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ABSTRACT

In this report we present geometric foundations and an algorithmic approach
to deal with the 2D-3D pose estimation problem for free-form surface models.
This work is an extension to earlier studies presented in [29]. The discussion
of 1D contour models in [29] is extended to 2D free-form surface models. We
use a parametric representation of surfaces and apply Fourier transformations
to gain low-pass descriptions of objects. We present an algorithm for pose
estimation, which uses the silhouette of the object as pictorial information
and recovers the 3D pose of the object even for changing aspects of the object
during image sequences. We further present extensions to couple surface and
contour information on objects and show the potential of our chosen approach
for complex objects and scenes.
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1. INTRODUCTION

Pose estimation has been studied in computer vision since its beginning.
It is crucial for many computer and robot vision tasks. Object grasping,
manipulation and recognition or self-localization of mobile robots are typical
examples for the use of pose estimation. For a definition of the pose problem,
we quote Grimson [13]:

Definition 1.1 By pose we mean the transformation needed to map an object
model from its inherent coordinate system into agreement with the sensory
data.

In this report we are interested in the so-called 2D-3D pose estimation prob-
lem. With 2D-3D pose estimation we mean to fit 2D measurement data (an
image of an object) with a 3D object model. We are interested in estimating
a rigid motion (containing both 3D rotation and 3D translation) which fits
the object data with the image data. This is visualized in figure 1.1: We first
observe an object in an image (left). Furthermore the camera is calibrated, so
that we can localize a camera coordinate system in the 3D world (visualized
with the optical center and the shifted camera plane in the middle image).
The object model is shown in the right image in its local coordinate system.
Our aim is to compare the 3D object with the 2D image data to define a
fit-value. We are interested in estimating that rigid motion which leads to
the best fit between the object model and the image data as visualized in
figure 1.2.

Though the problem sounds simple on a first glimpse, there are several
important (and partially still open) questions which are discussed in the
literature:

1. How will the involved mathematical spaces be dealt with?

2. How will a 3D object be compared with 2D image data?

3. Which kind of image information is to be used?

4. How is a rigid motion estimated?

5. How will 3D object models be represented?
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Fig. 1.1: Our assumptions for the 2D-3D pose estimation problem: (left) An
image of an object is assumed. (middle) The camera is assumed to
be calibrated with respect to a world coordinate system. (right) A
3D object model (in its own object coordinate system) is also given.

Indeed some of the questions can not be answered in a generalized man-
ner. Instead they are dependent on the situation: For some scenes (e.g.
industrial applications), a point based representation within an orthographic
camera model and a simple corner extractor might be sufficient, but for more
general scenes, this can be an inadequate representation. Therefore there is
need to deal with the pose problem in a more general and flexible manner.
In this work we do not give a long overview about the existing literature (e.g.
[4, 9, 13, 19, 20, 23, 24, 35, 37]). Instead we refer to [11, 29] where different
works are presented and discussed. This report can be seen as an extension
to [29]. This earlier work investigates the pose problem and presented solu-
tion approaches to the above listed questions. But there are still remaining
questions which we start to answer in this report. We first summarize our
former results in [29]:

1. How will the involved mathematical spaces be dealt with?
Three mathematical spaces can be found in the 2D-3D pose estimation
problem. These are the Euclidean space (the space in which the ob-
ject model and its size is given), the kinematic space (where the rigid
motions are the unknown transformations) and the projective space
(where the calibrated camera and the image data are given). To deal
with the pose estimation problem, there is need to let interact these
spaces in an efficient manner. We propose the use of the conformal geo-
metric algebra (CGA) [21]. The CGA is build up on a conformal model
of the Euclidean space which is coupled with a homogeneous model to
deal with kinematics and projective geometry simultaneously. This en-
ables us to deal with the Euclidean, kinematic and projective space
in one framework and therefore to cope with the pose problem in an
efficient manner. Furthermore, the unknown rigid motion is expressed
as a screw-motion which is caused by an orthogonal operator called,
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Fig. 1.2: Visualization of the pose estimation problem: The task is to find
the rigid motion which leads to a best fit between image data and
the object model.

motor. In contrast to the homogeneous Euclidean space, in conformal
space a motor can be applied not only to points but to any higher-order
geometric entity in a linear manner, just by computing the geometric
product. This leads to compact and easily interpretable equations.

2. How will a 3D object be compared with 2D image data?
They are compared by reconstructing 2D image features (e.g. points)
to 3D entities (e.g. 3D projection rays). By using this strategy we are
able to formalize the pose problem as a pure 3D problem and to model
a distance measure between 2D image data and 3D object data in plain
3D.

3. Which kind of image information is to be used?
There does not exist an unique answer to this question, since it is de-
pendent on the scenario, the used object model and the task. [29] uses
on the one hand corner or line features, but also 2D contour information
which results in silhouette based pose estimation.



12 1. Introduction

4. How to estimate a rigid motion?
We compared three different algorithms for estimating pose parameters.
The first is a simple SVD-approach, the second a Kalman filter and the
third is a gradient descent method. The gradient descent method uses
a twist representation of rigid motion: Since the rigid motions con-
stitute a Lie group, there always exists a Lie algebra which generates
the group actions by applying the exponential function. The elements
of the Lie algebra forming the group of rigid motion are called twists.
These model the motion in terms of a screw motion [25, 32, 4]. There-
fore, we call the gradient descent method the twist approach. It proved
as fast, stable and adaptive. Furthermore with this approach we are
not only able to deal with 2D-3D point correspondences, but also with
2D line and 3D point correspondences or 2D line and 3D line corre-
spondences simultaneously. For a comparison of pure 3D point based
pose estimation algorithms, the reader should also consult [18].

5. How will 3D object models be represented?
This question can also not be answered in general, since the good rep-
resentation of an object is dependent on the object itself, its location in
the environment and the task of the system. This is the reason why we
introduced an object hierarchy and started with simple point and line
features for object modeling. Then we extended them to kinematic
chains (comparable to [4]) and used the concept of coupled twists to
model cycloidal curves and surfaces [22, 7] as higher order features for
object representation. Then we showed the direct connection between
these kinematically generated curves to 3D contours represented by
Fourier descriptors [1] and ended up in silhouette based pose estima-
tion of objects modeled by free-form contours. Missing in [29] is the
extension to pose estimation of free-form surface models. The aim of
this report is to close this gap.

In this report we investigate an approach for pose estimation of free-form
surface models. We quote Besl [3] for a definition of free-form surfaces:

Definition 1.2 A free-form surface has a well defined surface that is con-
tinuous almost everywhere except at vertices, edges and cusps.

For geometric and topological classifications of surfaces see [17]. We start
with the description of objects as 2-parametric surfaces and introduce a
Fourier representation which allows us to use a low-pass approximation of
the object model. Then we introduce the pose estimation algorithm and
start with a silhouette based approach. Finally, we continue to use addi-
tional internal features for stabilizing the estimation results.
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Before we can introduce this extension of the pose estimation of free-
form surface models, we have to summarize basic notations, algorithms and
formalizations in the next chapter. This will also be necessary because the
later introduced pose estimation algorithm for surface models goes back to
a contour based algorithm.
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2. PREVIOUS WORKS

In this section we summarize parts of our previous works [29]. We start with
a brief introduction into geometric algebras (GAs), but will only introduce
the main definitions and notations. A more detailed introduction can be
found in [29, 27, 5, 28, 33, 15]. The second section introduces the point
based pose estimation, starting with the basic constraint equation and its
analysis. Then we consider the twist-approach for pose estimation. The third
section summarizes the contour based free-form pose estimation algorithm.
We start with the representation of 3D free-form contours within a Fourier
model. Furthermore, we introduce the ICP-algorithm for tracking objects
and present some extensions (e.g. outlier elimination).

2.1 Geometric algebras

What is currently called geometric algebra [15] can be seen as a Clifford1

algebra with its main focus on a suited geometric interpretation. Clifford’s
contribution of inventing a geometric extension of the real number system
to a complete algebraic representation of directed numbers is historically
reviewed by M. Yaglom in [36]. In [36] there is also enlightened the relation
to former works of Grassmann (1809-1877) or Hamilton (1805-1865). The
term geometric algebra was introduced by David Hestenes in the 1960’s, who
further developed Clifford algebra in classical geometry and mechanics.

Clifford (or geometric) algebras have the properties of compact symbolic
representations of higher order entities and of linear operations acting on
those. A higher order entity can be seen as a subspace of a vector space
with own algebraic representation. This means, e.g. lines and planes are
so-called higher order entities which are represented as unique elements in a
Clifford algebra. Furthermore, many geometric concepts which are often in-
troduced separately in special algebras are unified in geometric algebras. So
the concepts of duality in projective geometry, Lie algebras and Lie groups,
incidence algebra, Plücker representations of lines, complex numbers, quater-
nions and dual quaternions can all be found in suitable geometric algebras

1 William K. Clifford (1845-1879).
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with associated splits.

In general a geometric algebra Gp,q,r (p, q, r,∈ IN0) is a linear space of
dimension 2n, n = p+ q + r, with a subspace structure, called blades, to rep-
resent so-called multivectors as higher grade algebraic entities in comparison
to vectors of a vector space as first grade entities. A geometric algebra Gp,q,r

is constructed from a vector space IRp,q,r, endowed with the signature (p, q, r),
by application of a geometric product. The notation Gp,q,r(IR

p,q,r) is some-
times used to stress the vector space and its signature the geometric algebra
is built from. The product defining a geometric algebra is called geometric
product and is denoted by juxtaposition, e.g. AB for two multivectors A

and B. The geometric product of vectors consists of an outer (∧) product
and an inner (·) product. Their effect is to increase or to decrease the grade
of the algebraic entities, respectively.

To be more detailed, let ei and ej (ei, ej ∈ IRp,q,r ) be two orthonormal
basis vectors of the vector space. Then the geometric product for these
vectors of the geometric algebra Gp,q,r is defined as

eiej :=





1 ∈ IR for i = j ∈ {1, . . . , p}
−1 ∈ IR for i = j ∈ {p + 1, . . . , p + q}
0 ∈ IR for i = j ∈ {p + q + 1, . . . , n}
eij for i 6= j,

(2.1)

with eij = ei ∧ ej = −ej ∧ ei. The geometric product of the same two basis
vectors leads to a scalar, whereas the geometric product of two different
basis vectors leads to a new entity, which is called a bivector. This bivector
represents the subspace, spanned by these two vectors.

Geometric algebras can be expressed on the basis of graded elements.
Scalars are of grade zero, vectors of grade one, bivectors of grade two, etc. A
linear combination of elements of different grades is called a multivector M

and can be expressed as

M =
n∑

i=0

〈M〉i, (2.2)

where the operator 〈.〉s denotes the projection of a general multivector to the

entities of grade s. The dimension of the subspace of grade i is

(
n

i

)
. A

multivector of grade i is called an i-blade if it can be written as the outer pro-
duct of i vectors. This means in general that every i-blade is a homogeneous
multivector of grade i but not vice versa. A multivector A of grade i is
sometimes written as A〈i〉.



2.1. Geometric algebras 17

The inner (·) and outer (∧) product of two vectors u, v ∈ 〈Gp,q〉1 ≡ IRp+q

are defined as

u · v :=
1

2
(uv + vu), (2.3)

u ∧ v :=
1

2
(uv − vu). (2.4)

Here α = u · v ∈ IR is a scalar, which is of grade zero, i.e. α ∈ 〈Gp,q〉0.
Besides, B = u ∧ v is a bivector, i.e. B ∈ 〈Gp,q〉2.

As extension the inner product of a r-blade u1 ∧ . . . ∧ ur with a s-blade
v1 ∧ . . . ∧ vs can be defined recursively as

(u1 ∧ . . . ∧ ur) · (v1 ∧ . . . ∧ vs) ={
((u1 ∧ . . . ∧ ur) · v1) · (v2 ∧ . . . ∧ vs) if r ≥ s

(u1 ∧ . . . ∧ ur−1) · (ur · (v1 ∧ . . . ∧ vs)) if r < s,
(2.5)

with

(u1 ∧ . . . ∧ ur) · v1 =
r∑

i=1

(−1)r−iu1 ∧ . . . ∧ ui−1 ∧ (ui · v1) ∧ ui+1 ∧ . . . ∧ ur, (2.6)

ur · (v1 ∧ . . . ∧ vs) =
s∑

i=1

(−1)i−1v1 ∧ . . . ∧ vi−1 ∧ (ur · vi) ∧ vi+1 ∧ . . . ∧ vs. (2.7)

The blades of highest grade are n-blades, called pseudoscalars. Pseu-
doscalars differ from each other by a nonzero scalar only. For non-degenerate
geometric algebras there exist two unit n-blades, called the unit pseudoscalars
±I.

The magnitude [P ] of a pseudoscalar P is a scalar. It is called bracket of
P and is defined as

[P ] := PI−1. (2.8)

For the bracket determined by n vectors it is convenient to write

[v1 . . .vn] = [v1 ∧ . . . ∧ vn]

= (v1 ∧ . . . ∧ vn)I−1. (2.9)

This can also be taken as a definition of a determinant, well known from
matrix calculus.
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The dual X⋆ of a r-blade X is defined as

X⋆ := XI−1. (2.10)

It follows that the dual of a r-blade is a (n − r)-blade.
The reverse Ã〈s〉 of a s-blade A〈s〉 = a1∧ . . .∧as is defined as the reverse

outer product of the vectors ai,

Ã〈s〉 = (a1 ∧ a2 ∧ . . . ∧ as−1 ∧ as)
∼

= as ∧ as−1 ∧ . . . ∧ a2 ∧ a1. (2.11)

The join A∧̇B is the pseudoscalar of the space given by the sum of spaces
spanned by A and B.

For blades A and B it is possible to use the join to express meet opera-
tions: Let A and B be two arbitrary blades and let J = A∧̇B, then

A ∨ B :=
(
AJ−1 ∧ BJ−1

)
J , (2.12)

defines the meet ∨, also called the shuffle product, which is a common factor
of A and B with the highest grade.

For later computations, the commutator product, ×, and the anticom-
mutator product, ×, for any two multivectors are used,

AB =
1

2
(AB + BA) +

1

2
(AB − BA) =: A×B + A×B. (2.13)

The reader should consult [27] to become more familiar with the commutator
and anticommutator product. Their role is to separate the symmetric part
of the geometric product from the antisymmetric one.

The algebra we use to deal with the pose estimation problem is the con-
formal geometric algebra. Therefore we now give a brief introduction into
this algebra.

2.2 Conformal geometric algebra

The basic idea behind this algebra are stereographic projections: Simply
speaking, a stereographic projection is one way to generate a flat map of the
earth. A stereographic projection has a clear geometric description and is
visualized for the 1D case in figure 2.1: Think of the earth as a transparent
sphere, intersected on the equator by an equatorial plane. Now imagine a
light bulb at the north pole n, which shines through the sphere. Each point
on the sphere casts a shadow on the paper and that is where it is drawn on
the map. The interception theorems can be applied to achieve the following
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e1

x

e

s

y’

y

a

+

Fig. 2.1: Visualization of a stereographic projection for the 1D case: Points
on the circle are projected onto the line or vice versa.

formulas for projecting a point on a unit circle and vice versa: A point x′ on
the circle is given by its angle α:

x′ = ae1 + be+

= cos(α)e1 + sin(α)e+. (2.14)

The point on the line then has the coordinates

x =

(
cos(α)

1 − sin(α)

)
e1 + 0e+. (2.15)

To project a point xe1 (x ∈ IR) onto the circle the following equation holds
[26],

x′ = ae1 + be+

=
2x

x2 + 1
e1 +

x2 − 1

x2 + 1
e+. (2.16)

Using homogeneous coordinates (i.e. using the additional basis vector e),
the three basis vectors e1, e+ and e are now spanning the considered ho-
mogeneous model of the conformal space. This leads to a homogeneous
representation of the point on the circle as

x′ = xe1 +
1

2

(
x2 − 1

)
e+ +

1

2

(
x2 + 1

)
e. (2.17)
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b

x’
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s

Fig. 2.2: Visualization of the homogeneous model for stereographic projec-
tions for the 1D case. All stereographically projected points lie on
a cone, which is a null-cone in the Minkowski space. Note that in
comparison to figure 2.1 the coordinate axes are rotated and drawn
perspectively.

In [21] e is defined to have a negative signature, and therefore e is replaced
with e−, whereby e

2
− = −1. This has the advantage that in addition to

using a homogeneous representation of points, they are further embedded in
a Minkowski space. Euclidean points, stereographically projected onto the
unit circle in figure 2.2, are unit points and then represented by the set of
null vectors in the new space. A Euclidean point is mapped to the conformal
space by

x ⇒ x′ = ae1 + be+ + e−, (2.18)

with

(x′)2 = a2 + b2 − 1 = 0. (2.19)

The coordinates (a, b) are the coordinates of a point on the unit circle. Note
that each point in Euclidean space is in fact represented by a line of null
vectors in the new space: the scaled versions of the null vector on the unit
circle. This homogeneous representation of a point is used as point in the
conformal geometric algebra. This is shown in figure 2.2.

To introduce CGA, we follow [21] and start with a Minkowski plane, G1,1.
Its vector space IR1,1 has the orthonormal basis {e+, e−}, defined by the
properties

e
2
+ = 1, e

2
− = −1, e+ · e− = 0. (2.20)
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Entity Representation G. Dual representation G.
Sphere s = p + 1

2 (p2 − ρ2)e + e0 1 s⋆ = a ∧ b ∧ c ∧ d 4
Point x = x + 1

2x2
e + e0 1 x⋆ = (−Ex − 1

2x2
e + e0)IE 4

Plane P = nIE − de 1 P ⋆ = e ∧ a ∧ b ∧ c 4
n = (a − b) ∧ (a − c)
d = (a ∧ b ∧ c)IE

Line L = rIE + emIE 2 L⋆ = e ∧ a ∧ b 3
r = a − b

m = a ∧ b

Circle z = s1 ∧ s2 2 z⋆ = a ∧ b ∧ c 3
P

z
= z · e, L⋆

z
= z ∧ e

p
z

= P
z
∨ L

z
, ρ =

z2

(e∧z)2

Point Pair PP = s1 ∧ s2 ∧ s3 3 PP ⋆ = a ∧ b, X⋆ = e ∧ x 2

Tab. 2.1: The entities and their dual representations in CGA.

In addition, a null basis can now be introduced by the vectors

e0 :=
1

2
(e− − e+) and e := e− + e+. (2.21)

We use these two additional basis vectors to define the conformal geometric
algebra, G4,1, for the 3D case. The algebra G4,1 contains 25 = 32 elements.
We further denote the conformal unit pseudoscalar as

IC = e+−123 = Ee123 = EIE . (2.22)

The points of the CGA, x, are related to those of the Euclidean space x by

x = x +
1

2
x2

e + e0. (2.23)

Evaluating x leads to

x = x +
1

2
x2

e + e0

= x +
1

2
x2(e+ + e−) +

1

2
(e− − e+)

= x +
(

1

2
x2 − 1

2

)
e+ +

(
1

2
x2 +

1

2

)
e−. (2.24)

This is exactly the homogeneous representation of a stereographically pro-
jected point onto the circle, given in equation (2.17) for the 1D case. A point
is only more compactly written by using {e, e0}, instead of {e+, e−}.

Since we now have the basic representation of a point in CGA we are able
to define other entities based on this point representation. The entities and
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Type G(x) on IRn Versor in Gn+1,1 σ

Reflection −nxn + 2nδ V = n + eδ 1

Inversion ρ2

x−c + c V = c − 1
2
ρ2

e

(
x−c

ρ

)2

Rotation RxR−1 R = exp
(
−θ

2
n
)

1

Translation x − t T t = 1 + 1
2
te 1

Transversion x−x2t
σ(x)

Kt = 1 + te0 1 − 2t · x + x2t2

Dilation λx Dλ = exp(−1
2
E(ln λ)) λ−1

Involution x⋆ = −x E −1

Tab. 2.2: Table of conformal transformations, versors and scaling parameters.

their dual representation are summarized in table 2.1. This table is taken
from [29, 21]. As can be seen, it is possible to express points, line, planes,
circles, spheres and point pairs in this algebra. Lines are given in Plücker
form (direction r and moment m) and planes are given in Hessian form
(normal n and distance d).

2.2.1 Conformal transformations

In CGA, any conformal transformation can be expressed in the form

σx′ = GxG−1, (2.25)

where G is a versor and σ a scalar. Table 2.2, taken from [29, 21], summarizes
the conformal transformations. The first column shows the type of operation
performed with the versor product. The second column shows as example
the result of a transformation acting on a point. The third column shows
the versor which has to be applied and the last column shows the scaling
parameter σ which is (sometimes) needed to result in a homogeneous point
and to ensure the scaling x′ · e = x · e = −1.

To express the pose estimation problem, we need a versor to express
the rigid body motion. As mentioned previously, a rigid body motion cor-
responds to the Euclidean transformation group SE(3). Although being a
transformation by itself, it subsumes rotation and translation. The rotation
of an entity can be performed just by multiplying the entity from the left with
the rotor R ∈ 〈G4,1〉2 and from the right with its reverse R̃. For example, a
rotation of a point can be written as

x′ = RxR̃. (2.26)
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The rotor R is given as

R = exp

(
−θ

2
n

)

= cos

(
θ

2

)
− n sin

(
θ

2

)
. (2.27)

Here n is a unit bivector representing the plane of the rotation (its dual n⋆

corresponds to the rotation axis) and θ ∈ IR represents the amount of rota-
tion. The negative value −θ in the rotor is used to gain a counter clockwise
rotation and therewith a mathematically positive rotation.

To translate an entity with respect to a translation vector t ∈ 〈G3〉1, it is
possible to use a so called translator, T ∈ 〈G4,1〉2,

T = (1 +
et

2
) = exp

(
et

2

)
. (2.28)

Similar to a rotation, an entity can be translated by multiplying the entity
from the left with the translator T and its reverse T̃ from the right,

x′ = TxT̃ . (2.29)

To express a rigid body motion, the consecutive application of a rotor and
translator can be written as their product. Such an operator is denoted as
M ,

M = TR. (2.30)

It is a special even grade multivector, called a motor.
Now follows a further definition of a motor in CGA based on the so-called

twists. The idea is to interpret a motor as an element of the Lie group of rigid
body motion and to construct it by exponentiation of its generator as a Lie
algebra member. In fact, the mentioned twist is the generator of the motor.
So every rigid body motion can be expressed as a twist or screw motion [25],
which is a rotation around a line in space (in general not passing through the
origin)2 combined with a translation along this line. In CGA it is possible
to use the rotors and translators to express screw motions in space. A screw
motion is defined by an axis l⋆, a pitch h and a magnitude θ. The pitch of
the screw is the ratio of translation to rotation, h := d

θ
(d, θ ∈ IR, θ 6= 0). If

h → ∞, then the corresponding screw motion consists of a pure translation
along the axis of the screw. The resulting motor takes the form [29]

M = exp

(
−θ

2
(l + em)

)
. (2.31)

2 Such an operation is also called a general rotation.
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The bivector in the exponential part, −θ
2
(l + em), is a twist. The vector

m is a vector in IR3 which can be decomposed in an orthogonal and parallel
part with respect to the rotation axis n = l⋆. If m is zero, the motor M

gives a pure rotation and if l is zero, the motor gives a pure translation. For
m ⊥ l⋆, the motor gives a general rotation and for m 6⊥ l⋆, the motor gives
a screw motion.

2.3 Point based pose estimation

Now we have introduced the foundations of the used mathematical framework
and we are able to express the 2D-3D pose estimation problem for point
correspondences: Recalling figure 1.2, we have the following assumptions:
We assume to have extracted 2D image points, e.g. corners of a calibrated
camera and know their correspondence to 3D points, e.g. corners of the
assumed object model. To compare these features, we reconstruct projection
rays from the image points and claim that the transformed 3D points must
be incident with the reconstructed rays. This can be expressed in CGA in the
following way: Let X ∈ G4,1 be an object point. The (unknown) transformed
point can be written as

X ′ = MXM̃ . (2.32)

Let x ∈ G2,1 be an image point. The projective reconstruction of the ray
based on this point can be written as

Lx = e ∧ O ∧ x ∈ G4,1. (2.33)

The vector O ∈ G3,1 denotes the optical center of the camera. It leads to
a Plücker representation of a line given with its direction and moment. By
using the commutator product (×) we can now compare the transformed
object point with the 3D projection ray. In [29] we have further shown,
that this is a well suited constraint equation since it expresses a 3D distance
measure between the line and the point in 3D, as shown in figure 2.3. The
constraint equation for pose estimation from 2D-3D point correspondences
can now be expressed in the following way:

λ( (M X︸︷︷︸
object point

M̃)

︸ ︷︷ ︸
rigid motion of the object point

× e ∧ ( O︸︷︷︸
optical center

∧ x︸︷︷︸
image point

)

︸ ︷︷ ︸
projection ray,

reconstructed from the image point︸ ︷︷ ︸
collinearity of the transformed object

point with the reconstructed line

) · e+

︸ ︷︷ ︸
distance measure between 3D point and 3D line

= 0. (2.34)
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Fig. 2.3: The comparison of the 3D line with the 3D point leads to the 3D
perpendicular error vector.

2.3.1 Numerical estimation of pose parameters

In this section we explain our approach for numerical pose estimation. Since
the unknown rigid motion is given as exponential function it can not directly
be solved in a fast way. Therefore, we linearize the equations (which means
we go to the Lie algebra) and iterate the solutions. This results in a gradient
descent method. The Euclidean transformation of a point X caused by the
motor M is approximated in the following way:

MXM̃ = exp

(
−θ

2
(l′ + em′)

)
X exp

(
θ

2
(l′ + em′)

)

≈ (1 − θ

2
(l′ + em′))X(1 +

θ

2
(l′ + em′))

≈ E + e(x − θ(l′ · x) − θm′). (2.35)

Setting l := θl′ and m := θm′ results in

MXM̃ ≈ E + e(x − l · x − m). (2.36)

By combining this approximation of the motion with the previously derived
constraints (e.g. the point-line constraint) we get

0 = MXM̃ × L

⇔ 0 = exp

(
−θ

2
(l′ + em′)

)
X exp

(
θ

2
(l′ + em′)

)
× L

⇐≈⇒ 0 = (E + e(x − l · x − m))× L

⇔ 0 = λ(E + e(x − l · x − m))× L. (2.37)

Because of the approximation (⇐≈⇒) the unknown motion parameters l

and m are linear. This equation contains six unknown parameters of the
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rigid body motion. These unknowns are the unknown twist parameters. The
linear equations can be solved for a set of correspondences by applying e.g.
the Householder method. From the solution of the system of equations, the

motion parameters R, t can easily be recovered by evaluating θ := ‖l‖, l′ := l
θ

and m′ := m
θ

: Separating m′ into a part t · l perpendicular to n = l′⋆ and
d
θ
n parallel to n,

m′ = t · l′ − d

θ
n,

leads to

M = exp

(
−θ

2
(l′ + em′)

)

= exp


−

θ

2


l′ + e(t · l′ − d

θ
n

︸ ︷︷ ︸
m′

)







= exp

(
edn

2
− θ

2
(l′ + e(t · l′))

)

= exp

(
edn

2

)
exp

(
−θ

2
(l′ + e(t · l′))

)

= T dnTRT̃ .

Note, that exp
(
−θ

2
(l + e(t · l))

)
gives a general rotation (a rotation around

a line in space) which can be separated in TRT̃ , see [29] for details. Since
now, everything is expressed in terms of rotors and translators, there is no
need to estimate the exponential function of a multivector, but just of cosine
and sine functions on the real numbers. Therefore, the motor M can be
recovered very fast from the parameters θ, l′ and m′. In matrix calculus
this results in a similar manner on the application of the Rodrigues’ formula
[25, 10].

Experiments and examples of this approach can be found in [29].

2.4 Pose estimation of free-form contours

So far we have introduced the basic pose estimation algorithm for 2D-3D
point correspondences. Now we directly switch to our proposed model for
3D contour representation and present the algorithm for pose estimation of
3D free-form contours.
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Fig. 2.4: Visualization of contour modeling and approximation by using three
1D Fourier transformations.

Fourier descriptors can be used for object recognition [12] and affine in-
variant pose estimation [2] of closed contours. They have the advantage of
a low-pass object representation (as explained later) and they interpolate
sample points along a contour as a continuously differentiable function. Dur-
ing our research we rediscovered the use of Fourier descriptors since they
are the generalization of so-called twist-generated curves we used to model
cycloidal curves (cardioids, nephroids etc.) within the pose problem [29].
We now deal with the representation of 3D free-form contours in order to
combine these with our previously introduced point based pose estimation
constraints. Since the later introduced pose estimation algorithm for surface
models goes back to a contour based one, the recapitulation of our former
works on contour based pose estimation is of importance.

The main idea is to interpret a one-parametric 3D closed discrete curve,
represented by a finite set of contour points as three separate 1D signals which
represent the projections of the curve along the x, y and z axis, respectively.
Since the curve is assumed to be closed, the signals are periodic and can
be analyzed by applying a 1D discrete Fourier transform (1D-DFT) and an
inverse discrete Fourier transform (1D-IDFT) on each signal. Subject to the
sampling theorem, this leads to the representation of the curve C(φ) as

C(φ) =
3∑

m=1

N∑

k=−N

pm
k exp(

2πkφ

2N + 1
lm).

In this equation we have replaced the imaginary unit i =
√
−1 with three

different rotation planes, represented by the bivectors li, with li
2 = −1. The

vectors pk are the phase vectors obtained from the 1D-DFT. Using only a low-
index subset of the Fourier coefficients results in a low-pass approximation
of the object model which can be used to regularize the pose estimation
algorithm. The principle of modeling free-form contours is visualized in figure
2.4.
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15 211 8

Fig. 2.5: Pose results of the low-pass filtered contour during the iteration.

Fig. 2.6: Different pose results for distorted image data. The first row shows
results obtained with the non-modified ICP algorithm. The second
row shows pose results obtained with the outlier-elimination during
the ICP algorithm.

For pose estimation this model is then combined with a version of an
ICP-algorithm (iterative closest point) [38]. Using the approach for pose
estimation of point-line correspondences, the algorithm for pose estimation
of free-form contours consists of iterating the following steps:

(a) Reconstruct projection rays from the image points.

(b) Estimate the nearest point of each projection ray to a

point on the 3D contour.

(c) Estimate the pose of the contour by using this

correspondence set.

(d) goto (b).

The idea is, that all image contour points simultaneously pull on the 3D
contour. But whereas ICP algorithms are mostly applied to sets of 2D or
3D points, here it is applied to a trigonometric interpolated function and
to 3D projection rays, reconstructed from image points. Figure 2.5 shows
an example. As can be seen, we refine the pose results by using a low-
pass approximation for pose estimation and by adding successively higher



2.4. Pose estimation of free-form contours 29

frequencies during the iteration. This is basically a multi-resolution method
and helps to avoid local minima during the iteration.

The robustness of the algorithm with respect to distorted image data is
shown in figure 2.6. In this image sequence the image contour is distorted
by covering parts of the contour with a white paper. This leads to minor or
major errors during the contour extraction in the image. The first row of fig-
ure 2.6 shows the results obtained with a non-modified ICP-algorithm. Since
we have already clarified that the constraint equations express a geometric
distance measure in the 3D space, it is easy to detect outliers and implement
an algorithm which automatically detects outliers and eliminates their equa-
tions. Some results of the modified algorithm are shown in the second row
of figure 2.6. We call this procedure the outlier-elimination method. As can
be seen, the obtained results are much better. But indeed, these examples
give just a guess about the stability of the proposed method. It is not pos-
sible to compensate totally wrong extracted contours or too much missing
information. Further experiments of this approach can also be found in [30].



30 2. Previous works



3. POSE ESTIMATION OF

FREE-FORM SURFACE MODELS

In this section we present our extensions: We start with the representation of
free-form surfaces and will then explain the basic pose estimation algorithm.

3.1 Surface representation

We are concerned with the formalization of free-form surfaces in the frame-
work of the 2D Fourier transformation. This enables us to gain a low-pass
object description and therefore to regularize the estimation. Then we can
refine the object model during iteration steps. Hence the multi-scale ob-
ject representation can be adapted to its inherent geometric complexity. We
assume a two-parametric surface [6] of the form

F (φ1, φ2) =
3∑

i=1

f i(φ1, φ2)ei.

This means, we have three 2D functions f i(φ1, φ2) : IR2 → IR acting on
the different Euclidean base vectors ei (i = 1, . . . , 3). The idea behind a
two-parametric surface is to assume two independent parameters φ1 and φ2

to sample a 2D surface in 3D space. Projecting this function along e1, e2

and e3, it leads to the three 2D functions f i(φ1, φ2). In fact, we are using
a mesh model of the object [6]. For a discrete number of sampled points,
f i

n1,n2
, (n1 ∈ [−N1, N1]; n2 ∈ [−N2, N2]; N1, N2 ∈ IN, i = 1, . . . , 3) on the

surface, we can now interpolate the surface by using a 2D discrete Fourier
transform (2D-DFT) and then apply an inverse 2D discrete Fourier transform
(2D-IDFT) for each base vector separately. Subject to the sampling theorem,
the surface can therefore be written as a series expansion which appears in
geometric algebra as

F (φ1, φ2) =
3∑

i=1

N1∑

k1=−N1

N2∑

k2=−N2

pi
k1,k2

exp

(
2πk1φ1

2N1 + 1
li

)
exp

(
2πk2φ2

2N2 + 1
li

)

=
3∑

i=1

N1∑

k1=−N1

N2∑

k2=−N2

R
k1,φ1

1,i R
k2,φ2

2,i pi
k1,k2

R̃
k2,φ2

2,i R̃
k1,φ1

1,i .
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Fig. 3.1: Visualization of surface modeling and approximation by using three
2D Fourier transformations.

The complex Fourier coefficients are contained in the vectors pi
k1,k2

that lie
in the plane spanned by li. We call them phase vectors. These vectors can
be obtained by a 2D-DFT of the sample points f i

n1,n2
on the surface,

pi
k1,k2

=
1

(2N1 + 1)(2N2 + 1)
N1∑

n1=−N1

N2∑

n2=−N2

f i
n1,n2

exp

(
− 2πk1n1

2N1 + 1
li

)
exp

(
− 2πk2n2

2N2 + 1
li

)
ei.

This is visualized in figure 3.1 as extension to the 1D case of figure 2.4: a
two-parametric surface can be interpreted as three separate 2D signals inter-
polated and approximated by using three 2D-DFTs and 2D-IDFTs. Figure
3.2 shows approximation levels of a car model.

3.2 The algorithm for silhouette based pose estimation of

free-form surfaces

We now continue with the algorithm for silhouette based pose estimation of
surface models.

In our scenario, we assume to have extracted the silhouette of an object in
an image. In the experiments this is simply done by using a thresholded color
interval and by smoothing the resulting binary image with morphological
operators.
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Fig. 3.2: Low-pass approximations of an example object model.

Fig. 3.3: A main problem during pose estimation of surface models: There
is need to express tangentiality between the surface and the recon-
structed projection rays. Pure intersection is not sufficient for pose
estimation.

There is a problem to be considered: It is not useful to express an inter-
section constraint between the reconstructed projection rays and the surface
model. This is visualized in figure 3.3: Postulating the intersection of rays
with the surface leads to the effect, that the object is moved directly in front
of the camera. Then every reconstructed ray intersects the surface and the
constraint is trivially fulfilled. Therefore there is need to express tangential-



34 3. Pose Estimation of Free-form Surface Models

(0,0)

(1,1)

(1,2)
(1,3) (1,4)

(2,1)

(2,2)
(2,3) (2,4)

(3,2)
(3,3) (3,4)

(3,1)

(4,2)

(4,1)

(4,3) (4,4)
(1,1)

(1,2)
(1,3) (1,4)

(2,1)

(2,2)
(2,3) (2,4)

(3,2)
(3,3) (3,4)

(3,1)

(4,2)

(4,1)

(4,3) (4,4)

(i ,j) −> (x,y,z)

(x,y)

I

F : (x,y)−>(i,j)

(m,n)

(0,0)

(m,n)

C :

Fig. 3.4: To determine the 3D position of a 2D image node, a field F is
used, which stores the relation of image points to the 3D mesh.
C(F (x, y)) gives the 3D coordinates of a node (x,y) on the image.

ity between the surface and the reconstructed projection rays and there is
need to express a distance measure within our description.

To solve this problem we propose to get a contour model from the surface
model which is tangential with respect to the camera coordinate system. To
compare points on the image silhouette with the surface model, the idea is
to work with those points on the surface model which lie on the outline of a
2D projection of the object. This means we are considering the 3D silhouette
of the surface model with respect to the camera. To obtain this, we project
the 3D surface on a virtual image. Then the contour is calculated and from
the image contour the 3D silhouette of the surface model is reconstructed.
To obtain the 3D silhouette, there is need to get from the image of a node
point to its 3D value. This is done with the help of an additional field F : The
basic principle is visualized in figure 3.4: First we assume a contour C(i, j) →
(x, y, z) which gives the 3D coordinates of the surface node for the two time
parameters (i, j). This contour model is projected with the projection matrix
in a virtual image, I. The model is projected with connecting line segments
between the surface nodes and the nodes themselves are projected in another
gray-scale value. This is shown in the close-ups of figure 3.5. Then we reserve
a 2D field F with the size of the image (n, m) and save in the field for every
node on its pixel position (x, y) the time parameters (i, j) of the surface. This
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Fig. 3.5: Left: The surface model projected on a virtual image. Right: The
estimated 3D silhouette of the surface model, back projected in an
image.

Reconstruct projection rays from image points
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Estimate the 3D silhouette

Estimate the nearest point of each ray to the 3D contour
Use correspondence set to estimate the contour pose
Transform the contour model

Transform the surface model

Fig. 3.6: The algorithm for pose estimation of surface models.

means, that we can detect the 3D surface point for a given surface node on
the image with the help of the field F and the function C, since C(F (x, y))
gives the 3D coordinates of the node image point, (x, y). To gain the 3D
silhouette points we use a contour algorithm which follows the image of the
mesh model by a recursive procedure. Then the nodes of the mesh model are
collected (this is easy, since they are projected in another gray-scale value
than the connecting line segments) from which the corresponding 3D-outline
is calculated with the help of F . This is visualized in figures 3.4 and 3.5.
The contour model is then applied on our previously introduced contour
based pose estimation algorithm. Since the aspects of the surface model are
changing during the ICP-cycles, a new silhouette will be estimated after each
cycle to deal with occlusions within the surface model. The algorithm for pose
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Fig. 3.7: Pose results of the low-pass contours during the ICP cycle.

estimation of surface models is summarized in figure 3.6. The convergence
behavior of the silhouette based pose estimation algorithm is shown in figure
3.7. As can be seen, we refine the pose results by adding successively higher
frequencies during the iteration. This is basically a multi-resolution method
and helps to avoid getting stuck in local minima during the iteration.

3.3 Experiments on one-component silhouette based

pose estimation

This section presents experiments to the previously introduced pose estima-
tion algorithm for free-form surface models.

3.3.1 Turntable experiment of a car model

The first experiment deals with a quantitative error analysis of the surface
based pose estimation algorithm. The aim is not only to visualize the pose
results, but also to compare the pose results with a ground truth. The
experiment is organized as follows:

We put a car model on a turntable and perform a 360 degrees rotation on
the turntable. We further have a 3D surface model of the car and a calibrated
camera system observing the turntable. The rotation on the turntable cor-
responds to a 360 degrees rotation along the y-axis in the calibrated camera
system. During the image sequence we apply the surface based free-form
pose estimation algorithm. Example images (and pose results) of this se-
quence with extracted image silhouettes are shown in figure 3.8. As can be
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Fig. 3.8: Pose results of the image sequence and the used extracted image sil-
houettes. Note the extraction errors which occur because of shadows
and other fragments.
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Fig. 3.9: Comparison of the ground truth of the movement with the estimated
movement. Since a 360 degrees turn is performed, the cosine of the
angles leads to exactly one cosine period.

seen, there exist shadows under the car, which lead to noisy segmented im-
ages. Also some parts of the car (e.g. the front bumper or the tow coupling)
are not exactly modeled. This means, that there are errors in the image
sequence, which are detected during pose estimation.

The aim is now to gain a quantitative error measure of the pose results.
To visualize the estimated pose in a quantitative manner, we make use of
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Fig. 3.10: The absolute error between the ground truth and the estimated
angle in degrees. The maximum error is 5.73 degrees and average
error is 1.29 degrees.

the a priori knowledge of the car movement and compare the angle of the
turntable with the estimated y-angle of the car pose. The cosine of these
angles is visualized in figure 3.9. As can be seen, the estimated angles are
close to the real angles and the ground truth is exactly one cosine period.

Figure 3.10 shows the absolute error between the ground truth and the
estimated angle in degrees during the whole image sequence. In the im-
age sequence, the maximum error is 5.73 degrees (at the beginning of the
sequence). The average absolute error of the image sequence is 1.29 degrees.

This result must be seen in relation to the noisy extracted image data
(figure 3.8) and is therefore a good result. The errors are mainly dependent
on the quality of image feature extraction, the calibration quality and the
accuracy of the object model.

3.3.2 Stability with respect to image noise

The next experiment enlightens the stability of our algorithm with respect
to noisy extracted image data.

The estimation of the silhouette is so far a very simple approach: Just
a threshold is assumed for the gray-value boundary and a binary image is
extracted from this threshold. In this experiment we analyze the quality of
the pose result in relation to this image segmentation threshold. It is clear
that too much missing or additional information leads to wrong tracking
results, and we give an answer to the sensitivity of our pose algorithm.

The sequence itself contains 300 images and consists of a car on a turntable
performing a 180 degrees rotation. We can compare the angle of the turntable
as ground truth with the estimated angle of the car pose.
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Fig. 3.11: Summary of the stability of the algorithm with respect to different
image thresholds. The relative pose errors and example images are
shown.

The result is summarized in figure 3.11 which will be explained in more
detail:

The first four images show examples of the car during the 180 degrees
rotation to visualize the test scenario. The diagram visualizes the error
between the ground truth and the estimated angles in degrees during the
sequence. The ten images on the right present the silhouette and the pose
result of the last image, to show whether the tracking was successful or
not. The last column shows the used segmentation threshold for the gray-
scale image in the interval [0, . . . , 255] and the average error in degrees. The
extracted silhouettes visualize the difference during image feature extraction.

As can bee seen from the diagram, for 200 images the object is tracked
in a tolerable area with a pose quality of [−5, . . . , 5] degrees. But for the
extreme threshold boundaries (< 60 or > 95) the tracking starts to fail.
The reason is shown in the remaining two silhouettes: Too much additional
and missing information occurs, which can not be compensated from the
algorithm. The best result was achieved with a threshold parameter of 75
leading to an average error of 0.7088 degrees. Note, that the experiments
are performed with an image resolution of 384× 288 pixels and the object is
located approximately one meter in front of the camera. Furthermore a full
object model description is used with changing aspects of the object during
the image sequence. This is a higher complexity compared to often used
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constant aspects during pose estimation.
The threshold-value is an additional parameter within the algorithm which

must be chosen dependently on the scenario. In this experiment we analyzed
the stability of the algorithm with respect to this parameter. It is clear, that
too much missing and additional information leads to instable behavior, but
the main point is to gain a stable behavior of the algorithm within these
boundary values. Since this is achieved (the tracking was always successful
within the boundary values), the algorithm can be called robust with respect
to this parameter.

The result of the experiment is that the tracking is successful for threshold
boundaries within the gray-scale values ]65, 90[. The algorithm can be called
robust with respect to this parameter since small deviations of the threshold
parameter do not lead to instable behavior of the algorithm. The calculated
average and minimum errors show the potential of the algorithm.

It is clear, that there exist far better algorithm for boundary extraction
[8]. The reason why we choose this image pre-processing algorithm is twofold:
On the one hand it is very fast (the image preprocessing takes 12ms) and
therefore it is well suited within our real-time system. On the other hand,
it is a simple approach which leads to non-optimized results. The challenge
is to check the potential of the pose algorithm with such noisy and badly
extracted image data.

3.3.3 Motion boundaries for tracking objects

The next experiment deals with motion boundary conditions for successful
tracking. This means we are interested in the rotations and translations
between two frames which still leads to a stable tracking. For this experiment
we assume well extracted image data, see section 3.3.2.

The experiment is organized as follows: We take the scenario with the
car model, an extracted silhouette and estimate the pose. In the scenario the
camera is located approximately 1 m in front of the object. The object itself
has the length and height of 20 × 12 cm. The images have a resolution of
384× 288 pixel. The pose result is taken as ground truth, see e.g. the upper
left image in figures 3.12 or 3.13. Then we translate or rotate the object
along/around the x, y and z-axes with values between [−70, . . . , 70] mm
and [−40, . . . , 40] degrees, respectively. This means we perform a controlled
motion in space for the virtual object model. After this we estimate the pose
again and test whether the pose estimation was successful or not. As result
we gain point clouds which are shown in figures 3.12 and 3.13. The images
show example motions which still lead to the correct pose.

It is clear, that the success of the tracking is dependent on the object
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Fig. 3.12: The point cloud shows possible translations in space which still
lead to a correct pose. The images on the border visualize the
effect of a couple of 3D translations in the image.

size and the camera location and parameters. For this scene the result is
the following: We are able to track the object model with a motion of up
to 6 cm and 20 − 40 degrees in space. This corresponds to a deviation of
approximately 30 pixel in the image plane. These are the extreme values.
To gain a stable tracking we recommend a motion of max. 3 cm and 15
degrees in space, since in this interval the point clouds are more dense. Fur-
thermore can be seen, that the point cloud for successful tracking is indeed
no sphere in space but a deformed one along the cone of sight. This is easily
understandable since only monocular images are used for pose estimation.

More generally we recommend as rough rule for successful tracking of
objects, that the object should move less then one third of the object size to
gain stable results.

3.3.4 Convergence behavior

In this part we enlighten the convergence behavior for a few test cases. In this
experiment we take the three translational and rotational movements given
by the right images of figures 3.12 and 3.13. This means we use the trans-



42 3. Pose Estimation of Free-form Surface Models

-20
-10

0
10

x

-40

-20

0

20

40

y

-20

-10

0

10

20

z

−13.69, −23.66, −8.71

−18.68, −13.69, 16.21

15.72, 31.67, −4.22

1.2, 1.2, −23.66

0, 0, 0

−23.66, 26.18, −13.69

Fig. 3.13: The point cloud shows possible rotations in space which still lead
to a correct pose. The images on the border visualize the effect of
a couple of 3D rotations in the image.

lational movements (0,−56, 41), (−21, 0, 66) and (−66, 0, 21) (mm) in space
and the rotational movements (−18.68,−13.69, 16.21), (−13.69,−23.66,−8.71)
and (−23.66, 26.18,−13.69) (degrees) in space. Then we start the pose es-
timation algorithm and compare the error with respect to the ground truth
after each pose estimation. Since we have three nested loops (the pose es-
timation, the silhouette based pose estimation and the surface based pose
estimation) we estimate between 80 and 200 poses till the result converges.
For comparison purposes, the nested loops are set to constant number of
iterations. In this case we use 5 iterations for each pose, 6 iterations for each
ICP-cycle and 10 iterations for each contour. The algorithm is stopped for
an error below 1 mm in space. The convergence behavior is shown in figure
3.14.

Three results can be seen: Firstly, the diagrams describe step-functions.
The size of the steps is 5 which shows, that the number of iterations during
pose estimation (the most inner loop) can be reduced significantly. This is
in consistency with our experiments of the convergence behavior of the pure
point-based pose estimation algorithm, where we showed that there are not
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Fig. 3.14: Convergence behavior of three translational (top) and three rota-
tional (bottom) movements.

many iterations needed to converge even to large motions [29].

Secondly can be seen that the translational movements converge faster
than the rotational movements. The reason is, that the aspects of the object
are changing more during rotations than during translations. Therefore the
repeated silhouette estimations are of importance for rotational movements
which are on the outer loop of the iteration algorithm. This is the reason,
why the convergence is slower for rotational movements than for translational
movements.
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Thirdly can be seen that the convergence behavior is not monotonous.
The reason is twofold: firstly does the use of the low-pass information change
the size of the object model since higher frequency parts of the car are ne-
glected. Furthermore is the object moved in space to fit the contour. This
results in poses where the object is moved closer to the camera till it is fitted
to the object by moving it after-wards away from the camera.



4. EXTENSIONS ON POSE

ESTIMATION OF FREE-FORM

OBJECTS

This section deals with extensions of our previously introduced approach for
one-component silhouette based pose estimation of free-form surface mod-
els: We start with multiple component silhouette based pose estimation of
free-form surface models. This means we introduce an algorithm for pose
estimation of objects which are represented by including free-form surface
patches. The second extension concerns the combined use of surface and
contour information as object representation. This means, we explain how
to couple entities of different dimension during pose estimation to stabilize
the pose results. We call the approach multiple component mixed-mode pose
estimation.

4.1 Dealing with multiple free-form surface patches

This part presents an extension of our approach for surface based free-form
pose estimation to multiple surface patches. The reason is that several ob-
jects can be represented by their included free-form parts more easily. As-
sume for example a tea pot. A tea pot (see e.g. figure 4.1) consists of a
handle, a container and a spout.

To deal with these multiple surface patches simultaneously as well as with
occlusions or partial occlusions of the patches requires a modification of the
present free-form pose estimation algorithm.

The main point is that we still work with one virtual 3D silhouette of the
object which is now generated from the including free-form patches. This
requires a modification of the 3D reconstruction algorithm from the virtual
image, but the basic pose estimation algorithm is the same. It is still a
contour based pose estimation algorithm including our outlier elimination
method within the ICP-algorithm:

We assume an extracted image silhouette and start with the reconstruc-
tion of the image contour points to 3D projection rays. This reconstruction
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Fig. 4.1: Low pass approximations of an object model containing multiple
surface patches.

Fig. 4.2: First pose results of the tea pot. The projected object model visu-
alizes the quality of the 3D pose.

is only estimated once for each image. Then the parts of the object model
are projected in a virtual image. Since we assume the surface parts as rigidly
coupled, we extract and reconstruct one 3D silhouette of the surface model.
To obtain this, we use in principle the approach presented in section 3.2,
but the function F , which provides us with the reconstruction information,
is now extended from F (x, y)− > (i, j) to F (x, y)− > (k, i, j), where k gives
the index number of the corresponding contour, see figure 3.4.

Then we apply the 3D contour on our contour based pose estimation
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Fig. 4.3: Example images of the tracked tea pot. The hand grasping the tea
pot leads to outliers during the image silhouette extraction which
are detected and eliminated during the pose estimation.

algorithm, which contains an ICP-algorithm and our gradient descent method
for pose estimation. We then transform the surface model with the pose
calculated from the contour based pose estimation algorithm and increase the
low-pass approximation of each surface patch. Since the aspect of the object
model can change after the iterated rigid transformations, we generate a new
3D silhouette: The algorithm continues with a new projection of the object
model in a virtual image and the loop repeats till the algorithm converges.

Figure 4.1 shows low-pass examples of our used example object model, a
tea pot. Figure 4.2 shows first pose results of the object model. It can be
seen that partially occluded surface parts are no problem for the algorithm.

Figure 4.3 shows further example images during an other image sequence
containing 350 images. The main aspect of this image sequence is to show
that our algorithm is even able to deal with outliers during image processing
which are caused by the human hand grasping the tea pot. This is done by
our outlier elimination method as described in section 2.4.

4.2 Combining contour and surface patches

So far only the observed contour of the object model is used for pose es-
timation. Though the quality of the results is already convincing, there is
the problem of loosing the internal information during the pose estimation.



48 4. Extensions on Pose Estimation of Free-form Objects

Fig. 4.4: Image processing steps for gaining internal object features: Back-
ground subtraction and internal edge detection.

We now present a mixed-mode approach which applies additional edge in-
formation on the silhouette based pose estimation. We call additional edges,
which are not on the outline of the surface contour with respect to the camera,
’internal’ edges, since they are inside the boundary contour in the image. De-
pending on the object, they can be easily obtainable features which we want
to use as additional information to stabilize the pose result. This means to
extend the assumed model from one 3D component to multiple components
of different dimension.

Roughly speaking this means that we are again applying our silhouette
based pose estimation algorithm but extend the generated system of equa-
tions with such equations that are gained through the use of edge information
within the surface model. This requires an extension of our image processing
steps and the used object representation:

4.2.1 Extended image processing

Sofia we use a color-threshold to gain a color blob and use a contour search
algorithm to gain the silhouette of the observed object in the image. To gain
additional internal edge information we proceed as follows:

1. Subtract back-ground from the object

2. Apply a Laplace filter

3. Subtract the contour from the filtered image
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Old algorithm New algorithm

Fig. 4.5: Comparison of pose results of the pure silhouette based pose es-
timation algorithm (left) and the modified one (right) which uses
additional internal edge information.

This is visualized in figure 4.4: The upper left image shows the initial sit-
uation and the non-matched object model overlaid in the image. From the
extracted image color blob (upper middle image) the contour is extracted
(upper right image). Then the background is subtracted (lower left image).
After this we filter the image. We choose an eight-neighborhood Laplace
operator. Then we subtract the contour and gain an edge image as shown in
figure 4.4 lower middle. Using a sub-sampling we gain a number of internal
edges we use for pose estimation as additional information.

4.2.2 Multiple component mixed-mode pose estimation

It is useless to claim incidence of these extracted points with the surface
model since the constraints are trivially fulfilled. Therefore we have to add
additional edge information to the surface model by combining the surface
representation with internal contours representing the object edges (e.g. the
latch edges of the tea pot or the opening of the container).

We then apply the pose estimation algorithm. The generated set of equa-
tions can now be separated in two parts, those obtained from the silhouette
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Fig. 4.6: Example images of the tea pot on the turntable. One image shows
the result after the image processing, the extracted contour and the
used internal feature points. The other image shows the pose result.

and those obtained from the internal feature points:




Equations obtained from the silhouette
to the outline of the object model

Equations from internal edges and the
internal edge contour points




The unknowns are the six parameters of the rigid motion gained through
linearization with respect to its equivalent screw motion. Since both parts
can contain larger mismatches or wrong correspondences (see e.g. the falsely
extracted edges in figure 4.4), we apply again our outlier elimination method
to reduce senseless correspondences.

The effect of the use of such additional information is shown in figure 4.5.
As can be seen, the opening contour of the tea pot is forced to the opening
in the image and is therefore stabilizing the result.

According to our experiments of the car on the turntable we accomplish a
similar one with the tea pot. But now estimate the absolute error in degrees
between the ground truth and the real pose with and without using internal
image information. The result is shown in figures 4.6 and 4.7: Figure 4.6
shows example images during the image sequence and the image processing
results, the used contour and the used internal image features. Figure 4.7
shows the comparison of the estimated pose with the angle of the turntable.
The average error of the pure silhouette based pose estimation algorithm
is 1.319 degrees and the average error by using additional internal features
is 0.949 degrees. In this sequence we use an image resolution of 384 × 288
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Fig. 4.7: The error of the pure silhouette based pose estimation in comparison
with the modified algorithm which uses additional internal object
features. The error measure is the absolute angle error in degrees
during the turntable image sequence.
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Fig. 4.8: Computing time during tracking the tea pot.

pixels and the object is located approximately 1m in front of the camera. The
calibration is performed with a calibration pattern containing 16 manually
tracked reference points leading to a calibration error of 0.9 pixels for the
reference points. This means that we only work with roughly calibrated
cameras and low image resolution which explains the error.
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Indeed the comparison holds for just this scenario. For other objects
the use of additional internal information might be useless or much more
important than the extracted image silhouette. The aim of the experiment
is to show that it is possible to extend our silhouette based pose estimation
algorithm to scenarios which also use internal edge information of the surface
model. To achieve this, we perform an extended image processing to gain
internal edge information and we extend our surface model to a combination
of free-form surface patches and free-form contour parts.

Figure 4.8 shows the computing time of each image during tracking the
tea pot. The average computing time is 205.6 ms and the first image has a
computing time of 247 ms to start the tracking.



5. DISCUSSION

In this report we start with a brief introduction to the 2D-3D pose estimation
problem. This work is an extension to [29] and therefore many foundations
are just briefly explained and scratched. But the basics of Clifford algebras,
point based pose estimation and contour based free-form pose estimation are
completely given. The main point of this contribution is to present a pose
estimation algorithm for free-form surface models which extends our former
works. Therefore, we start with an introduction to our surface representation
by the use of 2D Fourier descriptors. Then we present the basic pose estima-
tion algorithm which goes back to a contour based one by dealing with just
the outline of the object as used object information. This leads to a natural
distance measure of tangentiality between the surface and the reconstructed
projection rays. In the experiments we present results from different image
sequences and analyze the stability with respect to image noise, the used
image processing algorithm and the boundaries of the tracking assumption.
Furthermore we present extensions to the simultaneous use of multiple sur-
face patches. Furthermore, we show how it is possible to use internal contour
information to stabilize the pose result. This basically links contour based
pose estimation with surface based pose estimation and shows the adaptiv-
ity of our chosen approach to arbitrary scenes. Our experiments show the
applicability of our chosen approach to different scenes. The algorithms are
stable with respect to image or object noise. Furthermore is the present
report a natural extension to our former works [29] with all previously devel-
oped advantages (e.g. a low-pass representation of objects). Further works
will deal with coupling this model to kinematic chains. This means that we
are interested in pose estimation of human bodies modeled with free-form
surface patches which contain additional joints. There are lots of interesting
works to follow and we have not utilized all possibilities and extensions of
our chosen approach
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