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ABSTRACT

The presented thesis deals with the 2D-3D pose estimation problem. Pose
estimation means to estimate the relative position and orientation of a 3D ob-
ject with respect to a reference camera system. The main focus concentrates
on the geometric modeling and application of the pose problem. To deal
with the different geometric spaces (Euclidean, affine and projective ones),
a homogeneous model for conformal geometry is applied in the geometric
algebra framework. It allows for a compact and linear modeling of the pose
scenario. In the chosen embedding of the pose problem, a rigid body motion
is represented as an orthogonal transformation whose parameters can be es-
timated efficiently in the corresponding Lie algebra. In addition, the chosen
algebraic embedding allows the modeling of extended features derived from
sphere concepts in contrast to point concepts used in classical vector cal-
culus. For pose estimation, 3D object models are further treated two-fold,
feature based and free-form based: While the feature based pose scenarios
provide constraint equations to link different image and object entities, the
free-form approach for pose estimation is achieved by applying extracted im-
age silhouettes from objects on 3D free-form contours modeled by 3D Fourier
descriptors. In conformal geometric algebra an extended scenario is derived,
which deals beside point features with higher-order features such as lines,
planes, circles, spheres, kinematic chains or cycloidal curves. This scenario
is extended to general free-form contours by interpreting contours generated
with 3D Fourier descriptors as n-times nested cycloidal curves. The intro-
duced method for shape modeling links signal theory, geometry and kine-
matics and is applied advantageously for 2D-3D silhouette based free-form
pose estimation. The experiments show the real-time capability and noise
stability of the algorithms. Experiments of a running navigation system with
visual self-localization are also presented.
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Chapter 1

INTRODUCTION

Mobile robots are of interest for many purposes: they are, for example, used
indoors in storage buildings to shelve and transport goods or to clean build-
ings. Outdoors they may be used to cut grass, dig holes or detect mines.
They can be found in several fields, to support different tasks and work as
construction or inspection robots, fire fighting robots, entertainment robots,
mining robots or search and rescue robots. They are also used in extraordi-
nary situations to explore dangerous places like volcanos, caverns, the deep
sea or the universe. An overview of different projects concerning mobile
robots can be found on the web page [162], which is organized by the tech-
nical committee for service robots of the IEEE1 Robotics and Automation
Society. People build robots to support the human being, so that the robots
can undertake tasks which are dangerous, boring or impossible for humans to
perform. Robots have properties and qualities which qualify them for many
tasks: They can easily be replaced, they do not need to breathe or sleep
and can be used in environments which are dangerous, poisonous or risky for
humans. Equipped with lifting gears and other working tools they are often
stronger and more precise than human beings.

Besides their physical properties, robots are equipped with computers.
Unfortunately they lack intelligence. Human beings are able to deal very effi-
ciently with changing and unknown environments. They are able to think and
learn. Already children learn tasks like object recognition, object localiza-
tion or grasping through years of development and experience. Implementing
such basic properties on a computer is indeed very hard and though the com-
puter capabilities (e.g. speed and memory) have been increased immensely
over the last decades, hitherto only partial solutions exist for those tasks.

1 The IEEE (Eye-triple-E) is a non-profit, technical professional association. The full
name is the Institute of Electrical and Electronics Engineers, Inc., although the organiza-
tion is most popularly known and referred to by the letters I-E-E-E.
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One basic task all mobile robots need to perform is to navigate with
respect to unknown or only partially known environments. In its original
sense the term navigation means to direct a ship to its destination2[60].
The practice of navigation entered almost unchanged into the domain of
robotics. For example, Levitt and Lawton [109] define navigation as a process
answering the following three questions:

1. Where am I?

2. Where are other places with respect to me?

3. How do I get to other places from here?

In the context of robot navigation, the robot’s sensory input must be used to
answer the above questions. In [86] the term navigation is defined as follows:

Definition 1.1 A movable object has the task to move from its current po-
sition to a goal, on the base of fragmentary information and in consideration
of boundary conditions.

Fig. 1.1: Self localization means to estimate the relative position and orien-
tation of the mobile robot with respect to its environment.

In case of robot navigation the fragmentary pieces of information are the
sensory input, and the boundary conditions are a priori knowledge of the

2 from Latin navis ship and agere to drive
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scenario. It is clear that the sensory system and the scenario influence the
strategy of navigation in a fundamental manner.

Fig. 1.2: The left image shows the scenario in a virtual environment. The
right image visualizes the odometric error of the robot after a few
movements.

Many systems use for example ultrasonic sensory data to navigate in
environments [70, 31, 120]. Such systems are for example motivated from
bats who can use ultrasonic data very efficiently for navigation and hunting
in the darkness. In contrast to ultrasonic based navigation, the use of vi-
sual information for navigation becomes more and more popular [98, 106].
The reasons for the growing interest in visual navigation are its closeness to
human navigation and the generalization capabilities of the human eye as
sensor in combination with the brain as visual system: Humans do not only
navigate with the help of their eyes, they also perform object recognition,
object grasping and object manipulation with their help. Such abilities are
important for cognitive tasks but are nearly impossible for ultrasonic sensory
data. Therefore my aim is to use visual information for navigation processes.
This gives the option for further use of information for more complex behav-
iors in artificial systems, as well. The task is to navigate a mobile robot with
respect to a priori known landmarks of the environment. In my case, these
landmarks are CAD-models3 of furniture like chairs, tables, doors, cupboards
or more general structures like passages or hall crossings. Figure 1.1 shows
the initial situation of the experimental setup. The knowledge of a landmark
(in this case the model house) is known and (for the initial situation) the
relative movements of the coordinate systems of the mobile robot’s base and
the mounted stereo camera systems with respect to the model house are as-
sumed to be known. Indeed it is possible to move the robot and translate

3 Computer Aided Design models
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the robot movements in terms of another (global) coordinate system. How-
ever, the movements of the robot are not exact. The accumulated relative
movements of the robot lead to increasing inexactness. This means that after
several movements the robot’s internal coordinate system is no longer cor-
rect and the robot is in danger of loosing the orientation. Figure 1.2 shows
a visualization of the problem in a virtual environment.

Hence, there is a need to estimate the relative error between visually
observed image information and the 3D object model. This leads to the
main problem I want to discuss in this thesis, the

2D-3D pose estimation problem.

The motivation to choose the 2D-3D pose estimation problem as the main
problem of this thesis is based on its central position for robot navigation and
other perception-action systems. In [69], page 6, pose is defined as follows:

Definition 1.2 By pose, we mean the transformation needed to map an ob-
ject model from its own inherent coordinate system into agreement with the
sensory data.

Thus pose estimation serves to relate several coordinate frames of measure-
ment data and model data by estimating the transformation between them.
In a general sense pose estimation can be classified into three categories:
2D-2D, 3D-3D and 2D-3D [85]. In the first and second category, both the
measurement data and the model data are 2D or 3D respectively. The third
category consists of those scenarios where the measurement data are 2D and
model data are 3D. This is the situation for this thesis since 3D objects are
observed in 2D images. Roughly speaking, 2D-3D pose estimation means to
estimate the relative position and orientation of a 3D object to a reference
camera system. This will be explained in detail later.

The aim therefore is to find a rigid motion of an object which leads to the
best fit of the reference model with actually extracted image entities. The
main focus in this thesis are the geometric aspects of the pose problem. This
leads to the following main questions to discuss:

1. How to model the involved geometry and the involved mathematical
spaces?

2. What is a rigid motion and what is the best way to estimate it?

3. How to code or describe an object?
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Fig. 1.3: Visualization of the 2D-3D pose estimation scenario. The aim is to
find the rigid body motion which leads to a best fit between the
object and the image data.

4. How to define a best fit of 3D object data to 2D image information?

5. What kind of image features to extract?

Basic approaches to answer these questions will be discussed in chapter 2 of
this thesis. Basically, two principles of modeling the pose problem can be
distinguished: firstly, it is possible to project the transformed 3D object in
the image plane and to compare the transformed projected object in the 2D
projective or affine plane, respectively. Secondly, it is possible to reconstruct
the image information to one-dimensional higher entities (for example image
points can be reconstructed to projection rays in the 3D space) and the
comparison can be done in the 3D space. These principles will be discussed
in more detail in chapter 2 and are important for the geometric aspects of
the pose problem. The 2D-3D pose estimation problem is visualized in figure
1.3.

Note that throughout this work the 3D object model (independent of its
representation) is always assumed to be known and it will not be discussed
how to acquire such a model. This topic is also interesting and is for example
discussed by N. Krüger [100] or M. Zerroug [188].
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The geometric modeling of the 2D-3D pose estimation problem is one
of the oldest computer vision problems. Solutions with projective camera
models have been proposed for several variations of this problem. I will now
introduce the topics for the pose estimation problem, but a comparison with
existing work is difficult, since every method has advantages and disadvan-
tages for variations of the pose problem. In this thesis the properties will be
discussed in the context of robot navigation and robot vision problems. This
means, I have several assumptions which are important in this context, but
might be neglected in other situations. The assumptions are:

1. Indirectness: The problem should be formulated in an indirect manner,
to deal with deviations and uncertainties. Indirectness means in this
thesis that the pose estimation problem is not modeled directly for
example by using invariances or closed form solutions, but by constraint
equations which relate object features to image features. This results in
the estimation of a pose by minimizing an error measure expressed with
constraint equations. Using constraint equations is one key point to
deal with the pose problem, and the following points 2-6 are properties
which are postulated for the constraint equations.

2. Linearity: The problem should be formulated in a linear manner to get
constraint equations, which are compact and easy to interpret. This is
accompanied by easier optimization strategies for numerical estimation
of the pose parameters.

3. Fully projective: The constraint equations should be applied on a fully
projective camera model and not on reduced models like orthographic
ones. The reason for preferring projective camera models is their ex-
actness in contrast to orthographic models. Since the robot is moving
in indoor scenarios and no large distant objects are used for pose esti-
mation, this is of importance.

4. Distance measure: The constraint equations should contain a Euclidean
distance measure to ensure well conditioned systems of equations. A
geometric interpretation of the constraint equations helps to explain
and discuss properties of the developed algorithms, e.g. to analyze
degenerate situations or scenarios. Furthermore, a distance measure
is the basis to deal with uncertainty and adaptivity within constraint
equations.

5. Multiple object features: The algorithm for solving the pose parameters
by using the constraint equations should be able to deal with different
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kinds of entities in the same manner. Object entities are for example
points, lines, circles, spheres, kinematic chains, etc. This is of impor-
tance since it leads to more flexibility for cognitive tasks.

6. Free-form objects: The algorithm for solving the pose parameters should
also be able to extend the scenario to general free-form contours. This
is of importance, since there exist scenarios (e.g. in natural environ-
ments) in which it is not possible to extract features like corners or
edges, but just general contours.

1.1 Literature overview of pose estimation algorithms

In this section I will give a brief summary of important works concerning
the 2D-3D pose estimation problem and I will sketch some properties of the
methods.

There exist several variations in the methods of pose estimation. An
overview of existing techniques for pose estimation can also be found in J.S.
Goddards PhD-thesis [65]. To get an order within the whole literature, I will
separate the literature into the following different topics:

1. Point based pose estimation: This class deals with the pose estimation
for corresponding 2D image and 3D object points. The first pose es-
timation algorithms were concerned with point based pose estimation
and therefore many fundamental and important publications can be
found for this class.

2. Pose estimation by using higher order entities: This class deals with the
first generalization of point concepts, for example to 2D line to 3D point
or 2D line to 3D line correspondences. Furthermore, works concerning
conics, kinematic chains or higher order 3D curves are presented.

3. Pose estimation using free-form objects: This class deals with the rep-
resentation and pose estimation of free-form objects. For example 3D
parametric surfaces, 3D meshes and active contours are used in the
literature.

4. Uncertainty, adaptivity and multiple object features: This class deals
with works presenting more general systems, the modeling of uncer-
tainties and constraint fusion.
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5. Estimating pose parameters: This class reviews pose estimation al-
gorithms and their numerical performance in the literature. It is of
importance since numerical inefficiencies are more sensitive to image
noise, inexact calibration or correspondence outliers.

Note, that the last two topics are no real classes in contrast to the first three
ones. Instead, they are connected to the first three topics but are treated
here as extra parts to stress their importance within the pose estimation al-
gorithms.

1. Pose estimation using point-based methods

Point based pose estimation means to estimate the pose of an object by
determining the identification and location of feature points on an object
from 2D image points in a scene. A rigid body is generally assumed, but
no complete explicit geometric model is given. Methods of this class were
firstly studied in the 80’s and 90’s and pioneering work was done by Lowe
[116, 117] or Grimson [69]. Lowe applied a Newton-Raphson minimization
method to the pose estimation problem and showed the direct use of numer-
ical optimization techniques in the context of noisy data and in gaining fast
(real-time capable) algorithms. His work is based on pure point concepts and
he expressed the constraint equations in the 2D image plane. To linearize
the equations an affine camera model is assumed and an extension to a fully
projective formulation can be found in Araujo et al. in [3]. The minimum
number of correspondences that produce a unique solution are three (non-
collinear and non-coplanar) points. Four coplanar and non-collinear points
also give a unique solution [65]. In general the accuracy increases with the
number of used point features. Over-determined solutions are for example
also used for camera calibration [47].

A pose estimation algorithm based on dual quaternions [21] is given by
Walker et al. [179]. The method uses the real-part of the dual quaternion
to estimate the rotational part and the dual-part of the dual-quaternion to
estimate the translational part of the pose. This effect is also discussed by
Daniilidis in [41] in the context of hand-eye calibration.

The use of 3D Plücker lines [21] was investigated by Shevlin [163] and
Selig [161]. Their result is that although Plücker lines are well known in
robotic kinematics, their coupling with computer vision tasks is often ne-
glected. Plücker lines have interesting properties [141], especially in the con-
text of noise, and are also explained and analyzed in this thesis.

Holt and Netravali discussed in 1991, [83], the pose estimation problem for
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N corresponding points whose coordinates are known in some 3D reference
frame and their 2D perspective projection onto an image plane. If N is three
it is shown, that in general there can be up to 4 solutions unless the points are
collinear. If the points are collinear, there exist up to infinite many solutions.
The case of 4 coplanar points is examined for various combinations of object
and image point collinearity conditions. Four non coplanar points are shown
to have at most 4 solutions.

2. Pose estimation by using higher order entities

Holt and Netravali discussed in 1996, [84], the uniqueness of the structure
and motion problem for various point and line correspondences. Their result
is that two points and one line, or two lines and one point across three views
give in general one unique solution for the structure and motion of the object.
Similarly, if one point and one line correspondence is known over four views
there is also a unique solution for motion and structure.

Navab and Faugeras discussed in 1993, [125], the pose determination
problems for line correspondences. The lines are represented as Plücker lines
and they show that the maximum number of solutions for orientation deter-
mination is four, and three is the maximum number of solutions for the pose
determination problem.

Ghosh et al. developed in [63] a non-linear theory for perspective vision
and discuss points, lines (Plücker lines) and polynomials of second order.
Their main argument is that vision problems by their nature are perspective
and many geometric structures of a perspective system are lost if they are
studied via linearization. They introduce a non-linear theory and call it
perspective system theory. Unfortunately no experiments are presented in
their work. Neither for their non-linear equations, nor a comparison with
linearized approaches is done.

In 1991 Homer [85] proposed a solution for pose determination from line-
plane correspondences and described the pose problem in the 3D framework,
overcoming non-linearities which occur in the 2D Euclidean plane. Hourad
[87] extended this approach in 1995 to point and line correspondences and
showed that it is possible to decouple the recovery of the rotational pose
parameters from their translational counterparts completely.

In Winkler et al. [183] a neural network based approach to obtain rough
3D pose results from 2D camera images is presented. Training is done on
synthetic views which are generated from a 3D CAD-like object model con-
taining line segments. Once trained, the network can also classify real images.
They also recommend a unit quaternion representation for pose estimation
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and claim a real-time capable algorithm, with a processing time of 90 msec.
The image processing is implemented on a Datacube MV200 and the network
response is computed under an SGI Indigo workstation.

In Klingspohr et al. [97] a gaze estimation system is presented by mod-
eling image conics. The main focus of this approach is real-time property,
and the gaze direction is estimated as two unknown angles. Only conics are
modeled and no coupling with other entities is discussed.

Coupling the pose problem of rigid objects with kinematic chains is done,
for example, by Bregler et al. [25] who coupled twist representations of rigid
body motions with the pose problem. A kinematic chain is basically an object
with including joints. In Breglers work, an orthographic camera model is
assumed to simplify the equations. A hierarchical pose estimation algorithm
is presented 1997 by Hauck et al. in [74]. The recognition task is solved
by using a tree-like structure for the components of the object. To estimate
the pose and joint configurations firstly the static component (root) of the
object and afterwards the relative movements of the remaining components
are determined recursively. A comparable approach to this work for pose
estimation of kinematic chains can be found in Weik et al. [181]. There,
also a hierarchical pose estimation algorithm is presented and applied to a
silhouette-based, volumetric, reconstructed object. In this thesis, kinematic
chains are modeled in section 6.1 and experiments concerning pose estimation
of kinematic chains can be found in section 6.4.1.

Hel-Or et al. present in [76] a method for localization and interpretation
of modeled objects that are general enough to cover articulated and other
types of constrained models. Joints of articulated objects are expressed as
spatial constraints that are fused in the pose estimation during an interpre-
tation process. The framework is based on Kalman filtering and example
experiments are done with a lamp-shade, comparable to the experiment in
figure 6.30 of this thesis.

3. Pose estimation using free-form objects

An overview of free-form object representations is given in [33]. There, several
mathematical forms are discussed, e.g. parametric forms, algebraic implicit
surfaces, superquadrics, generalized cylinders or polygonal meshes.

In Kriegmann et al. [99] a work is presented, which extends point features
to viewpoint dependent point features, which include vertices, t-junctions,
cusps, three-tangent junctions, edge inflections, etc. The objects are modeled
by algebraic surfaces as implicit polynomials. This means, the surface is given
by the zero set of a polynomial f(x) = f(x, y, z) = 0. In the experimental
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part, a cylinder with a cylindrical notch is used. Their implementation for
solving the system of equations requires 20 hours on a SPARC Station 1.

Zerroug et al. present in [188] the pose estimation problem of multi-
part curved objects. They discuss the computation for a scaled orthographic
camera model and propose the refinement with another perspective version of
their algorithm. The object models are represented by a graph representation
containing nodes and arcs. For estimating the pose parameters, the rotation
is described by the Euler angles and a closed form solution is proposed.
Their algorithm for pose estimation uses point correspondences gained from
the graph model and image features.

Drummond et al. [46] present an approach for real-time tracking of articu-
lated objects. Similar to [25] they do not search for the Lie group action in
SE(3), but they linearize the equations and end up in searching for the gene-
rating Lie algebra element in se(3). They present a system which is running
on a SGI O2 (225 MHz R10K) at PAL frame rate (25Hz). Furthermore,
extensions to multiple cameras and multiple targets are discussed.

K. Stark presents in [171] a method for tracking the pose of 3D objects
based on an active contour model. The system consists of two components,
a 2D tracker for the image processing and a 3D pose tracker for estimating
the pose with the use of the known 3D object model. It is a silhouette based
approach and B-splines are used to track an object silhouette in an image
sequence. In this context also aspect changes are modeled, and experiments
on a SUN SPARC 20 station lead to a frame rate of 26 fps4.

Works concerning affine pose estimation of free-form contours by using
Fourier descriptors are made by K. Arbter or T.H Reiss [7, 138]. A full
projective approach does not exist so far and the main problems occurring
there are discussed in the appendix of [146].

Farouki et al. present in [53] bipolar or multipolar coordinates to model
and analyze free-form shapes. In contrast to the use of Cartesian coordinates,
entities like the ellipse, a hyperbola, the circle of Apollonius, the limacon of
Pascal or the Cartesian oval are represented in a linear manner in this model.
They discuss different applications, for example in the field of geometrical
optics to characterize the geometry of spherical waves and their reflections
or refractions.

4. Uncertainty, adaptivity and multiple object features

Ayache and Faugeras provide in [10] a method for representing uncertainty

4 frames per second.
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in measurements of points, lines and planes that are used in building visual
maps of the environment for a mobile robot. Two images are taken at each
robot location as a stereo pair. An extended Kalman filter (EKF) is used as
a model for estimating the position of these primitives and the uncertainty
through a covariance matrix. The noise of the feature location from the
image is modeled as zero mean Gaussian noise with a known variance. As
the robot moves, additional lines are taken and are used to update the filter
and to improve the estimation of the 3D locations.

Modeling uncertainties during matching and pose estimation is also done
by J.R. Beveridge in [18]. There, local search strategies are proposed to
reduce the search space and to identify outliers. The combination of different
entities with different reliabilities of measurements is mostly ignored in the
literature. For example Hel-Or and Holt consider this problem in [75, 84].

The fusion of different local entities is also discussed by N. Krüger [103].
In this paper different image information like local phase, color, orientation
are attached to image points, and relations among these features are auto-
matically estimated in an interpretation process.

5. Estimating pose parameters

In the literature several algorithms for numerical pose estimation can be
found. These are SVD-approaches5, extended Kalman filter or gradient de-
scent methods. A comparison of four approaches is made by Lorusso et al.
in [115]. The algorithms deal with 3D point based pose estimation and are
based on a SVD decomposition, unit quaternion (UQ), dual quaternion and
eigensystem (OM) computation. The comparison consists of three parts, ac-
curacy, stability and relative efficiency. Their results are not in agreement
with results presented in [179] and they found out, that the SVD and UQ
methods are very similar and usually the most stable. The OM method is
not as stable for planar data sets, but superior for large degenerate data sets.
The DQ algorithm was never the most stable and usually broke down before
the others. Unfortunately, they do not compare a gradient descent method
within this context. A gradient descent method will be proposed in this the-
sis. In contrast, one of my numerical results will be (see figure 5.6), that the
gradient descent method behaves more stable (in the context of Gaussian
noise) then the SVD approach proposed in [115].

A. Ude presents in [177] a nonlinear least squares optimization algorithm
by using unit quaternion functions based on unconstrained optimization tech-
niques. It results in a Gauss-Newton iteration which is rescaled to the unit

5 singular value decomposition
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sphere after each iteration. They demonstrate their approach for pose esti-
mation from 2D to 3D line segment correspondences.

Unfortunately the fusion of kinematics and projective geometry is nearly
always neglected and Faugeras’ stratification hierarchy [48] is either implicitly
assumed, or ignored in the context of the pose estimation problem. Only few
works deal with these problems. For example A. Ruf treats this problem
in the context of point correspondences in [157]. Farouki discusses in [52]
the historical connection between geometry and kinematics. His main point
is, that the further development of such connections is crucial for computer
aided design and manufacturing applications. In this context the relations
of implicit and parametric forms of curves and their motions are discussed.
Different topics, for example the four-bar linkage are analyzed in a historical
context and their attractiveness for computer science problems is pointed
out. Especially the notes about Newton, Descartes or Galileo are interesting
and help to arrange the history about geometry and their connection to
kinematics. Since this work is rather a historical survey, no experiments on
pose estimation are presented.

1.2 The contribution of the thesis

This thesis deals with the 2D-3D pose estimation problem. The main focus
concentrates on the geometric modeling of the pose problem. At first, the
mathematical spaces involved in the 2D-3D pose estimation problem are con-
sidered and the main principles dealing with this problem are discussed in
chapter 2. Chapter 2 starts with the Faugeras’ stratification hierarchy [48],
which contains the Euclidean, affine and projective space. It turns out, that
all levels of the hierarchy are involved in the pose estimation problem. To
deal with kinematics on the one hand and projective geometry on the other
hand, a conformal embedding is proposed and derived in chapter 3. This
means that points are modeled as stereographically projected points [126].
Underlined with a homogeneous model for stereographic geometry, this leads
to a model which provides important properties for the pose scenario: the
geometric coupling of Euclidean, kinematic and projective geometry. This
model is then used in the geometric algebra framework [77]. The conformal
geometric algebra [110] allows to deal with higher order entities (lines, planes,
circles, spheres) in the same manner as with points. It is further possible to
model the conformal group on these entities by applying special operators in
a multiplicative manner. In this work not the whole conformal group is used
for the pose estimation problem, but just the elements (rotors, translators),
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which lead to motors, expressing rigid body motions. This means that I work
with a geometric model which copes with projective and kinematic geometry
and expresses rigid motions as special products. The geometric algebra is
introduced in chapter 3. In this chapter the reader can find links to other
references introducing the basics of geometric algebras. The coupling of pro-
jective and conformal geometry is explained in chapter 4. Linear operators
are defined which switch an entity given in the projective space, to one in
the conformal space and vice versa. From this starting point, in chapter 5
a scenario is derived which fulfills all assumptions which I have on the pose
problem: it results in an indirect, linear and fully projective description
of the pose problem, which contains a Euclidean distance measure and
is suited for simultaneous use of multiple object features. Though it
is indeed not hard to solve the pose problem by using pure point concepts,
the fusion of projective and kinematic geometry and its combination with
higher order entities requires an extended point of view to the pose scenario.
This is achieved by using a homogeneous model for stereographic projec-
tions. Therefore, the mathematical language in this thesis will be Clifford
or geometric algebras. From the numerical point of view, the estimation of
pose parameters is not trivial, since they are expressed as an exponential
function and therefore as a polynomial of infinite degree. The exponential
representation of motors is used and applied on the Taylor series expansion
of first order for approximation. This means that in this work (chapter 5.5)
no search for the parameters of the Lie group SE(3) is done to describe the
rigid body motion [62], but for the parameters which generate their Lie al-
gebra se(3) [124]. The elements of se(3) are also called twists. This leads
to linear equations in the generators of the unknown 3D rigid body motion.
Iterating the linearized equations leads to fast and accurate approximations
of the pose. This is comparable to a gradient descent approach performed in
the 3D space.

These fundamentals build the basis of the thesis and extensions of the
pose problems are build upon them: From simple point and line features
scenarios are discussed which extend the entities to kinematic chains (chapter
6.1), circles and spheres (chapter 6.2) and cycloidal curves (chapter 6.3):
Cycloidal curves are a special case of algebraic curves. In general, a cycloidal
curve is generated by a circle rolling on a circle or line without slipping [108].
This leads to epitrochoids, hypotrochoids and trochoids as special classes of
entities which will be used in the context of 2D-3D pose estimation.

In chapter 7 a generalization of cycloidal curves (they are later called
2twist generated curves) to n-times nested cycloidal curves is presented:
There exists a direct connection of these curves to Fourier-descriptors. The
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generalization of the cycloidal curves will result in general 3D-free-form con-
tours. To cope with the algebraic coupling of free-form contours within the
pose estimation problem, twists are used as a link between these different
topics. Twists are well known from Lie groups and Lie algebras [62, 124]
and are applied on rigid body motions. In this thesis, twists will be used on
the one hand within the pose estimation problem and on the other hand to
model object contours. This unification facilitates a compact description of
the pose problem for free-form contours. To estimate the pose of free-form
contours ICP (Iterative Closest Point) algorithms are applied, which are well
known for aligning 3D object models. Originally ICP starts with two data
sets and an initial guess for their rigid body motion. Then the transfor-
mation is refined by repeatedly generating pairs of corresponding points of
the sets and minimizing the error metric. The ICP algorithms are mostly
applied on 2D or 3D point sets. Furthermore, they will later be used to com-
pare a 3D contour, modeled by Fourier descriptors, with 3D reconstructed
projection rays. Different works concerning ICP algorithms can be found in
[158, 40, 89, 187]. The use of Fourier descriptors is accompanied by some
features, which can advantageously be applied within the pose estimation
problem: instead of estimating the pose for a whole 3D contour, low-pass
descriptions of the contour can be used for an approximation. This leads to
a speed up of the algorithm and helps to avoid local minima. It can basically
be interpreted as a multi-resolution method. In chapter 7 also extensions
to free-form pose estimation are discussed. In these extensions I deal with
the simultaneous use of multiple contours, the treatment of hidden or par-
tially hidden contour parts (chapter 7.2.3) or the adaptive modeling of object
deformations (chapter 7.2.4).

The thesis ends with a discussion in chapter 8. The basic mathematics
used throughout this thesis are introduced in the appendix A. There can be
found the basic definitions of mathematic spaces, groups, algebras etc.

Since the starting point of this thesis is visual landmark based robot
navigation, appendix B deals with the implementation details of a running
navigation system. A system is presented which enables a mobile robot to
navigate with respect to an a priori known landmark. In this part, the
landmark is assumed as a given CAD-model containing just points and lines.
The tasks to be solved in this context are image feature extraction by using
a modified Hough transformation [88], pose estimation, matching by using
a local search strategy [18] and path planning. Another main point of this
part is the presentation of a behavior based control system of the robot.
For this purpose the implemented modules are separated in parallel running
processes, embedded in a subsumption architecture [73]. This module was
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part of a student project I supervised. This is explained in more detail in
[68].



Chapter 2

FOUNDATIONS OF THE 2D-3D POSE

ESTIMATION PROBLEM

This chapter introduces the foundations of the 2D-3D pose estimation prob-
lem. At first the general scenario is presented. Then the involved mathemat-
ical spaces are localized in the scenario. Thirdly the main principles of how
to cope with the pose estimation problem are explained and discussed.

2.1 The scenario of pose estimation

In the scenario of figure 2.1 the following situation is visualized: Assumed is
a 3D object, which can contain different entities like 3D points, 3D lines, 3D
spheres, 3D circles, kinematic chain segments, boundary contours or contour
parts. Furthermore corresponding features in an image of a calibrated camera
are extracted. The aim is to find the rotation R and translation t of the
object which lead to the best fit of the reference model with the actually
extracted entities. So far, it is not clarified how to define such a fit, or a fit
quality. Though it is clear by intuition, a mathematic formalization is not
easy.

In this thesis I will concentrate on two different kinds of pose estimation,
which are on the one hand feature based and on the other hand free-form
based. Examples of entities used in this thesis are given in figure 2.2 and, as
can be seen, there is a crossover between simple features, constraint curves
and surfaces to free-form curves and surfaces. It will later be shown that it
is possible to define classes of entities which extend the simple feature based
pose estimation to a subclass of free-form pose estimation, and twists will be
used to achieve this.

I concentrate on both kinds of pose estimation, since there exist many
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Fig. 2.1: The scenario. The solid lines describe the assumptions: the camera
model, the model of the object (consisting of points, lines, circles,
spheres and kinematic chains) and corresponding extracted entities
on the image plane. The dashed lines describe the pose of the model,
which lead to the best fit of the object with the actually extracted
entities.

points

lines

planes

circles

spheres

kinematic chains

cycloidal curves

ruled surfaces

Fourier descriptors
active contours
algebraic implicit surfaces
polygonal meshes
superquadrics

Free−form poseFeature based pose 

Fig. 2.2: Examples for the crossover from feature to free-form based pose
estimation.

scenarios in which it is not possible to extract point-like features such as
corners or edges, but only general contours. These are the scenarios addressed
with the free-form models. Additionally, from a statistical point of view, pose
estimations of global object descriptions are more accurate and robust than
those from a sparse set of local features. But on the other hand feature based
pose estimation can be performed much faster. While the feature based pose
estimation can be performed in less then 5 ms, real-time performance of free-
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form contours is dependent on the scenario and only possible with optimized
parameters. In the experiments, results are obtained in 40 − 250 ms on a
Linux 850 MHz machine for the used test objects. This will be discussed in
more detail later on.

The geometric scenarios for pose estimation always assume the knowledge
of the correspondences. The correspondence problem deals with the question,
which object feature belongs to which image feature. For the navigation
scenario or online demos this problem must be solved. Basically either a ROI-
search1 window, local search strategies [18], or (modified) ICP-algorithms
[40, 187], depending on the scenario and situation are used. The used and
proposed methods are discussed in detail in chapter 7.2.1 and B.1.2.

2.2 The stratification hierarchy as part of the pose

estimation problem

In the scenario of figure 2.1 four mathematical frameworks can be identi-
fied: The first one is a projective plane of a camera, embedded in the second
framework, a 3D projective space. In these spaces it is possible to project
or reconstruct entities by applying e.g. projection matrices as explained in
chapter A.3. The third one is the framework of kinematics, which contains
the map of the direct affine isometries [62] and can be used to describe rigid
body motions. A set of entities with the property that the distances between
any two of the entities never varies is called a rigid body, and a continuous
transformation with the property that it preserves distances during transfor-
mation is called a rigid body motion. A rigid body motion corresponds to
the Euclidean transformation group SE(3)[62]. Being a transformation by
itself, it contains rotations and translations. The fourth framework is the
Euclidean space or Euclidean plane, which is important to define distances
between entities. The basic definitions of these spaces are the following [62]:

1. The Euclidean space is a vector space V with a symmetric positive
definite bilinear form (which induces an Euclidean norm).

2. The affine space consists of a set of points, a derived vector space and
two operations, namely vector addition and scalar multiplication.

3. The kinematic space is an affine space with the group of rigid motions
as special affine transformation.

1 region of interest
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4. The projective space P(V ) induced by V is the set (V \{0}) /∼
of equivalence classes of nonzero vectors in V under the equivalence
relation ∼ defined such that

∀u, v ∈ V \{0} : u ∼ v ⇔ ∃λ ∈ IR : v = λu.

Mathematically a projective space P(V ) is a set of equivalence classes of
vectors in V . The idea behind projective geometry is to view an equiva-
lence class (u)∼ as an atomic object, forgetting the internal structure of the
equivalence class. For this reason it is customary to call an equivalence class
a = (u)∼ a point (the entire equivalence class (u)∼ is collapsed into a single
object, viewed as a point). A more detailed introduction of the involved
mathematical spaces in terms of classical matrix calculus can be found in
chapter A.1 of the appendix.

The idea is to reach the Euclidean plane or Euclidean space in the end.
Only in this way it is possible to cope with the problem of noisy data in a
geometric context and to evaluate the quality of the estimated pose. But since
the Euclidean space is not well suited to describe projective geometry and
kinematics, the aim is to transform the generated constraint equations into
a distance measure of the Euclidean space in the very last step. Before this
step, the other spaces are used to represent the situation in a suitable way.
The spaces of the pose estimation scenario mentioned above are exactly the
spaces of the stratification hierarchy which Faugeras introduced in 1995 [48].
The three main representations he considered are the projective, affine and
metric ones. All strata are involved in the 2D-3D pose estimation problem.

The stratification hierarchy proposed by Faugeras has its roots in the
vector space concepts and assumes points as the represented basic geometric
entities. The other spaces are derived from the vector space concepts: Well
known is the homogeneous extension to express an Euclidean space as affine
space and to use the homogeneous component for distinction between points
and directions in the affine space. The projective space as a set of equivalence
classes is directly build on the homogeneous vector space concepts. This
way to stratify the vision space is clearly motivated by the underlying point
concepts of the vector spaces and is shown in the first row of table 2.1.

I am using geometric algebras to represent and handle different mathe-
matical spaces of geometric meaning. The maximum sized algebra used so
far, is an algebra to handle conformal transformations [80]. A transformation
is said to be conformal, if it (locally) preserves angles. This algebra contains
algebras for modeling projective and Euclidean geometry as sub-algebras. It
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Concept Stratification
Vector calculus Euclidean ⊆ affine ⊆ projective

Geometric algebra Euclidean ⊆ projective ⊆ conformal

Tab. 2.1: Stratification of mathematical spaces.

results in other layers of stratification which are proposed in this thesis. In
geometric algebras, so-called multivector concepts are used to model geom-
etry beyond point concepts. In the next section it will be explained why it
is necessary also to extend geometric algebras to homogeneous models. This
leads to a different stratification of the space, since this stratification is not
based on pure point concepts any more. Instead, the stratification consists
of algebras for modeling the Euclidean, projective and conformal space. This
is shown in the second row of table 2.1.

2.3 Principles of solving the pose estimation problem

One main problem of 2D-3D pose estimation is how to compare 3D Euclidean
object features with 2D projective image data. There are two strategies for
comparison: On the one hand, it is possible to project the transformed entity
onto the image plane and to compare it with the extracted image data. This
leads to a comparison in the projective plane or Euclidean plane respectively.
The second possibility is to reconstruct the object from the image data and
to compare the (one dimension higher) entities with the 3D object features.
Both approaches have advantages and disadvantages. Here I want to dis-
cuss a few properties of both strategies: To enable comparisons in the first
strategy, the projected object features have to be scaled in their homoge-
neous component. This leads to fractions with the unknown transformation
in both, the numerator and denominator. The equations are not linear any
more and are harder to solve numerically. Though the equations can also
be expressed as projective linear system of equations, the problem is then to
loose a distance measure and to risk badly conditioned equations. To avoid
such problems, orthographic projections (see e.g. [25]) are used, but then the
camera model is not perspective any more. Since the second strategy uses
projectively reconstructed data, this problem does not occur there. But the
problem is that the distance measures in the 3D space differ from those in
the image plane: Though the distance of two image points may be constant,
the distance of two 3D projectively reconstructed points may vary with the
distance of the points to the optical center of the camera. This necessitates
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strategy linear Euclidean distance full
measure perspective

Euclidean no yes yes
Orthographic projective yes yes no

Full projective yes no yes
3D kinematic yes yes yes

Tab. 2.2: Principles for formalizing the pose problem.

that the constraints must be adapted with respect to the projective depth for
degenerate situations2. Table 2.2 summarizes the main principles of solving
the pose problem by using constraint equations.

In this thesis (similar to e.g. [179]) projectively reconstructed 3D data
from image data will be used and the (one dimension higher) entities will be
compared with the 3D object model features. There are three main argu-
ments why I choose this strategy: firstly I want to describe the constraints
in an as simple way as possible and want to gain real-time performance. For
this purpose, the reconstructed data are easier to handle in the 3D kine-
matic space than in the 2D space. This is shown in figure 2.3: comparing

image plane
pose constraints in the pose constraints in the

3D space

projection

comparison (2D)

reconstruction

pose estimation

comparison (3D)

pose estimation

Fig. 2.3: Comparison of iterating constraints defined in the image plane, or
constraints defined in the 3D space.

iterative pose results in an image plane requires the estimation of a projec-
tion for comparison in the image plane after each iteration, whereas once
reconstructed image data can be compared immediately after each iteration.
This means, that repeated projection estimation can be avoided. The second

2 Problems can occur if the object is very large (e.g. a hallway), with some object
features very near to the camera plane and other object features far away from the camera
plane. In such situations, the spatial distance (which will be minimized) of the near object
features influence the equations to a lesser extent then the distant object features.
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advantage of using 3D constraints is that the error measures are formalized
in the 3D Euclidean space and are directly connected to a spatial distance
measure. This helps to qualify the pose result and to detect outliers. This is
in contrast to other approaches, where the minimization of errors has to be
computed directly on the manifold of the geometric transformation [35, 177].
The third argument is that the depth dependence of the 3D constraints can
be adapted to each situation. As will be shown later (see chapter 5.6.1) the
constraints can be scaled and transformed in depth-depending constraints
comparable to the situation observed in the 2D image plane. But the main
argument is that only in this model it is possible to gain linearity, a Euclidean
distance measure and a full-perspective camera model without introducing
special operations (e.g. using covariance matrices, etc.).

With this analysis I will answer the five main questions of pose estimation
given in the introduction as follows:

1. How to model the involved geometry and the involved mathematical
spaces?
Answer: The involved mathematical spaces are the Euclidean, affine
and projective ones. The main problem is, how to fuse kinematics with
projective geometry. Since both spaces are subsumed by a homoge-
neous model for stereographic projections, a conformal model will be
proposed in this thesis.

2. What is a rigid body motion and what is the best way to estimate it?
Answer: (a) A rigid motion is a map of direct affine isometries. It is a
continuous transformation that preserves distances during the transfor-
mation. It corresponds to the special Euclidean transformation group
SE(3) and contains rotations and translations.
(b) There exists no unique answer to this question, since the answer
is dependent on the scenario and situation. In this work, I will use
and compare three different algorithms for estimating pose parame-
ters. The first is a simple SVD-approach [136], the second a Kalman
filter (developed by Y. Zhang [190]) and the third is a gradient de-
scent method. Since I am dealing with different entities at the same
time and want to weight the equations, it turns out that the gradient
descent method is the best approach within my scenario, comparing
adaptivity, computing time and robustness.
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3. How to code or describe an object ?
Answer: I choose two ways to handle objects: Objects can be described
as a set of features (e.g. points, lines, kinematic chains, etc.) or an
object can be modeled as one whole function. I will end up with free-
form contours as the most general object description.

4. How to define a best fit of 3D objects to 2D image information?
Answer: The fit quality is expressed as a distance measure in the 3D
space. Therefore I work with reconstructed image information (e.g.
points are reconstructed to projection rays, and image lines are recon-
structed to 3D planes). The image information is transformed from
the 2D projective plane via the 3D projective space to the 3D confor-
mal space, where it is rescaled to the Euclidean space, without loosing
linearity in the unknowns.

5. What kinds of image features to extract?
Answer: There also exists no unique answer to this question, since the
usefulness of image features is very dependent on the scenario itself.
It is easy to imagine a scenario in which image points are easy to
extract and can easily be applied to 3D features of the object model.
But in a different scenario, point features might be useless and line or
curve segments of the object are more stable to extract. This is the
reason why in this thesis the simultaneous use of different entities for
pose estimation is investigated. Only in this way it is possible to gain
systems which can deal with different scenarios and situations.

In this thesis, the image processing is kept simple: I use either color
markers for the detection of point correspondences, the Hough trans-
formation [88] for the detection of image lines, or contour algorithms
for image feature extraction. To establish correspondences I use ei-
ther a ROI-search window, a local search strategy [18], or (modified)
ICP-algorithms [40, 187], depending on the scenario and situation.



Chapter 3

INTRODUCTION TO GEOMETRIC

ALGEBRAS

What is currently called geometric algebra [80] can be seen as a Clifford1

algebra with its main focus on a suited geometric interpretation. Clifford’s
contribution of inventing a geometric extension of the real number system
to a complete algebraic representation of directed numbers is historically
reviewed by M. Yaglom in [184]. In [184] there is also enlightened the relation
to former works of Grassmann (1809-1877) or Hamilton (1805-1865). The
term geometric algebra was introduced by David Hestenes in the 1960’s,
who made further development of Clifford algebra in classical geometry and
mechanics.

Clifford (or geometric) algebras have the properties of compact symbolic
representations of higher order entities and of linear operations acting on
them. A higher order entity can be seen as a subspace of a vector space.
This means, e.g. lines and planes are so-called higher order entities which
are represented as unique elements in a Clifford algebra. Furthermore, many
geometric concepts which are often introduced separately in special algebras
are unified in geometric algebras. So the concepts of duality in projective
geometry, Lie algebras and Lie groups, incidence algebra, Plücker represen-
tations of lines, complex numbers, quaternions and dual quaternions can all
be found in suitable geometric algebras with associated splits.

This chapter starts with a general introduction to geometric algebras and
proceeds with algebras to model the Euclidean, projective and conformal
space. Parts of this chapter (e.g. notations, definitions) are based on the
following works [77, 78, 110, 44, 45, 80, 23, 81, 107, 131, 164].

In general a geometric algebra Gp,q,r (p, q, r,∈ IN0) is a linear space of

1 William K. Clifford lived 1845-1879.
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dimension 2n, n = p + q + r, with a subspace structure, called blades, to
represent so-called multivectors as higher grade algebraic entities in compar-
ison to vectors of a vector space as first grade entities. A geometric algebra
Gp,q,r is constructed from a vector space IRp,q,r, endowed with the signature
(p, q, r), by application of a geometric product. The notation Gp,q,r(IR

p,q,r)
is sometimes used to stress the vector space and its signature from which
the geometric algebra is built. Note that IRp,q,r ⊆ Gp,q,r. This means that
the generating vector space is always an element of its generated geometric
algebra and therefore the vectors of the vector space can be found as ele-
ments in each geometric algebra. This will be explained in more detail later.
The product defining a geometric algebra is called geometric product and is
denoted by juxtaposition, e.g. AB for two multivectors A and B. The ge-
ometric product of vectors consists of an outer (∧) product and an inner (·)
product. Their effect is to increase or to decrease the grade of the algebraic
entities respectively.

To be more detailed, let ei and ej (ei, ej ∈ IRp,q,r ) be two orthonormal
basis vectors of the vector space. Then the geometric product for these
vectors of the geometric algebra Gp,q,r is defined as

eiej :=





1 ∈ IR for i = j ∈ {1, . . . , p}
−1 ∈ IR for i = j ∈ {p+ 1, . . . , p+ q}
0 ∈ IR for i = j ∈ {p+ q + 1, . . . , n}
eij = ei ∧ ej = −ej ∧ ei for i 6= j.

(3.1)

The geometric product of the same two basis vectors leads to a scalar,
whereas the geometric product of two different basis vectors leads to a new
entity, which is called a bivector. This bivector represents the subspace,
spanned by these two vectors. A vector space with signature (p, q, r), p 6=
0, q 6= 0 is called pseudo-Euclidean. If r 6= 0 its metric is degenerate.
Although the dual-quaternions which have some importance in kinematics
are isomorphic to a degenerate geometric algebra, see [13], in this thesis only
non-degenerate geometric algebras Gp,q,r ≃ Gp,q are used with r = 0. Besides
Gp,q,r ≃ Gp is used if r = 0 and q = 0, which means that there is an Euclidean
metric.

Geometric algebras can be expressed on the basis of graded elements.
Scalars are of grade zero, vectors of grade one, bivectors of grade two, etc. A
linear combination of elements of different grades is called a multivector M

and can be expressed as

M =
n∑

i=0

〈M〉i, (3.2)
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where the operator 〈.〉s denotes the projection of a general multivector to the

entities of grade s. The dimension of the subspace of grade i is

(
n
i

)
. A

multivector of grade i is called an i-blade if it can be written as the outer pro-
duct of i vectors. This means in general that every i-blade is a homogeneous
multivector of grade i but not vice versa. A multivector A of grade i is
sometimes written as A〈i〉.

The inner (·) and outer (∧) product of two vectors u,v ∈ 〈Gp,q〉1 ≡ IRp+q

are defined as

u · v :=
1

2
(uv + vu), (3.3)

u ∧ v :=
1

2
(uv − vu). (3.4)

Here α = u · v ∈ IR is a scalar, which is of grade zero, i.e. α ∈ 〈Gp,q〉0.
Besides, B = u ∧ v is a bivector, i.e. B ∈ 〈Gp,q〉2.

As extension the inner product of a r-blade u1 ∧ . . . ∧ ur with a s-blade
v1 ∧ . . . ∧ vs can be defined recursively by

(u1 ∧ . . . ∧ ur) · (v1 ∧ . . . ∧ vs) ={
((u1 ∧ . . . ∧ ur) · v1) · (v2 ∧ . . . ∧ vs) if r ≥ s
(u1 ∧ . . . ∧ ur−1) · (ur · (v1 ∧ . . . ∧ vs)) if r < s,

(3.5)

with

(u1 ∧ . . . ∧ ur) · v1 =
r∑

i=1

(−1)r−iu1 ∧ . . . ∧ ui−1 ∧ (ui · v1) ∧ ui+1 ∧ . . . ∧ ur, (3.6)

ur · (v1 ∧ . . . ∧ vs) =
s∑

i=1

(−1)i−1v1 ∧ . . . ∧ vi−1 ∧ (ur · vi) ∧ vi+1 ∧ . . . ∧ vs. (3.7)

This will become more clear in the next subsections.

For two blades A〈r〉 and B〈s〉 with non-zero grade r and s ∈ IN the inner
and outer product can be written as

A〈r〉 ·B〈s〉 = 〈AB〉|r−s| and (3.8)

A〈r〉 ∧B〈s〉 = 〈AB〉r+s, (3.9)

with the following additional rules:
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1. If r = 0 or s = 0, the inner product is zero.

2. If r + s > n, the outer product is zero.

The blades of highest grade are n-blades, called pseudoscalars. Pseu-
doscalars differ from each other by a nonzero scalar only. For non-degenerated
geometric algebras there exists two unit n-blades, called the unit pseudoscalars
±I. The unit pseudoscalars are often indexed by the generating vector spaces
of the geometric algebras, for example IE , IP and IC represent the unit pseu-
doscalars of the algebras for the Euclidean, projective and conformal space,
respectively.

The magnitude [P ] of a pseudoscalar P is a scalar. It is called bracket of
P and is defined by

[P ] := PI−1. (3.10)

For the bracket determined by n vectors, it is convenient to write

[v1 . . .vn] = [v1 ∧ . . . ∧ vn]

= (v1 ∧ . . . ∧ vn)I−1. (3.11)

This can also be taken as a definition of a determinant, well known from
matrix calculus.

The dual X⋆ of a r-blade X is defined by

X⋆ := XI−1. (3.12)

It follows that the dual of a r-blade is a (n− r)-blade.

The reverse Ã〈s〉 of a s-blade A〈s〉 = a1∧ . . .∧as is defined as the reverse
outer product of the vectors ai,

Ã〈s〉 = (a1 ∧ a2 ∧ . . . ∧ as−1 ∧ as)
∼

= as ∧ as−1 ∧ . . . ∧ a2 ∧ a1. (3.13)

The join A∧̇B is the pseudoscalar of the space given by the sum of spaces
spanned by A and B.

For blades A and B the dual shuffle product A ∨ B is defined by the
DeMorgan rule

(A ∨B)⋆ := A⋆∧̇B⋆. (3.14)

For blades A and B it is possible to use the join to express meet opera-
tions:
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Definition 3.1 Let A and B be two arbitrary blades and let J = A∧̇B,
then

A ∨B :=
(
AJ−1 ∧BJ−1

)
J . (3.15)

The meet ∨, also called the shuffle product, is a common factor of A and B

with the highest grade. The meet will be used in chapter 3.2 for incidence
estimation of points, lines and planes.

For later computations, the commutator × product and the anticommu-
tator × product for any two multivectors is used,

AB =
1

2
(AB + BA) +

1

2
(AB −BA) =: A×B + A×B. (3.16)

The reader should consult [133] to become more familiar with the commu-
tator and anticommutator product. Their role is to separate the symmetric
part of the geometric product from the antisymmetric one.

Now follows an introduction to algebras for the Euclidean, projective and
conformal space.

3.1 The Euclidean geometric algebra

The algebra G3, which is derived from IR3, i.e. n = p = 3, is the smallest and
simplest one in this thesis. This algebra is suited to represent entities and
operations in 3D Euclidean space. Therefore it is called EGA as abbreviation
for Euclidean geometric algebra. Let {e1, e2, e3} be three orthonormal basis
vectors of the 3D Euclidean space. Following e.g. [20], such a basis can
always be found2. The geometric algebra of the 3D Euclidean space consists
of 23 = 8 basis elements, derived from the three basis vectors:

G3 = span{1 , e1, e2, e3, e23, e31, e12, e123}. (3.17)

The elements eij = eiej = ei ∧ ej are the unit bivectors and the element

e123 = e1e2e3 = e1 ∧ e2 ∧ e3 (3.18)

=: IE (3.19)

is a trivector, called Euclidean unit pseudoscalar, which squares to −1 and
commutes with scalars, vectors and bivectors. As visualized in figure 3.1,
each bivector represents the plane spanned by two vectors and the trivector
represents the unit volume. To enlighten the rules of the geometric prod-

2 This follows from the orthonormalization theorem of E. Schmidt.
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Fig. 3.1: A basis of the 3D Euclidean geometric algebra contains three basis
vectors, three bivectors, one scalar and one pseudoscalar.

uct introduced in equation (3.1), the geometric product of two vectors is
calculated as an example:

uv = (u1e1 + u2e2 + u3e3)(v1e1 + v2e2 + v3e3)

= u1e1(v1e1 + v2e2 + v3e3) + u2e2(v1e1 + v2e2 + v3e3) +

+u3e3(v1e1 + v2e2 + v3e3)

= u1v1 + u2v2 + u3v3 + (u1v2 − u2v1)e12 + (u3v1 − u1v3)e31 +

+(u2v3 − u3v2)e23

= u · v + u ∧ v. (3.20)

Thus the geometric product of two vectors leads to a scalar representing the
inner product of the two vectors (corresponding to the scalar product of these
vectors in matrix calculus), and to a bivector representing the outer product
of two vectors. The dual of the bivector corresponds to the cross product of
the two vectors. The inner product of a bivector (a∧b) with a vector c leads
to another vector,

(a ∧ b) · c 3.6
= −(a · c) ∧ b + a ∧ (b · c)

= −(a · c)b + (b · c)a, (3.21)

and is the equivalent formulation of the cross product rule for the 3D case3,

(a× b)× c = 〈a, c〉b− 〈b, c〉a. (3.22)

3 In this example, 〈, 〉 denotes the scalar product of vectors, and × denotes the cross
product.
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The inner product of two bivectors leads to a scalar,

(a ∧ b) · (c ∧ d)
3.5
= ((a ∧ b) · c) · d

3.21
= (−(a · c)b + (b · c)a) · d
= −(a · c)(b · d) + (b · c)(a · d) (3.23)

and results (for the 3D case) in an equivalent expression of the Lagrange
identity for the cross products of 3D vectors,

〈(a× b), (c× d)〉 = 〈a, c〉〈b,d〉 − 〈b, c〉〈a,d〉.
(3.24)

Note that the outer product is more general than the cross product, since it
can be applied to vector spaces of any dimension and any signature.

3.1.1 Representation of points, lines and planes in the

Euclidean geometric algebra

Points, lines and planes of the 3D space can all be modeled in the algebra G3.
A point, representing a position in the 3D space, can simply be expressed by
a linear combination of the three basis vectors,

u = u1e1 + u2e2 + u3e3. (3.25)

A line can be represented as an inhomogeneous multivector by using a vector
r for the direction and a bivector m containing the moment, as outer product
of a point x on the line and the direction r of the line. This means a line is
represented by its Plücker coordinates [21],

l = r + x ∧ r

= r + m. (3.26)

Incidence of a point with a line can be expressed by the kernel of a function
FXL as follows,

p ∈ l ⇔ FXL(p, l) = 0

⇔ (p ∧ r)−m = 0. (3.27)

A plane can be represented by an entity one grade higher than a line. In
terms of the Hesse distance d from the origin to the plane (coded by the
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Euclidean pseudoscalar) and the unit bivector direction n from the origin to
the plane, a plane is represented by

p = n + IEd. (3.28)

Thus a plane is an inhomogeneous multivector consisting of a bivector and
a trivector. The incidence of a point with a plane can be expressed in the
following way,

x ∈ p ⇔ FXP (x,p) = 0

⇔ (x ∧ n)− IEd = 0. (3.29)

It is easy to recognize that the representation of lines and planes is more
complicated than that of points. Also the constraint equations expressing the
incidence relation are not compact or simple. This has its reason in the fact,
that so far no origin of the vector space is modeled within the geometric
algebra. In vector calculus this can formally be done by introducing an
additional (or homogeneous) coordinate. Such an extension will also be done
in section 3.2 for modeling the projective space in a Clifford algebra.

3.1.2 Rotations and translations in the Euclidean space

Multiplication of the three basis vectors ei with IE results in the three basis
bivectors IEei. These bivectors rotate vectors in their own plane by 90o, e.g.

(IEe3)e2 = e123e3e2 = e12e2 = e1, (3.30)

or

(IEe1)e2 = e123e1e2 = e23e2 = −e1. (3.31)

Note that since the basis vectors are orthonormal, it is equivalent to write
eij = ei∧ej for i 6= j. The basis bivectors square to −1, and can be identified
with the unit vectors i, j, k of the quaternion algebra IH with the famous
Hamilton relations [21]

i2 = j2 = k2 = ijk = −1. (3.32)

The bivectors of the geometric algebra can be used to represent rotations
of points in the 3D space. A rotor R is an even grade element of the algebra
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G3 which satisfies RR̃ = 1. Since the even grade elements of G3 are scalars
and bivectors, a rotor R and its reverse R̃ is given by

R = u0︸︷︷︸
scalar

+ u1e23 + u2e31 + u3e12︸ ︷︷ ︸
bivectors

, (3.33)

R̃ = u0︸︷︷︸
scalar

−u1e23 − u2e31 − u3e12︸ ︷︷ ︸
bivectors

. (3.34)

By using the Euler representation of a rotor,

R = exp

(
−θ

2
n

)

= cos

(
θ

2

)
− n sin

(
θ

2

)
, (3.35)

this takes on geometric significance. Here n is a unit bivector representing
the plane of the rotation (its dual n⋆ corresponds to the rotation axis) and
θ ∈ IR represents the amount of rotation. The negative value −θ in the rotor
is used to gain a counter clockwise rotation and therewith a mathematically
positive rotation. The rotation of a point, represented by its vector x, can
be carried out by multiplying the rotor R from the left and its reverse from
the right to the point x,

x′ = RxR̃. (3.36)

Such a multiplication is also called rotor product. The rotor product is a
special case of a versor product [79]. A rotor represents the group SO(3) in
EGA. Thus the geometric product of two rotors R = R2R1 results in a new
rotor. From this follows

x′ = RxR̃ = (R2R1) x
(
R̃1R̃2

)
. (3.37)

In contrast to rotation matrices in IR3, rotors can not only be applied to
points, but to all types of geometric objects, independent of the grade and
the dimension of the space.

The exponential function of multivectors m can be expressed by the series
expansion,

exp(m) =
∞∑

k=0

mk

k!
. (3.38)
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Derivating the rotor R with respect to θ leads to

∂R

∂θ
=

∂ exp(−θ
2
n)

∂θ
= −1

2
n exp

(
−θ

2
n

)

= −1

2
sin

(
θ

2

)
− 1

2
n cos

(
θ

2

)
. (3.39)

The derivation of the rotation applied on x leads to

∂RxR̃

∂θ
=

∂R

∂θ
xR̃ + Rx

∂R̃

∂θ
. (3.40)

In contrast to rotations there exists no multiplicative way to formalize trans-
lations in the Euclidean geometric algebra. The only possibility is to express
translations in an additive way, e.g. a point x is translated with a translation
vector t, by

x′ = x + t. (3.41)

This results from the fact that translations in IR3 = 〈G3〉1 constitute the
additive group IR3. Therefore composite translation follows the rule t =
t1+t2. Another problem concerns the linearity of both operations. A rotation
is a linear operation: Let x and y be any multivectors of G3, then

R{x + y} = R{x}+R{y}. (3.42)

Yet translation does not have this linearity property: For two vectors x and
y representing points of 〈G3〉1, it follows

T {x + y} 6= T {x}+ T {y}. (3.43)

These different behaviors cause problems in representing the rigid body mo-
tion of an object in EGA as linear operation. In general the movement of a
rigid body, also called a rigid displacement, may include both rotation and
translation in the following way: Let be x′,x ∈ 〈G3〉1, then

x′ = RxR̃ + t. (3.44)

A spatial displacement D = (R, t) belongs to the special Euclidean group
SE(3) = IR3×SO(3). Thus a composite displacement D = D2D1 exists with

D = (R, t) = (R2, t2)(R1, t1) = (R2R1,R2t1 + t2). (3.45)

But regrettably, because of the non-linear behavior of the translation dis-
placement it is no linear operation in G3, neither for points nor for any other
entities. Fortunately, there are other algebraic embeddings which result in
linearization with respect to points and other entities. While so far either
point or line based transformations for rigid displacements have been distin-
guished [141], in this thesis a third category is introduced which is based on
spheres [110], see section 3.3.
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3.2 The projective geometric algebra

By using homogeneous coordinates the dimension of the vector space in-
creases by one and the corresponding geometric algebra is of dimension
24 = 16. The elements are now scalars, vectors, bivectors, trivectors and
pseudoscalars. To model 3D projective geometry in a geometric algebra four
basis vectors are needed. The signature of the derived vector space will be
unimportant, therefore it is free to choose. Since I will later use G3,1 (chap-
ter 4), the geometric algebra G3,1 is introduced to represent the projective
space. Here the additional basis vector e− denotes the homogeneous compo-
nent. Because e2

− = −1, this basis vector induces a Minkowski metric. The
algebra G3,1 contains the following elements

G3,1 = span{1, e−, e1, e2, e3, e23, e31, e12, e−1, e−2, e−3,

e123, e−23, e−31, e−12, e−123}. (3.46)

Note that

e−123 = e− ∧ e1 ∧ e2 ∧ e3 =: IP , (3.47)

and

e2
−123 = −1. (3.48)

3.2.1 Representation of points, lines and planes in the

projective geometric algebra

In contrast to the Euclidean geometric algebra G3, the projective geometric
algebra G3,1 (PGA) can be used to model projective geometry. In PGA
points, lines and planes can be represented as r-blades, i.e. homogeneous
multivectors of grade r. Thus the duality operator defined in equation (3.12)
is of special importance since it transforms geometric entities to their duals.

A point can be represented by a 1-blade. The basis vector e− represents
the homogeneous component of the point. Thus the point x given in G3 can
be represented in G3,1 by

X = x + e−. (3.49)

Since X ∧X = 0, it is simple to get

X ∧ λX = 0 ∀λ ∈ IR \ {0}. (3.50)
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Fig. 3.2: The 3D projective space contains four basis vectors. Projective
points are 1D-subspaces in the 4D space. Two projective points de-
fine a projective line and three projective points define a projective
plane.

For this reason the outer product is used to define the equivalence class of
points in the projective space (see A.1 of the appendix for a definition of
the projective space in classical matrix calculus). All vectors X represent a
point A if A ∧X = 0. The term A∧ can be viewed as a linear operator.
This means, that the so-called outer product null space defines the incidence
of two entities, similar to [77].

A line can be represented by the outer product of two points, leading to
a 2-blade

L = X1 ∧X2

= (x1 + e−) ∧ (x2 + e−)

= x1 ∧ x2 + (x1 − x2)e−

= m− re−. (3.51)

The line L contains the moment m and the (negative) direction r. Therefore
it corresponds directly to the Plücker representation (up to scale factor) [21].
Being a 2-blade, the line contains 6 bivector components.

A plane can be represented by the outer product of three points, leading
to a 3-blade

P = X1 ∧X2 ∧X3
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= (x1 + e−) ∧ (x2 + e−) ∧ (x3 + e−)

= x1 ∧ x2 ∧ x3 + (x1 − x2) ∧ (x1 − x3)e−

= dIE + ne−. (3.52)

This representation corresponds to the Hesse description of planes (up to
scale factor), formalizing a plane by the normal n (as bivector) of the plane,
and the Hesse distance d of the origin to the plane. The representation of
the entities is visualized in figure 3.2: A 4D homogeneous point corresponds
to a ray. Two points define a line and three points a plane.

As can be seen, the generation of higher order entities is much more
natural than in the algebra of the Euclidean space.

The outer product of two blades is non-vanishing iff4 their supports have
zero intersection. This can be used to prove an incidence relation [81], e.g. a
point X is on a line L iff

X ∧L = 0. (3.53)

To calculate intersections, the definition 3.1 is recalled: Let A and B be
two arbitrary blades and let J = A∧̇B, then

(A ∨B) :=
(
AJ−1 ∧BJ−1

)
J . (3.54)

Thus the meet and the join operators provide the desired operations in
the algebra of subspaces of a vector space. The join can be used to determine
the union of subspaces and the meet product can be used to determine the
intersection of subspaces. Note that the incidence operations always lead to
entities in the projective space. To transform e.g. a projective representa-
tion of a point to a Euclidean one, the entities have to be rescaled in their
homogeneous component, as shown in chapter 4.

To make clear the meet and join operators, in the following example the
intersection of two lines will be calculated for the 2D projective case: Let

a1 = e−, b1 = 2e1 + 2e2 + e−,

a2 = 2e2 + e−, b2 = 2e1 + e−, (3.55)

be four vectors, defining two lines as shown in figure 3.3. The lines are given
as

l1 = a1 ∧ b1 = 2e−1 + 2e−2, (3.56)

l2 = a2 ∧ b2 = 4e12 + 2e2− + 2e−1. (3.57)

4 if and only if
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Fig. 3.3: Visualization of the intersection of two lines.

The join of these two lines is

J = e−12. (3.58)

Since J2 = 1, its inverse is J itself. Then the geometric product of the lines
with the join J leads to

l1J = 2e2 − 2e1, l2J = 2e2 + 2e1 + 3e−. (3.59)

Computation of their outer product multiplied with the join J leads to

((l1J) ∧ (l2J))J = 8e− + 8e1 + 8e2. (3.60)

Rescaling with the homogeneous component leads to

l1 ∨ l2 ≃ e1 + e2 (3.61)

as Euclidean intersecting point. This is consistent with the scenario visual-
ized in figure 3.3.

The advantage of the algebra G3,1 for the projective space in comparison
to the algebra G3 for the Euclidean space is that the representation of the
entities is much more natural and is provided by the subspace concepts. This
leads to a simple formulation of the duality concept in projective geometry
and to compact descriptions of joins and meets of subspaces, just by applying
a suitable operator. These concepts are for example used in Ch. Perwass’
thesis [131] to formalize stereo geometry, fundamental matrices and trifocal
tensors.

Projective transformations are more general than Euclidean transforma-
tions, since they also include other transformations like scaling or shearing.
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For this thesis only Euclidean transformations (rigid body motions) are of
interest. Therefore it is necessary to restrict the projective transformations
in a second processing step. This leads to numerical problems and so there is
need for an algebraic embedding which enables the restriction of the transfor-
mations on a rigid body motion in a better way. The commonly used algebra
so far is the dual quaternion algebra, which is isomorphic to the motor alge-
bra G

+
3,0,1 [14]. But since it contains null spaces, the duality concepts cannot

be applied any more5. The aim is now to proceed to the conformal algebra,
which can handle these problems. One important property of the conformal
geometric algebra is that it is non-degenerate, but contains an artificially
generated null space. The algebra for projective geometry is furthermore a
subset of this (extended) algebra. Since the null space is constructed from a
Minkowski subspace, it is possible to switch between null spaces and non-null
spaces, an important fact for the next sections.

3.3 The conformal geometric algebra

In PGA projective transformations can be expressed, but the restriction to
the Euclidean transformations leads to problems. Therefore there is need to
introduce another geometric embedding. The use of the conformal geometric
algebra [110, 111, 80] is motivated by introducing stereographic projections
[62].

3.3.1 Stereographic projections

Simply speaking, a stereographic projection is one way to generate a flat
map of the earth. Taking the earth as a 3D sphere, any map must distort
shapes or sizes to some degree. The rule for a stereographic projection has
a clear geometric description and is visualized for the 1D case in figure 3.4:
Think of the earth as a transparent sphere, intersected on the equator by an
equatorial plane. Now imagine a light bulb at the north pole n, which shines
through the sphere. Each point on the sphere casts a shadow on the paper
and that is where it is drawn on the map.

Before introducing a formalization in terms of geometric algebra, the
basic properties of stereographic projections in classical vector calculus are
derived.

5 The inverse pseudoscalar does not exist, since I2 = 0.
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Fig. 3.4: Visualization of a stereographic projection for the 1D case: Points
on the circle are projected onto the line. Note that the north pole
n projects to the points at infinity, and the south pole s projects
to the origin.

The main questions are: (a) How to project a point on the sphere to
the plane? And vice versa: (b) How to project a point on the plane to the
sphere?

To simplify the calculations for answering these questions they are re-
stricted to the 1D case as shown in figure 3.4. Let there be two orthonormal
basis vectors {e1, e+} and let the radius of the circle be ρ = 1. Note that e+ is
an additional vector to the one-dimensional vector space e1 with e2

+ = e2
1 = 1.

(a) A point x′ on the circle is given by its angle α:

x′ = ae1 + be+

= cos(α)e1 + sin(α)e+. (3.62)

To project the point x′ = ae1 + be+ on the circle to a point on the e1-axis
the intercept theorems can be applied to gain

x

1
=

a

1− b =

(
cos(α)

1− sin(α)

)
. (3.63)

The point on the line has the coordinates

x =

(
cos(α)

1− sin(α)

)
e1 + 0e+. (3.64)
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Fig. 3.5: Visualization of the homogeneous model for stereographic projec-
tions for the 1D case. All stereographically projected points lie on
a cone, which is a null-cone in the Minkowski space. Note that in
comparison to figure 3.4 the coordinate axes are rotated and drawn
perspectively.

(b) To project a point xe1 (x ∈ IR) onto the circle means to calculate
appropriate factors a, b ∈ [0, . . . , 1]. Therefore the following equalities apply:

x =
a

1− b , (3.65)

a2 + b2 = 1. (3.66)

Now it is possible to calculate

(3.65)→ a = x(1− b), (3.67)

(3.66)→ a2 = (1 + b)(1− b). (3.68)

This leads to

x2(1− b)2 = (1 + b)(1− b)
⇔ x2(1− b) = (1 + b)

⇔ b =
x2 − 1

x2 + 1
. (3.69)

Resubstituting in (3.67) results in

a = x(1− b) =
2x

x2 + 1
. (3.70)
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Therefore the projection on the circle can be written as

x′ = ae1 + be+

=
2x

x2 + 1
e1 +

x2 − 1

x2 + 1
e+. (3.71)

Using homogeneous coordinates leads to a homogeneous representation of
the point on the circle as

x′ = xe1 +
1

2

(
x2 − 1

)
e+ +

1

2

(
x2 + 1

)
e3. (3.72)

The vector x is mapped to

x ⇒ x′ = ae1 + be+ + e3. (3.73)

In [110] e3 is defined to have a negative signature, and therefore e3 is replaced
with e−, whereby e2

− = −1. This has the advantage that in addition to
using a homogeneous representation of points, they are further embedded in
a Minkowski space. Euclidean points, stereographically projected onto the
circle in figure 3.5, are then represented by the set of null vectors in the new
space. A Euclidean point is mapped to the conformal space by

x ⇒ x′ = ae1 + be+ + e−, (3.74)

with

(x′)2 = a2 + b2 − 1 = 0. (3.75)

The coordinates (a, b) are the coordinates of a point on the unit circle. Note
that each point in Euclidean space is in fact represented by a line of null
vectors in the new space: the scaled versions of the null vector on the unit
sphere.

In [110] it is shown that the conformal group of n-dimensional Euclidean
space IRn is isomorphic to the Lorentz group of IRn+1,1. Furthermore, the
geometric algebra Gn+1,1 of IRn+1,1 has a spinor representation of the Lorentz
group. Therefore, any conformal transformation of the n-dimensional Eu-
clidean space is represented by a spinor in Gn+1,1, the conformal geometric
algebra. Figure 3.5 visualizes the homogeneous model for stereographic pro-
jections for the 1D case.

This homogeneous representation of a point is used as point in the con-
formal geometric algebra. This will be shown in the next section. Note
that the stereographic projection from a plane leads to points on a sphere.
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Therefore it is possible to use (special) rotations on this sphere to model e.g.
translations in the originate space. Since also a homogeneous embedding is
used, it is further possible to model projective geometry. The fusion of stere-
ographic projections within geometric algebras is also presented in [132] and
more details on the geometric properties are given.

3.3.2 Definition of the conformal geometric algebra

Following [110] a Minkowski plane is used to introduce CGA. Its vector space
IR1,1 has the orthonormal basis {e+, e−}, defined by the properties

e2
+ = 1, e2

− = −1, e+ · e− = 0. (3.76)

In addition, a null basis can now be introduced by the vectors

e0 :=
1

2
(e− − e+) and e := e− + e+. (3.77)

These vectors can be interpreted as the origin e0 of the coordinate system
and the point at infinity e respectively. Furthermore, E is defined as E :=
e ∧ e0 = e+ ∧ e−.
For these elements the following straightforwardly proved properties can be
summarized as

e2
0 = e2 = 0, e · e0 = −1, E = e+e−,

E2 = 1, Ee = −e, Ee0 = e0,

e+E = e−, e−E = e+, e+e = E + 1,

e−e = −(E + 1), e ∧ e− = E, e+ · e = 1. (3.78)

The role of the Minkowski plane is to generate null vectors, and so to extend
an Euclidean vector space IRn to IRn+1,1 = IRn ⊕ IR1,1 and thus resulting in
the conformal geometric algebra Gn+1,1. The conformal vector space derived
from IR3 is denoted as IR4,1. A basis is given by {e1, e2, e3, e+, e−}. The
corresponding algebra G4,1 contains 25 = 32 elements. The conformal unit
pseudoscalar is denoted as

IC = e+−123 = EIE . (3.79)

In this algebra points are considered as elements of the so-called null cone,

{x ∈ IR4,1|x2 = 0,x · e = −1}. (3.80)
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The points of the null cone are related to those of the Euclidean space by

x = x +
1

2
x2e + e0. (3.81)

Evaluating x leads to

x = x +
1

2
x2e + e0

= x +
1

2
x2(e+ + e−) +

1

2
(e− − e+)

= x +
(

1

2
x2 − 1

2

)
e+ +

(
1

2
x2 +

1

2

)
e−. (3.82)

This is exactly the homogeneous representation of a stereographically pro-
jected point onto the circle, given in equation (3.72). A point is only more
compactly written using {e, e0}, instead of {e+, e−}.

3.3.3 Geometric entities in conformal geometric algebra

The use of a certain geometric algebra induces a basis geometric entity from
which the other entities are derived. In G3, the algebra of the Euclidean
space, the basis entities are points, whereby lines and planes are formulated
as certain sets of points. In the motor algebra G

+
3,0,1, an algebra to model

kinematics [14], the basis entities are lines, expressed in terms of the Plücker
coordinates [21], and points and planes are written in these terms. This comes
along with the fact, that the motor algebra is built from bivectors as basis
entities and this is the reason, why it is in contrast to G3 no universal Clifford
algebra. In conformal geometric algebra G4,1, spheres can be interpreted as
the basis entities [126] from which the other entities are derived. It turns
out that the above introduced point representation is nothing else than a
degenerate sphere.

To introduce primitive geometric entities in CGA, firstly the representa-
tion of spheres in CGA is introduced. Then further entities will be discussed.
A more detailed introduction can be found in [110]. A useful tool to visualize
the entities and their geometric transformations in CGA can be found in [36].

There is no direct way to describe spheres as compact entities in G3. The
only possibility to define them is given by formulating a constraint equation.
The equation for a point, x ∈ G3, on a sphere with center p ∈ G3 and radius
ρ ∈ IR, ρ ≥ 0, can be written as

(x− p)2 = ρ2

⇔ x2 − (xp + px) + p2 = ρ2. (3.83)
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The basis entities of the 3D conformal space are spheres s, containing the
center p and the radius ρ, s = p + 1

2
(p2 − ρ2)e + e0. The point x =

x + 1
2
x2e + e0 is nothing more than a degenerate sphere with radius ρ = 0,

which can easily be seen from the representation of a sphere. In G4,1 the
equation (3.83) can therefore be represented more compactly:

(x− p)2 = ρ2

⇔ x · s = 0. (3.84)

This can easily be verified by evaluating

x · s = (x +
1

2
x2e + e0) · (p +

1

2
(p2 − ρ2)e + e0)

= −1

2
(x2 + p2 − ρ2) + x · p

= −1

2
((x− p)2 − ρ2). (3.85)

The dual form for a sphere is s⋆. The advantage of the dual form is that
s⋆ can be calculated directly from points on the sphere: For four points on
the sphere, s⋆ can be written as

s⋆ = a ∧ b ∧ c ∧ d, (3.86)

and a point x is on a sphere s iff x∧ s⋆ = 0. Note: The incidence of a point
with an entity can be expressed by the inner product null-space or outer
product null-space, depending on the representation or dual representation of
the entity. This follows from the easy relationship (see e.g. [77])

x · s = 0

⇔ x ∧ s⋆ = 0. (3.87)

So far the description of the first two entities, points and spheres, is
introduced.

Geometrically, a circle z can be described by the intersection of two
spheres. This means:

x ∈ z ⇔ x ∈ s1 and x ∈ s2. (3.88)

Since s1 and s2 can be assumed as linearly independent, it is possible to
write
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x ∈ z

⇔ (x · s1)s2 − (x · s2)s1 = 0

⇔ x · (s1 ∧ s2)︸ ︷︷ ︸
z

= 0

⇔ x · z = 0. (3.89)

This means, that algebraically a circle can be expressed as the outer product
of two spheres. Figure 3.66 visualizes the generation of a circle as intersection

Fig. 3.6: A circle can be expressed as intersection of two spheres. Intersecting
the circle with a third sphere leads to two points (only one of these
two points is visible).

of two spheres. The intersection of the circle with a third sphere leads to a
point pair. Indeed a point pair can be expressed as outer product of three
spheres and is a three-blade entity.

In the dual form a circle is geometrically defined by three points on it,

z⋆ = a ∧ b ∧ c. (3.90)

Evaluating the outer products of three points leads to

z⋆ = a ∧ b ∧ c = A+ A−e + A+e0 + A±E, (3.91)

with

6 Figure 3.6 is taken from the visualization tool for Clifford algebra, CLUDraw [36].
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Entity Representation G. Dual representation G.
Sphere s = p + 1

2 (p2 − ρ2)e + e0 1 s⋆ = a ∧ b ∧ c ∧ d 4
Point x = x + 1

2x2
e + e0 1 x⋆ = (−Ex− 1

2x2
e + e0)IE 4

Plane P = nIE − de 1 P ⋆ = e ∧ a ∧ b ∧ c 4
n = (a− b) ∧ (a− c)
d = (a ∧ b ∧ c)IE

Line L = rIE + emIE 2 L⋆ = e ∧ a ∧ b 3
r = a− b

m = a ∧ b

Circle z = s1 ∧ s2 2 z⋆ = a ∧ b ∧ c 3
P

z
= z · e, L⋆

z
= z ∧ e

p
z

= P
z
∨L

z
, ρ =

z2

(e∧z)2

Point Pair PP = s1 ∧ s2 ∧ s3 3 PP ⋆ = a ∧ b, X⋆ = e ∧ x 2

Tab. 3.1: The entities and their dual representations in CGA

A = a ∧ b ∧ c A− = 1
2(c2(a ∧ b)− b2(a ∧ c) + a2(b ∧ c))

A+ = a ∧ b + b ∧ c− a ∧ c A± = 1
2(a(b2 − c2) + b(c2 − a2) + c(a2 − b2)).

The dual form of lines is represented by the outer product of two points
on the line and the point at infinity (see [126]),

L⋆ = e ∧ a ∧ b. (3.92)

Since the outer product of three points determines a circle [110], the line can
be interpreted as a circle passing through the point at infinity.

Evaluating the line L⋆ leads to

L⋆ = e ∧ a ∧ b

= (e ∧ a + E) ∧ b

= e ∧ a ∧ b− a ∧E + b ∧E

= e ∧ a ∧ b + (b− a)E

= em + rE. (3.93)

From chapter 3.2 can be seen that again the line is given in its Plücker
coordinates, containing the direction r and the moment m.

Similar to lines, dual planes can then be defined by the outer product of
three points on the plane and the point at infinity,

P ⋆ = e ∧ a ∧ b ∧ c. (3.94)

A plane is a degenerate sphere, containing the point at infinity. Evaluating
the plane P ⋆ leads to

P ⋆ = e ∧ a ∧ b ∧ c



48 Chapter 3. Introduction to geometric algebras

= (e ∧ a ∧ b) ∧ c

= e ∧ a ∧ b ∧ c + E(b− a) ∧ (c− a)

= eIEd+ En. (3.95)

Similar to lines it is easy to recognize, that the plane is given in its Hesse
form of a plane, containing the normal n and the distance d.

An overview of the definitions of the entities, their dual representations
and their grades is given in table 3.1. Since the outer product of 3 spheres
leads to a point pair, it is a 2-blade in its dual space. Using the point at
infinity leads to another representation of a pure point X⋆ = e ∧ x in the
dual space and is called the affine representation of a point in [110].

The entities now have the following grades: points, spheres and planes
are 1-blades, lines and circles are 2-blades and point pairs are 3-blades. Due
to the fact that lines and planes are mostly generated by points on these
entities, in the next sections the dual representations of points, lines and
planes will be used.

3.3.4 Conformal transformations

In CGA, any conformal transformation can be expressed in the form

σx′ = GxG−1, (3.96)

where G is a versor and σ a scalar. Since the null cone is invariant under
G, i.e. (x′)2 = x2 = 0, it is convenient to apply a scale factor σ to ensure
x′ · e = x · e = −1. Table 3.2, taken from [110], summarizes the conformal
transformations. The first column shows the type of operation performed
with the versor product. The second column shows as example the result of
a transformation acting on a point. The third column shows the versor which
has to be applied and the last column shows the scaling parameter σ which is
(sometimes) needed, to result in a homogeneous point and ensure the scaling
x′ · e = x · e = −1. As can be seen, any conformal transformation covers
several more simple geometric transformations. In table 3.2, a reflection
is expressed with respect to a hyper-plane with unit normal n and signed
distance δ. The inversion is expressed for a circle of radius ρ centered at
point c. A transversion can be written down as an inversion followed by
a translation and another inversion. The other transformations are self-
explanatory. More explanations of the conformal group can also be found in
[126, 64].
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Type G(x) on IRn Versor in Gn+1,1 σ
Reflection −nxn + 2nδ V = n + eδ 1

Inversion ρ2

x−c + c V = c− 1
2
ρ2e

(
x−c

ρ

)2

Rotation RxR−1 R = exp
(
−θ

2
n
)

1

Translation x− t T t = 1 + 1
2
te 1

Transversion x−x2t
σ(x)

Kt = 1 + te0 1− 2t · x + x2t2

Dilation λx Dλ = exp(−1
2
E(lnλ)) λ−1

Involution x⋆ = −x E −1

Tab. 3.2: Table of conformal transformations, versors and scaling parameters.

s

n

A

a

b

B a’

t

Fig. 3.7: Visualization of an inversion and translation for a stereographically
projected point in the 2D case.

It is shown in e.g. [78], that in G3 the transformations are generated by
reflections as basic operation. The question is what a reflection does mean
for the stereographically projected point on the sphere. This is visualized in
figure 3.7 for the 2D case: A reflection of a point a on the sphere with respect
to a 2D (base) plane leads to a new point b on the sphere, which corresponds
to the inverse B of the point A on the 2D plane. This means, that the basic
operation in G4,1 is an inversion, and the other operations are derived from
it. In figure 3.7 it is also shown, what a translation t of a point A on the
2D plane means for a corresponding point a on the sphere. A translation t

corresponds to a special rotation a →a’. It is also easy to imagine that a
rotation of a point in the 2D plane is exactly the same for its stereographically
projected point on the sphere. This means, that a rotation can be calculated
in the same manner as in G2 or G3 and a translation is a special rotation in
G3,1 or G4,1, respectively. This is the reason why kinematics can be described
in this model in a linear manner.

Since the main topic of this thesis concentrates on rigid motions, it will
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now be proceeded with expressing rotations and translations in CGA.

3.3.5 Rigid motions in CGA

This section deals with the formulation of rigid body motions. As mentioned
previously, a rigid body motion corresponds to the Euclidean transforma-
tion group SE(3). Although being a transformation by itself, it subsumes
rotation and translation. This makes it necessary to represent the Euclidean
transformation as a linear one, with a multiplicative coupling of rotation
and translation and to have access to both as linear operations. Since the
conformal transformation contains the Euclidean transformation, it is pos-
sible to use the conformal group to express rigid body motions. Note that
although the conformal group is more general than the Euclidean group, for
the pose estimation scenario it is sufficient to concentrate only on this subset
of transformations.

So far, rotors as elements of G
+
3 can be used to formalize a pure rotation,

but indeed it is not possible to describe general rigid body motions in this
algebra in a multiplicative manner. As well as in G3 (see section 3.1.2), a
rotation in G4,1 is represented by a rotor,

R = exp

(
−θ

2
l

)
. (3.97)

The components of the rotor R ∈ G
+
4,1 are, similar to section 3.1.2, the unit

bivector l ∈ 〈G3〉2 ⊆ G4,1 which represents the rotation plane, and the angle
θ, which represents the amount of the rotation. The rotation of an entity
can be performed just by multiplying the entity from the left with the rotor
R and from the right with its reverse R̃. For example, a rotation of a point
can be written as

x′ = RxR̃. (3.98)

That a rotation of a point in G4,1 can be expressed by the same rotor as in
G3 has already been clarified in section 3.3.4. That this also holds for any
blade (and thus for lines, planes, circles, spheres, etc.) can be seen from the
easy relation

R(x1 ∧ x2 ∧ . . . ∧ xn)R̃ = (Rx1R̃) ∧ (Rx2R̃) ∧ . . . ∧ (RxnR̃).

(3.99)
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To translate an entity with respect to a translation vector t ∈ 〈G3〉1, it is
possible to use a so called translator, T ∈ G4,1,

T = (1 +
et

2
) = exp

(
et

2

)
. (3.100)

A translator is a special rotor acting at infinity by using the null vector e.
Similar to a rotation, an entity can be translated by multiplying the entity
from the left with the translator T and its reverse T̃ from the right,

x′ = TxT̃ . (3.101)

To express a rigid body motion, the consecutive application of a rotor
and translator can be written as their product. Such an operator is denoted
as M ,

M = TR. (3.102)

It is a special even grade multivector, called a motor, which is an abbreviation
of moment and vector [13, 141]. The rigid body motion of e.g. a point X can
be written as

X ′ = MXM̃ , (3.103)

see also [79].

This formalization of a rigid displacement can not only be applied to
points or lines (see [141]), but to all entities contained in table 3.1. Further-
more, the transformation rule is the same for all entities of table 3.1. This
is in contrast to a former definition of motors in the frame of motor alge-
bra [13, 14], the algebra G

+
3,0,1, which is formulating kinematics in a space

composed of lines and which is isomorphic to the dual quaternion algebra.
Although equation (3.102) is a valid definition of a motor in both the mo-
tor algebra and CGA, its behavior with respect to different entities is quite
different. Compared with the motor algebra, in CGA there is no need to
make any sign changes depending on the entity the motor is acting on. This
makes several case decisions in the previous formalizations of kinematics un-
necessary and thus the calculations will become easier. The reason for this
increased symmetry of a motor action lies in the chosen algebraic embedding.

3.3.6 Twists and screw transformations

Now follows a further definition of a motor in CGA based on the so-called
twists. Every rigid body motion can be expressed as a twist or screw motion
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[124], which is a rotation around a line in space (in general not passing
through the origin)7 combined with a translation along this line. In CGA it
is possible to use the rotors and translators to express screw motions in space.
I will start with the formalization of general rotations and then continue with
screw motions. It will turn out that a general rotation is a special case of a
screw motion and its generator is directly connected to the representation of
a 3D line.

To model a rotation of a point X around an arbitrary line L in the
space, the general idea is to translate the point X with the distance vector
between the line L and the origin, to perform a rotation and to translate the
transformed point back. So a motor M ∈ G

+
4,1 describing a general rotation

has the form

M = TRT̃ , (3.104)

denoting the inverse translation, rotation and back translation, respectively.
Using the exponential form of the translator and rotor leads to8

M = TRT̃

= exp
(
et

2

)
exp

(
−θ

2
l

)
exp

(
−et

2

)

=
(
1 +

et

2

)
exp

(
−θ

2
l

)(
1− et

2

)

= exp

((
1 +

et

2

)(
−θ

2
l

)(
1− et

2

))

= exp

(
−θ

2
(l + e(t · l))

)
. (3.105)

This formulation corresponds to the one for a general rotation given in
[110]. Merely an exponential representation of the motor is used since then
it is more easy to calculate its derivative.

It is interesting to mention that the exponential part of the motor M =
TRT̃ consists directly of the line components to rotate the entities around.
To show this property, firstly the description of a dual line L⋆ is recalled,

L⋆ = e ∧ a ∧ b

= e(a ∧ b) + (b− a)E. (3.106)

7 Such an operation is also called a general rotation.
8 In the fourth equation is made use of the property g exp(ξ) g̃ = exp(gξg̃) for gg̃ = 1.

This property can be proven by an induction on the series expression of the exponential
function.
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Using the unit direction vector n and the plumb point t of the origin to the
line leads to the line representation

L⋆ = e(t ∧ n) + nE. (3.107)

Multiplying the dual line L⋆ with IC (from the right) results in

(e(t ∧ n) + nE)IC = (e(t ∧ n)EIE + nE)EIE

= e(t ∧ n)IE + nIE

= e(t · (nIE)) + nIE

= e(t · l) + l, (3.108)

since in 3D the direction n of the line corresponds to the dual of the rotation
plane l, n = l⋆.

Vice versa: Given the dual line L⋆ (with unit direction) in the space, the
corresponding motor describing a general rotation around this line is given
by

M = exp

(
−θ

2
L⋆IC

)

= exp

(
−θ

2
L

)
. (3.109)

Note that the line L must be scaled with respect to the direction, ‖n‖ = 1,
since the scaling of the line is directly connected to the amount of the rotation
θ. This shows that a line is a generator of a general rotation. Now will be
continued with screw motions.

Screw motions can be used to describe rigid body motions. Already as
early as 1830 Chasles proved that every rigid body motion can be realized
by a rotation around an axis combined with a translation parallel to that
axis, see also [141, 124]. This is called a screw motion. The infinitesimal
version of a screw motion is called a twist and it provides a description of
the instantaneous velocity of a rigid body in terms of its linear and angular
components. A screw motion is defined by an axis l, a pitch h and a magni-
tude θ. The pitch of the screw is the ratio of translation to rotation, h := d

θ

(d, θ ∈ IR, θ 6= 0). If h → ∞, then the corresponding screw motion consists
of a pure translation along the axis of the screw. The principle of a screw
motion is visualized in figure 3.8. To model a screw motion, the entity has
to be translated during a general rotation with respect to the rotation axis.
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O
θ d

l

Fig. 3.8: Visualization of a screw motion along l.

The resulting motor can be calculated in the following way,

M = T dnTRT̃

= exp

(
edn

2

)
exp

(
−θ

2
(l + e(t · l))

)

= exp

(
edn

2
− θ

2
(l + e(t · l))

)

= exp


−

θ

2


l + e(t · l− d

θ
n

︸ ︷︷ ︸
m

)
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= exp

(
−θ

2
(l + em)

)
. (3.110)

The bivector in the exponential part, −θ
2
(l+em), is a twist (see also chapter

A.2). The vector m is a vector in IR3 which can be decomposed in an
orthogonal and parallel part with respect to n = l⋆. If m is zero, the motor
M gives a pure rotation and if l is zero, the motor gives a pure translation.
For m ⊥ l⋆, the motor gives a general rotation and for m 6⊥ l⋆, the motor
gives a screw motion.

For the pose estimation algorithm, I prefer the interpretation of a mo-
tor M as exponential of a twist, since the exponential form enables me to
linearize the rigid motion in the later introduced constraint equations more
easily.
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Chapter 4

STRATIFICATION OF THE POSE

ESTIMATION PROBLEM

Figure 4.1 recalls the 2D-3D pose estimation problem for points, lines and
planes: Assumed is the knowledge of a 3D object model and its observation

o

l

a

X

Y

Y

Y

P

L

b

S

a

b b

X

a

b

X

L

2

reference model

observed model

  R , t
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3

1

2

1
1

2

31

1

2

31

3
1

1

Fig. 4.1: The scenario. The solid lines describe the assumptions: the camera
model (visualized by the image plane and the optical center o), the
model of the object (consisting of points and lines Y i and Si) and
corresponding extracted entities on the image plane (points bi and
lines li). The dashed lines describe the pose of the model, which
leads to the best fit of the object with the actually extracted entities.
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in an image of a calibrated camera. The aim is to find the rotation R and
translation t of the object, which lead to the best fit of the reference model
with the actually extracted entities.

4.1 Relating entities in Euclidean, projective and

conformal geometry

So far it is possible to use CGA for the formalization of involved entities and
their rigid motions. To formalize the scenario of figure 4.1 in a suitable way,
now it will be examined how to describe the interaction of projective and
conformal geometry. As mentioned earlier, the interaction of the different
strata of the stratification hierarchy [48] has only been poorly lit during the
last years. E.g. Ruf [157] deals with this problem, but only for point features
in the framework of matrix calculus. Instead, I want to extend the problem to
more general object features and use the conformal geometric algebra in this
context. To reach interaction between the strata, algebras for the projective
and Euclidean space are interpreted as subalgebras of the CGA. It turns out
that it is possible to switch representations of entities between these algebras
by multiplicative operators.

The main strategy to estimate the pose of the rigid object in figure 2.1
is very simple. It is summarized in figure 4.2 for the case of points: Com-
pute the projection rays as projective reconstruction of the image points
and compare them (in the Euclidean space) with the object model points
after the movement. But in detail several algebraic transformations have to
be performed: Firstly, the image entities are projectively reconstructed and
converted to a conformal representation. Then the model features are trans-
formed into the conformal space. To get a distance measure in the Euclidean
space, the transformed model entities and reconstructed image features are
compared by suitable scaled constraint equations in the last step.

The involved mathematical spaces and their corresponding geometric al-
gebras can be summarized in the following manner: The Euclidean framework
can be represented by using the algebra G3,0 (chapter 3.1), and G3,1 (chap-
ter 3.2) can be used to represent the projective space [81]. The projective
plane is represented by the algebra G2,1. One way of defining a kinematic
space is given by the motor algebra G

+
3,0,1 [13, 14]. Another way is given by

embedding the kinematics into the 3D conformal space represented by G4,1

(chapter 3.3) [110]. Table 4.1 gives an overview of representations of points
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projective plane

a2

i
→ L

a2

i

projective reconstruction

=⇒ projective space

projective space

projective conformal extension

of L
a2

i=⇒ conformal space

conformal space

transformation of

X1
→ X2

=⇒ conformal space

conformal space

comparison of

X2, L
a2

i=⇒ conformal space

conformal space
scaling
=⇒ Euclidean space

Fig. 4.2: Involved geometric spaces of the 2D-3D pose estimation problem.

Space Algebra Point Representation
3D Euclidean G3,0 x = x1e1 + x2e2 + x3e3

2D projective G2,1 xp2
= x1e1 + x2e2 + e−

3D projective G3,1 Xp3
= x1e1 + x2e2 +x3e3 + e−

3D kinematic G
+
3,0,1 X = 1 + I(x1e23+ x2e31 + x3e12)

3D conformal G4,1 x = x + 1
2
x2e + e0

X⋆ = e ∧ x

Tab. 4.1: Different mathematical spaces with their corresponding geometric
algebras and point representations.

using different algebras. As can be seen, the relation

G4,1 ⊇ G3,1 ⊇ G3,0 (4.1)

is valid, but only for G3,0 limited to points. Both algebras for the projective
and Euclidean space constitute subspaces of the linear space of the confor-
mal geometric algebra. Since only points are modeled in G3,0 the direction
of modeling the pose problem is consistent with the increasing possibilities
through using higher geometric algebras: Reconstruct from the projective
plane one dimensional higher entities and work in the projective or confor-
mal space respectively. These spaces provide more possibilities for expressing
geometry. Thus the modeling of the pose problem follows the direction

G3,0,G2,1 ⇒ G3,1 ⇒ G4,1. (4.2)

In the following operators will be introduced which not only relate linear
spaces of the considered algebras but guarantee the mapping between the
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algebraic properties. This means that operators are defined which trans-
form the representation of the entities of the conformal space into equivalent
entities in the projective space, and vice versa. The possibility to change
the representation of an entity allows one to pick up the advantages of each
algebra, and thus to use the best suited algebra for each subproblem.

4.1.1 Change of representations of geometric entities

In this section it will be shown, how these different representations can in-
teract. The operators between the conformal and projective space will be
denoted as conformal projective split and projective conformal extension, ac-
cording to the projective split [81] which allows for a change between the
projective and the Euclidean space and the conformal split [79, 81] which al-
lows for a change between the Euclidean and conformal space. By using these
different splits and extensions, it is possible to describe the whole stratifica-
tion hierarchy. This will lead to a compact formulation of the 2D-3D pose
estimation problem.

Now the interaction of the first two spaces, the conformal space to describe
kinematics and the projective space to describe the pinhole camera system
will be considered. The two operators which are used to switch entities
between the geometric algebras representing these spaces are summarized in
the following theorems:

Theorem 4.1 To change an entity Θ given in the projective representation,
Θp, to the conformal representation, Θc, Θp ∈ {X,L,P ∈ G3,1} → Θc ∈
{X⋆,L⋆,P ⋆ ∈ G4,1}, the following operator has to be applied:

Θc = e ∧Θp. (4.3)

Note, that circles and spheres are entities which can not be modeled by null-
spaces in the projective geometric algebra. Therefore it is not possible to
switch them between the projective and conformal geometric algebra. This is
in consistency with the direction of modeling the pose problem: Reconstruct
image features to one-dimensional higher entities and make a comparison in
the 3D space.

To prove the theorem 4.1 it is sufficient to show the easy relation
e ∧ e− = E,

e ∧ e− = (e− + e+) ∧ e−

= e+ ∧ e− = E. (4.4)
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To clarify the involved geometry, the representation changes of points,
lines and planes will be computed explicitly:

X ∈ G3,1 = x + e−

→ e ∧ (x + e−)

= e ∧ x + e ∧ e−

= ex + E = X⋆ ∈ G4,1. (4.5)

L ∈ G3,1 = e−r + m

→ e ∧ (e−r + m)

= em + e ∧ (e−r)

= Er + em = L⋆ ∈ G4,1. (4.6)

P ∈ G3,1 = e−n + dIE

→ e ∧ (e−n + dIE)

= En + edIE = P ⋆ ∈ G4,1. (4.7)

Now I will continue with the operator to switch representations from the
conformal space into the projective space.

Theorem 4.2 To change an entity Θ, given in the conformal representation,
Θc, to the projective representation, Θp, Θc ∈ {X⋆,L⋆,P ⋆ ∈ G4,1} → Θp ∈
{X,L,P ∈ G3,1}, the following operator has to be applied:

Θp = e+ ·Θc. (4.8)

To prove theorem 4.2 it is sufficient to show the following identity
Θp = e+ · (e ∧Θp),

e+ · (e ∧Θp) = (e+ · e)︸ ︷︷ ︸
1

∧Θp − e ∧ (e+ ·Θp)︸ ︷︷ ︸
0

= Θp. (4.9)

I call the operations e∧ and e+· the projective conformal extension and con-
formal projective split respectively.

The interaction between the algebras for the projective and Euclidean
space is much simpler. Lines and planes can be represented in the Euclidean
space, but as mentioned before, this is only an artificially generated rep-
resentation and not generated by the algebra itself. As a consequence the
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transformation can be described in a suitable way for points only. The trans-
formations are based on Hestenes’ formalization in [81] and can be expressed
in the following way,

X → (X∧e−)·e−

X ·e−

= x ∈ G3,0

x → x + e− = X ∈ G3,1.

Table 4.2 gives an overview of the three mainly involved spaces and their
interaction.

Euclidean projective conformal
space space space

G3,0 ⊆ G3,1 ⊆ G4,1

Θe

x+e−−→

− X
X ·e

−←−
Θp

e∧Θp−→
e+·Θc←−

Θc

Θe
−→
←−

e ∧ (x + e−)

((e+·X)∧e−)·e−

(e+·X)·e−

−→
←− Θc

Tab. 4.2: Interaction between algebras of the Euclidean, projective and con-
formal space.

To describe a rigid body motion of an entity given in projective geometry,
it is possible to change its representation in a conformal one, compute the
rigid body motion and return to the projective space: Let Θp be an entity
given in the projective space, and t a translation vector in Euclidean space.
In conformal geometric algebra, the translator has the following structure,

T =
(
1 +

et

2

)
(4.10)

and T̃ =
(
1− et

2

)
. (4.11)

Then a multiplicative formulation of the translated entity in the projective



4.1. Relating entities in Euclidean, projective and conformal geometry 63

space is given by

Θ′
p = e+ · (T (e ∧ Θp︸︷︷︸

projective

)T̃ )

︸ ︷︷ ︸
conformal︸ ︷︷ ︸

projective

. (4.12)

To compute joins and meets of entities given in conformal geometric al-
gebra, I change their representations to the projective space, perform the
incidence operation and return to the conformal space. For example, the
intersection (denoted with the operator ∨c) of a line L⋆ with a plane P ⋆ is
given by

L⋆ ∨c P ⋆ = e ∧ ((e+ · L⋆

︸︷︷︸
conformal

) ∨ (e+ · P ⋆

︸︷︷︸
conformal

))

︸ ︷︷ ︸
projective︸ ︷︷ ︸

conformal

. (4.13)

To explicitly compute the Euclidean intersection point of two lines, L1

and L2, given in the projective space, the lines are intersected in the pro-
jective space and then the projective split is applied to get the intersection
point in the geometric algebra of the Euclidean space,

x =
1

L1 ∨L2︸ ︷︷ ︸
projective

·e−


((L1 ∨L2︸ ︷︷ ︸

projective

) ∧ e−) · e−




︸ ︷︷ ︸
Euclidean

. (4.14)

These examples show the possibility of interaction between the Euclidean,
projective and conformal framework.

4.1.2 Pose constraints in conformal geometric algebra

This section gives a brief preview how the interaction of entities in geometric
algebras will be applied on the pose problem. As mentioned earlier, the main
problem in the pose scenario is how to compare 2D image features with 3D
Euclidean object features. The constraint equations will lead to equations of
the following structure (here just for point correspondences),

λ((MXM̃)× e ∧ (O ∧ x)) · e+ = 0. (4.15)

The interpretation of the equation is simple as the equation can be separated
in the following manner,
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(4.16)

λ((M X︸︷︷︸
object point

in conformal space

M̃)

︸ ︷︷ ︸
rigid motion of the object point

× e ∧ ( O︸︷︷︸
optical

center

∧ x︸︷︷︸
image

point

)

︸ ︷︷ ︸
projection ray,

reconstructed from the image point

in conformal space︸ ︷︷ ︸
collinearity of the transformed object

point with the reconstructed line

) · e+

︸ ︷︷ ︸
Euclidean distance measure between 3D line and 3D point

= 0.

As can be recognized, the strategy of expressing the pose problem can
directly be seen from the equation, all geometric aspects are considered and
the equation is compact and easy to interpret.

The mathematical spaces involved here are

λ ((M X︸︷︷︸
CS

M̃ )

︸ ︷︷ ︸
CS

× e ∧ ( O︸︷︷︸
PS

∧ x︸︷︷︸
PP︸ ︷︷ ︸

PS

)

︸ ︷︷ ︸
CS

)

︸ ︷︷ ︸
CS

·e+

︸ ︷︷ ︸
ES

= 0. (4.17)

Here PP abbreviates projective plane, PS projective space, CS conformal
space and ES the Euclidean space. Furthermore it will be shown in the next
section, that the commutator product (×) and anti-commutator product (×)
can be used to model a distance measure to ensure well conditioned equations
in the presence of noise.

The main advantages of the constraint equations are the following: Firstly,
the constraints are expressed in a multiplicative manner, they are concise and
easy to interpret (see equation (4.16)). This is the basis for further extensions,
like kinematic chains and other higher order algebraic entities. Secondly, the
whole geometry within the scenario is concerned and strictly modeled. This
ensures an optimal treating of the geometry and the knowledge that no geo-
metric aspects have been neglected or approximated which is sometimes done
in the literature by e.g. using orthographic camera models [25] etc.



Chapter 5

POSE CONSTRAINTS FOR POINT,

LINE AND PLANE

CORRESPONDENCES

So far I have introduced the entities, their transformations and the interaction
of Euclidean, projective and conformal geometry. Furthermore, the modeling
of the pose problem has been clarified and a small preview of the proposed
constraint equations has been given. Still missing is the analysis of the used
operators to express collinearity and tangentiality of points, lines and planes.
This will be done in this section.

Note: As can be seen from chapter 4, the transformation from an entity
given in the projective geometric algebra to the conformal geometric algebra
always leads to a dual representation of the entity, since

e ∧X = X⋆

e ∧L = L⋆

e ∧ P = P ⋆. (5.1)

In the next chapters I will work only with the dual representation of the enti-
ties and therefore from now on the ⋆-sign will be neglected in the equations.

In this chapter constraints will be derived to express collinearity and
coplanarity for points, lines and planes. The constraints will be given in
the conformal space. They are then translated to an error measure of the
Euclidean space. While this chapter only deals with the relation of points,
lines and planes, the following chapters will regard the constraints to relate
other entities like circles, spheres, cycloidal curves, etc.

Table 5.1 gives an overview of the constraints for collinearity and copla-
narity of points, lines and planes in conformal geometric algebra. Indeed
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Entities Constraint in conformal geometric algebra
point-line X × L = 0

point-plane X × P = 0
line-plane L × P = 0

Tab. 5.1: The geometric constraints for collinearity and coplanarity of points,
lines and planes expressed in conformal geometric algebra.

there is no unique representation to model incidence of entities. Therefore I
searched for an expression of collinearity and coplanarity which is not only
compact and linear, but also contains a distance measure which can numeri-
cally stable and fast applied to the pose problem. The reason why I use these
equations is the fact, that they express such a distance measure without in-
troducing non-linearities within the unknowns. The constraints are inspired
by W. Blaschke [21] who formalized three constraint equations for incidence
of points, lines and planes in the dual-quaternions. I then translated the
equations in [167, 145] to the motor algebra and the conformal geometric
algebra, respectively. So far I found no better equations for the pose scenario
which are compact, linear, contain a distance measure, can be applied to
a perspective camera model and are suited for the use of different entities
simultaneously. Now it will be continued with a geometric analysis of the
constraint equations introduced in table 5.1.

5.1 Point-line constraint

Evaluating the point-line constraint of a point X ∈ G4,1, X = E + ex,
collinear with a line L ∈ G4,1, L = Er + em, leads to

0 = X × L

=
1

2
(XL−LX)

=
1

2
((E + ex)(Er + em)− (Er + em)(E + ex))

=
1

2

(
exEr + Eem + E2r − emE − rEex− r

)

=
1

2
(exr −me −me − rxe)

=
1

2
(−(2m− (xr − rx))e)

= −(m− x×r)e
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⇔ 0 = (m− x×r)e · e+ = m− x×r. (5.2)

The product X × L is an element of the null space, since e2 = 0. By comput-
ing the inner product with e+, this expression can be changed to an equation
in the non-null space. Note, that this is consistent with table 4.2: Computing
the inner product with e+ leads to an error direction in the projective space
and since the homogeneous component is zero it is simultaneously a vector
expression in G3,0, the algebra of the 3D Euclidean space.

The term m−x×r means that the moment m of a line, which is generated
by the outer product of the direction r of the line with a point x on the line,
is independent of the chosen point of the line. This is a clear fact from
Plücker representation of lines [21].

So far the constraint equation is given unscaled. Following section 2.2, a
scaling parameter λ ∈ IR has to be applied to express a distance measure in
the Euclidean space. In this case let λ = 1

‖r‖
. That means that the equation

is scaled with the inverse norm of the direction of the line. This leads to

0 = m− x×r

⇔ 0 = λ(m− x×r)

⇔ 0 = λm− x×(λr)

⇔ 0 = m′ − x×r′. (5.3)

The aim is to analyze the bivector m′ − x×r′. Suppose X /∈ L′. Then,
nonetheless, there exists a decomposition x = x1 + x2 with X1 ∈ L′, X1 =
(E + ex1) and X2 ⊥ L′, X2 = (E + ex2). Figure 5.1 shows the scenario.

1

2

x

v

x

x

l’

r’

Fig. 5.1: The Euclidean line l′ consists of the direction r′ and the moment
m′ = v×r′. Furthermore there exists a decomposition x = x1 +x2

with x1 ∈ l′ and x2 ⊥ r′, so that m′ = v×r′ = x1×r′.

Then can be calculated

‖m′ − x×r′‖ = ‖m′ − (x1 + x2)×r′‖
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= ‖m′ − x1×r′ − x2×r′‖
= ‖x2×r′‖ = ‖x2‖. (5.4)

Thus satisfying the scaled point-line constraint means to equate the bivectors
m′ and x×r′, respectively making the Hesse distance ‖x2‖ of the Euclidean
point x to the Euclidean line l′ to zero.

5.2 Point-plane constraint

Evaluating the point-plane constraint of a point X = E + ex coplanar to a
plane P = En + edIE leads to

0 = X × P

=
1

2
(XP −PX)

=
1

2
((E + ex)(En + edIE)− (En + edIE)(E + ex))

=
1

2
(exEn + EedIE + n− edIEE −Enex− n)

=
1

2
(−xne + dIEe + n + dIEe − nxe − n)

=
1

2
(2dIE − (xn + nx)) e

= (dIE − x×n)e

⇔ 0 = (dIE − (x×n))e · e+ = dIE − (x×n). (5.5)

Note here that the anticommutator product of the bivector n and the
vector x lead to a trivector, which is subtracted from dIE. Again the con-
straint equation is given in the null space which is then transformed to the
non-null space by computing the dot-product with e+. This leads directly
to a scalar value as element of the Euclidean geometric algebra. To express
a distance measure in the Euclidean space, let λ = 1

‖n‖
, the inverse of the

norm of the normal. This leads to

0 = dIE − (x×n)

⇔ 0 = λ(dIE − x×n)

⇔ 0 = λdIE − x×(λn)

⇔ 0 = d′IE − x×n′. (5.6)
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Suppose X /∈ P ′. The value d′ can be interpreted as the sum of distances,
so that d′ = d′01 + d′02 and d′01n

′ is the orthogonal projection of x onto n′.
Figure 5.2 shows the scenario. Then the following equation holds,

02

01

x

d’

d’

d’

p’
n’

n’

Fig. 5.2: The Euclidean plane p′ is represented by the normal n′, and the
Hesse distance d′. The value d′ can be interpreted as a sum d′ =
d′01 + d′02 so that d′01n

′ corresponds to the orthogonal projection of
x onto n′.

d′IE − x×n′ = (d′01 + d′02)IE − x×n′

= d′02IE. (5.7)

The value of the expression d′IE − x×n′ corresponds to the Hesse distance
of the Euclidean point x to the Euclidean plane p′.

5.3 Line-plane constraint

Evaluating the line-plane constraint of a line L = Er + em coplanar to a
plane P = En + eIEd leads to

0 = L × P

=
1

2
(LP + PL)

=
1

2
((Er + em)(En + edIE) + (En + edIE)(Er + em))

=
1

2
(emEn + rEeIEd+ rn + eIEdrE + Enem + EnrE)

=
1

2
(mne + rIEde + rn + IEdre − nme + nr)

=
1

2
((rn + nr) + (2rIEd+ mn− nm)e)
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=
1

2
((rn + nr) + 2(rIEd+ m×n)e)

= r×n + (rIEd+ m×n)e. (5.8)

Thus the constraint for coplanarity of a line to a plane can be partitioned
into a constraint on the non-null part of the motor and a constraint on the
null part of the motor. This can directly be seen in equation (5.8), since
e2 = 0.

Again the constraint equation is given unscaled. Let be λ = 1
‖n‖‖r‖

.
Inserting λ leads to

0 = r×n + (rIEd+ m×n)e

⇔ 0 = λ (r×n + (rIEd+ m×n)e)

⇔ 0 = r′×n′ + (r′IEd
′ + m′×n′)e, (5.9)

with

r′ = 1
‖r‖

r n′ = 1
‖n‖

n m′ = 1
‖r‖

m d′ = 1
‖n‖

d.

Suppose L′ /∈ P ′. If r′ 6⊥ n′⋆, the non-null part results in

r′×n′ = ‖r′‖‖n′‖ cos(α) = cos(α), (5.10)

where α is the angle between L′ and P ′, see figure 5.3. If r′ ⊥ n′⋆, it
leads to r′×n′ = 0. Since the direction of the line is independent of the
translation of the rigid body motion, the constraint on the non-null part
can be used to generate equations with the parameters of the rotation as
the only unknowns. The constraint on the null part can then be used to
determine the unknown translation. In other words, since the motor which
is to be estimated, M = R′

1 + eR′
2, is determined in its non-null part only

by rotation, the non-null part of the constraint allows to estimate the rotor
R′

1, while the null part of the constraint allows to estimate the rotor R′
2.

So it is possible to sequentially separate equations on the unknown rotation
from equations on the unknown translation without the limitations, known
from the embedding of the problem in Euclidean space [41]. This is useful,
since the two smaller equation systems are easier to solve than one larger
equation system. To analyze the null part of the constraint, let the moment
m′ of the line representation L′ = Er′ + em′ be interpreted as m′ = s×r′

by choosing a vector s with s ∈ l′ and s ⊥ r′. Following [133], this leads to

n′×m′ = −(s×r′)×n′

= (s×n′)×r′ − s×(r′×n′). (5.11)
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Now can be evaluated

dIEr′ − (n′×m′) = dIEr′ − (s×n′)×r′ + s×(r′×n′). (5.12)

α

1

β

s

s d’

l’

p’

r’

n’

n’

Fig. 5.3: The Euclidean plane p′ is represented by its normal n′ (as bivector)
and the Hesse distance d′. Furthermore s ∈ l′ is chosen with s ⊥
r′. The angle of r′ and n′⋆ is α and the angle of s and n′⋆ is β.
The vector s1 with s ‖ s1 is chosen so that dn′⋆ is the orthogonal
projection of (s + s1) onto n′⋆.

Figure 5.3 shows the scenario. Furthermore it is possible to find a vec-
tor s1 ‖ s with 0 = d′ − (‖s‖ + ‖s1‖) cos(β). The vector s1 might also be
antiparallel to s. This leads to a change of the sign, but does not affect the
constraint itself. Now can be evaluated

d′IEr′ − (n′×m′) = d′IEr′ − ‖s‖ cos(β)r′ + cos(α)s

= ‖s1‖ cos(β)r′ + cos(α)s. (5.13)

Thus, the error of the null part of the motor is constituted by the sum
of the vector s, scaled by the angle α, and the direction vector r′, scaled by
the norm of s1 and the angle β.
If r′ ⊥ n′⋆, then n′⋆ ‖ s and thus,

‖d′IEr′ − (n′×m′)‖ = ‖d′IEr′ + s×(r′×n′)− (s×n′)×r′‖
= ‖d′IE×r′ − (s×n′)×r′‖
= ‖d′IE − (s×n′)‖. (5.14)
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This means, in agreement with the point-plane constraint, that the above
distance measure corresponds to the Hesse distance of the line to the plane.
Since equation 5.13 contains the error vector s, its error value is dependent
on the chosen origin of the vector space. This effect is indeed unwanted
and can lead to bad conditioned equations, but if n′⋆ is nearly parallel to s

good conditioned equations can be assured since they are then related to the
point-plane constraint.

This analysis shows that the considered constraints are not only qualita-
tive constraints, but also quantitative ones. This is very important, since I
want to measure the extend of fulfillment of these constraints in the case of
noisy data.

5.4 Constraint equations for pose estimation

Now it is possible to express the 2D-3D pose estimation problem in a quan-
titative manner. The aim is to express that a transformed object entity has
to lie on a projective reconstructed image entity in the conformal geometric
algebra. Let X ∈ G4,1 be an object point and L ∈ G4,1 be an object line.
The (unknown) transformed entities can be written as

X ′ = MXM̃ and (5.15)

L′ = MLM̃ . (5.16)

Let x ∈ G2,1 be an image point and l ∈ G2,1 be an image line. Note, that I
denote the 2D projective image features also with small bold letters, similar
to 3D Euclidean points. The reason is, that both algebras are built from
three basis vectors, they can not be confounded in the scenario and it avoids
extra fonds. The projective reconstruction of these entities can be written as

Lx = O ∧ x ∈ G3,1 and (5.17)

P l = O ∧ l ∈ G3,1. (5.18)

The vector O ∈ G3,1 denotes the optical center of the camera. Then the e∧-
operator can be applied to change the representations from the projective
to the conformal space, and combined with the commutator and anticom-
mutator products to express the collinearity and coplanarity of the involved
entities.

Thus, the constraint equations of pose estimation can be read in the
following manner:
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Point-line constraint:

λ( (M X︸︷︷︸
object point

M̃)

︸ ︷︷ ︸
rigid motion of the object point

× e ∧ ( O︸︷︷︸
optical center

∧ x︸︷︷︸
image point

)

︸ ︷︷ ︸
projection ray,

reconstructed from the image point︸ ︷︷ ︸
collinearity of the transformed object

point with the reconstructed line

) · e+

︸ ︷︷ ︸
distance measure between 3D point and 3D line

= 0. (5.19)

Point-plane constraint:

λ( (M X︸︷︷︸
object point

M̃)

︸ ︷︷ ︸
rigid motion of the object point

× e ∧ ( O︸︷︷︸
optical center

∧ l︸︷︷︸
image line

)

︸ ︷︷ ︸
3D plane,

reconstructed from the image line︸ ︷︷ ︸
coplanarity of the transformed object

point with the reconstructed plane

) · e+

︸ ︷︷ ︸
distance measure between 3D point and 3D plane

= 0. (5.20)

Line-plane constraint:

λ( (M L︸︷︷︸
object line

M̃)

︸ ︷︷ ︸
rigid motion of the object line

× e ∧ ( O︸︷︷︸
optical center

∧ l︸︷︷︸
image line

)

︸ ︷︷ ︸
3D plane,

reconstructed from the image line︸ ︷︷ ︸
coplanarity of the transformed object

line with the reconstructed plane

)

︸ ︷︷ ︸
distance measure between 3D line and 3D plane

= 0. (5.21)

The involved mathematical spaces are (again) exemplarily shown for the
point-line constraint,

λ((M X︸︷︷︸
CS

M̃)

︸ ︷︷ ︸
CS

× e ∧ ( O︸︷︷︸
PS

∧ x︸︷︷︸
PP︸ ︷︷ ︸

PS

)

︸ ︷︷ ︸
CS

) · e+

︸ ︷︷ ︸
ES

= 0. (5.22)

Here PP abbreviates projective plane, PS projective space, CS conformal
space and ES the Euclidean space. These compact equations subsume the
pose estimation problem at hand: find the best motor M which satisfies
the constraint. The 2D-3D pose estimation problem is modeled in terms of
constraint equations. Note, that the stratification hierarchy of the involved
entities is strictly kept within these equations. Furthermore the equations are
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compact and therefore easy to interpret. Additionally the geometric analysis
of the constraints assures well conditioned equations and helps to interpret
effects of the constraints discussed in the experiments. The constraints be-
have robust in case of noisy data and linearization and iteration allow for the
design of fast (real-time capable) algorithms. In contrast to other approaches,
where the minimization of errors has to be computed directly on the man-
ifold of geometric transformations [35, 177], in this approach a distance in
the Euclidean space constitutes the error measure.

5.5 Numerical estimation of pose parameters

In the last sections, several constraint equations to relate object information
to image information are derived. In these equations the object, camera and
image information is assumed to be known and the motor M expressing the
motion is assumed to be unknown. The main question is now, how to solve
a set of constraint equations for multiple (different) features with respect to
the unknown motor M . Since a motor is a polynomial of infinite degree, see
e.g. its series expression in equation (3.35) and (3.38), this is a non-trivial
task, especially in the case of real-time estimations.

The idea is to gain linear equations with respect to the generators of
the motor. The exponential representation of motors is used and the Taylor
series expansion of first order is applied for approximation. This leads to
a mapping of the above mentioned global motion transformation to a twist
representation, which allows for incremental changes of pose. That means,
that there is done no search for the parameters of the Lie group SE(3) to
describe the rigid body motion [62], but for the parameters which generate
their Lie algebra se(3) [124]. This results in linear equations in the generators
of the unknown 3D rigid body motion. In this section the linearization of
the motor is derived. For the sake of simplicity it will be done for the case
of point transformations.

The Euclidean transformation of a point X caused by the motor M is
approximated in the following way:

MXM̃ = exp

(
−θ

2
(l′ + em′)

)
X exp

(
θ

2
(l′ + em′)

)

≈ (1− θ

2
(l′ + em′))X(1 +

θ

2
(l′ + em′))

≈ E + e(x− θ(l′ · x)− θm′). (5.23)



5.5. Numerical estimation of pose parameters 75

Setting l := θl′ and m := θm′ results in

MXM̃ ≈ E + e(x− l · x−m). (5.24)

By combining this approximation of the motion with the previously derived
constraints (e.g. the point-line constraint) it leads to

0 = MXM̃ × L

⇔ 0 = exp

(
−θ

2
(l′ + em′)

)
X exp

(
θ

2
(l′ + em′)

)
× L

⇐≈⇒ 0 = (E + e(x− l · x−m))× L

⇔ 0 = λ(E + e(x− l · x−m))× L. (5.25)

Because of the approximation (⇐≈⇒) the unknown motion parameters l

X’

X

X

X

2

1

Fig. 5.4: Principle of convergence for the iteration of a point X rotated
around 90 degrees to a point X ′. X1 is the result of the first
iteration and X2 is the result of the second iteration.

and m are linear. This equation contains six unknown parameters for the
rigid body motion. The unknowns are the unknown twist parameters for the
motion. In the last step the linearized constraints are scaled with a suitable
factor λ to express an Euclidean distance measure as explained in section
5. This means, everything so far happens in the conformal space and only
in the very last step the constraint equations are scaled to transform to the
Euclidean space, as one of the strata of the hierarchy described in section
2.2.
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The linear equations can be solved for a set of correspondences by apply-
ing e.g. the Householder method [136]. From the solution of the system of
equations, the motion parameters R, t can easily be recovered by evaluating

θ := ‖l‖, l′ := l
θ

and m′ := m
θ

. The Motor M can be evaluated by applying
the Rodrigues’ formula [124, 62], see chapter A.2.

Figure 5.4 visualizes the principle of this approximation: The aim is to
rotate a point X by 90 degrees to a point X ′. The first order approximation
of the rotation leads to the tangent of the circle passing through X. Nor-
malizing the tangent line to X ′ (denoted by dashed lines) X1 is gained as
the first order approximation of the required point X ′. By repeating this
procedure the points X2, . . . ,Xn will be estimated, which converge to the
point X ′. It is clear from figure 5.4 that the convergence rate of a rotation is
dependent on the amount of the expected rotation. An analysis of the con-
vergence rate for general angles is given in figure 5.5 more detailed explained
in the next section. I call this gradient descent method the twist approach
for pose estimation since only the generators of the rigid body motion (the
twists) are estimated and not the rigid body motion (as group action) itself.

5.5.1 Generating an example system of equations

In this section a system of equations will be derived for point, line and plane
correspondences. The aim is to visualize the type of equations which are
obtained. In this example are assumed two points P i,

P 1 = (p11, p12, p13) (5.26)

P 2 = (p21, p22, p23), (5.27)

one corresponding (Plücker) line L (containing a (unit) direction Ld1 and a
moment Lm1),

L = {Ld1 = (Ld11, Ld12, Ld13), (5.28)

Lm1 = (Lm11, Lm12, Lm13)} (5.29)

and one plane P (containing a (unit) normal P d1 and Hesse distance hd1),

P = {P d1 = (Pd11, Pd12, Pd13), hd1}. (5.30)

Further let be assumed that L and P are reconstructed from image entities
corresponding to P 1 and P 2. So that P 1 is related to L and P 2 is related
to P . Then the matrix for the system of equations takes the form

Ax = b, (5.31)
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with

A =




0 Ld13 −Ld12

−Ld13 0 Ld11

Ld12 −Ld11 0
−Pd11 −Pd12 −Pd13

−p13Ld13 − p12Ld12 p11Ld12 p11Ld13

p12Ld11 −p11Ld11 − p13Ld13 p12Ld13

p13Ld11 p13Ld12 −p12Ld12 − p11Ld11

−Pd13p22 + Pd12p23 Pd13p21 − Pd11p23 −Pd12p21 + Pd11p22


 .

The first three rows contain the components for a point-line constraint
and the fourth row the components for a point-plane constraint. The solution
vector b has the form

b = (−p12Ld13 + p13Ld12 + Lm11,−p13Ld11 + p11Ld13 + Lm12,

−p11Ld12 + p12Ld11 + Lm13,

−hd1 + Pd11p21 + Pd12p22 + Pd13p23)
T . (5.32)

The system of equations contains as unknowns x the six twist parameters
for which the equations are solved for.

Note, that though the point correspondences give three equations their
rank is just two. This shows the well-known fact, that at least three point
correspondences are necessary to solve the 2D-3D pose estimation problem.
Furthermore every point-plane constraint gives exactly one equation, so that
at least six correspondences are necessary to get a unique solution.

Once the six twist parameters θ, l′ and m′ are determined from l and
m (see equation 5.25), the group action can be recovered by applying the
famous Rodrigues’ formula (1840) [62].

5.6 Experiments with pose estimation of rigid objects

First of all, the convergence rate of a rotation by the angle θ during itera-
tions will be studied. The result is demonstrated in figure 5.5. The x-axis
represents the wanted angle θ, the y-axis shows the estimated angle θ̂. Four
iterations are overlaid. The functions are very characteristic and it can be



78 Chapter 5. Pose constraints for point, line and plane correspondences

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180

θ

θ

(1)

(2)

(3)

(4)

Fig. 5.5: Convergence rate of iterations for arbitrary angles between 0 and 180
degrees. The expected angles θ are on the x-axis and the estimated
angles θ̂ are on the y-axis. The iterations (1) . . . (4) are overlaid.

seen that the contribution of the first iteration to gain a 90 degree rotation
is 45 degree. This becomes clear by comparing the situation with figure 5.4.

All angles except that of 180 degree converge during the iteration. The
reason is, that for a 180 degree rotation the nearest point on the line to the
target point is the starting point itself. Therefor a 180 degree rotation is a
degenerate case which is avoided in the experimental setup. For the most
cases just a few iterations are sufficient to get a good approximation. In
situations where only small rotations are assumed, two or three iterations
are sufficient in most cases.

There exist several ways to estimate the motion parameters. A compari-
son of four approaches for pose estimation is made by Lorusso et al. in [115].
The algorithms deal with 3D point based pose estimation and are based on
a SVD decomposition, unit quaternion (UQ), dual quaternion and eigen-
system (OM) computation. Their results are not in agreement with results
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Fig. 5.6: The scenario of the first experiment. In the first image the cali-
bration is performed and the 3D object model is projected on the
image. Then the camera moves and corresponding line segments are
extracted. For comparison reasons, the initial pose is overlaid. The
diagram shows the performance comparison of different methods in
case of noisy data.

presented in [179] and they figured out, that the SVD and UQ methods are
very similar and usually the most stable. The OM method is not as stable
for planar data sets, but superior for large degenerate data sets. The DQ
algorithm was never the most stable and usually broke down before the oth-
ers. Unfortunately they do not compare a gradient descent method within
this context. In the next experiment, the noise sensivity of three methods
for pose estimation is compared, with respect to the three constraint equa-
tions, relating 3D points to 2D points (Xx), 3D points to 2D lines (Xl), or
3D lines to 2D lines (Ll). The three estimating procedures are a simple SVD-
approach, a Kalman filter [167] and the previously introduced twist approach.
For comparing the noise sensivity, a Gaussian noise is added on extracted
image points in a virtual scenario (see figure 5.6). Then the rigid body mo-
tion is estimated and the translational error between the ground truth and
the distorted values is used as error measure. The result is depicted in figure
5.6. It is easy to see that the results obtained with the SVD approach are the
worst ones. Instead, the Kalman filter and the twist approach have a more
stable and comparable error behavior. It is obvious that the results of the
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experiments are not much affected by the used constraints themselves. This
occurs because certain points are selected by hand and from these the line
subspaces are estimated. So the quality of the line subspaces is directly con-
nected to the quality of the point extraction. The result of this investigation
is that in case of systematic noise the Kalman filter or twist approach for
pose estimation should be used. There are two main reasons, why I further
prefer the twist approach for pose estimation instead of the EKF: Firstly, the
(extended) Kalman filter is sensitive to outliers, leading to non-converging
results. Secondly, a Kalman filter must be designed for special situations or
scenarios. So the design of a general Kalman filter, dealing with different
entities in a weighted manner or e.g. general kinematic chains is hard to
implement. Instead, this can be done very easily in the twist approach since
the linearized constraint equations can just be scaled and put in one system
of equations.

Fig. 5.7: Tracking a model house consisting of points and lines.

Figure 5.7 shows results of an automatic tracking algorithm developed and
analyzed in [144] which is also explained in chapter B.1.2. The tracking algo-
rithm is a heuristic which relies upon a combination of iterative improvement
and random sampling. Iterative improvement refers to a repeated generate-
and-test principle by which the algorithm moves from an initial state to its
local optimum, see also [18].
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5.6.1 Adaptive use of pose estimation constraints

Image preprocessing algorithms sometimes allow for a characterization of the
quality of extracted image data (see e.g. [55]). The resulting question is how
to deal with different extracted noisy image data. The idea to cope with

XL−constraint XL/XP−constraint 90%−10%

XL/XP−constraint 10%−90% XP−constraint

scenario

Fig. 5.8: Different weights of constraints for pose estimation. The upper left
image shows the pose result for using point-line correspondences.
The lower right image shows the pose result for using point-plane
correspondences. The other images show pose results obtained with
simultaneously used and weighted point-line and point-plane corre-
spondences.

this problem in the context of pose estimation is simple: Every constraint
equation of an image feature describes a distance measure of the involved
entity. This constraint equation can be scaled by a factor λ ∈ IR and so it is
possible to individually scale the weights of the equations within the whole
system of equations of an observed object. Figure 5.8 shows an example:
Three extracted image points and three extracted image lines are given (see
left image). It is possible to use both types of information separately to
estimate the pose of the object. Since only little information for each type
of correspondence is given, the object itself is not very well fitted to the
image data, see e.g. the upper left or lower right images. On the other
hand, it is possible to put both constraint equations in one single system of
equations and solve the unknowns by using all available image information
simultaneously. Furthermore, different weights of the constraints can be
chosen. The change of the estimated pose is visualized in the other images
of figure 5.8. This experiment demonstrates that the presented approach
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Fig. 5.9: Comparison of the results with and without noise suppression.

enables one to model adaptive observer behavior in a cognitive manner with
respect to both the choice of image features at hand and the trustworthiness
of the data.

ε’

ε

z

α

Fig. 5.10: The difference between building constraints in the image plane or in
the 3D space. The 3D error measure ǫ′ is geometrically dependent
on the 2D image error ǫ, the relative depth z and the angle α
between the projection ray and the image plane.

In another experiment the possibility of noise adaptive use of the pose
estimation constraints is simulated. For this a Gaussian noise is added on
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some of the extracted image points. In this experiment six image points are
used and onto two of them the Gaussian noise is added. Then the constraint
equations are solved with and without weighting the constraints, depending
on the noise level. The weights are chosen inverse proportional to the noise
level. This means that the more noisy correspondences influence the whole
result to a lesser extend. To compare the pose estimation results, the pose
result without noise is used as ground truth. This experiment is repeated
several times for every noise level to get a smooth error function and the
mean value for every noise level is taken. The result is visualized in figure
5.9. It is easy to see that the constraints can be used in a noise adaptive
manner.
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Fig. 5.11: Depth dependence of the 3D constraints with respect to the image
plane.

As discussed in chapter 2.1, there is a difference between building con-
straints in the 3D space or in the 2D image plane: The noise in an image
leads to a noise cone in the 3D space. This is visualized in figure 5.10: The
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3D error measure ǫ′ is geometrically dependent on the 2D image error ǫ, the
relative depth z and the angle α between the projection ray and the image
plane. This property and its correction is analyzed in the scenario of figure
5.11. For this experiment, a calibrated scene with a model house is used.
Then two points on the model are picked out and a Gaussian noise is put on
their corresponding image points. Then their pose is estimated separately.
The two chosen points differ in their relative depth with respect to the image
plane as can be seen in figure 5.11. Then the absolute image error is taken.
This means, the error measure is now connected to the observation of the
pose in the image plane. The diagram in figure 5.11 shows the influence
of the distorted image points to the estimated pose and their effect on the
image plane. The pixel noise of the image point is given on the x-axis and on
the y-axis the absolute pixel error of the transformed projected object model
compared with the ground truth is shown. It can be seen that, though the
image points are distorted in an equal manner, the result of the noisy far
pixel is worse than the result of the noisy near pixel. This effect is often
discussed as disadvantage of the 3D approach. But the possibility of noise
adaptive use of the constraints is often neglected in this context. Since the
constraint equations to formalize the pose problem contain a distance mea-
sure, the constraints can be scaled with respect to their relative depth. This
is shown in the third error curve of figure 5.11.



Chapter 6

POSE ESTIMATION FOR EXTENDED

OBJECT CONCEPTS

This chapter deals with the use of extended object concepts for pose estima-
tion. With extended object concepts I mean kinematic chains, circles, spheres
and cycloidal curves as entities, which extend the pose estimation scenario
for point, line and plane features to more complex ones.

6.1 Pose estimation of kinematic chains

So far 3D pose constraints for points, lines and planes as features of a rigid
object are parameterized. Assume that a second rigid body is attached to
the first one by a joint. The joint can be formalized as an axis of rotation
and/or translation in the object frame. If the joint j is only dependent on a
variable angle θj , it is called a revolute joint, and it is called a prismatic joint
if the degree of freedom is only a variable length dj . This parameterization
of joints is also called the Denavit-Hartenberg parameterization [42]. Each
joint defines a new coordinate system, and the coordinate transformations
between joints can be expressed by suitable motors M j. This means that an
entity given in the coordinate system of the jth joint can be translated into
an entity of the base coordinate system by transforming it with the motors
M 1, . . . ,M j .

Such objects are also called kinematic chains. With kinematic chains I
mean flexibly linked rigid objects which can only change their pose in mutual
dependence. Examples are robot arms or human body movements, see e.g.
figure 6.1. Kinematic chains can be parameterized by their including joints.
Every joint defines a new coordinate system. To estimate the position of an
end-effector entity of a kinematic chain in terms of the base coordinate sys-
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Fig. 6.1: The Stäubli RX-90 robot arm. The internal joint transformations
M j and the global transformation Tj are visualized.

tem, all involved joint coordinate systems must be traced. This is visualized
in figure 6.1. For short notations of the single transformations between the
joints I define

T0{X0,i0} := X0,i0

Tj{Xj,ij ,M j} := Tj−1{M jX j,ijM̃ j ,M j−1} : j = 1, . . . , n

= M 1 . . .M jXj,ij
M̃ j . . .M̃ 1 : j = 1, . . . , n. (6.1)

The function T0 describes the identity for points which are not subject to
internal transformations. I call them base points. The function Tj formalizes
the transformation of an attached joint j with respect to the base coordinate
system in an inductive manner. In general, the transformation of a point
Xj,ij on the j-th joint to the base coordinate system is represented by a
sequence of motors M 1, . . . ,M j . An object model O of a kinematic chain
with n segments can now be represented by a set of n + 1 functions Tj,

O = {T0{X0,i0}, T1{X1,i1 ,M 1}, . . . , Tn{Xn,in,Mn}|n, i0, . . . , in ∈ IN}.
(6.2)
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6.1.1 Constraint equations of kinematic chains

Now the introduced representation of kinematic chains in CGA will be com-
bined with the pose estimation constraints introduced in chapter 5. This
is very simple now because everything is formulated in the same language.
Note, that the constraints are presented unscaled, so the λ(.) · e+ operation
is not written extra (see e.g. equation 5.19).

The general unknown pose corresponds to a motor M . For the base
points X0,i0 the constraint equations reduce to

(M (T0{X0,i0})M̃)× e ∧ (O ∧ x0,i0) = 0

⇔ (MX0,i0M̃)× e ∧ (O ∧ x0,i0) = 0 (6.3)

for a suitable projection ray L0,i0 = e ∧ (O ∧ x0,i0). The general constraint
equation for a point X j,ij

at the j-th joint leads to

(M(Tj{Xj,ij
,M j})M̃) × e ∧ (O ∧ xj,ij) = 0

⇔ (M(M 1 . . .M jXj,ij
M̃ j . . .M̃ 1)M̃) × e ∧ (O ∧ xj,ij) = 0.

(6.4)

It is also simple to use extracted image lines lj,ij and their reconstructed
projection planes P j,ij

= e ∧ (O ∧ lj,ij). For such situations, the constraint
equations reduce to

(M(T0{X0,i0})M̃) × e ∧ (O ∧ l0,i0) = 0

⇔ (MX0,i0M̃) × e ∧ (O ∧ l0,i0) = 0, (6.5)

for the base points, and the general constraint equation for a point at the
jth joint leads to

(M(Tj{Xj,ij
,M j})M̃) × e ∧ (O ∧ lj,ij) = 0

⇔ (M(M 1 . . .M jXj,ij
M̃ j . . .M̃ 1)M̃) × e ∧ (O ∧ lj,ij) = 0. (6.6)

Kinematic chains can also be modeled by 3D lines and can be compared
with reconstructed planes. For this only the lines Lj,ij and projection planes
P j,ij

= e ∧ (O ∧ lj,ij) have to be substituted and combined with the anti-
commutator product. For base lines the constraint equation is

(M(T0{L0,i0})M̃)× e ∧ (O ∧ l0,i0) = 0

⇔ (ML0,i0M̃)× e ∧ (O ∧ l0,i0) = 0, (6.7)



88 Chapter 6. Pose estimation for extended object concepts

and for a line on the j-th joint the constraint equation is

(M (Tj{Lj,ij
,M j})M̃) × e ∧ (O ∧ lj,ij) = 0

⇔ (M(M 1 . . .M jLj,ij
M̃ j . . .M̃ 1)M̃) × e ∧ (O ∧ lj,ij) = 0. (6.8)

A publication about pose estimation of kinematic chains in CGA and
the construction of pose estimation constraints can be found in [143]. O.
Granert formalized in [66] the constraint equations for point concepts in
pure matrix calculus. This was part of a student project I supervised. Note,
that no hierarchical approach as in Hauck et al. [74] or Weik et al. [181]
is used, instead a pose estimation based on the model of a kinematic chain.
Hierarchical pose estimation means that the pose problem is separated in
subtasks which are solved sequentially. So first the whole pose (the base
transformation) is estimated and then each joint angle separately. To ensure
that the model is not distorted after the calculations the estimated values
have to be constrained to the model in a second processing step.

6.2 Circles and spheres

In this section constraint equations are developed to relate 3D circles to 2D
ellipses and 3D spheres to 2D circles. This section starts with an analysis
of the involved problems and will then continue with a suitable solution
approach. The main problem is to define constraint equations in the 3D space
which contain a geometric distance measure and allow to be combined with
the previous formalization of constraints relating points, lines and planes.

6.2.1 The problem of tangentiality constraints

Since also the constraints for circles and spheres are derived in the 3D space,
the aim is to reconstruct certain entities from image information and to
compare the reconstructed entities with the 3D model entities. The recon-
struction based on an image ellipse or an image circle (the image of a circle
or sphere, respectively) leads to a cone. Indeed, it is not possible to formal-
ize cones as single entities in conformal geometric algebra. But to make the
above mentioned comparison possible, constraint equations are formalized to
model tangentiality of 3D circles or spheres to projection rays, reconstructed
from image points of the corresponding image entity. Figure 6.2 visualizes
the idea.
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Fig. 6.2: Visualization of the 3D circle-line and sphere-line constraint.

It is easy in CGA to express e.g. tangentiality of a non-coplanar line L

to a circle z: The point Xz := L ∨ z is a null vector (this means X2
z = 0)

iff the entities intersect. But this holds only in ideal geometry. In reality,
there are several cases how a line can be related to a circle: it can intersect,
be coplanar or perpendicular. The line can pass outside or inside the circle,
etc. By defining a line in a parameterized manner, it is easy to see that the
error function of points on a line to a circle can contain one global minimum,
two global minima, one local and one global minimum or no minimum in
non-degenerate and degenerate cases. In figure 6.3 three example lines are
shown: Two lines are parallel to the plane in which the circle lies. One
of these lines passes the circle outside, the other one inside. This leads to
error functions, containing one global minimum or two global minima. The
third line is passing the inside of the circle and is not parallel to the plane
in which the circle lies. This leads to one global and one local minimum.
From that result two possible strategies: Firstly, it is possible to make a case
decision, depending on the geometric situation. This is hard to implement
and to combine with the previously derived constraint equations. Secondly,
it is possible to parameterize the circle in a suitable way. This will be done
in the following section.

Comparing spheres with lines also is no problem in ideal geometry. One
short way to formalize tangentiality is to estimate the distance from the
center of the sphere to the line and to subtract the radius: Let L′ be the
scaled line, as described in chapter 5. The line L′ is tangential to s = p− 1

2
ρ2e
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Fig. 6.3: Different geometric relations of lines to circles lead to different kinds
of error functions for parameterized lines.

iff

‖(L′ × p) · e+‖ − ρ = 0. (6.9)

The main problem in this formulation is the square root term of the norm

containing the unknowns in quadratic terms since ‖x‖ =
√∑

(xi)2. This
leads to equations of the type

√
((MpM̃ × L′) · e+)2 − ρ = 0. (6.10)

I made experiments with these kind of equations and implemented a Newton-
Raphson method to solve the equations. But there are two main problems:
Firstly, the convergence rate is very slow and the algorithm often converges
against a wrong minimum (the algorithm needs about 5 seconds to estimate
the pose). Secondly, the possibility is lost to combine the constraints with
the other constraints for simultaneous considerations in pose estimation.

The key idea to relate circles and spheres to lines is to interpret the circles
and spheres as orbits generated by twist operations as introduced in the next
section.
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6.2.2 Operational definition of circles and spheres using

twists

At first the general description of circles and spheres will be recapitulated, as
introduced in chapter 3.3. Then an operational definition of these entities is
introduced. After this follows the formalization of the circle-line and sphere-
line constraints for pose estimation.

X
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L
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φ
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z

s

z

z

z

Fig. 6.4: Circles and spheres parameterized with twists.

Let z⋆ = a ∧ b ∧ c be a circle in CGA. Evaluating the outer products of
three points leads to

z⋆ = a ∧ b ∧ c = A+ A−e + A+e0 + A±E, (6.11)

with suitable multivectors A, A−, A+ and A±, see chapter 3.3.

A circle can also be formalized by a twist (modeling a general rotation) Lz

and a point Xz on the circle. From the dual representation of the circle, this
information is easy to extract since the generating twist parameters are given
directly. The twist transformation corresponds to a suitable parameterized
motor Mφ,

Mφ = exp

(
φ

2

(
A+ + eA±

))
. (6.12)

The points on the circle are simply given by

Xφ
z = (MφXzM̃φ) : φ ∈ [0, . . . , 2π]. (6.13)

Figure 6.4 (left) shows the geometry. The circle results as the orbit of the
unique motor, which moves a certain point and is constrained by the points
a, b and c laying on the circle.
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Now follows the formalization of a sphere. The general expression of a
sphere is

s = (p− 1

2
ρ2e). (6.14)

In this formulation p is the center of the sphere and ρ the radius.

The idea is to formalize spheres in an operational manner as two coupled
twists (modeling general rotations). In that approach a sphere is formalized
by a point Xs on a sphere and two perpendicular twists, Ls1

and Ls2
, inter-

secting in the origin of the sphere. Figure 6.4 (right) shows the idea. The
corresponding motors are denoted as Mφ1

and Mφ2
,

Mφ1
= exp

(
φ1

2
(e12 + e(p · e12))

)
,

Mφ2
= exp

(
φ2

2
(e31 + e(p · e31))

)
. (6.15)

The bivectors e12 and e31 are the two perpendicular rotation planes, belong-
ing to the rotation axes which are connected to the center p of the sphere.
Then all points on the sphere s result from the equation

Xφ1,φ2

s = (Mφ1
Mφ2

XsM̃φ2
M̃φ1

) : φ1, φ2 ∈ [0, . . . , 2π].

(6.16)

This principle of coupling two motors is virtual in contrast to kinematic
chains, which correspond to the coupling of physical objects. The principle
of virtual coupling can be extended further to construct more complex orbits
of twists and thus to enable pose estimation of more complex objects.

6.2.3 The constraint equations of circles and spheres to

lines

So far the formalization of circles and spheres as orbits of special twists is
given. This representation will be used to express tangentiality of circles z

and spheres s to 3D lines L.

While in the constraint equations of section 5 the motors are the only
unknowns to be estimated, now higher loads are given because of the param-
eterization of the extended entities for pose estimation.
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To relate the circle z to a line L = e ∧ (O ∧x), there is need to estimate
the unknown angle φ, which leads to collinearity of the suitable transformed
point Xz ∈ z to L. The circle-line constraint can now be written as

(MφXzM̃φ)× e ∧ (O ∧ x) = 0. (6.17)

In this equation, the angle φ is an additional unknown for each constraint
equation. The pose estimation constraint equation for an unknown rigid
body motion now means to estimate both the best motor M and the angle
φ,

(M(MφXzM̃φ)M̃)× e ∧ (O ∧ x) = 0. (6.18)

Note, that relating a circle to a projection ray can be seen as estimating a
virtual one-parameter kinematic chain.

The sphere-line constraint, respectively expressing the incidence of a line
L = e∧ (O∧x) to a sphere s can be formalized by a point Xs on the sphere
and the two motors Mφ1

and Mφ2
,

(Mφ1
Mφ2

XsM̃φ2
M̃φ1

) × e ∧ (O ∧ x) = 0. (6.19)

In this constraint equation φ1 and φ2 are additional unknowns. The pose
estimation constraint equation for an unknown rigid body motion means to
estimate the best motor M and the two angles φ1 and φ2,

(M(Mφ1
Mφ2

XsM̃φ2
M̃φ1

)M̃ )× e ∧ (O ∧ x) = 0. (6.20)

This approach to formalize constraint equations for circles and spheres
appears surprising in the context of the algebraic embedding. The main
problem with these entities is to formalize constraint equations which obtain
the characteristics mentioned in chapter 2.3. For this reason I choose an
operational definition of circles and spheres and linearize them in the same
manner as the pose problem is linearized: The entities are formulated in their
tangential space and a Lie algebra representation of these entities is chosen.

6.3 Cycloidal curves

Though points, lines, planes, kinematic chains, circles and spheres cover a
large range to model objects, I am also interested in e.g. ellipses to model
the shape of eyes, etc. This motivates to search for a more general class of
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entities which can be used in the context of pose estimation. The entities I
am now dealing with are cycloidal curves. Such curves can be generated by
one, two or more virtually coupled twists. Examples are 3D circles, ellipses,
cardioids, cycloids, spheres, quadrics, etc. This chapter will start with a
general introduction into algebraic curves and will then continue with the
use of twists to model cycloidal curves and how to embed them within the
2D-3D pose estimation problem.

6.3.1 Algebraic curves

This section gives a brief summary of algebraic curves [108]. There exist
many ways to define algebraic curves. They can be defined as parametric or
algebraic implicit forms or polynomial equations [33]. For example an ellipse
can be defined as the set of intersection points of two projectively related
pencils of lines [81]. It is also possible to define an ellipse as intersection of a
cone with a plane. Parametric, cartesian or polar equations of a curve lead
to quite different representations. E.g. the parametric equation of a plane
cardioid is

(x, y) = (a(2 cos(t)− cos(2t)), a(sin(t)− sin(2t)) , (6.21)

a cartesian equation is

(
x2 + y2 − 2ax

)2
= 4a2(x2 + y2) (6.22)

and the polar equation is

r = 2a (1 + cos(θ)) . (6.23)

The resulting question is: Which representation of an algebraic curve is well
suited within the pose estimation problem?

The aim is to define a curve in the 3D space and since the pose estimation
algorithm uses twists to model rigid body motions, I prefer the description
of algebraic curves as orbits of generating operators of the Lie algebra se(3).

This section gives a brief summary of algebraic curves and their character-
izations collected by Lee in [108]. More detailed information about algebraic
curves can also be found in [38]. A historic introduction can be found in [52].
In this thesis, a subclass of the roulettes, the cycloidal curves, are formal-
ized and embedded in the 2D-3D pose problem. Roughly speaking, cycloidal
curves are generated from circles rolling on circles or lines.
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Fig. 6.5: Subtree of algebraic curves.

Figure 6.5 shows a subtree of the family of algebraic curves. Cycloidal
curves can be classified as epitrochoids, hypotrochoids and trochoids, which
split to other subclasses. Figure 6.5 also shows examples of these curves. The
curves are distinguished by the relative position of the circles with respect
to the starting point on the curve and the radius of the circles. Now it will
be continued to explain some curves in more detail:

1. A cardioid can be defined as the trace of a point on a circle that rolls
around a fixed circle of the same size without slipping. Cardioids are
double generated, which means that a cardioid is both, an epicycloid
and a hypocycloid, since it can be generated in two different ways.
Cardioids were e.g. studied by Roemer (1674).

2. A nephroid can be defined as the trace of a point fixed on a circle of ra-
dius 1

2
r that rolls around a fixed circle with radius r. Nephroids are also

double generated. They were studied by Huygens and Tschirnhausen
about 1679.

3. A rose is defined as a curve of epi/hypocycloids with respect to its
center. The curve has loops that are symmetrically distributed around
the pole. The loops are called petals or leafs. They were studied by
Guido Grandi around 1723.

4. An ellipse is commonly defined as the locus of points P such that the
sum of the distances from P to two fixed points F1, F2 (called foci) are
constant. The ellipses seem to have been discovered by Menaechmus
(a Greek, c.375-325 BC), tutor to Alexander the Great.
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5. A deltoid can be defined as the trace of a point on a circle, rolling
inside another circle 3 or 3

2
times as large in radius. Deltoids were

studied by Euler in 1745 in connection with a study of caustics curves.

6. An astroid is defined as the trace of a point on a circle of radius r
rolling inside a fixed circle of radius 4r or 4

3
r. The cycloidal curves,

including the astroid, were also discovered by Roemer (1674).

7. A trochoid is defined as the trace of a point fixed on a circle that rolls
along a line. This curve is sometimes called the trace of a bike valve.

These curves are mostly defined in the 2D plane. For the scenario of pose
estimation, these curves will be extended to plane curves in the 3D space.

6.3.2 Cycloidal curves in conformal geometric algebra

As previously explained, cycloidal curves are circles rolling on circles or lines.
In this section will be explained how to generate such curves in conformal
geometric algebra. E.g. ellipses are no entities which can be directly de-

XC

b

a
φ−φ∗2

point

twist

Fig. 6.6: An ellipse generated by two coupled twists.

scribed in conformal geometric algebra. The idea for modeling ellipses is
visualized in figure 6.6: Two parallel twists (modeling general rotations) in
the 3D space and a 3D point on the ellipse are assumed and the point is
transformed around the two twists in a fixed and dependent manner. To
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gain an ellipse, two coupled parallel (not collinear) twists are used to rotate
a starting point by −2φ around the first twist and by φ around the second
one. The set of all points for φ ∈ [0, . . . , 2π] generates an ellipse as the orbit
of the generated Lie group.
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Fig. 6.7: 3D-2twist generated curves.

In general, every cycloidal curve is generated by a set of twists ξi with
frequencies λi acting on one point X on the curve. Since twists can be used to
model point motions in the 2D plane or 3D space, I call the generated curves
nD-mtwist curves. With nD-mtwist curves are meant curves given in the
n dimensional space, generated by m twists with n,m ∈ IN. In the context
of the 2D-3D pose estimation problem the cycloidal curves are used as 3D
object entities. Furthermore 3D-mtwist curves are abbreviated as mtwist
curves in the following.

To formalize this idea of generating curves in the CGA, I will start with
easy curves. The easiest one consists of one point (a point on the curve) and
one twist modeling a general rotation. Rotating the point around the twist
leads to the parameterized generation of a circle: The corresponding twist
transformation can be expressed as a suitable motor Mφ and an arbitrary
3D point, XZ , on the circle. The 3D orbit of all points on the circle is simply
given by

X
φ
Z = MφXZM̃φ : φ ∈ [0, . . . , 2π]. (6.24)

I call a circle also a 1twist generated curve since it is generated by one twist.
This is already done in chapter 6.2.2.
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This can be extended by wrapping a second twist around the first one.
If the amount of rotation of each twist is dependent on each other, a more
general 3D curve is obtained. This curve is firstly dependent on the rela-
tive positions and orientation of the twists with respect to each other, the
(starting) point on the curve and the ratio of angular frequencies.

The form of a 2twist generated curve is

X
φ
C = M 2

λ2φM
1
λ1φXCM̃

1

λ1φM̃
2

λ2φ

= exp

(
−λ2φ

2
Ψ2

)
exp

(
−λ1φ

2
Ψ1

)
XC exp

(
λ1φ

2
Ψ1

)
exp

(
λ2φ

2
Ψ2

)

: λ1, λ2 ∈ IR, φ ∈ [α1, . . . , α2]. (6.25)

The motors M i are the exponentials of twists, the scalars λi ∈ IR determine
the ratio of angular frequencies between the twists and XC is a point on
the curve. The values αi define an interval for the boundaries of the curve.
Indeed it is also possible to define curve segments.

Fig. 6.8: Perspective views of a 3D-2twist generated curve. The 2twist curve
and the twists axes are visualized.

The case of parallel twists modeling general rotations with λ1 = λ2 = 1
leads to cardioids, λ1 = 2, λ2 = 1 leads to nephroids, and λ1 = 3, λ2 = 1
leads to deltoids, which can be transformed (by moving the second twist) to
a trifolium, etc. Ellipses can be generated with λ1 = −2, λ2 = 1. Figure 6.7
shows further examples from curves, which can be generated easily by two
coupled twists. Note: Also the archimedic spiral is a 2twist generated curve.
To gain an archimedic spiral, one twist has to be a translator.

Note: All these curves are given in the 3D space. In figure 6.7 only
projections are shown. Figure 6.8 shows different projective views of a 3D-
twist generated curve.

It is also possible to generate 3twist curves. For this, a point is trans-
formed with respect to three twists. Examples of planar curves are shown in
figure 6.9.
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Fig. 6.9: 3D-3twist generated curves.

So far just 3D curves are formalized. Surfaces can be modeled, by ro-
tating e.g. the 2twist generated curves around a third twist with a further
independent angle φ2, leading to 3twist generated surfaces. Examples are
shown in figure 6.10. In figure 6.10 no grid-plot is shown. Instead the ro-
tated twist generated curves are shown to visualize the geometric generation
of the surface. Note, that if there is only one variable angle φ, the resulting
entity is a 3D curve in the 3D space, whereas the case of two variable angles
φ1 and φ2 leads (for non-degenerate cases) to a 3D surface in the 3D space.
The case of three variable angles can lead to volumes as highest structures
in the 3D space, but for the 2D-3D pose estimation scenario only curves and
surfaces will be modeled.

The general form of 3twist generated surfaces is

Xφ1,φ2 = M 3
λ3φ2

M 2
λ2φ1

M 1
λ1φ1

XM̃
1

λ1φ1
M̃

2

λ2φ1
M̃

3

λ3φ2
, (6.26)

with λi ∈ IR and φ1, φ2 ∈ [αi1 , . . . , αi2 ].

An ellipsoid, for example, is nothing more than a rotated ellipse (λ3 =
λ2 = 1, λ1 = −2). Its parameterized equation can be written as

X
φ1,φ2

Q = M 3
φ2

M 2
φ1

M 1
−2φ1

XQM̃
1

−2φ1
M̃

2

φ1
M̃

3

φ2
: φ1, φ2 ∈ [0, . . . , 2π].

(6.27)
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Fig. 6.10: 3D-3twist generated surfaces.

This is visualized in the first image of figure 6.10. The second image of
figure 6.10 shows a horizontally rotated cardioid. The surface is comparable
to a ball with a pen pressed inside the ball. The third and fourth images
in the second row show rotated hypocycloids. The last row shows rotated
spirals, leading to surfaces comparable to a flower. These surfaces are very
easy to generate and can be represented by just a few coupled twists. Note,
that also lines and planes are falling in the definition of 2twist and 3twist
generated curves and surfaces. For these cases the twists contain translational
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Entity Class Entity Class
point 0twist curve rose 2twist curve
circle 1twist curve spiral 2twist curve
line 1twist curve sphere 2twist surface
ellipse 2twist curve plane 2twist surface
line segment 2twist curve cone 2twist surface
cardioid 2twist curve cylinder 2twist surface
nephroid 2twist curve quadric 3twist surface

Tab. 6.1: Well known 3D entities as mtwist curves or surfaces.

parts. Table 6.1 gives an overview of some well known entities interpreted as
cycloidal curves.

Note, that the rigid body motions of these entities can easily be estimated,
just by transforming the generating twists. The transformation of an mtwist
generated curve can be performed by transforming the m twists, and the
point on the curve. The description of these curves is compact and rigid
transformations can be estimated very fast.

Cycloidal curves and surfaces extend already studied entities to a more
general class of entities, without loosing the advantages of the previous work,
see chapter 5, 6.1 and 6.2.3. Indeed, it is possible to build up a hierarchy
of entities and the next chapter will concentrate on enlarging these kinds of
entities to approximate free-form contours. So far the hierarchy of entities
consists of the following entities:

points, lines ⊆ circles ⊆ cycloidal curves ⊆ . . .
planes ⊆ spheres ⊆ cycloidal surfaces ⊆ . . .

6.3.3 Ray-tracing on cycloidal curves

The aim of this part is to show that the twist representation of cycloidal
curves can also be used to model optical properties on the curves or surfaces.
This is interesting for ray-tracing tasks or computer graphics applications.

Cycloidal curves have the useful property that they can be derivated at
(nearly) all positions. To build the foundations for ray-tracing on cycloidal
curves, the envelope of a family of curves is defined as:

Definition 6.1 The envelope or discriminant of the family F , F : IR×IRr →
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Fig. 6.11: Evolutes of cycloidal curves.

IR, r ∈ IN is the set

D = DF = {x ∈ IRr|∃t ∈ IR : F (t, x) =
∂F

∂t
F (t, x) = 0}. (6.28)

Building the envelope means to derive a new curve based on a set of
curves. The envelope of a set of curves is a curve C such that C is tangent
to every member of the set. Two curves are tangent to each other, if both
curves share a common tangent at a common point. Now it is possible to
define the evolute:

Definition 6.2 The evolute is the envelope of the normals to a given curve.

Figure 6.11 shows examples. The normals of four cycloidal curves (a
cardioid, an ellipse, a rose and cycloid) are drawn. These normals define a
new curve, which is tangent to each normal of the initial curve. This curve
directly pops out to the human eye and is not specially drawn. Since cycloidal
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Fig. 6.12: Ray-tracing examples of a ray reflecting inside a deltoid and a ray
reflecting in and out of a spiral.

curves can easily be derivated in CGA, it is also easy to estimate reflections
of rays with respect to the curve normals. This property is also used by A.
Lasenby et al. in [107], but in their work no twist approach is used to model
the curves. In section 3.1.2 the derivation of rotors with respect to angles is
already introduced. It can directly be applied on the twist representation of
motors. Furthermore the product rule can be used to estimate the derivative
of a point on a cycloidal curve. Here it will be demonstrated on a 2twist
generated curve:

∂Xφ
C

∂φ
=

∂
(
M 2

λ2φM
1
λ1φXCM̃

1

λ1φM̃
2

λ2φ

)

∂φ
(6.29)

=

(
∂M 2

λ2φ

∂φ
M 1

λ1φXCM̃
1

λ1φM̃
2

λ2φ

)
+

(
M 2

λ2φ

∂M 1
λ1φ

∂φ
XCM̃

1

λ1φM̃
2

λ2φ

)
+


M 2

λ2φM
1
λ1φXC

∂M̃
1

λ1φ

∂φ
M̃

2

λ2φ


+


M 2

λ2φM
1
λ1φXCM̃

1

λ1φ

∂M̃
2

λ2φ

∂φ


 . (6.30)

Following chapter 3, a tangent t of a point can be rotated by 90o degree
to get a normal direction n and the reflection rule can be applied,

x′ = nxn, (6.31)
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to estimate the reflected point. Figure 6.12 shows examples of a light ray
reflecting inside a deltoid on the left and a light ray reflecting in and out of
a spiral on the right.

6.3.4 Constraint equations for pose estimation of

cycloidal curves

This section deals with the generation of constraint equations for pose es-
timation of cycloidal curves. The fusion of cycloidal curves and the pose
estimation problem is easy now, since every involved topic is formalized in
the conformal geometric algebra. It is just necessary to substitute the formal-
ization of cycloidal curves within the collinearity or coplanarity constraints of
chapter 5.4: The constraint equations of pose estimation from image points
read

(M X︸︷︷︸
object point

M̃ )

︸ ︷︷ ︸
rigid motion of the object point

× e ∧ (O ∧ x)︸ ︷︷ ︸
projection ray,

reconstructed from the image point

︸ ︷︷ ︸
collinearity of the transformed object

point with the reconstructed line

= 0. (6.32)

The 3D cycloidal curve is assumed as e.g.

X
φ
Z = M 2

λ1φM
1
λ2φXM̃

1

λ2φM̃
2

λ1φ : λ1, λ2 ∈ IR, φ ∈ [0, . . . , 2π].

The rigid motion of this curve incident to a projection ray can be expressed
as

(
M(M 2

λ1φM
1
λ2φXM̃

1

λ2φM̃
2

λ1φ)M̃
)
× (e ∧ (O ∧ x)) = 0. (6.33)

Since every aspect of the 2D-3D pose estimation problem of cycloidal curves
is formalized in CGA, the constraint equation describing the pose problem
is compact and easy to interpret: The inner parenthesis contains the param-
eterized generation of the cycloidal curve with one unknown angle φ. The
outer parenthesis contains the unknown motor M , describing the rigid body
motion of the 3D cycloidal curve. This is the unknown pose. The expres-
sion is then combined via the commutator product with the reconstructed
projection ray and has to be zero. This describes the cotangentiality of the
transformed curve to a projection ray.

The unknowns are the six parameters of the rigid motion M and the
angle φ for each point correspondence.
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In a similar way it is possible to formalize constraint equations for inci-
dence of cycloidal surfaces to projection rays,

(
M(M 3

λ3φ2
M 2

λ2φ1
M 1

λ1φ1
XM̃

1

λ1φ1
M̃

2

λ2φ1
M̃

3

λ3φ2
)M̃

)
× (e ∧ (O ∧ x)) = 0.

(6.34)

But this would not cover all geometric aspects of the surface in the pose
problem. It is more efficient to build constraints on the surface contour in the
image and to model also tangentiality within the constraints. Therefore the
surface tangential plane Px of each point X can be used to claim incidence
of the tangential plane Px with each projection ray,

(
M(M 3

λ3φ2
M 2

λ2φ1
M 1

λ1φ1
PxM̃

1

λ1φ1
M̃

2

λ2φ1
M̃

3

λ3φ2
)M̃

)
× (e ∧ (O ∧ x)) = 0.

(6.35)

This leads to additional orientation constraints, which can be used in the
context of the 2D-3D pose estimation problem. The unknowns of these con-
straint equations are the rigid motion M and the angles φ1 and φ2.

6.4 Experiments for pose estimation of extended object

concepts

This section presents experimental results of pose estimation with extended
object concepts. The experiments will start with estimating the pose of kine-
matic chains. Then it will be continued with experiments on pose estimation
of circles, spheres and cycloidal curves.

6.4.1 Pose estimation experiments of kinematic chains

The following experiments visualize the application of the pose estimation
algorithm or kinematic chains on different scenarios, see figures 6.13-6.19. In
the first image sequence, the object model is a door in a cupboard and both
the angle of the door and the position of the robot observing the door are
changing. During these movements the correspondences are extracted man-
ually and the transformed and projected object is visualized in the sequence.
It is easy to see that both unknowns, the pose of the cupboard and the angle
of the door, are estimated and the error is small.
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Fig. 6.13: Images of the first real scenario. Both the pose of the cupboard
and the opening angle of the door are estimated.

In the second image sequence, the object model is a doll and estimated
are the pose, the angle of the upper arms and of the forearms. Figure 6.14
visualizes the transformed and projected object in the sequence. Though
only one 3D point for each kinematic chain segment is used and the size of
the doll is measured by hand, the pose is also accurate.

Fig. 6.14: Images of the second scenario. The pose of the doll and the angles
of the arms are estimated.

The next images (see e.g. figure 6.15) present results of O. Granert [66],
who made experiments with the RX-90 robot arm [169] and implemented
a VRML-viewer, parser and other software package for kinematic chains. I
supervised his work in the context of a student project.

Figure 6.15 shows some examples of a sequence containing 42 images.
In this image sequence the first joint is moving in 5 degree steps from 0 to
25 degree. Then the second joint is moving in 5 degree steps from 0 to 60
degree. This is also shown in figure 6.16. The pose of the robot and the
angles of the kinematic chain are estimated. The image features are tracked
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step 30 step 40

step 20step 0

Fig. 6.15: Images of a tracked robot arm taken from a sequence with 40
images.

point markers. Figure 6.16 shows the joint angles estimated and overlaid
with the ground truth1. Small deviations can be recognized. Dependent on
the position of the camera with respect to the object model and the location
of the joints, the estimated angles differ around 0.5 to 3 degrees to the ground
truth. In simulation environments (and ideal situations) it is clear, that (for
non degenerate cases) the parameters during the iterations converge against
the ground truth. The errors in these experiments are dependent on the
calibration quality, the lens distortions and the accuracy of the color marker
detection.

Figure 6.17 shows images of another image sequence. There the stability
of the algorithm is visualized in the context of moved color markers: During
tracking the robot, a student moves into the scenario, picks up a color marker
and moves it around. This leads to outliers in the scenario and therefore to
impossible kinematics of the robot. Two things can be seen. Firstly, the
geometry of the robot is modeled within the constraints and the model will
not be distorted. Instead, the algorithm leads to a spatially best fit of the

1 Since the positioning accuracy of the robot arm is very good, the positioning values
of the robot arm are used as ground truth.
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Fig. 6.16: Joint angles estimated and overlaid with the ground truth. The
solid lines show the ground truth and the dashed lines show the
estimated values.

model to the extracted image data. Secondly, no hierarchical approach for
pose estimation of piecewise rigid objects as mentioned in chapter 6.1 is used.
Instead a pose estimation based on the model of a kinematic chain. There
are two main arguments why I do not recommend a hierarchical approach
for pose estimation: Firstly, the geometry of the whole object is not modeled
within the constraint equations. That necessitates the second processing step
to ensure a non distorted model. This second processing step can be avoided
by modeling a kinematic chain within the constraint equations, as is done in
this work or by [25]. Secondly, each point of a kinematic chain contributes two
linearly independent equations. Also the higher order points of a kinematic
chain influence the result of the whole pose. This is strongly wanted in
this context because only then all possible geometric information is used
simultaneously and is not neglected due to redundancy of the algorithm. The
main result of this experiment is to visualize the robustness of the developed
algorithm.
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Fig. 6.17: Stability example for distorted color markers and visualization that
the geometry of the robot is modeled within the constraints.

Fig. 6.18: Example images for visual remote controlling of the robot.

Figure 6.18 shows three example images taken from the student project
[160] I supervised. The students O. Schmitz and J. Koberstein had the task
to implement a visual remote control for the robot. This means, a person
with color markers attached to its body has to be tracked and the angles
of the human arm’s movements have to be estimated and translated to the
robot kinematics. So the robot arm follows the human arm movements and
therefore the human is able to control the robot through its own movements.
Color markers on the finger tips indicate the opening and closing of the
gripper. This module is used for grasping and manipulation tasks as shown
in figure 6.18. Since the students also implemented a client-server package,
image processing and tracking of the person is independent from the location
of the robot. This allows for a robot controlling though the person is not in
the same room in which the robot is located. During the experiments, the
students let the image stream run via the university campus, which is 3km
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Fig. 6.19: The system design for controlling the robot.

away from the robot lab. The control system is shown in figure 6.19.
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6.4.2 Pose estimation experiments with circles and

spheres

This section presents the use of more extended object concepts for pose
estimation. In figure 6.20 pose estimation results of an object containing
points, lines, kinematic chains and circles are shown.

Fig. 6.20: Pose estimation of an object, consisting of 3D points, lines, circles
and kinematic chain segments.

In another experiment an object model is used which contains additionally
a sphere, a prismatic and a revolute joint. All available object information is
used simultaneously for pose estimation. The model and its object features
are depicted in figure 6.21. Figure 6.22 shows some pose estimation results
of the object model. Though the size of the model is measured by hand,
the pose is accurate and also the joint parameters are well approximated.
All information is arranged in one linear system of equations, which leads to
simultaneous solving of the pose parameters by using all different features.
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Fig. 6.21: Object model, consisting of different entities.

Fig. 6.22: Pose estimation by using all types of model features.

6.4.3 Pose estimation experiments with cycloidal curves

The main problem of pose estimation of cycloidal curves is that they are in
general not convex. This results in the problem of getting trapped in local
minima. Figure 6.23 visualizes the problem and shows the distance function
of a line to a parameterized spiral. In this example, the line is perpendicular
to the spiral. The resulting error function of the points on the spiral with
respect to the 3D line is visualized in the right image of figure 6.23. These
kinds of error functions are very hard to solve and for example local search
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Fig. 6.23: Distance function of a line to a spiral.
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Fig. 6.24: Pose estimation of a 3D ellipse and the convergence behavior.

strategies have to be combined with heuristics to handle these problems and
to find a global minimum [18].

The next experiments deal with pose estimation results of convex objects.
For these examples the gradient method converges directly.

Figure 6.24 shows the pose estimation result of a 3D ellipse. For this an
ellipse is printed on a paper sheet and images are taken of this paper sheet.
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Fig. 6.25: Pose estimation of a 3D ellipse by using undistorted, distorted and
interpolated data.

Fig. 6.26: Pose estimation of a 3D ellipse by using distorted and interpolated
data.

In the first row, two images are shown with marked extracted point features
in the image and the transformed projected reference points. Furthermore,
the transformed projected ellipse is shown. While the correspondences be-
tween the point features are very well fitted, some parts of the curve are not
perfectly fitted to the image curve. This occurs because of the few informa-
tion used to estimate the location of the ellipse. The second row of figure
6.24 shows the convergence behavior of the ellipse during the iterations.

Figures 6.25 and 6.26 address the self-regularizing properties of image
contours: In the first column of figure 6.25 one undistorted and one distorted
image ellipse is shown. The second column shows a pose estimation result by
taking the undistorted image data and the extracted contour of the distorted
image. There are two possibilities to deal with the contour points: On the
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Fig. 6.27: Convergence behavior of the algorithm during the iterations.
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Fig. 6.28: Pose estimation of an object containing one ellipse, two circles and
one deltoid.

one hand it is possible to use them directly, or on the other hand it is possible
to interpolate them to an image ellipse and use the interpolated data. In [191]
several approaches for conic fitting are presented. To interpolate the contour
points, the LLS (linear least squares) approach has been re-implemented
and used. Though the LLS approach is not the best algorithm discussed in
[191], it is easy to implement and fast. The pose results for the raw contour
points on the one hand and the interpolated ellipse points on the other hand
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Fig. 6.29: Pose estimation of an object, containing a cardioid and two cy-
cloids.

are shown in the third column of figure 6.25. The upper image shows the
pose result achieved by using the pure points, the lower image shows the
result achieved by using the interpolated data. Indeed, using the pure points
leads to worse results than using the interpolated data. Figure 6.26 shows
a more extreme case of distorted image data. It can be seen that the use
of interpolated image data leads to more stable results than using the raw
contour points.

Figure 6.27 shows the convergence behavior of the algorithm during the
iterations. Since the rigid body motion which is to be estimated is very large,
the algorithm needs several iteration steps to converge. If only small move-
ments are observed, the number of iterations (and therefore the computing
time) can be reduced significantly.

Figure 6.28 shows pose estimation results of a second 3D object model.
This object contains two circles, one ellipse and one deltoid. The left im-
age shows the 3D object model. The other images show the transformed
projected object model to visualize the quality of the pose.

Now it will be continued with pose estimation of non-convex objects. Fig-
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Fig. 6.30: Pose estimation of a 2twist surface, connected via a 2 d.o.f. kine-
matic chain to a table.

ure 6.29 shows experimental results of an object, containing three cycloidal
non-convex curves. All information is used simultaneously to solve the pose
parameters. Here the gradient method for pose estimation is encapsulated
within a heuristic, since the entities are not convex any more. In the first
image, the used object model is shown. The other three images show pose
estimation results of the object. Furthermore, the transformed projected cy-
cloidal curves are shown. Since the size of the object model is measured by
hand, the pose estimation result is quite accurate.

The combination of the gradient method with the mentioned heuristic
leads to slow algorithms. While the pose for convex object models can be
estimated in real-time, the estimation of the object, presented in figure 6.29
takes up to 5 minutes to converge to a global minimum. But indeed it is
possible to estimate the global minimum. The reason for this long com-
puting time comes along with the fact, that e.g. no tracking assumption is
made for the scenario. Such additional assumptions can fasten the algorithm
enormously and this is done in chapter 7 to gain real-time performance.

Figure 6.30 shows experimental results of a 2twist surface. The object
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model is a lamp-shade connected via a 2 d.o.f.2 kinematic chain to a table. In
this experiment, the pose parameters and the angles of the kinematic chain
are estimated. The lamp-shade itself is modeled by two cone parts. Since
both surface parts are convex, the gradient method converges directly and
there is no need to apply a heuristic to estimate the pose.

The cycloidal curves are the intermediate stage to the next step of gener-
alization, which are general free-form contours. In the experimental part of
the next chapter also statistical experiments are presented.

2 degree of freedom



Chapter 7

POSE ESTIMATION OF FREE-FORM

OBJECTS

So far it has been discussed how to use a set of coupled twists to generate a
3D curve. Now the reverse problem is addressed: Assume a set of 3D points
on a 3D contour. The question is, which ntwist generated curve interpolates
the 3D points in a suitable way. This problem is closely related to Fourier
descriptors which are usually defined in the 2D plane and are often used for
object recognition [67, 186, 6, 93] and affine 2D pose estimation [7, 138]. The
aim of this section is to clarify the relation between twist-generated curves
and Fourier descriptors. The 3D Fourier descriptors are then used to model
object contours within the perspective 2D-3D pose estimation problem. The
key idea is, that a set of coupled twists modeling general rotations is equiva-
lent to a sum over a set of rotors, which act on different phase vectors. This
can be interpreted as a Fourier series expansion, leading to a trigonometric
interpolation of a set of contour points.

A short introduction into the concepts of Fourier transformation in classi-
cal matrix calculus is given in chapter A.4. Instead, in this chapter everything
will be derived in CGA to show how elegantly it is possible to combine re-
sults of signal theory within the pose problem by using CGA as algebraic
language. To introduce the description of free-form contours, Ch. Perwass’
idea in [146] will be followed, who firstly formalized Fourier descriptors in
the conformal geometric algebra. Therefore the relation of a Fourier series
expansion to coupled twists in the 3D Euclidean space is shown at first,
since only rotations of different phase vectors around the origin are needed.
For pose estimation the expressions are then transformed into the conformal
space.
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Let

R
φ
i := exp(−πuiφ

T
l), (7.1)

where T ∈ IR is the length of the closed curve, ui ∈ Z is a frequency number
and l is a unit bivector which defines the rotation plane. Furthermore holds

R̃
φ

i = exp(
πuiφ

T
l). (7.2)

Recall that l2 = −1 and, as noted in equations (3.35) and (3.38), therefore
it is possible to write the exponential function as

exp(φ l) = cos(φ) + sin(φ) l. (7.3)

A 2twist generated curve may then be written in Euclidean space as follows,
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where p0 ≡ t2, p1 ≡ t1 − t2, p2 ≡ xC − t1, V
φ
1 ≡ R

φ
2 , V

φ
2 ≡ R

φ
2R

φ
1 and

λi = 2πui/T . Note that for plane curves the rotors R
φ
1 and R

φ
2 act in the

same plane and the vectors xC , t1 and t2 lie in the rotation plane. Hence,
the {pi} lie in the rotation plane.

It can be shown that if a vector x lies in the rotation plane of some rotor
R, then Rx = xR̃. The previous equation can therefore be written as

x
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2 . (7.5)

Note that the square of a rotor is equal to a rotor of twice the angle in the

same rotation plane. Therefore, Ṽ
φ

i Ṽ
φ

i = Ṽ
2φ

i . Using the exponential form
of rotors, equation (7.5) becomes
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)
. (7.6)

This is equivalent to a Fourier series expansion where the imaginary unit
i =
√
−1 is replaced with l and the complex Fourier series coefficients with

vectors that lie in the plane spanned by l. The latter vectors are the phase
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vectors. In general it may be shown that any closed, plane curve C(φ) can
be expressed as a series expansion

C(φ) = lim
N→∞

N∑

k=−N

pk exp
(

2πkφ

T
l

)
= lim

N→∞

N∑

k=−N

R
φ
k pk R̃

φ

k . (7.7)

For every closed plane curve there is a unique set of phase vectors {pk} that
parameterizes the curve. However, such a set corresponds to infinitely many
different combinations of coupled twists. That is, given a set of coupled
twists, it is possible to obtain the corresponding phase vectors {pk} but not
vice versa. The spectral representation of a curve transforms the translational
parts of its generating twists into a set of different phase vectors and therefore
results in a pure rotor description.

Fig. 7.1: Projections of a curve created by coupled
twists.

The expansion in equation (7.7) is again closely related to the standard
Fourier series expansion of a real, scalar valued function. In figure 7.1 a closed
curve created by two coupled twists is shown in the yz-plane. Suppose that
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instead of C(φ), the function CS(φ) := C(φ)+2πφ/T e1 is considered, where
e1 is the unit vector along the x-axis. If CS(φ) is projected onto the xy-plane
and xz-plane, the two other shown curves are obtained. This visualizes the
well known fact that any periodic function in a space of dimension n can be
regarded as the projection of a closed curve in a space of dimension n + 1.

The phase vectors {pk} are also called Fourier descriptors. It has long
been known that one can also construct affine invariant Fourier descriptors
[67, 4], that is, entities that describe a closed curve and stay invariant under
affine transformations of the curve. This is particularly useful for object
recognition and has been used in many applications [6, 57, 173]. The same
relations that allow one to construct affine invariant Fourier descriptors also
allow for affine pose estimation. This works in the following way: Consider a
closed curve that lies on a plane which is tilted with respect to an observer.
This curve is projected with an affine camera onto an image plane. The pose
of the plane in space can then be estimated, if the Fourier descriptors of
the projected curve as well as the Fourier descriptors of the original curve
are given. See [5] for more details. A projective pose estimation via Fourier
descriptors does not exist so far. The problems occurring there are discussed
in the appendix of [146].

To represent a general closed, discretizied 3D curve this can easily be
extended to 3D by interpreting the projections along x, y, and z as three
infinite 1D-signals and applying a DFT and an IDFT separately. This leads
to the representation

C(φ) =
3∑

m=1

N∑

k=−N

pm
k exp(

2πkφ

2N + 1
lm). (7.8)

In the next sections I will formalize the pose constraints for plane curves
taken from equation (7.7), but equation (7.8) can directly be inserted for
non-plane curves.

7.1 Pose estimation constraints for free-form contours

Continuous 3D curves are considered for representing objects. Now a given
closed discretizied 3D curve is assumed. That is a 3D contour C with 2N
sampled points in both the spatial and spectral domain with phase vectors pk

of the contour. The Fourier series development is now replaced by the discrete
Fourier transformation. Then the interpolated contour can be expressed in
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the Euclidean space as

C(φ) =
N∑

k=−N

R
φ
k pk R̃

φ

k . (7.9)

For each φ does C(φ) lead to a point in the Euclidean space. Firstly this
expression has to be transformed in the conformal space. Then it is possible,
similar to the previous section, to substitute this expression in the constraint
equations for pose estimation. The transformation of the Fourier descriptors
into the conformal space can be expressed as

e ∧ (C(φ) + e−) = e ∧
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 . (7.10)

The innermost parenthesis contains the Fourier descriptors in the Euclidean
space. The next parenthesis transforms this expression into the homogeneous
space and then it is transformed to the conformal space. Substituting this
expression into the pose constraint equation leads to
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 × (e ∧ (O ∧ x)) = 0.

(7.11)

The interpretation of this equation is simple: The innermost part contains the
substituted Fourier descriptors in the conformal space taken from equation
(7.10). This is then coupled with the unknown rigid body motion (the motor
M) and compared with a reconstructed projection ray, also given in the
conformal space.

Note that twist-generated curves are more general than contours, since
contours are assumed as closed curves, whereas twist-generated curves, de-
pending on the boundary angles, are in general not closed. This means that
for closed curves Fourier descriptors can be interpreted as generator param-
eters of special twist-generated curves, but not vice versa. The main point is
the coupling of a spectral representation of contours within the pose estima-
tion problem. This is achieved in the previous equation by using a conformal
embedding.
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7.1.1 Multiplicative formalization of 3D Fourier

descriptors

So far an additive representation of Fourier descriptors is used in the Eu-
clidean space and then transformed via the homogeneous space to the con-
formal space. Now a multiplicative description will be derived to gain more
compact equations for the pose problem of free-form contours. The inverse
Fourier transformation in the Euclidean space can be written as
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Equation (7.12) can be interpreted as a point at the origin, which is then
translated 2N + 1 times. Now let

t
φ
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i i ∈ [−N, . . . , N ] (7.13)
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O := e ∧ e0 = E. (7.15)

The T
φ
i are translators, containing the rotated phase vectors. Now equation

(7.12) can equivalently be written in the conformal space as
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Note, that the sum on the left hand is an expression in the Euclidean space,
whereas the product on the right hand is an equivalent expression in the
conformal space. Now the pose estimation problem for free-form contours
appears as
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 × (e ∧ (O ∧ x)) = 0. (7.18)

It can be seen, that this representation is more compact than the additive
one, e.g. in equation (7.11). But indeed it does not change anything for
the linearization process in the pose estimation algorithm, but the constraint
equation is more concise and the modeling of further extensions (e.g. object
deformations) is easier to handle.
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7.1.2 Coupling kinematic chains with Fourier descriptors

In this section, constraint equations for modeling slight object deformations
will be derived. Since as first object model a plane object printed on a pa-
per sheet will be used, the motivation is to deal with deformations of the
paper sheet during tracking. An object model is assumed and a deformation
function D is added within the pose constraint. A visualization of such defor-
mations is shown in figure 7.2. The deformation function will be modeled as a
kinematic chain within the free-form object. Kinematic chains are a compact
way to model deformations which keep invariances like the circumference and
are therefore well suited in this context.

Fig. 7.2: Possible deformations of a sheet of paper along the y-axes and their
representation as kinematic chain.

The deformation function D appears in the constraint equation as
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(7.19)

A kinematic chain can now be modeled by encapsulating motors M i of the
deformations within the constraint equation,
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(7.20)
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This constraint equation is easy to interpret: The inner parenthesis contains
the inverse Fourier transformed phase vectors in the conformal space. The
next parenthesis contains the motors M θi

i of the kinematic chain deforma-
tion and the last parenthesis contains the motor M with the unknown pose.
This is then coupled with the reconstructed projection ray in the confor-
mal space. The unknowns are the pose parameters M , the angles θi of the
kinematic chain and the angle φ of the Fourier descriptors. The correspon-
dences (and therefore the angles φ) are later established by using a so-called
ICP -algorithm.

7.2 Experiments on pose estimation of free-form contours

This section presents experimental results of free-form contour based pose
estimation. At first the main algorithm for pose estimation of free-form con-
tours is introduced. Though the numerical estimation of the pose parameters
is already clarified in chapter 5.5, the main problem is to determine suited cor-
respondences between 2D image features and points on the 3D model curve.
Therefore a version of an ICP algorithm is presented and called the increasing
degree method. Afterwards experiments on the convergence behavior of the
algorithm and time performance versus accuracy will be presented. Stability
examples for distorted image data are also shown. The algorithm proves as
stable and fast (real-time capable) for the scenarios. To deal with 3D objects,
partially occluded aspects of objects and object deformations during track-
ing, modified versions of the increasing degree method are introduced and
discussed. It is possible to deal with self-occlusion problems by using sets of
Fourier descriptors to model aspects of the object within the scenario and
deformations are modeled by coupling kinematic chains within the free-form
contours.

7.2.1 The algorithm for pose estimation of free-form

contours

The aim is to formulate a 2D-3D pose estimation algorithm for any kind of
free-form contour. The assumptions are the following:

1. The object model is given as a set of 2N 3D points f 3
j , spanning the 3D

contour. Further their phase coefficients pj are assumed to be known.
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2. In an image of a calibrated camera the object is observed in the image
plane and a set of n 2D points x2

j spanning the 2D contour is extracted.

Since the number of contour points in the image is often too high (e.g. 800
points in the experimental scenario), just every kth point (e.g. k ∈ 5, . . . , 20)
is used to get an equal sub-sampled set of contour image points.

Fig. 7.3: The different approximation levels of a 3D object contour (the bone
model).

241612

1 4 8

Fig. 7.4: Pose results during the iteration.

Note that there is no knowledge which 2D image point corresponds to
which 3D point of the interpolated model contour. Furthermore, a direct
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correspondence does not generally exist since the contours are mostly sam-
pled from different starting points and the number of image and object points
may also vary.

Using the approach for pose estimation of point-line correspondences, the
algorithm for free-form contours consists of iterating the following steps:

(a) Reconstruct projection rays from the image points.

(b) Estimate the nearest point of each projection ray to a

point on the 3D contour.

(c) Estimate the pose of the contour with the use of this

correspondence set.

(d) goto (b).

The idea is, that all image contour points simultaneously pull on the 3D
contour. The algorithm itself corresponds to the well-known ICP algorithm,
e.g. discussed in [158, 187]. But whereas it is mostly applied on sets of 2D
or 3D points, here it is applied on a trigonometric interpolated function and
on 3D projection rays, reconstructed from image points.

Note that this algorithm only works if a scenario is assumed where the
observations in the image plane are not too different. Thus, it is useful for
tracking tasks. A projection of the used object model for the first experiments
is shown in figure 7.3. The discrete points and the different approximation
levels are shown. The model itself consists of 90 contour points, is plane and
has the width and height of 24 × 8 cm. I call this object model the bone
model. Pose estimation results at different iterations are shown in figure 7.4.
The white 2D contour is the transformed and projected 3D object model
overlaid with the image.

Using the Fourier coefficients for contour interpolation works well, but
the algorithm can be made faster by using a low-pass approximation for
pose estimation and by adding successively higher frequencies during the
iteration. This is basically a multi-resolution method. I call this technique
the increasing degree method. Therefore the pose estimation procedure starts
with just a few Fourier coefficients of the 3D contour and estimates the pose
to a certain degree of accuracy. Then the order of used Fourier coefficients is
increased and the algorithm proceeds to estimate the pose with the refined
object description. This is shown in figure 7.5. In this experiment, the
indicated iteration number corresponds directly to the number of used Fourier
coefficients minus one. This means that two Fourier coefficients are used in
the first iteration, four Fourier coefficients in the third iteration, etc. Iteration
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Fig. 7.5: Pose results of the low-pass filtered contour during the iteration.

Fig. 7.6: Different pose results of the free-form contour.

21 uses 22 Fourier coefficients and figure 7.5 shows that the result is nearly
perfect. Figure 7.6 shows pose results during an image sequence containing
530 images. As can be seen also perspective views of the free-form contour
can be estimated.
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7.2.2 The performance of the pose estimation algorithm

The accuracy and time performance of the algorithm is dependent on the
number of object and image points spanning the contours in 2D and 3D
respectively. Furthermore, low-pass approximation of the 3D contour can
be used. Now results of experiments with changing approximation levels
and changing numbers of image points are presented. Note, that the results
are estimated on a Sun Ultra 10 work station. There the absolute computing
time is not real-time capable. The time performance is also tested on different
machines and real-time performance can be achieved with Linux machines,
which are much faster.
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Fig. 7.7: Accuracy and computing time of the algorithm for a constant num-
ber of image points (80) and different approximation levels of the
contour.

In the first experiment the results of the algorithm for different degrees of
contour approximation are compared. Here, the degrees (3, 4, 5, 10, 20, 30,
40) for the contour approximation over the iteration are used and compared
with the results of the increasing degree method, similar to figure 7.5. The
accuracy of the algorithm is estimated by comparing the translational error
vector with the ground truth. The result is shown in figure 7.7. It can be
seen that the algorithm converges after less than 10 iterations. Then the error
vectors do not change any more. It is clear, that the use of fewer numbers of
Fourier coefficients leads to fast but more inaccurate results. The increasing
degree method finds a good optimum between computing time and accuracy
of the result. The algorithm converges after 7 iterations.

In a second experiment, the increasing degree algorithm is used. Now the
number of extracted contour points is changed. In this experiment 10, 12,
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Fig. 7.8: Accuracy and computing time of the algorithm for a changing num-
ber of used image points and the increasing degree algorithm.

Computer pose min. search total (25 It.)
Pentium 4, 2 GHz 3ms up to 20 ms 405 ms
Pentium 3, 850 MHz 15 ms up to 25 ms 783 ms
Sparc Ultra 10 325 ms up to 80 ms 10295 ms (∼ 10 sec)
Sparc Ultra 1 8921 ms up to 667 ms 232265 ms (∼ 3.5 min)
Sparc 4 13322 ms up to 1505 ms 356811 ms (∼ 6min)
Sparc 10 23509 ms up to 1743 ms 622975 ms (∼ 10min)

Tab. 7.1: Computing time of the increasing degree method for the same sce-
nario on different machines for 90 model points, 80 image points
and 25 iterations.

14, 20, 27, 32, 40, 54 and 80 regularly sampled image points are used and
their accuracy and computing time is compared. The result is presented in
figure 7.8. It can be seen, that the number of image points used affects both
the computing time and the accuracy. But in comparison with the previous
experiment there exists a critical break point with regard to the accuracy
of the algorithm. While the use of 14− 80 image points does not affect the
quality of the pose too much, the use of 10 points or less leads to wrong
poses.

These results hold for just this scenario and will change for other scenar-
ios. The main result is that it is indeed possible to use the whole image and
object information available to estimate the pose of the free-form contour.
But this will be paid with high computing time. Instead, the use of low-pass
filtered or of sub-sampled contours fastens computing and leads to good re-
sults. In this scenario the computing time can be reduced from 35 seconds
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Fig. 7.9: Computing times for an image sequence containing 500 images.

to less than 1 second without introducing non-tolerable errors.

Indeed, the computing time is very dependent on the machine itself.
Therefore, the same algorithm is compiled on different machines. Then the
computing time for exactly the same scenario is compared. The result is
shown in table 7.1. As can be seen, e.g. the computing time for the in-
creasing degree method with 80 image points is 783 ms on a standard Linux
850 MHz machine. The column pose shows the computing time for each
pose. The column min. search shows the computing time for estimating
the minimum distance between projection rays and the model curve. Since
the increasing degree method is used, the computing time for estimating the
distances varies and increases with increasing number of Fourier coefficients.
Therefore just the maximum computing time is shown. The column total
shows the total computing time for 25 iterations. But since the algorithm is
applied on image sequences, 25 iterations are seldom needed.

Figure 7.9 shows the computing times for an image sequence containing
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Fig. 7.10: Different pose results for distorted image data. The first row shows
results obtained with the non-modified ICP algorithm. The second
row shows pose results obtained with the outlier-elimination during
the ICP algorithm.

Fig. 7.11: Point correspondences for the noise sensitivity experiment.

520 images. The computing time for each image varies between 20ms and
55ms. The average computing time is 34ms, which is equivalent to 29 fps.
These results were achieved with a 2GHz Pentium 4 computer. Many ideas
to fasten the algorithm can also be found in [158]. This is not done yet and
will be part of future work. The main result is that the algorithm can also
be used for real-time applications on standard Linux machines.

The robustness of the algorithm with respect to distorted image data is
shown in figure 7.10. In this image sequence (containing 450 images) the im-
age contour is distorted by covering parts of the contour with a white paper.
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Fig. 7.12: Top: Principles for distorting the image and contour data. Bottom:
Example images for distorted contours.

This leads to minor or more extreme errors during the contour extraction
in the image. The first row of figure 7.10 shows the results obtained with
a non-modified ICP-algorithm. In section 5 it is already clarified, that the
constraint equations express a geometric distance measure in the 3D space.
Therefore it is easy to detect outliers and implement an algorithm which
automatically detects outliers and eliminates their equations. Some results
of the modified algorithm are shown in the second row of figure 7.10. I call
this procedure the outlier-elimination method. As can be seen, the obtained
results are much better. But indeed, these examples give just a guess about
the stability of the proposed method. It is not possible to compensate totally
wrong extracted contours or too much missing information.
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Fig. 7.13: Noise stability of the different algorithms.

ρx

x’

X

Fig. 7.14: Example for self-adaption during the ICP-algorithm: Instead of
the correspondence (X,x), the correspondence (X,x′) is chosen.

In the next experiment the noise sensitivity of point based versus silhou-
ette based pose estimation is compared with respect to image noise. There-
fore the bone-model is chosen as object model and 50 image and model corre-
spondences are estimated. The correspondences are depicted in figure 7.11.
The main question is now, how to distort the image data on the contour, so
that they can be compared with distorted point sets. The idea is visualized
in figure 7.12: For the original point set (left, I), each point is translated with
the image noise ρ ∈ [0, . . . , 7] and rotated with a random angle φ. This leads
to a distorted point set (left, II). For the original image contour (right, I) each
sampled point is translated with the image noise ρ ∈ [0, . . . , 7] and rotated
with a random angle φ, similar to the point set. Then the line segment from
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the contour point to the distorted point is drawn. This is shown in figure
7.12 (right, II). From this distorted silhouette the new contour is extracted
(right, III). Note, that the circumference is increasing, therefore the sampling
rate is adapted to the new contour. Figure 7.12 shows examples of different
distorted contours in the last row.

Using these (comparable) kinds of distorting the images, the pose re-
sults for different noise levels are compared and shown in figure 7.13. As
can be seen, little deviation (up to 3 pixel) does not lead to real differences,
but higher deviation leads to a more stable behavior of the silhouette based
pose estimation algorithm. The reason is the combination of pose estima-
tion within the ICP algorithm: For distorted image data, the corresponding
model data are adapted to the specific situation and therefore better suited
correspondences between the image and model data are estimated. This
means, if a point x is distorted and the correspondences are adaptively cho-
sen, the correspondence between the distorted point and a neighbor model
point x′ might be better suited as correspondence set. This is visualized in
figure 7.14. That is the reason for the more stable behavior of the silhouette
based pose estimation algorithm. Note, that this experiment is done with
the original ICP-algorithm, without the outlier elimination.

Iterations ResultStart configurationContour approximations

Fig. 7.15: Contour approximations of the cloud object model and its conver-
gence behavior.

Figures 7.15-7.19 present results of other object models: I call the first
object model the cloud and the second object model the edge. Figure 7.15
shows the 3D contour approximations of the cloud model in the left image
and a convergence example in the other images. The correspondences during
the iteration of the ICP algorithm are visualized in figure 7.16. It can be
seen that each sampled point on the image contour is assigned to a point on
the 3D object contour (and not vice versa). Though many correspondences
are wrong in the beginning, during the iteration they are more and more
corrected.

Figure 7.17 presents results of a sequence containing 700 images. As can
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Fig. 7.16: Pose results during an iteration with visualization of the chosen
correspondences.

Fig. 7.17: Example images and 3D poses taken from an image sequence con-
taining 700 images.

be seen, also strong perspective views, as in the lower right image, can be
estimated. To compare the visual observable error (as a drawn contour in the
image) with its real 3D pose the relative 3D pose in a virtual environment is
visualized in figure 7.17. The 3D pose matches with the observations in the



138 Chapter 7. Pose estimation of free-form objects

Fig. 7.18: Three perspective views of the non-plane edge model and its ap-
proximations.

Fig. 7.19: Example images from an image sequence containing 500 images.

image.

Figure 7.18 shows approximation levels of a non-plane object model in
three different perspective views. This is an example in which the object
model contains edges. Interpolation of a contour with Fourier descriptors
leads to a trigonometric interpolated function. So the edges are always
smoothed and several descriptors (around 40 are used for the experiments)
are required to achieve an acceptable result. Figure 7.19 presents different
results from an image sequence containing 500 images.

Object contours which contain concavities are in danger to get trapped
in local minima during using the ICP algorithm with the gradient descent
method for pose estimation. Though it is not always possible to find the
global minimum (and therefore the best pose), using contour approximations
helps to avoid local minima. This effect is achieved by using firstly a low-
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pass contour for pose estimation and then over the iterations a more refined
contour.

The last two object models (the cloud and the edge) contain more local
minima than the first one. Therefore more Fourier descriptors are needed to
gain acceptable results. This increases the computing time. While for the
first object model the average computing time is 34ms, the average computing
time of the cloud and edge model are 60ms and 120ms, respectively.

7.2.3 Simultaneous pose estimation of multiple contours

In the experiments of the last sections, the object model is assumed as one
(closed) contour. But many 3D objects can more easily be represented as
a set of 3D contours expressing the different aspects of the object. In this
section the object model will be extended to a set of 3D contours. The main
problem here is, how to deal with occluded or partially occluded contour
parts of the object. For the first experiment the edge object model will be
used, which is presented in figures 7.18 and 7.19. Now the model will be
interpreted as an object containing two sides and one ground plate. This
means a set of three plane contours is gained to model the object. The three
contours are merged to one object and perspective views are shown in figure
7.20. The three contours are assumed as rigidly coupled to each other. This
means that the pose of one contour automatically defines the pose of the
other contours.

Fig. 7.20: Three perspective views of an object which is interpreted as a set
of contours. The different approximations of the contours are also
drawn.

The algorithm to deal with partially occluded object parts is simple and



140 Chapter 7. Pose estimation of free-form objects

Fig. 7.21: Pose results of an object with partially occluded contours. The left
image shows the original image. The middle image shows the ex-
tracted silhouette (from which the boundary contour is extracted)
and the right image visualizes the pose result. Note, that also the
occluded parts of the model are drawn and uniquely determined
by the visible parts.

effective:

Assumptions: n 3D contours and one boundary contour in the image

dist(P,R) a distance function between a 3D point P

and a 3D ray R.

Result: Correspondences and pose.

(a) Reconstruct projection rays from the image points.

(b) For each projection ray R:

(c) For each 3D contour:

(c1) Estimate the nearest point P1 of ray R to a point on

the contour.
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Fig. 7.22: Pose results of an image sequence containing different aspect
changes and degenerate situations.

(c2) if (n==1) choose P1 as actual P for the

point-line correspondence

(c3) else compare P1 with P:

if dist(P1,R) is smaller than dist(P,R) then

choose P1 as new P.

(d) Use (P,R) as correspondence set.

(e) Estimate pose with this correspondence set.

(f) Transform contours, goto (b).

The idea is to apply the ICP algorithm not only to one image contour
and one 3D contour, but now to one image contour and a set of 3D contours.

This implies: For each extracted image point must exist one model con-
tour and one point on this contour which corresponds to this image point.
Note, that the reverse is in general not possible.

Figure 7.21 visualizes the problem of partially occluded contour points.
The only image information used is the observed boundary contour of the
object. By using a priori knowledge (e.g. assuming a tracking assumption),
the pose can be recovered uniquely. This means that the algorithm can infer
the position of hidden components from the visible components.

The computing time is proportional to the number of used contours.
While the algorithm needs 120ms for each image in the experiments of figure
7.19, it now needs 400ms for each image. But a more general concept is
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achieved, since there is no restriction to one special view of the object any
more. Instead the algorithm can deal with aspect changes of the contour in
an efficient manner. This is demonstrated in figure 7.22 in case of quiet dif-
ferent aspects of a 3D object. The images are taken from an image sequence
containing 325 images. In this image sequence the object is put on a turn
table which makes a 360o degree turn of the whole object. The aspects of
the objects are changing and half-side models can not be used any more, but
just the whole object. The tracking algorithm does not fail and is even able
to cope with degenerate situations.

Fig. 7.23: One perspective, frontal and top view with approximations of the
tree model. The close up visualizes the complexity of the object
model.

In the next experiment, the shape of a 3D tree is used as object model.
The contour approximations are shown in figure 7.23. As can be seen in
the close-up, here also many descriptors (around 50) are needed to get a
sufficient approximation of the model. Pose results of an image sequence
containing 735 images are shown in figure 7.24. The interesting part of this
model, in contrast to the previous ones, is not only its complexity: This
model contains two nested contours and is therefore much more complicated
than the previous ones. Because of its complexity (the number of Fourier
coefficients and the nested contours) the computing time is two seconds for
each image on a 2 GHz Linux machine.

The next experiment, see figure 7.25, presents results of a tracked cup
during an image sequence. The cup is modeled by three contours of the cup
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Fig. 7.24: Pose results of the tree model during an image sequence.

and since the cup is moved by a human hand, the extracted silhouette is
noisy and the outlier elimination method explained in section 7.2.2 has to
be applied additionally. Figure 7.25 shows four processed images with their
processing steps: The first image in each row shows the original image. The
second image in each row shows the extracted silhouette, from which the
boundary contour is extracted. The third image shows the pose result of
the previous image, projected in the actual processed image and the initial
correspondences from the extracted silhouette to the object model. As can
be seen, the hand leads to remarkable outliers in the correspondence set,
which will be detected and eliminated. The last image shows the pose result
after the outlier elimination and the ICP-algorithm. As can be seen, the pose
result is accurate and it is possible to deal with multiple contours combined
with an outlier elimination during image sequences.

From the last experiments results the possibility to model objects with
contours representing different aspects of the object and to fuse these within
the pose scenario.

7.2.4 Pose estimation of deformable objects

To model object deformations (as kinematic chains) within the ICP-algorithm,
they must be modified to arrange the kinematic chain segments along the con-
tour in a suited manner. The ICP-algorithm is the same as in the previous
section, but it is now modified to the kinematic chain: Since the object is
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Fig. 7.25: Image processing steps and pose results of the cup model during
an image sequence.

not rigid any more, an index function is defined to establish the degree of
the kinematic chain for each point on the contour.

1−Twist kinematic chain 2−Twist kinematic chain 3−Twist kinematic chain

Fig. 7.26: Pose result of a free-form object containing one, two or three kine-
matic chain segments.

The pose estimation algorithm for kinematic chains (section 6.1) can now
be used within the constraint equations defined in section 7.1.2 and used to
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Fig. 7.27: Pose results of a free-form object taken from an image sequence
with 520 images. The deformation function is modeled as a kine-
matic chain.

estimate the pose and the kinematic chain parameters of the object. Iterat-
ing this leads to a new pose and a new object configuration, which converges
during the ICP-algorithm to the local minima. The algorithm can be sum-
marized as follows:

(a) Reconstruct projection rays from the image points.

(b) Estimate the nearest point of each projection ray

to a point on the 3D contour,

(c) Estimate the number of revolute joints to the point

on the 3D contour.

(d) Estimate the pose and kinematic chain parameters

with the use of this correspondence set.

(e) Transform contour by using the estimated pose

and kinematic chain parameters.

(f) Estimate new Fourier descriptors.

(g) goto (b).

In the implemented algorithm, the number of kinematic chain segments
is free to choose and the effect of just one, two or three twists is visualized
in figure 7.26. As can be seen, not many twists are needed to get a good
approximation of the deformation. In our experiments 1 to 5 twists are used.
Figure 7.27 shows pose results of an image sequence containing 520 images.
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Fig. 7.28: Adaptive choice of twists for modeling object deformations during
an image sequence. Note, that for slight deformations fewer twists
are used than for larger deformations.

There are two major problems in dealing with a fixed set of twists mod-
eling the object deformation: Firstly can the use of too many twists lead to
local minima and wrong poses. This occurs especially, when not many twists
are needed (e.g. there is only a slight object deformation), but many twists
are modeled. Secondly does the use of many twists decrease the computing
time of the pose estimation algorithm, since additional unknowns are mod-
eled which are not always needed. Therefore a modification of the algorithm
is done, which chooses the number of twists adaptively, depending on the
level of deformation. Examples of an image sequence are presented in figure
7.28. The diagram shows the frame number during the image sequence on
the x-axis and the used number of twists on the y-axis. The example images
visualize that the used number of twists is consistent with the degree of defor-
mation. The increased time performance is shown in figure 7.29. The y-axis
gives on the one hand the used number of twists (consistent with figure 7.28)
and on the other hand the computing time for estimating one pose during the
ICP-algorithm. As can be seen, the use of more twists increases the comput-
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Fig. 7.29: The time performance for using different numbers of twists during
an image sequence.

ing time, and the adaptive choice of the number of twists during the image
sequence leads to a situation dependent optimized time performance. Note,
that only the time for one pose is shown. Combined with the ICP-algorithm
(which takes between two and eight iteration steps), the overall computing
time for one frame varies between 20ms and 250ms.
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Chapter 8

CONCLUSION

The main topic of this thesis can be summarized as:

The problem of 2D-3D pose estimation.

The problem of 2D-3D pose estimation means to estimate a rigid body mo-
tion, which leads to a best fit between object data and image data. This is
one of the oldest computer vision tasks and as mentioned in chapter 1.1, sev-
eral solution approaches for several variations of this problem already exist.
The topic is important for many computer vision and robot vision applica-
tions, like self-localization of mobile robots, object localization, recognition,
grasping or manipulation. The main focus concentrates on the geometric
modeling and application of the pose problem. 3D object models are treated
two-fold, feature based and free-form based: While the feature based pose
scenarios provide constraint equations to link different image and object en-
tities, the free-form approach for pose estimation is achieved by applying
extracted image silhouettes from objects on 3D free-form contours modeled
by 3D Fourier descriptors. The reason is, that starting from simple fea-
tures (e.g. point features) an extended scenario is derived, which deals with
higher order features such as lines, planes, circles, spheres, kinematic chains
or cycloidal curves. This scenario is extended to general free-form contours
by interpreting contours generated with 3D Fourier descriptors as n-times
nested cycloidal curves. The results of this thesis are summarized in the
following points:

Firstly, the geometry of the 2D-3D pose estimation scenario is analyzed
and the interaction of entities given in different mathematical spaces (Eu-
clidean, affine and projective) is considered in a geometric algebra: The con-
formal geometric algebra provides a homogeneous model for stereographic
projection and expresses rigid motions in 3D space as rotations on a hyper-
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sphere (chapter 3, 4). This coupling of projective geometry with kinematics is
used within the multivector concepts to formalize the pose estimation prob-
lem for point, line and plane correspondences. It leads to a compact and
linear description of the pose problem which contains a distance measure
(chapter 5). These equations can further be scaled by a scalar which allows
for an adaptive weighting of the constraints (chapter 5.6.1). The constraint
equations are solved by linearizing and iterating the equations. This corre-
sponds to a gradient descent method as in [116], but applied to the 3D space
(chapter 5.5). The estimation of pose parameters is very fast and takes 3 to
5ms on a standard Linux machine.

Secondly, the basic entities for pose estimation are extended to more
complex ones: kinematic chains, circles, spheres or cycloidal curves. The
approach for pose estimation of kinematic chains extends the approaches
presented in [25, 74, 181], since no scaled orthographic camera model is as-
sumed but a full perspective one. Furthermore, the full geometry of kinematic
chains is modeled and no hierarchy is built up which would be accompanied
by the loss of geometric information as discussed in chapter 6.4.1. The ex-
periments in chapter 6.4.2 do further show the possibility of using different
entities simultaneously.

Thirdly, the twist approach for modeling cycloidal curves as virtual kine-
matic chains is related to model 3D contours by using Fourier descriptors.
This leads to constraint equations for 3D free-form contours in a full pro-
jective camera model and therefore extends e.g. affine pose algorithms [6].
In this context ICP-algorithms are used to estimate the correspondences and
poses for image silhouettes and object contours. The use of low-pass informa-
tion enables one further to avoid local minima and to speed up the algorithm.
Furthermore, an automatic outlier detection is possible, which stabilizes the
pose results. Extensions to multiple contours, partially covered contours and
adaptive deformable contours are also presented (chapter 7.2.3 and 7.2.4).
This part links signal theory, geometry and kinematics and is applied advan-
tageously for 2D-3D silhouette based free-form pose estimation.

The pose estimation algorithm is applied in several projects [68, 66, 139,
101, 160, 102] and proves as robust and fast.

Parts of this thesis are published in [168, 167, 154, 189, 153, 144, 145,
143, 152, 146, 151, 147, 148, 150, 149].
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8.1 Further extensions, open problems and future work

The next (and non-trivial) extension of contour based free-form pose esti-
mation is pose estimation of free-form surfaces. This has a much higher
degree of complexity, similar to the extension of the 1D analytic signal and
1D quadrature filters to 2D in an isotropic way, as presented in [54]. New
mathematical foundations are necessary, maybe by using the n-dimensional
hyperbolic model, containing the half-space model, the Klein ball model or
the hyperboloid model, presented by H. Li in [111] as further extensions of
the conformal geometric algebra. Nonetheless it is also necessary not only to
model incidence of projection rays with points on the contours, but also tan-
gentiality from silhouette reconstructed projection rays to the surface, similar
to equation (6.34), (6.35) and the experiments with the lamp-shade presented
in figure 6.30. There exist several algebraic forms of surface descriptions, like
superquadrics, polygonal meshes, generalized cylinders or ruled surfaces [33].
The task is to identify and apply a well suited representation within the pose
formalism.

For free-form pose estimation a so-called ICP-algorithm is used to esti-
mate correspondences during iteration with the pose estimation algorithm.
Though the ICP-algorithm works fine and stable in tracking situations, its
computational overhead (the nested loops) leads to hardly realizable real-
time systems for complex object models. Here also some work is possible
and promising. E.g. no fast Fourier transformation is applied so far and the
minima-search in the gradient descent method is highly parallelisable. But
maybe new search strategies are better suited than the used ICP-algorithm.

Another extendable topic is the image processing for pose estimation.
So far easy scenarios are assumed, e.g. with little background noise. The
image processing is kept simple, since the geometric aspects of the pose
scenario are dealt with in this thesis. Noise is considered in the context of
a distance measure within the pose constraints (see e.g. figures 7.10 and
7.25). Since the image processing is kept simple, dealing with more complex
scenarios requires a suited image processing which leads to a new field of
work regarding stability versus complexity. I dealt with these problems a
little bit in the experiments for the navigation system in chapter B.4. The
navigation system shows that dealing with further uncertainties and noise
ratios leads to hardly realizable stable real-time systems, and parallel system
architectures are necessary to cope with complex tasks.

Indeed, also the navigation system presented in chapter B.3 is just dealing
with basic behaviors for navigation (follow path, self localization, etc.). It
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is kept simple and several extensions can be imagined: It can be extended
to more complex behaviors, e.g. visuable obstacle detection (using e.g. the
inverse perspective [119]), map building, door opening, dealing with multiple
landmarks simultaneously, etc. The interaction of the navigation system with
these tasks is interesting for future research and important for stable running
systems.

In this work only pinhole-camera models are considered. New camera
geometries like catadioptric mirrors for omni-directional views require a new
embedding to extend the results of this thesis to more general camera sys-
tems. Since catadioptric mirrors are often half-spheres or parabolas, it should
be possible to apply the homogeneous model to these camera models. That
it is possible to model reflections on entities in the conformal geometric al-
gebra is discussed in chapter 6.3.3 and in more detail in e.g. [107]. Indeed,
the pose scenario is formalized in the 3D kinematic framework. This means
for extended camera models, that mainly the reconstruction of image entities
(e.g. estimating projection rays on reflected mirrors) is needed to apply the
results of this thesis on catadioptric or other camera models. The reason is,
that reconstructed rays are independent of the camera model they are recon-
structed from and only the reconstructed rays are used in the pose scenario
(see e.g. figure 2.3). This leads to further extensions for computer graphics
or navigation and is an interesting topic for future research.



Appendix A

BASIC MATHEMATICS

This chapter introduces the basic mathematical definitions used in this thesis.
In chapter A.1 the definition of a field, a vector space and the Euclidean
space will be introduced. Then it will be continued with the definition of the
affine space, the kinematic space as a special affine space and the projective
space. In chapter A.2 groups, Lie groups and Lie algebras are defined and
applied to the modeling of rigid body motions. Afterwards, the projective
space is used to formalize the pinhole camera model introduced in chapter
A.3, which proofs useful to model CCD-cameras. Section A.4 is devoted to
the basics of signal theory. This part is related to chapter 7 in the thesis
and introduces the discrete Fourier transformation by using matrix calculus
and complex numbers. For more detailed information about these topics, the
reader should consult [62, 114, 124, 123, 32, 48, 25, 47, 180, 96, 91, 29, 172, 20].
This chapter will only give a brief introduction into the different concepts.
The whole theory is well studied and would be too extensive in this context.

A.1 Mathematic spaces

A common way to introduce vector spaces is to start with the definition of a
field K:

Definition A.1 A field is a set K, with two functions + : K ×K → K and
· : K ×K → K fulfilling the following rules:
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(A1) ∀a, b, c ∈ K : a+ (b+ c) = (a+ b) + c
(A2) ∀a, b ∈ K : a+ b = b+ a
(A3) ∃!0 ∈ K : a+ 0 = 0 + a = a
(A4) ∃!(−a) ∈ K : a + (−a) = 0
(M1) ∀a, b, c ∈ K : a · (b · c) = (a · b) · c
(M2) ∀a, b ∈ K : a · b = b · a
(M3) ∃!1 ∈ K : a · 1 = 1 · a = a
(M4) ∀a ∈ K 6= 0∃!a−1 ∈ K : a · a−1 = 1
(D) ∀a, b, c ∈ K : (a+ b) · c = a · c+ b · c.

For further notations it is convenient to neglect the ·, this means a · b ≡ ab.
Furthermore it is convenient to write a− b instead of a+(−b). Examples are
rational Q, real IR and complex C numbers with the standard multiplication
(·) and addition (+). Now it is possible to define a vector space:

Definition A.2 Let K be a field. A vector space V (over K) is a set with
an addition + : V × V → V and a scalar multiplication · : K × V → V
fulfilling the following rules:

(A1) ∀a, b, c ∈ V : a+ (b+ c) = (a+ b) + c
(A2) ∀a, b ∈ V : a + b = b+ a
(A3) ∃!0 ∈ V : a+ 0 = 0 + a = a
(A4) ∃!(−a) ∈ V : a+ (−a) = 0
(SM1) ∀a ∈ V, x, y ∈ K : x · (y · a) = (x · y) · a
(SM2) ∃!1 ∈ K ∀a ∈ V : a · 1 = 1 · a = a
(SM3) ∀a ∈ V, ∀x, y ∈ K : a · (x+ y) = a · x+ a · y
(SM4) ∀a, b ∈ V, ∀x ∈ K : (a + b) · x = a · x+ b · x.

An example is the set Kn of all n-tuples with component wise addition and
the scalar multiplication.

Let u1 . . . um be vectors of a K-vector space V . The vector r ∈ V is a
linear combination of u1 . . . um iff ∃a1 . . . am ∈ K : r = a1u1 + . . . + amum.
Let

〈{u1 . . . um}〉 := {
m∑

i=1

kiui|k1 . . . km ∈ K}, (1.1)

the set of all possible linear combinations of {u1 . . . um}. Then 〈{u1 . . . um}〉
is also called the generating system of {u1 . . . um}. A minimal set, which
generates a vector space leads to the basis :

Definition A.3 Let V be aK-vector space, and u1 . . . um ∈ V . If 〈{u1 . . . um}〉 =
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V and u1 . . . um a linear independent set. Then {u1 . . . um} is called a basis
of V .

A vector space V equipped with a special bilinear form leads to the Eu-
clidean space:

Definition A.4 An Euclidean space is a real vector space V equipped with
a symmetric bilinear form φ : V × V → IR that is positive definite. More
explicitly, φ satisfies the following axioms:

(A1) φ(u1 + u2, v1) = φ(u1, v1) + φ(u2, v1)
(A2) φ(u1, v1 + v2) = φ(u1, v1) + φ(u1, v2)
(A3) φ(λu, v) = λφ(u, v) = φ(u, λv)
(A4) φ(u, v) = φ(v, u)
(A5) u 6= 0⇒ φ(u, u) > 0.

The bilinear form φ(u, v) is also called inner product or scalar product of u
and v. The inner product is used to define a norm ‖.‖ on vectors,

‖u‖ :=
√
φ(u, u). (1.2)

In most cases matrix and vector calculus is used to handle computer vision
and robotic tasks. But since in many applications special transformations
like the Euclidean and projective ones are involved, the classical Euclidean
vector calculus becomes difficult and extensions are necessary.

In [62] examples can be found which explain the need of an origin. Since
I am also interested in relations of points, points and directions must be
distinguished. This leads directly to the definition of an affine space:

Definition A.5 An affine space is either a degenerated space, reduced to the

empty set, or a triple 〈V, ~V ,+〉 consisting of a nonempty set V (of points), a

vector space ~V (of translations, or directions), and an action + : V ×~V → V ,
satisfying the following conditions:

(A1) ∀a ∈ V : a+ 0 = 0 + a = a

(A2) ∀a ∈ V, u, v ∈ ~V : a + (u+ v) = (a + u) + v

(A3) ∀a, b ∈ V, ∃!u ∈ ~V : a+ u = b.

The unique vector u ∈ ~V , such that a + u = b is sometimes denoted with
u = ab, or u = b− a. Thus b can be written as b = a+ ab.
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A mapping from one affine space to another one can be described by an
affine transformation. It can be shown [62] that affine transformations can
be described by a linear transformation in the following way:

Lemma A.1 Let 〈V, ~V ,+〉 and 〈V ′, ~V ′,+′〉 be two affine spaces. ∀a ∈ V, b ∈
V ′, h : ~V → ~V ′ is f : V → V ′ with f(a+ v) = b+ h(v) an affine transforma-
tion, or affine map.

Proof: See [62].

Definition A.6 Let V be a vector space over K. The projective space P (V )
is the set (V \{0})/∼ of equivalence classes of nonzero vectors in V under
the equivalence relation ∼ defined such that

∀u, v ∈ V \{0} : u ∼ v ⇔ ∃λ ∈ IR : v = λu. (1.3)

Mathematically a projective space P(V ) is a set of equivalence classes of
vectors in V . The idea behind projective geometry is to view an equiva-
lence class (u)∼ as an atomic object, forgetting the internal structure of the
equivalence class. For this reason it is customary to call an equivalence class
a = (u)∼ a point (the entire equivalence class (u)∼ is collapsed into a single
object, viewed as a point). The theory about projective geometry is well
studied [123, 32, 62, 48] and has proved useful for many computer vision
tasks.
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A.2 Lie groups and Lie algebras

Definition A.7 A set G together with a binary operation · defined on ele-
ments of G is called a group if it satisfies the following axioms:

(A1) ∀g1, g2 ∈ G : g1 · g2 ∈ G
(A2) ∃!e ∀g ∈ G : g · e = e · g = g
(A3) ∀g ∈ G ∃!g : g · g = g · g = e
(A4) ∀g1, g2, g3 ∈ G : (g1 · g2) · g3 = g1 · (g2 · g3).

For example the groups O(n) and SO(n) are defined as

O(n) := {R ∈ IRn×n : RRT = I, det(R) ∈ {+1,−1}}, (1.4)

SO(n) := {R ∈ IRn×n : RRT = I, det(R) = +1}. (1.5)

The notation O abbreviates orthonormal and the notation SO abbreviates
special orthogonal and denotes the space of rotation matrices. For n = 3,
SO(3) is a group under the operation of matrix multiplication. The group
action rotates one 3D point with respect to the origin to another 3D point.

Another common way to introduce 3D rotation matrices is by introducing
Euler angles. Rotations with amount ψ, φ and θ around the three coordinate
axes x, y and z can be expressed by the matrices

Rx(ψ) =




1 0 0
0 cos(ψ) −sin(ψ)
0 sin(ψ) cos(ψ)


 , (1.6)

Ry(φ) =




cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)


 , (1.7)

Rz(θ) =



cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 . (1.8)

Concatenation of these three matrices leads to general rotations and therefore
elements of SO(3).

An extension is the group of rigid body motions, which is nothing more
than a special affine map:
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Definition A.8 The set of affine maps ρ of Kn, defined such that ∀X ∈ V :
ρ(X) = RX+ t, with R ∈ SO(n) a rotation matrix, and t ∈ Kn a translation
vector , is a group under composition called the group of direct affine isometries
or rigid motions denoted by SE(n).

A rigid motion of an object is a continuous movement of the particles in
the object such that the distance between any two particles remains fixed at
all times [124].

One way to distinguish between directions and points in a vector space is
to introduce a fourth coordinate (a homogeneous coordinate) for the origin.
A 3D point can then be described by

P = (x1, x2, x3, 1) (1.9)

and a direction by

d = (x1, x2, x3, 0). (1.10)

Then the standard vector addition between a point P and a direction d leads
to a new point. Every 3D rigid motion can then be represented by the 4× 4
matrix

M =

(
R3×3 t1×3

03×1 1

)
. (1.11)

A rigid motion of a point can be estimated by multiplying the matrix M

with the point P , P ′ = MP .

Definition A.9 A group is an n-dimensional Lie group if the set of its ele-
ments can be represented as a continuously differentiable manifold of dimen-
sion n, on which the group product and inverse are continuously differentiable
functions as well.

Definition A.10 A linear space is a Lie algebra if a product, the Lie bracket,
is associated with each pair of Elements F , G and H such that
(A1) [G,H ] = −[G,H ]
(A2) [αG, βH ] = αβ[H,G] ∀α, β ∈ IR
(A3) [F, [G,H ]] + [G, [H,F ]] + [H, [F,G]] = 0.

For a one parameter Lie group given in matrix representation, the tangent
space in IRn×n of the group manifold at the identity defines a Lie algebra.
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The groups SO(3) and SE(3) are Lie groups and their Lie algebras turn
out to be so(3) or se(3), with

so(3) = {A ∈ IR3×3|A = −AT} (1.12)

se(3) = {(v, ω)|v ∈ IR3, ω ∈ so(3)}. (1.13)

These Lie groups and Lie algebras are connected via the exponential
function. To motivate this, the velocity of a point p attached to the rotating
body is considered. If the body rotates at constant unit velocity about the
axis ω, the velocity of the point q̇ may be written as

q̇(t) = ω × q(t) = ω̂q(t), (1.14)

with the definition

ω̂ :=




0 -ω3 ω2

ω3 0 −ω1

-ω2 ω1 0


 . (1.15)

This matrix can be interpreted as the tangents of the Euler matrices at the
identity, since




0 -ω3 ω2

ω3 0 −ω1

-ω2 ω1 0


 =




0 0 0
0 0 −ω1

0 ω1 0


+




0 0 ω2

0 0 0
-ω2 0 0


+




0 -ω3 0
ω3 0 0
0 0 0


 (1.16)

=
∂Rx

∂ψ
(0) +

∂Ry

∂φ
(0) +

∂Rz

∂θ
(0). (1.17)

Equation (1.14) is a time-invariant linear differential equation which may be
integrated to give

q(t) = exp(ω̂t)q(0), (1.18)

where q(0) is the initial (t = 0) position of the point and exp(ω̂t) is the
matrix exponential

exp(ω̂t) =
∞∑

k=0

(ω̂t)k

k!
. (1.19)
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It follows that if a point is rotated around the axis ω at unit velocity θ units
of time, then the rotation matrix is given by

R(ω, θ) = exp(ω̂θ). (1.20)

An extension of 3D rotations around the origin are 3D rigid motions. The
group of 3D rigid motions is denoted as SE(3). Its Lie algebra is

se(3) = {(v, ω)|v ∈ IR3, ω ∈ so(3)}. (1.21)

An element ξ = (v, ω) ∈ se(3) is called a twist and its matrix representation
takes the form

ξ̂ =

(
ω̂ v

03×1 0

)
. (1.22)

The exponent exp(θξ̂) leads to a rigid motion and corresponds to a screw mo-
tion. The twist concept is also explained in chapter 3.3.6 by using geometric
algebra.

To calculate the group action from the twist, the Rodrigues’ formula can
be applied by computing

exp(ξ̂θ) =

(
exp(θω̂) (I − exp(ω̂θ))(ω × v) + ωωTvθ

03×1 1

)
, ω 6= 0,

(1.23)

with exp(θω̂) given as

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1− cos(θ)). (1.24)

The reader should consult [62, 124] for further information about Lie
groups and their relations to Lie algebras.
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A.3 The pinhole camera model

The common way to model perspective projections on an image plane is to
use the pinhole camera model. In this section, the ideas and concepts will
be scratched. The reader can find a more detailed introduction in [47]. The
pinhole camera model is visualized in figure A.1. A geometric model of the
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Fig. A.1: The pinhole camera model

pinhole camera consists of the plane R, called the retinal plane and the point
O, the optical center, located at distance f , the focal length of the optical
system. The optical axis a is the line perpendicular to R and intersecting
O.

It is now possible to attach on O a three-dimensional space (O,x,y, z),
with x and y orthonormal and parallel to R, z perpendicular to R and one
two-dimensional space (o,u,v) for the retinal plane. This is the so called
standard coordinate system of the camera. The relationship between image
coordinates (u, v) and 3D coordinates (x, y, z) can then be written as

−f
z

=
u

x
=
v

y
, (1.25)

which can be written in projective coordinates as



U
V
S


 =




-f 0 0 0
0 -f 0 0
0 0 1 0







x
y
z
1


 , (1.26)
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where

u =
U

S
, v =

V

S
: S 6= 0. (1.27)

A camera can be considered as a system that performs a linear projective
transformation from the projective space P3 to the projective plane P2.

This idealized model must now be adapted to a scenario in which the
world and retinal coordinate systems vary. So far, the image coordinate
system is centered at the intersection of the optical axis a with the retinal
plane R. In an image, the coordinate system is often attached to one corner
and will sometimes have different units on both axes due to the electronics
of acquisition. The transformation from a point given in the retinal plane to
a pixel point can be modeled by a transformation matrix K, which contains
scaling parameters along the axis and a translation,

K =



−fku 0 u0

0 −fkv v0

0 0 1


 . (1.28)

The projection matrix P can now be written as

P =



−fku 0 u0 0

0 −fkv v0 0
0 0 1 0


 = K




1 0 0 0
0 1 0 0
0 0 1 0


 . (1.29)

It can be proceeded similarly with the world coordinate system, which is so
far attached to the optical center O. The transformation of another world
coordinate system (e.g. W in figure A.1) to the one attached at the optical
center can be described by a rigid body motion M , containing a rotation
matrix R3×3 and a translation vector t1×3. The projection matrix P can now
be expressed as

P =



−fku 0 u0 0

0 −fkv v0 0
0 0 1 0



(
R3×3 t1×3

03×1 1

)
(1.30)

= K




1 0 0 0
0 1 0 0
0 0 1 0


M. (1.31)

The components of the matrices K and M are called the intrinsic and ex-
trinsic camera parameters, respectively. Camera calibration is the process of
estimating the intrinsic and extrinsic parameters of a camera. Estimation of
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both matrices K and M explicitly is called explicit calibration, whereas esti-
mating of the projection matrix P (without its decomposition in K and M)
is called implicit calibration [180]. In this thesis only the projection matrix
P is used and is not further separated in its intrinsic and extrinsic compo-
nents. Therefore in the scenario of pose estimation only implicitly calibrated
cameras are assumed.
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A.4 Signal theory

This section deals with signal theoretic foundations. The aim is to define the
discrete Fourier transformation and its extension to the 3D space in classical
matrix calculus and by using complex numbers. More detailed information
can be found in [96, 91]. Chapter 7 introduces the discrete Fourier transfor-
mation in terms of geometric algebra. It allows for an extension of cycloidal
curves to n-times nested cycloidal curves which are generated by 3D Fourier
descriptors. This links signal theory and geometry and is applied advanta-
geously for 2D-3D silhouette based free-form pose estimation, see chapter
7.2.

A.4.1 Foundations

The aim of this part is to clarify the basic definitions used in signal theory.
This part is no complete introduction and many concepts (like the Dirac im-
pulse, etc.) and other important theorems are neglected, since they are not
used in this thesis. Periodic functions build the basis of Fourier transforma-
tions:

Definition A.11 A function f : IR→ IR, is called a periodic function, iff

∃p ∈ IR+ : ∀x ∈ IR : f(x+ p) = f(x). (1.32)

The value p ∈ IR+ is also called the period or period length of f . As an
example, the sine-function has the period 2π, since sin(x + 2π) = sin(x).
This means, sin(x) is a 2π-periodic function. If p is the smallest number
with property (1.32), it is called the primitive period of f(x). For example
sin(x) has the periods 2πm, m ∈ IN, and the primitive period 2π. If f(x) is
p-periodic, it is clear, that ∀a ∈ IR, f(x − a) is also p-periodic. For the sine
and cosine function, the additive value a is also called the phase of sin(x) or
cos(x). Multiplying x with a scalar 1

b
leads to a change of the period length

and

g(x) := f
(
x

b

)
, b ∈ IR+ (1.33)

transforms the p-periodic function f in a bp-periodic function, since

g(x+ bp) = f

(
x+ bp

b

)
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= f
(
x

b
+ p

)

= f
(
x

b

)
= g(x). (1.34)

The unit-interval is often defined as

I1 := [−1

2
,
1

2
] (1.35)

and in the notation sin(2πrx) is r ∈ IR the frequency number of periods in
I1.

A.4.2 Trigonometric interpolation

Polynomial interpolation of data sets (xi, fi) is well known from numerical
mathematics. For example the Lagrange formula or the Hermite interpola-
tion [172] are often used. Trigonometric interpolation is used for the analysis
of periodic functions. For a periodic function in the interval [0, . . . ,M − 1]
and regular sample values (j, fj), j ∈ 0, . . . ,M − 1, the trigonometric inter-
polation is given in the form

Ψ(x) :=
M−1∑

m=0

(
Am cos

(
2πmx

M

)
+Bm sin

(
2πmx

M

))
. (1.36)

The coefficients Am and Bm are given as the following series expressions [29],

Am =
1

M

M−1∑

u=0

fm cos
(

2πum

M

)
(1.37)

Bm =
1

M

M−1∑

u=0

fm sin
(

2πum

M

)
. (1.38)

Note, that since the interval [0, . . . ,M − 1] is used, the values Am and Bm

must be normalized with 2π
M

within the sine and cosine functions. Am is
also called the cosine-series and Bm the sine-series. In the complex domain
the sine and cosine expressions can be summarized in a complex exponential
function. This leads directly to the 1D discrete Fourier transformation.

A.4.3 The 1D discrete Fourier transformation

Assume a set fj ∈ IR of values, with j = 0, . . . ,M − 1,M ∈ IN. The set of
values can be interpreted as elements of a M dimensional vector space V M ,
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which are orthonormal with respect to the basis vectors e0, . . . , eM−1, and
fulfill the property

ei · ej = δij.

The δij denotes the Kronecker function. Then the values fj can be re-written
as

fjej ∈ V M .

This is the standard interpretation of the signal space. The discrete Fourier
transformation (DFT) performs a base change to another orthonormal base
of same length with complex values:

Fm =
1

M

M−1∑

u=0

fu exp
(−2πimu

M

)
.

The value Fm is complex valued and can be decomposed in its real and
imaginary part as

Re(Fm) =
1

M

M−1∑

u=0

fu cos
(

2πum

M

)
,

Im(Fm) = − 1

M

M−1∑

u=0

fu sin
(

2πum

M

)
.

The inverse transformation (IDFT) can be written as

fm =
M−1∑

u=0

Fu exp
(

2πium

M

)
.

Indeed, it can be shown [96], that

f(x) =
M−1∑

u=0

Fu exp
(

2πiux

M

)
, x ∈ [0, . . . ,M − 1]

can be interpreted as a trigonometric interpolation and is therefore well suited
for smooth function interpolation. It has the advantage that the interpola-
tion function can be derivated in each point in contrast to piecewise linear
interpolators. Furthermore it is possible to use low-pass information for ap-
proximation. This helps to avoid local minima in iteration processes. The
DFT is a coordinate transformation, whose basis vectors are sampled sine
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Fig. A.2: Example for DFT and IDFT of a discrete signal: The left image
shows the fabs(x/15) ∗ π-function as a one-dimensional signal. Dis-
crete sample points are also shown. The right image shows the real-
part of the weighted basis functions from which the original signal
is reconstructed. The reconstructed signal leads to a trigonometric
interpolated function of the sample points.

and cosine functions. For short notations, it is also convenient [91] to write
for f = (f0, . . . , fM−1),

Fm = f · bm with bm =
1

M




1
exp(2πim/M)
exp(2πi2m/M)

...
exp(2πi(M − 1)m/M)



, 0 ≤ m ≤M.

Note, that the inner product of two complex vectors is defined as

Fm = f · bm =
M−1∑

n=0

fn(b̃m)n. (1.39)

Geometrically, the basis functions can be interpreted as projections of (dif-
ferent fast) spinning orthogonal phase vectors over the time.

Figure A.2 shows an example for the DFT and IDFT of a signal. The
left image shows the fabs(x/15) ∗ π-function as a one-dimensional signal.
Discrete sample points are also shown. The right image shows the real-part
of the weighted basis functions from which the original signal is reconstructed
by computing its linear combination. The reconstructed signal leads to a
trigonometric interpolated function of the sample points.
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N = 2...48

N = 48

Original Contour (N=48)

Contour approximations Side view of contour approximations Plan view of contour approximations

Fig. A.3: 3D contour interpolation and its approximations: A 3D contour
(containing 48 points) is successively approximated. For N = 48
all contour points intersect with the interpolation function, N < 48
leads to a low-pass contour.

For 3D contour interpolation a set f 3
j ∈ IR3 of 3D values is assumed

with j = 0, . . . ,M − 1, M ∈ IN. These values can be contour points of a
closed contour, as for example shown in figure A.3. To achieve a 3D contour
interpolation, the 3D signal can be interpreted as 3 separate 1D signals:

F 3
m =

1

M

M−1∑

u=0



f 3

u(1)
f 3

u(2)
f 3

u(3)


 exp

(−2πium

M

)
,

and its inverse transformation can be written as

f 3
u =

M−1∑

m=0



F 3

m(1)
F 3

m(2)
F 3

m(3)


 exp

(
2πimu

M

)
.

Taking only a subset of the phase vectors leads to a low-pass approxima-
tion of the contour. This is applied in chapter 7 to speed up the algorithm
for pose estimation of free-form contours and to avoid local minima during
iterations. Indeed, for classical matrix calculus, the fusion of complex num-
bers within twists and Plücker lines is not impossible but it is hard not to
loose the oversight. This is the main argument why I use the conformal ge-
ometric algebra to formalize the pose scenario in chapter 7. Also extensions
to deformable free-form contours become clearer in this language, see e.g.
chapter 7.1.2.



Appendix B

IMPLEMENTED MODULES OF THE

NAVIGATION SYSTEM

Since the initial motivation of the thesis is self localization for robot nav-
igation, this chapter presents modules of a running system I supervised in
student projects during the main research. The implementation was mainly
done by T.Rabsch [139] and D. Grest [68]. They had to solve several small
subproblems to get a running system. As this part contains only little re-
search but mainly engineering and implementation details, the main mes-
sage of this chapter is to give an idea about outstanding problems for real
applications which are mainly neglected or simplified (e.g. image processing,
the correspondence problem, process communications, etc.). Furthermore,
the aim is to close the loop to the motivation and to sketch other research
projects and open problems for further work, which are also discussed in the
chapter 8.

Section B.1 starts with the definition of the tracking problem for feature
based pose estimation within the navigation scenario. Then the image pro-
cessing for the navigation scenario will be explained, and the chapter will
end up in the behavior based system architecture and experiments with the
navigation system.

B.1 The tracking problem

Tracking means to trace an object in an image sequence. This tracing can
happen in the pure image (2D-2D tracking), e.g. by using optical flow tech-
niques [12], or the tracing can happen in the 3D space in combination with
known 3D objects.

In this thesis matching means to minimize a matching error by solving
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two problems:

1. The correspondence problem: To determine the mapping between model
elements (here 3D model lines) and image features.

2. The spatial fitting problem (pose estimation): To determine the best
parameters (here rotation R and translation t) for each correspondence,
so that the spatial fit error of the model lines to the image lines is
minimized.

To estimate the motion of an object, it is necessary to establish the corre-
spondences between the image features and the object features. If a cor-
respondence can be assumed, it can be used to estimate the pose and vice
versa, the error of the pose can be used to evaluate the correspondences.
An interaction between the correspondence problem and the pose estimation
problem can be identified and is visualized in figure B.1.

Correspondences Pose Estimation

Matching

Tracking

movement
small

Fig. B.1: The matching problem as interaction of the correspondence problem
and the pose estimation problem.

First of all the use of the tracking assumption within the navigation sce-
nario is motivated. Then it will be continued with the matching problem
which contains the correspondence problem and its interaction with the pose
estimation problem.

B.1.1 The tracking assumption

Often the property is used, that the motion of an object between two images is
small, if the images are taken in a short time and the object is not too far away
and moving sufficiently slow. If such a situation is assumed, the observation
of the object movement between two images is not large. This assumption
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Fig. B.2: Matching example for a rectangle. The model lines are labeled with
letters and the extracted image lines are labeled with numbers. The
table indicates the correspondence space with the allowed possibil-
ities (white/black), the impossible matches (cross) and the current
match (black).

is often made for optical flow techniques and the search window for image
features is mostly set to a few pixels in the image. Indeed it is possible to take
images while driving the robot but the main problem is that the landmark
is not always in the field of view during the drive. Therefor, it is futile to
use images which are taken in short time intervals. Instead it is possible to
make use of the movement commands of the mobile robot: The odometric
data is translated in terms of the object coordinate system and used to make
a prediction of the object in the image. This coordinate transformation
is explained in detail in [68]. Accumulating the odometric data leads to
increasing errors which are corrected by using the pose estimation algorithm.
The advantage of the prediction is that it is possible to reduce the search
space for the correspondence problem by assuming boundary conditions.

B.1.2 The matching algorithm

It is well known, that for l = m × n potential pairs, there are S = 2|l|

correspondences. This means that the search space is in general very large
and not practicable for applications.

The tracking assumption allows to use local criteria like distances and
angles to reduce the search space significantly, depending on the error bound-
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aries. In this context the correspondence space formmodel lines and n image
lines is represented by a m× n fit-matrix. In this matrix flags represent the
needed information for a match, mismatch or potential match, figure B.2
shows an example. In this example the model lines are labeled with letters
and the extracted image lines are labeled with numbers. The table indicates
the correspondence space with the allowed matches (white/black), the im-
possible matches (cross) and the current match (black). See also [18] for
further information.

000100,100000,000010,010000

000100,100000,000010,001000

000100,010000,000010,010000

000010,100000,000010,010000000100,100000,000100,010000

000100,000001,000010,010000 000100,100000,000010,100000

000100,001000,000010,010000

000100,000100,000010,010000

Fig. B.3: Visualization of Hamming distance 2 (HD2) neighbors of a bit
string.

Random start local search [18] is an effective and easy strategy for solving
optimization problems. The basic algorithm contains the following steps:

1. (a) Image Processing:

Hough transformation to extract 2D image lines.

Reconstruct 2D image lines to 3D planes.

(b) Generate fit-matrix F and reduce search space.

(c) Choose a random start configuration.

2. Estimate pose for the hypothetic correspondences and

estimate the match error EMatch(F).

3. Choose neighbor F’ and estimate its match error EMatch (F’).

If EMatch(F’) < EMatch(F) choose F’ as actual match.

Check Termination condition, if required

terminate the algorithm.

Goto (2)

In short notation, the aim is to estimate

F : ∀F ′ : Ematch(F ) ≤ Ematch(F
′).
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In this algorithm, the Hamming distance n–neighborhood [18] is used to
define neighbors between fit matrices. Therefor the current match is repre-
sented as bit string by encoding the n × m fit-matrix as nm-binary vector,
with the value 1 for a current match and 0 for no match. The Hamming
distance (HD) is now the number of different bits, or equivalently the weight
of the XOR-combination of two binary strings of the same length. Figure B.3
visualizes some HD2 neighbors of the bit string generated from the example
in figure B.2.

testing of all possibilities

stabilize the estimated pose

are not fulfilled

Hough transformation, object model

fitmatrix

initial state

linear search to refine and

repeat if error boundaries

reduce the search space
lokal characteristics to 

 random model lines,

result: correspondences and pose

are not fulfilled
repeat if error boundaries

Fig. B.4: A scheme of the tracking algorithm.

For the pose estimation problem a modified version of the random start
local search [18] algorithm is chosen. The algorithm is summarized in figure
B.4. The principle of the heuristic relies upon a combination of iterative
improvement and random sampling. Iterative improvement refers to a re-
peated generate-and-test principle by which the algorithm moves from an
initial state to its local optimum. The algorithm itself consists of two main
steps: Firstly find an initial state for a minimum of correspondences and
then refine the result by the other correspondences. For the first step a few
(mostly five till eight) random model features are chosen and then all combi-
nations of the object features to the allowed image features are used. Taking
the pose error as error function leads to an optimal pose. This is possible
since the error measure corresponds directly to the Hesse distance and leads
to a suitable 3D error measure. Once the initial pose is estimated, the algo-
rithm continues with a linear search for the other object features. Therefor
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Fig. B.5: Tracking of a model house with partially covered and invisible ob-
ject lines.

one object feature is added and the whole match error is estimated for all
allowed image lines. Dependent on the error boundaries, the object feature
is neglected or added for the whole pose. Then the algorithm continues with
another object feature. Note: The second part of the algorithm is linear and
converges very fast. This is possible because the algorithm deals with infinite
extended Hough lines and not with finite line segments as in [18]. Once a
correct initial guess is found, all mismatches distort the pose and lead to
remarkable error peaks.

This algorithm can be repeated (with other starting configurations) and
the more time the algorithm gets, the higher is the probability to reach a
global minimum. In the navigation system it is possible to define how often
the robot has to localize its position (mostly after 30 seconds). This update-
time is used as computing time for the mobile robot and the correspondences
are estimated during the movement of the robot.
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This means that the matching algorithm has indeed no real-time capa-
bility. Yet it is possible to overcome this problem in the parallel system
architecture which is explained in detail later. Though the algorithm is slow,
the results are sufficient for the navigation scenario and also robust, since it
is possible to neglect object features if they are not visible in the image. Fig-
ure B.5 shows an example. Indeed the matching algorithm is not perfect and
the use of infinite extended image lines does sometimes lead to only a small
match error but a wrong pose. Examples are given in figure B.6. Fortunately
these problems can be avoided in the navigation system since it is possible to
use the stereo camera system and compare the pose results of both images
with each other. This enables the algorithm to find falsely estimated poses
and neglect them, if necessary.

Fig. B.6: Falsely estimated poses in comparison to a rightly estimated pose.
The errors occur because of the use of infinite extended Hough lines.
The error of the tracking algorithm is very small, but the pose is
wrong. To understand the error pose, extend the image lines to the
infinite extended lines and compare them with the object model.

B.1.3 Image feature extraction

This section deals with the image processing which leads to the used image
features. Image processing means to reduce the image information to task-
dependent image primitives. Image primitives can be
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• Corners or wedges.

• Lines or line segments.

• Frequency information like Fourier components or Gabor wavelet re-
sponses.

For the autonomous navigation system image lines will be extracted and
used. To extract lines in an image the well known Hough transformation [88]
is applied. The idea is that specific arrangements of gray value edges are
voting for certain analytic shapes, e.g. straight lines or ellipses. To search
for lines the polar form of image lines is used,

l(r, θ) = x cos(θ) + y sin(θ)− r = 0. (2.1)

The polar form of image lines interprets the line as the normal angle θ of the
line to the origin and the perpendicular distance r of the origin to the image
line.

The image is at first smoothed with a binomial filter. Then the gradient
image is estimated and a threshold segmentation leads to a binary gradient
image.

Fig. B.7: Standard-Hough-transformation and orientation selective Hough-
transformation.
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Fig. B.8: Representative Hough lines extracted by different methods.

Every such gradient point p = (x, y) votes for all parameters (θ, r). These
are then accumulated in an accumulator array. The robustness of the Hough
transformation can be increased by using not only information about the
presence of edges but by also checking the agreement of lines and local ori-
entation, i.e. by applying the orientation selective Hough transformation
[137]. The Hough transformation results in an accumulator array (see figure
B.7) from which the representative lines show up as peaks. These are easily
detectable for simple images such as the one in figure B.7 but difficult to
extract in more complex situations.

To avoid the extraction of additional lines caused by locally neighbored
peaks in the accumulator array (often occurring in the presence of noise in
the image data) usually some kind of metric on the accumulator array is
defined to allow only lines corresponding to peaks with certain distance. A
problem of these methods is that important lines may have small distance in
the Hough space (see e.g. narrow parallel lines in figure B.8). To extract the
significant lines also information about the areas which do support lines are
used, i.e. by evaluating image information. This allows to extract lines with
small distance in the accumulator array which are usually not extractable by
other methods. The algorithm itself was developed by M. Ackermann (for
details see [1]).

Figure B.8 shows extracted Hough lines using different kinds of metrics.
In the left image, the proposed method in [100] has been used. In the middle
image a neighborhood in the accumulator array is set to zero for each selected
peak (as, e.g. in [127]) while in the right image connected areas which occur
after thresholding the accumulator array are treated as one line (as e.g. in
[104]). Note that the narrow parallel lines could only be extracted by the
method described in [100]. The procedure used in the middle image extracts
the most significant lines but not the narrow parallel lines because the corre-
sponding peaks are too close in the accumulator array. The procedure used
for the right image has great difficulties with locally neighbored peaks which
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are above threshold. In [68] D. Grest made several experiments, which kind
of Hough transformation and maximum estimation in the Hough array is the
easiest and fastest one for the robot navigation scenario.

B.2 The hardware setup

As hardware setup a B21 mobile robot from Real World Interfaces (RWI)
[159] is used. The robot is able to rotate with a maximum of 160 de-

Wireless Ethernet

Ethernet

UNIX Workstation

Brain1 Brain2

B21 mobile robot

Vergence

Pan−Tilt

Fig. B.9: The components and a frontal view of the B21 mobile robot.

gree/second and to translate with a maximum of 1 meter/second. There are
two Intel Pentium 3, 800 MHz computers (Brain1 and Brain2 ) on board,
equipped with Matrox frame grabber cards, connected with two color CCD
cameras. The onboard computers are connected via a local network and can
be accessed by a wireless Ethernet from a UNIX workstation. The local net-
work is running with 10MBit/s and the wireless Ethernet with 2 MBit/s.
The wireless Ethernet is only used for programming the robot. All image
processing and robot controlling is done with Brain1 and Brain2 online. See
figure B.9 for an overview. The cameras can be manipulated by a pan-tilt
unit for both cameras and a vergence unit for each camera. The images are
taken by a synchronized Genlock-interface and are digitized by the frame
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grabber cards. The resolution of the cameras is 768× 576 pixel in PAL reso-
lution and the cameras do not have zoom. In the experiments the resolution
384× 288 pixel is used and the focal length is set on 2m. The field of view
is approximately 300 degree. The software package to control the robot is
called beesoft [159] and contains different client-server programs to access
the B21 hardware. These servers are running as independent processes and
call back functions can be defined which enable an asynchronic function poll
for different modules. This software package is used for the behavior based
system architecture.

B.2.1 Behavior based robotics

In a knowledge based robotic system the sensor data are mapped on an ab-
stract model of its environment. A planning device determines the following
action and transfers these information to an execution device. The plan-
ning device is the intelligence of the whole system. The design of knowledge
based systems in general is done in a top-down strategy. Different modules,
which solve partial problems of the system are implemented and are running
sequentially. See figure B.10 for the difference of a sequential and parallel
system architecture. The main problem of sequentially arranged modules is,
that the path from the sensors to the effectors is quite long since it passes
through every module. All modules must be complete and working before
any behavior is produced. Furthermore the sensor processing and world mod-
eling modules must extract all the information the robot may ever need, even
when the necessary information is much easier to obtain. Another problem
is reliability: A processing chain is only as strong as its weakest link. If only
one module fails, the whole behavior can be wrong.

Behavior based robotics were developed as fusion of computer science,
neuro science and neurophysiology. The aim is a robust and adaptable system
for an environment which can not be modeled and is changing rapidly. In
[166] four requirements are identified:

1. Competence: Instead of implementing a central intelligence, the goal is
to gain competences. Competences are organized as levels containing
different classes of behaviors.

2. Situatedness: The robotic system uses the sensor information directly
and not an abstraction of the sensor data.
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Fig. B.10: Top: Decomposition of a control system into functional modules.
Bottom: Decomposition of a control system as task-achieving be-
haviors.

3. Corporeality: The robotic system can only show behavior, which cor-
responds to its physical properties. The robot is able to interact with
its environment and the sensors are able to notice the robot’s action.

4. Emergence: The interaction of different competences leads to the ob-
servable intelligence of the whole system.

Brooks presented in [27] the subsumption architecture as an example for
behavior based robot systems. In contrast to the sequential architecture, the
aim is a decomposition of the problem into different behaviors. These behav-
iors all get the original sensor data and can all send movement commands to
the motors. This parallel architecture is also shown in figure B.10.

B.3 The navigation system

Figure B.11 summarizes the different independent processes and their com-
munication possibilities in the implemented navigation system. First, there
is the Navigator, which is organizing the position update of the robot and is
communicating with the Pilot and the TrackPose module. Then there is the
Pilot, organizing the path and sending movement commands to the hardware
interface. The collision server is allowed to cover the movement commands if
there is an obstacle in the way of the path. All these modules are running in
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Fig. B.11: The implemented system architecture.
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Fig. B.12: The layered control system.

parallel processes and are independent of the hardware. They communicate
by different autonomous running servers with the hardware itself.

Figure B.12 shows the control system of the robot. The lowest layer
is the test of tactile contact through bump sensors. If the robot hits an
obstacle or a wall, an emergency stop is performed to protect the hardware
and environment against damages. The second control layer is the obstacle
detection and avoidance. It can cover the movement commands and uses an
ultrasonic based potential field approach [90] to avoid obstacles on the one
hand and to reach a goal on the other hand. The third layer contains path
planning and driving to reach a goal. The highest layer contains the self-
localization module to correct the navigation errors. The self-localization
module is the most complex behavior in the system design. The two last
layers are in conflict with each other. This means, the system can not turn
to the object to perform a self-localization and at the same time follow a path.
Therefore a time dependent finite state machine decides which behavior will
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Fig. B.13: The moving robot

be suppressed and which one is active.

B.4 Experiments with the navigation system

Figure B.13 shows images of the moving robot. The robot has to reach a goal
on a given path in the object coordinate system. This path is first translated
into robot movement commands. Since the movements of the robot are not
exact, the Navigator gives the pilot (after some movements) the command to
interrupt the current path, turn to the landmark, take images, return to the
path and continue the motion. Then the Navigator gives a pose request to the
TrackPose module (to process the actually taken images of the landmark)
and uses its results to correct the driven path. Figure B.14 shows screen
shots of the vision module, the result of the image feature extraction and
the pose estimation before and after the tracking process. These results are
used to update and correct the real position of the robot as shown in figure
B.15. In the left there is a comparison of the planned path with the really
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Fig. B.14: The image processing steps during the navigation: The left col-
umn shows images with extracted Hough lines. The middle col-
umn shows the projected object model before matching and the
right column shows the projected transformed object model after
matching.

driven path and its increasing odometric errors. The path itself consists of a
square, which is driven several times. The right image of figure B.15 shows
the accumulated angle differences between the planned path to the really
driven path, and between the really driven path and the visually corrected
path. The accumulated odometric data result in increasing error and, with
increasing time, will lead to non-tolerable results. Instead, the visual error
correction leads to a nearby constant error function and, thus, to much better
and more stable results. The level of the corrected error function is dependent
on both the calibration quality and the match error.
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Fig. B.15: Left: Planned path overlaid with the really driven path. Right:
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Fig. B.16: Navigation path: The white circles show the localization during
the navigation. The black circle indicates an obstacle, which is
avoided.

Figure B.16 shows the path during another navigation sequence. The
white circles in figure B.16 indicate the positions of self-localization: The
robot interrupts the path and turns toward the landmark. Then the robot
continues with the movements. The black circle in figure B.16 indicates an
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Fig. B.17: Hallway navigation example: The left column shows images with
extracted Hough lines. The middle column shows the projected
object model before matching and the right column shows the
projected transformed object model after matching.

obstacle. The collision server overrides the movement commands and drives
around the obstacle.

It is not only possible to use compact landmarks for self localization of
the robot. In figure B.17 a hallway is used as object model. This means, it
is also possible to apply the algorithm on CAD maps of office environments.

These experiments show the performance of the navigation system, mainly
implemented by D. Grest. More details about the system can be found in
his diploma thesis [68].
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Plücker line, 31, 36, 47
plane, 31, 36, 47
point, 31, 35, 43
point pair, 48
pose, 4, 17
pose estimation, 4
prismatic joint, 83
projective geometric algebra, 35
projective space, 20, 154
projective split, 58, 61

quaternion, 32
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