
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

A Software Agent for Adaptive
Navigation Support in a Restricted

Internet Area

Dirk Kukulenz

Bericht Nr. 0211
Dec. 2002

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL

Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

A Software Agent for Adaptive Navigation
Support in a Restricted Internet Area

Dirk Kukulenz

Bericht Nr. 0211
Dec. 2002

e-mail: dku@ks.informatik.uni-kiel.de

Dieser Bericht enthält die Dissertation des Verfassers

Abstract

This thesis deals with the development of a software system that helps a user
to search for information in the World Wide Web. The particular problem
considered here is support in a well-defined, restricted Web area. Two sup-
port strategies are considered. One strategy is to present a visitor views of
a local hyperlink structure depending on the current position in hyper-space
and previous navigation decisions. Main partial problems to realize such a
support are dealt with, like the registration of user behavior, the registration
of information about the Web area and the presentation of support informa-
tion on the client side. In contrast to similar systems, the developed system
may be applied by a large fraction of Internet users instantly. The only re-
quirement on the client side is Java support by the browser.
The second considered support strategy is an estimation of the relevance of
data objects and sequences in the Web for a specific client. This estimation is
based on the client’s previous navigation behavior and registered navigation
behavior of other users (collaborative filtering). The approach to estimate
relevant data objects in this thesis is to predict a user’s future data requests.
For this purpose the presented system stores user information on the server
side. User behavior is modeled by graphs, consisting of nodes representing
requested data objects and edges representing transitions. A new method is
presented to predict future navigation steps that is based on a distribution
estimation of registered graphs and a classification of a new (partial) naviga-
tion profile with regard to the estimated distribution. The different steps of
the presented algorithm are evaluated using generated and observed profiles.

1. Gutachter: Prof. Dr. Gerald Sommer

2. Gutachter: Prof. Dr. Gerhard Weber

Datum der mündlichen Prüfung: 30.10.2002

2

Contents

1 Introduction 7

2 Internet Technology, Basics 13
2.1 Technical basics of Internet communication 13

2.1.1 From databases to the Internet 13
2.1.2 Client/server communication, protocols 15
2.1.3 Basic software applied for Internet communication . . . 16
2.1.4 Languages used for Internet communication 17

2.2 The basic problem: perception, search and orientation 18
2.2.1 Human perception, parallel and sequential 18
2.2.2 Search strategies in the Internet 19
2.2.3 Problem description 21

2.3 Similar projects . 22
2.4 Fundamental technical problems 26

2.4.1 Static analysis of Internet information 26
2.4.2 Registration of the use of the Internet 28
2.4.3 Information visualization in the Internet 30

2.5 Summary: Internet Technology, Basics 31

3 Internet Agent for Adaptive Hyper Space Visualization 33
3.1 Objective of the software system 33
3.2 Possible architectures for navigation support tools 34
3.3 Agent description: survey . 37

3.3.1 Principal software structure 38
3.3.2 Comparison to other architectures 40

3.4 Basic concepts . 42
3.4.1 Static analysis of hyperlink structures 42
3.4.2 Registration of a navigation process in a distributed

Web environment . 43
3.4.3 Comparison of server-side registration methods 48
3.4.4 Visualization of navigation support information 52

4 CONTENTS

3.4.5 Control of a navigation process 53
3.5 Components and realization 56

3.5.1 The ’trace server’ . 56
3.5.2 The client’s applet . 58
3.5.3 Technical realization and problems 59

3.6 Visualization examples . 60
3.7 Summary and discussion: Internet Agent 69

4 Pattern Recognition in Graph Spaces 71
4.1 Model definition and notations 71
4.2 Distortion concept . 73
4.3 Formal introduction into graph spaces 76
4.4 Methods to define a distance between graphs 81

4.4.1 Topological-index methods 81
4.4.2 Set distance . 81
4.4.3 Shape metrices . 82
4.4.4 String-edit distance function 83
4.4.5 Contents-based distance function 84

4.5 Characterization of a graph distribution 84
4.5.1 Discrete characterization 85
4.5.2 Topological characterization 85

4.6 Estimation of graph distributions 86
4.6.1 Clustering techniques 86
4.6.2 Determination of a cluster center 87
4.6.3 Quality of a distribution estimation 88

4.7 Summary: Pattern Recognition in Graph Spaces 89

5 Estimation of Graph Distributions 91
5.1 Task description . 91
5.2 Simulation procedure . 92
5.3 Effect of the information used for segmentation 99

5.3.1 Dependence of distribution estimation on the number
of profiles . 99

5.3.2 Impact of distortions 100
5.3.3 Effect of topological information 101

5.4 Non-stationary distributions 103
5.5 Summary: Estimation of Graph Distributions 105

6 Classification and Prediction of User Profiles 107
6.1 Prediction methods . 107
6.2 A new prediction algorithm 109

CONTENTS 5

6.3 A measure for the prediction quality 112
6.4 Experiments with simulated data 114

6.4.1 Different classification functions 114
6.4.2 Convergence of the estimation 116
6.4.3 Estimation of the clusters number 120

6.5 Application to registered navigation profiles 126
6.6 Summary: Classification and Prediction of User Profiles 133

7 Summary and Conclusions 135

A Graph Matching Algorithms 141
A.1 A maximal-common-subgraph algorithm for graphs by clique

detection . 142
A.2 Error-correcting subgraph isomorphism detection 144

B Clustering Algorithms 149

C Preparation of Registered Access-log Data 151

6 CONTENTS

Chapter 1

Introduction

The Internet offers a huge amount of valuable information in almost every
field of human knowledge. The disorder of the information, especially the
distributed nature of the Internet, makes it often difficult and requires much
time to find relevant information and to satisfy complex information needs.
The more the amount and the disorder of information increases, the more it
is necessary to develop powerful and intelligent systems that support users
and make it possible to find information easily.
Examples for such systems are search engines, providing the possibility of a
query search. Search engines are frequently applied by almost every user in
the Internet for information search. Other systems to support users when
looking for information are developed in the field of (intelligent Internet) in-
formation agents [58]. Information agents follow various strategies to support
information search. Some of these systems perform an automatic retrieval
and the working up of information (automation). Other systems apply differ-
ent learning strategies in order to find relevant data objects for a user. The
learning strategies in this context can roughly be divided into two groups.
One group of systems learns from a (single) client’s behavior, a process which
is called content-based learning. Another learning strategy is to consider the
behavior of many users, which is called collaborative filtering or learning [120].
The different types of software systems that help users to find information in
the Internet apply various strategies to present support information. Search
engines present as a rule lists of hyperlinks to web pages, ordered by the esti-
mated relevance for a user. Other systems help a user e.g. to orientate himself
in hyper-space by showing his navigation history or by visualizing maps of
the hyperlink structure (similar to landscape maps in the real world). Some
systems estimate the relevance of data objects and present this estimation
e.g. by changing the appearance of existing web pages or by assembling new
pages [81]. Some of these systems will be described in detail in the next

8 Introduction

chapter (section 2.3).
These systems and the applied techniques are developed in different fields of
computer science like information retrieval, Internet research, agent technol-
ogy, artificial intelligence and software engineering. Various mathematical
techniques are applied in this problem field, coming e.g. from algebra, statis-
tics, e.g. clustering and stochastic processes, and graph theory.

The problem of supporting a user who looks for information in the World
Wide Web (’WWW’ or ’Web’) is the main topic of this thesis. The thesis
deals with the development of an intelligent information agent that makes
it possible on the one hand to visualize (parts of) the hyperlink structure
of the Web. The purpose of this visualization is to help a user to orientate
himself in the data structure. On the other hand methods are developed
to estimate relevant Web objects for a specific user based on collaborative
filtering. There are two main questions that are examined.
The first part of the thesis deals with technical aspects of the development of
the software system. One important question is to find an adequate software
architecture. Web communication depends on processes on different partici-
pating computers, like client and server processes. The new software system
has to fit into this existing environment and has to work together with the
respective programs. Existing support systems apply different architectures
with different advantages and disadvantages, which will be compared to each
other.
One important aspect concerning the technical development is the possibi-
lity to automatically register user behavior. This registration is necessary
to provide a support, that is adapted to the specific situation and the in-
terests of one user. There are two main questions concerning user behavior
registration. One question is the knowledge, a system may acquire about the
behavior of a single user. Another question is the possibility to collect this
knowledge of different users in a central place, which is necessary to make
collaborative filtering possible. The objective is to collect as much informa-
tion as possible about a single user and to be able to store this information
on a central server. In order to provide an online support, the registration
has to be done in real-time.
A second important aspect concerning the technical development is the pos-
sibility for the system to acquire knowledge about the data in the Web for
support purposes. There are two possible strategies. A support system may
on the one hand try to offer a support for information search in the whole
Web. This task, performed e.g. by some search engines, is very extensive.
The information that can be acquired by the system about the Web data
can only be very rough, and requires much effort and many resources. On

9

the other hand a system may offer a support only for information search in a
small fraction of the Web, e.g. the servers of a university or company. In this
case the information that may be acquired about the web data can be much
more detailed and can easily be extracted from the Web. In this thesis the
second strategy is chosen and methods will be shown to extract local Web
information.
A third important aspect concerning the technical development is the presen-
tation and visualization of support information. Internet browsers provide
the possibility to visualize web pages and make it therefore possible to show
support information on web pages. This method is used by some Internet
agents (section 2.3). However, in order to apply more advanced visualiza-
tion techniques, the visualization capabilities of Internet browsers have to
be extended. There exist different methods to do so, like browser plug-ins
or separate software installations on the client side (section 2.1.3), that will
be compared to the applied method in this thesis, which is based on Java
applets.
The result of the technical considerations and the development of the soft-
ware system as presented in the first part of this thesis is a software agent,
that registers user behavior (in our case the set of browsing decisions) in
real-time and makes it possible to store this information on a central server.
The system is capable to acquire knowledge about the web sites where the
support shall be active. And the system makes it also possible to extend and
to apply the presentation techniques on the client side.
These attributes of the presented system are applied for one specific support
problem, namely the orientation of a user in a Web area. The system makes
it possible to present a client’s navigation history (which is adaptive with
respect to the previous navigation steps) and makes it also possible to show
hyperlink maps of the local Web structure1 (which are adaptive with respect
to the position of a user in hyper-space and the hyperlink structure). The
problem of losing orientation in hyper-space is well known in literature and
often refered to as the ’being lost in hyper-space’ problem [31]. The system
presented in the first part of this thesis shows one way to help to avoid this
problem.
The second part of the thesis deals with one specific question concerning the
development of intelligent Internet agents. How can the relevance of data
objects in the Web and sequences of such data objects be estimated for a
specific user? The motivation to develop such methods for a relevance esti-
mation with respect to the system presented in the first part of the thesis

1Only static hyperlink structures are considered. The implementation considers only
HTML pages with hyperlinks marked by the ’< A’-tag.

10 Introduction

is the fact, that the presented hyperlink maps (and maps in general) can be
greatly improved, if only the objects and routes are shown that are relevant
for a specific user.
There are different possibilities to perform such an estimation known from
literature, like Markov learning, reinforcement learning or clustering proce-
dures (section 6.1). The best known method is applied by search engines,
applying methods known from information retrieval, e.g. based on linear
algebra and statistics. In this thesis, a new method is introduced to per-
form such a relevance estimation that is based on graph theory. The reason
to consider graphs is the fact, that the developed software system makes it
possible to register sets of navigation (browsing) steps of a user. These sets
can be regarded as graphs with the nodes representing the requested data
objects and the edges representing the activated hyperlinks.
It is difficult to measure the relevance of information objects for a specific
user directly and therefore the problem is put slightly different. How can
actions of a user, like hyperlink activations, be predicted? We assume that
the prediction of data objects and sequences is one possible approach to try
to estimate the relevance of data objects and sequences.2 As will be shown,
it is possible to develop simple measures to estimate the quality of a pre-
diction procedure, which is necessary to evaluate the developed prediction
algorithm.
There are different steps necessary for the presented prediction algorithm as
described in the second part of the thesis. A first problem is the characteri-
zation of a distribution of graphs in a space of graphs. The task here is not
only to consider relative frequencies of graphs, but also to consider topolog-
ical aspects of the graph space in order to deal with distortions of graphs.
Then methods have to be developed to estimate such a distribution based on
registered graphs.
In order to predict new actions of a user based on his previous navigation be-
havior, the estimated distribution can be used to classify the new registered
graph. The classification result can then be used for the prediction process
as described in detail in the thesis.
The different steps of the new prediction procedure are tested, using gener-
ated graphs that follow a well-known distribution and by applying different
quality measures. One specific estimation problem, namely the estimation
of the number of clusters in a graph distribution is examined in more detail.
Finally, the prediction procedure is applied to graphs registered by an Inter-
net server and the results are discussed.

2This assumption is only fully correct, if a user knows the web sites already very well and
therefore makes only navigation decision that are optimal with respect to the relevance.

11

The aim of the research projects in the first and the second part of the thesis
is to lay a basis for Web search support systems that provide a user with
maps of the hyperlink structure that are adapted to his specific interests.
Such systems are likely to be much more valuable than the structure views
presented in the first part of this thesis. However much more research has
to be done concerning the prediction process. The second part of the thesis
provides first main ideas and results to deal with this problem.

The structure of the thesis is as follows. In the second chapter the problem
of information search in the Internet will be described in more detail by com-
paring the Internet to a common stand-alone database. Technical aspects of
Internet (WWW) communication and necessary terms are introduced. The
support strategy, that is examined in this thesis, is motivated and the chap-
ter gives a rough survey of well-known systems that are similar to the one
presented here and that will be refered to in subsequent chapters. Partial
technical problems, some of which were examined in other research areas and
thus can be applied for the presented system, will shortly be described.
In the third chapter, the technical development of the presented Web agent
is described. At first, the architectures of similar software systems are de-
scribed. The architecture of the new software system is presented and com-
pared to the architectures of the similar systems. The main ideas and the
technical realization of the new software system is then described in detail
and support presentation examples are given. The presented software sys-
tem makes it possible to register user behavior on the server side and thus
to collect information about user behavior on a central server.
The registered type of information concerning user behavior is used in the
fourth chapter to develop a user model. User behavior is modeled by sets of
navigation decisions. These data can be regarded as graphs, and therefore the
chapter presents necessary definitions known from graph theory. The chapter
describes the problem of finding a distribution of graphs in a graph space.
Different characterizations of graph distributions are introduced to represent
the ’shape’ of a graph distribution. These distribution characterizations are
based on distance (or similarity) functions between graphs, methods to de-
scribe groups of similar graphs and the shape of these groups. At the end
of the chapter, a procedure to estimate a graph distribution according to a
distribution characterization is presented. The graph distribution estimation
is based on a common nearest-neighbor clustering technique that will be de-
scribed in more detail in appendix B. The chapter finally presents a measure
for the quality of a distribution estimation, necessary for the experiments.
Chapter five presents experiments to evaluate this distribution estimation
process. At first, a method is described to generate graph data with a previ-

12 Introduction

ously fixed distribution. This simulation procedure is applied to show some
properties of the estimation process, like convergence for an increasing num-
ber, the impact of noise, the impact of topological information etc.
The sixth chapter deals with a new technique to predict a user’s navigation
steps and sets of navigation steps. At first, the new prediction algorithm is
described, which is mainly based on a classification of graphs according to
an estimated graph distribution. The measure for a distribution estimation
quality presented in chapter 4 can’t be applied for observed data, because in
this case the distribution is not known. Therefore a new quality measure for
the prediction process is presented, that can be applied for simulated and for
real data. The new prediction algorithm is first applied to simulated data in
order to show basic properties (and the correctness) of the algorithm. Then
the algorithm is applied to observed profiles. Estimation results like estima-
tions of the number of clusters are presented and discussed.
The thesis concludes with a summary of the developed techniques and the
results and gives an outlook in chapter 7.
The appendix consists of three parts. In the first part, appendix A, the
problem of graph matching, which is well-known from the field of pattern
recognition, is introduced, the current state of research is described and the
algorithms which are applied in the thesis are presented. Appendix B gives
a short introduction to hierarchical cluster algorithms and presents the algo-
rithm that is used for the distribution estimation. Appendix C describes
necessary modifications in order to apply the presented estimation procedures
to access-log files, registered by web servers.

Chapter 2

Internet Technology, Basics

2.1 Technical basics of Internet communica-

tion

In order to make characteristic problems of users and information providers
in the Internet clear, it may be helpful to regard the Internet as a (global)
database and to compare it to common (stand-alone) database technology.
This comparison is dealt with in the first part of this section. Then the main
technical requirements and ideas of Internet communication are presented
and the necessary terms are introduced.

2.1.1 From databases to the Internet

Information stored in computer memory is called data. If the data is a collec-
tion of related facts about some topic, it is called a database [73]. Databases
operate on so-called entities and entity relationships. An entity is a particular
object in the problem domain that has characteristic properties or attributes.
There may exist relationships between entities, usually modeled by labeled
associations between entities. The choice of entities, entity attributes and
relationships depends on a specific problem domain. In order to create and
to use a database software, packages have been developed called database
management systems (DBMS). The main idea of database management is to
separate a database structure from its contents. The database structure is
also called database schema. A DBMS usually provides on the one hand a
data description language (DDL) in order to define database schemes, and
on the other hand a data manipulation language (DML) to manipulate data
objects and relationships with respect to the database schemas.
A method to organize data in a database has to take two problems into ac-

14 Internet Technology, Basics

count. One is to define rules according to which data are structured and the
second is to define permitted operations. Such a method is called (Logical)
data model. It is usually expressed and encapsulated in a DDL and the DML.
One approach to data modeling is the relational data model [100]. The term
relation refers to a two-dimensional table of data that represents a particular
entity. Each row, referred to as tuple, is a collection of values about a par-
ticular individual of that entity. The term domain refers to a set of values of
the same kind. The same domain being present in different relations makes
it possible to represent relationships between entities. In order to define the
structure of a relational database and to retrieve and maintain data, dif-
ferent relational languages have been developed like SQL (structured query
language) or QBE (query by example).
A second approach to data modeling is the object-oriented data model, used
by object-oriented databases [50]. The principal components of such a database
are abstract data objects (ADOs), that make it possible to organize more
complex data than the relational data model, e.g. multimedia data. The
query languages in this case are much more complex, since they strongly
depend on member functions provided by the ADOs themselves.
From a client’s point of view, the Internet can in some respect be regarded as
a database, too, although there exist striking differences to common stand-
alone databases. It is difficult to find a finite number of entities in the case of
the Internet. The information is usually located in multimedia data, either
in data objects of one single type, like images, text or sound files or larger
data objects, containing these single data objects, like web pages. The data
objects neither fit into a relational nor into a simple object-oriented data
model. The Internet may however also contain relational or object-oriented
databases, if they are connected to it.
In contrast to a relational or an object-oriented database, it is relatively easy
to provide information in the Internet, since no database scheme has to be
taken into account. In contrast to an object-oriented database, no retrieval
member functions have to be developed to make information available (re-
trievable). On the other hand the problem is, that there exist no query
languages, which makes it difficult to retrieve information. In some respect,
the easiness to provide information in the Internet results in a huge effort to
retrieve (relevant) information from the Internet.
One most important way to make retrieval of information in the Internet pos-
sible is provided by so-called search engines. These software systems analyze
the contents of web pages and build indexes that represent the contents of
pages. The query of a user is sent to the search engine server and is processed
with the help of those indexes [10].
The general problem of finding information in the Internet is the main topic

2.1 Technical basics of Internet communication 15

of this thesis. However in contrast to (global) search engines, only a well-
defined part of the Internet will be considered, which will be called Internet
area or environment.
A (distributed) Internet area or environment is the data available in the In-
ternet that are located on a (small) number of Internet servers (section 2.1.2),
e.g. the servers of a university or of an enterprise.
The term ’distributed’ emphasizes, that the data objects may be located on
different servers. Those servers should be physically near to each other, as
explained in the next chapter, and they should provide information relevant
for a certain topic like science, economy/business etc.

2.1.2 Client/server communication, protocols

In the Internet there exist two kinds of participants, users (or clients) who
usually request information, and those participants who provide information.
The respective computers of those participants will be called the client and
server computers. From a technical point of view the communication takes
place between processes on the respective computers, a client and the server
process. In order to make a communication between computers with differ-
ent operating systems possible, a common network model has to define, how
the exchange of data takes place. In the case of the Internet, the TCP/IP
layer model is applied, which is similar to the ISO/OSI model [97]. The
protocols TCP and IP (Transmission Control Protocol / Internet Protocol)
[85], [86], [105] make a transport of data packages from one computer to
another computer through a local network or through the Internet possible
(network / transport layer). A communication at this level would be very
complex; therefore protocols at a higher level are applied to capture, from the
client’s point of view, the capabilities of a server by the description of mes-
sage exchanges (requests and responses)[73]. Common protocols that define
a communication at this application layer are HTTP (HyperText Transfer
Protocol) [35], FTP (File Transfer Protocol) [87] and others. All resources
and users on the Internet that use the HTTP protocol are denoted as World
Wide Web (’WWW’ or ’Web’). This is the part of the Internet that is con-
sidered in this thesis. A URL (Uniform Resource Locator) can be viewed as
a means to uniquely identify resources on the net.

Definition 1 A URL (Uniform Resource Locator) is the address of a file (re-
source) accessible on the Internet. The type of resource depends on the Inter-
net application protocol. Using the World Wide Web’s protocol (HTTP), the
resource can be an HTML page, an image file, a program such as a common
gateway interface application or Java applet, or any other file supported by

16 Internet Technology, Basics

HTTP (section 2.1.4). The URL contains the name of the protocol required
to access the resource, a domain name that identifies a specific computer on
the Internet, and a hierarchical description of a file location on the computer
or a query string1.

A URL is a vital part of any HTTP request, since it may e.g. contain the
information about which data object is requested. A second component of a
HTTP request is the MIME content-type [46]. The HTTP header contains
information about the type(s) of the contained data.
As far as the presented system in this thesis is concerned, only the HTTP
protocol is considered and HTML data2 (section 2.1.4 and 3.5.3). Requests
addressed to CGI scripts or requests for Java applets or XML data etc.
(section 2.1.4) are not considered.3 ’Fragment identifiers’ [46] referencing a
particular location within a resource are also not considered. Thus in this
thesis a URL usually denotes the address of an HTML page or of an image
in the WWW.
In the following text the term data object will be used to denote data that
are addressed by a URL (e.g. a web page, an image etc.) and that are not
part of another data objects (e.g. an image being contained in a web page).

2.1.3 Basic software applied for Internet communica-

tion

Communication in the Internet is made convenient (and therefore popular)
by means of different software systems that have been developed in the last
decades and that are frequently changed and further developed. These soft-
ware systems are a required basis for the presented Internet agent in this
thesis and will therefore shortly be described.
An Internet browser (short browsers) is the process, a user can start in order
to (easily)

• submit (HTTP-) requests for documents in the Internet

• view documents or other data objects, execute programs

• send information to a server

The third item is necessary to send e.g. a password or business-related data
like a bank account to a server. There exist several of such programs that

1e.g. a Common Gateway Interface (CGI) query string
2and some other MIME-types like GIF-files, JPEGs etc.
3Some of the results may however be extended to these data types.

2.1 Technical basics of Internet communication 17

are widely spread, like Internet Explorer [76], Netscape [13] or Opera. In
order to provide information, Internet servers [72] like IIS, Apache [65] are
applied. These programs make is possible to

• accept and process requests from clients

• fetch and send the requested data back to a client

• communicate with other programs for more complex procession4, like
databases etc.

Plug-in applications are programs that can easily be installed and used as
part of a web browser. Usually plug-ins define supplementary programs, e.g.
in order to play sounds or motion videos.
In the connection between client and server different programs may be applied
like proxy servers and firewalls. Proxy servers [37] make it possible to redirect
requests to another server. It may be used e.g. as a gateway, linking a local
network to the Internet. Proxy servers may also store requested data objects
temporarily (caching) in order to shorten the response time, which will be
an important aspect later on. Firewalls are programs that are often located
on gateways in order to make the Internet communication safer [84].

2.1.4 Languages used for Internet communication

The Internet protocols mentioned above make a communication between
client and server process through the net possible. A further question is,
how to impart information. HTML (HyperText Mark-up Language) [52]
and XML (Extensible Markup Language) [48] are languages that make a
presentation of multimedia information for the user’s browser possible.5 One
of the powerful presentation techniques of HTML is the frame concept which
will be important for the technical realization of the described software agent
(section 3.4.5). Frames make it possible to divide the visualization area of
the browser into several segments. Each segment may visualize a certain
data object. Other developments like Java Script [40] or Java [39] make it
even possible for a server to run small programs on the client side, supervised
by the browser software. It is obvious that this technique may contain many
security risks. Therefore the rights of these programs (e.g. Java applets)
are restricted. Java applets run in a so-called sand-box on the client side
[26], [38]. They are e.g. not allowed to write data persistently on the client

4This is usually implemented using the common gateway interface (CGI) [46].
5For XML a special browser is required [45].

18 Internet Technology, Basics

computer and they must not read files.6 Most languages make it possible for
a user to request new data objects by activating hyperlinks.

Definition 2 A hyperlink is a special area on a web page which can be acti-
vated (usually with a mouse). The hyperlink can appear as text (anchor text)
or graphics. A hyperlink contains a (usually invisible) URL address, which
is the target address of the HTTP request that is initialized by the browser
when the hyperlink is activated by a user.

Most hyperlinks take a user to another web page or perform special functions,
like submitting a form, accessing an ftp site or execute a database query.
In this thesis only hyperlinks on HTML pages marked by the < A > and
< /A > tags are considered [46] (the restrictions concerning URL addresses
in hyperlinks were described in section 2.1.2).

2.2 The basic problem: perception, search

and orientation

2.2.1 Human perception, parallel and sequential

When discussing the development of a software system that makes it easier to
find electronically stored information, it may be helpful to take into account
how humans perceive information. One characteristic concerning e.g. the
visual and the contact sense is the fact that images or touches are processed
in a parallel manner. However there exists a minimal resolution in time, e.g.
about 40 msec for visual impressions and 10 msec for acoustic impressions.
Impressions that follow each other in a shorter time, can’t be separated by
a human in time and will be perceived as one single impression. Therefore
there exists a minimal time interval ∆tmin,which satisfies the following:
Every two impressions perceived by a human on an arbitrary sense occurring
in a time interval smaller than ∆tmin will be perceived as (at most) one
impression and can’t be separated in time.
The amount of information, a human can process in this time interval is
finite; it is limited e.g. by the finite number of respective perception cells.
The information a human perceives in the time interval ∆tmin will be refered
to as a perception object. The information a system provides in this time
interval will be refered to as an impression object. Human cognition can
therefore be regarded as the processing of a sequence of perception objects,
that will be called perception or impression sequence. If a human wants

6A user may assign applets more rights.

2.2 The basic problem: perception, search and orientation 19

to acquire information, it may be the case that it is possible to satisfy the
information need with one impression, e.g. an image that is shown for a short
time. In most cases it will be necessary to provide him with a sequence of
impressions. One example is a text, that can (and has to) be processed in
a sequential manner by reading it, although a single letter is processed in a
parallel way.
The result of this consideration is that no matter what information need a
human has, a software system always has to provide or generate a sequence
of information objects, an impression sequence (with length ≥ 1). In many
cases the information need can be satisfied by textual data that provide
such impression sequences without any active sequence generation by the
software system.7 More complex questions or information needs make it
necessary to provide a sequence of texts (passages), images, web pages and
other information. It is important to note, that the information need can’t
be satisfied by presenting a set of data objects. In this case, the human
would have to actively convert this set into a sequence in order to be able to
perceive it.
To summarize, there are two things that have to be considered by a machine,
providing information for a human. One is the presentation or generation
of single impression objects, the other is the presentation or generation of a
sequence of such objects.
As an example, current Internet search engines may be considered. Search
engines provide as a search result a set of links to web pages that is ordered
by the estimated relevance for a specific user. Usually a user perceives the
hyperlinks on the presented list one after the other, sometimes moves to the
respective data objects. Each web page provides sequences of impressions
when e.g. a text is read or images are looked at. The user may return to the
list of links and continue to perceive this list [51]. By this means a search
engine presents (proposes) a sequence of impressions as a result to a query
of a user. The list of hyperlinks is generated actively by the system, the
respective web objects are usually already present in the Internet.

2.2.2 Search strategies in the Internet

Up to now, information systems don’t present perception sequences a user is
committed to.8 In the usual case, as in the case of Internet search engines,
the presentation is only a proposal, how a user may perceive the information.

7A common text provides a sequence of impressions usually generated by a human
author.

8An example for a strict information presentation is e.g. a film or an animation.

20 Internet Technology, Basics

In practice, he will only choose a subset (subsequence) of the proposed in-
formation objects and may also change the order of objects. In most cases it
will not be sufficient to use a search engine only, in order to find information.
Therefore, a user usually has to apply a ’strategy’ in order to satisfy his in-
formation need [4]. A first strategy is to apply other media like magazines,
etc. in order to get ’positions’ (URLs) of information objects. A second
strategy is to use a software system like a search engine or intelligent infor-
mation agents in order to find data objects. Third, a user may request new
data objects by activating hyperlinks on a web page, a process that is also
called browsing. Usually the first two strategies are not sufficient to satisfy
information needs, a user will in most cases also apply the third strategy.
This strategy can be further subdivided. A thorough insight into different
browsing strategies in hypertext is given in [18]. In [27] and [94] three rough
kinds of browsing strategies are described. One is search browsing, where the
goal is exactly known. This goal can be one single data object or a sequence
of such objects, as described above. A second browsing strategy is general
purpose browsing, where sources are consulted that have a high likelihood to
be interesting. A third strategy is random browsing.
It is obvious, no matter what strategy a user applies in order to find in-
formation, he will acquire a sequence of perception objects. This sequence
will be influenced by his behavior and by the applied software systems, that
may propose (partial) sequences. The term navigation will be used in the
following in order to describe such a process.

Definition 3 A navigation in the Internet is a sequence of a user’s actions
like using search engines or hyperlink activations that results in a sequence
of perception objects.

In this thesis not all possible actions of users in the Internet are considered.
The technique that is applied to register user behavior, which will be pre-
sented in section 3.4.2, registers only hyperlink activations on HTML pages.
The respective URL9 has to address a resource on the WWW (HTTP pro-
tocol) and only requests for HTML pages and some basic data types (like
images) are considered.10

In order to develop a software system that helps a user to find information,
it is the goal to minimize the effort for a navigation necessary to satisfy his
information need, i.e. it is the aim to minimize the length of the sequence

9the target URL of the HTTP request that is initialized when the hyperlink is activated
10Requests addressed to CGI scrips or requests for Java applets etc. are not considered.

The registration technique may however be extended in order to deal with such requests
(section 3.4.2).

2.2 The basic problem: perception, search and orientation 21

and thereby the time requirement and the number and difficulty of a user’s
necessary actions.

2.2.3 Problem description

With the considerations above in mind it is now possible to define the objec-
tive of this thesis.
The general problem that can be derived from the previous sections is the
question, how a software system can be developed, that provides a user in
the Internet with an impression sequence that satisfies his information need
with minimal effort. The ideal case for a user would be a system, that makes
a passive navigation possible that, once being started, presents an impression
sequence of minimal length, which satisfies the information need without fur-
ther actions of the user. In practice, the information need of the user has to
be estimated since it is not known to the system in advance. This estimation
must be based on actions of a user, like entering of search words or an acti-
vation of hyperlinks. The first problems therefore are to register information
about a user and to estimate the user’s information need with minimal effort
for the user. Based on this estimation, an optimal impression sequence has
to be chosen. A further question is, how a software system can present the
estimation results for a user.
Therefore there are four basic steps to be performed by the ideal system.

• The registration of information about a user (e.g. a user’s behavior)
with minimal effort for the user.

• The optimal estimation of a user’s information need.

• The computation of the optimal impression sequence.

• The presentation of the support data.

Usually, the quality of the estimation of the user’s information need depends
on the amount of information the system knows about the user. Moreover,
the amount of information a system registers about a user is usually increas-
ing the effort for the user (the information may e.g. consist of the set of a
user’s actions). Therefore a main problem, when developing such an ideal
system can be emphasized: The task to minimize the effort for a user is usu-
ally contrary to the problem to optimally estimate a user’s information need.
Usually in practical applications it will not be possible to optimally estimate
a user’s information need due to a lack of information about the user. How-
ever, if the estimation of a user’s information need is not good enough, an
optimal impression sequence can’t be computed and the impression sequence

22 Internet Technology, Basics

isn’t of much worth for the user.
Due to these problems, in this thesis a different support strategy is applied.
The searching process isn’t interrupted by the system, e.g. in order to present
an impression sequence, but it is basically unchanged. The registration of
information about a user is done in a way that the user can hardly realize
it. The system presents the support information in a separated window and
the user may choose to look at this window in order to get the support in-
formation.
The kind of information that is presented in the support window doesn’t
concern the information need of the user directly, but it deals with his ori-
entation in the Internet area and thereby his understanding of the structure
of the information. In section 2.2.2 the term navigation was introduced to
describe a search process combining the use of search engines i.e. query based
searching and browsing search. It was described that in contrast to naviga-
tion in the physical world, this navigation in an information space denotes
the sequence of a user’s actions necessary to obtain a sequence of perception
objects. Possible actions are e.g. actuating a hyperlink, usage of a search
engine or directly entering of an URL-address into the browser’s location
text-field.
One problem that navigation in the physical world and navigation in an in-
formation space have in common is the necessity of orientation. The traveler
or user normally has to choose among a number of possibilities which way
to go or what data object to load onto his screen. In most cases a decision
has however an influence on possible future navigation decisions since e.g.
hyperlinks (which are possible future navigation steps) are not the same on
different web pages. It is therefore decisive to have an idea of the set and the
structure of decision possibilities out of which are resulting future decision
possibilities, to achieve an ’optimal’ navigation with respect to a certain goal.
This goal can be to find a certain data object that contains desired informa-
tion. As described in section 2.2.1 in more complicated cases the goal can’t
be achieved by presenting a single data object. It is then the objective to
acquire a sequence of data objects due to the nature of human perception.
Orientation in the information space is even more important in this second
case, since the required navigation process to achieve the complex goal easily
causes disorientation.

2.3 Similar projects

In section 2.2.3 the importance of orientation during information search in the
Internet was discussed, which is the main topic of this thesis. Different pos-

2.3 Similar projects 23

sibilities are known from literature that make orientation in an information
space for a user easier. There are solutions or systems that are non-adaptive
and present the same support information for all users. Other systems are
adaptive with respect to the specific situation of a user, e.g. his position or
his history in hyper-space. More advanced systems apply statistical methods
(’intelligence’) to estimate the interests of a user.

Basic strategies and systems to make orientation in the Internet
easier

A first basic possibility to make orientation in the Internet easier is to design
web pages, that have a clear structure. Similar problems are discussed in the
field of web page design and will not be examined in this thesis.
A possibility to make the structure of the hyper-space easier to understand
is to help a user to understand the ’consequence’ of a hyperlink activation.
A first basic possibility is to create meaningful anchor texts of hyperlinks or
hyperlink images, that clearly represent the contents of the data object where
a hyperlink points to. A more advanced method is to provide a user with
additional information about the data object, pointed at by the hyperlink.
One project to achieve this was presented in [107], where an enhanced link
user interface provides a user with meta-data about a hyperlink. A similar
project called ’HyperScout’ was presented in [113]. Here additional informa-
tion about a hyperlink is presented to the user, like the size and the type
of the document. In [59] a system is described that provides a user with a
visual (thumbnail) preview of the target of a hyperlink. In [3] the relevance
of a hyperlink is estimated for a specific user. A system is then presented to
mark hyperlinks on web pages if they are estimated to be relevant for this
user.
Another possibility to make orientation for a user easier is a well-designed
structure of the web site, i.e. a web site design that can easily be understood
by a user. It was e.g. in [93] shown, how the architecture of web information
systems can be improved using design patterns.
A further possibility to make orientation easier is to give a user a survey of
the data objects on a web site. This presentation has strong similarities to a
map of a real landscape, although the ’space’ of objects is different. Here the
presentation of the set of data objects on a web site or a map of the hyper-
link structure is possible. These kinds of presentations are usually denoted as
’site maps’. In [55] a survey is given, how site maps can be and are actually
presented on modern web sites. The layout of such maps may become very
difficult for extensive web sites especially when connections like hyperlinks
are taken into account. Such layout questions are analyzed in the field of in-

24 Internet Technology, Basics

formation visualization. In [49] a survey of common graph and information
visualization techniques is presented. Such site map presentations can’t go
into detail because the maps would otherwise become very complex in many
cases. They are only a means to give a visitor of a web site a rough idea of
the (logical) site structure. The presentation technique is very simple since
the map can be loaded by the client like a normal web page and is presented
in the current browser window.
Most of the previous possibilities to achieve orientation of a user are not
’personalized’, i.e. the presentations are not developed with respect to the
individual situation or interests of a certain user. The support is identical
for all visitors of a web site. However different users usually have different
backgrounds, histories in the data structure and goals or questions in mind,
which leads to the concept of adaptive hyper-space. The support systems
may e.g. be adaptive with respect to

• the position of a user in hyper-space

• previous positions (i.e. his history)

• query texts (, questionnaires etc.)

• his preferences11

One example is the presentation of data objects that contain hyperlinks
pointing to the current data object in the browser window. A second ex-
ample is the presentation of possible navigation decisions using hyperlinks
up to a certain depth. For such presentations the system must register a
user’s current position in the web site. It must also be able to acquire knowl-
edge about a web site. The Hyper-G system presented in [28], which consists
of an advanced browser software running on the client side (HyperWave)
and a specially developed Internet server makes such presentations possible.
Other systems for this kind of presentation have been presented in [6] and
[114].
In [114] not only the local hyperlink structure can be presented but also the
former navigation path of a user. This navigation history presentation is an
additional attribute of the system to avoid loss of orientation for a certain
user. It is also possible to show former usages of other users and thereby to
present a first hint to global relevance of data objects. A system to acquire
this information was presented in [53], too, but this system doesn’t provide
a visualization possibility on the client side. The contribution of this the-
sis (chapter 3) with regard to similar adaptive visualization techniques was
presented in [62]. The systems are compared to each other in chapter 3.

11as estimated by the system with regard to the available information about a user

2.3 Similar projects 25

Adaptive information agents

Some of the systems described so far are adaptive with respect to the position
of a user and his previous searching behavior (his navigation history). These
systems are not adaptive with respect to a user’s preferences or individual
interests. As described in section 2.2.3 these individual interests have to be
estimated by the support system with regard to actions of a user. More
advanced systems that are capable to perform such an estimation are called
intelligent and were usually presented in the field of intelligent software agents
[9], in this special case in the field of (adaptive Internet) information agents
[58].
Some overviews of existing systems are given in [58], [9] and [70]. Similar
research problems are examined in the field of intelligent hypertext [78], [14],
[30].12

Adaptive Information agents can be subdivided into single agent systems
or multi-agent systems, that may learn in a collective way. Multi-agent
learning will not be considered here. The different adaptive single agent
systems can be characterized by the applied learning strategy. Content-
based learning is based on a single user’s past behavior [120]. Obviously this
method requires relatively large amounts of data from a user in order to make
the formulation of a statistical model possible. Collaborative learning [120]
is based on the observed behavior of a group of users [89], [3], [114]. The
approach can be applied whenever a user behaves in a similar way as a group
(or a subgroup) of other users. Possible learning methods are e.g. learning
by example, analogy or discovery. The methods also differ with regard to the
kind of feedback for the agent, e.g. by means of reinforcement, supervised
or unsupervised learning, the type of interaction among agents and human
users, the purpose of learning, i.e. the kind of support information, and
the applied presentation technique [58]. Different techniques are applied to
acquire information about a user, like an observation of his online activities,
preferences and questionnaires.
Most single adaptive information agents that have been developed so far are
personal web assistants or adaptive interface agents that search for relevant
information by anticipation (estimation) of information needs and preferences
of users.
One example for such a system is the web browser ’Intelligence’, developed
by IBM [44]. The browser provides e.g. a ranking of web pages previously
visited by a user. The ranking considers the number of times a page was
visited and the time needed to load a web page.
Similar to this, Letizia [68] is an agent that assists web browsing. Letizia

12An intoduction into technical aspects is given in [7].

26 Internet Technology, Basics

is an extension to common browser software like Netscape (section 2.1.3),
that observes the actions of a user, like entering URLs or exploring Web
pages. Based on a user’s preferences, the system loads and evaluates web
pages automatically, that are pointed at by hyperlinks on web pages that
were already requested. Web pages that are considered to be relevant are
recommended to the user.
The system Web Watcher also recommends web pages to a user [3]. Learning
is accomplished by means of two different strategies. A first strategy is
based on a similarity between interests (provided keywords) of users. At the
beginning, a user has to describe his interest by providing keywords. During
his navigation process, every applied hyperlink is augmented by adding the
keywords to the hyperlink. An evaluation of hyperlinks for a user is done
by comparing a user’s interest (keywords) and the descriptions of hyperlinks
on the current page in the browser window. The hyperlinks estimated to be
relevant are marked by a special symbol. The comparison applies a TFIDF
distance measure [95]. A second learning strategy based on the previous one
applies a reinforcement learning technique and takes into account the web
site structure. Paths are found through the web which maximize a reward
function taking into account possible future navigation decisions of a user.
There are many projects similar to the ones described, as e.g. WebMate
[23], Let’s browse [71], Syskill Webert [80] and Info Agent [29]. The adaptive
support system presented in this thesis was published in [63].

2.4 Fundamental technical problems

This section offers a survey of basic technical problems that have to be solved
in order to put the described software system into practice, some of which
were examined and solved in other problem fields. Some solutions can directly
be used as modules by the presented software system in this thesis.

2.4.1 Static analysis of Internet information

One important question is how a software system can acquire knowledge
about data objects in the Internet, which will be referred to as static anal-
ysis of Internet information. The term ’static’ will be used although the
amount of information in the Internet is currently subjected to a fast grow-
ing process. Due to this fast increase of the amount of information, due to the
different (script-) languages that are used to present and to make information
available (section 2.1.4) and due to frequent changes, knowledge acquisition
in the Internet is in the general case a very complex topic. This knowledge

2.4 Fundamental technical problems 27

acquisition is e.g. an important topic for the development of search engines
or information agents.

Finding data objects

One first issue is how to find information objects in the Internet. Well known
software systems to find data objects are Internet spiders (also called robots
or crawlers) [36], [22]. These software systems assume that most data objects
in the Internet can be reached by a path in the hyperlink structure.
The rough idea of these systems is first to load down certain starting points
(web pages). The web objects are filtered (parsed) for URL addresses being
contained as hyperlinks in the pages. The procedure continues recursively at
the extracted URL addresses. Different strategies were presented to pursue
this kind of search for different purposes [22] (e.g. breadth-first search [11]).
In [11] problems were discovered resulting from this link-following strategy.
In the article a considerable part of the Internet was analyzed with respect to
hyperlink connections of data objects. The whole analyzed structure could
roughly be divided into 3 groups. A first group contains about one third of
the analyzed data objects. It characterizes the ’strong connected component’
(SCC), where every data object (e.g. web page) is connected to any other
data object by a sequence of hyperlinks. A second group, also containing
about one third of the data objects, is denoted as ’OUT’. It represents data
objects that can be reached from the SCC component, but there is no link
traversal to the SCC component from OUT possible. A third component,
denoted as ’IN’ has hyperlink routes to the SCC component, but no link
traversal to the IN component from SCC or OUT is possible (possibly IN
contains many new sites that people have not yet discovered and linked to).
It is obvious that although two thirds of the Internet objects, the OUT and
the SCC component, can be reached by link traversals, one third can’t be
accessed in this way. These results reveal severe limitations of spider or
crawler systems to analyze Internet contents. Finding data objects in the
Web is thus a non-trivial problem.

Hyperlink structure retrieval

The web pages and other data objects and hyperlinks can be regarded as a
graph structure (a formal definition is given in section 4.3), where the data
objects are the nodes and the hyperlinks the (directed) edges of the graph.
This graph structure doesn’t have to be static. It may e.g. be the case that
a Java applet in the user’s browser window shows different hyperlinks at dif-
ferent times. A second problem concerning the graph structure is that some

28 Internet Technology, Basics

web pages are generated dynamically (e.g. search engine results). In the
following these advanced aspects are not considered. Only a static hyperlink
graph will be considered and generated pages are modeled by representatives
that contain all hyperlinks that may occur.
The information provided by the spider software above can be used to regis-
ter, what hyperlinks exist in the Internet and may thus be applied to register
the (mostly a partial) graph structure of the Internet [11]. This process,
’mining of the Web’s link structure’ [20], was applied e.g. by [57] and [21] in
order to find characteristic properties of Internet topologies and (topological)
properties of objects in the Internet. In this thesis this knowledge about the
structure is applied for a visualization of a local hyperlink structure (section
2.4.3).

Information retrieval and multimedia retrieval in the Internet

A second question concerning the static analysis is to examine the contents of
data objects. Since the data objects are in most cases multimedia objects, a
contents analysis may consider texts, images etc. and even the arrangement
of the media objects in web pages. As far as texts are concerned, a contents
analysis was examined in the field of information retrieval (IR), e.g. in [96]
and [47]. The contents analysis of images, falling into the research area of
computer vision, was e.g. described in [67].

2.4.2 Registration of the use of the Internet

In order to develop a software system that presents information depend-
ing on the interests of a user, the system has to acquire information about
the user. For collaborative filtering purposes, information about a group of
clients has to be acquired. In the case of Internet usage, this is a non-trivial
problem since the participants (client and server) may be very distant from
each other. It is the goal to maximize the information about a client with
respect to a minimization of the effort for a user.13 This problem will be
extensively discussed in the next chapter. At this point, a rough survey of
principal methods to acquire information about users is given.
A first possibility is obviously to ask users directly what they are looking for
and why they make certain decisions. In [51] every step of the interaction
during an Internet search is made verbally explicit, a technique that is used
e.g. in [32]. The same technique is employed in [18]. It is obvious that this

13The knowledge can e.g. be used for a service provided by a company to customers.
Clients obviously can’t be expected to actively provide information because it may increase
the risk that they change the company.

2.4 Fundamental technical problems 29

strategy is very extensive and may be applied for scientific purposes but may
hardly be applied in real applications. In the case of Internet interaction,
it is also technically difficult to implement because of the physical distance
between client and server. It is therefore crucial to develop methods to au-
tomatically register user behavior on the server side.
A method that is made possible by HTML and other languages (section
2.1.4) is directly to request information from a user. A user may e.g. fill in
questionnaires, provide query texts etc. Search engines depend on such in-
formation in order to search for (i.e. to estimate) relevant documents. Some
web pages ask users for feedback information. The registered information is
simpler to process than e.g. audio-taped information but it requires addi-
tional effort for a user.
One possibility to automatically register information about a user, without

62.226.76.63 - - [01/Aug/2001:00:03:11 +0200] ”GET / jpa/images/ars.mpg

HTTP/1.0” 200 1883839

138.15.10.5 - - [01/Aug/2001:00:03:46 +0200] ”GET / tbl/links.html HTTP/1.0” 404

294

216.239.193.84 - - [01/Aug/2001:00:18:17 +0200] ”GET

/ chp/Pictures/AFPAC/Day1/pm/picture-017.html HTTP/1.0” 304 -

212.135.130.131 - - [01/Aug/2001:00:20:00 +0200] ”GET /

216.239.193.76 - - [01/Aug/2001:00:25:39 +0200] ”GET

/ chp/Pictures/AFPAC/Day2/am/picture-017.html HTTP/1.0” 304 -

216.239.193.81 - - [01/Aug/2001:00:42:06 +0200] ”GET

/ chp/Pictures/AFPAC/Day1/dinner/picture-007.html HTTP/1.0” 304 -

Figure 2.1: Example of a partial access-log file. The first column shows the
IP address of a client, the following three columns store the time when the
request reached the server, a GET request, containing e.g. the URL of a
requested data object, and information about the applied HTTP-version.

increasing his effort, is the analysis of the so-called access-log-files. In the
most common case a server receives requests from a client as HTTP requests
(section 2.1.2). These requests are usually stored by common server software
like Apache (section 2.1.3) in log files, the access-log files. A sample file, con-
sisting of 6 requests is shown in figure 2.1. As can be seen, the information
available from the original HTTP requests is stored in the form of entries,
containing information about the IP address of a client, the time when the
request reached the server and usually a GET request, containing the URL
of a requested data object (section 2.1.2), and information about the applied

30 Internet Technology, Basics

HTTP-version.14 It is possible to identify a client by his IP address and
thus to obtain the set of his requested data objects. This procedure and the
exploitation of such information, called mining of access-log files, is widely
examined and applied in literature [117], [82].
Another method to automatically register a user’s actions will subsequently
be refered to as the ping method. This method is based on the experience
that caching procedures in the Internet (section 2.1.3) have usually common
properties with respect to which data objects are cached. For example a
HTTP-get request that looks like a database query because it contains an
additional query string (separated by the ’?’ symbol in the GET string) is
likely not to be cached [72]. The idea of the ping method is to provide each
web page with a small data component (the components of web pages like
images etc. are loaded automatically) that is likely not to be cached and that
points (by its URL) to a special registration server. By this means it can be
registered, which web pages are requested. The method is not applicable to
other data objects, like images etc.
A further possibility is to force the Internet traffic to a certain server or a
number of servers to go through a proxy server (2.1.3). In this case, all re-
quests can be registered by the proxy server.
There exist problems resulting from these strategies that will thoroughly be
discussed in the next chapter in section 3.4.3 and a more advanced method
will be presented.

2.4.3 Information visualization in the Internet

As described in sections 2.2.1 and 2.2.3, an optimal search support tool should
present an impression sequence to a user depending on his information need.
This strategy would require a precise estimation of the information need and
a reliable quality of the impression sequence. For principal reasons a software
system will have poor information about a user at the beginning of a search
and possibly at later stages of a search, too, which makes it hardly possible
to provide an optimal impression sequence.
The support strategy that is chosen here (section 2.2.3), is therefore differ-
ent and makes a simultaneous presentation of different estimation results
possible. The strategy is to present adaptive maps of the data structure.15

The presentation of Internet (hypertext) structures is a problem that is well-
known in Information Visualization [55], [43]. It was mentioned in section

14The type of the data object (MIME content-type, section 2.1.2) can be determined
from the extension of the requested filename.

15Only static (hyperlink) maps are considered (section 2.4.1). Dynamically generated
web pages are not considered.

2.5 Summary: Internet Technology, Basics 31

2.4.1 that data objects and hyperlinks constitute a graph structure. A pre-
sentation of this multimedia structure taking the topology into account is
therefore a problem known from the field of graph visualization [49].
In this thesis the mere (hyperlink) graph structure is considered. Another
approach taking semantic aspects into account is provided by topic maps
[115].

2.5 Summary: Internet Technology, Basics

In this chapter, basic technical concepts of Internet communication have
been introduced like network protocols and languages used for communica-
tion; the most important software systems like browsers and Internet servers
were described. This chapter introduced the fundamental problems of in-
formation search in the Internet by comparing it to a common stand-alone
database. Considering the nature of human perception, an ideal support
tool for information search was described, providing sequences of impression
objects at minimal costs for a user, that satisfy his information need. The
objective of this thesis to help a user to orientate himself in hyper-space was
presented, and compared to the general task of an ideal information search
support tool. This chapter described similar projects that were presented in
the field of adaptive information agents. Some solutions concerning techni-
cal problems of the presented system were described, which are known from
other research fields. At the beginning of the next chapter, the objective
of the system will be described in more detail. Then the system will be
technically described and results concerning the development of the support
agent, the visualization of navigation history and local hyperlink maps, will
be presented.

32 Internet Technology, Basics

Chapter 3

Internet Agent for Adaptive
Hyper Space Visualization

The aim of this chapter is to describe the developed adaptive information
agent. Main ideas of the software system are presented and compared to
similar systems which were described in section 2.3. The components and
technical attributes of the agent are presented. Finally, some visualization
examples are shown.

3.1 Objective of the software system

The objective is to present an Internet agent that makes a navigation sup-
port possible for users, who visit a distributed (but restricted) Internet en-
vironment’. A ’distributed Internet environment’ as defined in section 2.1.1
denotes a number of Internet servers, e.g. the Internet servers of a univer-
sity or of an enterprise. The special case considered here is navigation in
the WWW. The agent will make it possible to acquire knowledge about the
searching behavior of a certain user at the server side1 and also to persis-
tently collect knowledge about past navigations of users in a database. The
navigation support will be achieved by presenting maps showing the local
hyperlink structure or other decision possibilities in the Web environment or
by presenting the navigation history of a user. The agent makes it possible
to present these maps on the client side. One important aspect is how to
technically perform the presentation of these maps, taking into account the
most likely software constellation on the client side. Another important as-
pect is the possibility of an autonomous presentation. Once activated, the

1This registration should be as independent from the applied browser software as pos-
sible.

34 Internet Agent for Adaptive Hyper Space Visualization

presentation can be pursued without further actions of the user (i.e. actions
concerning the navigation support presentation). Autonomy is an important
attribute of an agent [9].
The technical descriptions in this chapter show, which information about a
user’s searching behavior can be measured by the agent on the server side.
In the next chapter this data type will be used to derive a user model. The
data type is then used to develop an estimation procedure for the relevance
of future navigation steps or sequences of future navigation steps.

3.2 Possible architectures for navigation sup-

port tools

Comparing the architectures of the different navigation support strategies or
tools described in section 2.3, it can be outlined that there exist four different
fundamental architectures as shown in figure 3.1. These basic architectures
will be used to demonstrate main advantages or disadvantages of the respec-
tive support strategies.
The navigation support strategies that present the same information for all
users, like well designed web pages, well designed site structures or site maps
can be presented using common browser and Internet server software and
the usual communication, as shown at the top of figure 3.1. ’C’ in the figure
denotes an Internet browser process running on the client side and ’S’ de-
notes a process running on the server side or a (proxy-)server in the Internet
connection between client and server. ’S’ may also represent a number of
server processes. The arrow between client and server denotes a connection
through the Internet.
If adaptive hyper-media has to be realized, where the navigation support
system presents different information for different users, more advanced ar-
chitectures have to be applied. There are (at least) three different basic
possible software architectures to be considered to realize such an adaptive
navigation support denoted in figure 3.1 as architectures no. 2,3 and 4.2

One possibility, architecture 2 in figure 3.1, is to install a software on the
client side, denoted as ’AC’ in the figure (AC = agent component on the
client’s side). This software can be a specially developed browser software
or a plug-in for an existing browser software (section 2.1.3). It can also be a
software communicating with the existing browser software. Such an archi-
tecture makes it possible to register the searching behavior of an individual

2More advanced architectures are conceivable as described in the discussion in section
3.7.

3.2 Possible architectures for navigation support tools 35

C SAC AS

1) C S

C SAC

C SAS3)

2)

4)

m

1

1

1

client side server side

m n

n

n

Figure 3.1: Different possible architectures for a navigation support tool,
’C’ denotes the browser process on the client side, ’AC’ denotes an agent
process on the client side, ’S’ denotes an Internet server process and ’AS’
is an agent process on the server side. In the 2nd architecture there is one
AC component and a number of (n) server processes. In the 3rd architecture
there is a number of (m) client processes and one AS component. There may
exist several (n) server process (S).

user, depending on the ’rights’ of the respective software, which is impor-
tant e.g. for content based filtering [119], [120]. However the accumulated
knowledge about the user behavior is located in this case on the client side.
As described above it is our aim to collect usage profiles of different users
on the server side. Using this architecture it would be necessary to transmit
the usage information to a central server. But this task is difficult to put
into practice and it is in most cases not wanted by the user because of data
protection reasons. A second disadvantage is the necessity for the user to
install a software on his computer which makes it inconvenient for visitors to
use the navigation support tool.3 An installation is especially inconvenient
for those visitors who visit the web site only once or from time to time. Such
an installation is also an additional security risk for a client. As expressed by
the black dots in figure 3.1 one navigation support software is active on the

3This inconvenience is an important aspect, if the site is offered e.g. by a company.

36 Internet Agent for Adaptive Hyper Space Visualization

client’s computer, but the support covers navigation on many (n) web sites,
in most similar systems it covers the whole WWW [68]. A serious drawback
of this architecture in this context is the fact that the support system can
hardly acquire knowledge about data objects on web sites. Since the support
is in many cases not restricted to a specific web area (as in [68]), a thorough
analysis of Web data like indexing or a structure analysis is not possible. In
some cases this analysis is e.g. restricted to the data objects that are pointed
at by the current web page in the client’s browser window [68]. An impor-
tant advantage of the architecture 2 is the (potential) ability of the system
to present and visualize support information. Since the AC component is a
persistently stored program it can add presentation abilities to the original
browser’s presentation techniques in principal without any restrictions.
Another possible architecture, architecture 3 in figure 3.1, is to install the
agent component (AS) on the server side. The system registers a user’s be-
havior on the server side as far as this is possible and uses communication
with the client only for presentation or visualization purposes. The black
dots in the figure denote that there may be a number of (n) clients (simul-
taneously) but there is one agent server component.4 The main advantage
compared to the previous architecture is the possibility to collect informa-
tion about searching behavior of different users at the server side and thereby
to apply collaborative filtering or learning techniques. A problem with this
second architecture is that not all the information about a user’s behavior is
known on the server side as described in section 3.4.2 in detail. As described
in section 3.1 we consider an Web area consisting of a small number of In-
ternet servers. It is e.g. possible in this case to evaluate the access-log files
storing requests of clients on these servers (section 2.4.2). Requests from
clients being addressed to other servers can of course not be registered in
these access-log files. Thus only the partial navigation behavior of a client
in the considered Web area can be registered. However even the (HTTP)
requests to data objects on the considered servers5 can not always be traced
due to caching strategies in the Internet in the connection between client
and server.6 These problems will be dealt with in detail in section 3.4.2. A
second disadvantage using this architecture is that the possibilities to present
a navigation support are limited, since only the common presentation possi-
bilities of the browser software can be applied.
A further architecture, architecture 4 in figure 3.1, combines the two previous
architectures as shown at the bottom of figure 3.1. Here an additional soft-

4However there may be several (n) Internet server processes covered by the agent or
proxy process.

5Only requests for basic MIME-types are considered (section 2.2.2).
6Browser specific techniques like ’DDE’ are not considered here.

3.3 Agent description: survey 37

ware is installed on the client side (AC) communicating with an additional
server or agent component on the server side (AS). The visualization possi-
bilities may be as extensive as discussed for the second architecture. This
architecture also profits from the second architecture with respect to the
knowledge about the client’s behavior. Learning from different users on the
server side is possible because of the server side component. A disadvantage
of this system may be its complexity, the extensive network communication,
and the client side installation as discussed for the second architecture.
The architectures of the navigation support systems presented in section 2.3
can be assigned to one of the different architectures respectively. The intel-
ligent information agent ’Letizia’ presented in [68] and the web browser ’In-
telligence’ presented in [44] apply the second architecture. The agent Letizia
is a specifically developed browser software that has to be installed on the
client side. The first agent is an extension of a common browser software
(section 2.1.3).
The Web Watcher system presented in [3] applies the third architecture. The
navigation support is sent to a client as a modified web page being presented
by a common browser software. All registration and learning steps are per-
formed by a special developed server system.
The fourth architecture in figure 3.1 is applied by the software systems pre-
sented in [114] and [28]. Communication between a special developed browser
(HyperWave) and the Hyper-G server makes the extensive navigation sup-
port possible in [28]. In [114] the software on the client side is an extension
to common browser software communicating with the server system.
The described architectures have simple structures that are currently applied
by many navigation support systems. It is conceivable that future archi-
tectures are more complex using different agent processes and an extended
communication between the agent components as discussed in section 3.7.

3.3 Agent description: survey

According to section 3.1 there are three main tasks to be performed by the
software system. The first task is to register the navigation behavior of users
on the server side. Here it is the objective to accumulate as much information
about a user as possible. However it is often the case that this accumulation
of information creates ’costs’, i.e. drawbacks of the system like the number
of necessary TCP/IP connections, the complexity of the program or the soft-
ware requirements on the client and on the server side. It is one decisive
objective to be able to offer the navigation support to as many clients as
possible and to make it as fast as possible. Therefore the network communi-

38 Internet Agent for Adaptive Hyper Space Visualization

cation and the software requirements on the client side should be minimal.
The second task is the generation and the preparation of the information
to be presented to the user. In this chapter mainly technical aspects con-
cerning the development of maps of the local hyperlink structure will be
described and methods to extract this information from the considered Web
area (section 3.4.1). More refined presentation methods will be discussed in
subsequent chapters.
The third main task is the presentation technique on the client side. This
technique has to take into account the most likely software constellation on
the client side in order to make it possible for all or at least most of the users
in the Internet to use the system and to make it as easy as possible to use
it. Another objective concerning the presentation is an automatic update
when new information is available without the client having to initiate this
process.
There are different software constellations possible on the client side, i.e. dif-
ferent operating systems, Internet browsers (2.1.3), different browser settings
etc. It is assumed here that the user uses a browser software like Netscape
or Internet Explorer, that the language support for Java is activated (section
2.1.4) and that there is no firewall in the connection between client and server
(section 2.1.3). The different requirements will be examined in detail later on.

3.3.1 Principal software structure

In this section the software architecture is described that was used to imple-
ment an Internet agent with respect to the objective in section 3.1. It applies
an architecture which is similar to the architecture 4 in figure 3.1 which will
be explained in the following.
The figure 3.2 shows the structure of the software system. The circle on the
right shows a number of Internet servers representing the Web area being
considered. These servers have to be defined in advance and made known to
the software system. Possible sets of servers are e.g. the servers of a univer-
sity or of an enterprise. The provided navigation support is only active when
the client requests data objects from these servers.7 The rectangles at the
bottom of the image show a number of client computers that may use the
system simultaneously. The arrows denote the communication between client
and server computers via the Internet, usually through Socket connections.
In the common case, client and server would directly communicate through
the Internet. In this architecture however, an agent server is situated in the

7The support system is also active on ’border’ objects as defined in section 3.4.3.

3.3 Agent description: survey 39

server

S3
S1

S2

S4

S6
S7

S5
trace−

client1 client2

internet servers

knowledge

Figure 3.2: Structure of the navigation support tool; the trace server is
located near the considered Internet servers.

connection between a client and the Internet servers. In section 3.4.2 it will
be shown how this redirection of the Internet communication can be put into
practice. The agent is represented by the ellipse on the left. It consists of
three main components. One component is a database denoted as ’knowl-
edge’ in the figure. It contains knowledge about the considered Web area,
like the hyperlink structure and possibly information about the contents of
data objects, like index lists. It may also contain knowledge about former
usage profiles of clients. The second component of the agent is a specifically
developed server being described in 3.5.1 in detail, refered to as ’trace server’
in figure 3.2. This server makes the redirection of the Internet communi-
cation between client and server through the agent software possible. For
this purpose it has to communicate with the Internet servers and the client
computers simultaneously. For practical operation it must be able to serve
a number of clients simultaneously. A third component of the agent sys-
tem that isn’t shown in the figure, is a program being active on the client’s
computer. As described in detail in section 3.5.2, it is based on functional-
ities of modern browser software presented in section 2.1.4. The software is
downloaded by the client from the server as a Java applet and automatically
installed, which can be regarded as a temporary software installation.

40 Internet Agent for Adaptive Hyper Space Visualization

3.3.2 Comparison to other architectures

Similar to the considerations in section 3.2 it is now possible to compare
the described system from an abstract point of view to former systems and
thereby to give arguments why the architecture was chosen.
With respect to the different architectures in section 3.2 it can be seen that

C SAC AS

load

4*)

client side server side

Figure 3.3: Architecture for the navigation support system. The client side
agent component is loaded from the server component and installed tem-
porarily for each navigation session.

the described agent system applies the fourth architecture, having an agent
component on the client and on the server side respectively. However it is
a decisive difference compared to the Hyper-G system [28] and the system
described in [114] that the software component on the client side is not a
persistent program that has to be installed manually by the user but an au-
tomatically installed Java applet loaded from the server for each navigation
session as shown in figure 3.3 by the dotted arrow. Another difference is,
that the processes S and AS are usually located on different computers and
that there may exist more than one server process S. The architecture will
therefore be denoted as 4? in the following.
When comparing the software architectures, a decisive aspect of the value
of the navigation support is its usability, i.e. the number or percentage of
clients in the Internet who may (and actually want to) use the system which
is obviously depending on the benefit an individual user has if he uses the
system and his necessary investment to apply the system8. In the case of
the systems applying architecture 4, [28] and [114], in principle every user
can use the navigation support if he has installed the client component or
browser software, provided that the software system supports his operating
system and works together with (or is a plug-in of) the browser software. In
practice it is obvious that the support system is very unlikely to be used by
users visiting the considered web site only once or from time to time, since

8Possible ’investments’ are e.g. time, effort, security risk etc.

3.3 Agent description: survey 41

the investment to install the system would then be too high, compared to
the benefit. Though this architecture can potentially reach nearly the whole
Internet community it would therefore likely to be used only by a small per-
centage of users.
Our system, though it has nearly the same architecture, can be used by users
without any effort. Since the Java language is currently supported by nearly
all browser types9 a large fraction of Internet users may use the system. This
is a main advantage of this architecture 4? compared to the architectures
2 and 4. A disadvantage that results from this architecture is however the
presentation abilities for support information. Though the presentation tech-
niques of the browser can be extended, which is an advantage compared to
the 3. architecture, they are potentially less extensive than for the 2. and
the 4. architecture. The Java applet has to be small since it is loaded over
the network which would take too much time if more advanced presentation
techniques are offered. This loading time or increased network traffic would
increase the necessary ’investment’ for a user. An advantage that this ar-
chitecture inherits from architecture 2 and 4 is the knowledge that can be
acquired concerning a user’s behavior. This registration is also restricted by
the size and the rights of the applet on the client’s computer (section 2.1.4).
This important aspect will be discussed in detail in sections 3.4.2 and 3.4.3.
The architecture inherits the possibility to register navigation information on
the server site from architectures 3 and 4 as described in section 3.2, which is
an important attribute to make collaborative filtering and learning possible.
In contrast to architecture 2, architecture 4? also inherits from architectures
3 and 4 the possibility to acquire knowledge about a specific web area as
described in section 3.2. This can also be regarded as a disadvantage since
the architectures are thereby restricted to a specific web area and provide a
navigation support only for a very small, well-defined fraction of the Internet.
It can be summarized, that choosing this specific architecture 4?, the nav-
igation support can easily be applied by a vast majority of Internet users.
But this advantage limits presentation and registration techniques due to the
restricted rights and the size of the AC component. The architecture makes
server-side registration of clients’ behavior and thus collaborative filtering
and learning possible. The architecture may provide a navigation support
only for a well defined Web area. However a thorough examination of this
Web area for supporting purposes is thus possible.

9Browser not supporting Java Script and Java like Opera are currently used only by a
small fraction of Internet users.

42 Internet Agent for Adaptive Hyper Space Visualization

3.4 Basic concepts

In this section it is the aim to describe and to discuss the main ideas that
were applied to realize the agent system. The aspects that will be dealt with
are the static web site analysis by the agent, the registration technique of the
client’s navigation behavior at the server side and the developed presentation
technique at the client side. The technical implementation will be presented
in section 3.5.

3.4.1 Static analysis of hyperlink structures

In section 2.4.1 it was discussed how a software system can acquire knowledge
about data in the Internet (WWW). The problem of finding data objects in
the Web was described in the case that common spider techniques are used,
because data objects may not be reached by a sequence of link traversals.
This problem reveals severe limitations of spider or crawler systems (section
2.4.1) to analyze Web contents, which are applied in search engines and other
Web analysis tools.
In the special case described here (section 3.1) the situation is far more sim-
ple than in the case of general Web indexing machines. The Web area that
has to be analyzed by the system contains only a relatively small number of
well-known servers, as e.g. the servers of a university or of a company. It
would be possible in the described case not to apply spider techniques, but
directly to scan the respective directories on the servers that contain data
objects presented in the web.
However there are severe drawbacks of this (local) technique. The method
requires (reading-)rights on the considered servers and vast effort to supervise
and update the system, since the indexing system would have to be informed
about locations on the considered web servers where web data are stored.
In contrast to this, the spider technique can be activated and updated au-
tomatically. The only variables to consider are the starting URLs for the
crawling procedure (which have to be part of the IN or the SCC component
as denoted in section 2.4.1).
A second important issue is how to process multimedia information i.e. how
to build indexes, which is for textual data a research problem known from
the field of information retrieval [96], [95]. The problem in the case of Web
data is much more complex since not only textual data are available but also
images and other multimedia data objects.
The presented system considers the hyperlink structure as described in sec-
tion 2.4.1, which will be sufficient to demonstrate main aspects of the agent
in the following sections. The actual contents of data objects will not be

3.4 Basic concepts 43

considered.
The crawling software that was used as a basis for this structure analysis is
presented in [36]. Originally this software was developed to maintain a web
site, especially to find inconsistent links. However the presented system uses
the output of this software to convert it into a graph structure with the nodes
representing the data objects and the edges representing hyperlinks on web
pages that make a transitions between pages possible. Only static hyperlink
structures are considered (section 2.4.1).
It has to be mentioned that this graph may not represent the whole set of
possible navigation decisions of users navigating on the considered web sites
(section 2.2.2). With the help of search engines it is possible to get from one
web page to possibly any other web page. Those transitions may not be part
of the set of hyperlinks.
It can be resumed that the main difference of this system to common web
indexing procedures is that emphasis is laid on the hyperlink structure anal-
ysis in a relatively small web area. This structure knowledge will be used
to demonstrate main aspects of the developed agent system in subsequent
sections. Some disadvantages are inherited from common spider techniques
as described above, since a spider is used to find data objects by hyperlinks
traversals. Some data objects and hyperlinks can’t be retrieved if they are
located in the ’IN’ component. These objects can however neither be found
by search engines in many cases, because they apply similar spider techniques
to find web objects.10 Therefore these data objects are ’invisible’ for a client
in any case. However, since the Web area is relatively small and well known
(to the web administrator), it is possible to choose ’good’ starting points in
the ’In’ component and to manually add other ’In’ objects.

3.4.2 Registration of a navigation process in a dis-

tributed Web environment

In section 2.4.2 different possibilities were discussed to register the use of the
Web and feedback information, like requested data objects, registration of
navigation decisions, search words or questionnaires. The described software
system considers the registration of the sequence of navigation decisions of
a specific client, which is called ’navigation’ in section 2.2.2. In section 2.4.2
different methods were presented to register this kind of user behavior at

10This is not true if there exists a hyperlink from an external data object to those
objects, since search engines search for web objects mostly in a very large web area and
are thus likely to find the respective hyperlink. It would be more precise to differ between
local and global ’IN’ component.

44 Internet Agent for Adaptive Hyper Space Visualization

the server side. In this section problems resulting from these strategies are
described and a new method to register user behavior at the server side is
introduced. This method is applied by the presented software system.
The objective is to register user behavior at the server side. It was discussed
in section 3.2 that the comprehensive knowledge about the behavior of a user
can usually only be registered on the client side. In order to make e.g. col-
laborative filtering possible, this knowledge about the user behavior has to
be collected somewhere; a possible place may be one of the servers.11 When
applying a client/server architecture with a specifically developed browsing
software, registering user profiles on the client side, these data can be sent to
a registration server through the Internet. This is possible for the architec-
ture 4 in section 3.2 used by [28] and this technique was actually applied in
[114]. However, as discussed in section 3.3.2 it is the objective not to apply
a software or an Internet browser extension (plug-in) on the client side.
Methods to register user behavior directly on the server side are the access-
log method, i.e. the registration of HTTP requests by the Internet servers
themselves, the ping method, i.e. to provide each web page with a small
pointer object, pointing to a registration server, and the proxy method, i.e.
a proxy server in the link between client and server for registration purposes
(section 2.4.2).
In contrast to the client side registration, these methods suffer from a com-
mon problem. Due to caching strategies in the connection between client
and server, not all requests of a client actually reach the server. Caching in
this context means the temporal storage of data objects in the link between
client and server. Caching strategies are a means to reduce net traffic and
to shorten the response time. They are applied by proxy servers in the link
between client and server (section 2.1.3) or by a browser itself.
Another problem is that different clients might use the same Internet provider
and therefore may have the same IP-address as registered by the server. If
two clients use the navigation tool at the same time, the server may thus only
register the profile as coming from one person. This would cause a wrong
navigation profile and may lead to wrong conclusions.
Some of the problems caused by caching strategies can however partially be
solved by estimating the real profiles, called ’action inferring’ in [53]. Be-
cause of caching techniques in the Internet, the profiles that are registered
are possibly only a subsequence of the actual sequence of requests of a client.
(The original sequence will be refered to as the real sequence in the follow-
ing.) Since the hyperlink structure of a web site can easily be determined, as
described in the previous section, it is possible to estimate the real navigation

11Extensions of this concept are thinkable, as described in the discussion in section 3.7

3.4 Basic concepts 45

path with regard to the hyperlink structure. This strategy was applied e.g.
in [2], [53]. An example is shown in figure 3.4. The figure shows 4 web pages

A B C

D

Figure 3.4: Hyperlink structure with 4 web pages A,B,C and D and 3 hyper-
links, AB,BC and AD

A,...D and hyperlinks between the pages constituting the hyperlink structure
as determined e.g. by the method described in the previous section. Provided
that the server registers the sequence of requested data objects ABCD, it is
obvious that the likely actual client’s navigation path was ABCBAD, as can
be seen from the hyperlink structure.12 The elements B and C were stored
in this example by an intermediate proxy-server or by the browser software
itself.
However the real navigation path could also have contained additional re-
visits. The sequence could e.g. also have been ABCBCBAD. The action
inferring techniques may therefore only be an approximation to the real re-
visiting information The ping method may provide the revisiting information,
since the pointer object is likely not to be cached. However the reliability of
this technique also strongly depends on the applied caching strategies in the
Internet that are not known to the software system in advance.
Another problem caused by caching in the link between client and server can
be seen in figure 3.5. Provided that the client moves from A to B and then
to C, the server would store the access sequence ABC. With regard to the
hyperlink structure, the original sequence could have been ABC or ABAC.
This ambiguous registration is the main motivation to use the technique de-
scribed in the following, that will be denoted as redirection technique. This
method was presented in [3] for the realization of collaborative filtering on
the server side. It was further developed in [62] for the realization of an adap-
tive visualization tool for distributed Web structures13 and it was recently
described in detail and applied in [53] for a visualization of Web usage on
the server side.

12It is assumed that only browsing navigation is applied. In the case of the use of a
search engine, the direct transition ABC{Search-Engine}D is possible.

13This is a publication on main aspects of this chapter

46 Internet Agent for Adaptive Hyper Space Visualization

A B

C

Figure 3.5: Hyperlink structure with 3 web pages A,...C and hyperlinks,
AB,BC and AC

Before going into detail it has to be emphasized that the presented method
assumes navigation to take place in the World Wide Web (using the HTTP
protocol) and that only hyperlink activations on HTML pages are considered.
The hyperlinks have to point at HTML pages and some other MIME-types,
e.g. some image types (section 2.2.2 and definition 1).14

There are two possibilities to start the registration mechanism. Applying the
first possibility, the client has to visit a certain web page, e.g. the address of
the navigation tool. This address can be pointed at by the main page of an
Internet server. The user then has to decide whether to use the navigation
tool or not. It is also possible though, to take the main page as the starting
point. Every user would then be forced to be registered by the system.
Hyperlinks on the ’start page’ don’t point to the original data objects directly
but their addresses are substituted by URL addresses pointing to the trace
server (as can be seen in figure 3.2). It is possible to supply URL-requests
with additional parameters (section 2.1.2). Every substituted URL-address
is supplied with the original page address, which was contained in the original
hyperlink, the URL address of the page where the hyperlink is located (i.e.
the web page on which the hyperlink was activated) and an identification
number for a specific client. For example the address

http : //server− address/origpage (3.1)

can be modified to

http : //agent− address?server− address/origpage+ frompage+ id.

(3.2)
In this example ’server-address’ is the address where the original web page
is located, ’origpage’ is the relative address of the data object on the server.

14Navigation by Java Scripts, Java applets or CGI etc. is not discussed. The presented
technique may also work in these cases, the implementation is however far more complex.

3.4 Basic concepts 47

In the transformed URL string below, ’agent-address’ is the Internet (Web-)
address of the agent (trace-server) and ’server-address/origpage’ is the orig-
inal URL address of the data object, ’frompage’ is the URL address of the
page where the hyperlink is located and ’id’ is the identification number as-
signed to a specific client. The ’?’-symbol separates server- (in this case:
agent-)address and the additional parameters.
In the example the request would not reach the original server at first, but
it is sent to the agent (trace server). Reading the additional parameters the
’trace server’ knows, what data objects are requested by the client. It can
fetch the objects from the Internet in the same way as it would originally have
been done by the client. The data objects aren’t sent to the client directly
(which would be the case for a usual proxy server), but the trace server scans
the contents of the data object (HTML documents) and searches for URL
addresses15 contained in hyperlinks (section 2.1.4).16 The addresses are then
modified in the same way as it was done before for the first web page. In the
first page modification step, an id-number was assigned to a client which is
sent with the additional parameters in the query string. The id-number can
now be re-used for the next modification step. By this means a specific client
is characterized by its id-number and its individual navigation path can be
registered.
It can be seen that by this means all requests of a client are redirected to

C

S

AS
{2}

{3}

{1}

{4}

client side server side

Figure 3.6: Redirection of Internet connections through an agent server com-
ponent (trace server). A request is sent to the AS component first {1}. The
data object is fetched from the server S ({2}, {3}) and sent to the client {4}.

the agent server as shown in figure 3.6. Similar to figure 3.1 ’C’ in figure 3.6

15Only URL addresses pointing at HTML pages and some other MIME-types, like GIF
or JPEG images are considered. The hyperlinks have to be marked by the HTML ’< A >’
tag (definition 2, [46]).

16This was also a main aspect in section 3.4.1

48 Internet Agent for Adaptive Hyper Space Visualization

denotes the browser process on the client’s computer, ’S’ denotes the Internet
server process and ’AS’ is the agent server process, called ’trace server’ in
figure 3.2. The trace server component ’AS’ can by this means register the
navigation profile of a specific client.
For the user nothing in fact changes, since the modifications of the URL-
addresses don’t change the appearance of a web page. However the response
speed may slow down because the way through the Internet to data objects
is apparently longer (figure 3.2). This is the reason why the agent server
and the considered Internet servers should be close to each other, i.e. there
should be a fast Internet connection between them.
It is obvious that this procedure makes the development of an extended proxy
server necessary. This tool, previously called trace server, will be described
in detail in section 3.5.1.

3.4.3 Comparison of server-side registration methods

In this section the redirection technique will be compared to the other reg-
istration techniques presented in section 2.4.2 and section 3.4.2. Figure 3.7
gives a survey of the different methods and their properties. Methods for
navigation registration on the server side that have been described are the
’redirection’-method (section 3.4.2), denoted as ’redir.’ in the fourth row
in figure 3.7, the ’access-log-file’-method, the ’ping’-method and the ’proxy’-
method (section 2.4.2). The different methods have to be compared according
to six attributes.
A first attribute is the ability to register requests for data objects of a client
in the local Web area (column ’local data’ in figure 3.7), which is desirable
and possible for all registration methods. It can however be assumed that
in many cases a client will leave the considered Web area and move to data
objects on external Internet servers. The registration of navigation in the
external Web environment is not desirable for personal data protection rea-
sons17, but it may be meaningful to register the navigation steps a client
makes to external data objects.18 The set of external data objects that are
pointed at by hyperlinks from the considered web area will be denoted as
’border elements’ of the web area. The second column in figure 3.7 shows if
a registration method provides the possibility to register a client’s requests
of border elements. A third attribute is the possibility to register revisits

17It is also difficult, if not impossible to put it into practice using a similar architecture
(section 3.2)

18i.e. on which path he leaves the considered web area

3.4 Basic concepts 49

local border revisiting navigation IP distributed
data elements decisions ambiguity area

access + - - - - (-)

ping + - (+) (+) - +

proxy + - - - - (+)

redir. + + (-) (+) + +

Figure 3.7: Comparison of different registration methods (see text). ’+’
denotes the presence of an attribute. ’(+)’ denotes the presence with limita-
tions.

to previously visited data objects, as described in the previous section (’re-
vis.’); a fourth attribute is the possibility to register between which data
objects a navigation takes place (’navigation decisions’); a fifth attribute is
the possibility to separate the navigation profiles of different users having
the same IP-address (’IP ambiguity’ in figure 3.7). Finally the possibility to
register navigation decisions in a distributed Web area has to be compared
(’distributed area’).
In the previous section a possible ambiguity concerning the real navigation
path in the case of multiple links to a currently visited object from different
previously visited data objects was shown (figure 3.5). It is obvious that
this ambiguity can’t be solved by applying the access-log or the proxy server
method given that caching strategies are applied in the connection between
client and server. As far as the ping-method is concerned, it also depends
on the applied caching strategies. These three registration methods make
it therefore necessary to apply action inferring techniques as described in
section 3.4.2 that provide only an estimation of the actual navigation path.
The redirection technique provides the possibility to register not only the
URL-addresses of requested data objects but also the data objects on which
the requests were activated, which solves this ambiguity (column ’navigation
decisions’ in figure 3.7). If the browser’s back button is activated or if the
same hyperlink is activated again, these navigation steps won’t be registered

50 Internet Agent for Adaptive Hyper Space Visualization

by this method.
The problem that different clients may have the same IP-address if using
the same provider is solved by the redirection method, too, because of the
new strategy to identify clients (section 3.4.2). The IP-address identification
that has to be used by the access-log, the ping and the proxy server method
doesn’t provide this information (column ’IP ambiguity’). It is important to
note that the identification applied by the redirection technique only lasts for
one session. If a user revisits the same site after a while he will be assigned
a new id-number, unless he still uses a modified web page. If a client leaves
the considered Web area to an external server (beyond the border objects)
and returns into the web area, he will also be assigned a new identification
number. These properties are disadvantages of the registration method com-
pared to IP-identification. The system registers two navigation profiles and
assumes that they come from different clients, instead of one profile from one
client.
The revisiting problem can’t be solved by the access-log and the proxy
method. When a client visits data objects a second time, he won’t be reg-
istered. In the ping method on the other hand the small, invisible page
elements that are likely not to be cached may provide revisiting information
depending on the caching strategies in the Internet. The redirection method
registers revisits, when the navigation step to the previously visited data ob-
ject is different for the same reason as described for the path ambiguity in-
formation above. Revisiting information is however not absolutely desirable,
because this information makes additional network connections necessary.
Thus, the redirection method provides more information than most of the
other methods at the costs of an increased number of network connections
(column ’revisiting’ in figure 3.7).
When a client leaves the Web area, this information is not registered by the
access-log, the ping and the proxy server method. As shown in section 3.4.2
this information can be provided by the redirection method. It would even
be possible to ’follow’ a client into the external Web area provided that the
navigation is only pursued by hyperlinks. But it seems to be sensible to
send the original (not modified) data object to the client, if it comes from an
external source. Such a navigation decision would stop the navigation sup-
port tool. This (final) navigation step is however registered (column ’border
elements’ in figure 3.7).
A further important issue is the registration of user profiles in a distributed
Web environment, comprising a number of servers. With the access-log
method, each server stores the requests on his own. In order to reconstruct
the full navigation path in the Web area, the different access-log files would
have to be combined and analyzed. This process isn’t necessary for the proxy

3.4 Basic concepts 51

server, the ping and the redirection method since all navigation decisions can
be registered by one server only, which simplifies data exploitation (column
’distributed area’ in figure 3.7). Discussing the proxy method it was as-
sumed, that there is only one proxy server in the connection between client
and server necessary. It may be the case that the Web area is distributed in a
way that this isn’t sufficient. In this case several proxy servers are necessary
and the respective registered data have to be combined.
It was discussed in section 3.3.2 that the complete information about a client’s
navigation is only known on the client side. With the four methods described
above the navigation decisions in the considered Web area can be traced (de-
pending on the applied method). This is in most cases only a small part
of the whole navigation process (in the entire WWW). But as described in
section 3.1 it was the objective to develop a navigation support tool for a
restricted WEb area. For many navigation support applications like visual-
ization of the local hyperlink structure or a history visualization of navigation
decisions in the Web area it is sufficient to know the path in the considered
Web area. For the development of estimation techniques for the relevance of
data objects as described in the next chapters, it can however be important
to know a client’s navigation decisions in external areas of the Web as well.
These decisions could contain additional information about a user’s interests.
This information is however not available for principal reasons using this ar-
chitecture (section 3.3.2)19 and therefore cannot be exploited.
We have assumed so far that navigation takes place only by activation of
hyperlinks. It may also be possible that a user uses a search engine from
time to time [51], [18]. In this case, the registration would end and after
having used the search engine the client would be assigned a new id-number.
The effect is, that two short navigation paths are registered and assumed to
come from different clients instead of one long profile from one client, which
is a mistake of the registration system.
This problem can be solved by providing a local search engine that works in
combination with the agent software.20 Query results, usually presented as
ordered lists containing hyperlinks to relevant data objects, are modified in
the same way as done by the agent. The pages are parsed and URL-addresses
are substituted by the agent’s address with the described additional param-
eters. By this means this problem can be solved and the navigation process
of one client in the considered area can be fully traced.21

As far as the technical realization of the different registration methods is con-

19At least the navigation steps before the entrance into the web area can’t be traced.
20The communication through a global search engine could be traced, too. This is again

problematic because of data protection reasons.
21The client has got to use only the local search engine.

52 Internet Agent for Adaptive Hyper Space Visualization

cerned it must be noticed that the modification step is in practice very com-
plex because of the number of different formats in the Internet as described in
section 2.1.4. As shown in section 3.5.3 it has so far only been implemented
for HTML-data. In the case of other (script-)languages like Java, Java-Script
etc., further considerations have to be made. Yet this problem is not of a
principal nature since it is possible to extract partial functionalities of the
respective language interpreters or compilers. The same considerations have
to be applied for the development of spider software as described in section
3.4.1, where hyperlinks on web pages are extracted in order to find Web data
objects.
It can be summarized, that the redirection method provides more informa-
tion about a client’s navigation behavior than the other methods at the cost
of additional network communication and a more complex software structure.
The information that is registered on the server side using this method are
sequences of different22 navigation steps between data objects in the consid-
ered web area. Each sequence characterizes one navigation session of a client.
The navigation steps may only be a subset of the actual set of navigation
decisions.
These considerations are a decisive basis for the subsequent chapter 4, since
pattern recognition techniques that may be applied, strongly depend on the
underlying data types.

3.4.4 Visualization of navigation support information

There are many possibilities for a navigation support tool to present support
information as discussed in section 2.3. The techniques that can be applied
for this visualization strongly depend on the software architecture (section
3.2). If a software or a browser extension is running on the client side there
are no restrictions concerning the visualization. This is the case for the sys-
tems [28] and [114] applying the architecture 2 or 4 in figure 3.1. However in
the system presented in [3] (which applies the 3. architecture in figure 3.1)
only modifications on current web pages in the client’s browser window or a
generation of new web pages is possible. In [3] e.g. hyperlinks on the current
web page are highlighted, if they were estimated to be relevant by the support
system. It is obvious that complex visualizations like local hyperlink views
or adaptive site maps can hardly be presented when this method is applied.
The web pages would become very large and probably very confusing. The
generation of new (dynamic) web pages showing support information would
require additional navigation steps by a client and thereby increase disorien-

22depending on the caching procedures

3.4 Basic concepts 53

tation. It is a common practice to use different window(s) in addition to the
main browser window in order to present support information [68], which re-
quires an architecture similar to 2 or 4 and thus makes a software installation
on the client side necessary. As described in section 3.3.2 it was in our case
the objective, not to make a software installation on the client side necessary
for usability reasons.
The solution presented here makes use of modern Internet browser capabili-
ties described in section 2.1.4 that are used by a vast majority of the Internet
users. The browsers have to be capable of interpreting Java code. This lan-
guage makes it possible to offer a user complex information visualization as
it is necessary in our case. Basic capabilities are the creation of new windows
apart from the web page in the browser window and communication between
different windows. The visualization code doesn’t have to be installed on
the user’s computer by the user but it is downloaded in the same way as a
common HTML-page and it is automatically installed on the computer by
the browser (section 2.1.4).
The code necessary for the presentation and visualization of navigation sup-
port can be loaded from a server every time the user visits a new page. The
required software actually doesn’t change for different support views but only
the presented information will have to be updated. The usual navigation
process from one data object to another would remove the old data object,
including the visualization code and replace it by the new data object. This
problem makes control of the navigation process by the temporarily installed
software necessary as described in the following section.

3.4.5 Control of a navigation process

In this section it is the objective to describe a technique developed to make
a refined presentation of support information on the user side possible. The
user will not be forced to install an additional software on his computer him-
self. Instead, a Java applet is sent to the user and is automatically installed
by the browser software to provide visualization functionalities. In order to
avoid loading this Java code every time a user visits a new web page, the
presentation code is installed persistently throughout the navigation process
on the user’s computer.
A second objective is to automatically update the navigation support pre-
sentation. Usually a client sends a request to a server in order to get a data
object. With more refined methods it is possible to send data from server
to a client without initiation by the client. In terms of agent technology
this process is important to accomplish autonomy of the agent. The system
shall be provided with the ability to present the user information if it decides

54 Internet Agent for Adaptive Hyper Space Visualization

this to be relevant for the client. The possibility of an initiation of the data
presentation on the client’s screen by the agent on the server side is a first
necessary step towards this autonomy.
The idea described in the following depends decisively on abilities of modern
browser software. One important issue is the frame concept as described in
section 2.1.4. Another attribute of the browser software that must be avail-
able, is support for the Java-language. A Java applet will run in a ’sand-box’
on the client’s computer that is controlled by the browser software (section
2.1.4).

The first page that is sent to the client when the navigation support starts
consists of two frame components. One of these components is needed for
presentation purposes, it shows (in the usual case) the current web page that
is visited by the client. The other frame component not being visible (it has
minimal size) contains the Java applet. This Java applet has two tasks. The
applet provides the functions needed to visualize the support information in
a second window. And it controls the presentation in the other frame com-
ponent, in the common case the currently visited web page. This second task
is organized by communication with the agent server.
If a user activates a hyperlink on the web page in the visible frame compo-
nent a HTTP request is sent to the agent server, because of the previously
described link modification (section 3.4.2). This request is shown in figure 3.8

C S

AC AS

{3}{1}

{2}

{4}

client side server side

Figure 3.8: Communication sequence between client ’C’ and server ’S’ and
the two agent components ’AC’ and ’AS’ to achieve a persistent activation
of the applet code throughout navigation in the considered Web area.

as arrow 1 from the client process ’C’ to the agent server process ’AS’. The
agent component ’AS’ however sends the request information to the agent
component on the client side, i.e. the Java applet (’AC’) in the invisible
frame component of the client’s browser (arrow 2). With this information
the applet is able to initialize the presentation of the requested data object

3.4 Basic concepts 55

by using the Java command [26] (arrow 3):

showDocument(url, string), (3.3)

The string ’URL’ is the URL-address of the requested data object and ’string’
is a presentation directive, forcing the browser to load the data object into
the other frame component after it has been sent from the server to the
browser process (arrow 4). The initialization of the download (arrow 3) will
be refered to as ’download’ or ’final request’ in the following.
By this means the applet running in the invisible frame component of the

C S

AC AS
{2}

{1}
{3} {4}

{5}{6}

client side server side

Figure 3.9: Communication sequence between client ’C’ and server ’S’ and
the two agent components ’AC’ and ’AS’ to achieve a persistent activation
of the applet in combination with client tracing.

client’s browser is, in connection with the agent server, able to initiate load-
ing of data objects into the visible frame component. The applet itself thus
won’t be removed when a new data object is loaded. It is stored throughout
the whole navigation process and can therefore be used for support informa-
tion visualization during the navigation session of a client in the considered
Web area.
A second connection between the client’s agent component AC and the agent
server AS, not shown in figure 3.8, can be used to update the support pre-
sentation. This connection makes an initiation of the presentation by the
agent possible as described above. It is ’introduced’ to the client system by
the client’s agent component, communicating with the ’AS’ component on
the server side.
In combination with the redirection procedure described in section 3.4.2 (fig-
ure 3.6) the Internet communication has now the structure shown in figure
3.9. In contrast to figure 3.8 the connections {3} and {4} are redirected
through the AS component, represented by the connections {3}, {4}, {5}
and {6} in figure 3.9.

56 Internet Agent for Adaptive Hyper Space Visualization

The different components on the client side (AC) and on the server side (AS)
necessary to realize the communication will be described in detail in the fol-
lowing sections.
The (software) requirements on the client side necessary for this communica-
tion are more extensive than in the 1. and 3. architecture in figure 3.1. The
browser has to be able to process the Java code and the Java support has
to activated. It is possible for a user to deactivate Java in the preferences of
the browser. In this case the navigation tool doesn’t work because the ’AC’
component can’t be installed by the client’s browser. The client then receives
the message from the agent server that the activation of Java is necessary.
The requirements are much less extensive than in the general case applying
the 2. and 4. architecture in figure 3.1 where an additional installation is
necessary. The described system makes a much more refined presentation of
navigation support data possible than it would be the case applying the 1.
and 3. architecture in figure 3.1.

3.5 Components and realization

This section will describe the different components of the agent system and
give details of the technical realization.

3.5.1 The ’trace server’

In the following, the software component on the server side, developed to
realize the navigation support is described in detail. In contrast to figure
3.9 this component is in the described case not directly located on the server
computer (i.e. one of the server computers since we consider a distributed
Web area)23 but it runs on a computer somewhere in the Internet close to
the considered server computers as shown in figure 3.2. ’Closeness’ between
the agent machine and the server machines here means that there is a fast
TCP/IP connection between them.
One first task is to analyze the considered Web structure as described in
section 3.4.1 and to store this information in a database. This step can be
pursued off-line and the resulting data will be assumed to be available in a
database.
Two main tasks to be performed online by the agent component on the server
side are the registration of the client’s navigation, the redirection prepara-
tion described in section 3.4.2 and the communication necessary to control
the client’s navigation in section 3.4.5. These are the basic technical tasks

23Thus the right to execute programs on these computers is not required.

3.5 Components and realization 57

for the navigation support. Further questions are then how to exploit the
registered information and how to generate the adaptive support informa-
tion for the client. These questions will be discussed in section 3.6 and the
following chapters.
The structure of the processes of the agent server component is shown in

accept incoming requests

start of thread/process

process query string

test if
final request

load requested data object

modification step

send modified data to client

start thread/process 1

yesno

yes

path registration

start thread/process 2

compute navigat. support

create connection with AC

send support data to client

start thread/process 3

send query string to AC

identif. check/assignment

Figure 3.10: Sequence of procedures of the agent component on the server
side (trace server).

figure 3.10. The figure has a strong connection to figure 3.9 since the server
agent component ’AS’ operates in combination with the client’s agent com-
ponent.
The first step to be performed by the AS-component is to wait for incom-
ing requests from a client. Those requests are redirected HTTP-requests as
described in section 3.4.2 and shown in figure 3.9 (first arrow) or download
(final) requests from the AC component (third arrow). A new thread or pro-
cess is then started to serve this specific client. This is necessary to be able
to serve multiple clients at the same time. The incoming query string is then
analyzed. According to the type of the request either the procedure block
on the left in figure 3.10 or on the right is activated. A redirected HTTP
request from the browser process ’C’ (arrow 1 in figure 3.8 and 3.9) activates
procedure block on the left. It is tested if this is the first request from a

58 Internet Agent for Adaptive Hyper Space Visualization

specific client. If this is the case a new identification number is assigned to
the client, if not, the former id number is reused. The signal is then sent back
to the AC component, supplied with the respective identity information.
A download request (’final request’ in figure 3.10) initiated by the AC compo-
nent activates the procedure block on the right. Three different tasks have to
be performed that are independent from each other and can therefore be pur-
sued in a parallel manner, e.g. by different threads. One task is the web site
modification. The requested page has to be downloaded from the Internet.
The page is then modified as described in section 3.4.2 and is then sent to the
client’s browser process. A second task is the registration of the client’s nav-
igation path. Knowing the identification number from the incoming query
string, the navigation information can be added to the information about a
client already registered by the server. For this purpose a connection to a
database (i.e. component ’knowledge’ in figure 3.2) is established and the
data are written to this database. The third task is the navigation support
generation. Depending on the current client’s position in the web space, his
former navigation behavior and the navigation profiles of other users as reg-
istered in the ’knowledge’ database, and the knowledge about the considered
web space, that is also stored in the ’knowledge’ database, the navigation
support is computed. A simple support presentation will be shown in section
3.6, more advanced methods will be introduced in the following chapters.
The support information is then sent to client’s AC component.

3.5.2 The client’s applet

This section deals with the client’s agent component ’AC’, the counterpart
of the trace server on the server side. It was described in section 3.4.5 that
at the beginning of the navigation support a Java applet is sent from the
trace server to the client and is installed by the browser software in a frame
component of the browser that is not visible to the client. According to sec-
tion 3.4.5 (figure 3.9) the AC component has mainly two functions. One is
to accept download requests from the server component and to initiate the
download process of the browser software (section 3.4.5). The second task is
to accept navigation support information and to visualize this information.
Examples for this visualization will be given in section section 3.6.
The structure of the client’s agent component can be seen in figure 3.11.

The first step is the initialization of the applet software, e.g. the creation
of connections to the trace server. The AC component then creates a new
window responsible for the support visualization. The two main tasks are
independent from each other and can be run in a parallel manner e.g. re-
alized by different threads as shown in the figure. One thread listens for

3.5 Components and realization 59

initiate download

visualization

accept support information

create visualiz. window

initialization

process support inform.

accept download request

Figure 3.11: Procedures of the client’s agent component.

(download) requests coming from the trace server (figure 3.9, connection
{2}) and initiates this download (section 3.4.5). The other thread waits for
support information. This information has to be processed for visualization
purposes. However the main layout information has already been computed
by the server. Then the visualization in the external window has to be con-
trolled.
It can be seen that the client’s agent component is (potentially) a very small
program. Most of the tasks necessary for a support presentation are pursued
on the server side. The advantage is a fast transport of the program to a
client and a fast (automatic) installation. However all of the objectives de-
scribed in section 3.1 that would not be possible using the first or the third
architecture in figure 3.1 can be realized with the restrictions discussed in
section 3.3.2.

3.5.3 Technical realization and problems

The described software agent was developed in Java and C++. The main
component, the agent component on the server side (trace server, section
3.5.1) was developed in Java. One component, the module to compute local
maps and the matching and prediction component is realized as an own
process, that was developed in C++ and communicates with the trace server
by socket connections.
The client’s applet was developed in Java, here it was necessary to consider
the software constellation on the client side. Java is supported by most
browsers and the Java applet was tested for Netscape (version 4.7) and the
Internet Explorer on Solaris, Linux and Windows machines. Even with Java,
this portability is not trivial and some details in the socket communication

60 Internet Agent for Adaptive Hyper Space Visualization

had to be adjusted. One main component of the system, the URL parser
for web pages, that is the core module for the redirection technique, was
developed for HTML pages (including frames). Hyperlinks have to be marked
by the ’< A >’ tag. Only hyperlinks to HTML pages and some basic MIME
types are considered (like GIF, JPEG and other image types). The developed
module is a prototype. Due to the vast amount of different rules used (even)
in HTML, a stable version requires much effort (and costs) especially in
order to test the software. Other languages (section 2.1.4) have not been
considered. The effort to realize a parser that takes into account all languages
is huge.24 It may however be possible to make use of the original parser
software provided by the Mozilla sources [106]. Since search engines depend
on the same functionality as described in section 2.4.1, it may also be possible
to apply modules that were already developed in this context.

3.6 Visualization examples

The software was applied on the web site of the Cognitive Systems Group,
University Kiel in 2000 and 2001 (http://www.ks.informatik.uni-kiel.de). Fig-
ure 3.12 shows the original home-page of the research group, visualized by
Netscape Navigator 4.7. The (original) web page contains two frames. The
frame component on the left has, near the top, a hyperlink with the anchor
text ’Navigation Tool’. An activation of this link creates a connection to the
trace server. Figure 3.13 shows the constellation of windows and frames after
this hyperlink has been activated. On the left of the two original frames, a
new frame has been added, that provides some buttons to control the pre-
sentation (control frame). The presentation window is an external window
(on the left in figure 3.13). At this state, it only shows one data object,
the (URL-address of the) current web page in the browser window. If the
user activates a hyperlink in the browser window, in this example the ’staff’-
hyperlink, the result can be seen in figure 3.14. The next data object (the
URL-address of the staff page) was automatically added in the visualization
window, together with the hyperlink (the line between the objects). The two
additional objects are the two frame components of the first web page (this
information should possibly be deleted in future versions). Figure 3.15 shows
a possible history presentation after a number of navigation decisions. The
current position of the client in the web area (which is shown in the main
browser frame), is the green rectangle in the structure window.
The structure that can be seen in the external window reflects the exact
knowledge, the agent component on the server side has about the client’s

24This is one main disadvantage of the redirection strategy.

3.6 Visualization examples 61

navigation path. The graph information that is presented is sent to the
client from the AS component. One problem becomes clear, when e.g. the
browser’s ’back’ button is activated in the state in figure 3.12, which loads
the previous web page into the browser window. The system still highlights
the ’staff’ page (green color) as the current position in web space, which is
obviously wrong. If, after this transition, a navigation step to a new (not yet
visited) web page is done, the system will know (and visualize) the current
(true) position of the user. This problem results from the caching problem
described in section 3.4.2 and 3.4.3. The browser stores the first web page
after the first visit and doesn’t reload it (from the external source), when
it is requested again. The page is reloaded from the cache. Thus the AS
component doesn’t acquire this information. The described problem is one
main reason, why user behavior will be modeled by sets of navigation steps
and not sequences in the next chapter in section 4.1.
It can be seen in figure 3.15 that the layout of the navigation history can
become quite complex (section 2.4.3). The applied algorithm for the graph
layout can greatly be improved, in order to make the structure easy to un-
derstand. One main difficulty is not to change the layout every time, when
the graph structure changes (which is still the case). When a new naviga-
tion step has to be added, the layout algorithm should take into account the
previous layout since the user may already have got used to it.
Two visualization examples of the local hyperlink structure can be seen in
figure 3.16 and 3.17, which are created by the system, when the surround
button in the control frame is pressed. Figure 3.16 shows the set of web
pages (and other web objects) that have the same depth25 as the currently
visited web page, which is the ’staff’ page. It is marked by a different color
(green) in the structure window. The structural knowledge was computed by
the trace server (more precisely the navigation support component in figure
3.10), using the knowledge about the client’s current position in web space
and knowledge about the hyperlink structure of the Web area, which was
previously extracted (off-line) by the method described in section 3.4.1 and
stored in a database.26 Figure 3.17 shows a similar structure view from the
same position in the web space (the current position is again the green rect-
angle). In this case the structure view shows the current and the previous
navigation possibilities. This structure view depends on the hyperlink struc-
ture, the current position of the user and the navigation history.

25i.e. the number of hyperlink transitions from the main page.
26This particular visualization could also have been provided by a system without previ-

ously stored structural knowledge, since it is only necessary to parse the previously visited
web page for hyperlinks, which can also be done at the client side. The presentation is
only used to demonstrate, how the system works.

62 Internet Agent for Adaptive Hyper Space Visualization

The presented structure visualizations may e.g. be helpful, if a user wants to
’scan’ a list of web objects in the web space, that are pointed at by a single
web page. The structure views give him an idea of his current position in
web space.
Many different structure views are thinkable that have not been implemented
yet. The same problem as in the case of navigation history visualization how-
ever easily occurs, i.e. the layout of the graph, which is in this example even
more complex due to the higher number of web objects to be shown. If the
hyperlink structure is presented up to a higher depth, the number of data
objects to be shown is likely to increase exponentially for many web sites.
Both presented visualizations are adaptive with respect to the user’s behav-
ior. The first is adaptive with respect to former navigation steps of a user.
The second is adaptive with respect to a user’s current position.

3.6 Visualization examples 63

Figure 3.12: Original web page of the Cognitive Systems group, Univer-
sity Kiel. The second hyperlink from the top in the left frame component
(’Navigation Tool’) activates the navigation support.

64 Internet Agent for Adaptive Hyper Space Visualization

Figure 3.13: The window constellation after the activation of the support
tool. The window on the left shows a rectangle with the URL of the current
web page in the main browser window. There is an additional control frame
in the browser window (blue). The ’staff’ button that will be activated in the
next step is the fourth hyperlink from the top in the left frame component
of the original web page.

3.6 Visualization examples 65

Figure 3.14: Navigation path visualization after the first navigation deci-
sion, an activation of the ’staff’ button. The window on the left shows the
navigation history (with two frame components ’nav.html’ and ’main.html’
of the previous page). The green rectangle shows the URL of the current
page in the browser window.

66 Internet Agent for Adaptive Hyper Space Visualization

Figure 3.15: A possible visualization of the navigation history after a number
of navigation steps.

3.6 Visualization examples 67

Figure 3.16: View of the local hyperlink structure, showing the current
position (green rectangle) and hyperlinks at the same depth with respect to
the main page after an activation of the ’surround’ button in the control
frame.

68 Internet Agent for Adaptive Hyper Space Visualization

Figure 3.17: A similar structure presentation as above from the same po-
sition in hyper space. In this case the structure view shows the current and
the previous navigation possibilities with regard to the client’s navigation
history.

3.7 Summary and discussion: Internet Agent 69

3.7 Summary and discussion: Internet Agent

In this chapter a software system has been presented that makes it possible
to realize a navigation support for users in the WWW. It was the objective to
provide a support for navigation in a well-defined, restricted Web area con-
sisting of a number of web servers, which are known to the system. At first
a new architecture was presented in section 3.3.1 that is a mixture between
software agents running on the client side and systems that run on the server
side. The described software system benefits from both architectures. The
capabilities of the described system to visualize information are (theoreti-
cally) similar to a system working on the client side. However a (partial)27

registration of the client’s navigation process on the server side makes collab-
orative filtering possible which is one main advantage of navigation support
systems working on the server side. Collaborative filtering can be made use
of when generating a navigation support, as will be shown in the following
chapter.
The presented system was realized by making use of two main ideas. One
idea is to redirect all URL requests from a client through the agent’s server
component as described in section 3.4.2. By this means the navigation reg-
istration on the server side is made possible. A second idea is to apply the
ability of common Internet browsers to run ’Java applets’ in a ’sand-box’
(section 2.1.4). The developed applet (i.e. the client’s agent component) is
loaded from the server and installed temporarily; it only runs throughout
the client’s navigation process and is removed afterwards. It was shown in
section 3.4.5 how this ’persistent’28 storage of the client’s agent component
throughout the navigation process can be realized by controlling the navi-
gation process. This control makes additional communication between the
client’s applet and the server’s agent component necessary.
A technical realization of the system was presented, too, showing visualiza-
tions of support information in section 3.6.
One important attribute of the system is the possibility of an autonomous
presentation. The client doesn’t have to reload the support information as
it would be the case if the information was stored on common web pages.
The agent itself is able to initiate the presentation of information. Another
advantage of the system is its usability for most of the Internet users without
the requirement of an (active) software installation in contrast to many other
systems (section 2.3). This is an important aspect since it is in most cases
not realistic to expect the visitor of a web site to install a software on his

27i.e. navigation in the considered Web area
28with respect to the navigation process

70 Internet Agent for Adaptive Hyper Space Visualization

computer. Such a requirement will only become accepted by users when a
large number of other Internet servers require the same software or plug-in,
as it is e.g. the case for ’flash’ [110]. Another attribute of the system is the
possibility to provide a navigation support covering a number of servers. The
data of these servers don’t have to be modified which makes it easy to install
and to supervise the system.
One main aspect with regard to the following chapters is the information
about the navigation of a client that can be registered. As discussed in sec-
tion 3.4.3 and shown in section 3.6 the system makes it possible to register
the sequence of different navigation steps of a client.29 This information will
we made use of when developing collaborative filtering techniques in the fol-
lowing chapters.
One disadvantage of the described system is the requirement of Java on the
client side, which is supported by most browsers, but which may still contain
security risks for the client. Another disadvantage is a more complicated
communication between client and server. If a firewall is activated on the
client side, the establishment of some connections may not be possible. More
advanced techniques like HTTP-tunneling might have to be applied here.
One main drawback of similar systems like the one presented here is the re-
striction of the support to a well-defined Web area. It would be desirable
to offer the navigation support in the whole Internet, which is not possible
when the described architecture is applied. However the web area may be
extended, if similar agents work in different web areas that communicate and
exchange the respective user and support data. Such a multi agent system
would however be far more complex.
In the next chapter it is examined, how the data about the user behavior
that is registered by the presented system can be used for collaborative filter-
ing purposes. Later, the registered data type is used to develop a prediction
method for future user behavior. At first a mathematical model has to be
developed on order to work with the respective data.

29in the worst case, i.e. every request is cached

Chapter 4

Pattern Recognition in Graph
Spaces

This chapter describes the theoretical framework that will be applied to learn
distributions of graphs in chapter 5. In the previous chapter a software sys-
tem was presented that makes it possible to register the navigation behavior
of clients in a well-defined (restricted) Web area (section 2.1.1) on the server
side. In this chapter a mathematical model is presented to characterize the
registered navigation behavior of users. The concept of a distribution of user
profiles with respect to the model will be introduced. A collaborative filter-
ing technique is then presented to learn the distribution of user profiles based
on a set of profiles that was registered by the system.

4.1 Model definition and notations

It was shown in section 3.4.3 that in the case that all requests are cached in
the connection between client and server the data, that is registered by the
system presented in chapter 3, are sequences of different navigation (brows-
ing) steps between data objects. This is the minimal information about a
user’s navigation path the system registers. In the case of different caching
strategies (section 3.4.2), more information may be available. As previously
described, these data can be used to estimate the actual navigation path,
applying action inferring techniques [2], [53],(section 3.4.2), that take into
account the web site’s hyperlink structure. These methods may provide es-
timations of the ’real’ sequences of navigation steps.
Because this method may not be exact as described in section 3.4.2, in this
thesis the sets of navigation steps is the information used to model the clients’
navigation behavior. These sets do not contain reoccurences of navigation

72 Pattern Recognition in Graph Spaces

decisions and the information about the actual sequence of navigation steps
is lost. Different caching strategies or action inferring techniques that may
result in different registered navigation decision sequences usually imply a
registration of the same set of navigation decisions (section 3.4.2). If e.g. the
real sequence of requested data objects is abcbd, the registered sequence e.g.
in the access-log file may e.g. be abcd, if the browser caches every data ob-
ject. Depending on the action inferring strategy and the hyperlink structure,
different estimated sequences are possible. The set of (undirected) naviga-
tion decisions is {(a, b), (b, c), (b, d)}, which isn’t affected by the browser’s
caching strategy. Therefore, taking sets of navigation decisions as the basic
data type to model user behavior, indifference according to caching tech-
niques in the Internet is improved and the application of action inferring is
not necessary. The sequence information is lost, but it may in many cases
be reconstructed, as in the case of a sequence of data objects abcd, which
results in a registered set of navigation decisions {(a, b), (b, c), (c, d)}.
The registered part of a navigation as defined in section 2.2.2 takes place in
a certain time interval, which will be called a user session time(-interval).

Definition 4 A user session time(-interval) is the time interval needed for
a client’s actions in a well-defined Web area between the entrance time and
the time when the area is left, as registered by a software system. It has to
be smaller than a finite time interval, the ’maximal dwell time’, ’m.d.’ time.
(In the other case it is the m.d. time).
In the case that the client doesn’t explicitly leave the area, it is the time
interval beginning with the entrance time and ending with the time of the last
action in the ’m.d.’ time interval.

This definition takes into account that the presented software system registers
the entrance of a client into the Web area by means of the ’id’ parameter
contained in the query string of a redirected HTTP request (section 3.5.1).
The exit point and time can be registered as described in section 3.4.3. Yet,
the client doesn’t have to leave the Web area explicitly but he may just
stop requesting new data objects. The system will then, after the m.d.-time,
decide the user session to be ’complete’.
A user session can now be defined as follows:

Definition 5 A user session, also refered to as user profile or user pattern
is the set or sequence of a user’s actions as registered by a software system
that take place in the user session time interval.

In the common case it is not possible for the described software system to
identify a client after he has left the considered Web area and returns to

4.2 Distortion concept 73

it (section 3.4.3). The user model can therefore only take into account one
session of a specific user. Different methods would have to be applied to
provide this revisiting information like Cookies, password identification etc.,
that have not been considered here.1 Each user session is therefore used to
characterize a different user, although a number of user sessions may originate
from the same person.

4.2 Distortion concept

This section describes the basic assumption upon which the developed intel-
ligent system is based. A fundamental question when analyzing user profiles
are the reasons, why profiles differ from each other. At least three factors will
have an influence, as shown in figure 4.1. The first factor is a user’s goal or
intention, i.e. his information need. There exist at least three different kinds
of goals like exploring an Web area, the search for concrete data objects or
the answer to a complex question by means of a navigation between data
objects as described in section 2.2.2. Other factors, that have an influence
on a user profile, are a user’s knowledge of the specific problem domain and
his experience with respect to the search process. These factors together will
be refered to as user setting.
As presented in [18], different user settings result in a different behavior of

user setting

goal/intention

knowledge

searching experience

expertise

Figure 4.1: The behavior of a user depends on his goal, the knowledge about
the domain and his searching experience (expertise). These factors together
will be denoted as user setting.

users concerning the use of a hyper-media database. A first striking differ-
ence can be seen in the behavior of experts and novices with respect to the
contents of the data. Similar differences are also presented in [51] for search-
ing behavior in the Web. An example for this difference is the observation,

1Drawbacks of these methods are that they are too complicated to use and their ap-
plicability (e.g. cookies are in many cases not activated in the client’s browser software).

74 Pattern Recognition in Graph Spaces

that experts tended to browse fewer topics in more depth than did novices.
They were not interested in changing topics until they completed review of
the current topic. Novices tended to rely more than experts on referential
links. It is one important aspect in the behavior of novices that they seemed
to concentrate on understanding the basic structure of knowledge, and often
switched topics to do so.
Figure 4.2 shows these results in the general case. Different users who have

similar

user profile 1

user profile 2

similar

user profile b

user profile a

different

user setting 1

user setting 2

different

Figure 4.2: The same intention (user settings) of different users (often) results
in similar (types of) user profiles. Experiments have been presented, where
two different user settings result in two sets of user profiles with different
characteristics (text).

the same user setting are likely to show a searching behavior that has similar
characteristics. A different setting is likely to result in a set of user profiles
that have different characteristics than the profiles in the first set (in a sta-
tistical sense).
The described examples in [51] and [18] thus lead to the assumption, that
e.g. a user’s ’degree of knowledge’ about the data objects can be estimated
just by observing how he uses the hyperlink structure. A similar assumption
is shown in figure 4.3. If two users have the same or a similar user setting,

user profile 1

user profile 2

similar similar

user setting 1

user setting 2

Figure 4.3: Assumed correlation between a user’s user setting and the regis-
tered profile.

the observed user behavior is likely to have similar characteristics. On the

4.2 Distortion concept 75

other hand, user profiles with similar characteristics are likely to result from
similar user settings. It is obvious that such conclusions are only meaning-
ful, when the knowledge about a user’s behavior is extensive enough. If the
observed behavior of users is used to achieve a segmentation in the ’set of
user settings’, the quality of this segmentation increases with the knowledge
about the behavior.
From a theoretic point of view it is difficult to work in the space of user
settings. From a practical point of view it is also difficult to acquire informa-
tion about user settings.2 Therefore, in the following only the ’space’ of the
observed user behavior is considered. Main problems will be to find metrics
and learning algorithms in this space. A segmentation quality in the space
of user settings is only accessed with respect to a prediction quality. It is
assumed that an intention is estimated correctly if the observed behavior of a
user can be predicted. By this means the ’space of intentions’ is not actually
needed in the practical considerations, it is only an abstract construction to
understand the underlying processes.
One question to consider is why the observed user behavior of different users
having the same user setting (or the observed user behavior of one user at
different times i.e. sessions) may be different. The results in [18] and [51]
only consider common characteristics in the set of behavior observations of
experts and novices but they don’t consider differences in the observations
belonging to one of the groups themselves.
One possibility for such a difference in the users’ behavior is (in the case of
search in an Web area) the starting point, i.e. the first object that is loaded
by a client coming from the considered Web area. This first object may de-
pend on how the user reaches the Web area. One possibility is that he uses a
hyperlink from an external place pointing into the considered Web area. In
this case, the first object may depend on the data objects the user requested
before, i.e. his previous positions in web space. A second possibility is that
a search engine is used. In this case, the starting point may depend on the
search engine and the query string. Other possibilities for such differences
are the applied search strategy of a user, his individual perception of the
data objects etc. If two user sessions are observed at different times they
may differ because of a change of the Web area in the meantime. Hyperlinks
may have been added or missing, the data objects like web pages may have
been changed, added or deleted.
Most of these factors that cause a deviation of observed user behavior are
not known to a software system like the one presented in chapter 3 and can
only be modeled in a statistical sense. The deviation in the observed user

2There exist methods like questionnaires, that are inconvenient for a user.

76 Pattern Recognition in Graph Spaces

behavior will be refered to as distortion of user profiles in the following.

4.3 Formal introduction into graph spaces

The definition of a user session (definition 5) doesn’t take into account, how
and what kind of actions are registered by the software system. The pre-
sented system registers navigation decisions of users as described in section
3.4.2 that can be assigned to specific users by means of the method described
in 3.4.2 and 3.5.1. Due to the discussion in section 4.1 and 3.4.2 only the
set of actions (navigation decisions) but not the sequence information is con-
sidered. Therefore the utilized session information are the sets of clients’
transitions between data objects. Such a set can be regarded as a labeled
graph, consisting of a set of nodes, that represent the visited data objects,
and a set of edges representing the transitions between these data objects.
The following definitions concerning such graphs can be found in many books
and articles dealing with graph structures, e.g. in [8] and [74].
Let LV be a set of vertex labels and LE be a set of edge labels and define the
set D of all data elements:

Definition 6 Let ’D’ be the finite set of all data elements (or data objects)
in the considered Web area with an own URL address.

Examples for the data elements are web pages, images, sound files, etc. Some
of the data objects, e.g. some images, may be part of a web page (and are
thus loaded automatically by the browser). These images should not be part
of D. The main definition needed to model user behavior is the definition of
a graph structure.

Definition 7 A graph is a 4-Tupel G = (V, E, µ, ν), where

V is a set of nodes and E ⊆ V × V is a set of edges.

µ : V → LV is a function that assigns labels to the nodes.

ν : E→ LE assigns labels to the edges.

Unique indices may be assigned to the finite number of elements inD (Indices(D)).
The set of labels LV of a graph is a subset of these indices, i.e. LV ⊂
Indices(D). The set of edge labels LE may contain additional informa-
tion about the transition, like the dwell time etc. The edges in this defini-
tion are directed. However for simplification reasons, the estimation proce-
dures described in the following only consider undirected edges. For such

4.3 Formal introduction into graph spaces 77

an undirected graph it is required that for all (w1, w2) ∈ E it follows that
(w2, w1) ∈ E, i.e. the adjacency matrix of the graph is symmetric.
Given a finite set D (which is the case in the presented model) the set of
possible graphs based on D is also finite.

Definition 8 Let Γ denote the set of all possible graphs with respect to D.
Γ will also be refered to as the ’graph space’.

The graph that contains neither nodes nor edges will be denoted as empty
or zero graph:

Definition 9 Let 0 = (V0, E0, µ0, ν0) denote the graph ’empty’ or ’zero’ in
Γ with V0 = ∅ (and thus E0 = ∅).

In order to measure the ’size’ of a graph, the number of nodes is counted:

Definition 10 Let G = (V, E, µ, ν) ∈ Γ be a graph. Let |G| := |V | be the
’size’ of the graph G.

Obviously there are many different methods to define this ’size’ of a graph
that also consider the edges. The subsequent definitions are required for
the definitions of distance functions between graphs. A subgraph is a partial
structure of a graph:

Definition 11 Given a graph G = (V, E, µ, ν), a subgraph S of G (’S ⊆ G’)
is a graph S = (VS, ES, µS, νS) with

VS ⊆ V,
ES = E ∩ (VS × VS),
the functions µS and νS are the restrictions of µ and ν to VS
and ES, respectively:

µS(w) =

{
µ(w) if w ∈ VS

undefined otherwise

νS(e) =

{
ν(e) if e ∈ ES

undefined otherwise

The definition of a maximal common subgraph of two graphs makes it possible
to compare two graphs with respect to a structural similarity:

Definition 12 Given two graphs G1 and G2. Let maxSub(G1, G2) be the
maximal common subgraph of G1 and G2, i.e. maxSub ⊆ G1 andmaxSub ⊆
G2 and there is no other subgraph S with S ⊆ G1 and S ⊆ G2 and |S| >

|maxSub|.

78 Pattern Recognition in Graph Spaces

In order to decompose a graph into two part, which is an important com-
putation step for various graph matching algorithms [74] and which will be
used to measure the prediction quality of the presented algorithm in chapter
6, the definition of a graph union or graph sum is necessary.

Definition 13 The union (or sum) G = G1 +E ′ G2 (where G = (V, E, µ, ν))
of two graphs G1 = (V1, E1, µ1, ν1) and G2 = (V2, E2, µ2, ν2) is defined if
V1 ∩ V2 = ∅ and E ′ ⊆ (V1 × V2) ∪ (V2 × V1). Let ν ′ be a labeling function
ν ′ : E ′ → LE.
Then define:

V := V1 ∪ V2

E := E1 ∪ E2 ∪ E
′

µ(w) :=

{
µ1(w) if w ∈ V1

µ2(w) if w ∈ V2

ν(e) :=

ν1(e) if e ∈ E1

ν2(e) if e ∈ E2

ν ′(e) if e ∈ E ′

In order to decompose a graph G, two graphs G1 and G2 and an edge set E ′

have to be found such that G = G1 +E ′ G2.
In order to determine, if two graphs have an identical structure with respect
to the node labels and the edges, a graph isomorphism between the graphs
has to be found.

Definition 14 A graph isomorphism f : V → V ′ from a graph G = (V, E, µ, ν)

to a graph G ′ = (V ′, E ′, µ ′, ν ′) is a bijective function with:

µ(w) = µ ′(f(w)) for all w ∈ V

For all e = (w1, w2) ∈ E there is an edge e ′ = (f(w1), f(w2)) ∈ E
′ with

ν(e) = ν ′(e ′).

For all e ′ = (w ′
1, w

′
2) ∈ E ′ there is an edge e = (f−1(w ′

1), f(w
′
2)) ∈

E with
ν ′(e ′) = ν(e).

With the previous definition the concept of a subgraph can be defined in a
way that takes only structural properties of the graphs into account.

4.3 Formal introduction into graph spaces 79

Definition 15 An injective function f : V → V ′ is a subgraph isomorphism
from G to G ′, if there exists a subgraph S ⊆ G ′, so that f is a graph isomor-
phism from G to S.

The preceding definitions will be used to define one class of distance mea-
sures between graphs (section 4.4.3). The subsequent definitions are used
for another type of distance functions that make it possible to take into ac-
count ’distances’ between the data elements, i.e. the nodes of the graphs.
(The latter distances will subsequently be defined, too.) This second type of
distance functions is based on the idea that a graph distance can be defined
by transforming one graph into the other, assigning a cost to each operation
and by finding a transformation sequence with minimal costs. Possible oper-
ations for such a transformation are the exchange of node or edge labels, the
deletion or insertion of nodes or edges (a missing node or edge is denoted by
the ’$’ symbol).

Definition 16 An edit function δ of a graph G = (V, E, µ, ν) is one of the
following functions:

• µ(w) → l,w ∈ V, l ∈ LV , here the label value µ(w) of a vertex is substi-
tuted by a label l in order to correct label errors,

• ν(e) → l ′, e ∈ E, l ′ ∈ LE, correction of an edge label by substituting label
ν(e) by l ′,

• w→ $, w ∈ V, deletion of a vertex (and all incident edges),
• $→ w,w ∈ V, insertion of a vertex,
• e→ $, e ∈ E, deletion of an edge,
• $→ e = (w1, w2), w1, w2 ∈ V, insertion of an edge to correct additional

edges.

These edit operations also define ’distortions’ as introduced in section 4.2.
Different edit functions may have different probabilities. Such a probability
(exactly: (1-) the probability) can also be regarded as the ’cost’ C(δ) of an
edit operation. The defined edit operations make it possible to transform
one graph into any other graph. A graph upon which one edit function was
applied is defined as follows:

Definition 17 For a graph G = (V, E, µ, ν) and an edit function δ, the graph
δ(G) = (Vδ, Eδ, µδ, νδ) is the graph upon which one of the edit functions was

80 Pattern Recognition in Graph Spaces

used.

Vδ =

V − {w} if δ = (w→ $)

V ∪ {w} if δ = ($→ w)

V otherwise

Eδ =

E ∪ {e} if δ = ($→ e)

E− {e} if δ = (e→ $)

E ∩ (Vδ× Vδ) otherwise

µδ(w) =

{
l if δ = (µ(w)→ l)

µ(w) otherwise

νδ(e) =

{
l ′ if δ = (ν(e)→ l ′)

ν(e) otherwise

Such a graph will be refered to as distorted graph in the folowing. For a
transformation of one graph into another usually a sequence of edit operations
is required:

Definition 18 For a sequence of edit functions ∆ = (δ1, δ2, ..δk) and a graph
G define ∆(G) = δk(...δ2(δ1(G))).

The costs for such a transformation is the sum of the costs of the individual
edit functions:

Definition 19 The cost of an edit sequence C(.), is the sum of the costs of
the edit operations C(∆) =

∑k

i=1C(δi)

The concept of a subgraph isomorphism and the concept of an edited graph
can be combined into the concept of an edited subgraph isomorphism. This
definition is a generalization of the previous subgraph isomorphism defini-
tions since it is possible to apply this subgraph condition even if the subgraph
isomorphism definition is not ’exactly’ fulfilled.

Definition 20 An error-correcting (ec) subgraph isomorphism f from G to
G ′ is a tuple f = (∆, f∆), where ∆ is a sequence of edit operations, so that
there exists a subgraph isomorphism from ∆(G) to G ′ and f∆ is such an
isomorphism.

The costs of such an isomorphism C(f) are the costs of the associated edit
sequence C(∆).

4.4 Methods to define a distance between graphs 81

4.4 Methods to define a distance between graphs

In section 4.2 the assumption was made, that similar observed user profiles
are likely to result from similar questions (or user settings) of users. It is
still very difficult to find a process to (automatically) estimate a similarity
between questions (user settings). Additionally it is difficult for a software
system to register questions (user settings) without increasing the expendi-
ture for a user. Therefore the problem of defining a similarity measure in the
space of questions is not considered here.
This section gives a survey of definitions of a similarity in the space of obser-
vations, which will then be used to estimate the similarity between the un-
derlying question (user settings) in a subsequent chapter according to section
4.2.3 Since the observations (registered by the described system in chapter 3)
are graphs, it is the objective to define a distance between graph structures
as defined in section 4.3.

4.4.1 Topological-index methods

A graph can be represented by an adjacency matrix. The manipulation of
such matrixes is computationally expensive. In order to develop fast meth-
ods for graph comparison it is possible to consider the topological structure
and to find so called topological indices [5]. Such indexes were e.g. applied in
[42] for the comparison of Hypertext structures. A simple example for such
a topological index is the sum of the out-degrees (the number of outgoing
edges) of all nodes of a graph. It is obvious that there may be many different
graphs that have this same topological index.
One main disadvantage of this topological index, which is also true for many
other topological indexes, is the degeneracy, i.e. it is not possible to discrim-
inate between large sets of graphs.

4.4.2 Set distance

A different approach is to take a difference measure between data elements
represented by nodes (or labels) of two graphs into account. In a simple case
such a distance is given by δi,j, i, j ∈ N, i.e. the distance is 0 if the objects i
and j are identical and 1 otherwise. A difference between two graphs can then
be defined by the number of identical node labels of the graphs. In order to
compute a similar distance, it is also possible to define a vector space, where
each possible node of a graph is one dimension of this space. The node set

3User settings are assumed to be well-estimated (indirectly), if the respective user
behavior can be predicted.

82 Pattern Recognition in Graph Spaces

of a graph can then be regarded as a vector in this space with a 1 entry, if
the possible node is contained in the graph’s node set and 0 otherwise. A
distance between two graphs can then be defined as the scalar product or
the cosine between their respective node vectors. It is obvious that the order
of dimensions in the vector space is irrelevant and that these distances don’t
take account of topological properties (the edge structure) of the graphs.

4.4.3 Shape metrices

The distance functions described in this section combine on the one hand
knowledge about topological properties of graphs and on the other hand
properties of the node or edge elements. The distance functions are based on
the size of the largest common subgraph as given by definition 12. Given two
(non-empty) graphs G1 and G2 it is shown in [17] that the following distance
function has the mathematical properties of a metrics:

da(., .) : Γ × Γ −→ R≥0

(G1, G2) 7−→

{
1−

|maxSub(G1,G2)|

max(|G1|,|G2|)
G1 6= 0 and G2 6= 0

0 else

In [111] a similar distance function between graphs was defined that was also
proved to be a metrics.

db(., .) : Γ × Γ −→ R≥0

(G1, G2) 7−→

{
1−

|maxSub(G1,G2)|

|G1|+|G2|−|maxSub(G1,G2)|
G1 6= 0 and G2 6= 0

0 else

The reason to consider this metrics is that the size of the graph union |G1 ∪
G2| = |G1| + |G2| − |maxSub(G1, G2)|, i.e. the denominator in the formula,
distinguishes variations in the size of the smaller of the two graphs. If only
the size of the larger graph is used to represent problem size, the distance
between graphs will remain unchanged even if the smaller graph changes its
size [111].
In [34] a graph distance was proposed that is based on the maximum common
subgraph and the minimum common super-graph (minSup) of two graphs G1

and G2:

dc(., .) : Γ × Γ −→ R≥0

(G1, G2) 7−→ |minSup(G1, G2)| − |maxSub(G1, G2)|

This metrics doesn’t only take into consideration superfluous but also missing
structural information in the input graphs.

4.4 Methods to define a distance between graphs 83

Algorithms to compute such distances are described in detail in appendix A.
These distance functions provide distance measures in a set of graphs without
making distance definitions between nodes necessary. Such distances, which
are difficult to find in many problems, are required for the following distance
functions.

4.4.4 String-edit distance function

The shape metrices described above make it only possible to compare a struc-
tural similarity of graphs, if they have common substructures where the node
labels are identical. It may also be important to compare navigation profiles
that are registered in different web sites where the nodes are different (as
was done by [18] manually), which isn’t possible using shape metrices. In
order to develop such a distance function, it is necessary to take a distance
function between nodes (and edges) into account that was denoted as C(δ)

in section 4.3, definition 19, where δ is a substitution of node (or edge) labels
according to definition 16. A distance measure can then be defined based on
a solution of the well known problem of error-correcting subgraph isomor-
phism detection which is important e.g. in the field of computer vision [74].
Various approaches to this problem have been presented. One common ap-
proach is based on the A∗ algorithm [79]. Heuristic methods were presented
to reduce the search space [116], [98], [102]. Continuous approaches are poly-
nomially bounded in the number of computation steps but may miss the
optimal match in some cases [56], [25].
The problem is to find an error correcting (e.c.) subgraph isomorphism
f = (f, ∆), with ∆ = δ1, ...δn that has minimal costs C(∆) =

∑
i=1,..nC(δi):

Definition 21 Let G1 and G2 be two graphs, let d(G1, G2) be the e.c. subgraph-
isomorphism distance:
dd(G1, G2) :=

min∆{ C(∆) | there exists an e.-c.-subgraph-isomorphism f∆ from G1 to G2}

Definition 21 doesn’t provide a symmetric distance measure. In order to
provide a symmetric distance, it is possible to take the minimum of d(G1, G2)

and d(G2, G1).

Definition 22 Let G1 and G2 be two graphs, let d(., .) be the e.c. distance
measure. Then let sd(., .) be the symmetric e.c. distance measure:
sd(G1, G2) := min{d(G1, G2), d(G2, G1)}

84 Pattern Recognition in Graph Spaces

4.4.5 Contents-based distance function

The problem with the previous graph distance is to find adequate node dis-
tances (or edit costs). A first approach is to take node and edge distance
(substitution costs) that are equal for all nodes and edges respectively. In [16]
it was proved that the distances can e.g. be defined in a way that the graph
edit distance problem is equal to the maximal common subgraph problem
described above (with graph edit costs being equal for all nodes and edges).
However in order to achieve an adequate segmentation of the set of graphs
it may be necessary to consider more advanced node distances. In our case
the actual objects represented by the graph nodes or labels are data objects
in the Internet. The definition of distances in such a space of multimedia
objects is very complex since it may contain the problem of finding distance
measures between text, images, sound files and design features, i.e. how the
components are assembled in a web page. In the case of textual data, which
are the data that are also considered by Internet search engines, the problem
falls into the field of information retrieval. Many distance measures have
been developed in the past for textual data [96]. In many procedures the
texts are processed into vectors of contained words. The dimension of the
underlying space of these vectors is the number of all possible words (that are
considered by the system). A distance can then e.g. be defined by the cosine
between two word vectors. This means that this vector model reduces a text
to the set of contained words and thereby ignores the topology of words in a
text.4

Another strategy to define edit costs is to learn them from examples, as
presented in [90].

4.5 Characterization of a graph distribution

In section 4.2 reasons were provided why the observed navigation behavior
of users is likely to be different, even if the intention (setting) of users is the
same. The underlying processes causing such distortions like different entry
points, a change in the internet environment or different searching strategies
can not be observed by our software system. It is therefore necessary to
regard the observation of profiles as a stochastic process (Xt : Ω −→ Γ)t∈R,
where Xt, t ∈ R is a set of random variables. A realization of a random
variable Xt(ω) ∈ Γ , ω ∈ Ω is a navigation graph as introduced in definition
7.

4A similar reduction of the problem is possible in the case of navigation profiles as
discussed in section 4.4.2 with the described disadvantages.

4.5 Characterization of a graph distribution 85

It is the objective to classify a new profile according to a set of former profiles
supplied by users. For this purpose it is helpful to know the distribution of
the graph profiles, i.e. the distribution of Xt (it is assumed here that all Xt,
t ∈ R are equally distributed and that the stochastic process is stationary).
In many cases in stochastics, the values of random variables are elements
of R or Rn. Distributions can then often be described by smooth density
functions with integral 1, e.g. a Gaussian distribution.
In the presented case, where the values are graphs, other methods to char-
acterize a distribution have to be found.

4.5.1 Discrete characterization

A first method to characterize a distribution of graphs is a discrete character-
ization. The set Γ of all possible graphs is finite since the set of data objects
D is finite. The distribution of the stochastic process can be estimated by the
relative frequency of navigation profiles. Methods to describe such a distri-
bution of sets or sequences in the case of very large databases were presented
in the field of data mining [1], [24]. In these cases only those data elements
with a high frequency are extracted (that represent ’the important part’ of
the discrete distribution).

4.5.2 Topological characterization

The discrete distribution characterization doesn’t take into account a possi-
ble similarity between graph profiles. Yet, many navigation profiles will only
slightly be distorted because of a similar intention of users as described in
section 4.2. A distance measure between graphs as presented in section 4.4
makes it possible to provide a distribution characterization with knowledge
about the topology of the graph space. This topological knowledge can be
used to simplify the distribution characterization without losing relevant in-
formation, which can also be understood as a learning process.
A first idea is to find groups for similar profiles that are likely to result from
similar intentions. Provided that there is a finite number of graphs G1, ...Gm,
m ∈ N and a finite number of n different groups (n ≤ m), such a distri-
bution characterization can be formalized by a function that assigns every
graph profile to its group:

Charac1: {G1, ...Gm} −→ {1, ..n}

G 7−→ k ∈ {1, ...n}

Another method to characterize such a distribution is to take into account
some characteristics about the inner structure of the clusters. Possible char-

86 Pattern Recognition in Graph Spaces

acteristics are the center elements of the clusters, the deviations of elements
within a cluster and the absolute probability of a cluster, which can be es-
timated by the relative number of elements (the number of elements in the
cluster divided by the number of all elements). A possible formalization of
such a distribution characterization is then a set of these cluster characteris-
tics:

Charac2: =
⋃

i=1,..n

{(µi, σi,
Ai

A
)},

where (µi, σi,
Ai
A

) is the tuple of inner cluster characteristics of cluster i, with
µi being the center graph of cluster i, σi is a measure for the distribution
within the cluster, e.g. the mean value of the distances of the elements in
the cluster i from the center element µi, Ai is the number of elements in the
cluster, and A is the number of all graph elements. The center values µi can
be found from Charac1 by determining the element in the cluster with the
smallest sum of the distances to all the other elements in the same cluster
(section 4.6.2).
In the following chapters a simplification of the previous graph distribution
characterization is used by taking only the center points into account.

Charac3: =
⋃

i=1,..n

{µi}.

The latter distribution characterization can be understood as a characteri-
zation by cluster representatives.

4.6 Estimation of graph distributions

The previously defined metrics or distance functions can now be applied to
estimate a graph distribution as characterized by one of the methods in sec-
tion 4.5.2. The navigation graphs can be clustered using common clustering
techniques like nearest neighborhood clustering as described in [33] and by
using one of the distance functions given in section 4.4. Further investigations
concerning the shape of the inner cluster distributions according to Charac2
in section 4.5.2 can then be made. The steps that have to be performed for
a distribution estimation are shown in figure 4.4.

4.6.1 Clustering techniques

The applied clustering technique, i.e. the third step in figure 4.4, is the
single linkage or nearest neighborhood technique, first described in [104], [41]

4.6 Estimation of graph distributions 87

Graph distribution estimation

1. registration of profiles (section 3.4.2)

2. computation of the distance matrix (section 4.4)

3. cluster algorithm (section 4.6.1, appendix B)

4. estimation of the graph distribution (section 4.5)

Figure 4.4: Steps for a distribution estimation.

and [54]. It is described in more detail in appendix B. The rough idea of
this algorithm is first to define a distance between groups as the distance
of the closest pair of individuals (one individual in each group). Then the
elements are sequentially combined to groups until one group, containing all
elements, is obtained. In each combination step two elements (either the
original elements or newly formed clusters) are chosen that have a minimal
distance. These elements are then combined to form a new cluster element.
The sequence of join operations can be visualized as a dendrogram [33]
One main problem still present is obviously to obtain the number of clusters
that ’adequately’ describes a problem. In the case of a distribution estimation
it is the problem to find a (minimal) number of clusters that makes e.g. an
optimal prediction possible (chapter 6). The number of clusters should in
this case be minimal, because the estimated distribution will subsequently
be used for a classification of new graph profiles, which is a computationally
expensive step, linearly depending on the number of cluster centers (appendix
A). A number of clusters, that is too small, may not optimally represent the
distribution (which is shown in the experiments in section 6.4.3). A number
that is too large may not increase the prediction quality.

4.6.2 Determination of a cluster center

In section 4.5.2 (Charac3) it is necessary to determine the center of clusters.
In the case of an Euclidean vector space there are different methods known
from statistics to find such a center point. Possible methods are e.g. to take
the mean value or the expectancy value of the data points in a cluster. In the
case of a graph space, the determination e.g. of a mean value is difficult. One

88 Pattern Recognition in Graph Spaces

reason is the absence of necessary algebraic operations. In this work therefore
another strategy is applied, that is, similar to the cluster procedure, based
on the distance values between the graphs. One possibility is to take the
(one) value as the center value that has minimal distance to all the other
values. If a set of graphs G1, ...Gn (n ∈ N) is given and a distance function
d : Γ × Γ −→ R≥0, define the center element Ḡ:

Ḡ := G ∈ {G1, ...Gn} which satisfies:
∑

i=1,..n

d(G,Gi) is minimal. (4.1)

A second method is to reduce the ’costs’ for smaller distances, by taking the
square of the distance values. This is the value that will be applied in the
subsequent experiments. With the same conditions as above, the mean value
Ḡ is in this case:

Ḡ := G ∈ {G1, ...Gn} which satisfies:
∑

i=1,..n

d(G,Gi)
2 is minimal. (4.2)

It is obvious that the topology of a graph space is much more complex than
e.g. in the case of an Euclidean vector space. It still has to be thoroughly ex-
amined under which conditions the above methods lead to meaningful results
(which is not considered in this work).

4.6.3 Quality of a distribution estimation

In order to measure the quality of a distribution estimation, it may be help-
ful to determine the distance between a real distribution that is known in
advance and an estimation of this distribution.
Let G1, ..Gn be the (observed) elements in Γ , H1, ..Hm (m ≤ n) be the real
cluster centers characterizing the graph distribution and d(., .) be the dis-
tance between two graphs according to one of the definitions in section 4.4.
Let δ(G) := min{d(G,Hj)|j = 1, ..m} with G ∈ {G1, ...Gn}.

Definition 23 Given an estimation of the cluster centers Ĥ1, ..Ĥm, let
err :=

∑
i=1,..m δ(Ĥi).

Obviously, err decreases, if the estimation result gets better, i.e. the esti-
mated cluster centers move towards the real ones. This quality function is
used to evaluate experiments concerning a distribution estimation in chapter
5.

4.7 Summary: Pattern Recognition in Graph Spaces 89

4.7 Summary: Pattern Recognition in Graph

Spaces

The system described in the previous chapter makes it possible to register
and to store the sets of navigation steps of users on a central server. In this
chapter a mathematical model was presented to deal with these data. The
registered user behavior is modeled by graphs; the nodes represent requested
data objects and the edges represent transitions between data objects (usu-
ally the activated hyperlinks). The problem of defining a distribution of a set
of graphs was discussed. Instead of a discrete distribution characterization,
topological information concerning the distance between graphs is taken into
account, too. Different distance measures between graphs were presented for
this purpose. With the help of these considerations, a procedure was pre-
sented to estimate the distribution of graphs, which is based on a clustering
algorithm.
In the next chapter experiments are presented that show properties of the
distribution estimation algorithm. In chapter 6 an algorithm for the pre-
diction of user profiles is presented that is mainly based in the distribution
estimation.

90 Pattern Recognition in Graph Spaces

Chapter 5

Estimation of Graph
Distributions

5.1 Task description

There are two main questions in order to evaluate an estimation of a graph
distribution. The first question is whether the distribution characterization
is adequate for a problem. In section 4.5.2 different possibilities for such a
characterization were presented, where the actual characterization also de-
pends on the applied distance function or metrics. It is obvious that e.g. the
set distance in section 4.4.2 can’t take topological information1 into account
and wouldn’t be adequate for a problem where this knowledge is important.
The main problem to examine is how to optimally discriminate between the
graphs [42]. The second problem is how to evaluate a distribution estimation,
given that a distribution characterization was fixed. In the following empha-
sis is laid on the second question, where in most cases the characterization
Charac3 in section 4.5.2 will be applied and the metrics ’da’ in section 4.4.3.
In order to evaluate the procedure for a distribution estimation presented in
section 4.6 it is the objective to show properties of the procedure under cer-
tain circumstances. The first property to be shown is a convergence of the
estimation results to the real distribution for an increasing number of graph
profiles. This is a basic statistical requirement for every estimation process.
Further analysis concerns the dependence of a distribution estimation on the
variance of graphs in clusters, the effect of topological information, and an
analysis of ’non-stationary distributions’, i.e. distributions that change in
time.
These results are difficult if not impossible to obtain from observed navigation

1i.e. the information contained in the edges

92 Estimation of Graph Distributions

profiles since the original distribution is not known in this case. Therefore
in the following graph profiles will be used, that are generated randomly ac-
cording to a well-known distribution that was fixed in advance. It is then
possible to evaluate the estimation results by comparing them to the original
distribution parameters. These experiments reveal main properties of the
described estimation procedure.

5.2 Simulation procedure

In order to generate graph profiles of a known distribution, it is first neces-
sary to define a space of graphs Γ , as introduced in definition 8, that is based
on a set D of data elements. Instead of taking a set of data objects, we assign
every data object an unambiguous number and regard D as a set of these
numbers; i.e. D = {1, ..n}, n ∈ N. A graph can now be generated by taking
a number of elements from D randomly and by fixing a number of random
edges between these nodes. It is also possible first to choose a number of
edges at random and then to take the set of adjacent nodes as the node set
of the graph. With regard to the case considered here, i.e. navigation in an
Web area, only connected graphs will be considered. Provided that the size
of the graphs, the number of edges, the nodes and the edges were chosen
randomly, equally distributed, by this means connected graphs following an
equal distribution in a graph space can be created. If the user profiles were
equally distributed, nothing could (would have to) be learned by the system.
Obviously, in a real scenario the user profiles are not equally distributed as
discussed in section 4.2.
In order to generate data that are not equally distributed two assumptions
concerning this distribution are made:

• There exist a finite number of local maxima in the distribution (i.e.
graphs with a high likelihood), the ’center graphs’.

• The distribution has got the ’shape’ of a sum of Gaussian distributions,
graphs near the center graphs have a decreasing likelihood, depending
on the distance to a center graph.

The distribution will be modeled by a kind of ’sum of Gaussian distributions’
in graph space.2 First a numberm ∈ N of center graphs are computed. Then
a probability value and a variance is assigned to each center graph. The
variance value determines, how the likelihood decreases for more and more

2This picture is taken from the case of an Euclidean vector space.

5.2 Simulation procedure 93

Generation of graphs

Distribution generation:

fixing of the data space D
fixing of the distribution settings (number of clusters, the proba-
bility of the clusters, the variance)
generation of a distribution characterization (random cluster cen-
ters)

Profile generation:

set counter=0, fix number of profiles n ∈ N,
set graphlist = ∅
while counter < n

choose a center graph with respect to the probabilities
choose a distortion value with regard to the variance value
distortion of (a copy of) the center graph
store the new graph in graphlist
counter := counter + 1

output graphlist

Figure 5.1: Generation of a number of n simulated graphs.

distant graphs.
The different computation steps can be seen in figure 5.1. The upper part

of the figure shows the steps to fix a distribution and the lower part of the
figure comprises the steps to generate a number of graphs following this
distribution.
At first a center graph is chosen according to the probability values of the
clusters. Then a distortion value (i.e. a number of distortions) is chosen
depending on the variance of the respective clusters. This value follows a
discrete (positive) Gaussian distribution:

p(x) =
1

σ2
exp(−

x2

σ2
) , x ∈ N≥0. (5.1)

Figure 5.2 shows histograms of randomly generated values following this dis-
crete distribution for different variances σ2. These variances will be refered
to as error variances or cluster variances in the subsequent text. A copy of
the center graph is distorted with respect to one of the edit functions in def-
inition 16, the number of distortions is the distortion value. The new graph

94 Estimation of Graph Distributions

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

number of errors

(a) σ2=2

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

number of errors

(b) σ2=3

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

number of errors

(c) σ2=4

Figure 5.2: Histograms showing simulated discrete (positive) Gauss distri-
butions with zero mean and different variances σ2.

obtained in this way is stored and the computation continues by choosing a
new center graph in the first step. The graph computation is carried out n
times, depending on the number of graphs to be computed.
Similar to figure 4.4 in section 4.6, figure 5.3 shows the steps necessary for
a distribution estimation with randomly generated data. In the first step

Graph distribution estimation

1. generation of profiles (algorithm in figure 5.1)

2. computation of the distance matrix (section 4.4)

3. cluster algorithm (section 4.6.1)

4. estimation of the graph distribution (section 4.5)

5. quality estimation by comparing estimated graph distribution with orig-
inal distribution (section 4.6.3)

Figure 5.3: Graph distribution estimation with simulated graph data of a
known distribution.

a number of graphs G1, ...Gm, m ∈ N is generated, following a well-known
distribution as described above. In a second step the distances between the
generated graphs are computed as described in section 4.4. The result is a
matrix M, containing the distance information between element i and j at
the position M(i, j). The distance matrix is then used for a clustering proce-

5.2 Simulation procedure 95

dure of the elements as described in section 4.6.1. The result of the clustering
process is a function from the set of graph profiles G1, ...Gm to the set {1, ...c},
where c ∈ N is the number of clusters. The function assigns each element a
cluster number according to the estimation. The cluster information is now
used to estimate the distribution as described in section 4.6 with respect to
the chosen characterization (section 4.5.2). The main advantage when using
generated graphs to test the estimation procedure is the knowledge about
the real distribution. In a final step therefore, the estimation results can be
compared to the original distribution, i.e. the simulation parameters used for
the generation of the graphs. Here, the quality function presented in section
4.6.3 is applied.
Figure 5.4 tries to visualize the distribution estimation problem. Figure
5.4(a) shows a set D of 60 nodes and a possible graph in the graph space Γ ,
based on D. This graph of 8 nodes is a possible cluster center. Figure 5.4(b)
shows a distortion of this cluster center based on label distortions. One node
(3) is e.g. deleted and another node (30) is inserted. Figure 5.5(a) shows the
sum of five distorted graphs, which is the visualization of a possible cluster
based on the center graph (although the cluster is the set of the five graphs,
which is difficult to visualize). Figure 5.5(b) shows another cluster based on a
second center graph. The problems of clustering and distribution estimation
are based on the problem of discriminating between sets of graphs shown e.g.
in figure 5.5(a) and 5.5(b) (the different cluster graphs are however merged
in the figures).
Another possibility to show the problem of distribution estimation is pre-
sented in figure 5.6. Figure 5.6 shows three simulation examples. In each
simulation 100 graphs were generated with a distribution consisting of two
clusters. The variance of the clusters was changed in the different experi-
ments by taking different variances for the discrete Gaussian function in the
distortion step (’error variance’), as described above. Each figure shows a
histogram of distances from one (randomly selected) profile to the other pro-
files. In the first figure the error variance is very small. The two clusters can
easily be seen (and separated). About one half of the profiles is similar to
the chosen profile, the other half is different. In the second figure a higher
error variance was chosen and the two clusters seem to merge, but can still
be separated, i.e. the percentage of misclassifications would still be small. In
the third figure the error variance is high and the two clusters can no longer
be distinguished.
When trying to create clusters it is thus evident that the number of distor-
tions must not be too large, which is obviously also true for real profiles.

96 Estimation of Graph Distributions

(a) A space (D) of data objects with 60 elements and
one graph G of 8 nodes (a possible cluster center).

(b) A distortion of the graph G (label distortions).

Figure 5.4: A visualization of a set of data objects, a cluster center in the
associated graph space and a distortion of the center element.

5.2 Simulation procedure 97

(a) The sum
∑

i=1,...5 Gi of 5 distorted graphs (based
on G).

(b) The sum
∑

i=1,...5 G
′

i of 5 distorted graphs (based
on another center graph G ′).

Figure 5.5: A visualization of the sum of five cluster elements based on two
different cluster centers. The figures show the problems when visualizing
graph clusters directly (for a precise visualization, the five elements should
not be merged; they should be separated e.g. by a different color).

98 Estimation of Graph Distributions

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

nu
m

be
r o

f g
ra

ph
s

graph distance

(a) In the simulation the error variance is
1 (label errors).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

nu
m

be
r o

f g
ra

ph
s

graph distance

(b) error variance = 5

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

nu
m

be
r o

f g
ra

ph
s

graph distance

(c) error variance = 10

Figure 5.6: Histograms of distances from one (randomly selected) profile to a
set of 100 profiles. The three histograms are based on three different profile
sets, generated with different simulation parameters (i.e. error variances).
Common to all simulations, the graphs consisted of 15 nodes, 20 edges and
the distribution characterization consisted of 2 clusters. The clusters may
only be found, if the cluster variance is sufficiently small.

5.3 Effect of the information used for segmentation 99

5.3 Effect of the information used for seg-

mentation

The input data that are used for a distribution estimation contain informa-
tion about the distribution, depending e.g. on the number of profiles, the
degree of the distortion of profiles and the contained topological information.
The subsequent experiments try to show some statistical properties of the
distribution estimation depending on the input data.

5.3.1 Dependence of distribution estimation on the num-

ber of profiles

A main aspect of a distribution estimation is the behavior of the estima-
tion result for an increasing number of data. A theoretical basis for such
a consideration in the field of statistics is the ’law of great numbers’, i.e.
the convergence of the relative frequency of the values of independent ran-
dom variables to their probabilities, which means that the more observations
(measurements) are available, the better is the estimation (’better’ is meant
in a statistical sense). A similar result is desirable in every estimation pro-
cess. The question to examine here is if this property is also true for the
described stochastic experiment with graph data.
In the experiment, the number of elements in the data set D is 30, the num-
ber of nodes in each graph is 25, with 30 edges. The original distribution
characterization (Charac3 in section 4.5.2) consists of 2 original (center)
graphs of the same size, that are found randomly with equal distribution in
the graph space. The number of identical simulations is 10; that means that
the same simulation setting was used 10 times to generate random data and
to compute the estimation error. Then the mean value was computed based
on the 10 values.
Figure 5.7 shows the estimation error according to section 4.6.3 depending on
the number of profiles used for the distribution estimation. Each value in the
figure is the mean value of the estimation errors in the identical simulations.
The graph metrics applied here for the clustering and the estimation quality
measurement is the first subgraph metrics in section 4.4.3.
As can be seen, the estimation error decreases, when the number of graphs
increases. This means that, the more graph observations are available, the
better the distribution estimation is.

100 Estimation of Graph Distributions

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of navigation graphs

av
er

ag
e

es
tim

at
io

n
er

ro
r

Figure 5.7: Dependence of the estimation error according to section 4.6.3 on
the number of profiles. The original distribution consists of 2 centers.The
values are the mean values of 10 identical simulations (text). The estimation
error decreases, if more (graph) observations are available since the informa-
tion about the distribution increases.

These results were expected with regard to the theoretical considerations
above. The more information about the distribution is available for the
estimation process, the better are the estimation results. Similar results will
be obtained using a different quality measure in the next chapter.

5.3.2 Impact of distortions

In section 4.2 the term user setting was introduced to combine different main
parameters that influence a user’s searching behavior. Reasons were dis-
cussed, why navigation profiles may differ though users have the same or a
similar user setting. These differences were denoted as distortions.
In this experiment the consequence of distortions on the quality of the esti-
mation result is examined.

5.3 Effect of the information used for segmentation 101

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

variance of the number of label−errors

m
ea

n
di

st
rib

ut
io

n
es

tim
at

io
n

er
ro

r (
x1

8)

Figure 5.8: Dependence of the estimation error on the error variance of graph
clusters with a linear (least square) approximation. An increasing variance
of clusters leads to a loss of information about the graph distribution.

The simulation parameters are basically the same as in the previous ex-
periment. The number of clusters is 2 according to Charac3 in section 4.5.2.
Every generated graph contains 25 nodes and 30 edges. The number of pro-
files is in all simulations constantly set to 10, the error variance of the profiles
is changed from 0 to 12. In the experiment label distortions are considered
(section 4.3).
Figure 5.8 shows the result of this experiment. The distribution estimation
error is increasing for an increasing error variance of the graph profiles.
The reasons for these results can be seen in figure 5.6. The larger the error
variance of profiles, the more difficult it is to discriminate between the clus-
ters. An increasing error variance (distortion) results in a loss of information
about the distribution. Similar results have been found for another quality
measure in the next chapter.

5.3.3 Effect of topological information

One aspect that was important in section 4.4, when different distance mea-
sures between graphs were presented, is the importance of topological infor-
mation, i.e. information contained in the edges of a graph. This question is
examined for the metrics da in section 4.4.3 (it has already been discussed
that this information has no effect e.g. for the set metrics in section 4.4.2).

102 Estimation of Graph Distributions

In the experiment the basic distribution contains two clusters, represented

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of errors

es
tim

at
io

n
er

ro
r

Figure 5.9: Dependence of the estimation error on topological information:
edges are gradually deleted. In each experiment there is a different size of
the generated graphs in Γ : ’.’ denotes the results for a graph size |VG|=15;
’+’: |VG|=9; ’*’: |VG|=5. The smaller the graphs, the faster is the increase
of the estimation error, when topological information is gradually deleted.

by two center graphs that are generated randomly in the graph space. The
number of profiles is 5 in all simulations. The number of nodes is the same
as the number of data objects in D, (|D|). The number of edges is (at the
beginning, without distortions) |D| + 5. In the experiment the distortion
function is, different from the experiments above, a deletion of edges. Edges
are subsequently deleted and the effect on the estimation quality is measured.
Figure 5.9 shows the results for 3 different graph sizes. The ’*’ symbol marks
the simulation results for a size of all graphs |VG| = 5. In the experiment
the number of edge distortions (deletions) is increased from 0 to 10. The
’+’ symbol marks the simulation results for |VG| = 9, the number of edge
distortions (deletions) is increased from 0 to 15 and the symbol ’.’ marks the
simulation results for |VG| = 15, the number of edge distortions (deletions)
is increased from 0 to 20.
The results show how the distribution estimation error increases, if the topo-
logical information is gradually deleted (similar to the previous experiment,
where label distortions were considered). This increase is higher if the graph
size is small as can be seen by the increase for different |VG| values. In the

5.4 Non-stationary distributions 103

estimation process the topological information thus seems to be more impor-
tant for small graphs.

5.4 Non-stationary distributions

In section 4.5 the concept of a characterization of the distribution of graph
profiles was introduced. In real-word scenarios these distributions will not
remain constant, but they will change in time. With regard to the user set-
ting in section 4.2 it is e.g. possible that the searching experience of Internet
users increases, since more and more people get used to applying the Inter-
net for information search. The distribution of information needs may also
change from time to time depending on certain trends in science, economy
etc. The knowledge about a distribution, that may actually be used in real
applications is limited. In this thesis, distributions are characterized deci-
sively by center graphs (section 4.5). In the next chapter it will be shown,
that for prediction purposes, it is one main computation step to compare a
new registered graph to these center graphs (classification, section 6.2). This
comparison is computationally expensive and therefore the number of graphs
used for a distribution characterization has to be limited as far as possible
(though the number of graphs should on the other hand be maximal with
regard to the result in a previous section. The information about the graph
distribution increases, when the number of graph profiles for the estimation
process increases).
In this experiment it is the aim to examine the effect of a distribution change
on the quality of the distribution estimation. The maximal number of graphs
that may be stored by the system is limited to 20 (in real cases this number
will be larger). These 20 graphs are the profiles that are used for the distri-
bution estimation. If a new graph is registered, the oldest graph in the list
is deleted and the new graph is inserted (first-in-first-out storage). In the
experiment a change in the distribution is assumed to occur instantly at a
time ’0’.3 After each insertion of a graph (after the reference time ’0’) that
follows the new distribution a new distribution estimation is performed. In
the computation of the estimation error (section 4.6.3), the estimation result
is compared to the old distribution (before the change), which is assumed to
be available.
Figure 5.10 shows the estimation results, where both (old and new) distri-
butions consist of two clusters (Charac3 in section 4.5.2), the number of
data elements is |D| = 20, the number nodes in each graph is 10; there are

3There are different ways conceivable how a distribution may change. In real cases the
change is likely to occur in a time period (’smooth’ distribution change).

104 Estimation of Graph Distributions

15 edges in each graph and a fix number of node label distortions of 5. The
x-axis in the figure shows the number of graph exchanges (deletion of old
graph, insertion of a graph, that follows the new distribution).
It can be seen that the estimation error increases and reaches a maximum

0 2 4 6 8 10 12 14 16 18 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

exchange steps

es
tim

at
io

n
er

ro
r

Figure 5.10: A distribution change occurs at the first registration step (ex-
change step ’0’). Both distributions consist of 2 clusters. The estimation
errors for both clusters can be seen (in contrast to definition 23, where the
values are added). The estimation error increases while the elements in the
graph profile set used for the distribution estimation are substituted by el-
ements following a new distribution (the figure shows a linear least square
approximation to the data points).

when all graph profiles are exchanged by profiles following the new distribu-
tion.
A similar analysis for real profiles may be necessary to find out, how often
a distribution estimation has to be performed. On the one hand, this esti-
mation is computationally expensive and should be performed as rarely as
possible. On the other hand the learned distribution will no more represent
the real distribution after some time due to a change in the distribution.
Therefore a distribution estimation should be performed as often as possible.
Similar considerations may help to deal with this complex problem for real
data.

5.5 Summary: Estimation of Graph Distributions 105

5.5 Summary: Estimation of Graph Distri-

butions

In the previous chapter 4 a procedure to estimate distributions of graphs was
presented. In this chapter it was the objective to evaluate such a distribution
estimation. The basic idea is to fix a graph distribution (characterization),
to generate graphs that follow this distribution, to estimate the graph dis-
tribution using the algorithm in the previous chapter and finally to compare
the original graph distribution and the estimation results (according to defi-
nition 4.6.3).
Applying this procedure different properties of the graph distribution pro-
cess have been shown. One result is that the distribution estimation improves
when the number of graphs available for the estimation process increases. It
has been shown how the estimation error depends on the number of label
errors, and how the size of graphs takes influence on the importance of topo-
logical information (the information contained in edges) for the estimation
process. Finally non-stationary distributions have been considered. The re-
sult of a change in a graph distribution has shortly been discussed.
These results show that basic statistical properties seem to be fulfilled for
this estimation process, there are however many open questions, especially if
changing distributions are concerned.
The described testing method can’t be applied to real data since in this case
the original distribution is not known in advance (as it was in this chap-
ter). Therefore in the next chapter another method to test the distribution
estimation method is presented that can also be applied to observed graph
profiles.

106 Estimation of Graph Distributions

Chapter 6

Classification and Prediction of
User Profiles

It is the aim in this chapter to apply the theoretic model and the distribution
estimation presented in previous chapters to predict future navigation deci-
sions of a specific user. The prediction is based on the (navigation-)behavior
of this user and a set of registered profiles of other users. This prediction can
also be regarded as a relevance estimation of future navigation steps for the
user, provided that the relevance of navigation decisions for users is strongly
connected to the probability that users actually make these navigation deci-
sions. This assumption is probably valid, if the users of the web site know
the site already very well (and thus always make optimal decisions according
to relevance). In real cases, the knowledge of users is insufficient and the
equivalence of prediction and relevance estimation is only partially true.
The presented algorithm first uses registered or generated profiles to estimate
the distribution of profiles. A new profile is then classified according to this
distribution. The classification result can then be used for a prediction. In
the chapter a quality measure for the prediction process will be presented
that, in contrast to the estimation error measure in section 4.6.3, doesn’t
make it necessary to actually know the original distribution.

6.1 Prediction methods

The estimation of relevant data objects or navigation decisions is well-known
from the field of search engine development [10]. Search engines usually ap-
ply methods developed in the field of information retrieval [96], [95]. The
estimations are usually based on query words provided by a user. In this
thesis, a relevance estimation is not based on search words but on navigation

108 Classification and Prediction of User Profiles

behavior. A possible estimation method based on the observation of naviga-
tion behavior that applies information retrieval methods as described above,
would be to find e.g. web pages that are similar to the ones, a user already
requested [68], [69]. As far as the mere observation of users, without a con-
tents analysis is concerned, methods have been developed in the field of data
mining to find sets or sequences of objects with a high frequency [1], [24].
These data mining techniques can be understood as a kind of distribution
estimation, where the ’positions’ in the discrete distribution with the highest
likelihood (frequency) are found. The data mining techniques can be used
to predict future navigation steps, applying a similarity measure between a
new observed profile and the observed profiles with a high frequency. How-
ever this estimation doesn’t take similarities of profiles and thus topological
information into account and is therefore susceptible to distortions. The es-
timation therefore leads to problems discussed in section 4.5.2.
A problem, similar to the previous prediction technique, was presented in
[83]. The article presents a procedure for the generation of so-called ’index
lists’, i.e. web pages consisting of hyperlinks to a set of pages that cover a
particular topic. The procedure is based on access-log data, that are trans-
formed into sets of data objects, which were requested by the individual
clients. The procedure first computes the co-occurence frequencies of data
objects; that means the frequencies that two data objects are found together
in one of the requested sets of clients. The respective matrix is then used
for a cluster procedure, which results in clusters of data objects. After a
first selection by a web-master, the clusters are used to generate the index
lists. If a user requests a data object contained in one of the clusters, the
respective index list may contain links to web pages that are also relevant
for him (because they often deal with a similar topic).
Recently, Markov models were applied for a prediction of user profiles [2],
[119], [99]. One main disadvantage of these models is that the order of the
Markov process has to be fixed in advance. In practical cases the order is
usually chosen to be very low (i.e. one or two, e.g. in [2]) because the compu-
tations would be too complex otherwise. On the other hand, a prediction is
usually only done for the next element, i.e. the subsequent element with the
highest (conditional) probability. Further predictions of subsequent elements
or navigation steps are difficult to obtain. New method have recently been
developed by [92] and [15] in order to make Markov models of variable length
possible (Variable Length Markov Chains). These methods have not yet been
applied in this specific problem domain. The VLMCs make it necessary too,
to define a maximal depth of the respective Markov chains.
The prediction method presented here ([61]) doesn’t make it necessary to fix
the order of a stochastic process, since the profiles are completely compared

6.2 A new prediction algorithm 109

to each other with the described distance functions. It is possible in some
cases to predict longer navigation sequences, if this knowledge is contained in
the database. In contrast to common data mining procedures, the distances
of profiles are taken into account, which makes it possible to take distortions
into account and therefore to find a more adequate distribution estimation.

6.2 A new prediction algorithm

A survey of the sequence of computation steps of the new algorithm can be
seen in figure 6.1. In a first (off-line) step, the registered profiles are used for
a distribution estimation as described in section 4.6. It is important to note
that this estimation step can in most applications and especially in our case
be done off-line.

Prediction procedure

(offline)
Data acquisition

Distribution estimation

(online)
Registration of a new (partial) user profile

Computation of the distances to the estimated cluster centers

Classification of the new profile according to the estimated distri-
bution and a classification function

Prediction of future navigation decisions according to the classifi-
cation result

Figure 6.1: Algorithm for a prediction of new navigation decisions.

One important question is, how often this estimation should be per-
formed. A problem concerning this question is that a fast change in the
distribution can’t be proved if there are not enough registered profiles. The
observation of a sufficient number of profiles necessary to estimate a change
in the distribution takes some time; it depends on how frequented a web
site is. Depending on this frequency, the time intervals between distribution

110 Classification and Prediction of User Profiles

estimations have to be chosen, which may e.g. be a week or even a month.
Another possibility to choose the time intervals between distribution estima-
tions is to update a distribution estimation every time, when the web site has
changed itself, because the distribution of profiles is then likely to change,
too.1

The online (prediction) step in figure 6.1 has to be performed in real-time,
since it is based on a user’s current navigation profile and the estimation
results shall be presented to him immediately. As can be seen in figure 6.1, a
new currently registered navigation profile is compared to the estimated clus-
ter centers known from the distribution estimation step. According to this
distance vector and with respect to the distribution characterization the new
profile is classified. The classification may also take into account additional
information like (an estimation for) the absolute likelihood of a cluster, the
variance etc. This classification step will subsequently be described in detail.
According to the classification, the respective cluster elements are now used
for a prediction of new navigation steps or sequences. Different prediction
techniques are conceivable.

Classification

It is difficult to visualize the classification problem in the space of graphs,
therefore figure 6.2 shows the similar problem in the case of a random variable
into the space of real numbers, R. The integral over the respective density
function should in this case be one. The first figure 6.2(a) shows two clusters
with the same probability and the same variance. The cluster centers in this
case are the (two) elements on the x-axis where the probability value has a
(local) maximum. A classification of a new element in this case seems to be
optimal if the closest cluster center is found and the element is assigned to
the respective cluster.

1This practical problem was not considered here. It was however already made evident
in section 5.4.

6.2 A new prediction algorithm 111

(a) A distribution
consisting of two
Gaussian functions.

(b) A distribution
consisting of two
Gaussian functions
with different
probability.

(c) A distribution
consisting of two
Gaussian functions
with different
variances.

Figure 6.2: Different shapes of distributions (density functions). The figures
show the density functions of the individual clusters and the sum of the
individual density functions.

In the second figure 6.2(b), the absolute probability (the integral of the
respective density function) of the first cluster (on the left) is smaller than
the probability of the second cluster (on the right). A classification according
to the previous method could cause a misclassification in the area between
the two clusters, because the likelihood2 of the second cluster in this area is
obviously larger. In the third figure 6.2(c), the variance of the first cluster is
smaller than the variance of the second cluster although the absolute prob-
ability of both clusters is similar. A classification of an element in the area
between the clusters should therefore prefer the second cluster.
In order to find adequate classification functions in the case of a graph space
Γ , it is assumed that similar results prove to be true in the case of a random
variable into Γ . Given the estimated cluster centers Ĥ1, ..Ĥm, m ∈ N and
the new profile G, in the first method

d1(G, Ĥj) := d(G, Ĥj) (6.1)

has to be minimized in j ∈ {1, ..m}, where d(G, Ĥj) is a distance of G to the
cluster center Ĥj as defined in section 4.4. A second method is to take the
absolute probability of clusters into account, which can be estimated by the
relative number of elements in the cluster. The minimization of

d2(G, Ĥj) := d(G, Ĥj)
1

1+Aj/A
(6.2)

2The likelihood in this case is an integral of the density function over an interval in the
respective area.

112 Classification and Prediction of User Profiles

in j takes this absolute probability into account, where A is the number
of observed profiles, Aj is the number of profiles estimated to belong to
cluster j. If the probability of the cluster j is large (as estimated by the
relative frequency Aj/A), the distance d2(G, Ĥj) becomes smaller. Thus the
probability is increased, that the graph element G is assigned to the cluster
j.
There are many different classification functions conceivable which have not
yet been considered.

Prediction

Once, a profile has been classified (assigned) to one of the clusters, the actual
predictions can be derived from the elements in this cluster. In the simplest
case, the cluster center is taken as a prediction, which is the case that will be
applied here. It is also possible to take the center element and the elements
near the center, according to a distance ε ∈ R, that defines a ’sphere’ around
the center element. These elements in this sphere can then be combined in
order to generate a prediction:

K(µj, ε) :=
∑

X∈Kµj,ε

X , where Kµj,ε := {X ∈ Cj|d(X, µj) ≤ ε} (6.3)

The sum is based on the graph summation given by definition 13 (with
E ′ = ∅). Cj is a cluster and µj is the cluster center; d(.,.) is a metrics
according to section 4.4.3. In the following only the case ε = 0 is considered.3

6.3 A measure for the prediction quality

The prediction results depend on the distribution estimation, the classifi-
cation process and the prediction process. In section 4.6.3 a method was
presented to estimate the quality of a distribution estimation. The method
requires the knowledge of the original distribution, which is known only for
simulated data. As far as real data are concerned, another strategy to mea-
sure the prediction quality has to be applied. The strategy to measure the
prediction quality that is presented here is similar to a method presented in
[118] (the data type in the article (i.e. sets) is different from the case con-
sidered here). The structure of this process can be seen in figure 6.3. A set
of profiles is divided into two parts, a training set and a testing set. These
profiles may be generated or extracted from observations.

3In terms of information retrieval [96] a large ε is likely to increase the recall, while a
small ε will increase the precision.

6.3 A measure for the prediction quality 113

Estimation of the prediction quality

Acquire profiles:
Generation of profiles (simulation) or
profile extraction (observations)

Splitting:
Decompose the profile set into training and testing set

Distribution estimation:
Use training set for a distribution estimation

Testing:
fix a decomposition size s, set recall=0
for each graph G in the testing set:

decompose G = HG + TG with regard to s, i.e. |EHG | = s

(random decomposition)
classify HG

compute prediction PHG
compute the distance d(PHG , TG) between PHG and TG
recall := recall + 1− d(PHG , TG)

Output recall
|testprofiles|

Figure 6.3: Estimation of the prediction quality for simulated and real
profiles based on a registered (or generated) set of profiles. |testprofiles| is
the number of test-profiles.

The training set is used to estimate the distribution of the profiles as
described in section 4.6. Each profile G in the testing set is used for one
prediction process.
The graph is first divided into two parts, i.e. G = H + T where H =

(VH, EH, µH, νH) and T = (VT , ET , µT , νT) are subgraphs of G and ’+’ de-
fines the graph that results from the combination of the node and edge sets
of the two graphs (definition 13).4 The division of G is done randomly ac-

4The set of edges E ′ between the two subgraphs in definition 13 is not considered here.

114 Classification and Prediction of User Profiles

cording to a previously fixed number of edges in H.5 H is the graph used as
the (partial) navigation profile that has to be analyzed. A prediction for this
graph is computed according to section 6.2. The predicted navigation profile
can then be compared to the part of the profile that actually occurred, i.e.
the graph T . The distance between these two graphs according to a distance
function defined in section 4.4 is then used as a quality measure for the pre-
diction. The quality values of each graph in the testing set are summed up
and taken as a value for the prediction quality. One quality value derived by
this method will be called recall in the following:

recall :=
1

|testprofiles|

∑

i=1,..|testprofiles|

1− d(Pi, Ti), (6.4)

where |testprofiles| is the number of profiles, Gi, i ∈ {1, ..|testprofiles|} is the
testing set and Ti and Pi are the respective partial and predicted profile. The
recall is a measure of how similar a set of predicted navigation profiles is to
the profiles that were actually registered.
The term recall is frequently used in the field of information retrieval. It
denotes e.g. the percentage of data elements, a search engine retrieves, that
are relevant for a user, divided by the number of all relevant elements. In
the described case it is not known, if the registered navigation path was
really relevant for a user. As discussed at the beginning of chapter 6 this
can only be assumed in the ideal case, that users are already familiar with
the web site. The set of all relevant navigation profiles is not known and
thus a normalization similar to the described recall definition in information
retrieval is difficult.
This measure strongly depends on the registered data elements and must
therefore be understood in a statistical sense. It is necessary to examine
different data files in order to eliminate statistical deviations.

6.4 Experiments with simulated data

6.4.1 Different classification functions

In this experiment the effect of two different classification functions on the
classification quality is examined, provided that the distribution is already
known. The graph distribution (Charac3 in section 4.5.2) contained 2
graph clusters C1 and C2 with probability p(C1) = 1

3
and p(C2) = 2

3
. Each

graph contained 25 nodes and 30 edges. The random graphs are generated

5The decomposition should usually be done in a way that both subgraphs are connected.

6.4 Experiments with simulated data 115

as described in section 5.2. For each generated graph, its original cluster
was known. Thus the percentage of misclassifications could be determined,
denoted as ’classification error’.
Fig. 6.4 shows the classification error based on the minimization of d1 (•)
and d2 (+) in section 6.2 (0.x=̂(10× x)% in the figure). In the experiment
the variance of label errors σ2 is changed (section 5.2). Each x-axis value
represents one set of generated graph profiles.

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

variance of label errors

cl
as

si
fic

at
io

n
er

ro
r

Figure 6.4: Classification experiment of user profiles by minimizing d1 (•) and
d2 (+) in section 6.2. The distribution consists of two clusters with different
probabilities. The two lines are linear (least square) approximations to the
respective data points. The classification result improves, if the probabilities
of the clusters are taken into account in the classification process.

As can be seen, the prediction based on minimization of d2 shows better
results for higher values of the label error. This result was expected, since
more information about the shape of the distribution is used in the case
of d2. The experiment proves, that the applied classification function may
have an impact on the classification error. Nevertheless in the following
experiments the nearest-center classification (d1) is applied in order to find
different properties of the estimation process.

116 Classification and Prediction of User Profiles

6.4.2 Convergence of the estimation

Dependence of the prediction quality on the number of graph pro-
files

An important aspect when analyzing the quality of a prediction process is
the convergence of the prediction quality (as measured e.g. by equation 6.4)
for an increasing number of observations (in this case generated graph pro-
files), similar to the results and the discussion in section 5.3.1. It is desirable
that, the more observations are known in an estimation process, the better
the estimation for the respective distribution of the data becomes. In this
experiment this aspect was analyzed for different cluster variances (section
5.2).
The number of graph profiles used for the distribution estimation is changed
in a range from 2 to 16. The set of profiles is ’growing’ in this experiment,
i.e. a larger set contains the smaller sets (in former experiments the sets were
generated independently). The number of elements in D, is |D| = 50. Each
graph has 8 nodes and 13 edges. The number of edges in H is 5 (H is the first
subgraph in the decomposition step in section 6.3). The distribution consists
of two clusters and thus two center graphs according to Charac3 in section
4.5.2. The error variance σ2 according to equation 5.1 is changed in a range
from 1 to 4. The applied error function is a random exchange of node labels
(equally distributed in D).
Figures 6.5 and 6.6 show the results of the four simulation experiments. It
can be seen that the prediction quality (recall) is increasing monotonously
for small error variances (1 and 2). For larger error variances (σ2=4), there
is no obvious convergence, the recall value seems to change arbitrarily. When
looking at the absolute values on the y-axis it can be seen in this experiment,
that for smaller variances the recall is higher and becomes smaller when the
variances increases.

6.4 Experiments with simulated data 117

2 4 6 8 10 12 14 16
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

number of observations

re
ca

ll

(a) variance σ2 = 1

2 4 6 8 10 12 14 16
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of observations

re
ca

ll

(b) variance σ2 = 2

Figure 6.5: Prediction quality depending on an increasing number of graph
profiles known in the estimation process. The variance of the clusters is
changed (i.e. the error variance σ2 in section 5.2). Each figure shows 3
simulations with identical simulation parameters. The prediction quality
improves monotonously when the number of graph profiles is increased.

118 Classification and Prediction of User Profiles

2 4 6 8 10 12 14 16
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of observations

re
ca

ll

(a) variance σ2 = 3

2 4 6 8 10 12 14 16
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of observations

re
ca

ll

(b) variance σ2 = 4

Figure 6.6: Similar graphs as in the previous figure. The error variances
are σ2 = 3 and σ2 = 4. If the cluster variances are too high, there is no
convergence.

6.4 Experiments with simulated data 119

The convergence of the prediction quality (recall), that was observed in
this experiment for small variances, is the result that was actually expected
with respect to the result in section 5.3.1. An increase of information in
the estimation process (the number of observed graph profiles) leads to an
increase of the prediction quality. The fact that there is no convergence
for larger variances may result from the lack of information needed for the
estimation process (similar to the discussed problem in section 5.2, figure
5.6). This effect may be important when applying the algorithm to real ob-
servations. It is only possible to apply the algorithm when the variance of
observed clusters is small.

Dependence of the prediction quality on the graph decomposition
needed for the prediction quality measurement

A main step when computing the prediction quality in section 6.3 is the de-
composition of a testing graph G in two subgraphs H = (VH, EH, µH, νH) and
T = (VT , ET , µT , νT). In this experiment, the dependence of the prediction
quality on the number of edges in H (|EH|) is examined.
The experimental setting is similar to the previous experiment. The original
distribution consists of two clusters, the size of the graph space is |D| = 30,
the generated graphs consist of 8 nodes and 13 edges. The error variance of
the clusters in this experiment is σ2 = 1. In the experiment different decom-
positions of the testing graphs were tested. The experiments measure the
prediction quality for an increasing number of profiles, where the number of
edges in the subgraph H = (VH, EH, µH, νH) is changed in different experi-
ments.
Figure 6.7 shows the results of these experiments for an edge number |EH| = 0,
|EH| = 1, |EH| = 2 and |EH| = 4. The number of profiles is changes from 3 to
16.
In the figure the recall values in each graph are the averages over 9 identical
experiments (i.e. the simulation parameters in these experiments are identi-
cal).
It can be seen that the prediction quality is minimal for |EH| = 0 (lowest
graph). The maximal graph is the experiment with |EH| = 1, the prediction
quality is then decreasing for |EH| = 2 and |EH| = 4.
The minimal prediction quality for |EH| = 0 is the expected result, since no
information about the graph is known in the classification step, the graph is
classified randomly.

120 Classification and Prediction of User Profiles

2 4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of profiles

re
ca

ll
(a

ve
ra

ge
 o

ve
r

9
va

lu
es

)

divid=0

divid=4

divid=2

divid=1

Figure 6.7: Convergence of the prediction quality (recall) for different num-
bers of edges in H (divid = |EH| = 0, 1, 2 and 4). Each graph is the average
over nine simulations. The recall is minimal for EH = 0 and maximal for
EH = 1. One edge seems to be sufficient in this experiment to classify a
graph (text).

The prediction quality is not constantly zero, probably due to statistical
effects. The highest prediction quality for |EH| = 1 leads to the assumption
that the information about one edge is sufficient to classify a testing graph
correctly, probably because the graphs in different clusters don’t have many
edges in common. The prediction quality is decreasing for higher values of
|EH| probably because the second part of a testing graph (T) becomes smaller
for larger H-graphs and thus the similarity of P and T decreases (as measured
by the metrics da in section 4.4.3). Similar considerations for higher variances
may lead to different results. Then more information may be necessary to
correctly classify a graph, since the graphs may have more edges in common.

6.4.3 Estimation of the clusters number

When analyzing real data, the number of clusters is not known in advance, in
contrast to the previous simulations, where the cluster number was known in
the estimation process. In this experiment it is therefore the aim to test with
simulated data, if (and how) the algorithm can be applied for the estimation

6.4 Experiments with simulated data 121

of the number of clusters.
In the experiment the number of elements in D was |D| = 30. All graphs
contained 8 nodes and 13 edges. The number of edges of the graph H in the
decomposition step is EH = 4 (section 6.3). The initial distribution contained
a number of center graphs (and cluster) that was 3,4 or 5. This number was
not known in the prediction process. Therefore the procedure assumed a
certain cluster number and computed the resulting prediction quality in the
same way as in the previous experiments. The aim is to find out, if this
prediction quality changes for different assumed cluster numbers, which is
increased from 2 to 11. The variance of the clusters is a second variable that
was modified in the different experiments. In all experiments the same simu-
lation setting was used four times, in order to (visually) eliminate statistical
effects.
Figures 6.8, 6.9 and 6.10 show the results of the six experiments (in each
figure 4 experiments can be seen, using the same settings for the graph gen-
eration). In the first sub-figure in figure 6.8 the original number of clusters
is 3, the error variance is σ2 = 1; in the second sub-figure the error variance
is σ2 = 3. In the two sub-figures of figure 6.9, the number of clusters is 4
and the error variances are σ2 = 1 and σ2 = 2. In figure 6.10 the original
number of clusters is 5 and the error variances are σ2 = 1 and σ2 = 2.
It can first be noticed, that similar to the experiment in figures 6.5 and 6.6, a
larger variance results (statistically) in a smaller prediction quality (recall).
It can be seen in all experiments that the recall is low when the assumed
number of clusters is smaller than the real number of clusters. The recall
seems to reach a maximum when the assumed cluster number reaches the
real value. For larger values of the assumed cluster number, the recall doesn’t
change very much and remains at the high value. In some cases, the recall
decreases a little at a higher value of the assumed cluster number (figure
6.8b, 6.10b). For smaller error variances the deviation between the respec-
tive graphs of the (four) identical simulations is also smaller (e.g. figure 6.9a,
6.9b).
In most cases the original number of clusters is (near) the (x-axis) value of
the first local maximum in the respective figures. In figure 6.8a these values
are e.g. 3,3,3 and 6 in the identical simulations. In figure 6.8b these values
are 4,4,5 and 2. In some of the identical simulations this estimation would
be incorrect (6.8b) but in most cases it leads to a value close to the original
number of clusters. The estimation of the cluster number seems to become
more difficult for a larger variance of the clusters, as can be seen when com-
paring figure 6.8a and 6.8b.
The results seem to make it easy to present an algorithm for the estimation
of the number of clusters. At first the prediction quality has to be computed

122 Classification and Prediction of User Profiles

based on an observed (or generated) set of profiles and based on an assumed
number of clusters. The assumed number of clusters is changed in an ade-
quate range. In the resulting graph (similar to the figures 6.8, 6.9 and 6.10)
the first local maximum is found and the respective assumed cluster number
is regarded as an estimation of the number of clusters.6

The experiments show that this estimation process is in many cases optimal
since a value near the real number of clusters is found. The estimation pro-
cess doesn’t seem to depend on the set of profiles very much for small error
variances (as can be seen by looking at the different identical simulations,
using generated graphs with identical simulation settings). The quality of
the estimation depends on the variance of clusters.
In real applications, e.g. the prediction of user profiles, the estimated cluster
number based on a set of registered profiles would be used in the prediction
algorithm. The different experiments show that thus the prediction quality
would be high with respect to the number of clusters while, taking the first
local maximum as the estimated real cluster number, the estimated cluster
number would be small. This is important since the classification step in
section 6.2, which has to be done in real-time for the profile prediction, is
time consuming (appendix A).

6If this value is not unique, the smallest x-axis value (number of clusters) is taken as
the estimated cluster number.

6.4 Experiments with simulated data 123

2 3 4 5 6 7 8 9 10 11
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

re
ca

ll

number of clusters

(a) 3 original clusters, error variance σ2 = 1

2 3 4 5 6 7 8 9 10 11
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

number of clusters

re
ca

ll

(b) 3 original clusters, error variance σ2 = 3

Figure 6.8: Prediction quality (recall) for an original cluster number of 3 and
a changing assumed cluster number, there are two different error variance
values in both figures (4 identical simulations). The original cluster number
is near the x-axis value of the first local maximum (3,3,3 and 6 in figure (a);
4,4,5 and 2 in (b)).

124 Classification and Prediction of User Profiles

2 3 4 5 6 7 8 9 10 11
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of clusters

re
ca

ll

(a) 4 original clusters, error variance σ2 = 1

2 3 4 5 6 7 8 9 10 11
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of clusters

re
ca

ll

(b) 4 original clusters, error variance σ2 = 2

Figure 6.9: Prediction quality (recall) for an original cluster number of 4 and
a changing assumed cluster number, different error variance values.

6.4 Experiments with simulated data 125

2 3 4 5 6 7 8 9 10 11
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

number of clusters

re
ca

ll

(a) 5 original clusters, error variance σ2 = 1

2 3 4 5 6 7 8 9 10 11
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of clusters

re
ca

ll

(b) 5 original clusters, error variance σ2 = 2

Figure 6.10: Prediction quality (recall) for an original cluster number of 5
and a changing assumed cluster number, different error variance values. The
estimated cluster numbers using the described procedure (text) are 4,5,5 and
5 in (a) and 5,5,6,5 in (b).

126 Classification and Prediction of User Profiles

6.5 Application to registered navigation pro-

files

The prediction quality measure (recall) in section 6.3 can be applied to real
observations (navigation profiles) that have been registered by a software
system like the one described in chapter 3. In this section the estimation and
prediction process is applied to observations that were registered by clients
who visited the Internet server of the Cognitive Systems group at Kiel Uni-
versity in the year 2001 (http:\\www.ks.informatik.uni-kiel.de). The web
site consisted at that time of about 3000 data objects7. In this experiments
the information stored in the access-log files (section 2.4.2) is transformed
into the graph data type, which is described in detail in appendix C.8

In figure 6.11 the distribution of the size (i.e. the number of nodes) of a sub-
set of the registered profiles can be seen. The maximal size is 45, but most of
the profiles have a size smaller than 10. It is important to note that only one
server was considered. In the case of a larger, distributed Web environment,
this may have an effect on the distribution of the graph size. The result, that
most navigation graphs are not very large, is important for the time needed
for the graph distance computation (appendix A). Since these algorithms
have in the worst case a n.p. complexity, graphs that are too large, would
make it hardly possible to use them.
Figure 6.12 shows an example of a histogram of distances of one (arbitrarily
selected) profile to a set of other profiles with respect to the metrics da in
section 4.4.3. It can be seen that most of the profiles have a maximal dis-
tance to the considered profile (the graphs don’t have any common nodes).
These profiles are obviously located in different cluster(s). In contrast to the
simulated data in the example shown in figure 5.6, there is no obvious cluster
structure.
In these experiments, it is the aim to apply the procedure for an estimation
of the number of clusters presented in section 6.4.3 to subsets of the observed
profiles. The number of edges in the graph H in the division step is 2 (section
6.3).
In the first experiment a set of 10 test graphs and 60 training graphs was
chosen randomly in a set of 80 profiles (section 6.2). Figure 6.13 shows the
observed prediction quality for an increasing (assumed) number of clusters
for 3 different testing sets.
Figure 6.14 shows the results of a similar experiment where the size of the

7like web pages, images etc. (section 2.1.2)
8The direct use of the data provided by the developed system (chapter 3) was not

possible because of an insufficient number of observations.

6.5 Application to registered navigation profiles 127

profile set was 200, the set of testing data contained 20 profiles and the train-
ing set consisted of 150 data. In figures 6.14(a) and (b) different testing sets
were chosen, the training set is identical. In figure 6.15, a similar experiment
was performed with a different (disjoint) set of profiles (including different
training and testing sets).
In most of the experiments there exists a unique number of clusters, where
the prediction quality is optimal (maximal). In two of the experiments in
figure 6.13 the optimal number of clusters is about 40 (optimal with respect
to the prediction quality). If the number of clusters is further increased,
there is hardly any improvement in the prediction quality. In figure 6.14, the
optimal number of clusters is about 79 in figure (a) and (b). In figure 6.15
the optimal value is about 25 and 55. In all experiments (except the con-
stant prediction quality in one experiment shown in figure 6.13) the optimal
number of clusters can be found easily and nearly unambiguously.
The estimation procedure for the cluster number proposed in the previous
section leads to nearly the same values as the cluster number values leading
to an optimal prediction quality. The first local maximum is e.g. about 80
or 78 in figure 6.3.
It can be seen in 6.13 that two of the testing sets lead to almost the same
result for an estimated number of clusters. One testing shows a constant
prediction quality. The estimated number of clusters in figures 6.14(a) and
(b) is also nearly the same for both testing sets (about 78 and 80). The devi-
ation in figure 6.15 is larger (25 and 55). The concordance of the estimated
number of clusters in both graphs in figure 6.13 and in both figures 6.14 ((a)
and (b)) shows that the cluster number estimation is nearly indifferent with
respect to the testing set. An exception is the constant graph in figure 6.13
which is likely to result from an unfavorable testing set. Figure 6.15 (based
on a different set of profiles) leads to a different estimation of the number
of clusters (a value of about 25 or 55) than the similar experiment shown in
figure 6.14. Different data files therefore seem to lead to different estimation
results. Theoretically there should however exist a number of profiles, where
a convergence of the estimation result can be observed as shown in the theo-
retic simulations in section 6.4.3. The distribution of the profiles in different
registered profile sets should be identical and thus the estimated distribution
(e.g. the number of clusters). This important property of the estimation
couldn’t be proved yet for real observations. There are four main reasons
why this convergence could not yet have been observed:

• The number of profiles used for the estimation (the size of the training
set) is still too small

• The site was visited not frequently enough and there was not enough

128 Classification and Prediction of User Profiles

information for the estimation process (the ’density’ of profiles in graph
space has to be high enough).

• The distribution of profiles changed

– due to a general trend (a changing interest of users)

– The contents of the site (data objects and included hyperlinks) was
changed while the profiles where registered and the distribution
of profiles thus changed.

It can be summarized that the described prediction algorithm can be applied
to real observations in order to estimate the number of clusters, which is
an important property of the described graph distribution characterization
(Charac3 in section 4.5.2). This knowledge about the distribution is neces-
sary for the prediction process as described in section 6.2. The number of
clusters may be chosen in a way that the prediction is optimal. The indif-
ference of the estimation result (the number of clusters) with respect to the
testing set could be shown in experiments. It was not possible to show an
indifference with respect to the training set for real navigation profiles.9 Pos-
sible reasons are an insufficient number of profiles or a different distribution
of the profiles.
The optimal testing web site for the prediction procedure is a web site, that
is relatively small and static10 and that is highly frequented. The worst
case to test the algorithm is a large web site, that is rarely frequented. It
may in future experiments be necessary to test the algorithm at a web site
of the first kind in order to prove indifference with respect to the training set.

9For the experiments with simulated data in the previous section this indifference could
be shown.

10i.e. there are not many changes of the data objects and links.

6.5 Application to registered navigation profiles 129

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

number of data elements

nu
m

be
r

of
 p

ro
fil

es

Figure 6.11: Histogram of the length of observed profiles. All profiles have a
size smaller than 45. Only a few are larger than 10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

graph distance

nu
m

be
r

of
 g

ra
ph

s

Figure 6.12: Histogram of distances of one (observed) profile to a set of other
profiles. Most of the profiles have a maximal distance to the selected profile.
There is no obvious cluster structure.

130 Classification and Prediction of User Profiles

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

number of clusters

re
ca

ll

Figure 6.13: Prediction quality (recall) for observed navigation profiles; 10
test, 60 training data (the whole data set contained 80 data). The (assumed)
number of clusters is changed in a range from 2 to 60. The different graphs
show the prediction quality for different testing sets. Two testing sets lead
to a similar estimation of the cluster number (about 38 and 42). One testing
set leads to a constant prediction quality.

6.5 Application to registered navigation profiles 131

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

number of clusters

re
ca

ll

(a)

0 50 100 150
0.03

0.04

0.05

0.06

0.07

0.08

0.09

number of clusters

re
ca

ll

(b)

Figure 6.14: Prediction quality (recall) for observed navigation profiles; 20
test, 150 training data (the whole data set contained 200 data). The (as-
sumed) number of clusters is changed in a range from 2 to 150. Both figures
show the prediction quality for the same training set and different testing
sets. The estimated number of clusters is about 78 in (a) and 80 in (b). The
figure shows the indifference of the cluster estimation with respect to the
testing data.

132 Classification and Prediction of User Profiles

0 50 100 150
0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of clusters

re
ca

ll

(a)

0 50 100 150
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

number of clusters

re
ca

ll

(b)

Figure 6.15: The same experiment as in figure 6.14 with a different set of
profiles. The testing sets in (a) and (b) are different. The estimated number
of clusters is about 25 in (a) and 55 in (b). Compared to figure 6.14 it can be
seen that the estimated number of clusters is different and thus depending
on the profile (training) set.

6.6 Summary: Classification and Prediction of User Profiles 133

6.6 Summary: Classification and Prediction

of User Profiles

The theoretical introduction in chapter 4 presents possibilities to characterize
distributions of (navigation) graphs. Based on the simple characterization
Charac3 in section 4.5.2 (characterization by center elements) a procedure
was introduced to estimate graph distributions in chapter 5. In this chap-
ter, an algorithm to predict navigation profiles was presented, based on the
estimated graph distribution, a classification step and a prediction step. Ad-
ditionally, a method was suggested to measure the prediction quality. Based
on these considerations, different experiments were performed to show prop-
erties of the prediction procedure. A first aspect is the dependence of the
classification quality on the classification function. It was shown, how dif-
ferent classification functions, that are based on different knowledge about
the distribution may have an influence on the classification quality. A sec-
ond experiment tried to show the dependence of the prediction quality on
the number of graph profiles that are known in the distribution estimation
step. It was shown that usually, the more graph profiles are available, the
better is the estimation result. However this is not true, if the variances of
the clusters become too large. Finally it was the objective to estimate the
number of clusters. For this purpose, different cluster numbers are assumed
and the respective prediction quality is computed. It is made evident that
usually, the real cluster number leads to a maximal prediction quality (or at
least a local maximum of the prediction quality). This effect can be used to
estimate the cluster number. This procedure was applied to observed graph
profiles, registered by a real web server. It would have been desirable to
show that the estimated cluster number based on one graph profile set leads
to an optimal prediction quality with respect to the number of clusters for
other profile sets. This result could not be proved yet. Different reasons for
this were discussed. The number of profiles was perhaps not sufficient or the
distribution of profiles in the different profile sets may have been different.

134 Classification and Prediction of User Profiles

Chapter 7

Summary and Conclusions

In this thesis, we studied various aspects concerning the development of a
software agent that supports a user who is looking for information in a well-
defined (restricted) Web area. First a brief introduction into the problem
was given and systems were presented that deal with similar problems. The
problem that is laid emphasis on in this thesis is the orientation of a user in
the Web environment, which is often refered to as the being lost in hyper-
space problem.
In the first main part of the thesis (chapter 3) we presented the developed
software system. The system was compared to former systems (mostly pre-
sented in the field of intelligent Internet agents), and the advantages of our
system were described. Main aspects for the comparison are:

1. What kind of support information is provided?
2. How easy is it for a user to use the system, what are the client’s technical

requirements?
3. How does the system present support information, what are the means

that may be applied for presentation purposes?
4. What information can the system acquire about a user?

As far as the first question is concerned, the presented system makes it pos-
sible to visualize the navigation history of a user, i.e. the set of previously
visited web data objects and the applied hyperlinks. Moreover, due to a
previous (offline) analysis of the Web area, the system makes it possible to
present local maps of the hyperlink structure (adaptive local site-maps).1

This kind of navigation support is similar to support strategies applied e.g.
in [28] and [114]. These systems are different to the presented system with
respect to the latter three questions (2,3 and 4).

1It is assumed that the hyperlink structure doesn’t change in time (section 2.4.1).

136 Summary and Conclusions

One main aspect that is fundamental for questions two to four is the archi-
tecture of the respective software system. It was shown, that the architecture
has an influence on the user’s effort to use the system (question 2). The pre-
sented system consists of a component on the server side and a component on
the client side. The client’s component is a temporarily stored Java applet
that is loaded from the server at the beginning of the navigation support and
that is automatically installed by the client’s browser. In contrast to similar
systems that depend on a permanent installation of software on the client
side, the presented method is easy to use and can be applied by almost all
visitors, including those who rarely visit the Web area or who don’t want to
permit a (permanent) software installation. A disadvantage in this context
is the requirement (the activation) of Java for the client’s browser. Java is
provided by most of the common browser software, some users however may
not want to activate it.2

As far as the third question is concerned, is was shown that the presentation
possibilities of the presented system are more extensive compared to systems
that operate only on the server side like the one presented in [3]. The presen-
tation facilities of the presented system are partially provided by Java. Most
presentation options have however to be implemented in Java and thus have
to be loaded down through the Internet. Since the time needed to load this
program (Java applet) depends on the size of the program, the presentation
possibilities are less extensive compared to software agents that have a per-
manently installed component on a client side.
The main aspect, when comparing the systems is the knowledge that can
be acquired about a user (question 4). The presented system provides the
possibility to register a client’s set of navigation decisions (i.e. hyperlink
activations). This is less information than may be obtained by systems that
work on the client side, e.g. in [68], but in contrast to those systems, this
information can be collected on the server side and can be used for collabora-
tive filtering, which is an important aspect for the second part of this thesis.
In the second part of the thesis (sections 4, 5 and 6) a new collaborative fil-
tering method was presented, that can be used to predict future navigation
steps of a client based on the previous behavior of this user and registered
navigation behavior of other users.3 The data type that is registered by the
system, i.e. the sets of the clients’ navigation decisions, is regarded as a set of
graph structures, with the nodes representing the data objects requested by
a single client and the edges representing the (hyperlink) transitions. After

2e.g. due to still existing security problems
3These predictions can then be presented to a user with the method presented in the

first part of the thesis.

137

a short introduction into graph theoretic basics, a method was presented to
estimate the distribution of graphs in a graph space. This is one main step
in the prediction process. In contrast to former methods, developed e.g. in
the field of data mining [24], this estimation takes into account topological
information that is provided by a metrics in a graph space. The distribution
of the graphs is characterized by a set of center graphs, that are located in
the centers of a number of graph clusters.4 In this thesis, the evaluation of
the presented graph distribution estimation was mainly based on simulated
data. Graph profiles were generated according to a previously fixed distribu-
tion and the estimation results were compared to this original distribution.
Some properties of the estimation procedure were shown in this way, like the
convergence of the estimation quality for an increasing numbers of graphs,
the dependence of the estimation quality on the variances of clusters and
the influence of topological (edge) information of graphs in the estimation
process.
These results were a basis for the main aspect that was considered in this
second part of the thesis: the prediction of user profiles. A new prediction
algorithm was presented, consisting of two main steps. The first step is a
distribution estimation using previously registered (or simulated) data. The
second step is a classification according to this estimated distribution, using
(again) a distance measure between graphs. A measure for the quality of
this prediction process was presented, that is based on a decomposition of
(already registered) profiles into two parts. One part of a decomposed profile
is used for the prediction, the other is used for the prediction quality test.
Some statistical properties of the prediction process were shown in experi-
ments, like the convergence of the prediction quality for different classification
functions, the convergence of the prediction quality for an increasing number
of graphs and the effect of the size of the decomposed graphs in the pre-
diction quality estimation step. One main experiment was the estimation
of the number of clusters, which is a main property of the described graph
distribution. It was shown for generated data, that the cluster number can
be estimated by ’assuming’ different cluster numbers and thus computing the
prediction quality. The estimated cluster number is the (smallest) assumed
cluster number, where the prediction quality has a local maximum.
The estimation results did hardly depend on the training set, which was used
for the distribution estimation, and they did hardly depend on the testing
set, used for the prediction quality estimation (which is the desired case).
The same experiment was performed for observed navigation profiles, regis-

4This characterization can be extended with respect to the ’shape’ of clusters (e.g. the
distribution within a cluster), which hasn’t been considered yet.

138 Summary and Conclusions

tered by an Internet server. It was shown, that the results hardly depended
on the testing set similar to the previous experiments, but the estimation
results depended on the training sets. Different arguments why the latter
convergence was not observed were proposed, like an insufficient number of
profiles and a possible change in the distribution.

To summarize, the two main results of this thesis are on the one hand, the
realization of a software system that makes it possible to register navigation
behavior and to visualize navigation history and local site maps for almost
every Internet user. On the other hand a new learning algorithm for the
available information about user behavior was presented. Basic statistical
properties of the algorithm were verified and the algorithm was shown to
give reliable prediction results near the optimum for simulated data with re-
gard to an estimated number of clusters.

The motivation to consider the two support strategies, i.e. the presenta-
tion of maps of the hyperlink structure and the hyperlink prediction in this
thesis, was to lay a basis for more advanced search support systems in the
Internet. These systems shall help a user to orientate himself by presenting
maps of the hyperlink structure, which are adapted to his individual needs.
Only those data objects and routes in the Web should be presented, that are
relevant for a specific user.
The thesis shows that there are many research problems that still have to be
considered. As far as the map presentation is concerned, the layout problem
of the presented graphs should be examined more closely. Consecutive graph
presentations should have a similar layout in order to make it possible for a
user to ’understand’ the change. Further problems are the visualization of
hyperlink graph structures that change in time (section 2.4.1) and the visu-
alization of hyperlink structures that contain web pages which are generated
for each individual user (dynamic web pages). Another research problem is
the generation of hyperlink structure views with regard to semantic aspects.
As far as the prediction technique is concerned, different distribution char-
acterizations, graph distance functions, distribution estimation (including
clustering), classification and prediction techniques should be compared to
each other with respect to the resulting prediction quality. An interesting
additional problem is the velocity of the convergence of the estimation results
when the profile number is increased, depending on the different estimation
settings. In this field, there is still a lot of work to do. The presented predic-
tion strategy should be compared to other prediction methods, like Markov
prediction or other clustering techniques. The thesis provides methods to
test and to evaluate the different prediction strategies.

139

A main open question still to examine is, if the estimation results are valuable
for a user. Up to now, only the prediction quality was considered, which can
easily be tested, using registered profiles. The assumption that predictions
are related to the relevance of the predicted objects for a user still has to
be examined in detail. One possibility would be to present the prediction
results to users (applying the same presentation technique as described in
the thesis) and to let the users evaluate the relevance of the presented data
objects (and sequences).
One problem that may occur when the estimation results are presented to
users may be denoted as ’snowball effect’. If some users follow a wrong
path, the system may learn the wrong path and present it to other users
who (therefore) make the same wrong navigation decisions. Thus, again, the
system learns the wrong navigation path and makes bad predictions in the
future. The reason, why this effect is unlikely to be a problem for the pre-
sented system is the fact that the system may register (and thus learn from)
navigation profiles, even if the users don’t activate the support system (the
redirection technique may be activated for all users or action inferring may
be applied). Thus the percentage of users that actually apply the system has
to be sufficiently high in order to cause a snowball effect.
The prediction method presented in this thesis may however be valuable for
a user even if the predicted data elements are not relevant for this user. If
the predictions are sufficiently good (and not destroyed by a snowball effect),
the user would have visited these wrong data objects anyway. By using the
system the user may find these irrelevant data objects easier and in a shorter
time. Therefore the user saves time and can concentrate on finding the ’right’
data objects.

140 Summary and Conclusions

Appendix A

Graph Matching Algorithms

In this appendix graph matching algorithms are presented that make it pos-
sible to compute some of the graph distances defined in section 4.4. These
algorithms have been previously described by several authors. Graph match-
ing is a problem that is e.g. applied in the field of Computer Vision in order
to compare (parts of) images.1 In many cases the problem is to compare
a new input graph to a set of model graphs, where the model graphs are
tested to be exact or error-correcting subgraphs of the input graph (defi-
nition 20). Well known algorithms are e.g. the Ullman algorithm for ex-
act subgraph-isomorphism detection [109] or the A∗ algorithm for inexact
(error-correcting)-subgraph isomorphism detection presented by [102], [101]
and [108]. These (exact and error-correcting) techniques have recently been
improved in [74], [75] by considering common substructures in the model
graphs. The idea is first to decompose the model graphs and to store them
in a network in an off-line step. The (online) matching step starts by com-
paring the small structures in the network to the input graph and continues
by combining the results in order to match larger substructures.
The algorithms for exact subgraph-isomorphism matching (and also the ex-
act decomposition-based algorithms) can’t be applied in our context, since
it is the problem to look for common substructures, i.e. the problem is to
find the largest common subgraph in the exact case. The error-correcting
algorithms may however be applied in this context.
In the following text at first an algorithm is described to find maximal com-
mon subgraph isomorphisms by a ’clique’ detection. Similar algorithms have
been presented in [66], [19], [12] and [77]. Next, an algorithm for the error-
correcting graph and subgraph isomorphism problem is presented, based on
the A? tree search algorithm. Most of the definitions necessary for the de-

1In practical applications it is also one main problem to find a graph representation for
an image [64], [60].

142 Graph Matching Algorithms

scription of the algorithms have been presented in section 4.3.

A.1 A maximal-common-subgraph algorithm

for graphs by clique detection

The (well-known) algorithm applied in the experiments makes it possible to
find all maximal common subgraphs of a graph G1 = (V1, E1, µ1, ν1) and a
graph G2 = (V2, E2, µ2, ν2). The presented algorithm is based on finding all
the cliques of the so-called association graph (a clique is a subgraph of a graph,
where each vertex is connected to each other vertex). This assoc. graph is
constructed by mapping each vertex u1 ∈ V1 onto each vertex u2 ∈ V2 with
the same label. Each mapping (u1, u2) is a vertex of the association graph
GA = (VA, EA, µA, νA). Two vertices (u1, u2) and (u ′1, u

′
2) of this graph

are compatible, denoted by an edge, if there exist the edge (u1, u
′
1) ∈ E1

and (u2, u
′
2) ∈ E2 . A maximal clique in the association graph represents a

largest common subgraph of G1 and G2.

Definition 24 Given the two graphs G1 and G2, an association graph for
G1 and G2 is a graph GA = (VA, EA, µA, νA) with VA ⊆ V1 × V2 and EA ⊆
VA × VA with

• VA = {(u1, u2) ∈ V1 × V2 | µ1(u1) = µ2(u2)}

• eA := (uA, u
′
A) = ((u1, u2), (u

′
1, u

′
2)) ∈ EA if:

a) u1 6= u ′1 and u2 6= u ′2
b) exists (u1, u

′
1) ∈ E1 =⇒ exists (u2, u

′
2) ∈ E2 and ν1(e1) = ν2(e2)

c) no edge (u1, u
′
1) ∈ E1 exists =⇒ no edge (u2, u

′
2) ∈ E2 exists

The algorithm in figure A.1 shows the main idea how the search for maximal
cliques can be applied for the maximal common subgraph problem. At first
the association graph is computed, then an algorithm for maximal clique
detection is applied. If C = {(ua1 , ub1), ...(uan , ubn)} is a maximal cliques
found for the association graph, there exists a graph isomorphism from the
subgraph S1 = (VS1 , ES1) with VS1 = {u1|(u1, u2) ∈ C} of G1 to the subgraph
S2 = (VS2 , ES2) with VS2 = {u2|(u1, u2) ∈ C} of G2.
The main idea for the clique detection is to choose a vertex uA1 from the

association graph and add it to an empty list C. The list C is then extended
by adding a second vertex uA2 such that there exists an edge between both
nodes in the association graph. In general, every vertex added to C has to
be connected to every vertex in C, which is thus a clique. The process stops,

A.1 A maximal-common-subgraph algorithm for graphs by clique
detection 143

Maximal common subgraph by maximal clique-detection

1. Create an association graph GA = (VA, EA, µA, νA) from G1 =

(V1, E1, µ1, ν1) and G2 = (V2, E2, µ2, ν2) according to definition 24.
2. Find set of maximal cliques ’Cliq’ according to the algorithm in fig. A.2

Clique-Detection(GA,min{V1, V2}).
3. for each C ∈ Cliq

let S1 = (VS1 , ES1) be the subgraph of G1 with VS1 = {u1|(u1, u2) ∈ C}

and S2 = (VS2 , ES2) be the subgraph of G2 with S2 = {u2|(u1, u2) ∈ C}.
Both subgraphs are isomorphic. Output the implied graph isomorphism
function f : S1 −→ S2.

Figure A.1: Graph-matching based on clique detection.

Clique-detection(GA = (VA, EA, µA, νA), S)

1. Let i=1, C,Cmax, Cliq = ∅, L(k) = ∅ ∀k = 1, ...S.
2. if ∃uA ∈ VA with uA /∈ L(k) ∀k ≤ i then:

a) L(i) := L(i) ∪ {uA}

b) if exists an edge eA = (uA, wA) ∈ EA for all wA ∈ C, then C :=

C ∪ {uA} and i := i+ 1 and

if |C| = |Cmax| then set Cliq = Cliq ∪ {C}

if |C| > |Cmax| then set Cliq = {C} and Cmax = C.

else

c) remove the i-1-th vertex from C
d) set L(i) := ∅ and i := i− 1.

3. if i > 0 goto 2.
4. output Cliq

Figure A.2: Algorithm for clique detection.

144 Graph Matching Algorithms

if no more vertices can be added. The process then removes the previously
added node and adds a node that hasn’t been tried before. A set of lists Li,
i = 1, ..|VA| is introduced to keep track of the nodes that have already been
tried.
The algorithm in figure A.2 shows the different steps for the clique search. At
first C, Cmax, Cliq and Li, i = 1, ..S are initialized as empty, i=1. In the sec-
ond step, a vertex uA is chosen that has not been used before, i.e. uA /∈ L(k)
for all k ≤ i. uA is added to L(i). It is checked if C∪ {uA} is a clique in step
2b. If C ∪ {uA} is a larger clique than the current maximal clique, the set of
maximal cliques (Cmax) is emptied and initialized with C. If C has the size
of a maximal clique, it is added to the set of cliques (Cliq). If a new uA
value couldn’t be found, the steps 2c and 2d perform a backtracking. The
last vertex (i-1) is removed from C, L(i) is emptied, and i is decremented by
one. As long as it is possible to find larger cliques, the algorithm continues
in step 2. Finally if i = 0 all cliques have been detected and are output.
The main drawback of the described algorithm is its complexity. Let |V1| = n

and |V2| = m ∈ N with n < m. In the best case both graphs are uniquely
labeled and each vertex of G1 matches to exactly one vertex of G2. The
corresponding association graph has O(n) vertices and can be created in
O(nm) steps. The maximal clique search requires the extension of the ini-
tial clique O(n) times with O(n) connectivity tests. The total complexity is
thus bounded by O(nm+ n2).
In the worst case, the two graphs are identically labeled and each graph
is completely connected. The association graph consists of O(nm) vertices
and each vertex is connected to O(nm − n) other vertices. At each level of
the backtracking process a clique has to be extended with O(nm) vertices.
There areO(n) levels and thus the complexity isO((nm)n) in the worst case.

A.2 Error-correcting subgraph isomorphism

detection

In this section an algorithm for the error-correcting subgraph isomorphism
problem is presented, that is based on the A∗ algorithm [79]. Some ba-
sic definitions have been given in section 4.3. This algorithm was not used
in the experiments, it is only presented here to demonstrate, how the dis-
tance measure between graphs in section 4.4.4 may be computed. Given
two graphs G1 = (V1, E1, µ1, ν1) and G2 = (V2, E2, µ2, ν2) the objective is
to find an optimal error correcting subgraph isomorphism (∆, f), i.e. there

A.2 Error-correcting subgraph isomorphism detection 145

exists a subgraph isomorphism from ∆(G1) to G2 with minimal costs. Let
p = {(u1, w1), ...(uk, wk)}, u1, ..uk ∈ VG1 and w1, ..wk ∈ VG2 ∪ {t} be a
mapping from the vertices of G1 to the vertices of G2 such that for all tuples
(ui, wj), (uj, wj) ∈ p : ui 6= uj and wi 6= wj unless wi =t (the sym-
bol t denotes the deletion of a node). Define V

p
1 := {u|(u,w) ∈ p} and

V
p
2 := {w|(u,w) ∈ p}. A mapping p implies a set of edit operations ∆p. Let

(u,w) ∈ p. If w 6=t and µ1(u) 6= µ2(w) then a substitution of the respective
labels is implied by p. If w =t, the mapping p implies the deletion of v.
If (u ′, w ′) is another element of p, the implied edge operations can be demon-
strated. If e1 = (u, u ′) ∈ E1 and e2 = (w,w ′) ∈ E2 and ν1(e1) 6= ν2(e2),
the substitution of the respective edge labels is implied. If there exists
e1 = (u, u ′) ∈ E but there is no edge e2 = (w,w ′) ∈ E2, the deletion of
the edge e1 is implied. In the opposite case, p implies the insertion of an
edge e2 = (w,w ′).
The subgraph isomorphism implied by p is the mapping fp from ∆p(G1) to
G2:

fp(v) =

{
w if (v,w) ∈ p and w 6=t

undefined otherwise
(A.1)

The costs of p are the costs of the implied edit operations, C(p) := C(∆p).
The problem when looking for optimal error correcting subgraph isomor-
phisms can be restated as the search for a mapping p with V

p
1 = V1 with

minimal costs. The algorithm in figure A.3 gives a formal description of the
error-correcting subgraph isomorphism search. The algorithm starts with
an initialization of an Open list which has got the function to organize the
mappings during the search process. At first, a node is chosen from V1 and
all mappings to V2 ∪ {t} are stored in Open. If Open is empty in step 2
the algorithm terminates. In step 3 the mapping in Open with the least
cost C(p) is chosen and removed from Open. The cost is compared to a
threshold value. At first the threshold is an upper bound for the costs of a
complete subgraph isomorphism. If a subgraph isomorphism is found with
a lower cost, the threshold is set to this value in order to find ’optimal’
e.c.s.g.-isomorphisms in step 5. The algorithm terminates in step 4 if all re-
maining subgraph isomorphisms have higher costs. In step 5 it is checked, if
p is a complete subgraph isomorphism and output in this case, the threshold
value is adjusted and the algorithm continues in step 2. If p is not yet com-
plete, in the steps 7a,b a new vertex uk+1 is chosen and all mappings from
uk+1 to the remaining elements of V2 are used to generate new mappings
pnew = p ∪ {(uk+1, w)} with w ∈ V2\V

p
2 ∪ {t} that are added to Open. The

costs of these mappings are computed and the algorithm continues in step 2.
In the best case for the algorithm, both graphs G1 and G2 are uniquely la-

146 Graph Matching Algorithms

E.C.S.I by A∗(G1 = (V1, E1, µ1, ν1), G2 = (V2, E2, µ2, ν2))

1. initialize Open: for each node w ∈ V2{t} create a mapping p = (u1, w)

and add it to Open, Open := Open ∪ {p}. Let the cost C(p) be the
cost of the implied label substitution.

2. If Open is empty then exit.
3. select p ∈ Open such that C(p) is minimal, remove p from Open.
4. if C(p) > treshold then exit.
5. if p is a complete mapping from G1 to G2 then output p, set threshold

:= C(p).
6. let p = {(u1, wi), ...(uk, wj)} and V

p
2 = {w|(u,w) ∈ p and w ∈ V2}

7. for all w ∈ (V2\V
p
2) ∪ {t}

a) set p ′ = {(u1, wi), ...(uk, wj), (uk+1, w)} and compute C(p ′) (text).
b) add p ′ to Open

8. goto 2.

Figure A.3: Error correcting subgraph isomorphism by A∗.

beled and G1 contains an isomorphic copy of G2. If |V1| = n and |V2| = m,
the algorithm first maps the first vertex of G1 onto every node of G2 and
thereby generates O(m) mappings. Only the mapping with zero cost is ex-
tended, resulting in O(m−1) new mappings. For n vertices in G1 this results
in O(nm) mappings. The algorithm performs O(n) edge tests for each map-
ping and thus the complexity is bounded by O(n2m).
In the worst case, the error in the graph G1 is very large and the edit costs
become very high. Thus each mapping has to be extended. The first vertex
can be mapped onto O(m) vertices in the graph G2. Each of the mappings
is extended, resulting in O(m(m − 1)) mappings. For the k-th vertex of
G2 there will be O(mk) mappings. The total number of mappings is thus
bounded by O(nmn). Since each mapping requires O(n) edge tests, the
complexity is O(n2mm).
In [116] a method was presented to improve the performance of the algo-
rithm. Given a mapping p the minimal costs of any mapping p’ implying p
is estimated. The idea is to estimate for each vertex in V1\V

p
1 the minimal

cost for mapping it onto a vertex in V2\V
p
2 . Each v ∈ V1\V

p
1 is mapped

onto each vertex w ∈ V2\V
p
2 and the implied edit costs of the mappings are

compared to each other. First the label µ1(u) has to be substituted by µ2(w)

and then for each mapping (u ′, w ′) ∈ p the edge (u, u ′) has to mapped onto
(w,w ′) by an edge operation. The sum of the minimal cost for each vertex

A.2 Error-correcting subgraph isomorphism detection 147

v ∈ V\Vp is a lower bound of the real future costs of p (that is used in step
3).
The complexity of the future cost estimation is O(nm) for each mapping,
since each of the remaining vertices in V1\V

p
1 is mapped onto each of the

remaining vertices in V2\V
p
2 . The complexity in the best case thus becomes

O(n2m2) and in the worst case O(n2mn+1). The reduction of the number
of mappings does not show up in the complexity analysis.

148 Graph Matching Algorithms

Appendix B

Clustering Algorithms

In section 4.6 one step in the described distribution estimation procedure is
the clustering of graph data. The applied algorithm is a hierarchical cluster-
ing technique. These clustering techniques can be subdivided into agglomer-
ative methods, which imply a series of fusions of the individuals into groups,
and divisive methods, which separate the elements into finer groupings [33].
Both techniques are based on a distance measure between the respective el-
ements.1 Let dist(., .) denote this distance measure. The applied technique,
single linkage or nearest neighbor clustering is an agglomerative technique.
Different agglomerative techniques are based on different functions applied
to define a distance between groups (’group distance’). Let C and D be two
clusters (groups), consisting of |C| = n ∈ N and |D| = m ∈ N elements. Let
{x1, ...xn} be the elements in C and {y1, ...ym} be the elements in D.
One first possibility to define a (group-) distance, applied by the single link-
age algorithm, uses the smallest distance between two objects in the two
groups:

d(C,D) = min
i,j

(dist(xi, yj)), i ∈ {1, ..n}, j ∈ {1, ...m} (B.1)

In contrast to this, the complete linkage algorithm uses the largest distance
between objects in two groups. The average linkage uses the average distance
between all pairs of objects in cluster C and D.

d(C,D) =
1

nm

n∑

i=1

m∑

j=1

dist(xi, yj) (B.2)

1In the ’usual’ case, this distance measure operates in an Euclidean Vector space, like
the Euclidean distance, the Mahalanobis distance, the City Block metrics, the Minkowski
metrics etc. In the presented case, a graph metrics is used as defined in section 4.4.

150 Clustering Algorithms

Centroid linkage uses the distance between the centroids of the two groups

d(C,D) = d(
1

n

n∑

i=1

xi,
1

m

m∑

j=1

yj) (B.3)

Other techniques exists like the Ward linkage, that is based on the the cen-
troid method [112].
The steps of the different algorithms are basically the same. Let A be a set
of basic elements or groups consisting of these elements. At the beginning A
consists of the basic elements. In the first step the two elements are chosen,
that have, according to the applied metrics, the smallest distance. These
elements are joined to form a two member cluster (group). The two elements
are deleted in A and the new group is inserted. A new (group-) distance
matrix is computed, that contains the distances between the remaining el-
ements in A. The elements (original elements or formed clusters) with the
smallest (group-) distance are merged. The algorithm continues in this way
until one group in A, containing all the elements, is obtained. This is the
fundamental algorithm; more efficient methods have been presented e.g. by
[91] and [103].
Problems of these algorithms are e.g. the chaining problem in the case of
single linkage or a bias towards finding ’spherical’ clusters in the case of e.g.
the centroid clustering [33]. These problems were examined in various arti-
cles and often depend on the specific problem domain.
It can be seen that not all described cluster methods can be applied for the
problem in this thesis. Since many algebraic operations that are available in
a vector space are not available in a graph space (the definitions in section
4.3 have another meaning), it is e.g. not possible to apply centroid linkage.
Only those cluster algorithms can be applied, that are based only on the
distance operation. Further algebraic operations like summation or multipli-
cation make it difficult to use the method.
In the experiments, the implementation of the single linkage algorithm was
used, provided by the Matlab (Statistics-) tool-box [88].

Appendix C

Preparation of Registered
Access-log Data

In order to test the algorithms presented in chapter 6 for real profiles, data
registered in access-log files by the web server of the Cognitive Systems group
at Kiel University were exploited. These data were preprocessed in order to
obtain the data structure necessary for the algorithms. A simplified example
for the data that are available in the access-log files can be seen in figure
C.1. It is assumed that a client can be uniquely identified by his IP-address

62.226.76.63 - - [01/Aug/2001:00:03:11 +0200] ”GET / HTTP/1.0”

138.15.10.5 - - [01/Aug/2001:00:03:46 +0200] ”GET / tbl/tobue.html HTTP/1.0”

62.226.76.63 - - [01/Aug/2001:00:18:17 +0200] ”GET /staff.html HTTP/1.0”

138.15.10.5 - - [01/Aug/2001:00:20:00 +0200] ”GET / tbl/publications.html

HTTP/1.0”

138.15.10.5 - - [01/Aug/2001:00:25:39 +0200] ”GET / tbl/projects.html HTTP/1.0”

62.226.76.63 - - [01/Aug/2001:00:42:06 +0200] ”GET / chp/chris.html HTTP/1.0”

Figure C.1: Partial access-log file, consisting of a client’s IP-address, a time
stamp and the requested data object.

(which may not be correct in all cases, as discussed in section 3.4.3). Figures
C.1, C.2 and C.3 show the steps for the access-log processing. In a first step
the set of data objects requested by a user are extracted. For this purpose,
a maximal ’dwell time’ is fixed, as discussed in section 4.1, which is set to
50 minutes. The entries in the access-log files are first sorted by the IP-
address and then by their time stamp (which is the original order). Then
the requests belonging to one client that occur in the dwell time interval
beginning with the first request are collected and stored. Now each profile
contains the information about the IP-address of a client and the set of his

152 Preparation of Registered Access-log Data

requested data objects, ordered by the time stamp (fig. C.2). In a last step,
the edges between the requested data objects, i.e. the transitions between
the data objects are added (figure C.3). In the experiments in chapter 6
consecutive data objects are linked by an edge in the graph structure. A
further method is to apply action inferring techniques with regard to the
hyperlink structure (section 3.4.2).

62.226.76.63 /
/staff.html
/ chp/chris.html

138.15.10.5 / tbl/tobue.html
/ tbl/publications.html
/ tbl/projects.html

Figure C.2: Two sets of user requests, extracted from the access-log files.

62.226.76.63

nodes 1 /
2 /staff.html
3 / chp/chris.html

edges 1 2
2 3

138.15.10.5

nodes 1 / tbl/tobue.html
2 / tbl/publications.html
3 / tbl/projects.html

edges 1 2
2 3

Figure C.3: Two graph profiles, extracted from the sets of requests. A graph
consists of a set of nodes (requested URL addresses) and a set of edges. An
edge ’1 2’ denotes a transition from node 1 to node 2 in the node list.

Bibliography

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules
between sets of items in large databases. In P. Buneman and S. Ja-
jodia, editors, Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pages 207–216, 1993.

[2] D. W. Albrecht, I. Zukerman, and A. E. Nicholson. Pre-sending docu-
ments on the WWW: A comparative study. In IJCAI, pages 1274–1279,
1999.

[3] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. WebWatcher:
A learning apprentice for the World Wide Web. In AAAI Spring Sym-
posium on Information Gathering from Heterogeneous, Distributed En-
vironments, pages 6–12, 1995.

[4] U. Babiak. Effektive Suche im Internet: Suchstrategien, Methoden,
Quellen. O’Reilly, 1999.

[5] S. C. Basak, V. R. Magnuson, G. J. Niemi, R. R. Regal, and G. D.
Veith. Topological indices: Their nature, mutual relatedness, and ap-
plications. Mathematical Modelling, 8:300–305, 1987.

[6] B. Bekavac and M. Rittberger. Ein Navigationsassistent für das WWW.
In H. Zimmermann and V. Schramm, editors, Knowledge Management
und Kommunikationssyteme. Proceedings des 6. Internationalen Sym-
posiums für Informationswissenschaft (ISI’98), pages 438–452. Univer-
sitätsverlag Konstanz, Nov 1998.

[7] J. P. Bigus and J. Bigus. Constructing Intelligent Agents using Java.
Wiley and Sons, 2001.

[8] B. Bollobas. Modern Graph Theory. Springer, 1998.

[9] W. Brenner, R.Zarnekow, and H.Wittig. Intelligente Softwareagenten.
Springer, 1998.

154 BIBLIOGRAPHY

[10] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1–7):107–
117, 1998.

[11] A. Z. Broder, S. R. Kumar, F. Maghoul, P.Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. L. Wiener. Graph structure in the Web.
WWW9/Computer Networks, 33(1-6):309–320, 2000.

[12] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577, 1973.

[13] M. R. Brown. Netscape Communicator 4. Markt & Technik Buch- und
Software-Verlag GmbH, 1997.

[14] P. Brusilovsky. Efficient techniques for adaptive hypermedia. In
C. Nicholas and J. Mayfield, editors, Intelligent Hypertext, LNCS, pages
12–30. Springer, 1997.

[15] P. Bühlmann and A. J. Wyner. Variable length markov chains. Annals
of Statistics, 27(1):480–513, 1999.

[16] H. Bunke. On a relation between graph edit distance and maximum
common subgraph. In Pattern Recognition Letters, 18, pages 689–694.
Elsevier, 1997.

[17] H. Bunke and K. Shearer. A graph distance metric based on the maxi-
mal common subgraph. Pattern Recognition Letters, 19:255–259, 1998.

[18] E. Carmel, S. Crawford, and H. Chen. Browsing in hypertext: A cogni-
tive study. Transactions on System, Man and Cybernetics, 22:865–883,
1992.

[19] R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum
clique problem. Operations Research Letters, 9:375–382, 1990.

[20] S. Chakrabarti, B. Dom, S. R. Kumar, P. Raghavan, S. Rajagopalan,
A. Tomkins, D. Gibson, and J. Kleinberg. Mining the Web’s link struc-
ture. IEEE Computer, 32(8):60–67, 1999.

[21] S. Chakrabarti, B. Dom, S. R. Kumar, P. Raghavan, S. Rajagopalan,
A. Tomkins, D. Gibson, and J. Kleinberg. Neue Pfade durch den
Internet-Dschungel. Spektrum, 8:44–49, 1999.

BIBLIOGRAPHY 155

[22] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: a new
approach to topic-specific Web resource discovery. Computer Networks
(Amsterdam, Netherlands: 1999), 31(11–16):1623–1640, 1999.

[23] L. Chen and K. Sycara. WebMate: A personal agent for browsing and
searching. In K. P. Sycara and M. Wooldridge, editors, Proceedings of
the 2nd International Conference on Autonomous Agents (Agents’98),
pages 132–139. ACM Press, 1998.

[24] M. S. Chen, J. S. Park, and P. S. Yu. Data mining for path traversal
patterns in a web environment. In Sixteenth International Conference
on Distributed Computing Systems (ICDCS), pages 385–392, 1996.

[25] W. J. Christmas, J. Kittler, and M. Petrou. Structural matching in
computer vision using probabilistic relaxation. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI, 17(8):749–764, 1995.

[26] G. Cornell and C. Horstmann. Java bis ins Detail. Heise, 1996.

[27] J. Cove and B. C. Walsh. Online text retrieval via browsing. Informa-
tion Processing and Management, 24(1):31–37, 1988.

[28] W. Dalitz and G. Heyer. Hyper-G, Das Internet-Informationssystem
der 2.Generation. dpunkt-Verlag, 1995.

[29] D. D’Aloisi and V. Giannini. The Info Agent: An interface for sup-
porting users in intelligent retrieval. In Proceedings of the ERCIM
Workshop on Towards User Interfaces for All: Current Efforts and
Future Trends, pages 145–158, 1995.

[30] P. de Bra, P. Brusilovsky, and R. Conejo, editors. Adaptive Hypermedia
and Adaptive Web-Based Systems, Second International Conference,
AH 2002, Malaga, Spain, LNCS 2347. Springer, May 2002.

[31] D. M. Edwards and L. Hardman. ‘Lost in hyperspace’: Cognitive map-
ping and navigation in a hypertext environment. In R. McAleese, edi-
tor, Hypertext: Theory into practice, pages 105–125. Oxford: Intellect
Limited, 1989.

[32] K. Ericsson and H. A. Simon. Protocol analysis: verbal reports as data.
Cambridge, MA: MIT Press, 1993.

[33] B. Everitt. Cluster Analysis. Edward Arnold, 3 edition, 1993.

156 BIBLIOGRAPHY

[34] M. Fernandez and G. Valiente. A graph distance metric combining
maximum common subgraph and minimum common supergraph. Pat-
tern Recognition Letters, 22(6-7):753–758, 2001.

[35] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP, RFC 2616,
1999.

[36] R. T. Fielding. Maintaining distributed hypertext infostructures: wel-
come to MOMspider’s Web. Computer Networks and ISDN Systems,
27(2):193–204, 1994.

[37] D. Flanagan. Java Examples in a Nutshell. O’Reilly, 1998.

[38] D. Flanagan. Java Foundation Classes. O’Reilly, 1999.

[39] D. Flanagan. Java in a Nutshell. O’Reilly, 1999.

[40] D. Flanagan. JavaScript. O’Reilly UK, Dec 2001.

[41] K. Florek, J.Lukaszewicz, J.Perkal, H.Steinhaus, and S.Zubrzycki. Sur
la liason et la division des points d’un ensemble fini. Collequium Math-
ematicum, 2:282–285, 1951.

[42] J. Furner, D. Ellis, and P. Willet. The representation and compar-
ison of hypertext structures using graphs. In M. Agosti and A. F.
Smeaton, editors, Information Retrieval and Hypertext, pages 75–96.
Kluwer Academic Publishers, 1996.

[43] N. D. Gershon, J. LeVesseur, J. Winstead, J. Croall, A. Pernick, and
W. Ruh. Visualizing Internet resources. In Proceedings of Information
Visualization, pages 122–128. Los Alamitos, CA:IEEE, 1995.

[44] D. Gilbert. Intelligent agents: the right information at the right time.
Technical report, IBM Corporation, Research Triangle Park, NC, USA,
May 1997.

[45] C. F. Goldfarb and P. Prescod. XML Handbuch. Verlag Prentice Hall,
1999.

[46] I. Graham. HTML Sourcebook. John Wiley & Sons, Inc., 1995.

[47] V. N. Gudivada, V. V. Raghavan, W. I. Grosky, and R. Kasanagottu.
Information retrieval on the World Wide Web. IEEE Internet Com-
puting, 1(5):58–68, Sep 1997.

BIBLIOGRAPHY 157

[48] E. R. Harold and W. S. Means. XML in a Nutshell. O’Reilly UK, 2001.

[49] I. Herman, G. Melancon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Transaction
on Visualization and Computer Graphics, 6(1):24–43, 2000.

[50] A. Heuer. Objektorientierte Datenbanken : Konzepte, Modelle, Stan-
dards und Systeme. Addison-Wesley-Longman, 2 edition, 1997.

[51] C. Hoelscher and G. Strube. Web search behavior of Internet experts
and newbies. In Proceedings of the 9th Int. World Wide Web Confer-
ence, pages 337–346, 2000.

[52] S. Holzner. HTML Black Book: The Programmer’s Complete HTML
Reference Book. Coriolis Group Books, May 2000.

[53] J. I. Hong and J. A. Landay. WebQuilt: A framework for capturing and
visualizing the web experience. In WWW 2001, ACM, pages 717–724,
May 2001.

[54] S. Johnson. Hierarchical clustering schemes. Psychometrika, 32:241–
254, 1967.

[55] P. Kahn and K. Lenk. Mapping Web Sites. Robot Vision SA, 2001.

[56] J. Kittler, W. J. Christmas, and M. Petrou. Probabilistic relaxation
for matching of symbolic structures. In H. Bunke, editor, Advances
in Structural and Syntactic Pattern Recognition, pages 471–480. World
Scientific, 1992.

[57] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, 1999.

[58] M. Klusch, editor. Intelligent Information Agents. Springer, 1999.

[59] T. Kopetzky and M. Mühlhäuser. Visual preview for link traversal
on the WWW. Proceedings of the 8th Intl. WWW Conference, pages
447–454, May 1999.

[60] N. Krüger, M. Potzsch, and C. von der Malsburg. Determination
of face position and pose with a learned representation based on la-
beled graphs. Technical report, Institut für Neuroinformatik, Ruhr-
Universität Bochum, Jan 1996.

158 BIBLIOGRAPHY

[61] D. Kukulenz. Prediction of navigation profiles in a distributed inter-
net environment through learning of graph distributions. In P. de Bra,
P.Brusilovsky, and R.Conejo, editors, Adaptive Hypermedia and Adap-
tive Web-Based Systems, Second International Conference, AH 2002,
Malaga, Spain, LNCS 2347, pages 233–241. Springer, May 2002.

[62] D. Kukulenz and J. Pauli. Navigation-dependent visualization of dis-
tributed Internet structures. In IEEE Conference on Information Vi-
sualization, pages 518–523, 2000.

[63] D. Kukulenz and J. Pauli. A software agent for adaptive visualization of
hyperspace based on clustering of navigation graphs. In Applied Infor-
matics, Int. Sympos. on Software Engineering, Databases and Applica-
tions, Proc. of the IASTED International Conference, pages 248–253,
2002.

[64] P. Kuner and B. Ueberreiter. Pattern recognition by graph matching–
combinatorial versus continuous optimization. Intl. J. Pattern Recog-
nition and Artificial Intelligence (IJPRAI), 2:527–542, 1988.

[65] B. Laurie and P. Laurie. Apache. The Definitive Guide. O’Reilly &
Associates, Inc., 1997.

[66] G. Levi. A note on the derivation of maximal common subgraphs of
two directed or undirected graphs. Calcolo, 9:341–354, 1972.

[67] M. S. Lew, editor. Principles of Visual Information Retrieval. Springer,
2001.

[68] H. Lieberman. Letizia: An agent that assists web browsing. In C. S.
Mellish, editor, Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, pages 924–929. Morgan Kaufmann
publishers Inc.: San Mateo, CA, USA, 1995.

[69] H. Lieberman. Autonomous Interface Agents. In Proceedings of the
ACM Conference on Computers and Human Interface, CHI-97, pages
67–74, Atlanta, Georgia, 1997.

[70] H. Lieberman. Beyond information retrieval: Information agents at
the MIT Media Lab. Künstliche Intelligenz, 12(3):17–23, 1998.

[71] H. Lieberman, N. W. V. Dyke, and A. S. Vivacqua. Let’s browse: a
collaborative web browsing agent. In Proceedings of the 1999 Interna-
tional Conference on Intelligent User Interfaces (IUI’99), pages 65–68,
Los Angeles, CA, USA, 1999. ACM Press.

BIBLIOGRAPHY 159

[72] C. Liu, J. Peek, R. Jones, B. Buus, and A. Nye. Internet-Server, Ein-
richten und Verwalten. O’Reilly/International Thomson Verlag GmbH
&Co KG, 1995.

[73] H. Maurer, N. Scherbakov, Z. Halim, and Z. Razak. From Databases
to Hypermedia. Springer, 1998.

[74] B. Messmer and H. Bunke. Efficient graph matching algorithms for
preprocessed model graphs. PhD thesis, Bern University, 1996.

[75] B. Messmer and H.Bunke. A new algorithm for error-tolerant subgraph
isomorphism detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(5):493–504, 1998.

[76] Microsoft. Internet Explorer 6.0 Resource Kit. Microsoft Press, Okt
2001.

[77] S. H. Myaeng and A. Lopez-Lopez. Conceptual graph matching: a
flexible algorithm and experiments. Journal of Experimental and The-
oretical Artificial Intelligence, 4:107–126, 1992.

[78] C. Nicholas and J. Mayfield, editors. Intelligent Hypertext - Advanced
Techniques for the World Wide Web. Springer, 1997.

[79] N. J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers, 1986.

[80] M. J. Pazzani, J. Muramatsu, and D. Billsus. Syskill Webert: Identi-
fying interesting web sites. In AAAI/IAAI, Vol. 1, pages 54–61, 1996.

[81] M. Perkowitz and O. Etzioni. Adaptive web sites: an AI challenge. In
Proceedings of the 15th International Joint Conference on AI (IJCAI-
97) (1), pages 16–23, 1997.

[82] M. Perkowitz and O. Etzioni. Adaptive web sites: Automatically syn-
thesizing web pages. In AAAI/IAAI, pages 727–732, 1998.

[83] M. Perkowitz and O. Etzioni. Towards adaptive web sites: Conceptual
framework and case study. Artificial Intelligence, 118(1–2):245–275,
2000.

[84] N. Pohlmann. Firewall-Systeme : Sicherheit für Internet und Intranet.
MITP-Verlag, 2001.

160 BIBLIOGRAPHY

[85] J. Postel. Internet Protocol- DARPA Internet Program Protocol Spec-
ification. STD 5, RFC 791, DARPA, Sep 1981.

[86] J. Postel. Transmission Control Protocol - DARPA Internet Program
Protocol Specification. STD 5, RFC 793, DARPA, Sep 1981.

[87] J. Postel and J. Reynolds. File Transfer Protocol (FTP). W3C, Net-
work Working Group, RFC 959, Oct 1985.

[88] D. Redfern and C. Campbell, editors. The MATLAB 5 Handbook.
Springer, 1998.

[89] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. Group-
lens: An open architecture for collaborative filtering of netnews. In
Proceedings of ACM 1994 Conference on Computer Supported Cooper-
ative Work, pages 175–186. ACM, 1994.

[90] E. S. Ristad and P. N. Yianilos. Learning string edit distance. In Proc.
14th International Conference on Machine Learning, pages 287–295.
Morgan Kaufmann, 1997.

[91] F. J. Rohlf. A probabilistic minimum spanning tree algorithm. Infor-
mation Processing Letters, 7:44–49, 1978.

[92] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learn-
ing probabilistic automata with variable length. Machine Learning,
25:117–149, 1996.

[93] G. Rossi, D. Schwabe, and F. Lyardet. Improving Web information sys-
tems with navigational patterns. In 8th World Wide Web Conference,
pages 589–600, Toronto, Canada, May 1999.

[94] G. Salomon. Designing casual-use hypertext: The CHI’89 InfoBooth.
In Proceedings of CHI’90: Computer-Human Interface, pages 451–458,
1990.

[95] G. Salton. Developments in automatic text retrieval. Science, 253:974–
979, 1991.

[96] G. Salton and M. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill, 1983.

[97] M. Sanfaller. TCP/IP und NFS in Theorie und Praxis, Unix in lokalen
Netzwerken. Addison-Wesley, 1990.

BIBLIOGRAPHY 161

[98] A. Sanfeliu and K. S. Fu. A distance measure between attributed rela-
tional graphs for pattern recognition. IEEE Transactions on Systems,
Man and Cybernetics, 13(3):353–362, 1983.

[99] R. Sarukkai. Link prediction and path analysis using markov chains.
Computer Networks, 33(1–6):377–386, 2000.

[100] H. Sauer. Relationale Datenbanken : Theorie und Praxis. Addison-
Wesley-Longmann, 4 edition, 1998.

[101] L. G. Shapiro. Relational matching. In Handbook of Pattern Recogni-
tion and Image Processing: Computer Vision, pages 475–496, 1993.

[102] L. G. Shapiro and R. M. Haralick. Structural descriptions and inexact
matching. In IEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI-3, pages 504–519, 1981.

[103] R. Sibson. SLINK: An optimally efficient algorithm for the single link
method. Computer Journal, 16:30–34, 1973.

[104] P. Sneath. The application of computers to taxonomy. Journal of
General Microbiology, 17:201–226, 1957.

[105] T. Sokolofsky and C. Kale. A TCP/IP Tutorial. RFC 1180, 1991.

[106] W. Stanek. Netscape Mozilla Source Code Guide. Ventana Communi-
cations Group, 1999.

[107] D. Stanyer and R. Procter. Improving Web usability with the link lens.
Journal of Computer Networks and ISDN Systems, 31:455–466, 1999.

[108] W. Tsai and K. Fu. Error-correcting isomorphisms of attributed re-
lational graphs for pattern analysis. IEEE Transactions on Systems,
Man, and Cybernetics, 9(12):757–768, 1979.

[109] J. Ullman. An algorithm for subgraph isomorphism. Journal of the
Association for Computing Machinery, 23(1):31–42, 1976.

[110] B. Underdahl. Macromedia Flash MX: The Complete Reference. Os-
borne McGraw-Hill, March 2002.

[111] W. Wallis, P. Shoubridge, M. Kraetz, and D. Ray. Graph distances
using graph union. Pattern Recognition Letters, 22(6/7):701–704, 2001.

[112] J. H. Ward. Hierachical grouping to optimize an objective function.
Journal of the American Statistical Association, 58:236–244, 1963.

162 BIBLIOGRAPHY

[113] H. Weinreich and W. Lamersdorf. Concepts for improved visualization
of Web link attributes. Computer Networks (Amsterdam, Netherlands:
1999), 33(1–6):403–416, 2000.

[114] A. Wexelblat and P. Maes. Footprints: History-rich tools for informa-
tion foraging. In Proceedings of the Conference on Human Factors in
Computing Systems (CHI ’99) (Pittsburgh, PA), pages 270–277. ACM
Press, 1999.

[115] R. Widhalm and T. Mück. Topic Maps. Springer Verlag, 2002.

[116] E. Wong. Three-dimensional object recognition by attributed graphs.
In H. Bunke and A.Sanfeliu, editors, Systanctic and Structural Pattern
recognition, Theory and Applications, pages 381–414. World Scientific,
1990.

[117] O. R. Zaiane, M. Xin, and J. Han. Discovering web access patterns and
trends by applying OLAP and data mining technology on web logs. In
Advances in Digital Libraries, pages 19–29, 1998.

[118] O. Zamir and O. Etzioni. Grouper: A dynamic clustering interface to
Web search results. WWW8 / Computer Networks, 31(11-16):1361–
1374, 1999.

[119] I. Zukerman, D. Albrecht, A. Nicholson, and K. Doktor. Trading off
granularity against complexity in predictive models for complex do-
mains. In Proceedings 6th Pacific Rim International Conference on Ar-
tificial Intelligence (PRICAI 2000), Melbourne, Australia, pages 241–
251. Springer-Verlag, Sep 2000.

[120] I. Zukerman and D. W. Albrecht. Predictive statistical models for user
modeling. User Modeling and User-Adapted Interaction, 11(1-2):5–18,
2001.

Acknowledgments

I am especially thankful to the following people for their help and support
to write this thesis:

1. Mr. Prof. G. Sommer who supervised my research concerning this
thesis,

2. Dr. J. Pauli and Prof. G. Weber for many helpful discussions and
useful suggestions

3. Mrs. K.-B. Spindler, head of the ’Forschungsdezernat der Kieler Uni-
versität’ for financial support

4. the members and former members of the Cognitive Systems group at
Kiel university for friendly and solid cooperation, especially to S. Buch-
holz, V. Banarer and C. Perwass

5. H. Schmidt and G. Diesner who helped me with technical questions.

