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Abstract

In this paper we address the topics of scale-space and phase-based signal process-
ing in a common framework. The involved linear scale-space is no longer based on the
Gaussian kernel but on the Poisson kernel. The resulting scale-space representation
is directly related to the monogenic signal, a 2D generalization of the analytic signal.
Hence, the local phase arises as a natural concept in this framework which results in
several advanced relationships that can be used in image processing.

Keywords: Poisson kernel, scale-space, phase-based image processing, monogenic
signal

1 Introduction

Scale-space representation is a well established technique in image processing. Linear scale-
space is commonly equated with the Gaussian kernel and the heat (diffusion) equation.
Investigations on these two approaches have led to a huge number of refinements and
algorithms which have proven to be sophisticated methods for various applications.

Phase-based signal processing is a powerful technique for the analysis of structure based
on the approach of quadrature filters. Although quadrature filters make use of bandpass
filters, and therefore they are related to scale-space, the theory of the analytic signal and
the scale-space theory are unrelated and independent frameworks, yet.
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1.1 Overview of the Paper

This paper addresses the topic of combining scale-space theory and phase-based signal
processing. In order to obtain an appropriate common theoretic framework, a linear scale-
space is introduced which is not based on the heat equation. We replace the Gaussian
kernel with the Poisson kernel, which is related to the potential (Laplace) equation.

Adopting the idea of splitting the heat (diffusion) equation into the continuity equation
and Fick’s law [40], the image flux, or figure flow, is no longer given by the gradient of the
scale-space representation, but by its generalized Hilbert transform. Combining the latter
with with the scale-space representation yields a generalization of the analytic signal in
scale-space. As a consequence, a powerful theoretic framework is derived, which can be
used for various image processing tasks.

The paper is organized as follows. In Section 1.2 we give a brief overview on the
axiomatic of linear scale-space.

In Section 2 we introduce the Poisson scale-space motivated by a simple geometric
optical setting (Section 2.1) and verify if it fulfills the mentioned axiomatics (Section 2.2).
In Section 2.3 we relate the Poisson kernel to the Laplace equation and derive certain
relationships. The topic of causality is treated in Section 2.4 and by considering further
properties of the Poisson scale-space (Section 2.5), we conclude the second part.

Section 3 deals with the combination of scale-space and phase-based image processing.
We start with differential phase congruency as a method for edge detection (Section 3.1).
After recalling several facts about the relationship between attenuation and phase in 1D
(Section 3.2), we establish a similar theorem for the 2D case in Section 3.3. Using these re-
sults, we relate phase-based and amplitude-based image processing methods on a theoretic
level (Section 3.4).

The paper is concluded with some final remarks, the appendix, and the references.

1.2 Axiomatics of Linear Scale-Space

In the scale-space literature, there are a couple of papers referring to the Gaussian scale-
space as the only linear scale-space, e.g., [22, 1, 29]. According to [41] the axiomatic
presented in [22] is the first attempt for the definition of a linear scale-space. The axiomatic
is based on the assumption that there is an observation transformation Φ which transforms
an image1 f(x) (x = (x, y)T ∈ IR2) into a blurred version of the image fΣ(x). The
observation transformation has the general form

fΣ(x) = Φ(f(x′),x,Σ) =

∫
IR2

φ(f(x′),x,x′,Σ) dx′ , (1)

where Σ is a 2 × 2 matrix. If the observation transformation fulfills certain constrains, it
establishes a linear scale-space:

1Since we are interested in scale-space axiomatics for image processing, we only consider formulations
for 2D signals. Note that we use the notion of 2D scale-space, although the scale-space representation is
a 3D function.
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Definition 1 (linear scale-space) An observation transformation defines a linear scale-
space if it fulfills the subsequent axioms:

A1. It is linear (wrt. multiplications).

A2. It is shift invariant.

A3. It fulfills the semigroup property.

A4. It is scale invariant and closed under affine transformations.

A5. It preserves positivity.

According to [41] (respectively [23]) we specify the axioms more formal:

A1. means that Φ(λf(x′),x,Σ) = λΦ(f(x′),x,Σ) for any λ ∈ IR.

A2. means that Φ(f(x′ − s),x,Σ) = Φ(f(x′),x − s,Σ) for any s ∈ IR2.

A3. means that there exists a mapping S : IR2×2 × IR2×2 → IR2×2 so that
Φ(Φ(f(x′′),x′,Σ1),x,Σ2) = Φ(f(x′′),x, S(Σ1,Σ2)) for any Σ1,Σ2.

A4. means that there exists a mapping T : IR2×2 × IR2×2 → IR2×2 so that
Φ(f(Ax′),x,Σ) = Φ(f(x′),Ax, T (Σ,A)) for any A ∈ GL(2).

A5. means that Φ(f(x′),x,Σ) > 0 for any f > 0 and for any positive definite Σ.

In case of isotropic or rotation invariant scale-space, the matrix Σ in the observation
transformation (1) is replaced with a positive real number σ. The axiom A4 then boils
down to

A4’. It is scale and rotation invariant.

Scale and rotation invariance means that there exists a mapping T : IR × IR → IR so that
Φ(f(aRx′),x, σ) = Φ(f(x′), aRx, T (σ, a)) for any a ∈ IR+ and any R ∈ SO(2).

Besides the axiomatic of Iijima, a couple of further axiomatics appeared in the literature.
In this paper we only consider some additional axioms to those above; for a more exhaustive
overview we refer to [41]. For each axiom we give either the original reference or the name of
the author (the original reference can be found in [41]). The different axioms refer to either
to the observation transformation (respectively the generating convolution kernel) or the
image flux. The image flux, or figure flow, is the vector field whose divergence compensates
the change of the signal through scale, i.e., the flux and the scale-space representation are
related by the continuity equation [40].

A6. The flux is given by the maximum loss of ’figure impression’ (Iijima).

A7. The kernel must be separable (Otsu).
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A8. The scale-space must fulfill the causality requirement, i.e., isophotes must be con-
nected to the original signal [25].

A9. Isophotes in scale-space must be upwards convex [25]; local maxima should not en-
hance with scale [1, 30].2

A10. No new maxima should be created with increasing scale (only valid in 1D [1]).

Based upon the mentioned axiomatics of linear scale-space, the convolution with a
Gaussian kernel can be used to create blurred versions of the original image. In order
to speed up the calculation, the blurred versions of the image are subsampled, yielding a
resolution pyramid [18, 7]. Instead of performing convolutions, one can implement scale-
space filtering using the underlying partial differential equation, in the Gaussian scale-space
the heat equation. The advantage of this method is that it is also possible to implement
a non-linear heat equation, i.e., having a shift variant operator. This leads to non-linear
diffusion methods [34, 8]. A further enhancement is obtained by replacing the scalar-
valued diffusivity with a tensor-valued diffusivity, yielding anisotropic diffusion methods
[40, 39, 37]. However, all these refinements of linear scale-space are out of the scope of this
paper. We rather focus on the linear case, showing that there is another linear scale-space
which fulfills most of the mentioned axioms.

2We explicitly distinguish between the causality requirement (axiom A8) and the non-enhancement,
since the informal definition of causality is slightly weaker than the convexity constrain (see Section 2.4).
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2 Another Linear Scale-Space

In this section we introduce a new3 linear scale-space, the Poisson scale-space. We motivate
it by some considerations from geometric optics and by a projective mapping. Further-
more, we show that the Poisson scale-space fulfills some important axiomatics which have
appeared in the literature so far and discuss its behavior concerning level crossings and
local extrema.

2.1 Defocusing of an Optical System

The Gaussian scale-space is claimed to be related to the defocusing of an idealized optical
system [41]. However, a careful consideration of the physical settings in an optical system
does not necessarily result in Gaussian blurring but in an image convolved with the Poisson
kernel. Consider the simple optical system in Fig. 1, showing a sketched object mapped

+f

−f

object image

blurred image

Figure 1: A simple optical system. The object (tree) is mapped through a thin lens with
focal length f onto two image planes. The first (sharp) image is at the right distance of
the lens, whereas the second one is blurred since it is at a too large distance, i.e., it is
defocused.

through a thin lens onto two image planes. The first image is sharp, i.e., the system is
focused, whereas the second one results from a defocused system, i.e., it is blurred. The
further we move the image plane the more blurred the image looks like. By an appropriate
rescaling of the image, this successive blurring corresponds to a descend through a scale-
space. Hence, the blurring operator which acts on the image in the optical system can be
considered to be the generating kernel of a scale-space. In our opinion, there is no reason

3Actually, the Poisson scale-space is not totally new: In [33] Pauwels et. al. have considered a class of
scale-space kernels, among which they also mentioned explicitly the 1D Poisson kernel (Cauchy density).
In our two conference papers [17, 16], the Poisson kernel already appeared in the context of scale-space,
which was further discussed in [13]. Independently, Duits et. al. started investigations about scale-space
axiomatics, first results can be found in [9, 10].
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to choose another physical setting (e.g. heat conduction) than an optical for the physical
motivation of scale-space in image processing.

In order to derive the operator from the physical setting, we make at first certain
assumptions:

• The considered objects reflect the light into all directions in the same way.4 This
assumption implies that the surfaces of all objects are dull and do not have specular
points.

• The lens is infinite large. Further below we explain what happens if the lens is finite.

• The object is flat and parallel to the lens, i.e., it has a constant depth. We comment
on this below as well.

From the first assumption we conclude that the light intensity emitted from a certain point
of the object is constant on any semi-sphere facing to the lens. Due to the third assumption,
no occlusion can occur and on the full semi-sphere the intensity is constant for any radius.
Hence, any light-ray emitted from that object point going through the unit semi-sphere
eventually hits the lens. The intensity distribution on the lens is however not constant
any more. Approximating the thin lens by a plane, the distribution is obtained from a
gnomonic projection, see Fig. 2. In the gnomonic projection, a point on the semi-sphere

P

ψ

θ

θ

b

P ′

x
y

C

Figure 2: Gnomonic projection of a point P on the sphere onto the point P ′ on the plane.
The distance of the sphere center C to the plane is indicated by b.

4At this point, we do not take into account the Lambertian law; we rather consider each object point
as a point source, emerging light into all directions in the same way.
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P is projected onto the point P ′ on the plane which is at a distance of b from the sphere
center C. The point in the plane is given by the intersection of the plane and the line
through C and P .

Returning to the constant intensity distribution on the unit semi-sphere, let us assume
that the intensity is given by

I(θ, ψ) = It p(θ, ψ) = It
sinψ dψ dθ

2π
(2)

so that the integral of p(θ, ψ) over the semi-sphere is one, i.e., p(θ, ψ) can be considered
as a probability density function. Based on the geometry of the gnomonic projection, we
want to compute the resulting intensity in the plane: I ′b(x) = Itp

′
b(x). In a first step, we

switch to polar coordinates by setting x = r cos θ and y = r sin θ. Whereas the angular
coordinate θ remains unchanged under the gnomonic projection, the relationship between
ψ and r is given as

r = b tanψ and ψ = arctan
(r
b

)
(3)

and hence,

dψ =

(
1 +

r2

b2

)−1
1

b
dr =

b

b2 + r2
dr . (4)

Plugging the identities sinψ = r/
√
r2 + b2 and (4) into (2) yields

p(θ, ψ) =
sinψ dψ dθ

2π
=

r√
r2 + b2

b

2π(b2 + r2)
dr dθ (5)

and switching back to Cartesian coordinates (r dr dθ = dx) results in

p′b(x) =
b

2π(b2 + x2 + y2)3/2
dx . (6)

The density function p′b(x) is a two-dimensional generalization of the Cauchy probability
density function [11]. The density function without the differentials yields the convolution
kernel

p(x; b) =
b

2π(b2 + |x|2)3/2
(7)

which is known as the 2D Poisson kernel [38].
We thus know that the intensity distribution at the lens plane is given by the 2D Poisson

kernel. Furthermore, the distribution in every plane parallel to the lens is also of this type,
but with a different parameter b. For parallel planes closer to the object than the lens
position, b decreases. Same for planes between the lens and the sharp image. If the plane
tends to the position where the sharp image is located, b tends to zero and p(x; b) tends to
a 2D Dirac delta function (see Lemma 1). If the image plane is moved beyond the sharp
image, b increases again and the image appears blurred with p(x; b).
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Lemma 1 If b tends to zero, p(x; b) tends to a 2D Dirac delta function:

lim
b→0

p(x; b) = δ0(x) , (8)

where δ0(x) = δ0(x)δ0(y).

Proof. One possible definition of the 1D Dirac delta function is

δ0(x) =

{
0 if x 6= 0
∞ if x = 0

and

∫
IR
δ0(x) dx = 1 .

The 2D Dirac impulse is defined to be the product of the 1D Dirac impulses in x- and
y-direction. Hence, the integral property changes to

∫∫
IR2

δ0(x) dx = 1 .

If b = 0 and x 6= 0 we have p(x; b) = 0. For b > 0, p(0; b) = (2πb2)−1 so that limb→0 p(0; b) =
∞. Furthermore, ∫∫

IR2
p(x; b) dx =

∫ 2π

0

∫ π/2

0

p(θ, ψ) = 1 .

In reality, however, the three assumptions made above are violated. At first, we omit
the second assumption, i.e., the lens is finite. This corresponds to applying an aperture, i.e.,
a window function, to the Poisson blurred image in the lens plane. This window function is
also projected onto any image plane. The intensity distribution which results from a single
object point thus corresponds to a windowed Poisson-kernel-shaped intensity in the image
plane. As long as the image of the object point is not too close to the window border,
the effect of the aperture is hardly visible. However, the integral of the density is now less
than one. Hence, the weight of the Dirac impulse at the point of focus is decreased. The
decrement depends on the part of the Poisson kernel which is windowed out and increases
with the distance of the object point to the optical axis. Therefore, points in the periphery
of the visual field appear darker (vignetting).

Besides vignetting the finite lens (or an additional aperture) also have the positive
effect, that the other two assumptions are not critical any more. The light emitted from a
plane dull surface is known to be Lambertian, i.e., its intensity is proportional to the scalar
product of the surface normal and the observation direction. If the width of the aperture
is small compared to the distance to the object, the orientation dependent term can be
neglected. Furthermore, the object need not be flat anymore, although the slope of the
depth map must be less than the ration between the aperture width and the distance to
the object for keeping the model valid. Although one could go on with further refinements
of the model to more realistic settings, we conclude this motivating section at this point.
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2.2 The Poisson Scale-Space

In this section we show that the Poisson kernel actually establishes a linear scale-space,
since it fulfills the axiomatic from Section 1.2 (see also [13, 9]). Based on the motivation
in the previous section, we now state the following theorem.

Theorem 1 (Poisson scale-space) The Poisson kernel (7) establishes a linear, isotropic
scale-space.5

In order to prove this theorem, we need the Fourier transform of the Poisson kernel. The
2D Fourier transform is denoted by

F2{f(x)}(ξ) =

∫∫
IR2

f(x) exp(−i2π ξ · x) dx

where ξ = (ξ, η)T and x = (x, y)T .

Lemma 2 The spectrum of the Poisson kernel (7) is given by

F2{p(x; b)}(ξ) = exp(−2π|ξ|b) . (9)

Proof. See [38, 13] In the following we use the abbreviation P (ξ; b) = F2{p(x; b)}(ξ).
Now we give a proof that the Poisson kernel establishes a linear scale-space.

Proof (of Theorem 1).

• The axioms A1 and A2 are trivially fulfilled since p(x; b) is an LSI operator, i.e., it
is applied by means of convolutions.

• Axiom A3: We have

P (ξ; b1)P (ξ; b2) = exp(−2π|ξ|b1) exp(−2π|ξ|b2)
= exp(−2π|ξ|(b1 + b2)) = P (ξ; b1 + b2) ,

and hence S(b1, b2) = b1 + b2. In the spatial domain, this corresponds to
p(x; b1) ∗ p(x; b2) = p(x; b1 + b2).

• Axiom A4’: Since

p(aRx; b) =
b

2π ((a|Rx|)2 + b2)3/2

=
1

a2

b/a

2π (|x|2 + (b/a)2)3/2
=

1

a2
p(x; b/a) ,

5Note that the symbol Σ from (1) is replaced with b.
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the observation transformation is scale and rotation invariant:

Φ(f(a−1RTx′),x, b) =

∫∫
IR2

f(a−1RTx′)p(x − x′; b) dx′

substitute x = aRt and x′ = aRt′

=

∫∫
IR2

f(t′)p(aR(t − t′); b)a2 dt′

=

∫∫
IR2

f(t′)p(t − t′; b/a) dt′

= Φ(f(x′),x, b/a) .

Hence T (b, a) = b/a.

• Axiom A5 is fulfilled since the Poisson kernel is positive for all x: p(x; b) > 0 for all
x ∈ IR2 and all b > 0.

This proof also holds for other dimensions than two, especially in the 1D case [13].
Hence, we have found a counterexample of the uniqueness proof in [22]. At this point
one might ask if the proof of Iijima contains an error. The answer is yes – Iijima assumes
implicitly that the frequency response of the scale-space kernel is continuously differentiable
in the origin (see appendix). However, according to [41] the original 2D axiomatic of Iijima
in [23] is based on the axiom A4 instead of A4’, i.e., closedness under the affine group is
required. The Poisson kernel is not closed under the full affine group, and hence, it does no
longer establish a linear scale-space. We will give a simple counterexample in the sequel.
Consider the following transformations of the affine group, forming a subgroup:

L ∈ GL(2) with L = RT

(
λ 0
0 λ−1

)
R , (10)

where R ∈ SO(2). The considered subgroup deforms the image plane in an anisotropic
way. Without loss of generality we can omit the rotation such that L is diagonal, i.e.,
the coordinate axes are rescaled by the subgroup. Furthermore assume that L1 6= L2 are
two elements of this subgroup. For one of these anisotropic deformations it is possible
to define an anisotropic Poisson scale-space by a simple change of the coordinate system
[13].6 However, the combination of closedness under the affine group and the semigroup
property implies that the convolution of two affine transformed kernels is again a kernel
from the generating family. This is clearly violated in case of the Poisson kernel which is
easiest shown in the frequency domain (see appendix). There is even a more fundamental
relationship which we formulate as a theorem.

Theorem 2 (separability of observation transformation) An observation transfor-
mation which fulfills the axioms A1-A5 is separable, i.e., fulfills axiom A7.

6By an appropriate change of the coordinate system it is also possible to extend the Poisson scale-space
to the full affine group.
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Proof. From the axioms A1 and A2 one can conclude that the observation transforma-
tion is obtained by a convolution with a kernel k(x; Σ) [41]. The closedness under affine
transformations (A4) and the semigroup property (A3) imply that

k((x, εy)T ; Σ) = k(x; Σ1)

k((εx, y)T ; Σ) = k(x; Σ2)

k((x, εy)T ; Σ) ∗ k((εx, y)T ; Σ) = k(x; Σ1) ∗ k(x; Σ2) = k(x; Σ3)

for any ε > 0. The case ε→ 0 corresponds to writing k(x; Σ3) as a convolution of two 1D
kernels, and hence, the kernel k(x; Σ) is separable.

As a counterpart of Theorem 2 one could state that any observation transformation
which fulfills the axioms A1-A3,A4’,A5 and A7, also fulfills the axiom A4. The proof is
basically given in [33] where a one-parameter class of kernels with the frequency response
exp(−2π|ξ|αb), α ∈ (0, 2], is obtained. By the separability constraint we obtain α = 2, i.e.,
the Gaussian kernel becomes the only solution. The Gaussian kernel is closed under the
affine group.

As a quintessence of the preceding discussion we conclude that replacing the axiom A4’
with A4 is equivalent to adding axiom A7. Hence, the difference between the axiomatic
yielding the Gaussian kernel as the unique solution and the axiomatic yielding a family of
kernels as solutions (a.o. the Poisson kernel) boils down to separability. In other words:
the only difference between the Poisson kernel and the Gaussian kernel with respect to the
axiomatics is the separability.

2.3 The Analytic and Monogenic Scale-Space Representations

The Poisson kernel (7) is closely related to the Laplace equation (or potential equation)

∆3u(x, y, b) = uxx(x, y, b) + uyy(x, y, b) + ubb(x, y, b) = 0 . (11)

Informally, the Poisson kernel is the fundamental solution of the ’square root’ of the Laplace
equation. To make this point more evident, consider the fundamental solution7 of the
Laplace equation:

ϕ(x, y, b) = − 1

4π
√
x2 + y2 + b2

, (12)

i.e., ∆3ϕ(x, y, b) = δ0(x, y, b) = δ0(x)δ0(y)δ0(b) (this can easily be checked using the diver-
gence (or Gauss) theorem). A scalar function u(x, y, b) which fulfills the Laplace equation is
called a harmonic function (harmonic potential). The gradient field of a harmonic function
f(x, y, b) = ∇3u(x, y, b) is known to be irrotational and divergence free, i.e.,

curl f(x, y, b) = ∇3 × f(x, y, b) = 0

div f(x, y, b) = ∇3 · f(x, y, b) = 0
, (13)

7Actually the constant −(4π)−1 is an arbitrary choice, any other constant is a valid choice [6], page
209. However, due to normalization of the Dirac impulse, we prefer the given constant.
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where ∇3 = (∂x, ∂y, ∂b)
T is the 3D gradient operator. Since ∇3 · ∇3 = ∆3, the gradient

operator can be considered as the ’square root’ of the Laplace operator. Furthermore,
ϕ(x, y, b) is the fundamental solution of the Laplace equation, and hence, ∇ϕ(x, y, b) is
obviously the fundamental solution of the system of equations in (13). However, considering
this fundamental solution yields

∂xϕ(x, y, b) =
x

4π(x2 + y2 + b2)3/2

∂yϕ(x, y, b) =
y

4π(x2 + y2 + b2)3/2
, (14)

∂bϕ(x, y, b) =
b

4π(x2 + y2 + b2)3/2

i.e., the Poisson kernel is one component of the fundamental solution of (13) (up to a factor
of two).

Returning to the original setting of scale-space representation, the considered problem
is a boundary value problem on the half space b > 0. The appropriate method to get the
solution of such a problem is the Schwarz reflection principle, which leads to a factor of
two in the fundamental solution (see e.g. [6], page 279). Hence, the Poisson kernel is one
component of the fundamental solution of (13) in the half space b > 0.

In a next step, we separate the image plane from the scale axis. In particular, we
rewrite f(x, y, b) = (vT (x; b) u(x; b))T , i.e., v(x; b) is a vector field IR2 ⊕ IR+ → IR2, and we
obtain a new set of equation from (13):

curlv(x; b) = 0 (15)

∇2 · v(x; b) + ∂bu(x; b) = 0 (16)

∂bv(x; b) −∇2u(x; b) = 0 (17)

for all b > 0 and ∇2 = (∂x, ∂y)
T . Obviously, the zero divergence in (13) yields the 2D

continuity equation (16) which is also referred to in case of the Gaussian scale-space.
However, in contrast to the Gaussian scale-space, we do not combine the continuity

equation (16) with Fick’s law [40] or the maximum loss of figure impression (axiom A6)
[41] yielding the figure flow. In the current framework, the figure flow is replaced with
v(x; b) which is already implicitly determined by means of (13). The relationship between
u(x; b) and v(x; b) is given by the Riesz transform [38, 10], a 2D generalization of the
Hilbert transform [15] with the vector-valued frequency response and impulse response,
respectively,

H(ξ) = i
ξ

|ξ| h(x) = − x

2π|x|3 . (18)

Hence, the figure flow/image flux is replaced with the Riesz transform of the image.
The combination of a signal with its Riesz transform forms a 2D generalization of the

analytic signal, the monogenic signal [15]:

fM(x) = ((hT ∗ f)(x) f(x))T . (19)
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Thus, using the Poisson kernel for generating a linear scale-space arises from combining
the monogenic signal with the continuity equation (16). This underpins the special role
of the Poisson scale-space: It is derived from an optical setting (defocusing) which implies
the continuity equation and stands in direct relation to the monogenic signal. The latter
yields a quadrature filter approach if it is combined with radial bandpass filters, which in
turn can be considered as a concept from scale-space. The same is true in the 1D case,
where the ’image’ (signal) flux obtained from the 1D Poisson scale-space is given by the
Hilbert transform of the signal.

For convenience, we introduce two new terms:

Definition 2 (analytic scale-space) The Poisson scale-space representation of a 1D an-
alytic signal is called the 1D analytic scale-space representation.

Note that the 1D analytic scale-space representation is formed by the 1D Poisson scale-
space representation of a signal and the corresponding signal flux. It is an analytic function
in the upper half-plane b > 0.

Definition 3 (monogenic scale-space) The Poisson scale-space representation of a 2D
monogenic signal is called the 2D monogenic scale-space representation.

Note that the 2D monogenic scale-space representation is formed by the 2D Poisson scale-
space representation of a signal and the corresponding image flux. It is a monogenic
function in the upper half-space b > 0. Monogenic functions are solutions of the generalized
Cauchy-Riemann equations, known from Clifford analysis [4]. Since we only consider (para-
)vector valued functions, the here considered monogenic functions are equivalent to 3D
vector fields with zero divergence and zero curl.

In the current context it does not matter from which side of the theory one approaches
the problem. Also starting from the derivation of the Riesz transform (see [15, 13]) yields
the Poisson scale-space. Furthermore, due to the theory of monogenic functions, the same
3D Euclidean space is used for embedding the 2D scale-space and for representing the
quadrature filter output. In particular, this imposes an identification of the image plane
coordinates with the Riesz components, or the image flux components, and this imposes
an identification of the scale axis with the applicate axis, i.e., the signal value axis.

2.4 Relaxed Causality

The causality of scale-space representation (axiom A8) was introduced in [25] as a funda-
mental concept. Therein causality is defined by the statement: ’any feature at a coarse
level of resolution is required to possess a (not necessarily unique) “cause” at a finer level
of resolution although the reverse need not be true.’ The subsequent formal treatment
however, is slightly stricter, and it requires that the convex side of an isophote in an ex-
tremum points towards coarser scales (axiom A9). This requirement is basically the same
as the non-enhancement of local extrema [1, 30].

The non-enhancement property is only fulfilled in the case of the Gaussian scale-space
[1], and therefore the Poisson scale-space does not fulfill the causality requirement in its
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stricter formulation, see also Figure 3. However, motivated by the relationship between
causality and the maximum principle [20]8, we use the original informal definition of causal-
ity to prove that the Poisson scale-space is causal in a relaxed sense.

2

b

0.6 −1 0 1 x

Figure 3: Example due to [1], showing that the 1D Poisson scale-space does not fulfill the
non-enhancement axiom A9.

Definition 4 (relaxed causality) A scale-space representationu(x; b) is called causal in
a relaxed sense, if any level crossing surface, i.e., any connected component of u(x; b) = λ,
λ ∈ IR, is connected to a point u(x; 0) = λ.

In order to illustrate the two different definitions of causality, we switch to 1D scale-space.
In the Figure 4 four different cases of isophotes are illustrated. According to the two

xxxx

bbbb

P

1 2 3 4

Figure 4: Causality in 1D scale-space. The two definitions only differ with respect to the
third case.

different definitions of causality, we obtain the following categorization:
8The proof of Hummel cannot be directly applied to the Poisson scale-space, since the maximum

principle is different in both cases.
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1. The isopleth is closed for b > 0. We do not have causality in the strict sense, since
the convex side also points towards finer scales. We also do not have causality in the
relaxed sense, since the surface is not connected to a point on the line b = 0.

2. The isopleth is connected to the line b = 0 and it is convex wrt. to increasing scale.
Hence, we have causality according to both definitions.

3. The isopleth is connected to the line b = 0 but it is not convex wrt. increasing scale
for all x, it is concave in the point P. In this case we only have causality in the relaxed
sense.

4. The isopleth is not closed and not connected to the line b = 0. We do not have strict
causality since the surface is concave. We do not have relaxed causality either since
the surface is not connected to the line b = 0.

Actually, there are other possible cases like open surfaces which intersect the line b =
0 in only one point, but those are not relevant for the current discussion. The main
difference between the two definition of causality boils down to the third case. Whereas
strict causality requires the isopleth to be connected to the plane b = 0 in the space
’between’ the current scale and scale zero, the relaxed causality only requires connectivity
in the whole half-space b > 0.

Relaxing the causality requirement according to Definition 4 enables us to categorize the
Poisson scale-space to be causal although it does not fulfill the non-enhancement property.

Theorem 3 (causality of Poisson scale-space) The Poisson scale-space representa-
tion of a DC-free 2D signal in IL1 fulfills the causality requirement according to Defini-
tion 4.

Proof. The proof consists of two parts. First, we show that there exists no closed level
crossing surface for b > 0. Second, we show that any open level crossing surface intersects
the plane b = 0. The Poisson scale-space representation is denoted by u(x; b).

Assume that there exists a closed level crossing surface cλ given by a connected compo-
nent of u(x; b) = λ, λ ∈ IR and b > 0. Since the Poisson kernel is differentiable for b > 0,
u(x; b) is also differentiable for b > 0. Hence, there exists an ε > 0 such that a connected
component cλ+ε of u(x; b) = λ + ε or cλ−ε of u(x; b) = λ − ε are level crossings which lie
entirely outside the level crossing cλ (see Figure 5). Without loss of generality we assume
that cλ+ε lies entirely outside cλ. Due to the maximum principle of harmonic functions
[27], we know that u(x; b) = λ+ ε inside of cλ+ε which yields a contradiction.

Knowing that all level crossings must be open, we just have to show that each of them
is connected to the plane b = 0. Since both the original signal and the Poisson kernel are
in IL1, u(x; b) is in IL1 for each b ≥ 0, too. Hence, lim|x|→∞ u(x; b) = 0 for each b ≥ 0.
Furthermore, limb→∞ p(x; b) ≡ 0, and hence limb→∞ u(x; b) ≡ 0. Thus all level-crossings
with λ 6= 0 are connected to the plane b = 0. There might exist zero-crossings which are
connected to the planes given by b → ∞ and |x| → ∞, but these planes are connected to
each other and especially to the line given by |x| → ∞ and b = 0, which is part of the
plane b = 0.
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Figure 5: Level crossings at the levels cλ and cλ+ε illustrating the argumentation in the
proof of Theorem 3.

2.5 Further Properties

In this section, we compare the Poisson scale-space to the Gaussian scale-space with respect
to several properties.

It is well known that the non-creation of local extrema in the case of the 1D Gaussian
scale-space does not generalize to higher dimensions [29]. Instead of considering the cre-
ation of local extrema, the authors in [1] consider (zero-crossing) contours, showing that
these contours can merge and split with increasing fine scale. We adapted their example
of the ’dumbbell’ (Figure 6, left) to illustrate the corresponding property of the Poisson
scale-space. Same as for the Gaussian case, the contours can split and merge, see Figure 6,
right.

x

y

s

Figure 6: Test pattern from [1] (left) and a resulting level-crossing surface in scale-space
(right).

Like for the Gaussian scale-space, the Poisson scale-space representation can be used to
interpret images in term of singularities, extrema, saddle-points, etc. (see [25]). However,
for the Poisson scale-space a new systematic evolves. The 1D Poisson scale-space is closely
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related to the Laplace transform [36] (and therefore to the Z-transform), which give rise
to signal representation and interpretation in terms of zeros and poles. In [13] it is shown
that the spectrum of an analytic signal in the Poisson scale-space is given by the one-sided
Laplace transform of the original spectrum. Hence, the zeros and poles in the spatial
domain completely represent the original spectrum. Generalizing this idea to 2D, it is
reasonable that the zero-crossings, singularities, and saddle-points in scale-space completely
represent the original spectrum. However, the corresponding systematic for the 2D Poisson
scale-space is not completely derived yet, although we make some considerations about the
zeros in monogenic scale-space in Section 3.3.

Besides the behavior of the signal in scale-space, it is also reasonable to compare the
two involved convolution kernels. The Gaussian kernel is known to be the only real-valued
operator with the optimal uncertainty of (2π)−1, [2, 32]. The uncertainty of the Poisson
kernel is just slightly worse (by a factor of

√
1.5, see appendix). This slight increase

of uncertainty is caused by the larger extent of the Poisson kernel in both domains, see
Figure 7. For the sake of simplicity, the figure shows the comparison for the 1D case, but
it is basically the same for 2D, see [13]. To compare both kernels, the maximum of the
Poisson kernel is chosen to be the same as the one of the Gaussian kernel (b =

√
2σ/

√
π

[13]).

1σ 2σ 3σ 4σ 5σ

1√
2πσ

1
2
√

2πσ

x

k(x)

1σ 2σ 3σ 4σ 5σ

1

0.5

u

K(u)

Figure 7: The 1D Gaussian kernel (dashed line) and the 1D Poisson kernel (solid line) in
spatial domain (left) and frequency domain (right). All axes are labeled relative to the
standard deviation σ of the Gaussian.

Besides the axioms and properties we have verified in this section, there are a tile of
further axioms which are considered in the context of the Poisson kernel in [10, 9, 33].
We now focus on the relationship between the Poisson scale-space and phase-based image
processing.



18 M. Felsberg and G. Sommer

3 The Local Phase in Scale-Space

In the preceding sections of this paper, we have shown that the Poisson scale-space is a
quite good alternative to the Gaussian scale-space. However, there are more alternatives
[10] and it is legitimate to ask why to change existing methods using the Gaussian kernel.
For many applications it is appropriate to keep with the Gaussian kernel, however, there
are cases where it might be advantageous or even necessary to switch to the Poisson scale-
space. One of the latter cases arises if the ideas of local phase and scale-space are combined
to recognize local structures and to measure local features. The direct relationship between
the Poisson scale-space and the monogenic signal (see Section 2.3) yields new possibilities
of phase-based image processing in scale-space. To show the advantages of a common
framework for a quadrature concept and a scale-space approach, we start with a simple
application: edge detection by differential phase congruency. In the subsequent sections,
we derive a 2D generalization of the attenuation-phase relationship based upon intrinsically
1D monogenic signals. This relationship is exploited in the last section to compare phase-
based and amplitude-based approaches.

3.1 Differential Phase Congruency

Edge detection by means of quadrature filters can be performed in two ways: either by
detecting local maxima of the local amplitude or by detecting points of stationary phase
in scale-space. The latter approach is commonly called phase congruency and is based on
comparisons of the local phase at certain distinct scales [26, 35]. The obvious drawbacks
of using several scales are:

• Edges are scale-relative, i.e., they have a certain optimal scale for detection and have
a limited extent in scale-space.

• If an edge vanishes at a certain scale between two considered scales, it might not
be reported. The choices of the distance between the considered scales and of the
number of scales are quite critical parameters.

• Due to sampling of the orientation and of the scale, a large number of basis filters
has to be applied, yielding a high computational complexity.

In [14] we presented a phase congruency based edge detector which makes use of the
monogenic signal. Although that method is already much faster than the classical methods
cited above, the drawback concerning the choice of scales is still valid. In [13] an advanced
method has be developed based on the idea of differential phase congruency.

The differential phase congruency replaces the finite difference of phases on different
scales by a scale-derivative of the phase, i.e., differential phase congruency is given if
∂br = 0, where r denotes the local phase-vector (see below). Due to the common framework
of the quadrature approach and the Poisson scale-space, i.e., the monogenic scale-space, it
is possible to derive a filter set such that it is not necessary to compute the b-derivative
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explicitly. Instead, the phase congruency is computed at a certain scale, speeding up the
computation by factor three or four.

The b-derivative can be computed as follows: The phase vector r of the monogenic
scale-space is defined by

r(x; b) =
v(x; b)

|v(x; b)| arctan

( |v(x; b)|
u(x; b)

)
, (20)

where arctan(·) ∈ [0, π). Now assume that we have an edge or line, imposing that the
phase does not change through scale on a certain interval. In terms of the b-derivative of
r, this means that this derivative is zero. Furthermore, the term v/|v| describes the local
orientation [15] which is also independent of b at a line or edge. Hence, we can rewrite v
as vn = v(cos θ, sin θ)T for appropriate θ and v ≥ 0. The b-derivative of r then reads

∂br(x; b) = n∂b arctan

(
v(x; b)

u(x; b)

)

=
n(u(x; b)∂bv(x; b) − v(x; b)∂bu(x; b))

u(x; b)2 + v(x; b)2

=
u(x; b)∂bv(x; b) − v(x; b)∂bu(x; b)

u(x; b)2 + |v(x; b)|2 . (21)

Note that the b-derivatives of the monogenic scale-space can be computed without using
discrete approximations. This is done by replacing the Poisson kernel with its b-derivative.
The result is a set of three further linear filters (the derivative of the Poisson kernel and
the derivatives of the two components of its Riesz transform) which are applied to the
signal at the original scale. The outputs are combined with the output of the original
kernels according to (21). In contrast to the Gaussian framework, the Poisson scale-
space allows to compute all involved kernels in both domains, the spatial domain and the
frequency domain. This can be of great importance in certain cases of optimized filter
design. Furthermore, the b-derivatives can also be replaced with x-derivatives (see (16) ,
(17), and Section 3.4), which is also unique to the Poisson framework.

Returning to the points of phase congruency, we have to find the zeros of the two
components of (21). By a linear regression, these zeros can easily be detected with subpixel
accuracy. After removing those zeros where the slope of (21) is smaller than a threshold,
the results in Figure 8 are obtained.

3.2 The Local Attenuation – Local Phase Relationship in 1D

The 1D attenuation-phase relationship (see e.g. [31], page 206), states that for a minimum-
phase system, the attenuation (logarithm of the amplitude response) and the phase re-
sponse are related by the Hilbert transform.

In order to explore the background of this relationship, we consider an analytic function
w(z) which is non-zero everywhere. Hence, log(w(z)) is also analytic and non-singular,
which can easily be checked using the Cauchy-Riemann equations. Considering the Laplace
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Figure 8: Results from differential phase congruency. Upper row: original images. Bot-
tom row: detected edges and lines (same parameters for all images). For the purpose of
comparison, see [13].

transform of a causal system, its transfer function is analytic in the positive half-plane.
Hence, attenuation and phase response form an analytic function in this half-plane if the
filer is minimum-phase, i.e., its transfer function has no zeros in the positive half-plane.

For the 1D analytic scale-space representation, the roles of Fourier domain and spatial
domain are just exchanged [13]. Hence, the 1D analytic scale-space is an analytic function
and if there are no zeros for positive scale parameters, the logarithm of the local amplitude,
which we call local attenuation, and the local phase form a Hilbert pair for each scale.
Unfortunately, zeros can occur for positive scale parameters, as it can be seen in Figure 9.

In order to investigate the conditions for zeros occurring in the analytic scale-space
representation, we consider some simple 1D examples. For some elementary signals, like
e.g. rectangle, triangle, no common zeros of the real part and the imaginary part exist,
and therefore, the local attenuation and the local phase form a Hilbert pair. However, as
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Figure 9: 1D Poisson scale-space: zeros of the local amplitude of a random signal. The zero-
crossings of the real part are indicated by solid lines, the zero-crossings of the imaginary
part are indicated by dashed lines. The grey-scale image in the background shows the
(rescaled) local amplitude. Note that a zero of the local amplitude implies both parts, the
real one and the imaginary one, to be zero.

soon as we combine two rectangles with different widths, zeros occur (see Figure 10).

x

u(x; b)

b
x

b

−|u(x; b) + iv(x; b)|

Figure 10: Left: a combination of two rectangles in Poisson scale-space. Right: the corre-
sponding local amplitude shows two zeros.

According to the well known approach of separating the frequency response of a general
filter into an allpass part and a minimum-phase part, we factorize the analytic scale-space
representation into one part which contains no zeros for b > 0 and one part with constant
amplitude for b = 0 (see Figure 11).

For the part without zeros, the relationship between the local attenuation and the local
phase is given by the Hilbert transform. The remaining part is fully characterized by the
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x
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−|u2(x; b) + iv2(x; b)|

x

b
−|u1(x; b) + iv1(x; b)|

Figure 11: Left: local amplitude of factor without zeros. Right: remaining factor.

positions of the two zeros, which themselves indicate the positions of the steps between
the two narrow rectangles (see also Figure 10, left). In general however, the zeros in the
half-plane b > 0 cannot be directly related to signal structures in such a straightforward
way. Furthermore, for the purpose of relating local attenuation and local phase on a single
scale or on a finite scale interval, it is not reasonable to factor out all existing zeros, which
requires to compute the full scale-space.

The influence of zeros is significantly reduced if the original signal is filtered with a
bandpass beforehand. For estimating an appropriate local phase, it is anyhow necessary
to have a well defined local frequency, or more realistic, a small bandwidth [19], page 171.
To illustrate the effect of bandpass filtering, we apply a bandpass filter to the original test
signal and compute the analytic scale-space representation (see Figure 12).

x

b

u3(x; b)

x

b

−|u3(x; b) + iv3(x; b)|

Figure 12: Left: real part of band-limited version of original signal. Right: local amplitude
of this band-limited signal in scale-space.

Obviously, there occur no zeros for b > 0 in this example.9 Thus, the attenuation-
9Although the local amplitude approaches zero for b → ∞, there occur no critical points. These points
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phase relationship applies to this bandpass filtered signal. Unfortunately, this is not true
in general. If the signal contains two different frequency components which both lie in
the passband of the bandpass filter, the smoothing process is reduced to a change of the
relative weight between them. Hence, through scale-space, the number of oscillations (and
therefore the number of zeros) can change, and therefore some zero-crossings must intersect
(see Figure 13). This remains true for arbitrary small frequency differences – in order to
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Figure 13: Intersecting zeros of real part (solid line) and imaginary part (dashed line) for
a simple linear combination of two oscillations.

find intersecting zero-crossings one has to consider accordingly larger x-intervals.
Apart from this theoretic discussion about the validity of the relationship between local

attenuation and local phase, we want to stress that the method works reliable in practice,
at least in the 2D case, as we will show.

3.3 The Local Attenuation – Local Phase Relationship in 2D

For the 2D monogenic signal, the local phase is replaced with a phase vector, see (20). The
local amplitude is given by the square-root of the sum of u(x; b)2 and |v(x; b)|2 [15] and
hence, the 2D local attenuation is given by

a(x; b) =
1

2
log(u(x; b)2 + |v(x; b)|2) . (22)

The topic of this section is the relationship between the 2D attenuation and the 2D phase
vector and the corresponding requirements to the signal. We summarize this relationship
in a theorem.

require to lie on a zero crossing of both parts, the real part and the imaginary part. In the present example,
no such zero crossings intersect. Strictly spoken, it is also critical to have asymptotic zeros [21], but in
case of finite scales, the asymptotic case is not relevant.
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Theorem 4 (2D local attenuation and 2D local phase) Let f be a 1D function in
IL1 such that its 1D analytic scale-space representation has no zeros in the plane b > 0 and
let n ∈ IR2 with |n| = 1. Furthermore, let u(x; b) be the 2D scale-space representation of
f(n · x) and let v(x; b) be the corresponding image flux. Then the local attenuation (22)
and the local phase vector (20) are related by the Riesz transform.

Proof. Since f(n · x) is constant in the perpendicular direction n⊥ of n, we focus on the
projections (integrals) onto the plane spanned by n and b. From the Fourier slice theorem
[3] it follows that the 1D projections of the 2D Poisson kernel and the 2D Riesz kernel are
identical to the 1D Poisson kernel and the Hilbert kernel (multiplied with n), respectively:

∫ ∞

−∞

b

2π(|sn + tn⊥|2 + b2)3/2
dt =

b

π(s2 + b2)∫ ∞

−∞
− sn + tn⊥

2π|sn + tn⊥|3 dt = − n

πs
,

where we made use of x = sn + tn⊥. Thus, all 2D convolutions of f(n · x) with either
the Poisson kernel or the Riesz kernel can be replaced with 1D convolutions with the 1D
Poisson kernel and the Hilbert kernel (multiplied with n). Hence, we know that the 2D
monogenic scale-space of f(n ·x) is given by the 1D analytic scale-space of f if we multiply
the 1D signal flux by n. Moreover, the attenuations in both cases are the same. The phase
vector according to (20) is given by n times the 1D phase [15], i.e., the phase vector and the
1D phase only differ by n. Since the phase is the Hilbert transform of the 1D attenuation,
the phase vector is obtained from the 2D attenuation by the projected Riesz transform.
Returning to the original domain completes the proof.

Before we focus on the problem of zeros in the positive half space, we want to make
some remarks.

1. The 2D signals which are obtained by projecting some 1D function f are called
intrinsically 1D (i1D) [28] or simple [19] signals.

2. Although real images are not i1D signals in general, they are commonly composed of
various regions which are locally i1D, i2D, or constant. However, the fast decrease of
the Poisson kernel and the Riesz kernel with increasing radius ensures that the error
caused by a finite integration (projection) is small.

3. For locally i2D regions the theorem does not hold in general.

4. The finite extent of locally i1D regions weakens the requirement of having no zeros
in the positive halfplane (see below).

5. In practice one can use the 2D attenuation – phase vector relationship without testing
for zeros.
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Concerning the zeros in the 1D analytic scale-space of f , one would expect to meet
lines which are zero in the 2D monogenic scale-space of i1D signals. However, due to the
finite extent of i1D regions in real images, these lines mostly shrink to points or small
line segments, see Figure 14 and 15. The areas indicated as zero in the right figures are

x y
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0

Figure 14: Zeros of dog image in monogenic scale-space. Left: original image, right: zeros
(isophotes of finite, small amplitude).
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0

Figure 15: Zeros of tree image in monogenic scale-space. Left: original image, right: zeros
(isophotes of finite, small amplitude).

obtained as the isophotes of some small constant greater than zero in order to make them
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visible. Although these zero-areas can have quite large extents (see Figure 14), Theorem 4
can still be used as an approximation. In order to check the quality of the approximation,
we present two experiments. In the first one, we compute the local attenuation and estimate
the local phase by its Riesz transform. From the local attenuation and the estimated local
phase we reconstruct the original image. Up to a DC component and a multiplicative
constant, the results of the reconstruction are quite good, see Figure 16. In order to

Figure 16: Reconstruction from local attenuation. From left to right: reconstruction of
dog, absolute error, reconstruction of tree, absolute error.

simulate ’infinite’ signals, we took a larger part of the image and multiplied it with a
window function (Gaussian). The images in Figure 16 just show the center parts of the
windowed images. Without a windowing function, the implicit periodicity of the images
causes trouble.

Repeating the same procedure with the local phase, i.e., we try to recover the local
attenuation from the local phase vector, totally fails. Basically, there are two reasons for
this failure:

1. The phase vectors are wrapped, i.e., if their absolute value extends π, they are
reflected in the origin, see also [15].

2. The zeros which exist in the upper halfspace affect the phase but not the attenuation.
Recovering the phase from the attenuation simply suppresses the factor containing
the zeros in the upper halfplane. This modified signal is still very similar to the
original one. Starting from the local phase vector, however, yields instable results if
zeros are present in the upper halfspace.

In general, the monogenic scale-space contains zeros in the upper halfspace even if the
image is bandpass filtered beforehand. Hence, the local phase contains more information
than the local amplitude, namely the information about that part of the signal which
corresponds to the allpass part of a system’s frequency response. This additional part
of the signal does not have too much influence on the appearance of the image, see the
reconstructions in Figure 16. In detail, however, there are important differences as we will
show in the subsequent section.
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In [15] we have stressed the fact that local amplitude and local phase are independent
information. This statement must be restated in an exacter way in the current context:
local amplitude and local phase are pointwise independent. In a local context, local atten-
uation and local phase vector are (approximately) related by the Riesz transform. This
result is quite important for the development and comparison of special purpose filters.
An example for this is given in the subsequent section.

3.4 The Relationship between Phase-Based and
Amplitude-Based Image Processing

The theorems and observations from the previous sections enable us to relate phase-based
image processing approaches to amplitude-based approaches on a theoretic level. For
this purpose, the amplitude and the phase are extracted from the monogenic scale-space
representation of the original image. In order to obtain exact results, we also have to
assume that there are no zeros in the monogenic scale-space for b > 0. We will relax this
condition later on.

Under the mentioned assumptions (the image is i1D and the monogenic scale-space
contains no zeros), the local attenuation and the local phase vector form themselves a
monogenic function for b > 0. Accordingly, we can apply (16) and (17) to relate the first
derivatives of the local attenuation and those of the local phase vector:

∇2 · r(x; b) + ∂ba(x; b) = 0 (23)

∂br(x; b) −∇2a(x; b) = 0 . (24)

Furthermore, (15) implies that the phase vector field is irrotational. This is trivially fulfilled
if the original image is an i1D signal, but (15) can also be considered as a criterion for the
validity of (23) and (24).

Besides the first derivatives, all higher order derivatives can be computed, but since
each component of a potential field is harmonic [13], the higher order derivatives do not
contain new relationships.

Both equations (23) and (24) contain quite fundamental terms: the (isotropic) local
frequency ∇2 · r(x; b) and the differential phase congruency ∂br(x; b). In the case of i1D
signals, i.e., the phase vector field is irrotational, the isotropic local frequency is identical
to the local frequency in the main orientation, see [12]. According to [24], the local fre-
quency can be computed directly from a quadrature filter response and its spatial partial
derivatives. Adapting this idea to the 2D case, we obtain [12]

∇2 · r(x; b) =
u(x; b)(∇2 · v(x; b)) − v(x; b) · (∇2u(x; b))

u(x; b)2 + |v(x; b)|2 . (25)

By means of (16) and (17) we replace the spatial derivatives with a scale derivative:

∇2 · r(x; b) = −u(x; b)(∂bu(x; b)) + v(x; b) · (∂bv(x; b))

u(x; b)2 + |v(x; b)|2 .
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On the other hand, by (23) we have

∇2 · r(x; b) = −∂ba(x; b) = −1

2
∂b log(u(x; b)2 + |v(x; b)|2)

which is consistent with the equation above. Hence, the local frequency is equivalent to
the scale-derivative of the local attenuation. To some extent, this result is similar to the
estimation of the isotropic local frequency by the quotient of two log-normal bandpass
filters (see e.g. [24]), where the latter can be considered as a finite difference of frequency
components at two different scales. Thus, (23) allows to switch from a finite difference in
scale to a differential operator in scale, like we did in Section 3.1 with the phase congruency.

The phase congruency however, can also be computed by means of partial derivatives
of the attenuation. Equation (24) implies that the differential phase congruency is given
by the gradient of the attenuation. Again, we verify this result by some elementary calcu-
lations:

∇2a(x; b) =
1

2
∇2 log(u(x; b)2 + |v(x; b)|2) =

u(x; b)(∇2u(x; b)) + v(x; b)(∇2 · v(x; b))

u(x; b)2 + |v(x; b)|2

plugging in (17) and (16) yields (21). Hence, points of phase congruency are identical to
points of vanishing gradient of the attenuation. One class of points where the gradient of
the attenuation vanishes are parabolic points, i.e., points on a positive or negative ridge.
Since the logarithm is strictly monotonic, these points are also points on a positive or
negative ridge of the local amplitude. In other words: edge detection by means of local
amplitude maxima is equivalent to edge detection by phase congruency if the Laplacian of
the phase is negative.10 This result is just contrary to looking at phase based and amplitude
based approaches as being two alternative approaches (see e.g. [26]).

In order to solve this contradiction wrt. established opinions, we concentrate on an
assumption made in the beginning: What happens if the image is not an i1D signal? What
happens if there are zeros in the monogenic scale-space? We cannot give an exhaustive
answer in this paper, the behavior of phase and attenuation at i2D points is still work in
progress. However, we present a simple example of a synthetic orthogonal corner, which
shows that the phase congruency is superior to the detection of local amplitude maxima. In
Figure 17 the two components of the scale derivative of the phase are represented as mesh-
plots. The original image can be found in the zero plane. Obviously, the zero-crossings are
quite well located. In particular, at the corner the zero-crossings do not blur the contour.
The gradient of the attenuation (see Figure 18) looks quite similar to the phase congruency.
However, the zero-crossings are less accurately located near the corner. Hence, the main
difference between approaches using the detection of local amplitude maxima and phase
congruency approaches is the behavior at i2D points. This can also be verified in various
edge-detection experiments in [13], where the amplitude based approaches blur the contour
at corners and junctions.

10In the algorithm of Section 3.1 we replaced the evaluation of the Laplacian with a threshold on the
steepness of the zero-crossing to prevent local minima.
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Figure 17: The two components measuring the phase congruency at a corner.
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Figure 18: The two partial derivatives of the local attenuation at a corner.
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4 Conclusion

In this paper we have presented a unified approach to scale-space theory and phase-based
image processing. The common root of the Poisson scale-space and the monogenic signal is
the Laplace equation. The resulting theoretic framework yields several powerful relation-
ships which can be exploited for image processing. However, the structure of the monogenic
scale-space representation still needs further investigation to be completely understood.
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Appendix

Why is Iijimas Original Uniqueness Proof Wrong?

Iijima assumes in [22], page 373, that the first n derivatives of the frequency response of
the scale-space kernel do exist in the origin (equation (3.10)). In the axioms, however, no
constraints are put on the frequency response (it is not even assumed that the observation
transformation is connected to a frequency response at all). Replacing the derivatives in
the origin with left-sided and right-sided limits, i.e., allowing a singularity in the origin,
splits the inverse Fourier transform in (3.13) into two addends (using the original notation):

φ(u) =
1

2π

(∫ 0

−∞
exp

(
lim
τ↑0

Ψ(n)(τ)
ξn

n!
+ iξu

)
dξ +

∫ ∞

0

exp

(
lim
τ↓0

Ψ(n)(τ)
ξn

n!
+ iξu

)
dξ

)
.

This sum of integrals does not only exist for n = 2m (m an integer) as stated in the
original proof. In particular, the Poisson kernel (n = 1) is also a solution which can easily
be verified.

Changing the proof as indicated above results in just two solutions for linear scale-
space kernels (n = 1 and n = 2). The remaining solutions according to [33, 10] (Kt(u) =
exp(−2π|u|αt, α ∈ (0, 2]) cannot be obtained by a proof similar to the one by Iijima, since
he uses explicitly the inverse Fourier transform which does only exist for certain values of
α [33]. We suppose, that the Gaussian scale-space and the Poisson scale-space are the only
two solutions to the Iijima axiomatic which preserve positivity and can be represented as
a convolution kernel.

Convolution of two Anisotropic Poisson Kernels

Instead of considering the convolution of two anisotropic Poisson kernels, we evaluate the
product of two Poisson frequency responses:

P (L−1
1 ξ; b)P (L−1

2 ξ; b) = exp

(
−2π

√
λ−2

1 u2 + λ2
1v

2 b

)
exp

(
−2π

√
λ−2

2 u2 + λ2
2v

2 b

)

= exp

(
−2π

(√
λ−2

1 u2 + λ2
1v

2 +

√
λ−2

2 u2 + λ2
2v

2

)
b

)
.

The semigroup property implies that√
λ−2

1 u2 + λ2
1v

2 +

√
λ−2

2 u2 + λ2
2v

2 =
√
λ2

3u
2 + λ2

4v
2 .

Squaring the latter expression yields that√
λ−2

1 u2 + λ2
1v

2

√
λ−2

2 u2 + λ2
2v

2 =
√
λ−2

1 λ−2
2 u4 + (λ−2

1 λ2
2 + λ2

1λ
−2
2 )u2v2 + λ2

1λ
2
2v

4

has to be expressed as some linear combination of u2 and v2, i.e., (λ−2
1 λ2

2 + λ2
1λ

−2
2 ) = 2.

This implies that λ2
1 − λ2

2 = 0 and due to λ1, λ2 > 0 we obtain λ1 = λ2 which contradicts
the original assumption L1 6= L2.
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Uncertainty of the 2D Poisson Kernel

The spread in the spatial domain reads (see [13])

∆x =
√
σ2

x =

(∫∫
x2p(x; b)2 dx dy∫∫
p(x; b)2 dx dy

)1/2

=

(∫∫
x2

(x2+b2)3
dx dy∫∫

1
(x2+b2)3

dx dy

)1/2

change to polar coordinates r = |x|:

=

(
2π
∫∞

0
r3

(r2+b2)3
dr

2π
∫∞

0
r

(r2+b2)3
dr

)1/2

=

(
1

2b2
− b2

4b4

1
4b4

)1/2

= b

where the integrals are evaluated according to [5] 19.5.1.3 integral 63 and 71. The spread
in the frequency domain is obtained as

∆ξ =
√
σ2

ξ
=

(∫∫
ξ2P (ξ; b)2 du dv∫∫
P (ξ; b)2 du dv

)1/2

=

(∫∫
ξ2 exp(−4π|ξ|b) du dv∫∫
exp(−4π|ξ|b) du dv

)1/2

change to polar coordinates q = |ξ|:

=

(
2π
∫∞

0
q3 exp(−4πqb) dq

2π
∫∞

o
q exp(−4πqb) dq

)1/2

=

(
6

(4πb)4

1
(4πb)2

)1/2

=

√
6

4πb

where the integrals are evaluated according to [5] 19.6.1 integral 1. Hence (∆x)(∆ξ) =
√

6
4π

in the case of the Poisson kernel which means that the uncertainty is slightly worse than
for the 2D Gaussian kernel (factor

√
1.5).
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