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Abstract

2D-3D pose estimation means to estimate the relative position and orientation
of a 3D object with respect to a reference camera system. This work has its main
focus on the theoretical foundations of the 2D-3D pose estimation problem: We
discuss the involved mathematical spaces and their interaction within higher order
entities. To cope with the pose problem (how to compare 2D projective image
features with 3D Euclidean object features), the principle we propose is to recon-
struct image features (e.g. points or lines) to one dimensional higher entities (e.g.
3D projection rays or 3D reconstructed planes) and express constraints in the 3D
space. It turns out that the stratification hierarchy [9] introduced by Faugeras is
involved in the scenario. But since the stratification hierarchy by Faugeras is based
on pure point concepts a new algebraic embedding is required when dealing with
higher order entities. The conformal geometric algebra (CGA) [22] is well suited
to solve this problem, since it subsumes the involved mathematical spaces. Op-
erators are defined to switch entities between the algebras of the conformal space
and its Euclidean and projective subspace. This leads to another interpretation
of the stratification hierarchy, which is not restricted to be based solely on point
concepts. This work summarizes the theoretical foundations needed to deal with
the pose problem. Therefore it contains mainly basics of Euclidean, projective
and conformal geometry. Since especially conformal geometry is not well known in
computer science, we recapitulate the mathematical concepts in some detail. We
believe that this geometric model is useful also for many other computer vision
tasks and has been ignored so far. Applications of these foundations are presented
in part II.

Keywords : 2D-3D pose estimation, stratification hierarchy, conformal ge-
ometric algebra.
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1. INTRODUCTION

In this work we are concerned with the theoretical foundations of an algorith-
mic approach for simultaneous 2D-3D pose estimation from correspondences
of different entities. Pose estimation itself is a basic visual task [12], and
several approaches for monocular pose estimation exist, which relate the po-
sition of a 3D object to a reference camera coordinate system [1, 37, 20, 33].
Nearly all papers concentrate on one specific type of correspondences. But
many situations are conceivable in which a system has to gather information
from different hints or has to consider different reliabilities of measurements.
While from the first situation the necessity follows to relate the correspon-
dences of quite different geometric entities, the second problem necessitates
the use of weighted mixtures of correspondences. To cope algebraically with
these combined informations, is in general very hard. For example, some
algorithms assume point correspondences between 3D model and 2D image
data and relate 3D points to 3D projection lines [33]. Other algorithms as-
sume line correspondences and relate 3D lines to 3D (reconstructed) planes
[19, 20]. Several algorithms use information of the image plane to relate
points to entities like circles [21]. All these papers use different algebraic
embeddings. Matrix, quaternion and dual-quaternion algebras can be found
to describe the situations in different geometries (Euclidean, affine or projec-
tive) [9, 28, 32].

One work concerning the combination of different kinds of correspon-
dences can be found in [18]. There only point and line correspondences are
treated.

In [28, 35] we started to embed the pose estimation problem for point, line
and plane correspondences in the kinematic framework. We continued in [29]
by applying a conformal [22] embedding, which appears much more compact
and natural. This enables us to formalize the monocular pose estimation
problem for kinematic chains [30].

Our work is separated in two parts, part I (this article) and part II. Part
I deals with the foundations of the pose estimation problem and formalize
the pose scenario by using the language of geometric algebras. It turns out,
that the conformal geometric algebra (CGA) provides a new model dealing
with projective and kinematic geometry which is not based on point concepts
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leading to a new stratification hierarchy. In Part II we then continue with
application of these foundations to the pose estimation problem of different
corresponding entities.

The main attribute of this contribution is to give an overview of the ge-
ometric scenario for 2D-3D pose estimation and their algebraic embedding
in conformal geometric algebra (CGA) [22]. The contribution is organized
as follows: The second section describes the pose estimation scenario in the
context of the stratification hierarchy. Then, geometric algebras are intro-
duced. Therefore, we start with the algebra of the Euclidean space, continue
with the algebra of the projective space and end up in the algebra of the
conformal space which subsumes the former ones. In the fourth section, the
relations of projective and conformal geometry will be developed. This will
be used in the part II to formalize the 2D-3D pose estimation problem in one
algebraic context.



2. FOUNDATIONS OF THE 2D-3D
POSE ESTIMATION PROBLEM

This section introduces the foundations of the 2D-3D pose estimation prob-
lem. Therefore, the general scenario is explained firstly. Then the involved
mathematical spaces are explained and thirdly, the main principles how to
cope with the pose estimation problem are explained and discussed.

2.1 The Scenario of Pose Estimation

In the scenario of figure 2.1 we describe the following situation: We assume

kin. chain

sphere
kinematic space
. R,t

ucl idean space

9,,’/" /projective space

o)
Euclidean plane

circle

projective plane

70

Fig. 2.1: The scenario. The solid lines describe the assumptions: the camera
model, the model of the object (consisting of points, lines, circles,
spheres and kinematic chains) and corresponding extracted entities
on the image plane. The dashed lines describe the pose of the model,
which leads to the best fit of the object with the actual extracted
entities.

3D points, 3D lines, 3D spheres, 3D circles or kinematic chain segments
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as features or components of an object or reference model. Further, we
extract corresponding features in an image of a calibrated camera. The
aim is to find the rotation R and translation 7 of the object, which leads
to the best fit of the reference model with the actual extracted entities.
One main question is, how to define a geometric error measure with that
respect. Though it is clear by intuition, a mathematic formalization is not
easy and not unique. Comparing model features to image features leads to
sets of constraint equations which have to be solved and model the involved
geometry in an implicit manner.

The method how to establish the correspondences is out of the scope of
this paper. The reader should consult e.g. [4] as an example to solve the
matching problem in this context.

2.2 The Stratification Hierarchy and Pose Estimation

In the scenario of figure 2.1 four mathematical frameworks can be identified:
The first one is the projective plane of a camera, embedded in the second
framework, a 3D projective space. In this 3D projective space it is possible
to project or reconstruct entities. The third one is the framework of kine-
matics, a special affine map (the map of the direct affine isometries) [10],
which can be used to describe rigid body motions. A set of entities with the
property that the distances between any two of them never varies is called
a rigid body, and a transformation with the property of preserving distances
during transformation is called a rigid body motion. A rigid body motion cor-
responds to the Euclidean transformation group SE(3). Although being a
transformation by itself, it subsumes rotation and translation. To distinguish
between two rigid body motions, a distance measure on the manifold has be
be defined [7, 36]. But this is no simple task in general. Instead, the distance
of two geometric entities in Euclidean space can be used to derive a measure
of motions. This necessitates as a fourth framework, the Euclidean space or
Euclidean plane. The basic definition of these spaces are the following [10]:
The Euclidean space is a vector space V with a symmetric positive definite
bilinear form (which induces a Euclidean norm). The kinematic space is an
affine space with the group of rigid motions as special affine transformation.
The projective space is the set of (V\{0})/~ of equivalence classes with
Vu,v € V\{0}:u~veINeER:v=)\u.

Mathematically, a projective space P(V') is a set of equivalence classes of vec-
tors in V. The spirit of projective geometry is to view an equivalence class
(u)~ as an atomic object, forgetting the internal structure of the equivalence
class. For this reason, it is customary to call an equivalence class a = (u)~
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Concept Stratification
Vector calculus | Euclidean C affine C projective
Geometric algebra | Euclidean C  projective  C conformal

Tab. 2.1: Stratification of mathematical spaces

a point (the entire equivalence class (u). is collapsed into a single object,
viewed as a point).

The idea is to end up later in the Euclidean space. On that way it is
possible to cope geometrically with the problem of noisy data and to evaluate
the quality of the estimated pose. But since the Euclidean space is not
well suited to describe projective geometry and kinematics, the aim is to
transform the generated constraint equations only in the very last step in a
distance measure of the Euclidean space. Before this step, we want to use
the other spaces to represent partial problems in a suitable way. The above
mentioned spaces of the pose estimation scenario are exactly the spaces of
the stratification hierarchy which Faugeras introduced in 1995 [9]. The three
main representations he is considering are the projective, affine and metric
ones. All strata are involved in the 2D-3D pose estimation problem.

In our approach, we are using geometric algebras instead of vector calculus
to represent and handle different mathematical spaces of geometric meaning.
The maximum sized algebra over Euclidean space so far used by us is an al-
gebra to handle conformal transformations [15]. A transformation is said to
be conformal if it (locally) preserves shape. This means it preserves angles.
The conformal geometric algebra (CGA) contains the algebras for projective
and Euclidean geometry as subalgebras, thus leading to another formaliza-
tion of the stratification hierarchy, we propose in this contribution. Table
2.1 shows the different stratification hierarchies. The stratification hierarchy
proposed by Faugeras has its roots in the vector space concepts and assumes
points as the represented basic geometric entities. All other geometric enti-
ties are derived as subspaces of point sets without having an own algebraic
existence. Well known is the homogeneous extension to express an Euclidean
space as affine space and to use the homogeneous component for distinction
between points and directions in the affine space. The projective space as a
set of equivalence classes is directly build on the homogeneous vector space
concepts. So this way to stratify the vision space is clearly motivated by the
underlying point concepts of the vector spaces.

In geometric algebras instead, we do have besides point concepts so-called
multivector concepts to model geometry. In the next section we will explain
why it is necessary also to extend geometric algebras to homogeneous models.
But this leads to a different stratification of the space since this stratification
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is not based on pure point concepts any more. Instead, the new stratification
concept contains algebras for the Euclidean, projective and conformal space.

2.3 Principles of Solving the Pose Estimation Problem

The main problem of 2D-3D pose estimation is how to compare 3D Euclidean
object features with 2D projective image data. There are two strategies for
comparison: On the one hand it is possible to project the transformed entity
in the image plane and to compare it with the extracted image data. This
leads to a comparison in the projective plane or Euclidean plane, respectively.
The second possibility is to projectively reconstruct the object features from
the image data and to compare the (by one dimension higher) entities with
the 3D object features. Both approaches have advantages and disadvantages.
Here we want to discuss a few properties of both strategies: To enable com-
parisons in the first strategy, the projected object features have to be scaled
in their homogeneous component. This leads to fractions with the unknown
transformation in both, the numerator and the denominator. The equations
are not linear any more and are not easy to solve numerically. Though the
equations can also be expressed as projective linear system of equations, the
problem is then to loose a distance measure and to risk bad conditioned
equations. To avoid such problems, orthographic projections (see e.g. [6])
are used, but then the camera model is not perspective any more. Since the
second strategy uses projective reconstructed data, this problem does not
occur there. But the problem is that the distance measures in the 3D space
is different to those in the image plane: Though the distance of two image
points may be constant, the distance of two 3D projectively reconstructed
points varies with the distance of the points to the optical center of the cam-
era. This necessitates for degenerate situations' that the (from the image
and object features generated) constraint equations must be adapted with
respect to the projective depth. Table 2.2 summarizes the main principles of
solving the pose problem in an implicit manner.

In our approach (similar to [37]) we projectively reconstruct the 3D data
from image data and compare the one dimensional higher entities (their pro-
jective equivalence classes) with the 3D object features. There are three
main arguments why we decided for the second strategy which is based on
the stratification concepts above: Firstly, we want to describe the constraints

! Problems can occur if the object is very large (e.g. a hallway) with some object
features very near to the camera plane and other object features far away from the camera
plane. In such situations, the spatial distance (which will be minimized) of the near objects
influence the equations to a lesser extend then the far object features.
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strategy linear | geometric distance full
measure perspective

2D Euclidean no yes yes

Orthographic projective | yes yes no

Full projective yes no yes

3D kinematic yes yes yes

Tab. 2.2: Principles for formalizing the pose problem

as simply as possible and want to gain real-time performance. For this, the
projectively reconstructed data are easier to handle in the 3D kinematic space
than the projected data in the 2D projective space. The second advantage of
our approach is that the error measures are formalized in the 3D Euclidean
space and are directly connected to a spatial distance measure. This is in
contrast to other approaches, where the minimization of estimating errors of
the rigid body motion has to be computed directly on the manifold of the
geometric transformation [7, 36]. The third argument is that the depth de-
pendence of the 3D constraints can be adapted in each situation. As will be
later shown (see part II) our constraints can be scaled, and therefore trans-
formed in depth-depending constraints comparable to the situation observed
in the 2D image plane.

Since CGA can be used to formalize kinematics and since it contains
the algebras for projective and Euclidean geometry as subalgebras, it is well
suited to be used in this context. Therefore, the whole scenario is formalized
in CGA: That are the entities, the kinematic chains, the transformations of
the entities and the constraints for collinearity, coplanarity and tangentiality
of involved entities.
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3. INTRODUCTION TO GEOMETRIC
ALGEBRAS

What we currently call geometric algebra [15] is tightly related to Clifford
algebra. Both in fact represent families of algebras which depend on both
the chosen vector spaces the algebras are derived from and the chosen kind of
product defining the special algebra. A nice historic introduction of Clifford’s
contribution of inventing a geometric extension of the real number system to
such which provides a complete algebraic representation of directed numbers
can be found in [38].

Clifford (or geometric) algebras have the properties of dense symbolic
representations of higher order entities and of linear operations acting on
those, coupled with strong under-pinned mathematical concepts. It is nice
that many geometric concepts, which are often introduced separately in spe-
cial algebras are unified in geometric algebras. So the concepts of duality in
projective geometry, Lie algebras and Lie groups, incidence algebra, Pliicker
representations of lines, complex numbers, quaternions and dual quaternions
can all be found in suitable geometric algebras. This is depicted in figure
3.1. In geometric algebras there are strong relations between algebraic and
geometric entities. Furthermore, both the object concepts and the operations
acting on those are represented in one unique mathematical language.

conformal geometry incidence algebra

vector space
. bracket algebra (determinants)
Pluecker coordinates e

Lie—algebras . subspace concept
Lie—groups — Geometric (higher order entities)
_——| Algebras
symbolic computations g T

complex numbers

projective geometry quaternions
(duality concept)
dual quaternions

Fig. 3.1: Some mathematical concepts fused in geometric algebras.

We will now continue with a general introduction to geometric algebras
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and will proceed with algebras to model the Euclidean, projective and con-
formal space. A more extended introduction into geometric algebras can be
found in [14, 15, 13, 17, 34]. See also the courses on web, e.g. [8].

In general, a geometric algebra G, ,, is a linear space of dimension 2",
n = p+q+r, with a subspace structure, called blades, to represent so-called
multivectors as higher grade algebraic entities in comparison to vectors of
a vector space as first grade entities, or scalars as grade zero entities. A
geometric algebra G, ,, results in a constructive way from a vector space
RP%" endowed with the signature (p,q,r), by application of a geometric
product. The geometric product of two multivectors A and B is denoted as
AB. The geometric product consists of an outer (A) and an inner (-) product,
whose roles are to increase or to decrease the order of the algebraic entities,
respectively. For further computations, we also use both the commutator x
and the anticommutator X product for any two multivectors,

AB = %(AB+BA)+%(AB—BA) =: AXB + AxB. (3.1)

The reader should consult [26] to become more familiar with the commutator
and anticommutator product. Their role is to separate the symmetric part
of the geometric product from the antisymmetric one.

To be more detailed, we define the geometric product of a geometric
algebra G, , . for two basis vectors e; and e; as

1 for i=j€{1,...,p}
B -1 for i=je{p+1,...,p+q}
Ci® = 0 for i:je{p+q+1,...,n}(3'2)
ei]-:ei/\ejz—ej/\ei for 275]

A vector space with signature (p,q,r), ¢ # 0, r # 0, is called pseudo-
Euclidean. If r # 0, then its metric is degenerate. Although the dual-
quaternions, which have some importance in kinematics, are isomorph to a
degenerate geometric algebra, see [2, 3], we will in the following only consider
non-degenerate geometric algebras G, , where r = 0. Besides, we will write
G, if ¢ =0, that is, there is a Euclidean metric.

The inner (-) and outer (A) products of two vectors u, v € (G, ;)1 = RP™?
are defined as

1

u-v = i(uv—i-vu), (3.3)
uAv = %(uv—vu). (3.4)

Here o = w - v represents a scalar, which is of grade zero, i.e. a € (G, )0
with (.), is the operator to separate the grade-s entities of the linear space
G,,,- Besides B = u A v represents a bivector, i.e. B € (G, ,)2-
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As extension, the inner product of an r-blade u; A...Aw, with an s-blade
v1 A ... A v, can be defined recursively by

(Wi A AY) - (VI A LAY =

(W Ao Auy) -v1) - (V2 AL ADYs) 0 72> s
{(ul/\.../\u,_l)-(u,-('vl/\.../\'vs)) it r<s, (3:5)
with
U, - (VAL AYg) =
i(—l)i_lvl Ao ANV A (U - 0) ANVt AL A v (3.6)

=1

We will make this more explicit in the next subsections.

The geometric algebra G, ,, with p+¢ = n leads to an n-blade as element
of maximum grade, the pseudo-scalar P. The unit n-blade is called unit
pseudo-scalar I. Since every algebra derived from vector spaces of different
signature contains its own unit pseudo-scalar, we later use indices to distinct
between the different pseudo-scalars in the different algebras, e.g. we use
Ig, Ip or Ic for the unit pseudo-scalars of the algebra for the Euclidean,
projective or conformal space, respectively.

The magnitude [P] of a pseudo-scalar P is a scalar. It will be called
bracket of P and is defined by

[P] = PI'. (3.7)
For the bracket determined by n vectors, we write

[V1...9,] = [V1A...AvV,]
= (Vi A...Av )T (3.8)

This can also be taken as a definition of a determinant, well known from
matrix calculus.

We define the dual X™* of an r-blade X by
X* = X1 (3.9)

It follows, that the dual of an r-blade is an (n — r)-blade.
For blades A and B the shuffle product AV B is defined by the DeMorgan

rule

(AV B)* = A*AB* (3.10)
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The shuffle product is the common factor of A and B with highest grade.
The outer product of two blades A and B defines the join. The join AAB is
the pseudo-scalar of the space given by the sum of spaces spanned commonly
by A and B.

The shuffle product applied on the join of two blades can be used to
estimate intersections of entities and will later be called the meet product.

Now we will proceed to introduce the algebras for the Euclidean, projec-
tive and conformal space.

3.1 The Euclidean Geometric Algebra

The algebra Gs, which is derived from R?, i.e. n = p = 3, is the smallest
and simplest one, we want to introduce here. This algebra is suitable to
represent entities and operations in the 3D Euclidean space. Therefore, we
call it EGA as abbreviation for Euclidean geometric algebra. We start with
the three orthonormal basis vectors {ej, ey, e3} of the 3D Euclidean space.
The geometric algebra of the 3D Euclidean space consists of 22 = 8 basis
vectors:

g3 = Span{]- ,€1,€2,€3, €23,€31,€12, €123 = IE} (311)

The elements e;; = e;e; = e; A e; are the unit bivectors and the element
€93 = e1e.e3 = ey Aeg Aeg = I is a trivector, called Euclidean unit pseudo-
scalar, which squares to —1 and commutes with scalars, vectors and bivectors.
To make more clear the above introduced rules of the geometric product, we
will formulate the geometric product of two vectors as an example:

uv = (uie; + ugey + uses)(vie; + voey + v3es)
= wuier(vier + ve€y + v3e3) + uges(vier + voey + vzes) +
+uzes(vie; + vaes + v3e3)
= w vy + UgVy + Uzv3 + (U1V2 — Ugvy )€1 + (Ut — uqvs)es +
+(ugvs — uzvy)ezs
= u-v+uAv (3.12)

Thus, the geometric product of two vectors leads to a scalar, representing
the inner product of the two vectors (corresponding to the scalar product
of these vectors in matrix calculus), and a bivector, representing the outer
product of two vectors. The bivector corresponds to the dual of the vector
which results from the cross product (x) of two vectors (in matrix calculus).
The inner product of a bivector (a A b) with a vector ¢ leads to another
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vector,

w

(@anb)-c

(a-c)ANb—aAN(b-c)
(a-c)b— (b-c)a, (3.13)

and thus, we get the equivalent formulation of the famous cross product rule
for the 3D case! ,

(axb)xec = (a,c)b— (b,c)a. (3.14)

The inner product of two bivectors leads to a scalar,

w
(o)

(anb)-(anb) = ((anb)-c)-d
B ((a-e)b—(b-c)a)-d
= (a-¢)(b-d)—(b-c)(a-d), (3.15)

and we get (for the 3D case) the Lagrange identity for the cross products of
3D vectors,

{((axb),(ecxd)) = (a,c){(b,d)— (b,c)a,d).
(3.16)

Note that the outer product is more general than the cross product, since it
can be applied in spaces of any dimension and of any signature.

3.1.1 Representation of points, lines and planes in the
Euclidean geometric algebra
Points, lines and planes of the 3D space can all be modeled in the algebra Gs.

A point, representing a position in the 3D space, can simply be expressed by
a linear combination of the three basis vectors,

U = U] + ugey + uses. (317)

A line can be represented as an inhomogeneous multivector by using a vector
r for the direction and a bivector m containing the moment, as outer product
of a point « on the line and the direction 7 of the line [5],

Il = r+xAr
= r+m. (3.18)

1 In this example, {,) denotes the scalar product of vectors, and x denotes the cross
product.
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A plane can be represented by an entity one grade higher then the line. In
terms of the Hesse distance d from the origin to the plane (coded by the
Euclidean pseudo-scalar) and the unit bivector direction n from the origin
to the plane, a plane is defined by

p = n+Igd (3.19)

Thus, a plane is an inhomogeneous multivector, consisting of a bivector and
a trivector.

If we compare the representations of these three entities in EGA, we
recognize, that those of lines and planes are more complicated than that of
points. This has its reason in the fact that points are the basic geometric
entities of the Euclidean space and all other entities have to be derived from
points by means of certain operations (i.e. outer products) which are not
defined in a vector space. In vector spaces, subspace concepts can be used
to define these entities as (infinite) sets of points.

3.1.2 Rotations and translations in the Euclidean space

Multiplication of the three basis vectors e; with I results in the three basis
bivectors I ge;. These bivectors rotate vectors in their own plane by 90°, e.g.
(IEe3)e2 = €123€3€3 = €126y = €1, Or (IEel)e2 = €123€1€2 = €236y = —€y,
etc. Note, since the basis vectors are orthonormal, it is equivalent to write
e;; = e; \e; for 1 # j. The basis bivectors square to —1, and so they can
easily be identified with the unit vectors ¢, j, k of the quaternion algebra H
with the famous Hamilton relations i = j% = k? = ijk = —1. We have the
isomorph y G5 ~ H with G3 as the even-grade subalgebra of G3.

The bivectors of the geometric algebra can be used to represent rotations
of points in the 3D space. A rotor R is an even grade element of the algebra
G3 which satisfies RR = 1. Here R stands for the reverse for R. Since the
even grade elements of G3 are scalars and bivectors, a rotor R and its reverse
R is given by

R = Uy —+ U1€23 + Uo€3] + U312, (320)
— N - Z
scalar bivectors

R = Uy — U1€93 — U2€31 — U3€12 . (321)
~— ~ ~ %
scalar bivectors

If we use the Euler representation of a rotor,

-
— cos (g) ~ nsin (g) , (3.22)



3.1. The Euclidean Geometric Algebra 19

it takes on geometric significance. Here m is a unit bivector representing the
plane of the rotation (its dual n* corresponds to the rotation axis) and # € R
is representing the amount of rotation. The rotation of a point, represented
by its vector @, can be carried out by multiplying the rotor R from the left
and its reverse from the right to the point ,

¢ = RzR. (3.23)

A rotor is representing the group SO(3) in EGA. Thus, the operation con-
catenates according to a left-sided product R = Ry R; yielding a new rotor.
From this follows

z = RzR-= (RyRy) x (RI/RE) ) (3.24)

In contrast to rotation matrices of IR®, rotors are working not only on
points, but for all types of geometric objects, and is defined independent on
the grade and the dimension of the space.

The exponential function of multivectors m can also be expressed via its
series expression,

oomlc

— (3.25)
= k!

exp(m) =

Derivating the rotor R with respect to 6 leads to
OR dexp(—Lin) 1 ( 0 )

T Ul

1. (6 1 6
= —gsin <§> — mcos <§> . (3.26)

The derivation of the rotation applied on x writes

ORzR OR ~— oR

= —xR+ Rrx— 3.27

a0 a0 = T 5 (8:27)
In contrast to rotations, there exist no multiplicative way to formalize

translation in the Euclidean geometric algebra. The only possibility is to

express translations in an additive way, e.g., a point x is translated with a

translation vector ¢, by

= z+t. (3.28)

This results from the fact that translations in R® = (G3); constitute the
additive group R®. Therefore, composite translations follow the rule ¢t = #; +
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ty. Another problem concerns the linearity of both operations. A rotation, R,
is a linear operation. Let be  and y any multivectors of G5, then R{z+y} =
R{x} + R{y}. But translation behaves not linear. For two vectors x and
y, representing points of (Gs)1, it follows T{z +y} # T{z} + T{y}.

These different behaviors cause problems in representing the rigid motion
of an object in EGA as linear operation. A rigid motion in Euclidean space
is a mapping D : R®* — IR® which preserves distances between points and
angles between vectors. In general, the movement of a rigid body, that is a
rigid displacement, may include both rotation and translation in the following
way. Let be ', € (G3)1, then

' = RxR+t. (3.29)

A spatial rigid displacement D = (R, t) belongs to the special Euclidean
group SE(3) = R*® x SO(3). Thus a composite displacement D = DyD;
exists with D = (R, t) = (Ra, t2)(R1,t1) = (RyRy, Roty + t2). But regret-
tably, because of the non-linear behavior of the translation, the displacement
is no linear operation in Gs, neither for points nor for other entities. For-
tunately, there are other algebraic embeddings which result in linearization
with respects to points or other entities. While so-far either point or line
based transformations for rigid displacements have been distinguished [27],
we will introduce in this paper a third category which is based on spheres,
see section 3.3.

3.2 The Projective Geometric Algebra

By using homogeneous coordinates we increase the dimension of the vector
space by one and the corresponding algebra is of dimension 2* = 16. The ele-
ments we gain are now scalars, vectors, bivectors, trivectors and the pseudo-
scalar. We use G3; to represent the projective space. Here the additional
basis vector e_ denotes the homogeneous component indicating the direc-
tion of projection. Because e? = —1, this basis vector induces a Minkowski
metric. The algebra G3; contains the following elements,

gS,l = Spa’n{l ,€_,€1,€9,€3, €33,€31,€19, €_1,€6_9,€_3,

€123,€_23,€_31,€_12, €_123 = IP}- (3-30)

Note that e.g. e_jp3=e_Ae; Aey Aes, e, = —1.
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3.2.1 Representation of points, lines and planes in the
projective geometric algebra

In contrast to the Euclidean geometric algebra G3, in the projective geomet-
ric algebra G3; (PGA) we can simply represent points, lines and planes as
r-blades, i.e. homogeneous multivectors of grade r. In that case the above
mentioned duality operator is of special importance since it transforms geo-
metric entities to their duals.

A point can be represented by a 1-blade. The basis vector e_ represents
the homogeneous component of the point. Thus, the point & given in G3,
can be represented in G3; by

X = xz+e_. (3.31)

A line can be represented by the outer product of two points, leading to a
2-blade,

L = X;NX,
= (x1+e_)A(xa+e)
Ty Ao+ (T — T2)E
m+re_. (3.32)

The line L contains the moment m and direction r. Therefore, it corresponds
directly to the Pliicker representation [5]. Being a 2-blade, the line contains
6 bivector components.

A plane can be represented by the outer product of three points, leading
to a 3-blade

P = X ANXy3NX3
= (x1+e )A(xa+e )A(xs+e)
= T Ay Ax3+ (X1 — x2) A (1 — 23)e_
= dIg+ ne_ (3.33)

This representation corresponds to the Hesse description of planes, formal-
izing a plane by the normal n of the plane, and the Hesse distance d of the
plane to the origin.

As can be seen, the generation of the higher order entities is much more
natural than in the algebra of the Euclidean space because it results from
the incidence algebra of points.

There are two basic operations of the incidence algebra, the join and the
meet.
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The outer product of two blades is non-vanishing iff their supports have
zero intersection. This can be used to prove an incidence relation [17], e.g. a
point X is on a line L iff

XAL = 0. (3.34)

For blades A and B we use the previous defined shuffle product and the
join, to express the meet operations:

Let A and B two arbitrary blades and let J = AAB, then the meet,
symbolized by V, is defined as

(AvB) = (AJ'ABJ™)J. (3.35)

The meet is the common factor of A and B with highest grade. The
meet defines a generalized intersection operation. It is the shuffle product of
two blades, applied on their join as pseudo-scalar. Because of the similarity
between the shuffle product and the meet product, we define no extra symbol
for the meet product.

Thus the meet and wedge operators provide the desired operations in
the algebra of subspaces of a vector space. The wedge product can be used
to determine the union of subspaces and the meet product can be used to
determine the intersection of subspaces. Note that the incidence operations
always lead to entities in the projective space. To re-transform e.g. a pro-
jective point to a Euclidean point the projective split [15] has to be applied.

The advantage of the algebra G ; for the projective space, in comparison
to the algebra G3 for the Euclidean space is that the representation of the
entities is much more natural and provided by the subspace concepts. From
this results a nice formulation of the duality concept in projective geometry
and to compact descriptions of joins and meets of subspaces, just by applying
a suitable operator.

In PGA projective transformations can be expressed. These transforma-
tions are more general than Euclidean transformations, since they include
also other transformations like scaling or shearing. Since we are only inter-
ested in Euclidean transformations, we have to restrict the projective trans-
formations in a second processing step. So we need an algebraic embedding
which enables the restriction of the transformations on a Fuclidean transfor-
mation in a better way. The common used algebra so far is the dual quater-
nion algebra, which is isomorph to the motor algebra G5, [2]. But since
it contains null spaces, the duality concepts of projective geometry cannot
be applied any more?. The aim is now, to proceed to the conformal algebra,

2 The inverse pseudo-scalar does not exist, since I? = 0.
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which can handle these problems. One important property of the conformal
geometric algebra is that it is non-degenerate, but contains an artificially
generated null space. The algebra for projective geometry is furthermore a
subset of this (extended) algebra. Since the null space is artificially gener-
ated, it is possible to switch between null spaces and non-null spaces, an
important fact for the next sections.

3.3 The Conformal Geometric Algebra

We use the conformal geometric algebra [22] to model the geometry of our
scenario for pose estimation.

Fig. 3.2: Visualization of a stereographic projection for the 1D case: Points
on the line are projected on the circle. Note that the point at infinity
projects to the north pole n, and the origin projects to the south
pole s.

3.3.1 Stereographic projection

The idea behind conformal geometry is to interpret points as stereographic
projected points. Simply speaking, a stereographic projection is one way to
make a flat map of the earth. Taking the earth as a 3D sphere, any map must
distort shapes or sizes to some degree. The rule for a stereographic projection
has a nice geometric description and is visualized for the 1D case in figure 3.2:
Think of the earth as a transparent sphere, intersected on the equator by an
equatorial plane. Now imagine a light bulb at the north pole n, which shines
through the sphere. Each point on the sphere casts a shadow on the paper,
and that is where it is drawn on the map. A visualization for the 2D case is
shown in figure 3.5. Before introducing a formalization in terms of geometric
algebra, we want to repeat the basic formulas for projecting points in space
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on the sphere and vice versa, e.g. given in [24]. To simplify the calculations,
we will restrict ourselves to the 1-D case, as shown in figure 3.2. We assume
two orthonormal basis vectors {e;, e, } and assume the radius of the circle
as p = 1. Note that e, is an additional vector to the one-dimensional vector
space e; with e2 = e} = 1.
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Fig. 3.3: Visualization of the homogeneous model for stereographic projec-
tions for the 1D case. All stereographic projected points are on a
cone, which is a null-cone in the Minkowski space. Note that in
comparison to figure 3.2, the coordinate axes are rotated and per-
spective drawn.

To project a point ' = ae; + be, on the sphere onto the e;-axis, the
interception theorems can be applied to obtain

x = (L) e, + Oe,. (3.36)
1—-0
To project a point ze; (z € R) onto the circle we have to estimate the
appropriate factors a,b € [0,...,1]. The vector &’ can be expressed as
' = ae, +be,
2x 2? —1

3.37
x2+1e1+x2+1e+’ ( )

and using homogeneous coordinates this leads to a homogeneous representa-
tion of the point on the circle as

z = mze + % (22 —1)es + % (22 +1) es. (3.38)
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Thus, the vector x is mapped to
x = z' =ae; +be, +e;s. (3.39)

We define e; to have a negative signature, and therefore replace ez with
e_, whereby e?> = —1. This has the advantage that in addition to using a
homogeneous representation of points, we are also working in a Minkowski
space. Euclidean points, stereographically projected onto the circle in figure
3.2, are then represented by the set of null vectors in our new space. That
is, we have the mapping

r = x' =ae +be; +e_, (3.40)
with
() =ad®>+b*—-1=0 (3.41)

since (a, b) are the coordinates of a point on the unit circle. Note that each
point in Euclidean space is in fact represented by a line of null vectors in the
new space: the scaled versions of the null vector on the unit sphere. In [22]
it is shown that the conformal group of n-dimensional Euclidean space IR"
is isomorphic to the Lorentz group of R"™"!'. Furthermore, the geometric
algebra G, 11 of R"™"! has a spinor representation of the Lorentz group.
Therefore, any conformal transformation of n-dimensional Euclidean space
is represented by a spinor in G, 1, the conformal geometric algebra. Figure
3.3 visualizes the homogeneous model for stereographic projections for the
1D case.

Substituting the expressions for @ and b from equation (3.37) into equation
(3.40), we get

= ze + % (m2 — 1) e+ % (x2 + 1) e_. (3.42)

This homogeneous representation of a point is used as point representation in
the conformal geometric algebra. We will show this in the next section. Note
that the stereographic projection leads to points on a sphere. Therefore, we
can use (special) rotations on this sphere to model e.g. translations in the
world or rigid body motion as coupled rotation/translation. Since we also
use a homogeneous embedding, we have furthermore the possibility to model
projective geometry.

3.3.2 Definition of the conformal geometric algebra

To introduce CGA we follow [22] and start with a Minkowski plane, G 1,
whose vector space R™! has the orthonormal basis {e,,e_}, defined by the
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properties
e2=1e2=-1 e, -e_=0 (3.43)
In addition, a null basis can now be introduced by the vectors
1
e = §(e_ —e;) and e:=e_-+e; (3.44)

These vectors can be interpreted as the origin, ey, of the coordinate system
and the point at infinity, e, respectively. Note that this is in consistency with
figure 3.3: ey corresponds to the south pole and e corresponds to the north
pole in homogeneous coordinates. Furthermore, we define E := e A ey =
e; Ne_.

For these elements the following straightforwardly proved properties can be
summarized as

e;EF=e e E=e, ee=FE+1
ee=—(E+1) eNe_=FE e;-e=1 (3.45)

The role of the Minkowski plane is to generate null vectors, and so to extend
a Euclidean vector space R" to R"""!' = R" @ R"' and, thus, resulting in
the conformal geometric algebra G, 1. The conformal vector space derived
from IR? is denoted as R*'. Its basis is given by {ei, e, es,e,,e_}. The cor-
responding algebra G4 contains 2° = 32 elements. We denote the conformal
unit pseudo-scalar as

IC = €4 123 = EIE (346)

In this algebra we consider points of the so-called null cone, which fulfill the
properties

{x e R" 2?2 =0,2-e = —1}. (3.47)
The points of the null cone are related to those of the Euclidean space by
1
T = x4+ §m2e + €. (3.48)
Evaluating x leads to
L 4
r = x+ 5:1: e+ eg

1 1
= T+ 5532(94_ + e_) + E(e_ — e+)

1, 1 1, 1)
= Sl - “x+ - e 4
sc+<2:c 2)e++(2m +2 e (3.49)
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This is exactly the homogeneous representation of a stereographic projected
point, given in (3.42). The basis vectors {e, ey} only allow for a more compact
representation of vectors than when using {e,,e_}.

We will now analyze new characteristic properties of the points, and so
of the generated entities from these points.

3.3.3 Geometric entities in conformal geometric algebra

The use of a certain geometric algebra induces an involved metric and there-
with a basis geometric entity from which the other entities are derived. In
Gs, the algebra of the Euclidean space, the basis entities are points, and
lines and planes are formulated as certain sets of points. In the motor al-
gebra g;o,l, an algebra to model kinematics [2], the basis entities are lines,
expressed in terms of the Pliicker coordinates [5], and points and planes are
written in these terms. In conformal geometric algebra, G4, the spheres
are the basis entities [24] from which the other entities are derived. It turns
out that the above introduced point representation is nothing more than a
degenerate sphere.

To introduce primitive geometric entities in CGA we will start by intro-
ducing the representation of spheres in CGA. Then we will proceed to the
other entities. A more detailed introduction can be found in [22].

There is no direct way to describe spheres as compact entities in G3. The
only possibility to define them is given by formulating a constraint equation.
The equation for a point, & € G3, on a sphere with center p € G5 and radius
p € R, p >0, can be written as

(z-p)? = p’
sz’ — (zp+px)+p° = P (3.50)

The basis entities of the 3D conformal space are spheres s, containing the
center p and the radius p, s = p + %(p2 — p?)e + €p. The point z =
T+ %er + € is nothing more than a degenerate sphere with radius p = 0,
which can easily be seen from the representation of a sphere. In G, equation
(3.50) can therefore be represented more compact:

(z-p)? = /p’
Szc-s = 0. (3.51)

This can easily be verified,

1 1
-8 = (w+§w2e+e0)-(p+ §(P2—P2)6+90)
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= —%(ﬂv2 +p°—p)+a-p
= —S(@=-p?= ) (3:52)

The dual form for a sphere is s*. The advantage of the dual form is that s*
can be calculated directly from points on the sphere: For four points on the
sphere, s* can be written as

s* = aNbAcAd, (3.53)

and a point x is on a sphere s iff £ A s* = 0. Note: To test incidence of a
point with an entity can be expressed by the inner product null-space or outer
product null-space, dependent on the representation or dual representation
of the entity. This follows from the easy relationship (see e.g. [15])

0
SzxANs = 0. (3.54)

[
[V

So far we have introduced the description of the first two entities, points
and spheres.

Geometrically, a circle z can be described by the intersection of two
spheres. This means:

rez & zEs and € s (3.55)

Since s; and 83 can be assumed as linear independent, we can write

r € z
Sz -s1)s—(z-89)81 = 0
Sz-(s1A8) = 0
—————
z
sz-z = 0 (3.56)

This means that algebraically a circle can be expressed as the join of two
spheres. Figure 3.4 visualizes the generation of a circle as intersection of two
spheres. The intersection of the circle with a third sphere leads to a point
pair?.

In the dual form circles are geometrically defined by three points on it,

2" = aAbAc. (3.57)

3 This figure is taken from the visualization tool for Clifford algebra, CLUDraw [8].
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nthion 2

Fig. 3.4: A circle can be expressed as intersection of two spheres. Intersecting
the circle with a third sphere leads to two points (only one of these
two points is visible).

Entity Representation Grade | Dual representation Grade
Sphere s=p+3(p—p)e+eo 1 s*=anbAcrd 4
Point x = a:+2%:1:2e+e0 1 z* =(—Ezx — %mze +eo)lg 4
Plane P=nIg —de 1 P*=—eAaAbAc 4

n=(a—-b)A(a-c)
d=(anbAro)Ig

Line L=rIg+emlp 2 L*=eAaAb 3
r=a-—>b
m=aAb

Circle z=281/N82 2 2z*¥=aAbAc 3

P, =5-e,LZ=z/\e2
EZZBZVL,Z,PZ(GXT
Point Pair | PP =38, A8, A 34 3 PP*=aNAb, X*=eAx 2

Tab. 3.1: The entities and their dual representations in CGA.

Evaluating the outer products of three points leads to
2* = aAbAc=A+A e+ Atey+ A*E, (3.58)

with
A=aAbAc A" =1L(c*aAb) —b’(aAc)+a’(bAc))
AT =anb+bAc—anc AT =3(a(b®—c?) +b(c® — a?) +c(a® - b?)).
The dual form of lines are represented by the outer product of two points
on the line and the point at infinity (see [24]), L* = e AaAb. Since the outer
product of three points determines a circle [22], the line can be interpreted
as a circle passing through the point at infinity.
Similar to lines, dual planes can then be defined by the outer product of
three points on the plane and the point at infinity, P* = e AaAbAc A
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plane is a degenerate sphere, containing the point at infinity.

An overview of the definitions of the entities, their dual representations
and their grades are given in table 3.1. Since the outer product of 3 spheres
leads to a point pair, it is a 2-blade in its dual space. Using the point at
infinity leads to another representation of a pure point X* = e A z in the
dual space.

The dual lines and planes are given, similar to G3 1, by the Pliicker co-
ordinates of lines (direction 7 and moment m) and the Hesse formulation
(normal n and directed distance dIg) of planes, respectively.

The entities have now the following grades: points, spheres and planes
are 1-blades, and lines and circles are 2-blades. Due to the fact that lines
and planes are mostly generated by points on these entities, we will work
with the dual representations of lines and planes in the next sections.

3.3.4 Conformal transformations

In CGA, any conformal transformation G' can be expressed in the form
o' = Gz(G*)!, (3.59)

where G is a versor and ¢ a scalar. Since the null cone is invariant under G,
i.e. (z')? = 2% = 0, we have to apply a scale factor o to ensure '-e = z-e =
—1. Table 3.2, taken from [22], summarizes the conformal transformations.
The first row shows the type of operation performed with the versor product.
The second row shows as example the result of a transformation acting on
a point. The third row shows the versor, which has to be applied and the
last row shows the scaling parameter which is (sometimes) needed, to result
in a homogeneous point and ensure the scaling ' -e = £ -e = —1. As
we see, any conformal transformation covers several more simple geometric
transformations. More explanations of the conformal group can also be found
in [24, 11]. It is shown in e.g. [13], that in G3, the rotations are generated
by reflections and similarly one can ask, what does a reflection mean for the
stereographic projected point. This is visualized in figure 3.5 for the 2D case:
A reflection of a point on the sphere with respect to the 2D plane leads to
a new point on the sphere, which corresponds to the inverse of the point on
the 2D plane. This means, that the basic operation is an inversion, and the
other operations are derived from it. In figure 3.5 it is also shown, what a
translation of a point on the 2D plane means for a corresponding point: A
translation corresponds to a special rotation along an axis in the 2D plane. It
is also easy to imagine, that a rotation in 2D plane is exactly the same for a
stereographic projected point. This means, that a rotation can be estimated
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Type G(x) on R" Versor in R, 411 o
Reflection | —naxn + 2né V=n+ed 1
Inversion ijc +c V =c—3p’ (%)2
Rotation RxR R = exp (—gn) 1

Translation x—a T,=1+ iae 1
Transversion w;(amz)?a K,=1+ae, 1-2a-z+ z2a®
Dilation Az D, = exp(—5E(In ))) At
Involution = —=x E -1

Tab. 3.2: Table of conformal transformations, the versors and scaling param-
eters.

Fig. 3.5: Visualization of an inversion and translation for a stereographic pro-
jected point in the 2D case.

in the same manner as in G, or G3 and a translation is a special rotation
in G31 or G4 ;. This is the reason, why kinematics can be described in this
model in a linear manner.

We will now concentrate on expressing rotations and translations in CGA.

3.3.5 Rigid motions in conformal geometric algebra

This section concerns the formulation of rigid body motions in CGA. As men-
tioned previously, a rigid body motion corresponds to the Euclidean transfor-
mation group SE(3). Although being a transformation by itself, it subsumes
rotation and translation. To describe a Euclidean transformation in a linear
manner it makes necessary to have access on a multiplicative coupling of
rotation and translation. Since the conformal transformation contains the
Euclidean transformation, we can use the conformal group to express rigid
body motions. Note: Though the conformal group is more general than the
Euclidean group, for our pose estimation scenario, it is sufficient to concen-
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trate only on this subset of transformations.

So far, we can use rotors as elements of G5 to formalize pure rotation, but
indeed it is not possible to describe general rigid body motions in this algebra
in a multiplicative manner. As well as in G5 (see section 3.1.2), rotations in
G4 are represented by rotors, R = exp (gl). The components of the rotor

R ¢ ng are, similar to section 3.1.2, the unit bivector [ which represents
the dual of the rotation axis, and the angle 6, which represents the amount of
the rotation. The rotation of an entity can be performed just by multiplying
the entity from the left with the rotor R and from the right with its reverse
R. E.g., a rotation of a point can be written as &' = Rz R.

If we want to translate an entity with respect to a translation vector
t € (Gs)1, we can use a so called translator, T € G, T = (1+ %t) =
exp (%t) As mentioned previously, a translator is a special rotor and given
in a null space since e> = 0. Similar to rotations we can translate entities

by multiplying the entity from the left with the translator T' and with its
reverse T from the right,

' = ToT. (3.60)

To express a rigid body motion, we can apply rotors and translators
consecutively. We denote such an operator,

M = RT, (3.61)

it is a special even-grade multivector, as a motor, which is an abbreviation
of “moment and vector” [3]. The rigid body motion of e.g. a point X can be
written as

X' = MXM, (3.62)

see also [16].

This formalization of a rigid displacement can not only be applied to
points or lines (see [27]), but to all entities, contained in table 3.1. Fur-
thermore, the transformation rule is the same for all entities of table 3.1.
This is in contrast to a former definition of motors in the frame of motor
algebra [3, 2], the algebra g;{o,l, which is formulating kinematics in a space
composed of lines and which is isomorph to the dual quaternion algebra.
Although equation (3.61) is a valid definition of a motor in both the motor
algebra and CGA, its behavior with respect to different entities is quite dif-
ferent. Compared with the motor algebra, in CGA we do not have to make
any sign changes, depending on the entity, where the motor has to act on.
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This makes several case decisions in the previous formalizations of kinematics
unnecessary and thus, the calculations will become more easy.

The reason for that increased symmetry of a motor action lies in our
chosen algebraic embedding.

3.3.6 Twist and screw transformations

We will now derive a further definition of a motor in CGA based on the
so-called twist transformation. Following e.g. [23], every rigid body motion
can be expressed by a twist transformation, which is a rotation about a line
in space (in general not passing the origin). This results from the fact, that
for every g € SE(3) exists a £ € se(3) and a # € R such that g = exp(£0)*.
In CGA we use the rotors and translators to express twist transformations
in the space. To model a rotation of a point X around a line L in the space,
the general idea is to translate both, the point and the line, to the origin, to
perform a rotation and to translate them back. So an alternative definition
of a motor M € QZI describing a twist transformation has the general form

M = TRT, (3.63)

denoting the inverse translation, rotation and back translation, respectively.
Using the exponential form of the translators and rotors, we can write®

M = TRT

- o %)on (4)n ()

- (14 %)en (4) (0-2)

- o(1+3) (4 0-2)

— exp (-% (I +e(t z))) . (3.64)

This formulation corresponds to the one for a general motor given in
[22]. We use an exponential representation of this motor since then it is

4 SE(3) denotes the special Euclidean group, SE(3) = {(R,t) : R € SO(3),t € R®}
and se(3) denotes its corresponding Lie algebra, se(3) = {(w,v) : w € s0(3),v € R?}, see
more details in [23].

51In the fourth equation we make use of the nice property g exp(£) § = exp(g&g)
for gg = 1. This property can be proved by induction on the series expression of the
exponential function.
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more easy to estimate its derivative. We need to estimate derivatives in the
later introduced linearization process to get a good conditioned system of
equations.

It is interesting to mention that the exponential part of the motor M =
T RT consists directly of the line components, we want to rotate our entities
around. To show this, we will first recall the description of a dual line L*:

L* = eNaAlb
e(anb)+ (b—a)E. (3.65)

Using the unit direction n and the plumb-point ¢ of the origin to the line,
we can write the line as

L* = e(tAn)+nkE. (3.66)

Multiplying with Ic (from the right) leads to

(e(tAn)+nE)l; =

(t/\n)IE+nIE
t-nlg)+nlg

t-1)+1, (3.67)

(
(

= e

e
(
= e(
since the direction n of the line corresponds to the rotation axis I = nlg.

This means that we only have to multiply the five dimensional pseudo-
scalar Ic = EIp to get the line. Vice versa: Given the dual line L* (with
unit direction) in the space, the corresponding motor describing a twist trans-
formation around this line is given by

0
M = exp <_§ICL*>

_ exp (-%L) , (3.68)

Note: The line L must then be scaled with respect to the direction,
||7|| = 1, since the scaling of the line is directly connected to the amount of
the rotation . We will use the representation M = exp (—g (I+e(t- l)))
for the linearization of the constraint equations in part II.

Screw transformations can also be used to describe rigid body motions.
Already as early as 1830 Chasles proved that every rigid body motion can
be realized by a rotation about an axis combined with a translation parallel
to that axis, see also [27, 23]. This is called a screw transformation. A
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screw transformation is defined by a rotation axis I (a bivector), a pitch
h and a magnitude 6. The pitch of the screw is the ratio of translation
to rotation, h := % (0 # 0). If h — oo, then the corresponding screw
transformation consists of a pure translation along the axis of the screw.
The principle of a screw transformation is visualized in figure 3.6. To model

Fig. 3.6: Visualization of a screw transformation

a screw transformation, we only have to translate the entity after a twist
motion with respect to the rotation axis, leading to a motor representation

M = T,TRT. (3.69)

The bivector I denotes the rotation plane Ry is acting on, and ¢ denotes the
translation vector of the translator T'. The vector Al in T',; denotes the pitch
during the screw transformation. Note, that here the dual of the bivector
(leading to a vector) is acting in the translator as translation vector. The
reader should consult [2], to find a more detailed analysis of screws, given
in the motor algebra, which can also be adopted to the conformal geometric
algebra.

For our pose estimation algorithm, we prefer the interpretation of a motor
M as a twist, since we make use of the property g exp(&) g = exp(gég) for
gg = 1. This symmetry property enables us to linearize our equations more
easily, than interpreting M as M = RT, or M =T, T R/T;.
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4. THE POSE PROBLEM IN
CONFORMAL GEOMETRY

Let us recall figure 2.1 for the 2D-3D pose estimation problem: We assume
the knowledge of a 3D object model and observe it in an image of a cali-
brated camera. The aim is to find the rotation R and translation ¢ of the
object, which leads to the best fit of the reference model with the actual
extracted entities. To describe the pose scenario, it is crucial to interact
entities between mathematical spaces involved in the pose problem.

4.1 Interacting Entities in Euclidean, Projective and
Conformal Geometry

So far we are able to use CGA for the formalization of involved entities and
their transformations. To formalize the scenario of figure 2.1 in a suitable
way, the aim is now to describe the interaction of projective and conformal
geometry. As mentioned earlier, the interaction of the different strata of the
hierarchy is only poorly lit in the last years. E.g., Ruf [32] concerns this
problem, but only for point features in the framework of matrix calculus.
We want to extend the problem to more general object features and use in
this context the conformal geometric algebra. To enable interaction between
strata we use algebras for the projective and Euclidean space, respectively,
as subalgebras of the CGA. It turns out that it is possible to switch between
entities between conformal and projective representations by using multi-
plicative operators.

The main strategy to estimate the pose of the rigid object of figure 2.1
is very simple. It is summarized in figure 4.1 for the case of points: Com-
pute the projection rays as projective reconstruction of the image points,
and compare them (in the Euclidean space) with the object model points
after the movement. But in detail, several algebraic transformations have
to be performed: Firstly, the image entities are projective reconstructed and
converted in a conformal representation. Then the model features are trans-
formed in the conformal space. To get a distance measure in the Euclidean
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2
aiy — La?

i
projective reconstruction

projective plane projective space

projective conformal extension

of L,2
projective space == conformal space
transformation of

x! 5 x2

conformal space == conformal space
comparison of

X2 ’ La?

conformal space = conformal space

scaling

conformal space Euclidean space

Fig. 4.1: Involved geometric spaces of the 2D-3D pose estimation problem.

Space Algebra | Point Representation

3D Euclidean | G3 Te = T1€1 + T2€9 + T3€3

2D projective | Go1 Tp, = T1€1 + To€y + €_

3D projective | G31 Xps = 71€1 + 29€9 +T3€03 + €.

3D kinematic Q:J{’O,l X=1+ I($1623+ To€31 + 563612)

3D conformal | G4, T =+ 3T+ e
X"=eAz

Tab. 4.1: Different mathematical spaces with their corresponding geometric
algebras and point representations.

space, in the last step, the transformed model entities and reconstructed
image features are compared by suitable scaled constraint equations.

We can summarize the involved mathematical spaces and their corre-
sponding geometric algebras in the following manner: The Euclidean frame-
work can be represented by using the algebra Gs, and G3; can be used to
represent the projective space [17]. The projective plane is represented by
the algebra G, ;. One way of defining a kinematic space is given by the motor
algebra G3,, [3, 2]. Another way is given by embedding the kinematics into
the 3D conformal space represented by G4, [22]. Table 4.1 gives an overview
of representations of points using different algebras. As can be seen, the
relation

Gii 2 G312Gsp (4.1)

is valid, but only for G5 limited to points. Both algebras for the projective
and Euclidean space constitute subspaces of the linear space of the confor-
mal geometric algebra. Since only points are modeled in G3 o the direction of



4.2. Change of Representations of Geometric Entities 39

modeling the pose problem is consistent with the increasing possibilities by
using higher geometric algebras: Reconstruct from the projective plane one
dimensional higher entities and work in the projective or conformal space, re-
spectively. In these spaces we have more possibilities of expressing geometry.
Therefore the modeling of the pose problem follows the direction

G30,921 = G31=> Gu1. (4.2)

In the following, we will introduce operators which not only relate linear
spaces of the considered algebras but guarantee the mapping between the
algebraic properties. This means, we define operators which transform the
representation of the entities of the conformal space into equivalent entities
in the projective space, and vice versa. The possibility to change the repre-
sentation of an entity enables us to pick up the advantages of each algebra,
and so to use the better suited algebra for each subproblem.

4.2 Change of Representations of Geometric Entities

In this section it will be shown, how to transform these representations. The
operators between the conformal and projective space will be denoted as
conformal projective split and projective conformal extension, according to
the projective split [17] which enables a change between the projective and
the Euclidean space and the conformal split [16, 17] which enables a change
between the Euclidean and conformal space. This means, by using these
different splits and extensions, it is possible to describe the whole stratifica-
tion hierarchy. This will lead to a compact formulation of the 2D-3D pose
estimation problem.

We will start with the first two spaces, the conformal space to describe
kinematics and conformal geometry, and the projective space which can be
considered as subspace of the former one. The two operators to switch be-
tween geometric algebras representing these spaces are summarized in the
following theorems:

Theorem 4.2.1 To change an entity © given in the projective representa-
tion, ©,, to the conformal representation, ©., 0, € {X,L,P € G3,} —
O, € {X*,L*, P* € G4}, the following operator has to be applied:

O, = eNO,. (4.3)

Note: Since circles and spheres are no entities of the projective space, we
can not transform them between the projective and conformal space. This



40 4. The Pose Problem in Conformal Geometry

leads to remarkable consequences for the pose estimation problem, discussed
in the later sections.

For the proof of the theorem it is sufficient to show the simple relation
eNe =F,

eNe. = (e_+e;)Ae_
= e, Ne_=E. (4.4)

To make the involved geometry more clear, we will describe the represen-
tation changes of points, lines and planes explicitly:

Xeg; = T+e_
eN(z+e)
= eANx+eANe_
ec+ E=X"€G,, (4.5)

1

LeG;:, = er+m
e (e_r+m)
= em+eA(e_r)
Er+em=L"€G,; (4.6)

1

PecgGs1 = e_n+dlg
— eA(e.n+dlg)
= En+edlp=P'€gGy, (4.7)

Now, we describe how to switch representations from the conformal space
into the projective space.

Theorem 4.2.2 To change an entity O, given in the conformal representa-
tion, O, to the projective representation, ©,, O, € {X*,L*, P* € G4} —
©, € {X,L,P € Gj,}, the following operator has to be applied:

@p == e+ . (—)6- (48)

For the proof it is sufficient to show the following identity
O, =e; (e NO,),

e;-(enBO,) = (e;-e)NO,—eA(es-0,) =0, (4.9)
1 0
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We call the operations “eA” and “e.-” the projective conformal extension
and conformal projective split, respectively.

The transformation between the algebras for the projective and Euclidean
space is much simpler. Lines and planes can be represented in the Euclidean
space, but as mentioned before, these are only artificially generated represen-
tations which are not generated by the algebra itself. As a consequence, only
for points the transformation can be described in a suitable way. The trans-
formations are leaned on Hestenes’ formalization in [17] and can be written

in the following way,

Xnre_)e_
X - % = @, :1:693,0

T — T t+e_ = X, X € gg,l.
Table 4.2 gives an overview of the three main involved spaces and their in-
teraction.

Euclidean projective conformal
space space space
G3,0 C G3,1 - Gin

T+e_
— ene,
T
@e (X/\e;)-e_ @p e, 0. ®C
e
eN(z+e)
0 — — 0
‘ — (esX)re)e. :
(e;-X)-e_

Tab. 4.2: Interaction between algebras of the Euclidean, projective and con-
formal space.

To estimate a rigid body motion of an entity given in projective geometry,
we change its representation in a conformal one, compute the rigid body
motion and go back to the projective space: Let ©, be an entity given in the
projective space, and t a translation vector in Euclidean space. In conformal
geometric algebra, the translator has the following structure, T' = (1 + eTt)

and T = ( — %t) Then a multiplicative formulation of the translated
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entity in the projective space is given by

0, = e, -(Tlen ©, )T) (4.10)

projective
~ 4
~~

conformal
~ )
~~

projective

To compute joins and meets of entities, given in conformal geometric
algebra, we change their representations to the projective space, perform the
incidence operation and go back to the conformal space. As an example, the
intersection (denoted with the operator V.) of a line L* with a plane P~ is
given by

* * * %
L'V.P" = eA((e.- L' )V(es- B ) (4.11)
N conformal conformal
N proj:;tive .
(4.12)

To explicitly compute the coordinates of the intersection point of two
lines, L, and Lo, given in the projective space, we intersect these lines in the
projective space and use the projective split to get the intersection point in
the geometric algebra of the Euclidean space,

1
= — LV IL)ANe_)-e_ 4.13
e (@ Ly Ae) (413)
N—— projective
projective
Eucl‘irdean

These examples show, how to interact between the Euclidean, projective
and conformal framework.

4.2.1 Pose constraints in conformal geometric algebra

This section gives a brief preview how the interaction of entities in geometric
algebras will be applied on the pose problem. As mentioned earlier, the main
problem in the pose scenario is, how to compare 2D image features with 3D
Euclidean object features. Our constraint equations will lead to equations of
the following structure (here just for point correspondences),

M(MXM)xeA(OAzx))-e. = 0. (4.14)
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The interpretation of the equation is simple an the equation can be separated
in the following manner,

(4.15)
A(M X M)x eA( O A x ) )-ep = 0.
\ , — ~—~ ~—~
object point optical im:_a.ge
in conformal space center point
rigid motion ofThe object point projection ray,
reconstructed from the image point
in conformal space
collinearity of the transformed object
point with the reconstructed line
geometric distance measure ?)retween 3D line and 3D point
The mathematical spaces involved here are
AM(M X M) x eA(O A z))-e, = 0. (4.16)
\ , — ~ =~
cs PS PP
————— S—
cS PS ,
CS

Here does PP abbreviate projective plane, PS projective space, C'S conformal
space and E'S the Fuclidean space. Furthermore, will part II show that the
used commutator and anti-commutator products can be used to describe
a geometric distance measure, to ensure good conditioned equations in the
presence of noise. This will become more clear in part II.

The main advantages of the constraint equations are the following: Firstly,
the constraints are expressed in a multiplicative manner, they are concise and
easy to interpret (see equation 4.16). This is the basis for further extensions,
like kinematic chains and other higher order algebraic entities. Secondly,
the whole geometry within the scenario is concerned and strictly modeled.
This ensures an optimal treating of the geometry and the knowledge that no
geometric aspects have been neglected or approximated which is sometimes
done in the literature by e.g. using orthographic camera models, etc.
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5. SUMMARY AND DISCUSSION

This work is concerned with the theoretical foundations of the 2D-3D pose
estimation problem. Firstly, Faugeras’ stratification hierarchy is identified as
an important concept in the pose estimation problem. But since it is based
solely on point concepts we introduce the conformal geometric algebra which
provides a homogeneous model for stereographic geometry and is therefore
well suited to deal with projective geometry on the one hand and kinematics
on the other hand. The multivector concepts of geometric algebras lead to a
new stratification hierarchy which contains as highest algebra the conformal
geometric algebra. Since conformal geometry is not well known for solving
computer vision problems, we introduce the stereographic projections and
sphere concepts in some detail in the context of the pose problem.

The usefulness of this approach is as preview shown in section 4.2.1: we
gain compact constraint equations with a strict modeling of all geometric
aspects. We will apply this in part II for simultaneous pose estimation of
different image and object features, e.g. containing points, lines, planes,
circles, spheres or kinematic chains. Our very recent work [31] concerns
further extensions of this approach e.g. by modeling cycloidal curves and
free-form contours.
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Pose Estimation in Conformal Geometric Algebra

Part II: Real-time Pose Estimation using
Extended Feature Concepts
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Abstract

Part II uses the foundations of part I to define constraint equations for 2D-3D
pose estimation of different corresponding entities. Most articles on pose estima-
tion concentrate on specific types of correspondences, mostly between point, and
only rarely line correspondences. The first aim of this part is to extend pose esti-
mation scenarios to correspondences of an extended set of geometric entities. In
this context we are interested to relate the following (2D) image and (3D) model
types: 2D point/3D point, 2D line/3D point, 2D line/3D line, 2D conic/3D cir-
cle, 2D circle/3D sphere. Furthermore, to handle articulated objects, we describe
kinematic chains in this context in a similar manner. We ensure that all con-
straint equations end up in a distance measure in the FEuclidean space, which is
well posed in the context of noisy data. We also discuss the numerical estimation
of the pose. We propose to use linearized twist transformations which result in
well conditioned and fast solvable systems of equations. The key idea is not to
search for the representation of the Lie group, describing the rigid body motion,
but for the representation of their generating Lie algebra. This leads to real-time
capable algorithims.

Keywords : 2D-3D pose estimation, pose constraints, kinematic chains,
circles, spheres, twists.
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1. INTRODUCTION

This contribution concerns the 2D-3D pose estimation problem of 3D free-
form curves. Pose estimation itself is one of the oldest computer vision prob-
lems and algebraic solutions with different camera models have been proposed
for several variations of this problem. Pioneering work was done in the 80’s
and 90’s by Lowe [20, 21], Grimson [11] and others. In their work point
correspondences are used. Other works concerning lines or line segments
can be found in e.g. [39, 18]. Works concerning extensions to kinematic
chains can be found in [4, 12]. Nearly all papers concentrate on one spe-
cific type of correspondences. But many situations are conceivable in which
a system has to gather information from different hints or has to consider
different reliabilities of measurements. This is the main aspect of this work:
We describe a scenario for adaptive pose estimation of simultaneously used
different entities, without loosing linearity, well conditioned equations and
real-time capability. This work contains the second part of our research on
pose estimation. The first part discussed the scenario and the mathematical
foundations for the pose problem. This part uses these foundations to deal
with the pose estimation problem:

Section 2 starts with the pose constraints to relate 3D point, line and
plane features. In section 3 we extend this formalization to kinematic chains,
3D circles and 3D spheres. The aim is to model all different kinds of entities,
their transformations and relations in one algebraic framework to get con-
straint equations which can be used in a similar manner and can be solved
simultaneously. Furthermore, we explain how to use the constraints in a noise
adaptive way. This means, we control the influence of a constraint to the
whole system of equations. This is only possible if the constraints describe
(in their implicit formulations) equivalent geometries. In this context every
constraint results in a Hesse distance error measure between the involved
entities. In the experimental part, section 4, we present several experiments
which visualize the properties of our algorithms.
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2. COLLINEARITY AND
COPLANARITY CONSTRAINTS IN
CONFORMAL GEOMETRIC
ALGEBRA

So far we have introduced (see part I) the entities, their transformations
and the interaction of entities between Euclidean, projective and conformal
geometry. The aim is now to formalize the pose estimation problem in an
implicit way using a set of geometric constraints which describe an error
measure to be minimized.

Note: As can be seen from part I, the transformation of an entity given in

the projective geometric algebra to the conformal geometric algebra always
leads to a dual representation of the entity since

eNX = X7
eANL = L
eNP = P~ (2.1)

In the next sections we will only work in the dual representation of the entities
and therefore, from now on we will neglect the x-sign in the equations.

In this section, we will derive constraints for collinearity and coplanarity
to relate points, lines and planes. The constraints will be given in the con-
formal space. They are then translated in an error measure of the Euclidean
space. While this section only concerns the relation of points, lines and
planes, the following sections will regard the constraints to relate the other
entities as circles and spheres.

Table 2.1 gives an overview of the formulations of the constraints for
collinearity and coplanarity of points, lines and planes in conformal geometric
algebra, which were first presented in [36, 31]. Now we will analyze the
geometry of the constraints introduced in table 2.1.
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Entities | Constraint in Conformal Geometric Algebra
point-line XxL=0
point-plane XxP=0
line-plane LxP=0

Tab. 2.1: The geometric constraints for collinearity and coplanarity of points,
lines and planes expressed in conformal geometric algebra.

2.1 Point-Line Constraint

Evaluating the point-line-constraint of a point X € G4;, X = E + e,
collinear with a line L € G4, L = Er 4+ em leads to

0 = XxL

~ (XL- LX)
((E+ex)(Er +em) — (Er +em)(E + ex))
(ewEr + Eem + E’r —emE — rEezx — 7’)

(exr — me — me — rxe)

(—(2m — (zr — rx))e)

N[N =N =N DN

—(m —xxr)e

&0 = (m—zxr)e-e, =m —xXxXr (2.2)

The product X x L is an element in the null space, since €2 = 0. By
estimating the inner product with e,, we can change this expression to an
equation in the non-null space. Note, that this is consistent with table 4.2
of part I. Estimating the inner product with e, leads to an error direction
in the projective space and since the homogeneous component is zero it is
simultaneously a vector expression in G, the algebra of the 3D Euclidean
space.

The term m—a X means that the moment m of a line, which is generated
by the outer product of the direction 7 of the line with a point & on the line,
is independent of the chosen point of the line. This is a clear fact from
Pliicker representation of lines [3].

So far the constraint equation is given unscaled. Following part I, we
have to apply a scaling parameter A € IR to express a distance measure in

the Euclidean space. In this case let A = h That means we scale the
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equation with the inverse norm of the direction of the line. Then we get

0 = m-—xxr
<0 = ANm—xxr)
S0 = dm—xx(\r)
<0 = m' —zxr. (2.3)

The aim is to analyze the bivector m’ — &x7’. Suppose X ¢ L'. Then,
nonetheless, there exists a decomposition = &1 + x2 with X; € L', X; =
(E+ezy) and Xy 1L L', Xy = (E + ex2). Figure 2.1 shows the scenario.

Fig. 2.1: The Euclidean line I’ consists of the direction ' and the moment
m’ = vxr'. Further, there exists a decomposition x = x; + 2
with &1 € I’ and &5 L I’ so that m' = vxr' = z, x7'.

Then we can calculate

lm' —zxr'|| = [m' - (z1+z2)xr|
= [Im’ - z1xr’ — @2 xr’||
= |w2xr'|| = [z2]| (2.4)
Thus, satisfying the scaled point-line constraint means to equate the bivec-

tors m’ and x x 7'/, respectively making the Hesse distance ||x2| of the
Euclidean point « to the Euclidean line I’ to zero.

2.2 Point-Plane Constraint

Evaluating the point-plane-constraint of a point X € G,,, X = E + e,
coplanar to a plane P € G4, P = En + edl g, leads to

0 = XxP
1
- —(XP-PX)

N — BN

((E+ex)(En+edlp) — (En+edlp)(E + ex))
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= —(exEn+ Eedlgp+n —edlgE — Enex —n)
(—xne +dIge +n+dlge — nre —n)

= —(2dIgp— (zn+nx))e

NN =D -

= (dIg —zxn)e
&0 = (dIg— (xxn))e-e, =dly — (xXn). (2.5)

Note here that the anticommutator product of the bivector m and the
vector x results in a trivector, which is subtracted from dIp. Again the
constraint equation is given in the null space which is then transformed to
the non-null space by estimating the dot-product with e,. This leads directly
to a scalar value as element of the Euclidean geometric algebra. To express
a distance measure in the Euclidean space, let A = L', the inverse of the

m|
norm of the normal. Then we get

0 = dIg— (xxn)
<0 = MNdIgp—zxXn)
S0 = Mg —zx(\n)
&0 = dIg—axn (2.6)
Suppose X ¢ P'. The value d' can be interpreted as the sum of distances,

so that d' = djy, + dj, and djyn’ is the orthogonal projection of & onto n'.
Figure 2.2 shows the scenario. Then we can calculate

Fig. 2.2: The Euclidean plane p’ is represented by the normal n’ and the
Hesse distance d’. The value d' can be interpreted as a sum d' =
dy, + dj, so that djy;n' corresponds to the orthogonal projection of
x onto n'.

dIp—zxn'

(doy + dop) I — Xn/
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The value of the expression d'Ip — xxn' corresponds to the Hesse distance
of the Euclidean point & to the Euclidean plane p'.

2.3 Line-Plane Constraint

Evaluating the line-plane-constraint of a line L € G4, L = Er + em,
coplanar to a plane P € G, 1, P = En + elgd, leads to

t~
X|
N

0 =

(LP + PL)

(Er +em)(En +edlg)+ (En+edlg)(Er +em))
(emEn + rEelpd+ rn + elgdrE + Enem + EnrE)
(mne + rIgde + rn + Ipdre — nme + nr)

((rn +nr) + (2rIgd + mn — nm)e)

e I R I ORI ORI ORI

= 3 ((rm +nr) + 2(rIgd + mxn)e)
= rxn+ (rIgd+mxn)e (2.8)

Thus, the constraint of coplanarity of a line to a plane can be partitioned
into a constraint on the non-null part of the motor and a constraint on the
null part of the motor. This can directly seen in equation (2.8) since € = 0.

Again the constraint equation is given unscaled. Let be A = 1

i
Then we get
0 = rxn+ (rlgd+mxn)e

&0 = Arxn+ (rIgd+mxn)e)

&0 = rxXn’+ (r'Igd + m'xn')e, (2.9)
with

r— 1 r— 1 r— 1 r— 1
et Y S @t ™ = ™ 4=
Suppose L' ¢ P'. If ' / n/, the non-null part leads to
r'xn’ = ||7'||||n']| cos(a) = cos(a), (2.10)

where « is the angle between L' and P’, see figure 2.3. If ' L n', we have
r"Xn' = 0. Since the direction of the line is independent of the translation
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of the rigid body motion, the constraint on the non-null part can be used to
generate equations with the parameters of the rotation as the only unknowns.
The constraint on the null part can then be used to determine the unknown
translation. In other words, since the motor to be estimated, M = TRT =
R| + eR), is determined in its non-null part only by rotation, the non-
null part of the constraint allows to estimate the rotor R}, while the null
part of the constraint allows to estimate the rotor R5. So it is possible to
sequentially separate equations of the unknown rotation from equations of
the unknown translation without the limitations known from the embedding
of the problem in Euclidean space [6]. This is useful since the two smaller
systems of equations are faster to solve than one larger system of equations.
To analyze the null part of the constraint we interpret the moment m' of the
line representation L' = Er' + em' as m' = sxr' by choosing a vector s
with s € I' and s | 7'. Following [28], we can estimate

n'xm’ = —(sxr)xn'

= (sxn/)xr' — sx(r'xn'). (2.11)
Now we can evaluate

dIgr' — (n'xm’) = dIgr' — (sxn)Xr' + sx(r'xn’). (2.12)

an’

a
B
Fig. 2.3: The Euclidean plane p' is represented by its normal n' and the Hesse
distance d'. Furthermore, we choose s € I' with s L 7. The angle
of  and n' is a and the angle of s and n' is 8. We choose the

vector s; with s || s; so that dn' is the orthogonal projection of
(s + s1) onto n'.

Figure 2.3 shows the scenario. Further, we can find a vector s; || s with
0=d" — (||s|| + ||s1]|) cos(B). The vector s; might also be antiparallel to s.
This leads to a change of the sign, but does not affect the constraint itself.
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Now we can evaluate

dIgr' — (n'xm') = dIgr' —|s| cos(8)r' + cos(a)s
= ||s1]| cos(B)r' + cos(a)s. (2.13)

Thus, the error of the null part of the motor is constituted by the sum
of the vector s, scaled by the angle a, and the direction vector 7', scaled by
the norm of s; and the angle .

If ' L n/, then n' || s and, thus, we will find

|dIgr' — (n'xm/)|| = ||dIgr' +sx(r'xXn') — (sxn')xr||
= |[dIgxr' — (sxn')Xr'|
= ||[dIg— (sxn')]. (2.14)

This means, in agreement with the point-plane constraint, that the above
difference measure corresponds the Hesse distance of the line to the plane.

This analysis shows that the considered constraints are not only qualita-
tive constraints, but also quantitative ones. This is very important, since we
want to measure the extend of fulfillment of these constraints in the case of
noisy data.

2.4 Constraint Equations for Pose Estimation

Now it is possible to express the 2D-3D pose estimation problem in a quan-
titative manner. The aim is to express a transformed object entity has to
lve on a projective reconstructed image entity in the conformal geometric al-
gebra. Let X € G, be an object point and L € G4; be an object line.
The (unkn/gzvn) transformed entities can be written as X' = MX M and
L' = MLM. Let © € Gy, be an image point and I € G, ; be an image line.
Note, that we denote the 2D projective image features also with small bold
letters, similar to 3D Euclidean points. The reason is, that both algebras are
built from three basis vectors, they can not be confound in the scenario and
it avoids extra fonds. The projective reconstruction of these entities can be
written as L, = OAx € G31 and P, = OAl € G3,. The point O € G3; de-
notes the optical center of the camera. Then we can apply the e A-operator to
change the representations from the projective to the conformal space, and
combine it with the commutator and anticommutator products to express
the collinearity and coplanarity of the involved entities.
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Thus, the constraint equations of pose estimation read
point-line constraint:

M (M X M) x eA(OAz) )-e. = 0.(2.15)
~—~— N—_—————
object point projection ray,

~ >

~~ reconstructed from the image point
rigid motion of the object point
~

~~
collinearity of the transformed object
point with the reconstructed line

point-plane constraint:

M (M X M) x e A(OA) )-ey = 0.(2.16)
~—~ | S
object point 3D plane,

v

~~ reconstructed from the image line
rigid motion of the object point
~

~-
coplanarity of the transformed object
point with the reconstructed plane

line-plane constraint:

M (M L M) X e A(ONI) ) = 0. (217
object line plane,

[\ /

~~ reconstructed from the image line
rigid motion of the object libe
~ )
~
coplanarity of the transformed object
line with the reconstructed plane

Note, that there is no -e, operation involved in the line-plane constraint.
The reason is, that the constraint equation is partitioned into one equation
on the non-null part and one equation on the null part of the constraint
equation as explained in the last section.

The involved mathematical spaces are exemplarily shown for the point-
line constraint,

MM X M) xeA(OAz)) e, = 0. (2.18)
cs PS PP
~— SN——
cs . PS ,
N va‘s -
ES

Here does PP abbreviate projective plane, PS projective space, C'S conformal
space and ES the Euclidean space. These compact equations subsume the
pose estimation problem at hand: find the best motor M which satisfies the
constraint. The 2D-3D pose estimation problem is described in an implicit
way. Note, that the stratification hierarchy of the involved entities is strictly
kept within these equations. Furthermore are the equations compact and
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therefore easy to interpret. Additionally do the geometric analysis of the
constraints assure well conditioned equations and help to interpret effects of
the constraints discussed in the experimental part. The constraints behave
robust in case of noisy data and linearization and iteration enables the design
of fast (real-time capable) algorithms. In contrast to other approaches, where
the minimization of errors has to be computed directly on the manifold of
geometric transformations [5, 38], in our approach a distance in the Euclidean
space constitutes the error measure.

This is the now the complete formulation and analysis of the constraint
equations already shown in part I, chapter 4.
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3. POSE ESTIMATION WITH
EXTENDED OBJECT CONCEPTS

This section concerns the development of constraint equations to relate 3D
kinematic chains, circles and spheres with corresponding extracted 2D image
features. similar to the previous section we will formalize constraint equations
in the 3D space, which contain a geometric distance measure.

3.1 Pose Estimation of Kinematic Chains

So far we have parameterized the 3D pose constraint equations of a rigid
object. Let be given a rigid object by a set of entities as points and lines.
Assume that a second rigid object is attached to the first one by a joint.
The joint can be formalized as an axis of rotation and/or translation in
the object frame. If the joint j is only dependent on a variable angle 0;,
it is called a revolute joint, and it is called a prismatic joint if the degree
of freedom is only a variable length d;. This parameterization of joints is
also called the Denavit-Hartenberg parameterization [7]. Each joint defines
a new coordinate system, and the coordinate transformations between joints
can be expressed by suitable motors M ;. This means, an entity given in the
coordinate system of the jth joint can be translated in an entity of the base
coordinate system by transforming it with the motors M, ..., M.

Such objects are also called kinematic chains. With kinematic chains we
mean flexible linked rigid objects which can only change their pose in mutual
dependence. Examples are robot arms [37] or human body movements, see
e.g. figure 3.1. Kinematic chains can be parameterized by their including
joints. Every joint defines a new coordinate system. To estimate the posi-
tion of an end-effector entity of a kinematic chain in terms of an other base
coordinate system, all involved joint coordinate systems must traced. This
is visualized in figure 3.1. For short notations of the single transformations
in CGA between the joints we define

%{Xo,io} = Moio,iom = Xo,z‘o
%{X]’Z],MJ} = E—I{Mjlj,iijan—l} ] = 1, N
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Fig. 3.1: The RX-90 robot arm. The internal joint transformations M and
the global transformation 7; are visualized.

= MlM]X Mj...Ml:jzl,...,n. (31)

.],Z]

The function 7, with the motor M describes the identity for points which
are not subject to internal transformations. We call them base points. Since
the motor M is just the identity it will be neglected in the further equations.
The function 7; formalizes the transformation of an attached joint j with
respect to the basis coordinate system in an inductive manner. In the general
case, the transformation of a point X ;; of a j-th joint to the base coordinate
system is represented by a sequence of such motors M, ..., M;. An object
model O of a kinematic chain with n segments can now be represented by a
set of n + 1 such functions 7j,

O = {%{Xo,io}:ﬂ{il,ilaMl}a"-:7;L{X Mn}‘naiOa---,inEIN}

ORI
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3.2 Constraint Equations of Kinematic Chains

Now we will combine the introduced representation of kinematic chains in
CGA with the pose estimation constraints derived in section 2. This is very
simple now because everything is formulated in the same algebra. Note, that
the constraints are presented unscaled, so the A(.) - e, operation is not extra
written.

The general unknown pose corresponds to a motor M. For the base
points X, the constraint equations reduce for a suitable projection ray
Ly, =e A (O Axg) to

(M(Tof{X,;,)M) x e A (O Amosy) = 0
& (MXy;,,M)xeA(OAzy) = 0. (3.2)

The general constraint equation for a point X j4; at the j-th joint leads to

(M('E{Xj,z‘jan})M)ﬁe/\(OAmj,ij) =0
& (M(M,...M;X M

]

M;...M,)M)xeA(OAz;;) = 0.
(3.3)

It is also simple to use extracted image lines l;; and their reconstructed
projection planes P;; =e A (O A lj,z-j). For such situations, the constraint
equations reduce to

(M (To{Xy, ) M) x e A(O Alyi,) = 0
& (MXy;, M) xeA (0N, = 0 (3.4)

for the base points, and the general constraint equation for a point at the
jth joint leads to

(M(’];{Xj,ij’Mj})M)ﬁe/\(O/\lj,ij) =0
& (M(M,...M;X,;, M;...M)M)xeA(OALj;) = 0. (3.5)

We can also describe kinematic chains by lines and combine them with the
line-plane-constraint. For this, only lines L;;. and projection planes P;; =
e A (O Alj;;) have to be substituted and combined with the anticommutator
product. For the base lines we get

(M (To{Lo, }) M) X e A (O Alos) = 0

= (MLO,iOM) Y eAN (O A lO,iO) - O, (36)
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and for a line on the j-th joint we get

(M(THL,,;,, M;}))M) X e A (O Aly;) =

0
& (M(M,...M;Lj; M;...M\)M)<eA(OAl;) = 0. (3.7)

A detailed description of kinematic chains in CGA and the construction
of pose estimation constraints can be found in [29].

3.3 Pose Estimation using Constraints for Circles and
Spheres

In this section constraint equations are derived to relate 3D circles to 2D
conics and 3D spheres to 2D circles. We start with an analysis of involved
problems and then present a suitable solution approach.

3.3.1 The problem of tangentiality constraints

Since also the constraints for circles and spheres are derived in the 3D space,
the aim is to reconstruct certain entities from image information and to
compare the reconstructed entities with the 3D model entities. The recon-
struction based on an image conic or an image circle (the image of a circle
or sphere, respectively) leads to a cone. Indeed, we can not formalize cones
as single entities in conformal geometric algebra. But to enable the above
mentioned comparison, we formalize constraint equations for tangentiality of
3D circles or spheres to projection rays, reconstructed from image points of
the corresponding image entity. We denote the spatial tangentiality of a 3D
circle z to a 3D line L as circle-line and the tangentiality of a 3D sphere s
to a 3D line L as sphere-line constraint. Figure 3.2 visualizes the idea.

It is very easy in CGA to express e.g. tangentiality of a non-coplanar
line L to a circle z: The point X, := LV z is a null vector (this means
X z = 0) iff the entities intersect. But this only holds in ideal geometry.
In reality, there are several cases how a line can be related to a circle: it
can intersect, be coplanar or perpendicular. The line can pass outside or
instde the circle, etc. By defining a line in a parameterized manner, it is
easy to see that the error function of points on a line to a circle can contain
one global minimum, two global minima, one local and one global minima
or no minimum in non-degenerate and degenerate cases. In figure 3.3 three
example lines are shown: Two lines are parallel to the plane, in which the
circle lies. One of these lines passes the circle outside, the other one inside.
This leads to error functions, containing one global minimum or two global
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Fig. 3.2: Visualization of the circle-line and sphere-line constraint in confor-
mal geometric algebra.

minima. The third line is passing the inside of the circle and is not parallel
to the plane in which the circle lies. This results in one global and one
local minimum. From that relations result two possible strategies: First, we
make a case decision, depending on the geometric situation. This is hard to
implement and to combine with our previous derived constraint equations.
Second, we can parameterize the circle in a suitable way. This will be done
in the following section.

-4 -3 -2 -1
lamhda

=}
[
N

Fig. 3.3: Different geometric relations of lines to circles leads to different
kinds of error functions for parameterized lines.
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Comparing spheres with lines is in ideal geometry also no problem. One
short way to formalize tangentiality is to estimate the distance from the
center of the sphere to the line and to subtract the radius: Let L' be the
scaled line, as described in section 2. The line L' is tangential to s = p — p’e
iff

(L' xp) el —p = 0. (3-8)

The main problem in this formulation is the square root term of the norm
containing the unknowns in quadratic terms since ||z| = /> (z;)2. This
leads to equations, which are not nice to handle if we want to estimate the
unknown motor M in the equation

V(MpM x L')-e)?—p = 0. (3.9)

We made experiments with these kind of equations and implemented a Newton-
Raphson method to solve the equations. But there are two main problems:
First, the convergence rate is very slow and the algorithm often converges
against the wrong minimum (the algorithm needs about 5 seconds to esti-
mate the pose). Second, we loose the possibility to combine them with the
other constraints for simultaneous considerations in pose estimation.

The key idea to relate circles and spheres to lines, is to interpret the
circles and spheres as orbits generated by twist operations as introduced in
the next section.

3.3.2 Operational definition of circles and spheres using
twists

We will first repeat the general description of circles and spheres, as intro-
duced in part I and then generate an operational definition of these entities.
In the next section we will continue with the formulations of the circle-line
and sphere-line constraints.

Let be 2 = a A b A ¢ a circle in CGA. Evaluating the outer products of
three points leads to

2 = aANbAc=A+ A e+ ATey+ ATE (3.10)

with suitable multivectors A, A=, AT and A*, see part I.
A circle can also be understood as a twist L, and a point X, on the
circle. From the dual representation of the circle, this information is very
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%
o—/x" Ls % %
XZ Xe

Fig. 3.4: Circles and spheres parameterized with twists.

easy to extract since the generating twist parameters are directly given. The
twist transformation corresponds to a suitable parameterized motor M,

My = exp (g (At + eAi)> . (3.11)
The points on the circle are simply given by

X = (My,X,M,) : ¢€|0,...,27]. (3.12)
Figure 3.4 (left) visualizes the geometry. The circle results as the orbit of the
unique motor, which moves a certain point and is constraint by the points
a, b and ¢ laying on the circle.

Now we continue with the formalization of a sphere. The general expres-
sion of a sphere leads to

1
s=aAbAchd = (B—ipze)Ial. (3.13)

In this formulation, p is the center of the sphere and p is the radius.

The idea is to formalize spheres in an operational manner as two coupled
twists. In that approach a sphere is formalized by a point X, on a sphere
and two perpendicular twists, L, and L, , intersecting in the origin of the
sphere. Figure 3.4 (right) visualizes the idea. The corresponding motors are
denoted as My, and My,,

M, = exp (% (e12+e(p- 612))> )

M,, = exp (% (e31+e(p-e31))>. (3.14)
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The bivectors ej» and e3; are the two perpendicular rotation planes, belong-
ing to the rotation axes which are connected to the center p of the sphere.
Then all points on the sphere s result from the equation

X?l’d)z = (M¢1M¢2XSM¢2M¢1) : ¢1a ¢2 € [Oa ey 27?]
(3.15)

This principle of coupling two motors is virtual in contrast to kinematic
chains, which correspond the coupling of physical objects. The principle of
virtual coupling can be further extended to construct more complex orbits
of twists and, thus, to enable pose estimation of more complex objects, see
[32].

3.3.3 The constraint equations of circles and spheres to
lines

So far we have developed the formalization of circles and spheres as orbits
of twists. We will use these representations to express incidence of circles z
and spheres s to 3D lines L.

While in the constraint equations of section 2 the motors are the only
unknowns to be estimated, now we have higher loads because of the param-
eterization of the features or entities of pose estimation.

We will start with the formalization of a suitable circle-line constraint.
To relate the circle z to a line L = e A (O A @), we only need to estimate
the unknown angle ¢, which leads to collinearity of the suitable transformed
point X, € z to L. The circle-line constraint can now be written as

(MyX,My) xeA(OAz) = 0. (3.16)

In this equation, the angle ¢ is an additional unknown for each constraint
equation. The pose estimation constraint equation for an unknown rigid
body motion now means to estimate both the best motor M and the angle

9,
(M(My,X,Ms)M)xeA(OAx) = 0. (3.17)

The sphere-line constraint, respectively the incidence of a line L = e A
(O A ) to a sphere s can be described by a point X, on the sphere and the
two motors My, and M y,,

(M¢1M¢2X5M¢2/M¢1) xeA(OAz) = 0. (3.18)
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In this constraint equation ¢; and ¢y are additional unknowns. The pose
estimation constraint equation for an unknown rigid body motion means to
estimate the best motor M and the two angles ¢; and ¢,

(M(M¢1 M¢2X3’M¢2M¢1)M) xXeAN (O A :l?) = 0. (3'19)

This approach to formalize constraint equations for circles and spheres ap-
pears surprising in the context of our algebraic embedding. The main prob-
lem with these entities is, how to formalize constraint equations, which ob-
tain the characteristics mentioned in part I. For this reason we choose an
operational definition of circles and spheres and linearize them in the same
manner as we linearize the pose problem: We formulate these entities in their
tangential space and choose a Lie algebra representation of these entities.
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4. REAL-TIME POSE ESTIMATION

This section concerns the numerical estimation of the pose parameters and
presents experimental results.

4.1 Estimation of Motion Parameters

In the last sections, several constraint equations to relate object informations
to image informations are derived. In these equations, the object, camera and
image information is assumed to be known and the motor M expressing the
motion is assumed to be unknown. The main question is now, how to solve
a set of constraint equations for multiple (different) features with respect to
the unknown motor M. Since a motor is a polynomial of infinite degree (see,
e.g., its series expression), this is a non-trivial task, especially in the case of
real-time estimations.

4.1.1 Linearization in the tangential space

The idea is to gain linear equations with respect to the generators of the
motor. We use the exponential representation of motors and apply the Taylor
series expression of first order for approximation. This leads to a mapping of
the above mentioned global motion transformation to a twist representation,
which enables incremental changes of pose. That means, we do not search
for the parameters of the Lie group SE(3) to describe the rigid body motion
[10], but for the parameters which generate their Lie algebra se(3) [24]. This
results in linear equations in the generators of the unknown 3D rigid body
motion. In this section we derive the linearization of the motors. For the
sake of simplicity we will do that in the case of point transformations.

We approximate the Euclidean transformation of a point X caused by
the motor M in the following way:

MXM = exp (—g(l +e(t- l))> X exp (g(l +e(t- l)))

~ (-Gt elt- D)X+ (1 +e(t-1)
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~ E+e(x+0(1-x)—0(t-1)). (4.1)
Setting v := 0(l - ) and m := (¢ - 1) leads to
MXM =~ E+e(x+v—m). (4.2)

By combining this approximation of the motion with the previously derived
constraints (e.g. the point-line constraint), we get

Fig. 4.1: Principle of the convergence rate for the iteration of a point X
rotated around 90 degree to a point X'. X is the result of the first
iteration and X, is the result of the second iteration.

0 = MXMXxL

S0 = exp (g(l—i-e(t-l))) X exp (—g(l-i—e(t-l))) x L

<x~=0 = (E4+e(x+v—m))xL
<0 = ME+e(x+v—m))x L. (4.3)

Because of the approximation (<==) the unknown motion parameters v
and m are linear. This equation contains six unknown parameters for the
rigid body motion. The unknowns are the unknown twist parameters for
the general rotation (five unknowns for the location of the twist and one
unknown angle). In the last step we scale the linearized constraints with a
suitable factor A to express an Euclidean distance measure as explained in
section 2. This means, everything so far happens unscaled only in the very
last step we scale the constraint equation and go to the Euclidean space, as
one of the strata of the hierarchy described in part I.

The linear equations can be solved for a set of correspondences by ap-
plying e.g. the householder method [27]. From the solution of the system of
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equations, the motion parameters R, t can easily be recovered by evaluating
0:=|v|,l:=Y and (t-1):= =T

This procedure is iterated to converge to the whole rigid motion. Figure
4.1 visualizes the principle of such an approximation and iteration: The aim
is to rotate a point X around 90 degree to a point X'. The first order ap-
proximation of the rotation leads to the tangent of the circle passing through
X. Normalizing the tangent line to X' (denoted by dashed lines) we get X,
as the first order approximation of the required point X'. By repeating this
procedure the points X,,..., X, will be estimated, which converge to the
point X'. It is clear from figure 4.1 that the convergence rate of a rotation
is dependent on the amount of the expected rotation. An analysis of the
convergence rate for general angles is given in the next section.

Note, that basically this estimation procedure corresponds to a gradient
descend method in the 3D space.

4.1.2 Generating an example system of equations

In this section we will derive a system of equations for point, line and plane
correspondences to visualize the type of equations which are obtained.
Let us assume two points

P, = (pllap127p13) (4-4)
P, = (P21,p22,p23), (4-5)

one corresponding line (containing a direction Ly and a moment L,,;)

L - {Ldl - (Ldl]_, Ldlg, Ld13), (46)
Lml = (Lmn, Lm12, Lm13)} (47)

and one plane (containing a normal P4 and Hesse distance hab;),
Pl1 = {Pdl = (Pdn,Pd12,Pd13),hab1}. (48)
Let us further assume that P; corresponds to L%; and P, corresponds to
Pi,.
Then the matrix for the system of equations take the form
Az = b, (4.9)

with
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0 Ldis —Ldyo
—Ld13 0 Ldy

A= Ldyy —Ld;y 0
—Pdy1 —Pdis —Pds
—p13Ldi3 — p1aLdyo p11Ldi2 p11Ld13
pi2Ldiy —p11Ldi1 — pi13Ldi3 pi2Ldi3
p13Ldyy p13Ldi2 —pi2Ldia — p11Ldiy

—Pdi3pe2 + Pdigpes  Pdizpa1 — Pdiipes  —Pdigpa1 + Pdiipao

The first three rows contain the components for a point-line constraint
and the fourth row the components for a point-plane constraint. The solution
vector b takes the form

b = (—pi2Ldiz + pi3Ldiz + Lm11, —p13Ldi1 + p11Ldi3 + Lmg,
—p11Ldi2 + proLdiy + Lmas,
—haby + Pdy1pay + Pdyapas + Pdyzpas)”. (4.10)

The system of equations contains as unknowns the six twist parameters for
which the equations are solved for. The matrices involving kinematic chains,
circles and spheres take a comparable form, just modified with additional
unknowns.

Note, that though the point correspondences give three equations the
rank is just two. This shows the well-known fact, that at least three point
correspondences are necessary to solve the 2D-3D pose estimation problem.
Furthermore gives every point-plane constraint exactly one equation. So at
least six correspondences are necessary to get a unique solution.

4.1.3 Solving the Equations system

Many algorithms can be found in the literature to estimate coefficients of
non-linear equations systems. A comparison of four approaches for pose
estimation are made by Lorusso et.al. in [22]. The algorithms deal with 3D
point based pose estimation and are based on a SVD decomposition, unit
quaternion (UQ), dual quaternion and eigensystern (OM) computation. The
comparison consists of three parts, accuracy, stability and relative efficiency.
Their results are not in agreement with results presented in [39] and they
figured out, that the SVD and UQ methods are very similar and usually
the most stable. The OM method is not as stable for planar data sets,
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but superior for large degenerate data sets. The D(Q algorithm was never
the most stable and usually broke down before the others. Unfortunately
they do not compare a gradient descend method within this context. A
gradient descend method will be proposed in this work. Therefore we will
now study the convergence rate of the gradient descend method for the case

4

—~~ 140+

120} (3)

100+
)
80+
60+

40+

20+

Fig. 4.2: Convergence rate of iterations for arbitrary angles between 0 and 180
degrees. The expected angles 6 are on the z-axis and the estimated
angles 6 are on the y-axis. The iterations (1)...(4) are overlaid.

of one unknown angle 6. The result is demonstrated in figure 4.2. The z-axis
represents the wanted angle 6, the y-axis shows the estimated angle f. Four
iterations are overlaid. The functions are very characteristic and it can be
seen that the contribution of the first iteration to gain a 90 degree rotation is
45 degree. This becomes clear by comparing the situation with figure 4.1. All
angles, except that of 180 degree converge during the iteration, and for the
most cases only a few iterations are sufficient to get a good approximation.
In situations where only small rotations are assumed, for the most cases, two
or three iterations are sufficient.

A comparison of this gradient descend method with a standard SVD-
approach or Kalman filter will be done in the first experiment of the next
section. There also the adaptive use of pose constraints is presented in more
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detail.

4.2 Pose Estimation Experiments

This section shows experimental results which demonstrate that the theo-
retical approaches for pose estimation developed so far are extremely useful.
The first experiment concerns the numerical analysis of the pose estima-
tion algorithm and compares results of the gradient descend method with an
SVD-approach and a Kalman filter. The second experiment concerns pose
estimation of rigid objects containing points and lines. We show results on
real images and explain how to combine the constraints and how to use them
in a noise adaptive manner. Then, experiments with kinematic chains are
presented. Finally, we describe experiments with complicated objects, which
contain all different entities we have introduced so far. All information is
used to estimate the pose and kinematic chain parameters of the objects
simultaneously. The assumptions for our experiments are the following:

1. Corner features in the image are either manually extracted, or esti-
mated by tracked point markers.

2. Edge features in the image are either reconstructed from two corners
or estimated by applying a Hough transformation.

3. Image points on circles or conics are either extracted manually or by a
contour algorithm on a silhouette.

4. We use a monocular (calibrated) camera. Only the projection matrix is
given, we need no separation of the matrix into intrinsic and extrinsic
camera parameters.

5. The 3D (Euclidean) object model is given in terms of feature sets on
the object model (corners, lines, kinematic chain locations, etc.)

As explained in the previous section, since we only iterate linear equations
containing always six unknowns for the rigid body motion and a few addi-
tional ones for the kinematic chains, the pose estimation itself can be carried
out in real-time. So far, we are able to estimate the pose of an unknown
object by given correspondences and projection matrices in the frame rate
of 20 frames per second (fps) on a SUN Ultra 10 and a frame rate of 100 fps
on a Linux 2 GHz machine. Note, that the equations are good conditioned
with respect to the number of extracted and used image and object features.
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4.2.1 Pose estimation of simple rigid objects

There exist several ways to estimate the motion parameters. In earlier works
we concerned this problem and we estimated the motion parameters either
on the Lie group SFE(3) itself (by using an SVD approach), or by using an
extended Kalman filter (EKF) [36]. In our first experiment, we compare the
noise sensitivity of these three methods (the two older one, and the gradient
descend method presented in the last section), with respect to the three con-
straint equations, relating 3D points to 2D points (Xx), 3D points to 2D lines
(X1), or 3D lines to 2D lines (L1). Therefore we add a Gaussian noise on ex-

o LI-SVD

100+

80+
error

Xx-SVD

60+
XI-SvD

o  XI-EKF

< LI=Twist

= LI-EKF

A Xx=Twist

T XI-Twist
- Xx-EKF

20+

8
noi se( Pxl)

Fig. 4.3: The scenario of the first experiment. In the first image the cali-
bration is performed and the 3D object model is projected on the
image. Then the camera moved and corresponding line segments are
extracted. For comparison reasons, the initial pose is overlaid. The
diagram shows the performance comparison of different methods in
case of noisy data.

tracted image points in a virtual scenario (see figure 4.3). Then we estimate
the rigid body motion, and use the translational error between the ground
truth and the disturbed values as error measure. The result is depicted in
figure 4.3. It is easy to see, that the results, obtained with the SVD approach
are the worst ones. Instead, the Kalman filter and the twist approach have
a more stable and comparable error behavior. It is obvious, that the results
of the experiments are not much affected by the used constraints themselves.
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Fig. 4.4: Tracking a model house consisting of points and lines.

This occurs because we selected certain points directly by hand and derived
from these the line subspaces. So the quality of the line subspaces is directly
connected to the quality of the point extraction. The result of this investiga-
tion is, that for noise corresponding to a distribution function, the Kalman
filter or twist approach for pose estimation should be used. There are two
main reasons, why we further prefer the twist approach for pose estimation
instead of the EKF': Firstly, the Kalman filter is sensitive to outliers (see e.g.
figure 4.8), leading to non-converging results. Secondly, Kalman filters must
be designed for special situations or scenarios. So the design of a general
Kalman filter, dealing with different entities in a weighted manner is hard
to implement. Instead, this can be done very easily in the twist approach
since the linearized constraint equations of any entity can just be scaled and
put in one system of equations. Figure 4.4 shows results of an automatic
tracking algorithm developed and analyzed in [30]. The tracking algorithm
is a heuristic which relies upon a combination of iterative improvement and
random sampling. Iterative improvement refers to a repeated generate-and-
test principle by which the algorithm moves from an initial state to its local
optimum, see also [2]. We use this approach for self localization and robot
navigation tasks.

4.2.2 Adaptive use of pose estimation constraints

Image preprocessing algorithms sometimes enable a characterization of the
quality of extracted image data (see e.g. [9]). The resulting question is
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how to deal with noisy extracted image data. The idea to cope with this

Fig. 4.5: Different weights of constraints for pose estimation.

problem in the context of pose estimation is very simple: Every constraint
equation of an image feature describes a distance measure of the involved
entity. This constraint equation can be scaled by a factor A € IR and so it is

107
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Fig. 4.6. Comparison of the results with and without noise suppression.

possible to individually scale the weights of the equations within the whole
system of equations of an observed object. Figure 4.5 shows an example: We
have only three extracted image points and three extracted image lines at
hand (see left image). We can use both types of information separately to
estimate the pose of the object. Since we have only a few information for
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each type of correspondences, the object itself is not very well fitted to the
image data, see e.g. the upper left or lower right images. On the other hand,
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Fig. 4.7: Depth dependence of the constraints.

we can put both constraint equations in one single system of equations and
solve the unknowns by using all available image information simultaneously.
Furthermore, we are able to choose different weights of the constraints. The
change of the estimated pose is visualized in the other images of figure 4.5.
This experiment demonstrates that the presented approach enables to model
adaptive observer behavior in a cognitive manner with respect to both the
choice of image features at hand and with respect to take into account the
trustworthiness of the data.

In an other experiment we simulate the possibility of noise adaptive use
of the pose estimation constraints. For this we add a Gaussian noise on
some of the extracted image points. Although we know from the problem of
Gaussian noise modeling on the unit sphere [5], we will omit these problems
here. In this experiment we work with six image features and add on two of
them the Gaussian noise. Then we solve the constraint equations with and
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without weighting the constraints, depending on the noise level. The weights
are chosen inverse proportional to the noise level. This means that the more
noisy correspondences influence the whole result to a lesser extend. To com-
pare the pose estimation results, we use those without noise as ground truth.
We repeat the experiment for every noise level several times to get a smooth
error function and choose for every noise level the mean value. The result is
visualized in figure 4.6. It is easy to see, that we can use the constraints in
a noise adaptive manner.

Figure 4.7 visualizes the depth-dependence of the used 3D constraints.
As discussed in part I, there is a difference of building constraints in the 3D
space or in the 2D image plane: The noise in an image leads to a noise cone
in the 3D space. This effect and its correction is analyzed in figure 4.7. For
this experiment, we calibrate a scene with a model house. Then we pick out
two points of the model, put a Gaussian noise on their corresponding image
points and estimate their pose separately. The two chosen points differ in
their relative depth with respect to the image plane as can be seen in figure
4.7. Then we estimate the absolute image error. This means, the error
measure is now connected to the observation of the pose in the image plane.
The graph in figure 4.7 shows the influence of the disturbed image points to
the estimated pose and their effect on the image plane. The pixel noise of
the image point is given on the z-axis and on the y-axis the absolute pixel
error of the transformed projected object model compared with the ground
truth is shown. It can be seen that, though the image points are disturbed in
an equal manner, the result of the noisy far pixel is worse than the result of
the noisy near pixel. This effect is often discussed as disadvantage of the 3D
approach. But the possibility of noise adaptive use of the constraints is often
neglected in this context. Since the constraint equations formalize the pose
problem in an implicit manner, the constraints can be scaled with respect to
their relative depth. This is shown in the third error curve of figure 4.7.

4.2.3 Pose estimation of kinematic chains

In the next experiment (see e.g. figure 4.8), we use as more complex object
model the RX-90 robot arm [37]. Figure 4.8 shows some examples of a
sequence containing 42 images. In this image sequence the first joint is
moving in 5 degrees steps from 0 to 25 degrees. Then the second joint is
moving in 5 degrees steps from 0 to 60 degrees. This is also shown in figure
4.9. We estimate the pose of the robot and the angles of the kinematic chain
via tracked points markers. Figure 4.9 shows the joint angles estimated
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Fig. 4.8: Images of a tracked robot arm taken from a sequence with 40 images.

and overlaid with the ground truth !. Small deviations can be recognized.
Dependent on the position of the camera with respect to the object model and
the location of the joints, the estimated angles differ around 0.5 to 3 degrees to
the ground truth. In simulation environments (and ideal situations) we could
prove that (for not degenerate cases) the parameters during the iterations
converge against the ground truth. The errors we gain in these experiments
are dependent on the calibration quality, the lens distortions and the accuracy
of the color marker detection.

Figure 4.10 shows an other image sequence. There we visualize the stabil-
ity of our algorithm in the context of moved color markers which corresponds
to impossible kinematics of the robot. Two things can be seen. First, we
model the geometry of the robot within our constraints and the model will
not be distorted. Instead, the algorithm leads to a spatially best fit of the
model to the extracted image data. Second, we have no hierarchical approach
for pose estimation of piecewise rigid objects as in [12, 40] but a pose estima-
tion based on the model of a kinematic chain. Hierarchical pose estimation
means that the pose problem is separated in subproblems which are solved
sequentially. So first the whole pose (the base transformation) is estimated
and then each joint angle separately. To ensure that the model is not dis-
torted after the calculations the estimated values have to be constrained to

L Since the positioning accuracy of the robot arm is very good, we use the positioning
values of the robot arm as ground truth.



4.2. Pose Estimation Experiments 87

a0t

angle
30T

20+

steps

Fig. 4.9: Joint angles estimated and overlaid with the ground truth. The
solid lines show the ground truth and the dashed lines show the
estimated values.

the model in a second processing step. There are two main arguments why
we do not recommend this method: Firstly, the geometry of the whole object
is not modeled within the constraint equations. That necessitates the second
processing step to ensure no distorted model. This second processing step
can be avoided by modeling a kinematic chain within the constraint equa-
tions, as is done in this work or by [4]. Second, each point of a kinematic
chain contributes with two linear independent equations. Also the higher
order points of a kinematic chain influence the result of the whole pose. This
is strongly wanted in this context because only then all possible geometric
information is used simultaneously and not neglected due to redundancy of
the algorithm.

4.2.4 Simultaneous pose estimation with different kinds
of correspondences

This section concerns the use of more extended object concepts for pose
estimation. In figure 4.11 pose estimation results of an object containing
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Fig. 4.10: Stability example for disturbed color markers and visualization of
the geometry of the robot which is modeled within the constraints.

points, lines, kinematic chains and circles are presented.

In the last experiment, we use a model which contains a prismatic and a
revolute joint. In addition to the model features of figure 4.11, here we also
use a 3D sphere. The model is depicted in figure 4.12. Figure 4.13 shows
some pose estimation results of the object model. Though we measured the
size of the model by hand, the pose is accurate and also the joint parameters
are good approximated. All informations is arranged in one linear system
of equations, which leads to simultaneous solving of the pose parameters by
using all different features.
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Fig. 4.11: Pose estimation of an object, consisting of 3D points, lines, circles
and kinematic chain segments.

prismatic joint

3D sphere

revolute
joint

corner (3D point)

3D circle wedge

(3D line)

Fig. 4.12: Object model, consisting of different entities.
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Fig. 4.13: Pose estimation by using all types of model features.



5. SUMMARY AND DISCUSSION

In this part several important topics for computer vision and robotics were
discussed. First of all, we use the foundations of part I to deal with the
pose estimation problem. The framework of conformal geometric algebra en-
ables us to handle Euclidean, projective and conformal geometry by using
suitable subalgebras. We present an extended framework for pose estima-
tion of object models, which consist of different types of entities, including
points, lines, planes, circles, spheres and kinematic chains. We present effi-
cient approaches to solve the pose estimation problem numerically by using
all information simultaneously. Our experiments with monocular pose esti-
mation of kinematic chains show that this is a first step to advantageously
cope with robot vision problems [26] in an advanced algebraic way. The algo-
rithm for pose estimation of kinematic chains, compared with e.g. [4] is more
efficient since we do not build constraints in the image plane, but constraints
in the 3D space. Furthermore, we are able to use a full perspective camera
model in this context and not only an orthographic one. The equations of
different constraints are put into one system of equations for estimating the
parameters of the rigid body motion. Since each point of a kinematic chain
contributes with two linearly independent equations, also the higher order
points of kinematic chains influence the result of the whole pose. This is an
advantage over classical hierarchical approaches as recommended in [12, 40].

Instead of using invariances as an explicit formulation of ideal geome-
try, we are using implicit formulations of geometry as geometric constraints.
Since in our constraints spatial distance measures have to be minimized, we
can quite easily deal with noisy image features, inexact calibrated cameras
and noisy object model features. Because the optimization is performed with
respect to the spatial distance in Euclidean space, the task of pose estima-
tion is more simple in comparison to the minimization of distances on the
manifold of rigid body motions as performed in [38, 5].

In particular the noise adaptive use of the constraints in this context is
very interesting with respect to the design of behavior based [34] or learn-
ing robot systems. Several articles concerning the fusion of noisy data, e.g.
[13], can be compared with our approach in that respect. But we are also
interested to apply different kinds of entities with different reliabilities of
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measurements so that a system is able to adapt and to pick up the needed
information by itself. Only few works exist so far which deal with this im-
portant topic for stable running systems, e.g. [16].

We implemented the problem in C++ [19] and are able to estimate the
motion (and kinematic chain) parameters in real-time with 20 frames per
second on a SUN Ultra 10 and gain 80 fps on a Linux 2GHz machine.

Our very recent work concerns extensions of this feature based pose ap-
proach and is presented in [32]. There we use virtually coupled twists to
yield a special family of curves (so-called 3D cycloidal curves) and extend
this approach to general free-form contours.
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