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ABSTRACT

Neural networks, reinforcement learning systems and evolutionary algorithms
are widely used to solve problems in real-world robotics. We investigate
learning and adaptation capabilities of agents and show that the learning time
required in continual learning is shorter than that of learning from scratch
under various learning conditions. We argue that agents using appropriate
hybridization of learning and evolutionary algorithms show better learning
and adaptation capability as compared to agents using learning algorithms
only. We support our argument with experiments, where agents learn optimal
policies in an artificial robot world.
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1. INTRODUCTION

1.1 Background

When an infant learns how to go and how to stand, it has no explicit teacher,
but it does have a direct sensori-motor connection to its environment. From
this connection, the infant receives a wealth of information about cause and
effect, about consequences of actions, and about what to do in order to
achieve goals. This interaction is a major source of knowledge about our
environment and ourselves. Learning from interaction is a fundamental idea
underlying nearly all theories of learning and intelligence [14]. It is used
by agents at the individual level. In this work, we investigate agents using
learning from interaction. This type of learning is different from supervised
learning, which is learning from examples provided by a knowledgeable ex-
ternal supervisor. Supervised learning is an important type of learning but
alone it is not adequate for learning from interaction. Moreover, it is usually
impractical to obtain examples of desired behavior that are both correct and
representative of all the situations in which the agent has to act and learn
[10].

At the population level, it is clear that parents have inherited the infants
the ability to learn and survive. This inherited ability is developed through
evolution. A generation of an organism can only survive or continue to live
if the population adapts itself to various situations in the environment. This
shows that the learning and adaptation capabilities of agents is also affected
by evolution.

An individual or a population of individuals learn and adapt to a situation
in an environment either from scratch, that is without having any knowledge
about the situation, or continually depending on the initial knowledge about
the situation. At individual level, adaptation refers to the maximization of
the satisfaction of the individual in its life time for different situations in the
environment. At population level, adaptation refers to the survival of the
individual. In other words, it is the ability of the individual to have offspring
under new situation.

Natural evolution implies that organisms adapt to their environment.
Evolution works over many generations, covering much longer periods than
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those of lifetime learning [8]. How could an individual learn to use its eyes if
it hadn’t been equipped with eyes through evolution? An organism without
any organ of sight might not be able to react to visual stimuli, but it could
be the ancestor of a species with eye-like organs. Therefore, evolution can
be considered as a process of meta-learning on a generational level. Only
evolutionary adaptations and innovations enable organisms to “optimally”
react to environmental conditions. This involves an impressive potential for
creativity and innovation.

Reinforcement learning [5] is one form of learning from interaction. It is
learning what to do, how to map situations to actions so as to maximize a
numerical reward signal. The learner is not told which actions to take, but
instead must discover by itself which actions yield the most reward by trying
them [14]. Like the infant, an agent using reinforcement learning learns and
adapts itself through interaction with the environment. In this report, we
use Q-learning [1], which is one form of reinforcement learning, to investigate
the learning and adaptation of agents at individual level.

Evolutionary algorithms are, on the other hand, flavors of the well known
machine learning method called beam search where the machine learning
evaluation metric for the beam is called the ”fitness function” and the beam
of the machine learning is referred to as the ”population” [2]. Like other ma-
chine learning systems, evolutionary algorithms have operators that regulate
the size, contents and ordering of the beam (population). We use genetic al-
gorithms (GA), which are one form of evolutionary algorithms, to investigate
the learning and adaptation of agents at population level.

In this work, we try to answer the following important questions:

1. Is the learning time required by agents shorter in continual learning in
comparison to learning from scratch at both individual and population
levels, and under various learning conditions?

2. Is it possible to improve the learning and adaptation capability of
agents by hybridizing learning and evolutionary algorithms?

We will use agents using Q-learning, hybrid of multi-layer perceptron
(MLP) and genetic algorithm, hybrid of recurrent neural networks and ge-
netic algorithms and hybrid of Q-learning and genetic algorithm respectively
in answering the above questions. The agents live and operate in an artificial
robot world.
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1.2 The Robot World (Test Scenario)

A deterministic world of denumerable states is used as a test scenario to
investigate the learning and adaption capability of an agent. The agent is
assumed to be a point robot with simplified motor actions: left, forward
and right [5]. All actions can be tried in all states. The robot world and
its state of transitions as a function of the present state and action taken,
are shown in figure 1.1. The arrows in the cells show the orientation of the
point robot when the robot finds itself in these states.

The task of the agent is to reach a given goal state through the shortest
path. For reinforcement learning agents, a reward function given any current
state, next state and action, st, st+1 and a, is given by equation (1.1).

Ra
st,st+1

=











0 if st+1 6= st

1 if st+1 = goal state
−1 if st+1 = st

. (1.1)

The negative numerical reward in equation (1.1) discourages agents attempt-
ing an action against the world boundary. This action does not change the
state of the environment. For genetic algorithm, a fitness function given by
equation (1.2) is used.

f (n) = γn. (1.2)

The quantity f represents the fitness value of an individual, γ is a constant
laying in the interval [0, 1), and n is the number of steps taken by the point
robot from a given start state to a given goal state. Equation (1.2) encourages
those individuals that go from the start state to the goal state through a
shortest path. Figure 1.2 shows a fitness function for γ = 0.8. The dynamics
of the robot world, which is described by the state transitions table and the
reward function, is not known to the agents a priori.

The robot world is a very highly simplified scenario of a real robot world.
First, it is impossible to think a dimensionless robot or completely distin-
guishable states. Second, it is not possible to throw the details of low level
control and deal with only simplified motor actions. Even though these as-
sumptions are unrealistic, we base our experiments on artificial robot world
due to the following justifiable reasons:

1. The experiments have to be carried out for a large number of times
for different conditions of learning and adaptation experiments. This
requires a lot of time and energy to execute all the experiments on real
robot until one gets agents with satisfactory behaviors.
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Fig. 1.1: A two-dimensional robot world (a) The robot world. The point
robot must find the shortest path from any start state to the goal
state. (b) The state transitions table that governs the motion of
the point robot. (c) The state flow diagram of the state transi-
tions table. The letters at the sides of the transition lines indicate
the robot’s motor actions F , R and L, which stand for forward ,
right and left motor actions, respectively. (d) The interpreta-
tion of the robot world. The robot world consists of four positions.
In each of these positions, the robot can take one of the four ori-
entations. A robot in state 0 or a robot in position I with orien-
tation north will bump against the world boundary if it executes a
forward action. In this case, the state of the robot world will not
change. If it executes a right action, then it changes its orientation
to east or goes to state 1.
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Fig. 1.2: The fitness function for γ = 0.8. The fitness value of an individual
gets higher as the number of steps taken by the individual gets
smaller.

2. There is a danger of coming up with wrong conclusions with experi-
ments on real robots. This is because of the fact that noise and error
makes certain parts of the agent’s policy to fluctuate.

A more efficient and inexpensive method is, therefore, to run the exper-
iments on an artificial robot world that needs much less experimental effort
and yet to come up with domain free results with respect to our problem at
hand. Of course, for other problems the context dependence of the behavior
of the robots in real-world conditions are fundamental for their solution.

1.3 What to Learn?

In this work, the agent learns on-line through interaction with the envi-
ronment either the optimal policy for perceived states or the model of the
environment. A policy defines the learning agent’s way of behaving at a given
time. It is a mapping from perceived states of the environment to actions to
be taken when in those states. The model of the environment is something
that mimics the property of the environment. Given a state and an action,
the model of the environment might predict the resultant next state and
reward.

By optimal policy, we mean a policy that enables the agent to go from a
given start state to a given goal state with minimum number of actions or
steps. With genetic algorithm, the agent learns directly the optimal policy
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without having to learn the model of the environment. In Q-learning, the
agent learns the model of the environment and saves it in a Q-table [5]. It
can generate the optimal policy for perceived states from the Q-table.

1.4 Experimental Setup

The following test cases are selected for all experiments that are presented in
this report. Each of the cases shows the level of the knowledge of the agent
about what is going to be learned.

Test Case A

In this test case, we assume that the states of the policy that is going to be
learned are completely contained in the previously learned optimal policy.
For example, one of the optimal policies from start state 7 to goal state 15
contains the states 7, 4, 5, 13, 12, 15. The sequences of actions that are
contained in the policy are {right, right, forward, left, left}.

Assuming that the previously learned optimal policy is this policy, any
policy with start state sstart ∈ {7, 4, 5, 13, 12, 15} and goal state sgoal = 15
can be considered as a test policy, since it is known from Bellman optimality
equation [5, 14] that an optimal policy with sstart ∈ { 7, 4, 5, 13, 12, 15}
and goal state 15 has its states completely contained in one of the optimal
policies with start state 7 and goal state 15.

Test Case B

Here it is assumed that the previously learned optimal policy and the policy
which is going to be learned have common states. A policy with states 3,
0, 1, 5, 4, 7 generated by sequence of actions {right, right, forward, left,
left } and a policy with states 2, 1, 5, 13, 12, 15 generated by actions {left,
forward, forward, left, left} are good examples of policies having common
states {1, 5}.

Test Case C

The previously learned optimal policy and the policy which is going to be
learned have no common states. Examples of optimal policies which have no
common states are 1, 5, 13, 9, 8, 11 generated by actions {forward, forward,
forward, left, left} and 15, 7, 3, 0 generated by actions {forward, forward,
right}.
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For all the experiments in this report, the start and goal states {7, 15}, {3,
11} and {15, 0} are selected for the previously learned optimal policy for
the test case A, B and C, respectively, and the start and goal states {5, 15},
{7, 15} and {1, 11} are selected for the optimal policy which is going to be
learned for the test case A, B and C, respectively.
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2. INTRODUCTION TO
REINFORCEMENT LEARNING AND
GENETIC ALGORITHM

2.1 Reinforcement Learning

Reinforcement learning is a type of machine learning that enables machines
and software agents to automatically determine the ideal behavior within a
specific context, in order to maximize their performance. A general signal
measuring the quality of an action taken by an agent, called reward, is fed
back to the learning algorithm. In other words, it is getting an agent to act
optimally in its environment so as to maximize its rewards.

2.1.1 The Agent-Environment Interface

Reinforcement learning is one form of learning from interaction to achieve a
certain predefined goal. The learner and decision maker is called the agent.
The thing it interacts with, comprising everything outside the agent, is called
the environment. The agent interacts with the environment continuously by
selecting actions and the environment responds to those actions and presents
the agent with a new situation. The environment also gives rise to rewards,
special numerical values that the agent tries to maximize over time.

Figure 2.1 shows the agent-environment interaction. The current states,
actions and rewards are represented by st, at and rt respectively and the next
states and rewards on the next time step are represented by st+1 and rt+1.

The agent and environment interact at each of a sequence of discrete time
steps, t = 0, 1, 2, 3, · · ·.1 At each time step t, the agent perceives a state of
the environment. Depending on the state perceived, the agent executes an
action and receives a corresponding reward.

At each time step, the agent tries to build a mapping from the states
to probabilities of selecting each possible action. This mapping, which is

1 The ideas for the discrete time can be extended to the continuous-time case.
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Fig. 2.1: The agent-environment interaction.

denoted by πt, is called the agent’s policy where π (s, a) is the probability
that at = a and st = s. In reinforcement learning, the agent’s goal is to
maximize the reward it receives in the long run.

2.1.2 Returns

Assume that we have an agent that receives a sequence of rewards, denoted
by rt+1, rt+2, rt+3, · · ·, after time step t. The return, Rt, is defined as some
specific function of the reward sequence. In reinforcement learning the ob-
jective of an agent is to maximize the expected return. In simplest case, the
return is the sum of the rewards:

Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT , (2.1)

where T is the final time step. This is suitable for applications in which there
is a natural notion of final time step. The agent-environment interaction
breaks into subsequences which are called episodes (trials). Each trial ends
in a special state called the terminal state, followed by a reset to a standard
starting state or to a sample from a standard distribution of starting states.

In many cases, however, the agent-environment interaction does not break
naturally into distinct trials, but goes on continually without limit. For
example, a control process of a robot with a long life span. These are called
continuing tasks. For such tasks, the agent tries to maximize the expected
discounted return:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞
∑

k=0

γkrt+k+1, (2.2)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate. It determines
the present value of the future rewards: a reward received k time steps in the
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future is worth only γk−1 times what it would be worth if it were received
immediately. If γ = 0, the agent tries to maximize the immediate rewards:
its objective in this case is to learn how to choose at so as to maximize only
rt+1. If γ approaches 1, the objective takes future rewards into account more
strongly: the agent becomes more farsighted.

2.1.3 Markov Decision Process

In order to define the Markov property for a reinforcement learning prob-
lem, we assume that we have a finite number of states and reward values.
The dynamics of an environment can be defined by specifying the complete
probability distribution:

P {st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, rt−1, · · · , r1, s0, a0} , (2.3)

for all s′,r, and all possible values of the past events: st, at, rt, · · · , r1, s0, a0.
If the environment’s response at t + 1 depends only on the state and action
representations at t, then the environment’s dynamics can be defined by
specifying only

P {st+1 = s′, rt+1 = r|st, at} , (2.4)

for all s′, r, st and at. We say, a state signal has Markov property and a
Markov state, if and only if equation (2.3) is equal to equation (2.4) for all
s′, r and histories, st, at, rt, · · · , r1, s0, a0. A reinforcement learning task that
satisfies the Markov property is called a Markov decision process or MDP. If
the state and action spaces are finite, then it is called finite Markov decision
process (finite MDP). A particular finite MDP is defined by its state and
action sets and by the one-step dynamics of the environment. For a given
state and action, s and a, the probability of each possible next state, s′, is

P a
ss′ = P {st+1 = s′|st = s, at = a} . (2.5)

Equation (2.5) shows the state transition probabilities. The expected value
of the next reward given any current state and action, s and a together with
any next state, s′, is

Ra
ss′ = E {rt+1|st = s, at = a, st+1 = s′} . (2.6)

The quantities given by equation (2.5) and (2.6) completely specify the dy-
namics of a finite MDP. Since the point robot and the environment have a
finite number of actions and states, all experiments in this report assume a
finite MDP process [14, 9, 5].
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2.1.4 Value Functions

Most of reinforcement learning algorithms are based on estimating value
functions. The functions can be functions of states or functions of state-
action pairs. They estimate how good it is for an agent to be in a given state
or how good it is to perform a given action in a given state. The notion
“how good” is defined in terms of the expected return. The rewards the
agent expect to receive depend on what actions it will take. That means,
value functions are defined with respect to particular policies.

The value of a state s under a policy π, which is defined by V π (s), is the
expected return when starting in s and following π thereafter. For MDPs, it
is given as

V π (s) = Eπ {Rt|st = s} = Eπ

{

∞
∑

k=0

γkrt+k+1|st = s

}

, (2.7)

where Eπ is the expected value given that the agent follows policy π. V π

is usually called the state-value function for policy π. The value of taking
action a in state s under a policy π, denoted Qπ (s, a), is the expected return
starting from s, taking action a, and thereafter following policy π.

Qπ (s, a) = Eπ {Rt|st = s, at = a} = Eπ

{

∞
∑

k=0

γkrt+k+1|st = s, at = a

}

.

(2.8)

The value functions used in reinforcement learning and dynamic program-
ming satisfy particular recursive relationships. For any policy π and state
s, the following consistency condition holds between the value of s and the
value of its possible successor states.

V π (s) = Eπ {Rt|st = s}

= Eπ

{

∑

∞

k=0 γkrt+k+1|st = s
}

= Eπ

{

rt+1 + γ
∑

∞

k=0 γkrt+k+2|st = s
}

=
∑

a π (s, a)
∑

s′ P
a
ss′

[

Ra
ss′ + γEπ

{

∑

∞

k=0 γkrt+k+2|st+1 = s′
}]

⇔ V π (s) =
∑

a π (s, a)
∑

s′ P
a
ss′ [R

a
ss′ + γV π (s′)] .

(2.9)

Similarly, it is possible to write the recursive relationship for the action-
value function.
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Qπ (s, a) = Eπ {Rt|st = s, at = a}

= Eπ

{

∑

∞

k=0 γkrt+k+1|st = s, at = a
}

= Eπ

{

rt+1 + γ
∑

∞

k=0 γkrt+k+2|st = s, at = a
}

=
∑

s′ P
a
ss′

[

Ra
ss′ + γEπ

{

∑

∞

k=0 γkrt+k+2|st+1 = s′′
}]

⇔ Qπ (s, a) =
∑

s′ P
a
ss′ [R

a
ss′ + γV π (s′)] .

(2.10)

Equations (2.9) and (2.10) are the Bellman equations for V π (s) and
Qπ (s, a) respectively. Figure 2.2 shows the backup diagrams for V π and
Qπ. They show the relationship between state value or action value of the
current state and state values or action values of its successor states [5].

(a) (b)

Fig. 2.2: Backup diagrams for (a) V π and (b) Qπ.

2.1.5 Optimal Value Functions

A policy π is better than or equal to a policy π′ if its expected return is
greater than or equal to that of π′ for all states. In other words, π ≥ π′

if and only if V π (s) ≥ V π′

(s) and Qπ (s, a) ≥ Qπ′

(s, a) for all states and
state-action pairs. There is at least one policy that is better than or equal to
all other policies. This policy is the optimal policy. Although there may be
more than one optimal policy, we denote all optimal policies by π∗ since they
share the same optimal state value function, denoted by V ∗, and action-value
function, denoted by Q∗. The optimal state-value function is given by

V ∗ (s) = max
π

V π (s) , (2.11)
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for all states. Optimal policies share also the same optimal action-value
function, which is given by

Q∗ (s, a) = max
π

Qπ (s, a) , (2.12)

for all states and actions. It is possible to write equations (2.11) and (2.12)
in recursive form using equations (2.9) and (2.10) as given by

V ∗ (s) = max
π

∑

s′
P a

ss′ [R
a
ss′ + γV ∗ (s′)] (2.13)

Q∗ (s, a) =
∑

s′
P a

ss′

[

Ra
ss′ + γ max

a′

Q∗ (s′, a′)
]

. (2.14)

The Bellman optimality equation (2.13) has a unique solution indepen-
dent of the policy for a finite MDP problem. Actually, the Bellman optimality
equation is a system of equations. If the dynamics of the environment are
known (Ra

ss′ and P a
ss′), then one can use one of the variety of methods of

solving systems of nonlinear equations to solve the system of equations.

For V ∗, it is relatively easy to determine an optimal policy. For each state
s, there will be one or more actions at which the maximum is attained in the
Bellman optimality equation. Any policy that assigns nonzero probability
only to these actions is an optimal policy. This is similar to a one-step
search. If we have the optimal state value function, V ∗, then the actions
that appear best after a one-step will be optimal actions. In other words,
any policy that is greedy with respect to the optimal value function V ∗ is an
optimal policy.

Choosing optimal actions for Q∗ is still easier. The agent does not have
to do a one-step-ahead search: for any state s, it can simply find any action
that maximizes Q∗ (s, a). In other words, the agent does not need to know
anything about the environment’s dynamics in order to generate an optimal
policy [9].

2.2 Dynamic Programming

If one has a perfect model of the environment as a Markov decision process
(MDP), one uses a collection of algorithms referred to as dynamic program-
ming [14]. We can apply dynamic programming to obtain the optimal value
functions V ∗ and Q∗, which satisfy the Bellman optimality equations, and
then the optimal policies.
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2.2.1 Policy Evaluation

The process of computing the state-value function V π for an arbitrary policy
π is called policy evaluation. It is known that the Bellman equation (2.9) is
a system of simultaneous linear equations. Its solution is straight forward,
and can be found by one of the standard methods of solving a system of
simultaneous linear equations.

The solution can also be found by generating a sequence of approximate
value functions V0, V1, V2, · · ·. The initial approximation, V0, is chosen arbi-
trarily (except that the terminal state, if any, must be given value 0), and
each successive approximation is obtained by using the Bellman equation for
V π as an update rule:

Vk+1 (s) =
∑

a

π (s, a)
∑

s′
P a

ss′ [R
a
ss′ + γVk (s′)] . (2.15)

It can be shown that Vk → V π as k → ∞. Figure 2.3 gives a complete
algorithm for iterative policy evaluation.

Input π, the policy to be evaluated.
Initialize V (s) = 0 for all the states.
Repeat

∆← 0
For each state s:

v ← V (s)
V (s)←

∑

a π (s, a)
∑

s′ P
a
ss′ [R

a
ss′ + γV (s′)]

∆← max (∆, |v − V (s)|)
until ∆ < θ (a small positive number)
Output V ≈ V π

Fig. 2.3: Iterative policy evaluation (taken from [14]).

2.2.2 Policy Improvement

Given a policy π, it is possible to find a better policy π′ such that V π′

≥ V π.
This can be obtained by choosing deterministically an action at a particular
state or by considering changes at all states and to all possible actions, se-
lecting at each state the action that appears best according to Qπ (s, a). A
policy π′ is greedy with respect to π if

π′ (s) = arg max
a

∑

s′
P a

ss′ [R
a
ss′ + γV π (s′)] . (2.16)
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In equation (2.16), arg maxa denotes the value of a at which the expression
that follows is maximized. The greedy policy takes the action that looks best
in the short term; after one step of lookahead according to V π. The greedy
policy is as good as, or better than, the original policy.

The process of making a new policy that improves on an original policy,
by making it greedy or nearly greedy with respect to the value function of
the original policy, is called policy improvement.

2.2.3 Policy Iteration

We can start from a policy, π, and improve it using V π to yield a better
policy, π′. We can then compute V π′

and improve it again to yield an even
better policy, π′′. As a result of this repeating process, we can obtain a
sequence of monotonically improving policies and value functions:

π0
E
−→ V π0

I
−→ π1

E
−→ V π

1
I
−→ π2

E
−→ · · ·

I
−→ π∗ E

−→ V ∗,

where
E
−→ denotes a policy evaluation and

I
−→ denotes a policy improvement.

Each policy is guaranteed to be a strict improvement over the previous one
(unless it is already optimal). For a finite MDP, this process must converge to
an optimal policy and optimal value function in a finite number of iterations.
This way of finding an optimal policy is called policy iteration [14]. Figure
2.4 shows the algorithm for policy iteration.

2.2.4 Value Iteration

The value iteration algorithm follows from the recursive form of the Bellman
optimal state value function (2.13). The equation that govern the value
iteration is given by

Vk+1 (s) = max
a

∑

s′
P a

ss′ [R
a
ss′ + γVk (s′)] . (2.17)

The sequence {Vk} converges to the optimal state value V ∗. Value iter-
ation effectively combines both policy evaluation and policy improvement.
The algorithm is shown in figure 2.5.

2.3 Monte Carlo Methods

Monte Carlo methods are suitable for learning from experience, which does
not require prior knowledge of the environment’s dynamics. These methods
solve the reinforcement learning problem based on averaging sample returns.
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1. Initialization
V (s) and π (s) arbitrarily for all s.

2. Policy Evaluation
Repeat

∆← 0
For each state s:

v ← V (s)
V (s)←

∑

a π (s, a)
∑

s′ P
a
ss′ [R

a
ss′ + γV (s′)]

∆← max (∆, |v − V (s)|)
until ∆ < θ (a small positive number)

3. Policy Improvement
policy-stable ← true
For each state s:

b← π (s)
π (s)← arg maxa

∑

s′ P
a
ss′ [R

a
ss′ + γV π (s′)]

if b 6= π (s), then policy-stable ← false
If policy-stable, then stop; else go to 2

Fig. 2.4: Policy iteration for V ∗ (taken from [14]).

There are two types of Monte Carlo methods that can be applied in
estimating V π (s) or Qπ (s, a): The every-visit MC method and the first-visit
MC method. The every-visit MC Method estimates V π (s) as the average
of returns following all visits to s in a set of episodes or trials. Qπ (s, a)
is estimated as the average return following all visits to the (s, a) pair in
a set of episodes. On the other hand, the first-visit MC method averages
just the return following the first-visit to s in estimating V π (s) and averages
the first-visit to the (s, a) pair in estimating Qπ (s, a). In this work, we use
the first-visit MC method for estimating V π (s) or Qπ (s, a). Both methods
converge to V π (s) or Qπ (s, a) as the number of visits to s, or (s, a) pair goes
to infinity.

If the model of the environment is not available, then it is better to esti-
mate the action values than the state values. With a model, state values are
sufficient to determine a policy. It is not possible to use state values to deter-
mine a policy without having the model of the environment. Therefore, one
estimates action values, which do not require the model of the environment
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Initialize V arbitrarily for all the states

Repeat
∆← 0
For each state s:

v ← V (s)
V (s)← maxa

∑

a π (s, a)
∑

s′ P
a
ss′ [R

a
ss′ + γV (s′)]

∆← max (∆, |v − V (s)|)
until ∆ < θ (a small positive number)

Output a deterministic policy, π, such that
π (s) = arg maxa

∑

s′ P
a
ss′ [R

a
ss′ + γV (s′))

Fig. 2.5: Value iteration (taken from [14]).

in determining a policy.

For a deterministic policy, π, one will observe returns only for one of the
actions for each state in following π. That is the Monte Carlo estimate of
the other actions will not improve with experience. This is a series problem
since the purpose of learning action values is to help in choosing among the
actions available in each state. This implies that one needs to estimate values
of all actions from each state, not the one we currently favor. To solve this
problem, one can start each episode at a state-action pair, so that every such
pair has a nonzero probability of being selected at a start. This guarantees
that all state-action pairs will be visited an infinite number of times in the
limit of an infinite number of episodes. This assumption is called “exploring
starts”.

For learning directly from real interactions with an environment, the as-
sumption of exploring starts can not be in general relied upon. In this case,
it is better to use stochastic policies with nonzero probability of selecting
all actions. Figure 2.6 shows an algorithm for Monte Carlo method with
exploring starts.

2.3.1 Recursive Implementation

Monte Carlo methods can be implemented recursively, on an episode-by-
episode basis. This implementation enables Monte Carlo methods to process
each new return recursively with no increase in computation or memory as
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Initialize for all states s and actions a:
Q (s, a)← arbitrary
π (s)← arbitrary
Returns (s, a)← empty list.

Repeat forever:
(a) Generate an episode using exploring starts and π
(b) For each pair s, a appearing in the episode:

R← return following the first occurrence of s, a
Append R to Returns (s, a)
Q (s, a)← average(Returns (s, a))

(c) For each s in the episode:
π (s)← arg maxa Q (s, a)

Fig. 2.6: A Monte Carlo algorithm with exploring starts (taken from [14]).

the number of episodes increases. Suppose that we want to implement a
weighted average, in which each return Rn is weighted by wn, and we want
to compute

Qn (s, a) =

∑n
k=1 wkRk

∑n
k=1 wk

. (2.18)

It is possible to write equation (2.18) in the form given by equation (2.19),

Qn+1 (s, a) =

wn+1

Wn
Rn + Qn (s, a)
wn+1

Wn
+ 1

, (2.19)

where Wn =
∑n

k=1 wk. Rewriting equation (2.19), we obtain

Qn+1 (s, a) = Qn (s, a) +
wn+1

Wn+1

[Rn+1 −Qn (s, a)] . (2.20)

Equation (2.20) is an update rule for an action value function. In similar
fashion, it is also possible to write an update rule for a state value function
given by

Vn+1 (s) = Vn (s) +
wn+1

Wn+1

[Rn+1 − Vn (s)] . (2.21)

The quotient wn+1/Wn+1 can be considered as a step-size or learning rate,
which is usually denoted by α. Replacing wn+1/Wn+1 by α in equations (2.21)
and (2.20), one obtains the recursive forms of the Monte Carlo methods for
V (s) and Q (s, a), which are given by

Vn+1 (s) = Vn (s) + α [Rn+1 − Vn (s)] and (2.22)
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Qn+1 (s, a) = Qn (s, a) + α [Rn+1 −Qn (s, a)] . (2.23)

2.4 Genetic Algorithms

Genetic algorithms are computational models inspired by natural evolution.
They encode a potential solution of a given problem on a simple chromosome-
like data structure and apply genetic operators to these structures so as to
preserve critical information.

A genetic algorithm (GA) starts with a population of chromosomes which
are randomly generated. Chromosomes are then evaluated and they are given
reproductive opportunities according to the result of their evaluations. Those
chromosomes which represent a better solution to the target problem are
given more chances to reproduce than those chromosomes which represent
poorer solutions [3].

A chromosome is made up of genes. The values that can be assumed by
a gene are called alleles. Genes code a specific property or component of a
solution.

Genetic algorithms use two separated spaces: the search space and so-
lution space. The search space is a space of coded solution to the problem
and the solution space is the space of actual solutions. Coded solutions, or
genotypes must be mapped onto actual solutions, or phenotypes before the
quality of fitness of each solution can be evaluated.

2.4.1 The Algorithm

A simplest form of GA, the canonical or simple GA, is summarized in fig-
ure 2.7. A typical genetic algorithm starts with a population of randomly
generated chromosomes. Each chromosome is decoded, one at a time, its
fitness is evaluated, and three genetic operators, crossover, mutation and re-
production are applied followed by selection to generate a new population.
This process is repeated until a desired individual is found, or until the best
fitness value in the population stops increasing, or until a predefined number
of generations have been produced.

2.4.2 Genetic Operators

Genetic algorithm uses its operators to find the best solution in the search
space. Crossover and mutation operators maintain the variation between
individuals so that children do not become identical copies of their parents.
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Fig. 2.7: The simple genetic algorithm.

This variation between individuals helps the population to keep on improving
from generation to generation.

Crossover Operators

These operators are used to exchange genetic material between two chro-
mosomes. They are used to exploit the genetic material contained in the
population of the chromosomes. The most common types of crossover op-
erators are 1-point and 2-point crossover operators. With 1-point crossover
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operator, a crossover point is chosen randomly along the chromosomes and
everything either before the crossover point or after the crossover point is
exchanged between the chromosomes. With 2-point crossover operator, two
crossover points are chosen along the chromosomes and everything between
the crossover points, or everything before the first crossover point and after
the second crossover point is exchanged. Figure 2.8 shows examples of the
1-point and 2-point crossovers.

0 1 1 0 1 1 0 0

1 0 1 0 0 0 1 1

0 1 1 0 1 0 1 1

1 0 1 0 0 1 0 0

Parent Chromosome 1

Parent Chromosome 2

Child Chromosome 1

Child Chromosome 2

0 1 1 0 1 1 0 0

1 0 1 0 0 0 1 1

1 0 1 0 1 1 1 1

0 1 1 0 0 0 0 0

(a) (b)

Fig. 2.8: 1-point (a) and 2-point (b) crossover operators. The arrows show
crossover points.

Mutation Operators

Mutation operators are used to introduce a new genetic material into chro-
mosomes. They help the genetic algorithm not to converge to a sub-optimal
solution. They are used by the genetic algorithm to explore the search space.
For binary chromosomes, the mutation operator flips bits contained in the
genes of chromosomes. For chromosomes containing genes made up of real
values, mutation is performed by adding normally distributed random num-
bers with expectation value 0. Figure 2.9 shows the effect of mutation oper-
ator on binary chromosomes.

Reproduction Operators

These operators are straightforward. They select an individual, copy it and
place the copy into the mating pool.
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0 1 1 0 1 1 0 0

0 1 1 1 1 0 0 0

Parent Chromosome

Child Chromosome

Fig. 2.9: Effect of mutation operator for binary chromosomes. The under-
lined bits show bits that are flipped.

2.4.3 The Selection Algorithm

Selection is a consequence of competition between individuals in a population.
This competition results from an overproduction of individuals which can
withstand the competition of varying degrees. The search for an optimal
solution is directed by the “survival of the fittest” principle. This principle
comes into play when we decide which chromosomes can join the mating
pool and hence be parents for the next generation. This decision process is
controlled by selection operators.

Fitness-Proportional Selection

Fitness-proportional selection specifies probabilities for individuals to be
given a chance of passing offspring into the next generation. An individ-
ual i is given a probability of

pi =
fi

∑

j fj

(2.24)

for being able to pass on traits. The value f is the fitness value of an in-
dividual. Following Holland [7], fitness-proportional selection has been the
tool of choice for a long time in the GA community. It has been heavily crit-
icized in recent times for attaching differential probabilities to the absolute
value of fitness. Early remedies for this situation were introduced through
fitness scaling, a method by which absolute fitness were made to adapt to
the population average.

Truncation or (µ, λ) Selection

This is the second most popular method of selection. A number µ of parents
are allowed to breed λ offspring, out of which the µ best are used as parents
for the next generation. A variant of the (µ, λ) selection is (µ + λ) selection
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where, in addition to offspring, the parents participate in the selection pro-
cess. The truncation selection methods are not dependent on the absolute
fitness values of individuals in the population. The µ best will always be the
best, regardless of the absolute fitness differences between individuals.

Tournament Selection

This type of selection is not based on competition within the full generation
but in a subset of the population. A number of individuals, called the tour-
nament size is selected randomly, and a selective competition takes place.
The better individuals in the tournament are then allowed to replace those
of the worse individuals. The tournament size is used to control the selection
pressure. A small tournament size causes a low selection pressure and a large
tournament size causes high selection pressure.

Tournament selection has recently become a mainstream method for se-
lection, mainly because it does not require centralized fitness comparison
between all individuals. This not only accelerates evolution considerably,
but also provides an easy way to parallelize the algorithm [2].

Ranking Selection

Ranking selection is based on the fitness order, into which the individuals can
be sorted. The selection probability is assigned to individuals as a function
of their rank in the population. Mainly, linear and exponential ranking are
used. For linear ranking, the probability is a linear function of the rank,

pi =
1

N

[

p− +
(

p+ − p−
) i− 1

N − 1

]

, (2.25)

where p−/N is the probability of the worst individual being selected, and
p+/N is the probability of the best individual being selected, and

p− + p+ = 2 (2.26)

should hold in order for the population size to stay constant.

For exponential ranking, the probability can be computed using a selec-
tion bias constant c,

pi =
c− 1

cN−1
cN − i, (2.27)

with 0 < c < 1.
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2.5 Finding an Optimal Policy in an Artificial Robot

World

In this section, we want to illustrate the concepts that are presented in this
chapter taking as an example the test scenario discussed in section 1.2. We
make the following assumptions before we start to find the optimal policy:

1. The point robot (the agent) has a predefined goal state. In our case we
take state 15 as the goal state.

2. The optimal policy is determined off-line. That is, the dynamics of the
environment is known a priori to the agent.

The dynamics of the environment in which the agent live and operate
are determined using equations (2.5) and (2.6). For our test scenario, the
dynamics of the environment is given by equation (2.28).

P a
ss′ =

{

1 if s′ is a valid next state
0 otherwise

Ra
ss′ =











0 if st+1 = s′

1 if st+1 = goal state
−1 if st+1 = st

(2.28)

We can apply the optimal Bellman equations to solve for the optimal
state-value function V ∗ or the optimal action-value function Q∗. The optimal
Bellman system of equations for the goal state 15 is

V ∗ (0) = max











γV ∗ (3) left
γV ∗ (1) right
−1 + γV ∗ (0) forward

V ∗ (1) = max











γV ∗ (0) left
γV ∗ (2) right
γV ∗ (5) forward

...

V ∗ (15) = max











γV ∗ (14) left
γV ∗ (12) right
γV ∗ (7) forward

. (2.29)

In equation (2.29), γ is the discounting factor. It is set to 0.8 for this example.
The words left, right and forward show the possible motor actions of the point
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robot. The equation has a unique solution that is independent of a particular
optimal policy. If one tries to apply exhaustive search for finding all policies
which result in the same optimal state value function, one has to solve 316 =
43046721 systems of simultaneous equations to get the 32 optimal policies.
Assuming that we need 1µs to solve one system of simultaneous equations,
we need about 43 seconds to solve all systems of simultaneous equations
in order to find all optimal policies. For a backgammon game, for example,
which has about 1029 states, it would take millions of years on today’s fastest
computers to solve the Bellman equation for V ∗ [14]. In general, we can use
dynamic programming methods (either value iteration or policy iteration) to
solve MDPs with millions of states using today’s computers.

We have applied the value iteration algorithm (dynamic programming)
and found an optimal state value function shown in table 2.1 in only 20
iterations, for an absolute error of 10−50. From the table, it is possible to get
all the 32 optimal policies by using a one-step search. For example, for state
0 the optimal action is right since the action right will move the point robot
to state 1, which is a valid next state with the largest state value. A state
value of a state measures “how good” it is for an agent to be in that state.
From the result obtained, we see that the state value of state 3 is worst for
the goal state 15. This means that no matter which starting action the agent
takes from this state, it needs the largest number of steps to reach the goal
state as compared to starting from other states. One can also see that it is
best for an agent to be in the states 11, 12 or 14, since the agent needs to
execute only one optimal action (minimum number of actions) to reach the
goal state.

↑0 (1.13778) ↑4 (1.42222) ↑12 (2.77778) ↑8 (2.22222)
→1 (1.42222) →5 (1.77778) →13 (2.22222) →9 (1.77778)
←3 (0.91022) ←7 (1.13778) ←15 (2.22222) ←11 (2.77778)
↓2 (1.13778) ↓6 (1.42222) ↓14 (2.77778) ↓10 (2.22222)

Tab. 2.1: The optimal state value for the goal state 15.

We can also solve equation (2.29) using genetic algorithm. A chromosome
containing 16 genes is defined, where a gene codes an action, which moves
a point robot to the next state having the maximum state value. In other
words, a chromosome codes directly a policy and we want to use a genetic
algorithm to search for an optimal policy. An example of a chromosome
coding a system of simultaneous equations (policy) is shown in figure 2.10.
The index of a gene along the chromosome is the same as the corresponding
state in the robot world.
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0 1 2 . . . 1 10

Fig. 2.10: A chromosome coding a system of simultaneous equations. A gene
can take a value of 0, 1 or 2 representing an equation corresponding
to left, right and forward motor actions respectively of the point
robot.

In order to find a system of simultaneous equations whose solution is an
optimal state value function, we have to define a fitness function evaluating an
equation. We can use equation (1.2) for evaluating a system of simultaneous
equations in such a way that the equation is used repeatedly for each starting
state. The fitness function evaluating an equation is thus given as

f =
16
∑

s=0

γns, (2.30)

where ns represents the number of steps taken by the point robot from a
starting state s. Table 2.2 shows the parameters of the genetic algorithm
used in finding the system of simultaneous equations, whose solution is the
optimal state value function.

Number of individuals 50
Crossover probability 0.2
Mutation probability per gene 0.05
Selection method Truncation selection
Number of generations 50

Tab. 2.2: Parameters of genetic algorithm used.

We have run the algorithm and found the best system of simultaneous
equations (policy) after 11 generations. The best system of simultaneous
equations found by the genetic algorithm is given by equation (2.31).

V ∗ (0) = γV ∗ (1) right
V ∗ (1) = γV ∗ (5) forward

...
V ∗ (15) = γV ∗ (14) left

(2.31)
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Fig. 2.11: A genetic algorithm run for finding the best system of simultaneous
equations. The best equation is found after the 11th generation.

The solution of equation (2.31) is the same as the solution found by
applying value iteration algorithm, which is shown in table 2.1. As compared
to the value iteration algorithm, the genetic algorithm is slower since it has
solved 50×11 = 550 equations before it obtained an equation whose solution
is the optimal state value function.

The Monte Carlo algorithm with exploring starts shown in figure 2.6 is
also used to find the optimal action values. The algorithm needed about
10000 iterations to get the action values, from which one can generate one
of the optimal policies for the goal state 15. As compared to the genetic
algorithm used, Monte Carlo methods needed much longer time to get the
optimal action values.

From this example, one can conclude that it is possible to solve the Bell-
man optimality equations in different ways. If the dynamics of the envi-
ronment is known a priori, then dynamic programming can be used to get
the solution faster than genetic algorithms or Monte Carlo methods. Ge-
netic algorithms and Monte Carlo methods does not necessarily require the
knowledge of the dynamics of the environment a priori. Genetic algorithm
can directly search for the optimal policy in the space of policies. But Monte
Carlo methods can estimate the action values (model of the environment)
from experience. One can then generate the optimal policy from the es-
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timated actions values. For an environment with a very large number of
states such as backgammon, it is only possible to solve the optimal Bellman
equation approximately in a given limited time.
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3. LEARNING AND ADAPTATION AT
INDIVIDUAL LEVEL

3.1 Introduction

Organisms, for example human beings, are always learning and adapting to
their environment in their life time. Much of the learning is done through
direct interactions with the environment. Consider a person who can not
ride a bicycle. Let us say that this person wants to learn how to ride a
bicycle. The first thing he does is he asks about how to ride a bicycle. But
only telling him about how to ride a bicycle will not help him to ride the
bicycle at the first trial. The only way to learn to ride a bicycle is, therefore,
to try and have a real experience with the bicycle. This person has to do a
lot of trials before he learns how to ride a bicycle. Of course, the number of
trials made is dependent on the individual. Each of the trials made by the
person, whether it is successful or not, can be evaluated by the person since
he knows how well he has ridden the bicycle. Assuming that the bicycle is
the environment and the person is the agent, the notion “how well” is the
reward the person receives from the environment after having a trial. Each
of the trials is made up of a sequence of actions that are executed by the
person in riding the bicycle. The state of the bicycle can be the tilt angle
and speed of the bicycle relative to the ground. Depending on the reward
received and the state of the bicycle, the person has to execute sequence
of actions to keep the bicycle upright and moving forward with a certain
speed. In this chapter, we use Q-learning, which is one from of reinforcement
learning, to investigate the learning and adaptation capability of agents that
learn through interaction with the environment and from experience.

The following assumptions are made for experiments in this chapter and
the following chapters.

1. The agent uses learning from interaction. That is, it uses an action-
perception cycle.

2. The agent does not know the dynamics of the environment a priori.
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Moreover, the agent tries to learn an optimal policy or the model of
the environment only for perceived states.

3.2 Q-Learning

Q-learning is an on-line learning method, in which the agent learns from
experience to act optimally in a given environment. The agent learns the
model of the environment and saves it in the action-value function (Q-table).
The agent uses the action-value function to generate the optimal policy for
a given start and goal state.

Q-learning has the properties of both dynamic programming and Monte
Carlo methods. It bases itself on the recursive implementation of the Monte
Carlo method and uses the optimal Bellman equation to update the action-
value of the current state. This can be shown as follows: The recursive
implementation of the Monte Carlo method can be written as

Q (st, at)← Q (st, at) + α

[

∞
∑

k=0

γkrt+k+1 −Q (st, at)

]

, (3.1)

which is equivalent to

Q (st, at)← Q (st, at) + α

[

rt+1 + γ
∞
∑

k=0

γkrt+k+2 −Q (st, at)

]

. (3.2)

With on-line learning, the agent can not receive all rewards. It can only re-
ceive the current reward for the current action. The term

∑

∞

k=0 γkrt+k+2 is the
return for the next state and action. That is Q (st+1, at+1) =

∑

∞

k=0 γkrt+k+2.
Replacing

∑

∞

k=0 γkrt+k+2 by Q (st+1, at+1), we get equation ( 3.3).

Q (st, at)← Q (st, at) + α [rt+1 + γQ (st+1, at+1)−Q (st, at)] (3.3)

If we want equation (3.3) to converge to the optimal action-value function,
Q∗, then we have to select the maximum value of the action-values of the
next state. This follows directly from the optimal Bellman equation for Q∗,

Q (st+1, at+1) = max
a

Q (st+1, a) . (3.4)

Using equation (3.4), we obtain an equation for the Q-learning algorithm,

Q (st, at)← Q (st, at) + α
[

rt+1 + γ max
a

Q (st+1, a)−Q (st, at)
]

. (3.5)

For a right convergence to the optimal action-value function, the agent has
to update its action-vale function for all state-action pairs for the perceived
states. In other words, the agent has to explore its environment and at the
same time exploit what it has learned so far [1].
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3.3 Exploration and Exploitation

With reinforcement learning, specially with on-line reinforcement learning,
there is a problem of exploration and exploitation. On the one hand, the
agent wants to explore the environment so as to find the optimal solution.
On the other hand, the agent wants to minimize the cost of learning by
exploiting the environment.

There are a lot of methods that balance the exploration and exploitation.
The simplest and most popular form of balancing the exploration and ex-
ploitation is the so called ǫ-greedy-action selection method. In this method,
an action is selected greedily most of the time. But every once in a while with
small probability ǫ, an action is selected at random, uniformly, independently
of the action-value estimates.

The other popular action selection mechanism is the softmax action se-
lection method. The probability of executing an action is determined by a
graded function of the estimated values. The greedy action is still given the
highest selection probability. But all the others are ranked and weighted
according to their value estimates. The Boltzmann distribution is used to
calculate the action selection probability. Let A be a set of all actions. The
probability of executing an action a ∈ A is given by the following equation,

P (a) =
e−Q(s,a)/τ

∑

a′∈A e−Q(s,a′)/τ
(3.6)

where τ is a positive parameter called temperature. High temperatures cause
the action to be nearly equiprobable. Low temperatures cause a greater dif-
ference in selection probability for actions that differ in their value estimates.

3.4 Experiments and Results

The experiments are done for all test cases mentioned in section 1.4. Table
3.1 shows the parameter of the Q-learning algorithm used. For balancing
the exploration and exploitation of the environment, we have used a simple
ǫ-greedy-action selection method. The reward function given by equation
(1.1) is used to evaluate the actions executed by the agent.

α γ

0.3 0.3

Tab. 3.1: Parameters of the Q-learning algorithm.
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Test Case A

In this test case, the states of the policy which is going to be learned are
completely contained in the previously learned optimal policy.
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Fig. 3.1: Learning from scratch and continual learning. (a) Average number
of actions taken versus trials in learning from scratch. (b) Aver-
age number of action taken versus trials in continual learning. (c)
Average action values for each state in learning from scratch. (d)
Average action values for each state in continual learning.

From figure 3.1, one can see that the agent does not need to learn the new
optimal policy in continual learning. This is due to the fact that the states
of the new optimal policy are completely contained in the previously learned
optimal policy. One can also see that action values, that represent the learned
model of the environment, remain the same in the continual learning.
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Test Case B

In test case B, the previously learned optimal policy and the optimal policy
that is going to be learned have some states in common.
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Fig. 3.2: Learning from scratch and continual learning. (a) Average number
of actions taken versus trials in learning from scratch. (b) Aver-
age number of action taken versus trials in continual learning. (c)
Average action values for each state in learning from scratch. (d)
Average action values for each state in continual learning.

Figure 3.2 shows that the learning time required by the agent in continual
learning is shorter than that required in learning from scratch. The action
values are adjusted by learning the action values for the new optimal policy
in the continual learning accordingly.
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Test Case C

Here, the previously learned optimal policy and the optimal policy that is
going to be learned have no states in common.
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Fig. 3.3: Learning from scratch and continual learning. (a) Average number
of actions taken versus trials in learning from scratch. (b) Aver-
age number of action taken versus trials in continual learning. (c)
Average action values for each state in learning from scratch. (d)
Average action values for each state in continual learning.

As can bee seen in the figure 3.3, even though the previously learned
optimal policy and the optimal policy that is going to be learned have no
common states, the learning time in continual learning is shorter than the
learning time in learning from scratch. This is possible due to the fact that
the agent has collected experience about other states, which are not contained
in the previously learned policy, while learning it.

From the experiments, we have concluded that the learning time in con-
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tinual learning is shorter than the learning time in learning from scratch at
an individual level and under different learning conditions. Moreover, the
different test cases suggest how we may bias (put prior knowledge to) agents
that learn from experience. If we bias an agent in such a way that the states
of the policy that is going to be learned are completely contained in the op-
timal bias policy, then there is nothing left for the agent to learn and the
bias is strong. If the bias policy and the policy that is going to be learned
have no common states, a relatively large amount of information is left for
the agent to learn. This shows that the amount of information that is going
to be learned depends on the number of common states between the optimal
bias policy and the policy that is going to be learned. The more common
states the optimal bias policy and the policy that is going to be learned have,
the less information is left for the agent to learn.
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4. LEARNING AND ADAPTATION AT
POPULATION LEVEL

4.1 Introduction

Populations of organisms have been adapting to their particular environ-
mental conditions through evolutionary selection (survival of the fittest) and
variability among them. Those members of organisms with specific advanta-
geous abilities and features are able to cope with their environmental condi-
tions. From the principles of adaptation in nature, we can drive a number of
concepts and strategies for solving learning tasks and develop optimization
problems for artificially intelligent systems [8]. An example of optimization
problem that can be solved using the principles of evolution is a model based
object recognition system.

In this chapter, we investigate learning and adaptation at population
level, where the population is made up of neural networks. The neural net-
works are used to represent the optimal policy (control) that is going to be
learned. The purpose of the genetic algorithm is to search for the best neural
network (policy or controller) that controls the point robot in the artificial
robot world. We use multi-layer perceptrons (MLP) and recurrent neural
networks for our experiments. The genetic algorithm searches for the best
neural network by directly determining the synaptic weights of the networks.

According to [10], the majority of experiments in evolutionary robotics
have resorted to neural networks for the control system of an evolving robot
due to the following justifiable reasons:

1. Neural networks provide a straightforward mapping between sensors
and motors. That is, they can represent the policy (control) to be
learned. They can accommodate continuous (analog) or discrete in-
put signals and provide either continuous or discrete motor outputs,
depending on the transfer function chosen. For example, the neural
networks used in experiments run in this chapter have discrete input
(states) and outputs (motor actions).
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2. Neural networks offer a relatively smooth search space. Gradual changes
to the parameters defining a neural network (synaptic weights, archi-
tecture, etc) will often correspond to gradual changes of its behavior.

3. Neural networks provide various levels of granularity. One can apply
artificial evolution to the lowest level specification of a neural network,
such as the connection strengths, or to higher levels, such as the coor-
dination of predefined modules composed of predefined sub-networks.

4. Neural networks allow different levels of adaptation. For example, the
blueprint of a network architecture may be evolved, its actual struc-
ture may develop during the initial stage of the robot “life,” and its
connection strengths may adapt in real time while the robot interacts
with the environment.

5. Neural networks are robust to noise. Since their units are based upon
a sum of several weighted signals, oscillations in the individual values
of these signals do not drastically affect the behavior of the network.
This is very useful property for physical robots with noisy sensors that
interact with noisy environments.

6. Neural networks can be a biologically plausible metaphor of mecha-
nisms that support adaptive behavior. They are a natural choice for
understanding biological phenomena from an evolutionary perspective.

It was, however, suggested by some authors that evolution of neural net-
works is made difficult by the problem of “competing conventions”[12]. This
is the case where the mapping between genotype and phenotype is many
to one. In addition, crossover among competing conventions may produce
offspring with very low fitness since they have duplicated structures. But
experimental studies have shown that in practice this is not a problem. In
general, it is wise to use small crossover rate when evolving neural networks
[10].

4.2 Experiments and Results

The experiments are run for multi-layer neural networks (MLP) and for both
architectures of the recurrent neural networks (Jordan and Elman). In the
experiments, the weights of the neural networks are directly determined by
the genetic algorithm.
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4.2.1 Multi-layer Perceptron

In this section, we have used multi-layer perceptrons (MLPs) to represent the
optimal policy. A population of MLPs with two layers forms a population of
controllers. The structure of the networks and the number of hidden units
is fixed but the weights are determined directly by the genetic algorithm.
The MLP controls the point robot in the robot world. The genetic algorithm
lets each individual to control the point robot and evaluates and selects an
individual (controller) that moves the point robot from a given start state
to a given goal state with minimal number of steps. It then applies genetic
operators to generate the next population of MLPs for predefined number of
trials.

Figure 4.1 shows an example of the MLP used in this experiment. Table
4.1 shows the encoding of states and actions, which are the input and output
of the neural network, respectively.

0

1

1

0

0

1

Output
Input

actions
states

Fig. 4.1: The MLP used in the experiment. The input and output of the
MLP are binary codes of the states and actions.

A fitness function given by equation (1.2) is used to evaluate the indi-
viduals. An example of a chromosome representing an MLP (an individual)
is shown in figure 4.2. The parameters of the neural network and genetic
algorithms are given in table 4.2.

We have run the experiment for all test cases and obtained the result
shown in figure 4.3. As can be seen in the figure, the population attains a
certain average fitness value. The average fitness value, which is controlled by
the genetic operators, shows an equilibrium point of two ”forces”. One of the
forces, which is controlled by selection operator, tries to pull the population
towards the global maximum fitness value (fitness value of the best individ-
ual) and the other force, which is controlled by the crossover and mutation
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State Code

0 000
...

...
14 1110
15 1111

Action Code

left 00
right 01
forward 10
don’t care 11

(a) (b)

Tab. 4.1: The encoding of the states (a) and actions (b).

Wo1,1 ··· Wo1,N Wo2,1 ··· Wo2,N Wh1,1 ··· Wh1,4 WhN,1 ··· WhN,4

Fig. 4.2: A chromosome encoding an MLP. Wo’s show the synapses going
to the output units and Wh’s show synapses going from input to
hidden units. N is the number of hidden units. In this experiment,
we used two output and four input units, and six hidden nodes.

operators, tries to maintain the variation between individuals. The learning
time, which is measured in number of generations, required in attaining a
certain average fitness value is shorter in continual learning than the learning
time in learning from scratch for all test cases.

4.2.2 The Jordan Recurrent Neural Network

The Jordan neural network shown in figure 4.4 is used in this experiment.
In this neural network, the outputs of the network at previous time step are
fed back to the network as an input. The number of inputs, outputs and
hidden nodes is the same as that of the multi-layer perceptron used in the
above experiment. The encoding of the states (inputs) and motor actions
(outputs) is as shown in table 4.1.

The fitness function given by equation (1.2) is used to evaluate a neural
network. The parameters of the genetic algorithm and the neural network
are shown in table 4.2.

The experiment is run for all test cases and the result shown in figure 4.5
is obtained.

From figure 4.5, one can see that the learning time, which is measured in
generations, in case of learning from scratch is shorter than the learning time
in continual learning. Moreover, it is clear that the population does not need
to learn the new optimal policy in test case A. This result is the same as
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Number of individuals 50
Crossover probability 0.2
Mutation probability per bit 0.05
Selection method Truncation selection
Number of hidden nodes 6
Number of bits per gene coding a synapse 8
Number of generations 100

Tab. 4.2: Parameters of the MLPs, Jordan and Elman neural networks and
genetic algorithm used for all the experiments run in this chapter.

that obtained for the hybrid of the MLP and genetic algorithm. In test case
C, even though the previously learned optimal policy and the policy that is
going to be learned have no common states, the population has learned the
new optimal policy in less number of generations in continual learning than
in learning from scratch.

4.2.3 The Elman Recurrent Neural Network

In this experiment, we have used the same parameters as that of the Jordan
neural networks that are shown in table 4.2. The Elman neural network used
in this experiment is shown in figure 4.6. For this network, the activations
of the hidden units at previous time step are fed back to the network as an
input. Note that the memory units hold a copy of the activations of hidden
units at the previous time step. The same fitness function given by equation
(1.2) is used to evaluate the neural networks. The experiment is run for all
test cases and results shown in figure 4.7 are obtained.

The results shown in figure 4.7 show that the learning time is shorter in
continual learning than in learning from scratch. As can be seen from the
figure, the population does not need to learn the new policy in continual
learning for test case A. For test case C, the population has learned the new
policy faster in continual learning even though the previously learned policy
and the policy that is going to be learned have no common states.



44 4. Learning and Adaptation at Population Level

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Generation

F
itn

es
s 

va
lu

e

Start state = 5  Goal state = 15
Learning from scratch

Fitness value of the best individual

Average fitness value of the population

Test case A 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Generation

F
itn

es
s 

va
lu

e

Start state = 5  Goal state = 15
Continual learning

Fitness value of the best individual

Average fitness value of the population

Test case A 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Start state = 7  Goal state = 15
Learning from scratch

Fitness value of the best individual

Average fitness value of the population

Test case B 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Start state = 7  Goal state = 15
Continual learning

Fitness value of the best individual

Average fitness value of the population

Test case B 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Start state = 1  Goal state = 11
Learning from scratch

Fitness value of the best individual

Average fitness value of the population

Test case C 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Start state = 1  Goal state = 11
Continual learning

Fitness value of the best individual

Average fitness value of the population

Test case C 

Fig. 4.3: Result obtained for a hybrid of MLPs and genetic algorithm. The
left column shows from top to down results of learning from scratch
for test case A, B, and C, respectively. The right column shows the
corresponding result in continual learning.
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Fig. 4.4: The Jordan neural network used in the experiment.
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Fig. 4.5: Result obtained for a hybrid of Jordan neural networks and genetic
algorithm. The left column shows from top to down results of learn-
ing from scratch for test case A, B, and C, respectively. The right
column shows the corresponding result in continual learning.
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Fig. 4.6: The Elman neural network used in the experiment.



48 4. Learning and Adaptation at Population Level

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Generation

F
itn

es
s 

va
lu

e

Start state = 5  Goal state = 15
Learning from scratch

Fitness value of the best individual

Average fitness value of the population

Test case A 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Generation

F
itn

es
s 

va
lu

e

Start state = 5  Goal state = 15
Continual learning

Fitness value of the best individual

Average fitness value of the population

Test case A 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Start state = 7  Goal state = 15
Learning from scratch

Fitness value of the best individual

Average fitness value of the population

Test case B 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Start state = 7  Goal state = 15
Continual learning

Fitness value of the best individual

Average fitness value of the population

Test case B 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Start state = 1  Goal state = 11
Learning from scratch

Fitness value of the best individual

Average fitness value of the population

Test case C 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Start state = 1  Goal state = 11
Continual learning

Fitness value of the best individual

Average fitness value of the population

Test case C 

Fig. 4.7: Result obtained for a hybrid of Elman neural networks and genetic
algorithm. The left column shows from top to down results of learn-
ing from scratch for test case A, B, and C, respectively. The right
column shows the corresponding result in continual learning.



5. HYBRID OF LEARNING AND
EVOLUTIONARY ALGORITHMS

5.1 Introduction: Lamarckism and Darwinism

An ecosystem is populated by living organisms that have their own autonomy.
The process of adaptation in these systems is made up of two phases. The
first phase is learning that occurs at an individual level and the second phase
is evolution occurring over successive generations of the population. An
individual in a population of organisms performs a sequence of actions that
maximize the reward it receives from the environment. The reward measures
the degree of satisfaction of the individual. In its life time, the individual
learns and adapts to its environment through interaction. The process of
learning and adaptation enables the individual to select those actions which
result in a higher satisfaction from those actions that cause danger or pain.
It is clear that an individual is not born blank. That means it does not
learn and adapt to its environment from scratch. The basic structures of the
brain, which determines the behavior of the individual, as well as the entire
body, is developed according to the genetic information inherited from its
ancestors. The inherited genes in offspring are not exact copies of the genes
in the parents because of the genetic mutation and recombination.

In evolutionary theory, there are two major ideas that give different ex-
planations for the motive force of natural evolution and the phenomenon
of genetic inheritance. These ideas are Lamarckism and Darwinism. The
Lamarckian theory suggests that the motive of evolution is the effect of “in-
heritance of acquired characters.” Individuals may undergo some adaptive
changes through interaction with the environment or learning. These changes
will be somehow be put in their genes and direct evolution. On the other
hand, the central theory of the Darwinism is “non-random natural selection
following on random mutation”. Mutation itself has no direction, but some
individuals with advantageous mutations will have more chance of survival
through natural selection. The Darwinian theory claims that evolution is
nothing but these commulative processes of natural selection. In summary,
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while the Lamarckian idea assumes the direct connection between learning
and adaptation at the individual level and at the population level, the Dar-
winian idea clearly divides them from each other. It is known that the
mainstream of today’s evolutionary theory is Darwinism [11].

The main idea of this chapter is not to compare and contrast the Lamarck-
ian and Darwinian strategies, but to investigate the learning and adaptation
capability of agents under both strategies.

5.2 Experiments and Results

A population of reinforcement learning agents using Q-learning and whose
performance is improved by a genetic algorithm are used to form the hybrid
algorithm. In the experiments, we investigate agents that use the Lamarckian
strategy and agents that use the Darwinian strategy. For both agents, the
algorithm starts with genetic algorithm, which initializes the Q-tables of the
agents. The agents learn through interaction in their lifetime and change the
content of the Q-table as they learn about their environment. At the end of
the life of an agent that uses the Lamarckian strategy, the collected knowledge
which is stored in the Q-table will be written back to the chromosome which
encodes it. In other words, the current generation will inherit to the next
generation what it has learned about its environment. This is the same as
inheritance of acquired characteristics. For agents using Darwinian strategy,
the contents of the Q-table will not be written back to the chromosome at
the end of the life of the agent. It means that the next generation will receive
initial values of the Q-table that enables the agents to learn a given optimal
policy as fast as possible. One can see clearly that the Q-table which is
modified by an agent in its life time is not transferred to the next generation.

Figure 5.1 shows the Q-table and the chromosome that encodes it and
which is used in this experiment.

States

Actions 0 1 · · · 14 15

left Q0,0 Q0,1 · · · Q0,14 Q0,15

right Q1,0 Q1,1 · · · Q1,14 Q1,15

forward Q2,0 Q2,1 · · · Q2,14 Q2,15

Q0,0 · · · Q0,15 Q1,0 · · · Q1,15 Q2,0 · · · Q2,15

Fig. 5.1: The Q-table and the chromosome that encodes it.
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The reward function given by equation (1.1) is used for the reinforcement
learning agents, and the fitness function given by equation (1.2) is used for
the genetic algorithm. The parameters for the genetic algorithm and the
reinforcement learning are shown in table 5.1.

Number of individuals in the population 50
Crossover probability 0.2
Mutation probability per bit 0.05
Selection method Truncation selection
Learning rate of reinforcement learning 0.3
Discount rate of reinforcement learning 0.3
Number of bits coding a Q-value 8
Number of generations 100

Tab. 5.1: The parameters of genetic algorithm and reinforcement learning.

The experiment is run for all test cases and the results shown in figures 5.2
and 5.3 are obtained for learning and adaptation at the population level. As
can bee seen from the figures, the learning time in continual learning is shorter
than the learning time in learning from scratch for all test cases and for both
strategies. In test case A, both populations of agents do not require to learn
the new policy at population level. Moreover, there is an improvement in
learning times in continual learning for both types of population of agents
for test case B and C.

One of the advantages of hybridizing learning and evolutionary algorithms
is that it enables one to generate effective initial values for the action values
automatically. The determination of the initial values for the action values
is one of the major problems in the reinforcement learning. One way to
determine the initial values is to bias the agent with a goal directed built-in
knowledge [6]. But this requires the knowledge of states that are perceived
and the optimal actions at those perceived states. For a real environment, it
is difficult to determine the optimal action for a given perceived state.

The other advantage of hybridizing learning and evolutionary algorithms
is that it is also possible to determine the learning rate and discounting
factor automatically. This will help agents to adapt to a new situation with
minimum learning costs.

It is our believe that one can improve the learning and adaptation ca-
pability of agents by using both Lamarckian and Darwinian strategies. For
agents which have explored the environment enough or for agents which have
lived and operated in a given environment for a long time, it is advisable to
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use the Lamarckian strategy. For agents which have not explored the en-
vironment enough or for agents which are in a fast changing environment,
it is better if one uses Darwinian strategy for improving the learning and
adaptation capability of agents.

In comparison with learning and adaptation at population level, learn-
ing and adaptation at individual level is not computationally expensive, but
its learning and adaptation capability depends on the initial knowledge of
the individual about the situation that is going to be learned. It has been
shown experimentally in chapter 4 that even though the individuals in the
population have no learning and adaption capabilities, there is learning and
adaption at population level. Note that the neural networks are used only to
represent a policy or a controller for the point robot. The synaptic weights
of the networks is directly determined by the genetic algorithm. That means
the individuals (the neural networks) have no a capability of learning through
interaction. It is natural, therefore, to think of individuals having learning
and adaptation capabilities and which form a population. This will bring us
to the hybrid of learning and evolutionary algorithms. The computational
complexity of the hybrid of learning and evolutionary algorithms is much
higher than both of learning and adaptation at individual and population
levels. At the expense of this computational complexity, however, it is possi-
ble to learn and adapt to a more complex situation in the environment using
an appropriate hybrid of learning and adaptation algorithms.
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Fig. 5.2: Result obtained for agents using the Lamarckian strategy. The left
column shows from top to down results of learning from scratch for
test case A, B, and C, respectively. The right column shows the
corresponding result in continual learning.



54 5. Hybrid of Learning and Evolutionary Algorithms

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

F
itn

es
s 

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 5 Goal state = 15
Learning from scratch

Test case A 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

F
itn

es
s 

va
lu

e

Fitness value of the best individual
Average fitness value of the population

Start state = 5 Goal state = 15
Continual learning

Test case A 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 7 Goal state = 15
Learning from scratch

Test case B 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Generation

F
itn

es
s 

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 7 Goal state = 15
Continual learning

Test case B 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 1 Goal state = 11
Learning from scratch

Test case C 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s 

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 1 Goal state = 11
Continual learning

Test case C 

Fig. 5.3: Result obtained for agents using the Darwinian strategy. The left
column shows from top to down results of learning from scratch for
test case A, B, and C, respectively. The right column shows the
corresponding result in continual learning.
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For agents having knowledge about the dynamics of the environment, one can
apply different techniques such as exhaustive search, dynamic programming,
Monte Carlo methods and genetic algorithms to solve the Bellman optimality
equation of an MDP problem. Methods using dynamic programming (DP)
can solve the problem very efficiently. Dynamic programming methods are
guaranteed to find an optimal policy in polynomial time even though the
total number of policies is nna

s where ns is the number of states and na is the
number of actions [14]. Moreover, DP can be used to get both the optimal
policy and action values at the same time. Genetic algorithms can also be
used to solve a given MDP problem. They do that by directly searching for
the optimal policy in space of policies. They are much slower as compared to
the computational efficiency of dynamic programming. Monte Carlo methods
are much slower as compared to genetic algorithms but can be used to find the
optimal policy. Unlike dynamic programming, one can use genetic algorithms
and Monte Carlo methods to find the optimal policy without a need for the
knowledge of the dynamics of the environment.

Q-learning has the properties of both dynamic programming and Monte
Carlo methods. It is suitable for learning from interaction at an individual
level. The convergence rate of a Q-learning method to an optimal solution
depends on the initial values of the Q-table, on the learning rate, on the
discounting factor and on the way the exploration and exploitation strategies
are balanced.

From the results of experiments that are presented in this report, one
can conclude that the learning time required in continual learning is shorter
than that required in learning from scratch at both individual and population
levels and under various learning conditions. They also show that the learning
time in continual learning depends on the number of states of a policy, which
is going to be learned, that are contained in the previously learned optimal
policy. The more states the two policies have in common, the shorter will be
the time required in continual learning. For test case A, where the states of a
policy are completely contained in the previously learned optimal policy, the
agent does not need to learn the optimal policy in continual learning. It is also
interesting to see that, even though the two policies have no common states
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(test case C), the time required in continual learning is shorter than the time
required in learning from scratch. The different test cases of the experiments
show that an agent can use a related knowledge to a new situation, which
is going to be learned, to adapt itself faster and make the learning time
shorter. Furthermore, the adaptation time required by an agent to adapt to
a new situation depends on the amount of knowledge it has about the new
situation.

Hybridization of various learning algorithms with evolutionary algorithms
will give agents two levels of adaptation capabilities. The first is an individual
level adaptation capability, and the second is a population level adaptation
capability. The individual level adaptation capability depends on the learning
algorithm used. At population level, the adaptation capability is contained
in the variation between individuals.

With adequate hybridization of learning algorithms and evolutionary
methods (like genetic algorithms, genetic programming and genetic strate-
gies) it is our believe that, one can design better agents with better learning
and adaptation capability for either lower or higher cognitive levels.
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