).

The main result of this section, however, is that the update rule for a SCN can be

expressed very efficiently by using that of the BCN with same underlying algebra.

4.2 Isomorphic Spinor Clifford Neurons

One of the main results of chapter three was that Clifford neural architectures

which only differ by isomorphic Basic Clifford Neurons are identical. Spinor Clif-

ford Neurons, however, are not based on Basic Clifford Neurons. This would only

be true for neurons of the form (4.2) with two independent weights. A Spinor

Clifford Neuron, however, has two dependent weights which are coupled by an

involution as introduced in Definition 4.1. This makes the SCN a Clifford neuron

of its own rights. Therefore, the question of isomorphic Spinor Clifford Neurons is

not covered by the aforementioned framework.

Since Spinor Clifford Neurons are determined by both a particular geometric prod-

uct and a particular involution it is helpful to have an explicit notion of the latter.

The involutions occurring for SCNs of dimension four and eight are given below

in table 4.1 and table 4.2, respectively.

61

4.2 ISOMORPHIC SPINOR CLIFFORD NEURONS

e0 e1 e2 e12

Reversion (^) + + + -

Inversion (˜) + - - +

Conjugation (¯) + - - -

Table 4.1: Involutions for Clifford algebras of dimension four.

e0 e1 e2 e3 e12 e13 e23 e123

Reversion (^) + + + + - - - -

Inversion (˜) + - - - + + + -

Conjugation (¯) + - - - - - - +

Table 4.2: Involutions for Clifford algebras of dimension eight.

For every Clifford algebra of dimension greater than two the occurring involutions

are distinct from each other. This easily prompts the following statement.

Proposition 4.5 Let SCNφp,q and SCNψp,q be two isomorphic Spinor Clifford Neurons.

Then φ = ψ.

Thereby, two SCNs are regarded as being isomorphic in the same sense as be-

fore (section 3.2). Particularly, Theorem (3.10) holds analogously. The statement

of Proposition 4.5 can be further generalized as follows.

Proposition 4.6 Let SCNφp,q and SCNψp′,q′ be two isomorphic Spinor Clifford Neurons.

Then φ = ψ and Cp,q ∼= Cp′,q′ .

Thus, two SCNs can only be isomorphic if the underlying Clifford algebras are

isomorphic too. For example, SCN ¯
2,0 is not isomorphic to the Quaternionic SCN.

Otherwise, C2,0 would be isomorphic to the Clifford algebra of quaternions C0,2.

Underlying isomorphic Clifford algebras are necessary but not sufficient for two

SCNs to be isomorphic. This can be seen from the example of the SCN ˜
1,1 and the

SCN ˜
2,0. To be able to actually perform computations the following two isomor-

phisms from the underlying Clifford algebras of these neurons to R(2) are needed

first.

62

CHAPTER 4. SPINOR CLIFFORD NEURONS

Proposition 4.7 The map ψ11

C1,1 → R(2), x0e0+ x1e1+ x2e2+ x12e12 7→
(

x0+ x12 x1− x2

x1+ x2 x0− x12

)

(4.10)

is an isomorphism.

Proposition 4.8 The map ψ20

C2,0 → R(2), x0e0+ x1e1+ x2e2+ x12e12 7→
(

x0+ x1 x2+ x12

x2− x12 x0− x1

)

(4.11)

is an isomorphism.

Let φ11 denote the isomorphism from R(2) to C1,1 (3.42) and φ20 denote the isomor-

phism from R(2) to C2,0 (3.48), respectively.

Furthermore, setW :=

(

3 4

−7 8

)

and X :=

(

2 12

3 −5

)

. Then

ψ11
(

(φ11(W) ⊗ 1,1 φ11(X)) ⊗ 1,1 φ11(W)˜
)

=

(

32 120

−460 −1062

)

,

whereas

ψ20
(

(φ20(W) ⊗ 2,0 φ20(X)) ⊗ 2,0 φ20(W)˜
)

=

(

118 2

−466 −1032

)

.

Therefore, the two Spinor Clifford Neurons SCN ˜
1,1 and SCN ˜

2,0 are not isomorphic.

The same values forW and X as above can be used to show that SCN^
1,1 and SCN^

2,0

are also not isomorphic. Contrary to that the following result holds.

Proposition 4.9 The neurons SCN ¯
1,1 and SCN ¯

2,0 are isomorphic.

Proof: Let w11 := w0e0+w1e1+w2e2+w12e12 be the weight of the SCN ¯
1,1. Then

ψ11(w11) =

(

w0−w12 −w1+w2

w1−w2 w0+w12

)

=: W11 .

Furthermore, w20 := w0e0 + w12e1 + w1e2 − w2e12 is the image of w11 under the

algebra isomorphism (3.29) from C1,1 to C2,0. Now direct computation shows

ψ20(w20) = ψ20(w0e0−w12e1−w1e2+w2e12)

=

(

w0−w12 −w1+w2

w1−w2 w0+w12

)

= W11 .

63

4.2 ISOMORPHIC SPINOR CLIFFORD NEURONS

2

All of the above can be summarized as follows.

Theorem 4.10 The only 4–dimensional isomorphic Spinor Clifford Neurons are SCN ¯
1,1

and SCN ¯
2,0.

The fact that C1,2 ∼= C(2) ∼= C3,0 can be utilized to derive a similar theorem for the

eight–dimensional case, for which the easy proof by direct computation will be

omitted here.

Theorem 4.11 The only 8–dimensional isomorphic Spinor Clifford Neurons are SCN ¯
1,2

and SCN ¯
3,0.

Since explicitly designed for modelling the operation of the Clifford group, the

standard data for Spinor Clifford Neurons are vectors. Therefore, for example,

(4) : {(0e0+ x1e1+ x2e2+ 0e12)
p, (0e0+ d1e1+ d2e2+ 0e12)

p}

is the corresponding vector representation of four–dimensional Spinor Clifford

Neurons. From the isomorphism of the Clifford groups

Γ0,2
∼= Γ2,0 (4.12)

follows immediately

SCN ¯
2,0(4)

∼= SCN ¯
0,2(4) . (4.13)

Note that in contrast BCN0,2 6∼= BCN2,0 as well as SCN0,2 6∼= SCN2,0. Hence (4.12)

only induces isomorphic vector representations. Moreover, the vector representa-

tion is well distinguished from other possible representations, for example, those

given by

(1) : {(x1e0+ x2e1+ 0e2+ 0e12)
p, (d1e0+ d2e1+ 0e2+ 0e12)

p}

(2) : {(x1e0+ 0e1+ x2e2+ 0e12)
p, (d1e0+ 0e1+ d2e2+ 0e12)

p}

(3) : {(x1e0+ 0e1+ 0e2+ x2e12)
p, (d1e0+ 0e1+ 0e2+ d2e12)

p}

(5) : {(0e0+ x1e1+ 0e2+ x2e12)
p, (0e0+ d1e1+ 0e2+ d2e12)

p}

(6) : {(0e0+ 0e1+ x1e2+ x2e12)
p, (0e0+ 0e1+ d1e2+ d2e12)

p} .

Proposition 4.12 The vector representation SCN ¯
2,0(4) is unique in the following sense

SCN ¯
2,0(4) 6

∼= SCN ¯
0,2(i) (4.14)

for all i ∈ {(1), (2), (3), (5), (6)}.

64

CHAPTER 4. SPINOR CLIFFORD NEURONS

Proof: The scalar component of

(w0e0+w1e1+w2e2+w12e12)⊗ 2,0 (x1e1+ x2e2)⊗ 2,0 (w0e0−w1e1−w2e2−w12e12)

is zero where as it is nonzero for the spinor multiplications corresponding to the

representations (1),(2),(3),(5) and (6). 2

The above generalizes in that sense that there are much less isomorphic representa-

tions for Spinor Clifford Neurons than for Basic Clifford Neurons. When proceed-

ing to Clifford neural networks later in this thesis we will concentrate on vector

representations. For Euclidean transformations as propagation functions it is suffi-

cient to study only Spinor Clifford Neurons based on conjugation. An application

of a SCN based on reversion is given in the subsequent section.

4.3 Linearizing Möbius Transformations

Spinor Clifford Neurons allow the computation of general orthogonal transforma-

tions. For that purpose many different linear representations can be chosen as

demonstrated before. A very interesting application of a nonlinear representation

will be studied in the following. By using a so–called conformal representation2 a

Spinor Clifford Neuron based on reversion can compute a Möbius transformation

in a linear way.

Definition 4.13 (Möbius Transformation) For every a, b, c, d ∈ C with ad−bc 6= 0

the mapping

C → C, z 7→
az+ b

cz+ d
(4.15)

is called a Möbius transformation.

Möbius transformations are a specific class of holomorphic functions. They are of

great importance in many mathematical branches. For example, they belong to the

heart of monogenic functional calculus [45]. Moreover, Möbius transformations

form the isometries of the Poincare model (unit disk) of the hyperbolic plane. Ev-

ery Möbius transformation is a conformal mapping, that is, it preserves angles.

Hence there is a close relation to orthogonal mappings. More precisely, the Möbius

transformations (4.15) form a group M isomorphic to O(1, 2)/{±1} (see e.g. [67]).

2In terms of Geometric Algebra this concept is referred to as the conformal model of the Eu-

clidean Geometric Algebra (CGA) [40].

65

4.3 LINEARIZING MÖBIUS TRANSFORMATIONS

The Möbius group M can also be studied in terms of complex 2× 2 matrices

(

a b

c d

)

(4.16)

with ad − bc 6= 0 and ordinary matrix multiplication as group operation. Then,

according to table 2.2, this is equivalently possible in either C1,2 or C3,0. Naturally,

the Möbius groupM acts on the Euclidean plane represented by complex numbers

C. To let M act properly on multivectors in C1,2 the following specific nonlinear

embedding is needed.

Definition 4.14 (Conformal Compactification [67]) For every z = x + iy ∈ C

xe0+
1

2
(1+ zz̄)e1+ ye2+

1

2
(1− zz̄)e3 (4.17)

is called the conformal compactification of R2 (identified with C) in C1,2.

Figuratively, the set of paravectors e0+e1+e2+e3 in C1,2 is a projective space for R
2

where points are represented as quadric cones. It is easier to work with the matrix

representation of (4.17), for which an isomorphism from C1,2 to C(2) has first to be

established. The basic idea is to use the following correspondences

e0 7→
(

1 0

0 1

)

e1 7→
(

0 1

1 0

)

e2 7→
(

i 0

0 −i

)

e3 7→
(

0 −1

1 0

)

,

which induce the following result.

Proposition 4.15 The map φ : C1,2 → C(2)

x0+ x1e1+ x2e2+ x3e3+ x12e12+ x13e13+ x23e23+ x123e123 7→

(

(x0+ x23) + i(x2− x123) (x1− x3) + i(−x12− x23)

(x1+ x3) + i(x12− x23) (x0− x23) + i(−x2− x123)

)

(4.18)

is an isomorphism.

66

CHAPTER 4. SPINOR CLIFFORD NEURONS

The image of the conformal compactification (4.17) of a point z under the above

isomorphism φ reads

(

z zz̄

1 z̄

)

. (4.19)

The following linearization of Möbius transformations in terms of the Clifford al-

gebra C1,2 is then easily verified by direct computation (see e.g. [67]).

Proposition 4.16 Let A =

(

a b

c d

)

be a complex matrix with ad − bc 6= 0. Let z be

the conformal compactification of a point (x, y) ∈ R
2 according to (4.17). This yields

Aφ(z) Ã = λ

(

z ′ z ′z̄ ′

1 z̄ ′

)

, (4.20)

with 1
λ
z ′ being the conformal compactification of the image of (x, y) under the Möbius

transformation induced by A and λ = ‖cz+ d‖2.

The general result for Rnwas proven by Vahlen [87] more than hundred years ago.

However, results on 2 × 2 Clifford matrices inducing Möbius transformations for

arbitrary quadratic spaces Rp,q became known not before around the 1990s (see e.g.

[20]).

The realization of Möbius transformations by the Spinor Clifford Neuron SCN ˜
1,2 is

not so straightforward due to the existence of the real factor λ in (4.20). Of course, λ

can always be integrated as activation function. This, however, renders the whole

Clifford algebra approach more complicated than a direct implementation of (4.15).

It is also possible to scale in preprocessing either the input or the output by λ.

The drawback of that method is that it requires knowledge of the transformation

parameters in advance. This can be overcome by performing the scaling inside the

neuron. More precisely, the first component and the third component of the current

weight w can be used to compute λ [12], by which the original input x is divided

in a first step. If x ′ denotes such a scaled term the computation w ⊗ 1,2 x
′ ⊗ 1,2 w̃

then follows. Therefore only the weight update for the last geometric product has

actually to be computed. This can be done by using the update rule

67

4.3 LINEARIZING MÖBIUS TRANSFORMATIONS

∆w1,2 = −∇E1,2

= (error · (x0, x1, x2, x3, x12, x13, x23, x123)
T) e0

+ (error · (x1, x0, x12, x13, x2, x3, x123, x23)
T) e1

+ (error · (−x2, x12, x0,−x23,−x1, x123, x3,−x13)
T) e2

+ (error · (−x3, x13, x23, x0,−x123,−x1,−x2, x12)
T) e3

+ (error · (x12,−x2,−x1, x123, x0,−x23,−x13, x3)
T) e12

+ (error · (x13,−x3,−x123,−x1, x23, x0, x12,−x2)
T) e13

+ (error · (−x23,−x123,−x3, x2,−x13, x12, x0, x1)
T) e23

+ (error · (−x123,−x23,−x13, x12,−x3, x2, x1, x0)
T) e123

= error⊗ 1,2 (x0e0+ x1e1− x2e2− x3e3+ x12e12+ x13e13− x23e23− x123e123) .

(4.21)

and then compute the dependent weight in a similar way as demonstrated for the

Quaternionic SCN before (section 4.1).

For testing the above procedure the Möbius transformation

z 7→
0.5(1+ i)z+ 0.5(1− i)

−0.5(1+ i)z+ 0.5(1− i)
(4.22)

was chosen as learning task. The input set consisted of 100 data points {(xp1, x
p
2)}
100
p=1

from a distribution having zero mean, variance one and standard deviation one.

From those points the output set was created by applying transformation (4.22).

For both sets the conformal compactification (4.17) was then computed resulting in

the final sets for training. For stable convergence of batch learning a rather small

learning rate η = 0.001 was necessary. The learning curve of the SCN ˜
1,2 is pre-

sented in figure 4.5.

0 200 400 600 800 1000
0

1

2

3

4

Epochs

M
S

E

Figure 4.5: Training error of the SCN ˜
1,2.

68

CHAPTER 4. SPINOR CLIFFORD NEURONS

Although a lot more epochs were needed, compared to the typical numbers re-

ported in the experiments on BCNs and SCNs we have done so far, learning suc-

ceeded with zero training error. Thus the exact parameters of the transformation

were learned by the SCN ˜
1,2. This demonstrates the indented capability of the neu-

ron to perform Möbius transformations in a linear way when data is provided ac-

cording to (4.17).

Another such application of the SCN ˜
1,2 arises from the well–known relation be-

tween Möbius transformations and the cross–ratio of an ordered quadruple of

points.

The cross–ratio of 4 points z, q, r, s ∈ R2 (identified with complex numbers) is given

by [60]

[z, q, r, s] =
(z− q)(r− s)

(z− s)(r− q)
. (4.23)

It is a well known projective invariant from which many others can be derived [90].

The precise relation to Möbius transformations is given by the next theorem.

Theorem 4.17 ([60]) The cross–ratio [z, q, r, s] is the image of z under that Möbius trans-

formation that maps q to 0, r to 1 and s to ∞, respectively.

The task now for the SCN ˜
1,2 was to learn to compute the cross–ratio(s) [z, q, r, s]

with q := 0.2+ i 0.3, r := 0.4− i 0.7, and s := 0.6− i 0.2. That is after being trained

on the set {(q, 0), (r, 1), (s,∞)}3 the neuron should be able to compute the cross–

ratio [z, q, r, s] when presented the test point z. Training was performed in batch

mode with learning rate set to η = 10−7. Due to the necessarily approximative

coding of ∞ the task could not be learned exactly. Therefore training was stopped

after the SSE dropped below 0.00001. This was the case after approximately 30000

epochs. A comparison between theoretical and learned transformation parameters

is given in table 4.3.

Parameter Theoretical value Learned value

a +0.20+ i 0.50 +0.20019 + i 0.50010

b +0.11- i 0.16 +0.11001 - i 0.15992

c -0.20+ i 1.00 -0.20079 + i 0.99939

d -0.08- i 0.64 -0.07930 - i 0.64007

Table 4.3: Comparison between theoretical and learned transformation pa-

rameters.

3The entity ∞ was coded as 1015.

69

4.4 SUMMARY OF CHAPTER 4

The difference between the actual values and those learned by the neuron is quite

small. Therefore an excellent performance on test points could be achieved as can

be seen from table 4.4.

Test point Theoretical value SCN ˜
1,2 output value

2.0+i 3.0 +0.3578-i 0.3357 + 0.3577-i 0.3364

4.0-i 7.0 +0.4838-i 0.3044 + 0.4838-i 0.3051

0.3+i 0.1 +0.0077-i 0.6884 + 0.0082-i 0.6884

Table 4.4: Comparison between theoretical cross–ratio values (rounded) and

actual output cross–ratio values of the SCN ˜
1,2 for some test points.

4.4 Summary of Chapter 4

In this chapter we introduced the class of Spinor Clifford Neurons (SCN). This sec-

ond fundamental type of Clifford neuron generalizes the two–dimensional Basic

Clifford Neurons in a geometrical sense. The computation of a Spinor Clifford

Neuron is an orthogonal transformation achieved by mimicking the two–sided op-

eration of the Clifford group. Although therefore technically involving two Clif-

ford products, a SCN has only one independent multivector weight. Thus a BCN

and a SCN of same dimension have the same number of free parameters. A result

relating the optimal learning rates of both types of Clifford neurons was presented

(Corollary 4.3). A general method for reducing the complexity of the update rule

for a SCN to that of BCN was derived. All of the above was demonstrated both

theoretically and by experiments for the Quaternionic SCN. This particular neuron

was also used to illustrate the general model–based nature of SCNs.

The question of isomorphic Spinor Clifford Neurons and isomorphic represen-

tations was studied. Necessary conditions for isomorphic SCNs were derived

(Proposition 4.7), and the two neurons SCN ¯
1,1 and SCN ¯

2,0 were proven to be iso-

morphic. The so–called conformal representation was shown to enable a Spinor

Clifford Neuron to compute Möbius transformations in a linear way. This unique

property of the Clifford framework was utilized for neural computing of the cross–

ratio.

70

Chapter 5

Clifford MLPs with Real–Valued

Activation Functions

At the very beginning of chapter 3 we introduced y = g(f(w; x)) as the expression

for a generic neuron. In that setting the Basic Clifford Neuron (BCN) reads (see

Definition 3.2)

y = id(w⊗p,q,r x + θ) , (5.1)

and the Spinor Clifford Neuron (SCN) (see Definition 4.1) reads

y = id(w⊗p,q x⊗p,q φ(w) + θ) . (5.2)

The Linear Associator, which was introduced in Definition 3.4, consists of one fully

connected layer of real BCNs and, therefore, computes a linear mapping from Rn

to Rm

y = Wx , (5.3)

with weight matrix W := (wi,j)m,n. Adding another layer U is not beneficial since

y = U(Wx) would be of the same (linear) computational power as (5.3). If, how-

ever, a nonlinear activation function g in the first layer is used everything changes

dramatically. For understanding the new neural architecture derived in that way

y = U(
∑

i

g(wijxj)) (5.4)

it is totally sufficient to restrict (5.4) to the case of one–dimensional output (because

only one type of activation function is used). Then the weight matrix U reduces to

a weight vector u yielding the simpler expression

y = ui(
∑

i

g(wijxj)) . (5.5)

71

Asking for the functional power of that expression is a purely mathematical prob-

lem, which is stated outside the actual neural framework. One possible mathe-

matical view on (5.5) is that of a series with basis functions parameterised by the

individual weights wij.

Suppose now we want to actually train the architecture (5.5) by gradient descent.

For that purpose the nonlinear activation function g has to be bounded and dif-

ferentiable everywhere as well. All this is fulfilled by the class of the so–called

sigmoidal (”s–shaped”) functions.

Definition 5.1 (Sigmoidal Function) For everyβ 6= 0 the function σβ : R → R defined

by

x 7→
1

1+ exp(−βx)
(5.6)

is called a sigmoidal function.

Of course, the ”s–shaped” nature of sigmoidal functions is preserved under scaling

and translation. The functions 2σ2− 1 = tanh and σ1 are plotted in figure 5.1 . The

function σ1 is known as the logistic function.

−5 0 5
−1

−0.5

0

0.5

1

−5 0 5
−1

−0.5

0

0.5

1

Figure 5.1: Plot of the tanh function (left) and the logistic function (right).

The (re)–discovery1 of gradient descent for neural networks of type (5.4) with sig-

moidal activation functions by Rumelhart et al. [57] gave rebirth to the whole area

of neural computation and it meant nothing less than a revolution for the whole

field of artificial intelligence. Since that time training such a network by gradient

descent is known as Backpropagation and the network itself is famous as Multi-

layer Perceptron2 (MLP). The number of published papers on MLPs have become

1See [36] for more historical details.
2Unfortunately, that name is quite misleading since the individual neurons are not Perceptrons.

72

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

”uncountable” with respect to both the range of applications (image processing,

pattern recognition, speech recognition et cetera) and of research.

Soon after the publication of the Backpropagation algorithm the mathematical ca-

pabilities of MLPs have also been studied. A MLP with only one hidden layer

of sigmoidal functions was proven to be a universal approximator for the class of

continuous functions [23], which means that, theoretically, any such function can

be learned arbitrarily well. Even more important for the fast growing popularity of

the MLP was its ability to generalise well from training, which has been reported

for many different tasks (see e.g. [9, 25, 69]). A comprehensive treatment of gener-

alisation by MLPs can be found in [89].

From the formal point of view the MLP according to (5.4) can be easily generalised

to a Clifford architecture by just replacing the real BCN0,0,0 with BCNs or SCNs

of higher dimension. That is the activation function remains unchanged in the

following sense. The same real–valued activation function g is applied to every

component of the multivector argument. This yields (using the same notations

as in Proposition 2.24) the following expression for the multivector output of a

Clifford neuron (based on a BCN) in the first layer

∑

I∈I

g((w⊗p,q,r x+ θ)I)eI . (5.7)

A further step of generalisation could be the use of a Clifford–valued activation

function. For example, the complex logistic function

z 7→
1

1+ exp(z)
(5.8)

could be used as complex–valued activation function. Clifford Multilayer Percep-

trons with Clifford–valued activation functions are studied in the subsequent chap-

ter. In this chapter we will deal exclusively with the case of Clifford MLPs with

real–valued activation functions. The straightforward definition of such a Clifford

neural network is given below.

Definition 5.2 (Clifford MLP with Real–Valued Activation Functions) A Clifford

MLP with real–valued activation functions (CMLP) computes a function from (Cp,q,r)n

to (Cp,q,r)m by passing the input through a set {1, · · · , L} of fully connected consecutive

layers. The output of the j-th neuron in the l-th layer reads

∑

I∈I

g(l)(
∑

k

(w
(l)

kj ⊗p,q,r x
(l−1)

k + θ
(l)

j)I)eI . (5.9)

73

5.1 BACKPROPAGATION ALGORITHM

Thereby x
(l−1)

k denotes the k-th input from the previous layer (x
(0)

k referring to the input of

the network itself) and g(l) denotes the real–valued activation function used for all neurons

in the l-th layer.

Using SCNs instead of BCNs gives a Spinor Clifford MLP.

Definition 5.3 (Spinor Clifford MLP with Real–Valued Activation Functions) A

Spinor Clifford MLP with real–valued activation functions (SCMLP) computes a function

from (Cp,q)n to (Cp,q)m by passing the input through a set {1, · · · , L} of fully connected

consecutive layers. The output of the j-th neuron in the l-th layer reads

∑

I∈I

g(l)(
∑

k

(w
(l)

kj ⊗p,q x
(l−1)

k ⊗p,q φ(wkj)
(l) + θ

(l)

j)I)eI , (5.10)

and φ refers to one of the three possible involutions (conjugation, reversion, and inversion).

The last layer of a (S)CMLP is called the output layer, all other layers are called

hidden ones3. The neurons of a (S)CMLP are also called nodes. Mostly, we will

deal with two–layer (S)CMLPs. Two–layer CMLPs will be abbreviated as MLPg1,g2p,q,r

and two–layer SCMLPs which are based on conjugation will be abbreviated as

SMLPg1,g2p,q , respectively. In both cases gi stands for the function in the i–th layer.

If no functions are given g1 = σ1 and g2 = id is assumed. The only parameter

controlling the complexity of a two–layer (S)CMLP is the number of hidden nodes,

h. The total number of real parameters of such a network equals (set r = 0 for a

SCMLP)

N(S)CMLP = 2p+q+r · h · (n + 1) + 2p+q+r ·m · (h+ 1) . (5.11)

The chapter now proceeds as follows. The first section deals with the derivation

of the Backpropagation algorithm for (S)CMLPs, followed by discussing univer-

sal approximation in the second one. In the last section experimental results are

reported.

5.1 Backpropagation Algorithm

Training a Multilayer Perceptron using Backpropagation basically means to per-

form steepest gradient descent on a given error function with respect to the weights.

Thereby the errors are propagated backwards through the network, thus the name

3Remember that we do not count the network input as layer.

74

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

is meant literally. For the existence of all involved partial derivatives it is sufficient

that all real–valued activation functions are differentiable everywhere. To actu-

ally apply the algorithm its is additionally necessary that those functions and their

derivatives are bounded. Complex Backpropagation has been first published in

[54], the quaternionic extension was introduced in [1].

Backpropagation for Clifford MLPs will be studied first. So define for the activation

of the j-th node in the l-th layer

s
(l)

j :=
∑

k

w
(l)

kj ⊗p,q,r x
(l)

k + θ
(l)

j , (5.12)

and for the output of that node4

y
(l)

j :=
∑

I∈I

g([s
(l)

j]I)eI . (5.13)

The standard sum–of–squares error function for the CMLP then reads

E :=
1

2
‖ d − y ‖2 , (5.14)

whereby y = (y
(L)

1 , y
(L)

2 , . . .) is the vector of the single outputs. Starting at the output

layer, we have to compute

∇E
w

(L)

kj

=
∑

I∈I

∂E

∂[w
(L)

kj]I
eI . (5.15)

Applying the chain rule to each term of (5.15) yields

∂E

∂[w
(L)

kj]I
=

∑

B∈I

∂E

∂[s
(L)

j]B

∂[s
(L)

j]B

∂[w
(L)

kj]I
. (5.16)

Therefore the computation can be split into a activation function part and a prop-

agation function part. For a single partial derivative of the error function with

respect to the node activation we obtain

∂E

∂[s
(L)

j]B
=

∂E

∂[yj]B

∂[yj]B

∂[s
(L)

j]B
= ([dj]B− [yj]B) (g(L))′([s

(L)

j]B) , (5.17)

and hence ∑

B∈I

∂E

∂[s
(L)

j]B
= ([dj]B− [yj]B) (g(L))′([s

(L)

j]B)eB =: δ
(L)

j . (5.18)

4To apply projection to a multivector with subindexes we write []I for better readability from

now on.

75

5.1 BACKPROPAGATION ALGORITHM

For many Clifford algebras we already know the remaining propagation function

term
∂[s

(L)

j
]B

∂[w
(L)

kj]I
from chapter 3 and thus (5.16) completely. For those algebras the up-

date rules for the weights of the output layer of the corresponding Clifford MLPs

are then as follows

C1,0,0 : ∆w
(L)

kj =
(3.24)

δ
(L)

j ⊗1,0,0 y
(L−1)

k (5.19)

C0,1,0 : ∆w
(L)

kj =
(3.19)

δ
(L)

j ⊗0,1,0 y
(L−1)

k (5.20)

C0,0,1 : ∆w
(L)

kj =
(3.28)

([δ
(L)

j]0[y
(L−1)

k]0+ [δ
(L)

j]1[y
(L−1)

k]1)e0+

([δ
(L)

j]1[y
(L−1)

k]0)e1 (5.21)

C0,2,0 : ∆w
(L)

kj =
(4.7)

δ
(L)

j ⊗0,2,0 y
(L−1)

k (5.22)

C1,1,0 : ∆w
(L)

kj =
(3.30)

δ
(L)

j ⊗1,1,0 (y
(L−1)

0 e0+ y
(L−1)

1 e1− y
(L−1)

2 e2+ y
(L−1)

12 e12) (5.23)

C2,0,0 : ∆w
(L)

kj =
(3.31)

δ
(L)

j ⊗2,0,0 (y
(L−1)

0 e0+ y
(L−1)

1 e1+ y
(L−1)

2 e2− y
(L−1)

12 e12) .(5.24)

For updating the weights in a hidden layer l we have to compute analogously to

(5.15)

∇E
w

(l)

kj

=
∑

I∈I

∂E

∂[w
(l)

kj]I
eI , (5.25)

yielding now

∂E

∂[w
(l)

kj]I
=

∑

B∈I

∂E

∂[s
(l)

j]B

∂[s
(l)

j]B

∂[w
(l)

kj]I
. (5.26)

Comparing (5.26) with (5.16) we see that the only5 remaining task is the compu-

tation of the new error terms ∂E

∂[s
(h)

j]B
, which now involves the error terms from the

(h+1)-th layer. This results in slightly more complicated expressions. For example,

for the Clifford MLP with underlying degenerate Clifford algebra C0,0,1 the hidden

layer error terms read

δ
(l)

j :=
∑

B∈I

∂E

∂[s
(l)

j]B
=

∂E

∂[s
(l)

j]0
+

∂E

∂[s
(l)

j]1
, (5.27a)

with

∂E

∂[s
(l)

j]0
=

(

(

∑

m

[w
(l)

jm]0[δ
(l+1)
m]0

)(

(g(l))′([s
(l)

j]m)
)

+
(

∑

m

[w
(l)

jm]1[δ
(l+1)
m]1

)(

(g(l))′([s
(l)

j]m)
)

)

e0 (5.27b)

5This is because all neurons have the same propagation function regardless of the layer.

76

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

and
∂E

∂[s
(l)

j]1
=
(

(

∑

m

[w
(l)

jm]0[δ
(l+1)
m]1

)(

(g(l))′([s
(l)

j]m)
)

)

e1) . (5.27c)

Finally, putting together (5.21) and (5.27a), the whole Backpropagation algorithm

for the MLP0,0,1 then reads

∆w
(l)

kj = ([δ
(l)

j]0[y
(l−1)

k]0+ [δ
(l)

j]1[y
(l−1)

k]1)e0+ ([δ
(l)

j]1[y
(l−1)

k]0)e1 (5.28a)

∆θ
(l)

j = δ
(l)

j , (5.28b)

with δ
(l)

j as in (5.18) if l = L, and δ
(l)

j as in (5.27a) otherwise. The simple update

rule (5.28b) for the bias terms comes from the fact that such nodes can be viewed

as having constant input 1. Hence (5.28b) holds for any (Spinor) Clifford MLP. The

complete Backpropagation algorithm for Clifford MLPs with arbitrary underlying

non–degenerate Clifford algebra is stated next.

Theorem 5.4 (Backpropagation for Non–Degenerate Clifford Algebras) For every

Clifford MLP defined over a non–degenerate Clifford algebra Cp,q there exists a unique in-

volution
∗ : Cp,q → Cp,q, x 7→ x∗ (5.29)

such that

∆w
(l)

kj = δ
(l)

j ⊗p,q (y
(l−1)

k)∗ (5.30a)

∆θ
(l)

j = δ
(l)

j , (5.30b)

with

δ
(l)

j =

{∑
I∈I (g(L))′ (dj− y

(L)

j)IeI if l = L,
∑
I∈I (g(l))′ (

∑
m(w

(l+1)

jm)∗ ⊗p,q δ
(l+1)
m)IeI otherwise.

(5.31)

The involution ∗ fulfills

[a⊗p,q b
∗]0 =< a, b > (5.32)

for all a, b ∈ Cp,q.

Proof: Setting ∗ = id for the real case C0,0 gives the ordinary Backpropagation. Us-

ing conjugation (∗ = ¯) for C0,1 and C0,2 gives complex Backpropagation and quater-

nionic Backpropagation, respectively. The involution ∗ is already determined by

any of the partial derivatives
∂[s

(l)

j]B

∂[w
(l)

kj]B
, particularly by

∂[s
(l)

j]0

∂[w
(l)

kj]0
. From that follows

that ∗ is the conjugation for every algebra C0,q. The product of any two fixed ba-

sis vectors in two Clifford algebras of the same dimensions differs only about the

sign (due to the basis construction (2.18)). This is then also true for the partial

77

5.1 BACKPROPAGATION ALGORITHM

derivatives
∂[s

(l)

j
]B

∂[w
(l)

kj]B
in the same setting. Hence there always exists an involution as

asserted.

2

Computing the uniquely determined involution fulfilling (5.32) for a particular

Clifford algebra is a rather simple task. This was done in table 5.1 for the four–

dimensional case and in table 5.2 for the eight–dimensional case, respectively. This

finishes our discussion of Backpropagation for Clifford MLPs.

e0 e1 e2 e12

CMLP2,0 + + + -

CMLP1,1 + + - +

CMLP0,2 + - - -

Table 5.1: The uniquely determined involutions fulfilling (5.32) for all non–

degenerate Clifford algebras of dimension four. The signs of the vector com-

ponents are printed in boldface in order to highlight the generic nature of the

computation.

e0 e1 e2 e3 e12 e13 e23 e123

CMLP3,0 + + + + - - - -

CMLP2,1 + + + - - + + +

CMLP1,2 + + - - + + - -

CMLP0,3 + - - - - - - +

Table 5.2: The uniquely determined involutions fulfilling (5.32) for all non–

degenerate Clifford algebras of dimension eight. The signs of the vector com-

ponents are printed in boldface in order to highlight the generic nature of the

computation.

The derivation of the Backpropagation algorithm for Spinor Clifford MLPs is some-

how more complicated. The update rule for a Spinor Clifford Neuron could be

simplified by using the update rule of the corresponding Basic Clifford Neuron

”twice” (section 4.1). This, however, was only possible because of the absence of

a nonlinear activation function in a SCN. Hence this ”trick” cannot be applied in

case of a Spinor Clifford MLP, which renders the formulation of one general Spinor

Backpropagation algorithm impossible. Also, any Backpropagation algorithm for

78

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

a particular SCMLP becomes rather lengthy. As an example, the update rule for

the Quaternionic SCMLP is given in appendix A.2.

5.2 Universal Approximation

Universal approximation is a rather abstract and complicated topic. Hence many

different opinions regarding its relevance can be found in the literature. It is surely

not the most important property of a neural network from the practical point of

view. However, it was and is of great importance for the development of the theory

of neural computation. Therefore, besides proving results on the function approx-

imation capabilities of Clifford MLPs, we also want to give an idea of the concept

itself in this section.

The concept of universal approximation first entered the neural network world in

1987 [36], where the following famous theorem by Kolmogorov has been used for

its motivation.

Theorem 5.5 (Kolmogorov [47]) Any continuous function of d variables from a closed

and bounded input domain can be exactly represented as a superposition of the form

y =

2d+1∑

j=1

g
(

d∑

i=1

λihj(xi)
)

, (5.33)

with hj being strictly monotonic functions and constants λi ∈ (0, 1).

The connection to neural computation is now as follows. Obviously, (5.33) can

be seen as a feed–forward single hidden layer neural network. Also, with Kol-

mogorov’s theorem in mind, one might ask for the representation capabilities of

single hidden layer MLPs. Of course, the similarities are only limited. A MLP uses

the same activation function, whereas (5.33) involves different functions. More-

over, Kolmogorov’s theorem states exact representation. This is only possibly due

to the unspecified nature of g, hence this function depends on the problem. On the

other hand, a MLP uses prior specified (i.e. problem independent) activation func-

tions. More on the relation between Kolmogorov’s theorem and neural networks

can be found in [48, 49].

Anyway, exact representation is too narrowed to capture the representation ca-

pabilities of neural networks. Therefore they are commonly studied in terms of

function approximation, which is a much broader framework. In fact, if one can

79

5.2 UNIVERSAL APPROXIMATION

approximate well, then one can expect good interpolation as well. The inverse,

in general, does not hold. The ability to approximate (theoretically) well, can be

formalised in the following way.

Definition 5.6 (Universal Approximator) Let F and L be two families of functions of a

normed space (X, p). Let d be the metric induced by the norm p. Then F is said to be an

universal approximator for L in the norm p if, for any l ∈ L and any ǫ > 0, there exists

some f ∈ F such that d(l, f) < ǫ. If additionally L = (X, p), then F is said to be dense in

(X, p).

The most relevant norms are the Lp norms (1 ≤ p < ∞)

‖f‖p =

(∫

X

|f(x)|pdx

)1/p

(5.34)

and the L∞ norm

‖f‖∞ = sup
x∈X

|f(x)| . (5.35)

These two types of norms then lead to two different kinds of function spaces.

Spaces of continuous functions, say C(Rn) (the space of all continuous functions

from Rn to R), are naturally equipped with the norm L∞ . The L∞ norm is very

strong, for example the following relation holds (see e.g. [75]).

Proposition 5.7 Let µ be a nonnegative finite Borel measure with compact support K.

Then C(K) is dense in Lp(K, µ) for any (1 ≤ p < ∞).

Hereby Lp(K, µ) refers to the space of all functions from K to R having finite Lp
norm.

Roughly speaking, the L∞ universe is continuous, whereas the Lp universe is dis-

continuous. This can also be seen from all the now classical papers on the universal

approximation properties of MLPs [23, 41, 91]6. In the following we review the re-

sults stated in [23].

Theorem 5.8 (Cybenko [23]) For any continuous function g fulfilling limx→−∞g(x)0 =

and limx→+∞g(x) = 1 finite sums of the form

S∞ =

N∑

j=1

λjg(y
T
j x+ θj) (5.36)

are dense in C([0, 1]n) with respect to L∞ , i.e. in the topology of uniform convergence on

compacta.

6Recent surveys on universal approximation are [65, 79].

80

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

In fact, density already holds for any compact domain and any two different squash-

ing values a 6= b [53].

Corollary 5.9 For any continuous sigmoidal function σ the MLPσ,id0,0 is a universal ap-

proximator.

For discontinuous functions the following holds.

Theorem 5.10 (Cybenko [23]) Let g be a bounded measurable function which also fulfils

limx→−∞g(x) = 0 and limx→+∞g(x) = 1. Then finite sums of the form

S1 =

N∑

j=1

λjg(y
T
j x + θj) (5.37)

are dense in L1([0, 1]n).

Discontinuous activation functions are merely of theoretical interest. First, con-

tinuous activation functions are a much more naturally choice for many function

approximation tasks arising in applications. Secondly, there is a lack of good train-

ing algorithms for discontinuous activation functions.

Here we will only consider continuous activation functions and hence approxima-

tion in the L∞norm. Our next goal is to state universal approximation for Clifford

MLPs by generalising Theorem 5.8. Elements of Clifford Analysis needed for it are

provided in appendix A.3.

The original proof of Theorem 5.8 consists of two parts. The first is to prove that

the activation function has the property of being discriminatory. The generalized

Clifford notion thereof is as follows.

Definition 5.11 A function g : Cp,q → Cp,q is said to be discriminatory if

∫

X

g(w⊗p,q x+ θ) dµ = 0 (5.38)

implies that µ = 0 for any finite regular Clifford measure µ with proper Clifford module X

as support.

The second part then consists of utilising function analysis arguments, among them

the Hahn–Banach theorem. This part can be generalised to prove the following

statement.

81

5.2 UNIVERSAL APPROXIMATION

Theorem 5.12 TheMLPg,idp,q is a universal approximator for the class of continuous func-

tions C(Cnp,q, Cp,q) in the L∞ norm (i.e. in the topology of uniform convergence on com-

pacta), if g is continuous and discriminatory. In other words, finite sums of the form

F :=

N∑

j=1

λj
∑

I∈I

g(
∑

k

(wkj⊗p,q xk+ θj)I)eI (5.39)

are dense (w.r.t. L∞) in the space C(Cnp,q, Cp,q) for any discriminatory continuous activa-

tion function g.

Proof: Let X be a proper Cp,q–module. Suppose F is not dense in C(Cnp,q, Cp,q), i.e.

its closure F is not the whole space C(Cnp,q, Cp,q). Then the Clifford Hahn–Banach

theorem (Theorem A.6) guarantees the existence of a bounded linear functional

T : F → Cp,q, such that T(F) = T(F) and T 6= 0. Furthermore, by the Clifford Riesz

representation theorem (Theorem A.7) there then exists a unique Clifford measure

µ on X such that

T(g) =

∫

X

gdµ . (5.40)

Since g is discriminatory it follows that µ(X) = 0. That is (5.40) vanishes on X. This

is only possible if T = 0, which, however, is a contradiction. Hence our assumption

is false, and F is dense in C(Cnp,q, Cp,q). 2

The logistic function σ1 is discriminatory for C0,1 [2] and C0,2 [1]. Proving this for

an arbritrary non–degenerate Clifford algebra Cp,q can only be sketched.

Theorem 5.13 For any non–degenerate Clifford algebra Cp,q the function

∑

I∈I

σ1([w⊗p,q x + θ])IeI (5.41)

is discriminatory.

Proof (Sketch): Let µ be a finite regular Clifford measure on [0, 1]2
p+q

such that

σ1(w⊗p,q x + θ)dµ = 0 , (5.42)

for some w, x ∈ (Cp,q)n, θ ∈ Cp,q. Let us then consider the point–wise limit

φi(w⊗p,q x + θ) := lim
λ→∞

σ1(λ[w⊗p,q x + θ]i) , (5.43)

with λ ∈ R. This limit evaluates to

φi(w⊗p,q x+ θ) =

{
1 : if [w⊗p,q x + θ]i > 0

0 : if [w⊗p,q x + θ]i ≤ 0
(5.44)

82

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

With the Lesbesgue-dominated convergence theorem of Clifford analysis follows

0 =

∫

[0,1]2
p+q

σ1(w⊗p,q x + θ)dµ

=

∫

[0,1]2
p+q

(
∑

I∈I

φI(w⊗p,q x + θ)eI)dµ

= lim
λ→∞

σ1(λ[w⊗p,q x+ θ]i) .

For all index vectors j ∈ {0, 1}2
p+q

define the following sets

Hj :=
⋂

i∈{1,...,2p+q},j[i]=1

{[w⊗p,qx+θ]i > 0}∩
⋂

i∈{1,...,2p+q},j[i]=0

{[w⊗p,qx+θ]i ≤ 0} . (5.45)

The half-spaces Hj yield a partition of the interval [0, 1]2
p+q

. Therefore we have

with (5.44), (5.45)

µ(∪Hj) = 0 . (5.46)

Unfortunately, no further assumptions on µ can be made. That means one has to

check (5.46) for every single j ∈ {0, 1}2
p+q

. By Theorem 5.8 we know that

µ(H10...0) = 0 . (5.47)

This can be extended with some effort to show

µ({Hj |

2p+q∑

i=1

j[i] = 1}) = 0 . (5.48)

2

A (Spinor) Clifford MLP is a universal approximator if and only if universal ap-

proximation holds for any of its component functions (i.e. all projections []i are

dense in R). The ”only if”–direction will be used in section 5.3. to show that the

Dual Clifford MLP is not a universal approximator. In [11] we used that direction

together with the universal approximation property of the Complex MLP to show

that universal approximation also holds for the Hyperbolic MLP. The next result for

the Quaternionic Spinor MLP also relies on this component–wise argumentation.

Theorem 5.14 Let X be a compact subset of Hn. Then there exists a natural number N

such that the space
{

N∑

j=1

λj σ1((

n∑

i=1

wi⊗ 0,2 xi⊗ 0,2 w̄i) + θj)

}

(5.49)

is dense in the space of all continuous functions from X to H (w.r.t. L∞).

83

5.3 EXPERIMENTAL RESULTS

Proof: In [1] the MLPσ1,id0,2 was proven to be a universal approximator. Thus we

only have to show that any projection [w ⊗ 0,2 x]i can be written as a finite sum of

spinor multiplications wj⊗ 0,2 xj⊗ 0,2 w̄j. Since H is a skew field there always exists

u ∈ H such that for all i ∈ {0, . . . , 3}

[w⊗ 0,2 x]i = [w⊗ 0,2 x⊗ 0,2 w̄ + u⊗ 0,2 x⊗ 0,2 ū]i . (5.50)

2

Universal approximation states nothing about the quality of approximation (i.e.

approximation rates). This topic beyond our scope has been studied for the real

MLP in [6, 42].

As a final remark, notice that if a (S)CMLP is universal approximator then also any

network which is isomorphic to it.

5.3 Experimental Results

The first experiments reported for a Complex CMLP may be found in [7], in which

the XOR–problem was studied. Function approximation by Complex CMLPs in

a wider sense was first studied by Arena et al. in [2]. The Complex CMLP was

compared with the ordinary MLP on a couple of 2D function approximation tasks.

We will use the same problem set but consider, of course, the Hyperbolic CMLP

and the Dual CMLP as well. In a later publication [1] Arena et al. tested their

Quaternionic CMLP on the task of predicting the Lorentz Attractor [55]. This is

actually a 3–dimensional problem, which renders it a perfect task for testing Spinor

architectures.

5.3.1 2D Function Approximation

The following set of complex functions for the experimental evaluation of the Com-

plex CMLP have been proposed in [2].

f(x+ iy) = exp(iy)(1− x2− y2) (5.51)

g(x+ iy) = x2+ y2+ 2ixy (5.52)

h(x+ iy) = sin(x) cosh(y) + i cos(x) sinh(y) (5.53)

84

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

For every function φ ∈ {f, g, h} let φ1 denote the real part of the function and φ2
denote the imaginary part of the function, respectively. When speaking of training

and test data, however, it is more precise to speak of 2D vector data rather than of

complex numbers. In what follows all of the above functions are studied using the

same experimental setup as reported in [2] if not mentioned otherwise.

We start with the function f. In order to perform its approximation 500 points were

randomly drawn from [0, 1]2 with uniform distribution. From that set 200 points

were used for training while the remaining 300 points were kept for testing. How-

ever, as can be seen from figure 5.2, the domain [0, 1]2 is not quite characteristic for

the function f. The second component function f2 shows a nearly linear behaviour

in [0, 1]2.

−2
0

2

−2

0

2
−5

0

5

−2
0

2

−2

0

2
−5

0

5

0
0.5

1

0

0.5

1
0

1

2

0
0.5

1

0

0.5

1
0

1

2

Figure 5.2: Plots of the function f (5.51). f1 in [−2, 2]2 (top left), f2 in [−2, 2]2

(top right), f1 in [0, 1]2 (bottom left), and f2 in [0, 1]2 (bottom right).

The networks were trained over 1100 iterations using online learning with learning

rate 0.1 and momentum term 0.01 . All results are summarised in table 5.3, which

shows mean values over 100 runs for each setup for the experiments performed by

us. No statement about the number of runs is made in [2].

For determining the size of the networks, i.e. the number of hidden nodes, the

85

5.3 EXPERIMENTAL RESULTS

Network Hidden Nodes Error [2] MSE Training MSE Test Parameters

4 0.1260 0.0005 0.0005 22

MLP0,0,0 5 0.0791 0.0004 0.0004 27

6 0.1289 0.0003 0.0003 32

2 — 0.0088 0.0095 14
MLP1,0,0

3 — 0.0009 0.0009 20

2 0.4240 0.0019 0.0019 14
MLP0,1,0

3 0.0723 0.0003 0.0003 20

2 — 0.0662 0.0568 14
MLP0,0,1

3 — 0.0739 0.0709 20

Table 5.3: Results for the approximation of f.

0

5

10

15

x 10
−4

M
S

E

MLP
0,0,0

 MLP
1,0,0

 MLP
0,1,0

Figure 5.3: Box plot over 100 runs for the MLP0,0,0 with 4 hidden nodes, the

MLP1,0,0with 3 hidden nodes and the MLP0,1,0with 3 hidden nodes.

following strategy was applied. The MLP1,0,0was trained first with 2 and 3 hidden

neurons, respectively. Followed by the other Clifford MLPs in the same way and

then the real MLP0,0,0 was trained with a growing number of hidden nodes until

the training performance of the MLP1,0,0 was reached. Assuming that the SSE is

reported in [2], the obtained results are roughly in accordance. With the notable

exception that no overfitting occurred in our experiments with the MLP0,0,0 with

6 hidden nodes. The training of the MLP0,0,1 did not converge to a reasonable

error7. For 2 and 3 hidden nodes the MLP0,1,0 totally outperformed the MLP1,0,0 in

each case. The training performance of the MLP0,1,0 could not be met by the real

MLP0,0,0 with 4 hidden nodes (roughly the same number of parameters), however

it outperformed the MLP1,0,0. The detailed training errors of all the networks with

the mentioned setup are shown as box plot in figure 5.3.

7Therefore, in the following discussion it will be omitted.

86

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

In all cases only a small number of outliers occurred, however, the MLP1,0,0 showed

a rather big variation over the runs. To meet the performance of the MLP0,1,0 the

MLP0,0,0 needed 6 hidden nodes (approximately 50% more parameters). Also, the

MLP0,0,0 took more time for converging as can be seen from figure 5.4.

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

Iterations

M
S

E

MLP
0,0,0

MLP
1,0,0

MLP
0,1,0

 200 400 600 800 1000
0

2

4

6

8x 10
−3

Iterations

M
S

E

MLP
0,0,0

MLP
1,0,0

MLP
0,1,0

Figure 5.4: Learning curve for a typical run of the MLP0,0,0 with 6 hidden

nodes, the MLP1,0,0with 3 hidden nodes and the MLP0,1,0with 3 hidden nodes.

Since nothing about the generalisation performance can be concluded from the test

errors (table 5.3) additional experiments with the above configurations on noisy

data have been performed. As can be seen from the result in figure 5.5 the MLP0,1,0
outperformed the MLP0,0,0 in terms of generalization.

0.01 0.02 0.03 0.04
0

0.002

0.004

0.006

0.008

0.01

σ2

M
S

E

MLP
0,0,0

MLP
0,1,0

0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

2.5x 10
−3

σ2

M
S

E

MLP
0,0,0

MLP
0,1,0

Figure 5.5: Training error (left) and test error (right) of the MLP0,0,0 with 6

hidden nodes and the MLP0,1,0with 3 hidden nodes on noisy data.

To summarise all the results, the function f was best approximated by the MLP0,1,0
both in terms of generalisation and efficiency. This was somehow predictable from

its equation (5.51). However, the experiments have been performed on rather not

87

5.3 EXPERIMENTAL RESULTS

characteristic domain of the function. Fitting a wrong model to the data (MLP1,0,0)

resulted in the worst (but by no means critical) performance.

With the results for the approximation of the function f in mind the following

prediction for the approximation of the function g (5.52) seems reasonable. All

networks should show more or less the same good performance (excluding the

MLP0,0,1).

For the approximation of the function g 300 points were randomly drawn from

[0, 1]2 with uniform distribution. From which then 100 points were selected for

training while the remaining 200 points were kept for testing. The function g is

plotted in figure 5.6. Of course, [0, 1]2 is not a domain which reveals the radial

symmetry of the component function g1 (parabola).

Figure 5.6: Plots of the function g (5.52). g1 in [−2, 2]2 (top left), g2 in [−2, 2]2

(top right), g1 in [0, 1]2 (bottom left), and g2 in [0, 1]2 (bottom right).

All networks were trained over 1100 iterations using again online learning with

and momentum term 0.01. In [2] the learning rate was 0.1. Here, however, the

learning rate was set to 0.2 since giving much better results for the MLP0,0,0. Again,

88

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

Network Hidden Nodes Error [2] MSE Training MSE Test Parameters

2 1.5585 0.0095 0.0094 12

MLP0,0,0 3 — 0.0002 0.0002 17

4 0.0280 0.0001 0.0001 22

2 — 0.0109 0.0101 14

MLP1,0,0 3 — 0.0002 0.0002 20

4 — 0.0001 0.0001 26

2 0.4240 0.0002 0.0002 14

MLP0,1,0 3 0.0723 0.0001 0.0001 20

4 0.0770 0.0000 0.0001 26

2 — 0.0963 0.0904 14
MLP0,0,1

3 — 0.0925 0.0909 20

Table 5.4: Results for the approximation of g.

0

5

10

15

x 10
−4

M
S

E

MLP
0,0,0

 MLP
1,0,0

 MLP
0,1,0

Figure 5.7: Box plot over 100 runs for the MLP0,0,0 with 4 hidden nodes, the

MLP1,0,0with 3 hidden nodes and the MLP0,1,0with 3 hidden nodes.

all of our results in table 5.4 are mean values from 100 runs.

The task turned out to be pretty simple for all networks with the exception of the

MLP0,0,1. Only considering the results of our experiments all remaining networks

did indeed perform equally well. The slight differences between the Clifford MLPs

and the real MLP0,0,0 are mostly due to the different numbers of parameters, or,

are simply not significant. The box plots in figure 5.7 show an example how the

performance of the MLP1,0,0 with 3 hidden nodes was ”ruined” by a few outliers.

The learning curves provided by figure 5.8 show that both the MLP0,0,0 and the

MLP1,0,0 reached a plateau for the specific run but both finally escaped successfully.

Notice that plateaus are not uncommon for low error levels.

89

5.3 EXPERIMENTAL RESULTS

0.01 0.02 0.03 0.04
0

0.002

0.004

0.006

0.008

0.01

σ2

M
S

E

MLP
0,0,0

MLP
0,1,0

0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

2.5x 10
−3

σ2

M
S

E

MLP
0,0,0

MLP
0,1,0

Figure 5.9: Training error (left) and test error (right) of the MLP0,0,0 with 4

hidden nodes and the MLP0,1,0with 3 hidden nodes on noisy data.

0 200 400 600 800
0

0.05

0.1

0.15

0.2

Iterations

M
S

E

MLP
0,0,0

MLP
1,0,0

MLP
0,1,0

Figure 5.8: Learning curve for a typical run of the MLP0,0,0 with 4 hidden

nodes, the MLP1,0,0with 3 hidden nodes and the MLP0,1,0with 3 hidden nodes.

Even on noisy data, for which some results are given in figure 5.9, no significant

differences could be observed 8.

All in all a summary for the approximation of g is quite easy. All networks per-

formed as predicted equally well (excluding the MLP0,0,1 as usual).

The last function h is by far the most interesting. This is because it is not such much

a complex function but more a hyperbolical one. Actually, it is the sine function for

hyperbolic numbers9.

For the approximation of h 100 points were randomly drawn from [0, 1]2 with uni-

form distribution to make up the training set. Contrary to [2], 500 points were

8The value for the highest level of noise in the test error of the MLP1,0,0 is not significant.
9It is also a complex analytical function, which is why it was chosen in [2]. This aspect will be

discussed in more detail in the next chapter.

90

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

−2
0

2

−2

0

2
−5

0

5

−2
0

2

−2

0

2
−5

0

5

0
0.5

1

0

0.5

1
0

1

2

0
0.5

1

0

0.5

1
0

1

2

Figure 5.10: Plots of the function h (5.53). h1 in [−2, 2]2 (top left), h2 in [−2, 2]2

(top right), h1 in [0, 1]2 (bottom left), and h2 in [0, 1]2 (bottom right).

randomly drawn from [−2, 2]2 with uniform distribution for building up the test

set. That actually changes the task from interpolation to extrapolation. Having

identified g as the hyperbolic sine the MLP1,0,0 should be able to outperform the

other networks in terms of extrapolation. As can be seen from the plots of the

training and test data in figure 5.10 this task is rather ambitious.

All networks were trained over 1100 iterations using online learning with learning

rate 0.1 and momentum term 0.01. As always 100 runs were performed. Training

was started with the real MLP0,0,0, which already showed a good training perfor-

mance for 4 hidden notes. All results are printed in table 5.5.

Note that our training results do not correspond in any sense with the results re-

ported in [2]. The discussion of the results of the MLP0,0,1 will be postponed. With

2 hidden nodes both the MLP1,0,0 and the MLP0,1,0 outperformed the MLP0,0,0 with

3 hidden nodes having already more parameters. Not only the mean value but

also the box plots (figure 5.11) for the MLP1,0,0 and the MLP0,1,0 turned out to be

identical.

91

5.3 EXPERIMENTAL RESULTS

Network Hidden Nodes Error [2] MSE Training MSE Test Parameters

2 0.2996 0.0016 1.1056 12

MLP0,0,0 3 — 0.0006 1.0214 17

4 0.0457 0.0002 0.9462 22

1 — 0.0047 1.1054 8
MLP1,0,0

2 — 0.0002 0.7534 14

1 0.3482 0.0021 1.1278 8
MLP0,1,0

2 0.1586 0.0002 1.0806 14

1 — 0.0082 0.8784 8
MLP0,0,1

2 — 0.0071 0.8457 14

Table 5.5: Results for the approximation of h.

2

4

6

8

10

12

14

x 10
−4

M
S

E

MLP
0,0,0

 MLP
1,0,0

 MLP
0,1,0

Figure 5.11: Box plot over 100 runs for the MLP0,0,0 with 3 hidden nodes, the

MLP1,0,0with 2 hidden nodes and the MLP0,1,0with 2 hidden nodes.

Using 4 hidden nodes the MLP0,0,0 reached the same training performance as the

two Clifford MLPs. Surprisingly, figure 5.12 reveals that the MLP1,0,0 needed the

highest number of iterations for convergence.

Looking at the test errors the MLP1,0,0 totally outperformed the other networks.

Also the largest drop in the test error occurred for the MLP1,0,0 when changing

from one hidden node to two hidden nodes. The test set output of all networks

(except that of the MLP0,0,1) is given in figure 5.13. Obviously, all networks extrap-

olate better in [0, 2]2 than in [−2, 0]2, just because the first is closer to the training

domain [0, 1]2 than the latter. Extrapolation by the MLP0,0,0 is rather bad (compared

to the other two networks), particularly for the second component function h2. Al-

though the outputs of the MLP1,0,0 and the MLP0,1,0 look roughly similar at first

sight, there are notable differences. For the first component function h1 (left column

of figure 5.13) the MLP1,0,0 performed better than the MLP0,1,0 in [−2,+1]×[+1,+2].

92

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Iterations

M
S

E

MLP
0,0,0

MLP
1,0,0

MLP
0,1,0

 100 200 300 400 500
0

0.5

1

1.5

2

2.5x 10
−3

Iterations

M
S

E

MLP
0,0,0

MLP
1,0,0

MLP
0,1,0

Figure 5.12: Learning curve for a typical run of the MLP0,0,0 with 4 hidden

nodes, the MLP1,0,0with 2 hidden nodes and the MLP0,1,0with 2 hidden nodes.

Regarding the second component function h2, the extrapolation in [−2, 0]2 is better

done by the MLP1,0,0 than by the MLP0,1,0 (relatively speaking). Comparing the

results with the true values in figure 5.10 (top row) the overall extrapolation on

the whole test domain [−2, 2]2 is not that good. Nevertheless, the MLP1,0,0 did the

best job, because of processing the most right model for the data. The MLP0,1,0
looks second best, however, its test error is actually larger than that of the MLP0,0,0
(table 5.5). Also from that table, the actual second best test performance (in pure

numerical terms) was achieved by the MLP0,0,1.

The learned functions of the MLP0,0,1 for all the considered test functions are plot-

ted in figure 5.14. The good test error result of the MLP0,0,1 for the function h is

only due to its good extrapolation of the second component function h2. Neverthe-

less, the MLP0,0,1 is not able to approximate the function h arbitrarily well, nor any

of the other test functions. That becomes ultimately clear when looking at the first

component functions. Here the computational power of the MLP0,0,1 is limited to

functions of the type

F(x, y) = F(x) , (5.54)

or, equivalently,

F(·, y) = const . (5.55)

This is a direct consequence of the degenerate nature of the underlying geometric

product. As outlined in section 5.2, a Clifford MLP is a universal approximator if

and only if universal approximation holds for all the component functions. Univer-

sal approximation does not hold for the first component function of the MLP0,0,1,

hence the MLP0,0,1 is not a universal approximator.

93

5.3 EXPERIMENTAL RESULTS

−2
0

2

−2

0

2
−5

0

5

−2
0

2

−2

0

2
−5

0

5

−2
0

2

−2

0

2
−5

0

5

−2
0

2

−2

0

2
−5

0

5

−2
0

2

−2

0

2
−5

0

5

−2
0

2

−2

0

2
−5

0

5

Figure 5.13: Extrapolation of the test functions h by the MLP0,0,0 with 4 hid-

den nodes (top row), the MLP1,0,0 with 2 hidden nodes (middle row) and the

MLP0,1,0with 2 hidden nodes (bottom row).

94

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

−2
0

2

−2

0

2
−5

0

5

−2
0

2

−2

0

2
−5

0

5

−2
0

2

−2

0

2

0

5

10

−2
0

2

−2

0

2

−10

0

10

−2
0

2

−2

0

2
−5

0

5

−2
0

2

−2

0

2
−5

0

5

Figure 5.14: Learned function by the MLP0,0,1 for the approximation of f (top

row), the approximation of g (middle row) and the approximation of h (bottom

row).

While the Dual CMLP dropped out of the competition, the Complex CMLP and

the Hyperbolic CMLP are both powerful networks. In fact, model–based effects

could be well observed in the conducted experiments. Of course, which network

to chose in advance for a particular task (with unknown characteristics) seems still

an open question. However, there is some kind of answer in our framework. The

algebra C1,1 contains both the complex and the hyperbolic numbers. Therefore a

CMLP1,1 cannot perform worse than the Complex or Hyperbolic CMLP if given the

95

5.3 EXPERIMENTAL RESULTS

same number of hidden nodes. The drawback is of course the that way increased

number of (real) parameters.

5.3.2 Prediction of the Lorenz Attractor

For testing the Quaternionic MLP a series of experiments on short–term prediction

of chaotic time series have been originally performed in [1]. Among them being the

prediction of the Lorenz attractor [55] which is a 3–dimensional problem. Hence

a Quaternionic SCMLP seems to be a more natural choice, and results comparing

both architectures have been reported by us in [13]. In the following this is redone

and extended to a broader basis of network architectures.

The Lorenz attractor results from integrating the following three coupled nonlinear

differential equations

ẋ = σ(x− y) (5.56a)

ẏ = xz+ rx− y (5.56b)

ż = xy− bz , (5.56c)

with global parameter values σ := 10, r := 8
3

and b = 28.

For the experiments (x0, y0, z0) = (0, 1, 0) was used as initial state and the time in-

terval (12s,17s) was sampled with sampling rate ∆t = 0.005 yielding 1000 points10.

From that the first 250 points were used as training set and the remaining 750 − τ

points as test set. The prediction step size τ varied from 4 to 8 steps. Yielding

for τ = 8 the first training pattern {(x0, y0, z0), (x8, y8, z8)} and the last test pat-

tern {(x992, y992, z992), (x1000, y1000, z1000)} All generated points separated into train-

ing and test set are shown in figure 5.15.

10No information about the initial state, the sampling interval and the sampling rate are provided

in [1]. Hence no comparison with the results reported therein is possible.

96

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

0.3
0.4

0.5
0.6

0.7 0

0.5

1
0.6

0.7

0.8

0.9

1

0.3
0.4

0.5
0.6

0.7 0

0.5

1
0.6

0.7

0.8

0.9

1

Figure 5.15: Lorenz attractor training set (left) and test set (right).

The following five architectures and representations have been chosen for a com-

parison. The MLP0,0,0, the Quaternionic MLP0,2,0, the Quaternionic Spinor MLP0,2,0
and the MLP1,1,0. For all the aforementioned Clifford architectures the data was

presented as {(0, xi, yi, zi), (0, xi+τ, yi+τ, zi+τ)}, that is the scalar component was al-

ways set to zero. Additionally, for the Quaternionic Spinor MLP0,2,0 the data pre-

sentation {(xi, yi, zi, 0), (xi+τ, yi+τ, zi+τ, 0)} was also considered.

Training was always performed as online learning with learning rate η = 0.1 over

10000 iterations. The following strategy was applied. The SMLP0,2,0 was trained

first for the smallest prediction step τ = 4. Stable and best performance was

achieved using 4 hidden nodes, corresponding to 52 real parameters. The same

number of hidden nodes was then also used for the other Clifford MLPs. For the

MLP0,0,0 8 hidden nodes were chosen, corresponding to 59 real parameters and

thus roughly meeting the parameter complexity of the Clifford MLPs for fair com-

parison. The number of hidden nodes was fixed and experiments increasing the

prediction step size up to τ = 8 followed. The aforementioned setup of learning

parameters turned out to be also stable and optimal in that cases. All results aver-

aged over 20 runs are reported in table 5.6.

97

5.3 EXPERIMENTAL RESULTS

Prediction steps (τ)
Network Phase

4 5 6 7 8

Training 0.0003 0.0005 0.0012 0.0014 0.0022
MLP0,0,0

Test 0.0005 0.0009 0.0019 0.0022 0.0032

MLP1,1,0 Training 0.0002 0.0004 0.0005 0.0014 0.0037

(0, x, y, z) Test 0.0004 0.0007 0.0012 0.0024 0.0055

MLP0,2,0 Training 0.0002 0.0003 0.0006 0.0008 0.0012

(0, x, y, z) Test 0.0004 0.0005 0.0011 0.0012 0.0020

SMLP0,2,0 Training 0.0002 0.0002 0.0003 0.0006 0.0007

(0, x, y, z) Test 0.0003 0.0004 0.0004 0.0011 0.0012

SMLP0,2,0 Training 0.0002 0.0003 0.0006 0.0009 0.0033

(x, y, z, 0) Test 0.0005 0.0005 0.0011 0.0017 0.0051

Table 5.6: Results for the prediction of the Lorenz attractor. See text for details.

For the smallest prediction size all networks performed roughly similar, with the

SMLP0,2,0(0, x, y, z) being slightly best on the test set. From step size τ = 6 on the

SMLP0,2,0(0, x, y, z) outperformed all the other networks. For τ = 8 the generalisa-

tion of the SMLP0,2,0(0, x, y, z) is four times better than that of the SMLP0,2,0(x, y, z, 0)

and that of the MLP1,1,0(0, x, y, z). This demonstrates the canonical role of the vec-

tor representation for the Quaternionic Spinor MLP and the importance of repre-

sentation issues in the Clifford neural framework in general. The overall second

best performance was achieved by the MLP0,2,0(0, x, y, z), which also uses vector

representation, although not in connection with spinors. The real–valued MLP0,0,0
was always among the worst for most prediction step sizes, with the notable ex-

ception for τ = 8. In that case it outperformed at least the SMLP0,2,0(x, y, z, 0) and

the MLP1,1,0(0, x, y, z).

For evaluating the prediction accuracy in time series problems correlation is often

used as performance index [26]. A correlation value close to 1 means that the τ-step

ahead zero–mean prediction is close to the actual series for a particular state vari-

able on the test set. Performance evaluated in these terms is given in figure 5.16 for

all single state variables, and additionally, in terms of overall correlation computed

as the average over the single correlations.

98

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

4 5 6 7 8
0.9

0.92

0.94

0.96

0.98

1

Prediction steps (τ)

C
or

re
la

tio
n

(o
ve

ra
ll)

MLP
0,0,0

MLP
1,1,0

 (0,x,y,z)
MLP

0,2,0
 (0,x,y,z)

SMLP
0,2,0

(0,x,y,z)
SMLP

0,2,0
(x,y,z,0)

4 5 6 7 8
0.96

0.97

0.98

0.99

1

Prediction steps (τ)

C
or

re
la

tio
n

(x
)

MLP
0,0,0

MLP
1,1,0

 (0,x,y,z)
MLP

0,2,0
 (0,x,y,z)

SMLP
0,2,0

(0,x,y,z)
SMLP

0,2,0
(x,y,z,0)

4 5 6 7 8
0.75

0.8

0.85

0.9

0.95

1

Prediction steps (τ)

C
or

re
la

tio
n

(y
)

MLP
0,0,0

MLP
1,1,0

 (0,x,y,z)
MLP

0,2,0
 (0,x,y,z)

SMLP
0,2,0

(0,x,y,z)
SMLP

0,2,0
(x,y,z,0)

4 5 6 7 8
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Prediction steps (τ)

C
or

re
la

tio
n

(z
)

MLP
0,0,0

MLP
1,1,0

 (0,x,y,z)
MLP

0,2,0
 (0,x,y,z)

SMLP
0,2,0

(0,x,y,z)
SMLP

0,2,0
(x,y,z,0)

Figure 5.16: Plot of the overall correlation (top left), of the first state variable

correlation (top right), the second state variable correlation (bottom left) and

the third state variable correlation (bottom right). See text for details.

The results based on correlation performance are in accordance to that reported in

table 5.6. All networks start with a roughly equal performance for small prediction

sizes τ = 4 and τ = 5. From step size τ = 6 the trend becomes visibly quite

nice. The gap between the MLP0,2,0(0, x, y, z) and the SMLP0,2,0(0, x, y, z) on the one

hand and the other three networks on the other hand gets bigger with increasing

prediction size. The performance of the SMLP0,2,0(0, x, y, z) is clearly better than

that of the MLP0,2,0(0, x, y, z) for τ = 8 and already slightly better for τ = 7. The

overall trend is quite stable and there is no indication that it would not continue in

the same way if τwould be increased further.

The performance of the SMLP0,2,0(0, x, y, z) on the training set only can be achieved

by the other networks if the number of hidden nodes is increased. Out of those we

will only consider the consequences in terms of generalisation for the real MLP0,0,0
since the best model–based Clifford architecture has already be identified. The

number of 13 hidden nodes was necessary for the MLP0,0,0 to achieve nearly the

same performance as the SMLP0,2,0(0, x, y, z). This is reported in table 5.7 together

with the results of both architectures from training with data corrupted by mean–

99

5.3 EXPERIMENTAL RESULTS

free gaussian noise of different variance. The performance of the MLP0,0,0 in the

presence of noise was clearly worse than that of the SMLP0,2,0(0, x, y, z). In fact,

the correlation obtained by the SMLP0,2,0(0, x, y, z) for a noise level of σ2 = 0.10 is

better than that of the MLP0,0,0 for a noise level of σ2 = 0.05.

Network Noise (σ2) MSE Training MSE Test Correlation Parameters

0.00 0.0007 0.0012 0.966

MLP0,0,0 0.05 0.0473 0.0488 0.939 108

0.10 0.0610 0.0918 0.917

0.00 0.0007 0.0012 0.965

SMLP0,2,0 0.05 0.0113 0.0131 0.958 72

0.10 0.0287 0.0346 0.943

Table 5.7: Results for the prediction of the Lorenz attractor (τ = 8) of the

MLP0,0,0 with 13 hidden nodes and the SMLP0,2,0(0, x, y, z) with 4 hidden

nodes on different noise levels (σ).

Thus giving the MLP0,0,0 50% more parameters only worked out in a noise–free

setup, which can be also seen from figure 5.17 showing the actual outputs of both

networks for the different levels of noise.

100

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

0.3
0.4

0.5
0.6

0.7 0

0.5

1
0.6

0.7

0.8

0.9

1

0.3
0.4

0.5
0.6

0.7 0

0.5

1
0.6

0.7

0.8

0.9

1

0.3
0.4

0.5
0.6

0.7 0

0.5

1
0.6

0.7

0.8

0.9

1

0.3
0.4

0.5
0.6

0.7 0

0.5

1
0.6

0.7

0.8

0.9

1

0.3
0.4

0.5
0.6

0.7 0

0.5

1
0.6

0.7

0.8

0.9

1

Figure 5.17: Test set output for the prediction of the Lorenz attractor (τ = 8)

of the MLP0,0,0with 13 hidden nodes (left column) and the SMLP0,2,0(0, x, y, z)

with 4 hidden nodes (right column) on different noise levels (σ = 0.05 (top

row) and σ = 0.10 (center row)). The bottom row shows the expected output

again in order to simplify a comparison.

The SMLP0,2,0(0, x, y, z) outperformed the other networks because of being the only

one11 using a representation forcing an intrinsically 3–dimensional processing of

the data.

Although we did consider enough architectures to come up with this and other

11This follows from Theorem (4.10) and Proposition (4.12).

101

5.4 SUMMARY OF CHAPTER 5

important conclusions the picture is not fully completed yet. Of course, it would

be also interesting to extend the experiments to Clifford MLPs in eight dimen-

sions. Theoretically, in terms of training error, the SMLP 0,3,0(0, x, y, z, 0, 0, 0) can

not perform worse than the SMLP0,2,0(0, x, y, z) assuming the same number of hid-

den nodes. This is just because the former can mimic the computation of the latter

by setting the ”unnecessarily” weights to zero. Exactly the same argument holds

for the MLP0,3,0(0, x, y, z, 0, 0, 0) with respect to the MLP0,2,0(0, x, y, z).

With 4 hidden nodes the SMLP0,3,0(0, x, y, z, 0, 0, 0) achieved exactly the same cor-

relation of 0.966 as the SMLP0,2(0, x, y, z) (see table 5.7 again). However, with twice

as much the number of real parameters, and, in a totally different way. This can

be seen by comparing the single correlations values (0.992, 0.931, 0.976) obtained

for the SMLP0,3,0(0, x, y, z, 0, 0, 0) with that of the SMLP0,2(0, x, y, z) as reported in

figure 5.16. The results for the former are only based on 10 different runs. Also

averaged over 10 different runs the MLP0,3,0(0, x, y, z, 0, 0, 0) with 4 hidden nodes

achieved a correlation of about 0.964. This has to be considered as an equally well

performance taken into consideration the relative small number of runs and the

similar distribution of the single correlation values (0.991, 0.922, 0.981). Both net-

works came up with a different solution than the SMLP0,2,0(0, x, y, z), but failed to

outperform the latter despite having twice as much parameters .

5.4 Summary of Chapter 5

The MLP is one of the most important and popular neural networks. In this chap-

ter we dealt with (Spinor) Clifford MLPs with real–valued activation functions. In

section 5.1 we derived a general Backpropagation algorithm applicable to Clifford

MLPs with arbitrary underlying non–degenerate Clifford algebras. Additionally,

Backpropagation algorithms for the Dual Clifford MLP (MLP0,0,1) and the Quater-

nionic Spinor CMLP (SMLP0,2,0) have been derived.

Then the important topic of universal approximation has been studied. The ideas

of that concept together with the classical results have been discussed. In partic-

ular, we pointed out the differences between universal approximation in Lp and

L∞ spaces. Known approximation results from the literature for the Complex MLP,

and the Quaternionic MLP have been generalized to all non–degenerate Clifford

algebras. Also, for the Quaternionic Spinor CMLP universal approximation was

proven.

Much attendance was given to the experimental study of Clifford MLPs. In a

102

CHAPTER 5. CMLPS WITH REAL–VALUED ACTIVATION

first series of experiments on function approximation the two–dimensional Clifford

MLPs and the real MLP have been compared. The Dual Clifford MLP (MLP0,0,1)

turned out to be inappropriate for general function approximation due to the de-

generate nature of the underlying Clifford algebra. The MLP, as a model–free ar-

chitecture, did not outperform the Complex CMLP on a rather simple unspecific

task. However, the MLP was totally outperformed with respect to both efficiency

and generalization by the respective expert (Clifford MLP) on more specific tasks.

That way it was also demonstrated, that our generalization to Clifford algebras as

unified framework is also useful for MLP–type architectures. Looking at both the

MLP1,0,0 and the MLP0,1,0 as model–based architectures reveals much more than

studying the MLP0,1,0 as a singular extensions as done in the literature so far.

In a second experiment a better performance in a time series benchmark could

be achieved by the Quaternionic Spinor CMLP than that of the original proposed

Quaternionic CMLP. The observed outperforming was due to the fact that the

given 3–dimensional problem was also 3–dimensional intrinsically processed by

the Quaternionic Spinor MLP but not by the Quaternionic MLP. Both architectures

did outperform the real MLP on that particular task. Summarizing the results of

all experiments the validity and vitality of our approach could be demonstrated.

103

5.4 SUMMARY OF CHAPTER 5

104

Chapter 6

Clifford MLPs with Clifford–Valued

Activation Functions

The generalisation of a real MLP to a (Spinor) Clifford MLP can be split in two

stages. The first stage generalises the propagation function of the neurons by re-

placing the scalar product with the Clifford product (CMLP) or the Spinor prod-

uct (SCMLP). Both architectures still use real–valued activation functions and have

been studied in detail in the previous chapter.

From our motivation of Clifford neural computation this is already a very powerful

generalisation. The model–based nature of our approach comes from the different

transformation properties of the different geometric products. The Spinor Clifford

Neurons (and therefore also the SCMLP) have been actually designed from that

perspective. Moreover we see our data as geometric entities (like points and lines).

That is, from our understanding of Clifford neural computation, the kind of non-

linearity added by means of activation functions is not so important. Also, the

fundamental concepts of data representation and embedding are not affected by it.

Nevertheless it might be that Clifford–valued activation functions are even better

suited and therefore will give better results. The study of MLPs with such activa-

tion functions is also indicated for reasons of completeness. In an informal way

MLPs with Clifford–valued activation have been already introduced. Formally,

such networks can be easily established by just changing the defining property

(5.9) of the CMLP1.

Definition 6.1 (Clifford MLP with Clifford–Valued Activation Functions) A Clif-

1The same notations and conventions will be used again here.

105

6.1 COMPLEX–VALUED ACTIVATION FUNCTIONS

ford MLP with Clifford–valued activation functions (FCMLP 2,) computes a function from

(Cp,q,r)n to (Cp,q,r)m by passing the input through a set of {1, · · · , L} fully connected con-

secutive layers. The output of the j-th neuron in the l-th layer reads

G(l)(
∑

k

(w
(l)

kj ⊗p,q x
(l−1)

k + θ
(l)

j) . (6.1)

At least for one layer G(l) denotes a Clifford–valued activation function. That is, in that

case, there is no function g : R → R such that

G(l)(. . .) =
∑

I∈I

g(l)(. . .)IeI . (6.2)

Contrary to all architectures before, there is no notion of isomorphic FCMLPs. Be-

cause of (6.2) FCMLPs differ about more than just Basic Clifford Neurons. Hence

every FCMLP is (to large extents) its own case, and so there is no general treatment

possible for this type of architecture.

Complex FCMLPs will be studied first. The common opinion in the neural network

community, however, is that this case is already settled in a negative way due to the

classical paper [32]. Very recently new ideas have been published [44] which will

be incorporated in the discussion. All in all we will try to give a complete view of

this case. The theory of complex functions is one of the best understood and most

completed mathematical areas. This is not true for the function theory of other

Clifford algebras. In the second section of this chapter we therefore concentrate

on the other two–dimensional Clifford algebras (hyperbolic and dual numbers)

and the corresponding FCMLPs. Such FCMLPs have not been discussed before in

the literature. Due to the lack of a well developed function theory, however, we

cannot go into same depth as for the Complex FCMLP. The basic aim is to come

up with activation functions for the aforementioned Clifford algebras and evaluate

them in experiments. This will be done in the final section of this chapter where

all developed two–dimensional FCMLPs will be compared with the results of the

corresponding CMLPs derived in section 5.3.1.

6.1 Complex–Valued Activation Functions

The basic idea behind a Multilayer Perceptron is the use of a nonlinear activation

function as already motivated at the beginning of chapter 5. That way a powerful

2The capital ”F” in the acronym stands for ”full” as a shortcut for Clifford–valued activation

function.

106

CHAPTER 6. CMLPS WITH CLIFFORD–VALUED ACTIVATION

neural network is obtained capable of solving many practical tasks. Theoretically,

this is guaranteed whenever an activation function is used such that the resulting

MLP is an universal approximator (Definition 5.6). This, however, gives only one

of the desirable properties of an activation function. Further requirements come

from the applied training algorithm, i.e. Backpropagation.

As mentioned before, [54] can be seen as the first paper on Complex Multilayer Per-

ceptrons. With this publication complex Backpropagation became widely known

for the first time. Ordinary real Backpropagation requires a (real) differentiable ac-

tivation function. Consequently, that condition was replaced in [54] by complex

differentiability. Together with some general nomenclature 3 this notion should be

studied first.

A function G : D ⊂ C → C is complex differentiable in z0 ∈ D if for h ∈ D

G′(z0) =
d

dz0
G(z0) := lim

h→0

G(z0+ h) −G(z)

h
(6.3)

exists. Formally, there is no visible difference to the ordinary expression for real dif-

ferentiability. The idea of complex differentiation becomes more clear when look-

ing at

G(z0+ h) −G(z0) = ah+ o(|h|)) (for h → 0) , (6.4)

which is an equivalent formulation of (6.3) (see e.g. [60]). The nature of (6.4) differs

from the known notion of differentiation in Rn in the following sense. In Rn the

differential is a general linear function, whereas the complex differential (6.4) is

always a dilation–rotation, because both a and h are complex numbers. Hence

G has to be differentiable in the real sense and additional conditions have to be

fulfilled by its partial derivatives for (6.3) to hold. With G(z) = (u(x, y), v(x, y))

and the standard notations

ux :=
∂u

∂x
uy :=

∂u

∂y
vx :=

∂v

∂x
vy :=

∂v

∂y

this then leads to the following well known characterization of complex differenti-

ation by the famous Cauchy–Riemann equations.

Proposition 6.2 (Complex Differentiation) The function G(z) = (u(x, y), v(x, y)) :

D ⊂ C → C is complex differentiable in z0 ∈ D if and only if, u and v are real differentiable

3As outlined in the introduction to this chapter what is mathematically essential for FCMLPs is

the function theory of the underlying Clifford algebra. For complex numbers this is a well known

classical theory and hence we will also use the classical notation here.

107

6.1 COMPLEX–VALUED ACTIVATION FUNCTIONS

in z0 and the Cauchy–Riemann equations

ux = vy (6.5a)

uy = −vx (6.5b)

hold.

IfG is also complex differentiable in a neighborhood around z0 then G is said to be

analytic or holomorphic. Clearly, this is equivalent to the continuity of all partial

derivatives of G . A function which is analytic in its whole domain is called entire.

For a Complex FCMLP with an entire activation function G the complex Backprop-

agation algorithm reads [54] (using the same notation as in the previous chapter)

∆w
(l)

kj = δ
(l)

j ⊗0,1 (y
(l−1)

k) (6.6a)

∆θ
(l)

j = δ
(l)

j , (6.6b)

with

δ
(l)

j =

{
(G(L))′ (dj− y

(L)

j) if l = L,

(G(l))′ (
∑
m (w

(l+1)

jm) ⊗0,1 δ
(l+1)
m) otherwise.

(6.7)

Compared with the corresponding CMLP algorithm (Proposition 5.4), obviously,

only the error terms δ(l)

j needed to be modified. If u = v and also u(x, y) = u(x),

v(x, y) = v(y) then (6.7) gives (5.31) back again. All in all deriving Backpropaga-

tion for analytic functions is not critical. The actual dilemma of Complex FCMLPs

comes from the following fact.

Theorem 6.3 (Liouville) Any bounded entire function is constant.

An activation function has to be bounded, otherwise a software overflow may oc-

cur [32]. In the same paper it was also shown that all partial derivatives have to be

bounded as well. Since being entire, the complex logistic function 1/(1+ exp(−z))

cannot be bounded. In fact, any value of the form 0 ± i(n + 1/2)π is a singularity

of that function as illustrated below in figure 6.1. For the same reason the complex

tanh function is not bounded. Hence the most popular activation functions for the

real MLP turned out to be unsuitable in the complex case.

108

CHAPTER 6. CMLPS WITH CLIFFORD–VALUED ACTIVATION

Figure 6.1: Plot of the magnitude of the complex logistic function 1/(1 +

exp(−z).

Therefore a new complex activation function was proposed by Georgiou & Kout-

sougeras [32]
z

c+ 1
r
‖z‖

. (6.8)

This function is clearly bounded. However, this comes at a very high price. The

nonlinearity of (6.8) reduces to a normalization of the argument. More precisely,

the magnitude ‖z‖ is monotonically squashed to a point in the interval [0, r). The

phase of the argument remains unchanged. This clearly is a very serious limitation.

The function (6.8) was generalised by Pearson [62] to Clifford algebras by using the

norm [x ⊗p,q x̄]0. This was undoubtable the first proposal of a Clifford neural net-

work. Both papers [32, 62] did not provide any real experimental support for the

usefulness of the proposed activation functions. Experiments in both papers were

only performed for encoder–decoder problems with binary data, something clearly

of limited validity. Moreover, even for these rather trivial setups the obtained re-

sults are not very convincing. If ’1’ is an expected output value for a certain pattern

then very often the actual learned value is below ’0.8’ (page 34, [62]). Anyway, the

function (6.8) has never been thought as a real useful alternative by the neural net-

work community, because of keeping the argument phase constant. Hence people

turned–back to component–wise activation functions like

g(z) = g(x+ iy) =
1

1+ exp(−x)
+ i

1

1+ exp(−y)
. (6.9)

Often this ’retreat’ was seen as the failure of complex neural networks, or, the re-

sulting networks from (6.9) have been recognized as only light–weighted. In the

109

6.1 COMPLEX–VALUED ACTIVATION FUNCTIONS

previous chapter we could refute this view, because of applying a wider frame-

work and having identified the geometric product as the key for Clifford neural

computation.

In [2] the following further backstroke for Complex FCMLPs has been proven.

Theorem 6.4 ([2]) Complex FCMLPs having (6.9) as activation function are only univer-

sal approximators in L∞ for the class of analytic functions, but not for the class of complex

continuous functions.

This very important result renders networks with the complex logistic function

weaker than those applying the real logistic function separately to every compo-

nent, and of course weaker than the classical real MLP with logistic activation func-

tion. Although Theorem 6.4 states only the case of a particular function it may be

seen as an indication that this negative result could hold for all analytical func-

tions. At least for closely related function like the complex tanh this is very likely.

Note that the L∞ norm is very strong and usually nicely resembles the practical

power of the involved neural networks. Indeed, Theorem 6.4 was also illustrated

experimentally in [2], to which we will come back later.

Summarising all of the above the case of Complex FCMLPs looks settled down

in a negative way. In the remainder of this section we want to study the recent

work of Kim & Adali [44] on those kind of networks and see if we have to rethink

our opinion. In fact nothing less than the 9 functions listed in table 6.1 have been

proposed in this paper.

f(z) d
dz
f(z) Type of Singularity

tan z sec2 z isolated

sin z cos z removable

arctan z 1
1+z2

isolated

arcsin z (1− z2)−1/2 removable

arccos z −(1− z2)−1/2 removable

tanh z sech2 z isolated

sinh z cosh z removable

arctanh z (1− z2)−1 isolated

arcsinh z (1+ z2)−1 removable

Table 6.1: List of activation functions proposed in [44].

Of course, all those functions have singularities. This is illustrated in figure 6.2 for

110

CHAPTER 6. CMLPS WITH CLIFFORD–VALUED ACTIVATION

the complex sin function and in figure 6.3 for the complex tanh function. Contrary

to the common opinion, this is not seen as very critical by the authors in [44].

Figure 6.2: Plot of the complex sin function. Real part (left) and imaginary

part (right).

Figure 6.3: Plot of the complex tanh function. Real part (left) and imaginary

part (right).

The authors motivate all the aforementioned activation functions by proving that

they all give rise to neural networks that are universal approximators. This is im-

possible in the L∞ norm. However, it is still possible in the weaker L1 norm. In

the latter removable singularities do no harm, since those points have zero mea-

sure. Roughly speaking, they do not count4. For activation functions having iso-

lated singularities one already ends up with ”density” only in the analytic deleted

4This is, of course, oversimplified. For the correct mathematics the reader is referred to the

original paper [44], which is very precise.

111

6.2 GENERAL CLIFFORD–VALUED ACTIVATION FUNCTIONS

neighborhood of the singularity. Practically, this means one has to avoid the singu-

larities, for example by scaling the data 5.

All this may be possible. However, we do not see any advantage by doing so.

Hence Complex FCMLPs remain not very promising.

6.2 General Clifford–Valued Activation Functions

From the previously studied complex case there seems to be little hope for FCMLPs

in other Clifford algebras. Actually, we can already exclude many further algebras

by the following argument. First note that a Clifford–valued activation function is

suitable (e.g. bounded) if all of its component functions are suitable. This fact can

be used in a bottom–up manner as follows. If the underlying algebra of a FCMLP

contains a subalgebra for which the intended activation functions is known to be

unsuitable, then this function is unsuitable for the FCMLP in question as well.

For example, the complex numbers (C0,1) are a subalgebra of the quaternions (C0,2).

Hence the quaternionic logistic function is also unbounded. Neither could it give

rise to universal approximation (w.r.t. L∞) since this does not hold for the complex

case. One may argue that such things become more and more less important when

proceeding to higher dimensional algebras since less and less components are af-

fected. This is somehow true, but it hardly justify the efforts. Particularly not from

our point of view where the specific form of the nonlinearity is not that important.

According to the above subalgebra argument only two cases (hyperbolic and dual

numbers) remain for the further study. Obviously, they are by no means affected

by the former results for complex numbers. Every Clifford algebra has its own

function theory. Hence we have to start from scratch again, beginning with the

hyperbolic case first.

So let the function G(z) = (u(x, y), v(x, y)) : D ⊂ C1,0 → C1,0 be fixed6. Nothing

has changed with regard to the notion of boundness. However, we need to define

what is meant by ”hyperbolic” differentiable. Formally, as in the complex case,

G′(z0) =
d

dz0
G(z0) := lim

h→0
((G(z0+ h) −G(z)) ⊗1,0 h

−1) (6.10)

has to exist for G being hyperbolic differentiable in z0
7. The limes (6.10) has to be

5This is also concluded and actually demonstrated in [44].
6We use a similar notation as for complex numbers since there is little danger of confusion.
7Some care has to be taken since C1,0 is not a field.

112

CHAPTER 6. CMLPS WITH CLIFFORD–VALUED ACTIVATION

independent of the direction. In particular, we can use the orthogonal basis vectors

to get a characterization by the partial derivatives similar to the Cauchy–Riemann

equations (6.5).

Proposition 6.5 (Hyperbolic Differentiation) The function G is hyperbolic differen-

tiable in a point z0 if and only if u and v are real differentiable in z0 and the following

equations hold

ux = vy (6.11a)

uy = vx . (6.11b)

−2
0

2

−2

0

2
0

10

20

30

−2
0

2

−2

0

2
−40

−20

0

20

40

Figure 6.4: Plot of the hyperbolic exp function. Real part (left) and imaginary

part (right).

−2
0

2

−2

0

2
0

0.5

1

−2
0

2

−2

0

2
−0.4

−0.2

0

0.2

0.4

Figure 6.5: Plot of the hyperbolic logistic function. Real part (left) and imagi-

nary part (right).

Remembering the matrix representation of hyperbolic numbers this comes as no

surprise. If G is hyperbolic differentiable in a point z0 and all partial derivatives

113

6.2 GENERAL CLIFFORD–VALUED ACTIVATION FUNCTIONS

are continuous in z0, then G is said to be holomorphic in this point. A function

which is holomorphic everywhere is called entire as in the complex case before.

For such a function the update part of the hyperbolic Backpropagation algorithm

reads

∆w
(l)

kj = δ
(l)

j ⊗0,1 y
(l−1)

k (6.12a)

∆θ
(l)

j = δ
(l)

j , (6.12b)

with

δ
(l)

j =

{
(G(L))′ (dj− y

(L)

j) if l = L,

(G(l))′ (
∑
mw

(l+1)

jm ⊗0,1 δ
(l+1)
m) otherwise.

(6.13)

The above is basically the same algorithm as for the complex case where conju-

gation has been replaced by the identity now. That means a general version of

Backpropagation for FCMLPs with underlying non–degenerate algebra could be

easily derived similar to Proposition 5.4.

In every reasonable function theory the exponential function is entire 8. Since every

Clifford algebra is isomorphic to some matrix algebra the exponential function can

always be defined as

exp(A) =

∞∑

n=0

An

n!
. (6.14)

Using the standard isomorphism (2.30) one gets for hyperbolic numbers [80]

exp(x+ ye1) = exp(x) + (cosh(y) + sinh(y)e1) (6.15)

as analogon to the famous Euler formula of complex numbers. The hyperbolic

exponential function is illustrated in figure 6.4. The formula (6.15) can be used

for the direct computation of the hyperbolic logistic function (in analogy to (5.8)),

which is shown in figure 6.5.

Contrary to the complex case, the hyperbolic logistic function is bounded. This

is due to the absence of singularities. Thus, in general terms, this seems to be a

suitable activation function. Concretely, the following facts, however, might be

of disadvantage. The real and imaginary part have different squashing values.

Both component functions do only significantly differ from zero around the lines

x = y e1(x > 0) and −x = y e1(x < 0). This finishes our study of Hyperbolic

CMLPs.

8This is of course a rather personal statement from the practical point of view than a general

established mathematical truth.

114

CHAPTER 6. CMLPS WITH CLIFFORD–VALUED ACTIVATION

The dual numbers always showed exceptional behaviour due to the degenerate

nature of the algebra. The function theory of dual numbers was already developed

by Study at the beginning of the last century [84]. Unfortunately, the resulting

theory is not very rich 9.

Starting as always with the differential quotient gives the following notion of dif-

ferentiation for dual numbers.

Proposition 6.6 (Dual Differentiation) The function G(z) = (u(x, y), v(x, y)) : D ⊂

C0,0,1 → C0,0,1 is dual differentiable in a point z0 if and only if u and v are real differentiable

in z0 and the following equations hold

ux = vy (6.16a)

uy = 0 . (6.16b)

Dual functions which are also differentiable in a neighborhood of a point are called

synektic due to Study. Every such function can be expanded according to

G(x + ye1) = G(x) + y
∂G(x)

∂x
e1 . (6.17)

The dual exponential function and the thereof derived trigonometric functions are

synektic. For the exponential function (6.17) yields

exp(x + ye1) = exp(x) + y exp(x)e1 , (6.18)

and, for example, for the dual sine function we get

sin(x+ ye1) = sin(x) + y cos(x)e1 . (6.19)

Of course no further investigations are needed. For every synektic function we

have

u(x, y) = u(x) . (6.20)

Hence there is no Dual FCMLP. More precisely, it would always be identical to

the ordinary Dual CMLP in the first component function. The latter being already

identified to be responsible for the insufficiencies of the Dual CMLP as shown in

section 5.4.

At the beginning of this chapter we neglected the usefulness of the quaternionic

logistic function. Nevertheless the quaternionic case might still be of interest so

that some further remarks seem to be in order. If one uses the standard differential

9This does not affect the richness of its applications.

115

6.3 EXPERIMENTAL RESULTS

quotient approach (likewise (6.3)) one ends up with a situation where only linear

functions are holomorphic. In other Clifford algebras things are even more com-

plicated. The function theory of Clifford algebras is an ongoing research area of

mathematics. For an overview of its currents state we refer to [30].

6.3 Experimental Results

This section is rather short. However this could be anticipated from our theoreti-

cal study of FCMLPs in the prevoius sections. For the experiment we choose the

function g (5.52) already known from section 5.3.1. Among the functions tested

therein g turned out to be the most simple function to learn in the experiments

for the CMLPs. For the FMLP0,1,0 with complex logistic activation function the re-

sults could be compared with those reported in [2]. From the activation functions

proposed in [44] the complex sin and tanh function have been selected since both

have been already discussed in section 6.1. Finally, the FMLP1,0,0 with hyperbolic

logistic activation function was also tested.

The test setup was exactly the same as reported for the experiments in section 5.3.1.

In table 6.2 all results averaged over 30 runs are reported.

Network Activation Nodes Error [2] MSE Training MSE Test

2 13.96 0.1123 0.1243

FMLP0,1,0 logistic 3 — 0.0987 0.0995

4 12.94 0.0956 0.1013

2 — 1.0567 1.3723

FCMLP0,1,0 sin 3 — 0.7652 0.5891

4 — 0.7187 0.6439

2 — 0.5431 0.4812

FMLP0,1,0 tanh 3 — 0.5292 0.5023

4 — 0.4912 0.5010

2 — 0.0987 0.0873

FMLP1,0,0 logistic 3 — 0.0782 0.0569

4 — 0.0657 0.0682

Table 6.2: Results for the approximation of g for different FCMLPs.

Obviously, all networks failed to learn the function g in such a way that it makes no

sense to study the in between differences. Actually, all results are worse than that

116

CHAPTER 6. CMLPS WITH CLIFFORD–VALUED ACTIVATION

of the CMLP0,0,1, with the only exception of the MLP1,0,0. This however is only due

to the fact that in this case the training data was scaled to lie in [0, 0.2], which was

necessary because of the output range of the hyperbolic logistic function (see figure

figure 6.5 again). The failure for the MLP0,1,0 with complex logistic function is in

accordance to the results in [2]. The positive results reported in [44] may be due

to the specific value range of the considered problem, avoiding the singularities of

the used activation function (similar to the observed effect for the MLP1,0,0).

6.4 Summary of Chapter 6

Historically, Complex MLPs have been first proposed with so–called fully complex

activation functions such as the complex logistic function. This was also widely

seen as mandatory. Only after recognizing several problems of that approach the

attention turned towards Complex MLPs with real–valued activation functions.

Our investigations started with the review of the classical literature on Complex

FMLPs. Particulary, we dealt with a bounded but phase–constant activation func-

tion proposed by Georgiou & Koutsougeras [32]. We argued why the latter prop-

erty renders this function useless and therefore also its generalization to Clifford

algebras as proposed by Pearson [62]. We had a closer look at a negative result

[2] regarding the approximation capabilities of Complex FCMLPs with the com-

plex logistic function as activation function. We also had a look at recently claimed

positive results [44], for which we argued against practical relevance due to the

involved weaker L1 norm.

In the second section we studied FCMLPs in other Clifford algebras. For hyper-

bolic numbers we derived the necessary elements from hyperbolic function theory

to define the hyperbolic logistic function. The Backpropagation algorithm for Hy-

perbolic FCMLPs has been derived and it was sketched how a unified Backprop-

agation algorithm for all non–degenerate Clifford algebras can be derived. The

function theory of dual numbers showed elegantly that there is no such thing as a

Dual FCMLP. Actually, we could prove that such a network would be of the same

insufficient computational power as the ordinary Dual CMLP.

The experiments performed in the third section of this chapter then showed indeed

the theoretically claimed drawbacks of FCMLPs. Therefore the case of FCMLPs can

be seen as settled down in a negative way. To extend this common view on Com-

plex FCMLPs to FCMLPs in other algebra is the main contribution of this chapter.

117

6.4 SUMMARY OF CHAPTER 6

118

Chapter 7

Conclusion

In this final chapter we want to summarize what was done and outline what could

be possible directions for further research.

7.1 Summary

The goal of this thesis was to design neural architectures that are capable of pro-

cessing representations of geometric nature (like points and lines), are interpretable

in a model–based sense, and therefore offer advantages over standard architec-

tures. For that purpose the framework of Clifford algebra was used, and Clifford

neural computation was developed as an algebraic theory.

We entered the world of Clifford neural computation at the most basic level of

a single neuron. That Basic Clifford Neuron (BCN) ”is” the geometric product.

Therefore there was never a gap between the ”algebraical” world and the ”neu-

ral” one. Moreover, all the key properties of Clifford neural computation derived

naturally from the mathematical theory.

Since every Clifford algebra is isomorphic to some matrix algebra every BCN per-

forms a particular linear transformation. That way the model–based nature of Clif-

ford algebra became visible immediately when comparing the BCNs with the Lin-

ear Associator. Also, differences among the two–dimensional BCNs could be de-

tected from the different optimal learning rates. Motivated as the geometric gener-

alization of the non–degenerate two–dimensional BCNs the so–called Spinor Clif-

ford Neurons (SCNs) has been introduced. The SCN mimics the operation of the

Clifford group and uses non-commutativity as a design feature.

119

7.1 SUMMARY

The algebraical notion of isomorphic structures has been carried over to Clifford

neurons. The meaning and the requirements for isomorphic Clifford neurons have

been derived. Using this concept isomorphic Clifford architectures could be iden-

tified allowing the systematical study of Clifford neural computation.

The main motivation for our study of Clifford neural computation was that it al-

lows to select different modes (internal representations) by just presenting different

coded data (external representations). For example, using a certain linear represen-

tation we could ”select” the propagation function of a BCN1,1 or BCN0,2 to be an

affine transformation. Both turned out to be more robust than a Linear Associator.

Using the conformal model of Clifford algebra a SCN ˜
1,2 was shown to be able to

compute Möbius transformations in a linear way. This is impossible for any real–

valued network. Another Clifford example utilized Plücker coordinates for the

processing of lines. All this have been direct applications of Clifford algebra prop-

erties, particularly the graded subspace structure and isomorphisms of the Clifford

group. For the systematic study of representation issues the notion of isomorphic

representations has been introduced.

In the second part of the thesis we proceed from neurons to Clifford Multilayer

Perceptrons (CMLPs). Two stages of generalization of an ordinary MLP have been

discussed. First we studied CMLPs having real–valued activation functions. The

cases of complex and quaternionic CMLPs are known from the literature. Theo-

retically, we extended these results by generalizing Backpropagation to arbitrary

non–degenerate CMLPs. Also the learning algorithms for the Dual CMLP and the

Quaternionic Spinor CMLP (QSCMLP) have been derived. The known universal

approximation results have been extended to CMLPs with logistic activation func-

tion for arbitrary non–degenerate Clifford algebras and the QSCMLP.

An important part in the study of (S)CMLPs was devoted to experiments, the first

being a series of 2D function approximation tasks. It turned out that the Dual

CMLP is not a universal approximator and unsuitable. The model–free MLP did

not outperform the Complex CMLP on a rather simple task. However it was out-

performed by the matching Clifford expert both with respect to efficiency and gen-

eralization. Particularly, the Hyperbolic CMLP turned out to be an architecture of

full value, compared to the Complex CMLP, which have been only studied in the

literature. In a second experiment on the prediction of the chaotic Lorenz attrac-

tor the QSCMLP outperformed the original proposed Quaternionic MLP due to

the fact of applying a three dimensional activation function. Therefore the experi-

ments on (S)CMLPs showed some nice results which are in accordance to our view

on Clifford neural computation. The model–based core is the (spinor) geometric

120

CHAPTER 7. CONCLUSION

product, which also manifests itself in a (S)CMLP.

Finally Clifford MLPs with Clifford–valued activation functions (FCMLPs) have

been studied. Different points of view found in the literature have been clarified.

Nothing is gained by choosing such functions. Contrary, due the limitations from

complex function theory, no suitable complex functions do exist. In case of hyper-

bolic numbers no general restrictions came from the underlying function theory,

but the most natural activation function (the hyperbolic logistic function) did also

fail practically.

The foundations of a theory of Clifford neural computation has been developed

during the run of this thesis. The designed Clifford neurons were shown to pro-

cess geometric entities like lines and points. The geometric interpretation of their

propagation functions has been given. How to process different entities and use

different geometric models by construction embedding has been illustrated. A

systematic methodology for handling representation issues was introduced. The

(Spinor) Clifford MLPs based on the developed Clifford neurons have showed ad-

vantages over standard MLPs. Hence the goal of designing useful architectures by

processing representations has been reached. However, the provided basis of ex-

periments was quite small. Also, no real world applications have been considered.

7.2 Outlook

Of course we only undertook the very first steps in this work. As shown in the

summary, the theory of Clifford neural computation is not fully developed yet.

Therefore future work can be directed to many different aspects.

First of all we only studied the geometric product and the spinor product. There is

much more possible in Clifford algebra. It contains operations for computing union

and intersection of all kinds of geometric objects. Every Lie group corresponds to a

Clifford group. Every Clifford group is a manifold. All this mathematical notions

are important in many areas of computer vision and robotics. For many of them

promising Clifford algorithms already exist. Neural versions of such algorithms

may be of interest and of practical benefit.

In the thesis we only dealt with supervised learning. There are some known re-

sults on complex Independent Component Analysis (ICA). This could be a further

direction for more unsupervised learning approaches. Also, associative architec-

ture may be of interest. Especially, from the theoretical point of view since many

121

7.2 OUTLOOK

known closed solutions exist for real–valued cases.

The training algorithm used by us has always been plain Backpropagation. This

was sufficient for understanding the principles of Clifford neural computation,

which was our main concern. For practical applications more sophisticated algo-

rithms for training Clifford neural networks may be handy. For real world applica-

tions, such as control tasks, recurrent Clifford neural networks may be of interest

too.

Every Clifford neuron can be seen as some kind of expert. In our opinion, thinking

of mixtures of such experts seems to be the most natural next step. In the very end

this might lead to a higher level of learning, where the actual structure is learned

during training, or, structure changes as a consequence of interaction with the en-

vironment. Of course, this is the most ambiguous possible goal. However, it is one

of the most urgent challenges for neural networks.

We hope the methods presented here provide a good basis for future work in the

area of Clifford neural computation.

122

Appendix A

Supplemental Material

A.1 Dynamics of the Linear Associator

This is of course a standard topic in any text book on neural computation (see e.g.

[8, 70]). A treatise above that level is given in the survey [3]. The facts reviewed in

the following are mostly taken from [50, 51].

For a Linear Associator (LA) the standard mean–squared error function for batch

learning reads

ELA =
1

2P

P∑

p=1

‖ dp−Wxp ‖2 . (A.1)

Applying gradient descent then results in the following update rule for the weights

of a LA

wij(t+ 1) = wij(t) − η
1

P

P∑

p=1

(d
p
j −wij(t)x

p
i)x

p
i , (A.2)

where x = (x1, . . . , xn)
T, y = (y1, . . . , ym)T and η > 0 is the learning rate. In gen-

eral, gradient descent only guarantees local convergence. Here, however, the error

function (A.1) is convex. Therefore, there always exists a learning rate η yielding

global convergence.

The dynamics of a one–dimensional Linear Associator is described in figure A.1.

First of all, since only one direction has to be considered, convergence can always

be achieved in one batch step by choosing the optimal learning rate ηopt (top right

plot of figure A.1). Choosing a learning rate η < ηopt results in slower convergence

(top left plot of figure A.1). The same holds true for a learning rate η ∈ (ηopt, 2ηopt]

123

A.1 DYNAMICS OF THE LINEAR ASSOCIATOR

(bottom left plot of figure A.1). Finally, for η > 2ηopt learning does not converge

(bottom right plot of figure A.1).

 E

 w w
opt

η < η
opt

 E

 w w
opt

η = η
opt

 E

 w w
opt

2 η
opt

 ≥ η > η
opt

 E

 w w
opt

η > 2 η
opt

Figure A.1: Dynamics of a one–dimensional Linear Associator. Redrawn from

[50]. See text for details.

All of the above relatively to ηopt remains also valid in higher dimensions. The

optimal learning rate ηopt for a LA can be found by analysing the second–order

properties of (A.1), i.e. by examining the corresponding Hessian matrix.

Proposition A.1 ([50]) The Hessian matrix of (A.1) is given by

HLA =
1

P

P∑

i=1

xp
T

xp , (A.3)

i.e. by the autocorrelation matrix of the inputs.

Note that HLA is a symmetric and non–negative matrix. Hence all its eigenvalues

are real and non–negative. Furthermore, if the matrix is of full rank then (A.1) has

exactly one global minimum. The optimal learning rate is computed as follows.

124

APPENDIX A. SUPPLEMENTAL MATERIAL

Proposition A.2 ([50]) Let λmax and λmin denote the largest and smallest eigenvalue of

HLA, respectively. Then the optimal learning rate for a LA using gradient descent is

ηopt =
1

λmax
. (A.4)

The speed of convergence is proportional to

λmax

λmin
. (A.5)

It is therefore desirable to have a small eigenvalue spread (A.5). If all eigenvalues

are equal then fastest convergence of learning is achieved. If additionally the co-

ordinate system spanned by the eigenvectors is in alignment with the coordinate

system of the data then convergence can be reached in one step. The alignment

of the two coordinate systems can always be forced by applying the appropriate

coordinate transformation to (A.1) [51]. In that new coordinate system the weight

update equations would be decoupled allowing to use a separate learning rate for

each direction. However, this is rather of theoretical interest since it practically

means to solve everything in advance.

125

A.2 UPDATE RULE FOR THE QUATERNIONIC SPINOR MLP

A.2 Update Rule for the Quaternionic Spinor MLP

For the Quaternionic Spinor MLP the weight update rule is given below1. The

notations used are that of section 5.1. Setting δ
(l)

j as in (5.18) gives the update rule

for a weight in the output layer and setting δ
(l)

j as in (5.27a) gives the update rule

for a weight in a hidden layer.

∆w
(l)

kj =
(

([δ
(l)

j]0w0x0+ ([δ
(l)

j]1(w0x1+w2x12−w12x2)

+ ([δ
(l)

j]2(w0x2−w1x12+w12x1) + ([δ
(l)

j]12(w0x12+w1x2−w2x1)e0
)

+
(

([δ
(l)

j]0w1x0+ ([δ
(l)

j]1(w1x1+w2x2+w12x12)

+ ([δ
(l)

j]2(w2x1−w0x12−w1x2) + ([δ
(l)

j]12(w12x1+w0x2−w1x12)e1
)

+
(

([δ
(l)

j]0w2x0+ ([δ
(l)

j]1(−w2x1+w1x2+w0x12)

+ ([δ
(l)

j]2(w1x1+w2x2+w12x12) + ([δ
(l)

j]12(w12x2−w0x1−w2x12)e2
)

+
(

([δ
(l)

j]0w12x0+ ([δ
(l)

j]1(w1x12−w0x2−w12x1)

+ ([δ
(l)

j]2(w0x1+w2x12−w12x2) + ([δ
(l)

j]12(w1x1+w2x2+w12x12)e12
)

1Remember that updating the bias terms of a (S)CMLP is generic.

126

APPENDIX A. SUPPLEMENTAL MATERIAL

A.3 Some Elements of Clifford Analysis

This appendix provides some supplemented material on Clifford analysis which

was used in the discussion of universal approximation by Clifford MLPs in section

5.2. All the beneath is taken from [10].

In general (Cp,q)
n is not a linear space. A module is a generalization of a linear

space, where the coefficients come from some ring (Cp,q) instead of a field.

Definition A.3 (Left Module) Let R be a ring with identity element 1. A left R-module

X is an Abelian group (X,+) together with a mapping R×X → X : (r, g) 7→ rg in such a

way, that

(a) ∀g1, g2 ∈ X ∀r ∈ R : r(g1+ g2) = rg1+ rg2

(b) ∀g ∈ X ∀r1, r2 ∈ R : (r1+ r2)g = r1g+ r2g

(c) ∀g ∈ X ∀r1, r2 ∈ R : (r1r2)g = r1(r2g)

(d) ∀g ∈ X : 1g = g

are fulfilled.

A left module may be equipped with a seminorm.

Definition A.4 (Seminorm) Let X be a left Cp,q-module. A function p : X → IR is called

a seminorm on X if it fulfills for all f, g ∈ X, λ ∈ Cp,q and κ ∈ IR

(a) p(f+ g) ≤ p(f) + p(g)

(b) p(f) = 0 ⇒ f = 0

(c) p(λf) ≤ C‖λ‖p(f)

p(κf) = |κ|p(f) .

A proper module is a left module equipped with a proper system of seminorms.

Definition A.5 (Proper Module) Let X be a left Cp,q-module. A family P of seminorms

p : X → IR is called a proper system of seminorms on X if for any finite sequence

p1, p2, . . . , pk ∈ P there exist p ∈ P and C > 0 such that for all f ∈ X

sup
j=1,...,k

pj(f) ≤ Cp(f) . (A.6)

After these preliminaries the Hahn–Banach theorem and the Riesz representation

theorem of Clifford analysis can be stated.

127

A.3 SOME ELEMENTS OF CLIFFORD ANALYSIS

Theorem A.6 (Hahn–Banach) Let X be a proper Cp,q-module, let Y be a submodule of

X and let T be a bounded left Cp,q-functional on Y. Then there exists a bounded left Cp,q-

functional T ∗ on X such that

T ∗|Y = T . (A.7)

Theorem A.7 (Riesz) LetX be a proper Cp,q-module, let T : X → Cp,q be a bounded linear

functional. Then there exists a unique Clifford measure µ on X such that for all continuous

f : X → Cp,q

〈T, f〉 =

∫

X

f dµ . (A.8)

128

Bibliography

[1] P. Arena, L. Fortuna, G. Muscato, and M. G. Xibilia. Neural Networks in Multi-

dimensional Domains. Number 234 in LNCIS. Springer–Verlag, 1998.

[2] P. Arena, L. Fortuna, R. Re, and M. G. Xibilia. Multilayer perceptrons to ap-

proximate complex valued functions. International Journal of Neural Systems,

6:435–446, 1995.

[3] P. F. Baldi and K. Hornik. Learning in linear neural networks: A survey. IEEE

Transactions on Neural Networks, 6(4):837–858, 1995.

[4] V. Banarer, C. Perwass, and G. Sommer. Design of a multilayered feed-forward

neural network using hypersphere neurons. In N. Petkov and M. A. West-

enberg, editors, Proc. 10th Int. Conf. Computer Analysis of Images and Patterns,

CAIP 2003, Groningen, The Netherlands, August 2003, volume 2756 of LNCS,

pages 571–578. Springer-Verlag, 2003.

[5] V. Banarer, C. Perwass, and G. Sommer. The hypersphere neuron. In 11th

European Symposium on Artificial Neural Networks, ESANN 2003, Bruges, pages

469–474. d-side publications, Evere, Belgium, 2003.

[6] A. Barron. Universal approximation bounds for superpositions of a sigmoidal

function. IEEE Transactions on Information Theory, 39:930–945, 1993.

[7] N. Benvenuto and F. Piazza. On the complex backpropagation algorithm.

IEEE Transactions on Signal Processing, 40(4):967–969, 1992.

[8] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

Oxford, 1995.

[9] H. Boulard and N. Morgan. Connectionist Speech Recognition. Kluwer, 1993.

[10] F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis. Pitman, London,

1982.

129

BIBLIOGRAPHY

[11] S. Buchholz and G. Sommer. A hyperbolic multilayer perceptron. In S.-I.

Amari, C.L. Giles, M. Gori, and V. Piuri, editors, International Joint Conference

on Neural Networks, IJCNN 2000, Como, Italy, volume 2, pages 129–133. IEEE

Computer Society Press, 2000.

[12] S. Buchholz and G. Sommer. Learning geometric transformations with Clif-

ford neurons. In G. Sommer and Y. Zeevi, editors, 2nd International Workshop

on Algebraic Frames for the Perception-Action Cycle, AFPAC 2000, Kiel, volume

1888 of LNCS, pages 144–153. Springer-Verlag, 2000.

[13] S. Buchholz and G. Sommer. Quaternionic spinor MLP. In 8th European Sym-

posium on Artificial Neural Networks, ESANN 2000, Bruges, pages 377–382, 2000.

[14] S. Buchholz and G. Sommer. Clifford algebra multilayer perceptrons. In Som-

mer [83], pages 315–334.

[15] S. Buchholz and G. Sommer. Introduction to neural computation in Clifford

algebra. In Sommer [83], pages 291–314.

[16] T. Caelli, D. Squire, and T. Wild. Model–based neural networks. Neural Net-

works, 6:613–625, 1993.

[17] A. Church. An unsolvable problem of elementary number theory. American

Journal of Mathematics, 58:345–363, 1936.

[18] T. Clarke. Generalization of neural network to the complex plane. Proc. of the

IJCNN, 2:435–440, 1990.

[19] W. K. Clifford. Preliminary scetch of bi–quaternions. Proc. London Math. Soc.,

4:381–395, 1873.

[20] J. Cnops. Hurwitz pairs and applications of Möbius transformations. Habilitation

dissertation, University of Gent, Belgium, 1994.

[21] B. J. Copeland. Artificial Intelligence: A Philosophical Introduction. Blackwell

Publishers, Oxford, 1993.

[22] K. J. W. Craik. The Nature of Explanation. Cambridge University Press, Cam-

bridge, 1943.

[23] G. Cybenko. Approximation by superposition of a sigmoidal function. Math-

ematics of Control, Signals and Systems, 2:303–314, 1989.

[24] K. Daniilidis. Using the algebra of dual quaternions for motion alignment. In

Sommer [83], pages 489–499.

130

BIBLIOGRAPHY

[25] B. Denby. The use of neural networks in high–energy physics. Neural Compu-

tation, 5:505–549, 1993.

[26] H. English and Y. Hiemstra. The correlation as cost function in neural net-

works. In Proc. of the IEEE WCCI, Orlando, pages 1370–1372, 1994.

[27] H.-D. Ebbinghaus et al. Numbers. Springer–Verlag, 3rd edition, 1995.

[28] B. G. Farley and W. A. Clark. Simulations of self–organizing systems by digital

computer. I.R.E. Transactions on Information Theory, 4:76–84, 1954.

[29] M. Ferraro and T. Caelli. Neural computation of algebraic and geometrical

structures. Neural Networks, 11:669–707, 1998.

[30] S. G. Gal. Introduction to Geometric Function Theory of Hypercomplex Variables.

Nova Science Publishers, New York, 2002.

[31] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the

bias/variance dilemma. Neural Computation, 4:1–58, 1992.

[32] G. Georgiou and C. Koutsougeras. Complex domain backpropagation. IEEE

Trans. on Circuits and Systems II, 39(5):330–334, 1992.

[33] W.R. Hamilton. Elements of Quaternions. Longmans Green, London 1866.

Chelsea, New York, 1969.

[34] S. J. Hanson and C. R. Olson. Neural networks and natural intelligence: Notes

from Mudville. Connection Science, 3:332–335, 1991.

[35] D. O. Hebb. The Organization of Behaviour. John Wiley & Sons, New York, 1949.

[36] R. Hecht-Nielsen. Neurocomputing. Addison–Wesley Publishing Company,

Inc., 1991.

[37] W. Hein. Struktur– und Darstellungstheorie der klassischen Gruppen. Springer–

Verlag, 1990.

[38] D. Hestenes. Space–Time Algebra. Gordon and Breach, New York, 1966.

[39] D. Hestenes. New Foundations for Classical Mechanics. D. Reidel Publishing,

Dordrecht, 1986.

[40] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus. D. Reidel

Publ. Comp., Dordrecht, 1984.

131

BIBLIOGRAPHY

[41] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks

are universal approximators. Neural Networks, 2:359–366, 1989.

[42] L. Jones. A simple lemma on greedy approximation in Hilbert space and con-

vergence rates for projection pursuit regression and neural networks. Annals

of Statistics, 20:608–613, 1992.

[43] L. B. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A

survey. Journal of Artificial Intelligence Research, 4, 1996.

[44] T. Kim and T. Adali. Complex backpropagtion neural network using elemen-

tary transcendetal activation functions. Proc. of IEEE ICASSP, pages 1281–

1284, 2001.

[45] V. V. Kisil. Möbius transformations and monogenic Functional Calculus. Elec-

tronic Reasearch Announcements of the AMS, 2(1):26–33, 1996.

[46] S. C. Kleene. General recursive functions of natural numbers. Mathematische

Annalen, 112:727–742, 1936.

[47] A. N. Kolmogorov. On the representation of continous functions of several

variables by superposition of continous functions of one variable and addi-

tion. Doklady Akademiia Nauk SSSR, 114(5):953–956, 1957.

[48] V. Kurkova. Kolmogorov’s theorem is relevant. Neural Computation, 3(4):617–

622, 1991.

[49] V. Kurkova. Kolmogorov’s theorem and multilayer neural networks. Neural

Networks, 5(3):501–506, 1992.

[50] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient BackProp. In G. B.

Orr and K.-R. Müller, editors, Neural Networks: Tricks of the Trade. Springer–

Verlag, 1998.

[51] Y. LeCun, I. Kanter, and S. A. Solla. Eigenvalues of covariance matrices: Appli-

cation to neural–network learning. Physical Review Letters, 66(18):2396–2399,

1991.

[52] L. R. Leerink, C. L. Giles, B. G. Horne, and M. A. Jabri. Learning with product

units. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural

Information Processing Systems, volume 7, pages 537–544. The MIT Press, 1995.

[53] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multliayer feedforward net-

works with a nonpolynomial activation function can approximate any func-

tion. Neural Networks, 6:861–867, 1993.

132

BIBLIOGRAPHY

[54] H. Leung and S. Haykin. The complex backpropagation algorithm. IEEE

Transactions on Signal Processing, 3(9):2101–2104, 1991.

[55] E. N. Lorenz. Deterministic nonperiodic flow. Journal Athmospheric Science,

20:130–134, 1963.

[56] P. Lounesto. Clifford Algebras and Spinors. Cambridge University Press, 1997.

[57] J. L. McClelland, D. E. Rumelhart, and the PDP research group, editors. Paral-

lel Distributed Processing, volume 2: Psychological and Biological Models. MIT

Press, Cambridge MA, 1986.

[58] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[59] M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, 1969.

[60] T. Needham. Visual Complex Analysis. Clarendon Press, Oxford, 1997.

[61] T. Nitta. An extension of the back–propagation algorithm to complex num-

bers. Neural Networks, 10(8):1391–1415, 1997.

[62] J. K. Pearson. Clifford Networks. PhD thesis, University of Kent, 1994.

[63] A. Pellionisz and R. Llinás. Tensor network theory of the metaorganization of

functional geometries in the central nervous system. Neuroscience, 16(2):245–

273, 1985.

[64] C. Perwass, V. Banarer, and G. Sommer. Spherical decision surfaces using

conformal modelling. In B. Michaelis and G. Krell, editors, 25. Symposium für

Mustererkennung, DAGM 2003, Magdeburg, volume 2781 of LNCS, pages 9–16.

Springer-Verlag, Berlin, 2003.

[65] A. Pinkus. Approximation theory of the mlp model in neural networks. Acta

Numerica, 8:143–195, 1999.

[66] P. Plücker. On a new geometry of space. Phil. Trans. R. Soc. London, 155, 1865.

[67] I. R. Porteous. Clifford Algebras and the Classical Groups. Cambridge University

Press, Cambridge, 1995.

[68] H. Pottmann and J. Wallner. Computational Line Geometry. Springer–Verlag,

2001.

133

BIBLIOGRAPHY

[69] H. Ritter, T. Martinetz, and K. Schulten. Neuronale Netze. Addison–Wesley,

Bonn, 1990.

[70] R. Rojas. Neural Networks. Springer–Verlag, 1996.

[71] J. Rooney. A Comparison of Representations of General Screw Displacements.

Environment and Planning B, 5:45–88, 1978.

[72] F. Rosenblatt. The perceptron: A probalistic model for information storage

and organization in the brain. Psycol. Rev., 65:386–408, 1958.

[73] F. Rosenblatt. Principles of Neurodynamics. Spartan, New York, 1962.

[74] B. Rosenhahn. Pose estimation revisited. Technical Report Number 0308,

Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Prak-

tische Mathematik, September 2003.

[75] W. Rudin. Real and Complex Analysis. McGraw–Hill, New York, 1966.

[76] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-

tations by error propagation. In Rumelhart et al. [77], pages 318–362.

[77] D. E. Rumelhart, J. L. McClelland, and the PDP research group, editors. Paral-

lel Distributed Processing, volume 1: Foundations. MIT Press, Cambridge MA,

1986.

[78] A. E. Samuel, P. R. McAree, and K. H. Hunt. Unifying screw geometry and

matrix transformation. International Journal of Robotics Research, 10(5):454–472,

1991.

[79] F. Scarselli and A. C. Tsoi. Universal approximation using feedforward neural

networks: A survey of some existing methods, and some new results. Neural

Networks, 11(1):15–37, 1998.

[80] V. G. Shervatov. Hyperbolic Functions. D.C. Heath and Company, Boston, 1963.

[81] B. F. Skinner. The Behavior of Organisms: An Experimental Analysis. Appleton–

Century–Crofts, New York, 1938.

[82] G. Sommer. Algbraic aspects of designing behavior based systems. In G. Som-

mer and J. J. Koenderink, editors, Proc. Int. Workshop AFPAC’97, vol. 1315 of

LNCS, pages 1–28. Springer–Verlag, 1997.

[83] G. Sommer, editor. Geometric Computing with Clifford Algebras. Springer–

Verlag, 2001.

134

BIBLIOGRAPHY

[84] E. Study. Geometrie der Dynamen. Leipzig, 1903.

[85] E. L. Thorndike. The Fundamentals of Learning. Teachers College Press, New

York, 1933.

[86] A. M. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society, 42:230–265,

1936.

[87] K. Th. Vahlen. Ueber Bewegungen und complexe Zahlen. Math. Ann., 55:585–

593, 1902.

[88] V. Vapnik. The Nature of Statistical Learning Theory. Springer–Verlag, New York,

1995.

[89] M. Vidyasagar. A Theory of Learning and Generalization. Springer–Verlag, 1997.

[90] K. Voss and H. Süsse. Adaptive Modelle und Invarianten für zweidimensionale

Bilder. Verlag Shaker, Aachen, 1995.

[91] H. White. Connectionist nonparametric regression: multilayer feedforward

networks can learn arbitrary mappings. Neural Networks, 3(5):543–549, 1990.

[92] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Academic Press, 2000.

[93] I. M. Yaglom. Complex Numbers in Geometry. Academic Press, New York, 1968.

135

