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Abstract

In this thesis, we address the issue of local orientation analysis using steerable

filters. From the standpoint of the sampling theory, current orientation steerable

filters sample the spectrum of the orientation space with Dirac functions. Ac-

cording to the well known uncertainty principle, we cannot simultaneously lo-

calize a signal both in the spatial domain and in the spectral domain exactly. This

kind of uncertainty has a lower bound which can be achieved only using filters

with Gaussian shape. With respect to this criterion, current steerable filters are

not optimal because Dirac functions localize spectral components of the signal

so exactly that the spatial counterparts of these Dirac functions almost lose their

localization ability totally. As a result, we have to combine a large number of

basis filters in order to achieve high resolution in orientation, which increase the

computational complexity.

Our contribution is that we use angular Gaussian filters in constructing steer-

able filters to achieve the lower bound in the uncertainty principle. Theoreti-

cal analysis and experimental results show that this new steerable filter achieves

higher orientation resolution with lower computation complexity. These advan-

tages benefit many applications ranging from 2D/3D junction characterization,

volume image processing, facial analysis to symmetry detection, and specially

multiple motion analysis.

We analyze occlusion and transparency in detail both in the spatial domain and in

the spectral domain and propose a unified multiple motion model in the spectral

domain. Using the fact that multiple motions are equivalent to multiple planes

in the derivative space or in the frequency space, we apply our 3D steerable filter

for multiple motion estimation. We compare our approach with current motion

algorithms like the 3D Hough transform, expectation maximization algorithm,

and early 3D steerable filter approaches.

In occlusion analysis we introduce a multi-window strategy to detect and to elim-

inate outliers. This improves the quality of input data and therefore provides more

exact results in motion estimation. We further apply the “shift-and-subtract”

technique to localize occlusion boundaries and to track their movement in oc-

clusion sequences. This technique can also be used to distinguish occlusion from

transparency and to decompose transparency scenes into multi-layers.
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Chapter 1

Introduction

1.1 Local Orientation Analysis

The question “what is where?” is so trivial for human that even a five-year-old

child can provide the correct answer with no difficulty. However, it is a great

challenge hitherto to enable a machine to answer this question. The reason lies in

the fact that the vision principle of human is still elusive to us.

The goal of computer vision is to comprehend the principle of vision from a math-

ematical aspect. Computer vision, which is defined by Marr as “a computational

investigation into the human representation and processing of visual informa-

tion” [Mar82], has experienced rapid growth over the last three decades since its

foundation in the 1960’s. The themes in this area range from simple zero-crossing

technique for edge detection to object tracking and facial recognition.

Roughly speaking, computer vision falls into low-level vision and high-level vi-

sion. In the low-level vision, we detect and extract features from sensor outputs

(such as images and image sequences), while in the high-level vision, we further

analyze and process these features. Feature [Koe93], taken literally, is an entity

of distinctive characteristic. It may be brightness, color, texture, contour, shape,

topological structure, and so on. Choosing an appropriate model of features is the

foremost and the most difficult step in computer vision. A robust model should

be capable of describing features under different kinds of conditions such as the

change of illumination, the variation of view angle, and so on.
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A feature is considered with respect to its geometric neighborhood in images

or image sequences. Therefore, the geometric description of features is one of

the most important models. Being the basic geometric transforms, translation,

rotation, and scaling (dilation and shrinking) provide us the position, orientation,

and scale information, respectively.

One of the basic features in images and image sequences is orientation. It is use-

ful in pattern recognition, matching, coding, object tracking, facial analysis, and

many other areas. Thus, it is very meaningful to extract orientation information

accurately and efficiently. In this thesis, we address the problem of local orienta-

tion analysis and propose a new approach to improve current orientation analysis

methods.

1.2 Steerable Filters

In order to analyze orientation, we need a set of filters pointing to different direc-

tions. Hence, the Laplace operator or tensor based approaches, providing only

the gradient direction or main axis of the signal structure, are not sufficient. More-

over, elongation of the filter shapes is necessary to achieve fine resolution in the

orientation space. But these requirements usually result in enormous complexity

of computation.

Based on the inherent relation among differently deformed versions of the same

filter with respect to the deformation parameters, Freeman and Adelson [FA91]

and other people resorted to steerable filters to alleviate the computational com-

plexity. The steerability of a filter means that all deformed versions of this filter

can be expressed or approximated as a linear combination of a finite number of

basis filters. Because we can exchange the order of linear combination and convo-

lution, the responses of a whole set of deformed filters can be expressed as a linear

combination of the responses of basis filters. The less number of the basis filters,

the less complexity of the computation. This principle is shown in figure 1.1.

Many areas such as image analysis, motion estimation, computer graphics, and

pattern recognition [Teo98] benefit from this new filter.
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Figure 1.1: The principle of steerable filter (redrawn from [FA91]). The response of the

synthesized filter at an arbitrary orientation can be calculated as a linear combination of

the basis filter outputs. The basis filter outputs are weighted by functions of orientation

parameters.

1.3 Our Contributions

The concept of steerability is actually another representation of signal decom-

position theory if we consider the orientation parameters in steerable filters as

variables. Besides, it is very much related to the sampling theory. In this thesis,

we propose a new kind of steerable filter both in 2D space and in 3D space. This

new filter substitutes the global decomposition principle used in current steer-

able filters with the local decomposition principle in order to reduce the redun-

dancy among different basis filters. Specially, we use angular Gaussian functions

to achieve the lower bound in the uncertainty principle [Gab46, Dau85]. There-

fore, it is natural that the performance of our filter is superior to that of current

steerable filters in achieving higher orientation resolution with lower complexity.

In this thesis,� we apply the steerable filters in different orientation analysis tasks such as

2D junction characterization, facial analysis, 3D volume data processing,

and multiple motion estimation.� We show that a non-orthogonal basis may provide better performance than
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an orthogonal basis in feature extraction.� We compare our approach with other orientation analysis approaches and

parameter estimation algorithms such as the tensor approach, Hough trans-

form, expectation maximization (EM) algorithm, the 3D orientation his-

togram, and spherical wavelets.� We provide a detailed analysis of multiple motions including occlusion and

transparency and review current multiple motion estimation techniques.

We specially compare the spatial motion model with the spectral motion

model and point out their advantages as well as disadvantages. In occlu-

sion analysis, we introduce a multi-window strategy to treat outliers near

occlusion boundaries. We further use the “shift-and-subtract” technique to

localize occlusion boundaries in one frame and to track their movement in

occlusion sequences.

1.4 Outline of the Thesis

Chapter 2 begins with a review of current 2D orientation steerable filters. After

pointing out their drawbacks from the point of view of uncertainty principle,

we present a new 2D orientation steerable filter based on the angular Gaussian

function. Then comes a theoretical analysis of the advantages of our filter. After

that we further build a polar pyramid to treat the orientation scale variation. In

the experiment section, we confirm the superior performance of our filter using

both synthetic and real examples.

In chapter 3 we extend the new steerable filter from 2D space to 3D space, where

only a few steerable filters are available hitherto. We confirm the advantage of

our filter with the filter shape comparison and a simple example. For the sake of

multiple motion estimation we discuss the filter responses of 3D planes in detail.

After some application examples of 3D volume data processing, we analyze our

filter in a broader background and develop a discussion of the relevance of our

filter to 3D orientation histogram, surface tessellation, and spherical wavelets.

The main topic of chapter 4 is the application of 3D steerable filter in multiple

motion analysis. At first, the state of the art of current research is provided in

a review of multiple motion models and algorithms. We go on to analyze the
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spatial and spectral properties of both occlusion and transparency to obtain a

deeper understanding of multiple motions. After the comparison between the

spatial model and the spectral model we come to the conclusions that� the spatial model can treat only occlusion, while the spectral model treats

both occlusion and transparency;� we prefer the spatial model for occlusion analysis because the spatial model

has finer resolution and needs much less frames.

Then, we point out that our 3D filter outperforms existing 3D Hough transform

and expectation maximization algorithm. Further, in occlusion analysis, a multi-

window technique is introduced to improve the quality of input data for a better

estimation. After obtaining motion parameters we use the “shift-and-subtract”

technique instead of explicit boundary models to localize occlusion boundaries

and to track their movement. In the experiment section we show that the “shift-

and-subtract” technique has better performance than current boundary models

and it can also be used to decompose transparency scenes into multi-layer repre-

sentations.

The thesis is summarized in chapter 5.
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Chapter 2

2D Orientation Steerability

Abstract

Junctions are significant features in images whose intensity variations exhibit

multiple orientations. This makes the detection and characterization of junctions

a challenging problem. In this chapter, we deal with the characterization of junc-

tions which would ideally be the response of a filter at every orientation. This

can be achieved by the principle of steerability that enables the decomposition of

a filter into a linear combination of basis functions. However, current steerability

approaches suffer from the consequences of the uncertainty principle: In order

to achieve high resolution in orientation, they need a large number of basis fil-

ters, thus increasing the computational complexity. Furthermore, these functions

usually have a wide support which accentuates the computational burden.

In this chapter, we propose a novel alternative to current steerability approaches.

It is based on utilizing a set of polar separable filters with small support to sample

orientation space locally. The orientation signature is then obtained by interpolat-

ing these samples using Gaussian functions. Compared with current steerability

techniques, our approach achieves a higher orientation resolution with a lower

complexity. In addition, we further build a polar pyramid to characterize junc-

tions of arbitrary inherent orientation scales.
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2.1 Introduction

Junctions of gray-value lines or edges carry important information for many im-

age processing tasks like point matching in object recognition, point tracking in

motion analysis, attentive coding, and line-drawing interpolation [Nal93]. In or-

der to use junctions for such tasks, we must be able to localize their correspond-

ing keypoints which are defined as intersection points of lines or edges. Then, we

must characterize junctions by means of signatures and classify them in junction

categories. Regarding keypoint detection and localization the reader is referred

to [För94, Kov96, RO97, PGH98, FS00] and to the comparison of different opera-

tors by Rohr [Roh92, Roh97]. In this chapter, we address the problem of junction

characterization. The resulting signature can be used for further junction classifi-

cation.

Junctions are local structures with multiple intrinsic orientations and multiple

spatial scales [BW93]. For the purpose of characterization we project them onto

the orientation space and build a 1D signature function of the orientation param-

eter. Such signatures are often obtained by applying a set of filters at different ori-

entations. This leads to an enormous computational load. For example, in order

to extract orientation information of a junction, with conventional filter methods

we have to rotate the same filter around the keypoint repeatedly. For an angular

field of 360Æ and a sampling interval of 5Æ already 72 rotated copies of the orig-

inal filter should be applied. The concept of steerability has been introduced in

order to reduce this explosion of computational complexity. Steerable filters also

provide an analytic model of deformations for further analysis of the grey-value

structure [FA91, Bei94, GBG+94, Per95, FP98, MPS98].

Denoting with � 2 IR the deformation parameter, we define a filter F (x) withx 2 IRn as a steerable filter if its deformed versions F�(x) can be expressed as

[MS95] F�(x) = NXk=1 bk(�) Ak(x); (2.1)

where Ak(x) and bk(�) are referred to as basis filters and interpolation functions,

respectively. For example, the deformed versions of the first derivative of 2D

Gaussian function g�1 (x; y) (figure 2.1) can be written asg�1 (x; y) = os(�) g0Æ1 (x; y) + sin(�) g90Æ1 (x; y); (2.2)
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with � denoting the angle between the axis through the filter lobes and x axis.

Here g0Æ1 (x; y) denotes the first derivative of Gaussian pointing to horizontal di-

rection and g90Æ1 (x; y) is a copy of g0Æ1 (x; y) rotated by 90Æ.
= os(�) + sin(�)

g�1 (x; y)(� = 30Æ) g0Æ1 (x; y) g90Æ1 (x; y)
Figure 2.1: One example of steerability using the first derivative of 2D Gaussian func-

tion. Here g0Æ1 (x; y) denotes the first derivative of Gaussian pointing to horizontal direc-

tion and g90Æ1 (x; y) is a copy of g0Æ1 (x; y) rotated by 90Æ. (reproduced from [FA91]).

The signature s(�) of a junction can be obtained by applying such a steerable filter

on the image I(x): s(�) := hF�(x)jI(x)i = NXk=1 kbk(�) (2.3)

with k := hAk(~x)jI(~x)i:
Here h�j�i denotes the usual inner product for two real functions F (x) and G(x):hF (x)jG(x)i := Zx F (x)G(x) dx:
We see the motivation of steerability clearly in equation (2.3): The responses of

the filters F�(x) with � 2 IR are expressed as a linear combination of N basis filter

responses.

According to our opinion, steerability approaches may be classified in exact and

approximate methods. Although steerability was implicitly used by Danielsson

and Knutsson [Dan80, KG83], Freeman and Adelson [FA91] were the first who

coined the concept and introduced an exact steerability approach. Freeman’s and

Adelson’s approach to orientation steerability of a Gaussian derivative is an in-

terpolation using harmonic functions in the orientation space given the fact that



10 CHAPTER 2. 2D ORIENTATION STEERABILITY

a filter is periodic with respect to orientation. The basis functions are rotated

copies of the original filter. In [FA91] the derived kernels do not possess suffi-

cient orientation resolution due to their large support in the orientation space (the

orientation resolution of a filter can be measured by its angular support). More-

over, they are either symmetric or antisymmetric with respect to the mask center

[SF96]. This results in a period of 180Æ in orientation and leads to an ambiguity in

responses between terminating and non-terminating junctions [MS94].

Simoncelli et al. [SFAH92] extended this concept to include dilation and trans-

lation. They proposed some conditions upon which a filter is guaranteed to be

exactly steerable, i.e. a filter can be synthesized with finite components from the

Fourier basis. Recently, Simoncelli and Farid [SF96] designed a steerable wedge

filter of which radial component looks like a wedge. Regarding the angular di-

rection, they do not first choose one filter with expected shape and then project

it onto the Fourier basis. Instead, they first choose finite components from the

Fourier basis and then synthesize the filter only using these components. There-

fore, their filter is guaranteed to be band limited and exactly steerable. Besides,

the shape of the wedge filter can be adjusted to be arbitrarily narrow if they adopt

adequate Fourier components. There is no more symmetric ambiguity applying

a steerable wedge filter because the wedge kernel is asymmetric with respect to

the mask center.

Michaelis and Sommer [MS95] and Teo and Hel Or [TO98, OT98, TO99] provided

the formal justification of the exact steerability by applying Lie group theory.

The basic concept of exact steerability is the shiftability [SFAH92]: Every peri-

odic band-limited function can be approximated at every position (“shift”) with

a finite linear combination of harmonic functions. In this sense, orientation and

scaling become translations if we apply a logarithmic-polar transformation to a

function with two arguments. Lie group theory gives us the theoretical frame-

work for this transformation and for the exact interpolation. The complex har-

monics ej!k are the generating operators of translation. On the other hand, all

one-parameter Lie groups are locally isomorphic to the translation group if we

change the coordinates to so called canonical coordinates, for example, Cartesian

to polar coordinates for rotations. Thus, for every deformation we achieve ex-

act steerability if we transform the coordinates to canonical ones and then apply

Fourier analysis. Teo and Hel Or list a complete classification of functions steer-

able with respect to any Abelian group.
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Perona [Per92] introduced the concept of deformable kernels which is based on

the minimization of the discrepancy between the left-hand side and the right-

hand side of equation (2.1) with respect to the basis functions Ak(x). He showed

that the basis functions are columns of the right orthonormal matrix of a continu-

ous singular value decomposition (SVD). In case of rotation and periodic transla-

tion it is proved [Mic95] that the basis functions are the same in both the deforma-

bility and the exact Lie group based steerability. However, for other deformations

the functions must be sampled with respect to the deformation parameter and a

numerical SVD is applied [SMH98]. The advantage of the deformability approach

is that it steers continuous as well as discrete filters and needs a minimal num-

ber of basis functions given a fixed error. However, orientation resolution is not

addressed in this approach so that usually this approach suffers from the uncer-

tainty constraint. Since we are interested only in orientation, both approaches

yield the same set of basis functions. Therefore, from now on, we will use the

term “exact steerability” for both approaches to orientation steerability.

The steerability problem may be also considered as a problem of signal recon-

struction from samples k(k = 1; � � � ; N) (see equation (2.3)). This becomes evi-

dent if we consider the parameter � in equation (2.3) as the spatial variable. For

clarity we change the notation to �:s(�) = NXk=1 k bk(�): (2.4)

Here the interpolation functions bk(�) may stem from many function classes, for

example Laguerre functions or Legendre polynomials ([OS75], pp. 29-30). In cur-

rent orientation steerability approaches bk(�) are usually the complex harmonicsej!k�, yielding s(�) = NXk=1 kej!k�: (2.5)

Note that !k are not necessarily the first N frequencies as in the standard Fourier

decompositions.

In this chapter, we will consider the following topics:� We point out that the exact approach to orientation steerability has insuffi-

cient orientation resolution because it is based on the sampling of the angu-
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lar frequency using Dirac functions. To achieve a high orientation resolu-

tion, a huge number of filters must be used. This computational burden is

amplified by the large support of the basis functions.� We will introduce a new approximation approach based on angular Gaus-

sian functions. This approach might be non-optimal with respect to the ap-

proximation error, but substantially alleviates the above problems as shown

in theory and experiments.

We extend this approach to an efficient hierarchical scheme and provide a com-

plete analysis of computational complexity. Thus, by considering only the prob-

lem of orientation steerability, we sacrifice a coherent algebraic theory (as in Lie

group and SVD-based deformability approaches) to achieve high orientation res-

olution as well as a dramatical decrease of the computational complexity.

This chapter is organized as follows: In section 2 we introduce the new steerabil-

ity approach based on angular Gaussian functions and point out the theoretical

difference between our approach and current steerability approaches. Besides,

we analyze their computational complexity in detail. In section 3 we further in-

troduce a polar pyramid scheme to treat orientation scale variations. Then we

present experimental results on both synthetic and real data which vividly show

the superior performance of our approach. This chapter is concluded with a short

discussion.

2.2 2D Local Orientation Analysis

Definition of Our Steerable Filter

In the study of local orientation, we first conduct a local polar transformation of

the image from Cartesian to the polar coordinate system and denote the new in-

tensity function with I(r; �), where r and � are the radius and angle, respectively.

Since we are merely interested in orientation, we eliminate the radial variable r by

applying averaging along the radial direction. In order to obtain high orientation

resolution, we are interested in filters with narrow angular support. We choose

shifted Gaussian wedge functions as basis filters to sample the orientation space
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Figure 2.2: A Gaussian wedge mask centered at angle �k. Darker pixels represent larger

weights. Left: The mask in the Cartesian coordinate system. The keypoint is at the center

of the circle. Right: The mask with r and � as coordinates, Rmax and Rmin are radial

boundaries of the mask, W is the angle width of the mask. We set Rmin > 0 to avoid the

confusion close to the keypoint.

locally Ak := G0(D(�; �k))N (Rmin; Rmax; �k) ; (2.6)

with �k distributed evenly along the axis of the orientation variable �. HereN (Rmin; Rmax; �k) is an averaging factor along the radial direction which is the

sum of discrete weights inside the basis filter mask centered at �k. We denote

with G0(D(�; �k)) the angular Gaussian function centered at �kG0(D(�; �k)) := 1p2��e� (D(�;�k))22�2 ; (2.7)

where � denotes the scale of the Gaussian function. Since � and �k are circular

angles (�; �k 2 [0; 2�℄), we define D(�) to represent the minimal circular difference

between � and �kD(�; �k) := min(j� � �kj; j� � �k � 2�j; j� � �k + 2�j): (2.8)

For example, D(2�; 0) = 0; D((359�180 ); �180) = �90 . Theoretically, a Gaussian function

is not compactly supported. Thus, in implementation we only consider the part

of G0(D(�; �k)) whose variable varies from �k � W2 to �k + W2 (see equation (2.12)).

Here W denotes the angular width of the basis filter. We will explain the choice

of this parameter in section 3. In figure 2.2 we show a basis filter centered at �k,
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where Rmin and Rmax denote inner and outer boundary of the mask, respectively.

We set Rmin > 0 to avoid the singularity close to the keypoint [MS94]. In order

to choose Rmax we must know the size of the significant neighborhood around

the keypoint, which can be provided by the preceding keypoint detection step

[För94, RO97]. In this chapter, we set Rmin = 3 pixels and Rmax varies from 9 to 15
pixels.

After defining basis filters, we must interpolate them to build the whole set of

steerable filter g(�). Taking the local property of basis filters into account, we

choose angular Gaussian function with narrow support instead of complex har-

monics as the interpolation functionbk(�) := G0(D(�; �k)): (2.9)

Thus, we construct a continuous steerable filter using Gaussian interpolation func-

tions g(�) := MXk=1 Ak G0(D(�; �k)): (2.10)

In this new steerability approach, the neighboring basis filters as well as the

interpolation functions are locally correlated and therefore non-orthogonal. To

achieve optimal steerability we would have to apply a non-linear operator to es-

timate the coefficients of the interpolation function. Instead we use a linear op-

erator and achieve an approximate steerability which approaches optimality with

decreasing support and thus increasing orthogonality of the Gaussians. Approxi-

mating a function with a sum of Gaussians is a well-known method with proper-

ties extensively described in the Radial Basis Function approximation proposed

by Poggio and Girosi [PG90]. If we ignore the penalty term in [PG90] enforc-

ing smoothness our approach becomes the closer to the RBF approach when our

Gaussians overlap minimally each other. To increase approximation optimality,

the centers of the Gaussians can be estimated in [PG90], whereas in our approach

they overlap with the pre-chosen samples of the unknown signature.

Applying this new steerable filter on the intensity function I(r; �), we obtain the

orientation signature S(�) S(�) := MXk=1 k G0(D(�; �k)); (2.11)



2.2. 2D LOCAL ORIENTATION ANALYSIS 15

wherek := hAkjI(r; �)i = �k+W2X�=�k�W2 G0(D(�; �k)) RmaxXr=Rmin I(r; �)N (Rmin; Rmax; �k) : (2.12)

In the orientation signature S(�) local extremes represent orientations of lines and

the positions of steepest descent or ascent indicate orientations of edges. Corre-

spondingly, the 2D orientation analysis reduces into 1D line/edge detection. In

order to extract edge information, we estimate the derivative of S(�) and consider

the amplitude of the derivative as another signatureDS(�) := j dd�S(�) j= j MXk=1 k dd�G0(D(�; �k)) j= j MXk=1 k G1(D(�; �k)) j; (2.13)

where G1(D(�; �k)) denotes the first derivative of Gaussian filter G0 and j � j de-

notes the absolute value. Here, we are only interested in the amplitude of the

derivative. We point out here that S(�) and DS(�) cannot constitute a quadra-

ture pair because DS(�) is not the Hilbert transform of S(�). Such a pair would

have significant energy on the negative frequencies and the estimated magnitude

would be phase-dependent. To characterize junctions, we are not interested in a

phase-independent magnitude response because we want to know which orien-

tation responses are closer to an edge and which are closer to line. Therefore, we

obtain two separate signatures from S(�) and DS(�), for lines and edges, respec-

tively.

So far, we have defined the approximate steerability. In the following, we will

compare this approach with current steerability approaches regarding the math-

ematical background and the implementation performance.

Difference to Exact Steerability

The main difference between our approach and the exact steerability is that we

decompose one signal locally in the spatial domain, whereas exact approaches de-

compose the signal globally. This difference lies in both the basis filters and the
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interpolation functions: First, in order to calculate the response of a basis filter

(see equation (2.5) and equation (2.12)), we need a Gaussian mask with local spa-

tial support in the approximate steerability, while in the exact steerability every

basis filter has the same wide spatial support as the steered filter (as shown in

figure 2.3). Second, in order to obtain the signature values at an arbitrarily fixed

orientation, we only need to interpolate several neighboring basis filter responses

with Gaussian functions in the approximate steerability (equation (2.11)), while

in the exact steerability we must interpolate all basis filter responses with the

complex harmonics functions (equation (2.5)).

}N

Image Image

}M

Figure 2.3: Basis filter comparison. Left: N Basis filters of current steerable filters. Each

basis filter has the same large spatial support as the steered filter. Right: Our basis filters.

Their spatial support is much smaller.

This difference can be described in the spectral domain as well. In the approx-

imate steerability (equation (2.11)), the spectrum of a filter response is decom-

posed into a set of spectral Gabor functions (shifted Gaussian functions in the

spatial domain) weighted by basis filter responses kF [S(�)℄ := MXk=1 k F [G0(� � �k)℄ = MXk=1 k F [G0(�)℄e�j!�k ; (2.14)

where F denotes the Fourier transform. In contrast, in the exact steerability, the

spectrum of a filter response (equation (2.5)) is decomposed into a series of Dirac

sampling functions weighted by the corresponding basis filter responsesF [s(�)℄ = NXk=1 k Æ(! � !k): (2.15)

This formula describes also the behavior of the exact approaches using rotated

filter copies as basis functions. The proof of the steerability using rotated copies

is based on the fact that a function is written as a Fourier series with respect to
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the angle (see equation (9) in [FA91]). Equation (2.15) is the expression of this fact

in the frequency domain. Note that in equation (2.15) the term an(r) in [FA91] is

replaced by k since we consider the filter response here.

Thus, in the case of approximate steerability we sample the signal in the spatial

domain with Gaussian masks, whereas in the exact steerability the signal is sam-

pled in the spectral domain by Dirac sampling functions. This difference makes

our approach perform better with respect to orientation resolution. According

to the well known uncertainty principle, we cannot simultaneously localize one

signal both in the spatial domain and in the spectral domain exactly. If we use

one Dirac sampling function to localize one spectral component of the signal ex-

actly, as in the case of the exact orientation steerability, we will no more be able

to localize this component in the spatial domain. Therefore, we need many Dirac

impulses to increase the localization capability in space. This trade-off can be op-

timized by applying functions with Gaussian shape [Dau85]. Therefore, the ap-

proximate steerability has better properties with respect to the uncertainty prin-

ciple.

To summarize, our main concern is high orientation resolution with low com-

plexity. To achieve this goal, we directly built our filter in the spatial domain. The

price we pay is that we do not achieve exact steerability but an approximation of

the orientation response.

Complexity Analysis

Approximate steerability achieves a higher orientation resolution with a lower

complexity due to the narrower angular support of the basis filters and the local

interpolation functions. Our approach starts with a local polar mapping which

can be done “off-line” since it is a transform between coordinates and is therefore

valid for all different images. Online applying the resulting look-up-table (LUT)

is of negligible complexity compared with calculating the filter responses.

In order to compare the implementation complexity of the approximate steerabil-

ity and that of the exact approach we set the radial extensions of masks in both

schemes to be the same. If we denote with P the 1D grid size of an exactly steer-

able filter, the following relation is satisfied: P = 2Rmax + 1. This relation is

displayed in figure 2.4 as well.
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Rmax

}. }P = maxR2 + 1

P

P

Figure 2.4: In order to have the same radial extension of filter masks in exact steerability

and in our approach, we have the relation P = 2 Rmax + 1, where P is the 1D grid size

of an exactly steerable filter and Rmax is the outer boundary of our steerable filter.

Here we choose the steerable wedge filter [SF96] for comparison since its shape

is similar to the shape of our filter. The steerable wedge filter is a polar separa-

ble filter. Its radial component looks like a wedge and its angular component is

synthesized by the Fourier series. Its computational complexity is proportional

to the number and the spatial support of basis filters. In order to make a fair

comparison we apply it after the local polar mapping, too.

It should be noticed that there is an essential difference between scalar product

and convolution. In calculating scalar product we do not shift the filter mask,

while in calculating convolution we shift the filter mask and calculate the cor-

responding scalar product repeatedly. Accordingly, in calculating convolution

we can shift a separable filter mask separately and use two successive 1D convo-

lutions to replace the 2D convolution. Then we need not to calculate the local

2D scalar products at every position in the image and can therefore benefit from

the separability of the filter mask. Actually, our filter is also polar separable like

the steerable wedge filter. Therefore, both filters have the advantage mentioned

above in case of convolution. Of course we must also consider the extra compu-

tation cost of undertaking Cartesian to polar and polar to Cartesian coordinate

transformation if we would like to use the polar separability.

In this paper, we only use the scalar product and the separability is no more

an advantage. In calculating the scalar product between an image region and

a filter mask, every pixel inside the image region should be weighted with the

corresponding element in the filter mask once and only once. Thus, for a P � P
image region and a P � P filter mask we need P 2 multiplications and additions

whether or not this filter mask is separable.
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Suppose we apply a steerable wedge filter composed of 2N basis filters (N odd

basis filters and N even basis filters), as mentioned above, all basis filters have

the same spatial support as the steered filter. Therefore, the 1D size of all basis

filters is P , too. In order to apply one basis filter, we need P 2 multiplications

and additions to calculate the corresponding scalar product. Straightforwardly,2NP 2 multiplications and additions are required to obtain 2N coefficients (see

equation (2.3)). Assuming that we use signatures of length L, we need 2NL mul-

tiplications and additions to obtain outputs of odd and even filters. Thus, totally2N(P 2+L) multiplications and additions are computed to implement a steerable

wedge filter composed of N odd basis filters and N even basis filters. Here, for

the sake of a fair comparison, we do not consider the computational load to form

the energy output because in our approach we do not use the energy output.

In our approach, the computational load is determined by the number and the

angular width of Gaussian functions. In order to sample the whole orientation

space with a sampling interval Æ�, we need totally M = LÆ� basis filters. NoteL and Æ� should have the same length unit. Here we use degree as the unit.

According to the well known Shannon’s Sampling Theorem, we determine the

corresponding Nyquist frequency fm withfm = 12 Æ� : (2.16)

In our approach, we choose Gaussian masks instead of Dirac functions as sam-

pling masks along the angular direction. This is equivalent to Dirac series (the

shah function III(�) [Bra86]) convolved with a Gaussian function. Correspond-

ingly, the spectrum of the ideal sampling will be further multiplied by a low pass

filter with Gaussian shape. The stop frequency of this low pass filter is deter-

mined by the term 12� (here we define the turning frequency of the Gaussian

function 12� as the stop frequency). This stop frequency is preferred to be not

below the Nyquist frequency fm12 � � fm = 12 Æ� ; hence � � Æ�: (2.17)

On one hand, we should set the sampling interval Æ� small in order to have high

Nyquist frequency. In this chapter we use Æ� = 1Æ. On the other hand, the fil-

ter mask should contain adequate pixels to calculate averaging values robustly.

Therefore, we set � = Æ� to achieve a compromise between these two contradic-

tory requirements. Theoretically, a Gaussian function is not compactly supported.
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Thus, we must cut off its support to build an FIR-filter. It is easy to show that,

in order to keep the energy of the cut-off area below 1% of the total energy, the

angular width of the sampling mask W must be at least 5 �. In this chapter, we

set W = 6 �.
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Figure 2.5: Complexity comparison between the exact steerability and the approximate

steerability. We set the length of the signature as L = 360. The dotted curves represent

the complexity of exactly steerable filters composed of N odd basis filters and N even basis

filters with P as 1D grid size. The solid lines show the relation between complexity and

the sampling interval Æ� and P in computation of S(�) and DS(�) in our approach. We

see that the approximate steerability is more efficient than the exact steerability, especially

in the case of high orientation resolution and large filter size.

We use M = LÆ� sampling masks to obtain angular samples Ak (k = 1; � � � ;M).
On an average we have at most W360 � (R2max � R2min) < W360P 2 pixels in one sam-

pling mask. In order to analyze the upper limit of the complexity, we assume

that in every sampling mask there are W360P 2 pixels. Correspondingly, we needW360P 2 multiplications and additions to calculate one angular sampling. Taking

into account that W = 6 Æ�, we need totally M W360P 2 = 6L360P 2 multiplications and

additions to obtain M samples. In constructing S(�) or DS(�), we apply a Gaus-

sian function and its first derivative, respectively, with the angular width W as

interpolation functions. In order to produce the signatures with the same length
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and additions to build each one of both signatures S(�) and DS(�). Thus, totally

we need 6L360P 2 + 2LW = 6L ( P 2360 + 2 Æ�) multiplications and additions to obtainS(�) and DS(�) in the case of approximate steerability.

In figure 2.5 we plot an example of the complexity comparison of both approaches

by setting L = 360. In the approximate steerability the parameter Æ� plays a very

important role. Here, Æ� denotes not only the sampling interval, but also the

angular support of basis filters because we set � = Æ� and W = 6 �. In order

to achieve higher orientation resolution, we set Æ� smaller so that the basis filters

have narrower angular support. It is interesting to observe that the computational

load using basis filters with narrower angular support is even lower than that

using basis filters with broader angular support. This is precisely contrary to the

tendency in the exact steerability, where the computational load increases when

we use more basis filters to achieve higher orientation resolution. This sharp

contrast demonstrates the merit of the approximate steerability vividly.

We also observe that, in the approximate steerability, the increase of the compu-

tational load with respect to the filter size P is not as strong as that in the exact

steerability. By watching the corresponding computational load more closely, we

find out that, though the computational load in both steerability approaches is

proportional to P 2, the coefficient of P 2 in the approximate steerability is much

less than the coefficient in the exact steerability. Thus, if the filter mask is large,

the approximate steerability is even more efficient than the exact steerability.

2.3 Junction Characterization Using Polar Pyramid

The orientation scale problem is like every scale problem a trade-off between the

intrinsic structure of a junction and the orientation scale of a filter. As shown

in figure 2.6, if the orientation scale of a filter is too small, a blurred edge is not

visible and a wide line will be recognized as two edges [MS94]. If the orientation

scale of a filter is too large, two very close lines will be characterized as one line. In

this section, we introduce a polar pyramid to obtain signatures of different scales

efficiently. Here we do not treat the problem of steering spatial scale. Regarding

the steerability of spatial scale the reader is referred to [Per95, Mic95].
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Figure 2.6: A junction composed of two close lines with distance of 1 pixel, two edges

blurred by a Gaussian function with � = 4 and a wide line with a width of 6 pixels.

It is known that one of the most appealing kernels for hierarchical approaches

is the Gaussian function [BWBD86]. We know from spatial scale theory that the

choice of scale necessitates a hierarchical treatment. Burt and Adelson [BA83]

proved that a generating kernel of subsampling can be used as the interpolation

function for reconstruction from coarser scales. Moreover, they argued that the

interpolation functions can be (discrete approximations of) Gaussian functions

with different scales (figure 2.7). Thus, the continuous orientation information

can be reconstructed from all levels of the polar pyramid by interpolating the

samples Ŝj(�k) with Gaussian functions Gj0(D(�; �k)) of different scales �jSj(�) =Xk Ŝj(�k) Gj0(D(�; �k)); j 2 [1; 2; � � � ℄ (2.18)

with Gj0(D(�; �k)) = 1p2��j e� (D(�;�k))22�2j ; j 2 [1; 2; � � � ℄; (2.19)

where Ŝj(�k) denote the samples on the j-th level of the polar pyramid and Sj(�)
represents the signature reconstructed from Ŝj(�k). We can obtain edge signatures

similarly withDSj(�) =jXk Ŝj(�k) Gj1(D(�; �k)) j; j 2 [1; 2; � � � ℄; (2.20)

where Gj1(D(�; �k)) is the first derivative of Gj0(D(�; �k)). The local maxima inSj(�) and DSj(�) denote orientations of lines and edges at different scales, re-

spectively.
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Figure 2.7: Left: Polar pyramid structure, Ŝ(�k) are samples on the lowest level of the

polar pyramid, namely the outputs of Gaussian basis filters. Ŝj(�k)(j = 1; 2; 3) are

samples on the higher levels of the pyramid after subsampling with the generating kernelK2 of equation (2.23). Right: Corresponding interpolation functions at different levels.

They are Gaussian functions with different scales.

If we want to build a pure 1D one-octave Gaussian pyramid of angles, according

to [BA83] we should have Q2J + 1 samples, where J is the number of levels andQ + 1 is the number of samples at the highest level. Taking the periodicity into

account, we should have Q2J samples as the sampling outputs. However, since

initially the orientation signal is defined as 360 discrete values, we cannot build a

pure octave Gaussian pyramid. Alternatively, we apply a factor 2 subsampling of

the first three levels, a factor 3 at the next two, and have 5 samples at the coarsest

level (360 = 23 � 32 � 5). Let us denote with Ki(n) the n-th coefficient of the FIR

filter in the i-th pyramid layer. According to [BA83] the generating kernels with

subsampling factor i should be normalized2i+1Xn=1 Ki(n) = 1; i 2 [2; � � � ℄ (2.21)

and symmetricKi(n) = Ki(2i+ 1� (n� 1)); n 2 [1; � � � ; i+ 1℄: (2.22)
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Moreover, every sample at a given level should make equal contributions to con-

struct the next higher level. The contributions of one sample are weighted by the

corresponding coefficients of the generating kernels. Equal contributions imply

that the sum of all its connected elements in the generating kernels should be a

constant.

As mentioned in [BA83], the generating kernels satisfying the above constraints

should have Gaussian shape. We use the following discrete approximations of

Gaussian functions to serve as generating kernels with subsampling factor 2, 3
and 5 K2 = 116 � 1 4 6 4 1 � ; (2.23)K3 = 1264 � 3 22 66 82 66 22 3 � ; (2.24)K5 = 15120 � 1 74 299 725 950 1022 950 725 299 74 1 � : (2.25)

2.4 Experiments

Synthetic Junction Examples

In this section, we illustrate some examples of junction characterization using the

new steerability and its hierarchical version. In figure 2.8 and figure 2.9 synthetic

line junctions and edge junctions are shown. The corresponding signatures S(�)
and DS(�) characterize them correctly. The small deviations in figure 2.9 come

from the fact that an edge can only be represented by two pixels in the grid, while

we cannot set the center of a filter mask between two pixels.

The robustness of our method against noise is shown in figure 2.10. The edge

junction is disturbed with increasing random noise. Even in the very noisy case

the junction is well characterized. The keypoints in figure 2.11 are deviated from

the central positions of the masks. Though the signatures have some variations,

we can still characterize the junctions.

In figure 2.12 we compare the performance of both steerability approaches. A

complex junction called “Siemens star” with 16 edges spans the orientation space
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Figure 2.8: Top: Different synthetic line junctions including a terminating line as well

as ‘L’, ‘Y’, and ‘K’ junction. Bottom: Corresponding orientation signatures S(�). We

use the following parameters: Rmin = 3; Rmax = 15.
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Figure 2.9: Top: Synthetic edge junctions. Bottom: DS(�). The local maxima show the

orientation of edges. Rmin = 3, Rmax = 15.

uniformly. Applying the steerable wedge filter, we even have to use 90 basis fil-

ters to achieve the same orientation resolution as applying our approximately

steerable filter. Consequently, we need about eleven times as many multiplica-
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Figure 2.10: Top: A synthetic edge junction disturbed by four increasing levels of ran-

dom noise. Bottom: Corresponding DS(�). Even in the very noisy case (SNR = 0dB)

the signature can characterize the junction. Rmin = 3, Rmax = 15.
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Figure 2.11: Top: Deviation of the keypoint from the central position of the mask. Bot-

tom: DS(�). Rmin = 3; Rmax = 15.

tions and additions using the steerable wedge filter as using our steerable filter.

This demonstrates the advantages of the local decomposition scheme in the ap-

proximate steerability.
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A: Star  B: 2N=46 C: 2N=90  D: DS( θ)
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Figure 2.12: A: A “Siemens star” with 16 edges spanning uniformly the orientation

space. B: Polar plot of the result using the steerable wedge filter [SF96] composed of 46

basis filters with 31 grid size. Totally 60766 multiplications and additions are needed.

The edges are hardly discernible. C: The same as in B but using 90 basis filters with118890 multiplications and additions. The orientations of the edges are clearly presented.

D: DS(�) using the Gaussian averaging steerable filter. We compute only 10086 multi-

plications and additions to achieve the same resolution.

Figure 2.13 is an example to solve the orientation scale problem applying a polar

pyramid. The junction is composed of two blurred edges, a wide line and two

close lines (see figure 2.6 for details). We use a polar pyramid with four levels to

characterize it. With the increase of the pyramid level, the orientation of the wide

line and blurred edges are characterized more and more distinctly. However, in

the meantime, the responses of two close lines seem more and more like one line.

This is exactly the demonstration of orientation scale problem.



28 CHAPTER 2. 2D ORIENTATION STEERABILITY

S(θ)

90

270

180 0

S1(θ)

90

270

180 0

S2(θ)

90

270

180 0

S3(θ)

90

270

180 0

DS(θ)

90

270

180 0

DS1(θ)

90

270

180 0

DS2(θ)

90

270

180 0

DS3(θ)

90

270

180 0

Figure 2.13: Characterizing the junction shown in figure 2.6 using the polar pyramid.

Top: The characterizing signatures reconstructed from the first four levels of the polar

pyramid: S(�), S1(�), S2(�), and S3(�). The wide line is distinctly characterized inS3(�). But two close lines are also recognized as one line. Bottom: CorrespondingDS(�), DS1(�), DS2(�), and DS3(�). The blurred edges are presented more and more

clearly with the increase of pyramid level. The neighboring boundaries of two close lines

near 180Æ can be seen only at the first two levels. At the third and the fourth scale levels,

only outer boundaries of these two lines are recognized.
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Real Examples

We have observed the successful behavior of the approximate steerability on syn-

thetic junction characterizations. Here we show the results of some real examples.

One example is the parkbench picture used in [SF96] (figure 2.14). In comparison

to the steerable wedge filter [SF96] with 30 basis filters, our filter characterizes the

directions of junctions more distinctively. This is explicitly presented by the ‘T’

junction in D, where the blurred edge near 180Æ is better characterized with the

approximately steerable filter. We also see that our approach is relatively more

sensitive to high frequency components due to the differentiation.

Another real example is presented in figure 2.15. The kernel centers are displaced

from the keypoints of the junctions. The results show that both steerable wedge

filter and approximately steerable filter are stable with respect to the offsets of

keypoints, while our approach achieves higher orientation resolution with lower

cost.

In figure 2.16 we show the high orientation resolution of the approximate steer-

ability. While the steerable wedge filter [SF96] with 90 basis filters only detects

the dominant dark line between the lips of Lena, the approximately steerable fil-

ter characterizes edges of two lips distinctly. This may be very useful in facial

feature analysis.

Our filter can be used for facial paresis diagnosis as well. It is known that most

facial pareses occur on one side of faces. Therefore, we may use the orientation

signatures on both sides of faces for symmetry analysis. In figure 2.17 we display

such an example of facial feature symmetry analysis. �
A real example with varying scales is further presented in figure 2.18. The left

corner of a child’s right eye can be regarded as a combination of irregular wide

lines and blurred edges disturbed by noise. The characterizing results from dif-

ferent pyramid levels form a complete set of signatures providing information at

different orientation scales.

�A. Gebhard from University Erlangen-Nuremburg invoked and implemented this application

and kindly provided these images.
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Figure 2.14: Top: The parkbench with marked edge junctions. A: horizontal edge; B:

vertical edge; C: corner; D: ‘T’-junction. Middle: Steerable wedge filter results using30 basis filters. P = 19. Bottom: DS(�) of our approximately steerable filter. The edge

near 180Æ in D is very blurred. But DS(�) still can characterize it. Rmin = 3; Rmax = 9.
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Figure 2.15: Comparison between the steerable wedge filter [SF96] and approximately

steerable filter. Row 1: An image of the NASA sequence with four kinds of marked

junctions. A: ‘Y’ junction; B: ‘V’ junction; C: ‘T’ junction; D: ‘K’ junction. Row 2:

Junctions in detail. We show centers of the masks with dark points. All keypoints deviate

from centers of the masks. Row 3: Polar plots using the steerable wedge filter [SF96]

composed of 46 basis filters with 31 as grid size. Row 4: DS(�) using our approximately

steerable filter (Rmin = 3; Rmax = 15). Both methods are stable with respect to the offsets

of keypoints. Our method presents higher orientation resolution with lower cost.
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Figure 2.16: Resolution comparison between the steerable wedge filter [SF96] and our

approximately steerable filter. Top Left: The image “Lena” with her lips corner as a

keypoint. Top Right: Lips corner in detail. Bottom Left: Polar plots using the steerable

wedge filter [SF96] with 46 basis filters. Only the dominant dark line between the lips

can be recognized. Bottom Middle: Even with 90 basis filters we cannot recognize two

lips. Bottom Right: DS(�) of our approximately steerable filter. The edges of two lips

are characterized distinctly.
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Figure 2.17: The orientation signatures can be used for facial paresis detection. Row 1:

The eye region and the mouth region of a healthy person with the keypoints for applying

our filter. Row 2 and Row 3: The eye region and the mouth region of a paresis patient.

We can observe that there is no more symmetry between both sides of his face. Row 4:

After applying our filter we obtain orientation signatures for further symmetry analysis.

(Images courtesy of A. Gebhard, University Erlangen-Nuremburg).
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Figure 2.18: Top Left: Face of a child. Top Right: The left corner of its right eye

in detail. It can be regarded as a combination of irregular wide lines and blurred edges

disturbed by noise. Middle: Orientation signatures reconstructed from the first, third

and fifth level of the polar pyramid. The eyelids are shown clearly in S2(�) as two maxima

at 135Æ and 225Æ. The local maximum near 180Æ is due the white of the eye. Bottom:

Corresponding DS(�), DS2(�) and DS4(�). At small scales the signatures present more

detail, but are also sensitive to noise. At large scales we obtain dominant structures but

lose details. A valid characterization should combine all these signatures.
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2.5 Conclusion

Current orientation steerability approaches are based on the Fourier decompo-

sition of the steered filter with respect to orientation. Although they are optimal

with respect to approximation error, they suffer from the uncertainty principle: In

order to achieve high orientation resolution, a huge number of basis filters must

be applied.

We proposed a new approach to obtain the orientation signature for junction

characterization. It enables the approximation of a continuous response with re-

spect to orientation based on a number of basis filter responses. These filters are

directly designed in the spatial domain. The narrow angular support of the basis

functions enables a high orientation resolution with a moderate computational

load. We showed this difference to earlier approaches both in theory as well as in

real images of junctions.

We use Gaussian functions of 0-th and 1st order to characterize lines and edges,

respectively. Though the corresponding filter responses S(�) and DS(�) seem

similar to the even and the odd response of a quadrature filter, it is not suitable

to combine them together as a single energy response since they are no Hilbert

transformation of each other. Furthermore, in junction classification the magni-

tude signature of a quadrature filter would not suffice to discriminate lines from

edges and we would further need odd/even or magnitude/phase signatures. In

other words, the advantage of quadrature filter is its invariance with respect to

both lines and edges. If we are not interested in this invariance, we need not

to use a quadrature filter. Instead, we are interested in treating lines and edges

separately. Thus, separate templates for lines and edges are more suitable.

In the next chapter, we will extend this approximate steerability to 3D filtering

and display their applications in 3D image processing.
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Chapter 3

3D Orientation Steerability

Abstract

This chapter presents a new Gaussian function based method for the extraction

of local 3D orientation information. This new method is based on the decom-

position of the sphere with a set of overlapping basis filters in the feature space.

Compared with current 3D steerability approaches our method achieves higher

orientation resolution with moderate complexity. This property enables us to

solve challenging problems like 3D junction characterization, complex surface

analysis and multiple motion estimation. We further study the problem of non-

uniform distribution of the spherical coordinates and discuss the application of

a weighting compensation function in the computation of a 3D orientation sig-

nature. In the analysis of our new method against a broader background, we

compare our method with related themes such as 3D orientation histogram and

spherical wavelets.

3.1 Introduction

In general filtering there is a conflict between performance and complexity. For

example, in the orientation analysis we prefer filters with fine orientation reso-

lution. But we have to face an enormous computational complexity while con-

structing or rotating such filters. In order to attenuate this conflict, the concept
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of steerability was introduced [FA91]. Having proposed a new kind of 2D ap-

proximately steerable filter in chapter 2, we further study the 3D orientation

steerability in this chapter. While many 2D steerable filters have been applied in

image processing and low level computer vision ([FA91, GBG+94, MS94, Per95,

SF96, FP98, MPS98]), there were only a few approaches dealing with 3D steerabil-

ity [FA91, And92, HC95] which are mainly based on the global decomposition

method. In the following, we would like to give a review of these related works.

The Work of Freeman and Adelson

Freeman and Adelson [FA91], being the first who introduced the concept of steer-

ability into 3D filtering, interpolated derivatives of 3D Gaussian functions with

a set of basis filters which are rotated copies of the original filter. The corre-

sponding interpolation functions are trigonometric functions of the orientation

parameters. As an example, we steer the first derivative of a 3D Gaussian func-

tion G(�;�;)1 (x; y; z), whose orientation is represented with three directional angles(�; �; ) between the axis through the filter lobes and x, y, and z axis, respectivelyG(�;�;)1 (x; y; z) = os(�)G1x(x; y; z)+ os(�)G1y(x; y; z)+ os()G1z(x; y; z); (3.1)

where three basis filters are rotated copies of G(�;�;)1 along x, y, and z axis, respec-

tively G1x(x; y; z) = �xe�x2+y2+z22 ;G1y(x; y; z) = �ye�x2+y2+z22 ;G1z(x; y; z) = �ze�x2+y2+z22 :
For simplicity we set the coefficients of basis filters to one. Here the interpolation

functions are os(�), os(�), and os().
According to equation (3.1), we need only three basis filters to synthesize G(�;�;)1
in an arbitrary direction. Hence, the enormous computational complexity in ro-

tating this filter to different directions is strongly attenuated.
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Andersson’s Work

Andersson attacked the problem of constructing 3D steerable filters with spher-

ical harmonics [And92]. He pointed out that the filter shapes are not the same

for spherical harmonics of order no less than two. This property consequently

complicates the interpolation procedure.

To simplify the interpolation, Andersson defined an alternative set of basis filters

of order l in the frequency domain [And92]Bli(u) = H(�)(n̂li � û)l; (3.2)

where u and û are an arbitrary frequency coordinate vector and its correspond-

ing normalized unit vector, respectively. The vector n̂li denotes the orientation of

the i-th basis filter of order l, and H(�) represents the radial frequency response.

According to this definition, the basis filters with the same order have the same

shape. Furthermore, the orientation of basis filters is arranged in such a way

that the basis filters with the same order also span evenly on the sphere. Corre-

spondingly, the synthesized filters of order l after the interpolation procedure are

rotated copies of one basis filter with the same order. After studying the regular

polyhedra in detail, Andersson held that it is impossible to distribute more than

ten basis filters evenly on the sphere [And92]. Consequently, basis filters with or-

der l � 4 cannot span evenly on the sphere, as the number of basis filters is equal

to (l+1)(l+2)2 .

Remark about Orientation Resolution

Here we would like to address the problem of orientation resolution in both ap-

proaches. As a matter of fact, we only need to analyze the performance of one

basis filter since the synthesized filters are rotated copies of one basis filter. In

the work of Freeman and Adelson, the derivatives of Gaussian functions have

coarse orientation resolution due to their large spatial supports in the orientation

space, as shown in figure 3.5. In Andersson’s work, the basis filters are centered

at the vertices of the corresponding regular polyhedron. In order to span the

whole sphere with a set of basis filters, the angular support of each basis filter

should not be smaller than a facet of the corresponding regular polyhedron. Cor-

respondingly, the smaller the area of a facet is, the narrower support a filter will



40 CHAPTER 3. 3D ORIENTATION STEERABILITY

have. Since the orientation resolution of a filter is inversely proportional to its

angular support, we may analyze the resolution property of a filter according to

the corresponding angular support. It is confirmed that even for an icosahedron,

which is a matching regular polyhedron with the smallest facet, the correspond-

ing support of one facet is not yet small enough [Hor86]. Thus, the steerable filter

proposed by Andersson does not provide sufficiently fine resolution, either.

The drawback to having insufficient orientation resolution limits the applications

of current 3D steerable filters to solving challenging problems like 3D junction

characterization, range image analysis, and multiple motion estimation.

In this chapter, we propose a new kind of 3D approximately steerable filter to ex-

tract local 3D orientation information using Gaussian functions in the orientation

space. Compared with current 3D steerable filters, it achieves higher orientation

resolution with moderate complexity.

This chapter is organized as follows: In section 2 we present the new filter and

its responses of 3D planes in detail. Then we compare our filter with current 3D

steerable filters in section 3. After that we display synthetic and real application

examples of 3D junction characterization and range image processing in section

4. In section 5, we further analyze our approach in a broader background. Lastly,

we conclude this chapter in section 6.

3.2 Local 3D Orientation Analysis

Definition of 3D Approximately Steerable Filter

To analyze 3D orientation naturally, we first compute a spherical mapping on the

input data: I(x; y; z) ! I(r; �; �), where r = px2 + y2 + z2, � = artan( yx); � =artan( zpx2+y2 ) (see figure 3.1). Here, the goal is to build an orientation signatureS(�; �) from I(r; �; �). In order to have fine orientation resolution, we use conic

kernels with small angular supports as basis filters to sample the orientation space

locally. A conic kernels centered at (�i; �j) readsA(�i;�j)(r; �; �) := G(�i;�j)0 (�; �)N (�i;�j)Rmin;Rmax(r) ; (3.3)
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where N (�i;�j)Rmin;Rmax(r) is a weighting function along the radial direction and it is

independent of the angular part of the filter. We will come back to the design

of N (r) later. The angular part of the kernel is a 2D Gaussian function in the

orientation space coordinated with (�; �)G(�i;�j)0 (�; �) := 12��2 e� (D(�;�i))2+(���j)22�2 ; (3.4)

with � denotes the scale of the 2D Gaussian function. Since the angles along the� direction are periodic, we define D(�) like in chapter 2 to represent the minimal

circular difference between � and �i (�; �i 2 [0; 2�℄)D(�; �i) := min(j� � �ij; j� � �i � 2�j; j� � �i + 2�j): (3.5)

One conic kernels centered at (�i; �j) is shown in figure 3.1. Theoretically, a Gaus-

sian function is not compactly supported. Thus, we consider only the part ofG(�i;�j)0 (�; �) inside the circular mask with a diameter D in implementation, as

shown in figure 3.1 and equation (3.6).
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Figure 3.1: A conic kernels centered at (�i; �j) with radial boundaries Rmin and Rmax.

Left: The definition of the spherical coordinate system. Middle: The filter kernel in the

3D Cartesian coordinate system. The keypoint is at the center of the sphere. Right: The

filter kernel with �, � and r as coordinates. A conic kernels in the Cartesian coordinate

system turns into a cylinder. In the (�; �) plane the circular mask with a diameter D is

weighted by a 2D Gaussian function, as shown above the cylinder.

After applying such a conic kernels on I(r; �; �), we get a basis filter response as a

local sample located at (�i; �j)(�i;�j) := XXf(�;�)jp(���i)2+(���j)2�D2 gG(�i;�j)0 (�; �) RmaxXr=Rmin I(r; �; �)N (�i;�j)Rmin;Rmax(r) : (3.6)
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Here the inner sum averages over the radius by normalizing with N (�i;�j)Rmin;Rmax(r).
The outer sums are the projection of the shifted 2D angular Gaussian on the an-

gular signal.

Now let us consider the sampling of (�; �) plane using a set of basis filters. It

is known that a sphere forms a rectangular region in the (�; �) plane. For this

rectangular region it is impossible to have a tessellation with circular cells. In-

stead, we may overlap neighboring basis kernels to cover the whole rectangular

region, as shown in figure 3.2. In this arrangement, we observe that this rectan-

gular region is periodic along the � direction and is mirror-symmetric about the

boundary along the � direction. These periodic and mirror-symmetric properties

help to solve the boundary problem.

θ θ      i+1i  
o

φ
j+1

j φ

φ

θ

Figure 3.2: The sampling of (�; �) plane using a set of conic kernels. The horizontal or

vertical distance between two neighboring masks is equal to the radius of one mask.

In order to obtain the orientation signature S(�; �) from a set of samples (�i;�j), we

use 2D Gaussian functions with local support G(�i;�j)0 (�; �) again as interpolation

functions yielding S(�; �) :=X�i X�j (�i;�j)G(�i;�j)0 (�; �): (3.7)

The legality of using 1D Gaussian functions as interpolation functions was al-

ready proved in [PG90]. Our approach can be viewed as an extension into 2D

feature space. So far, we define an analytic model of 3D orientation analysis based

on angular Gaussian functions.
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Filter Responses of 3D Planes

For motion estimation we are interested in filter responses of 3D planes since it

is proven that a single translational motion corresponds to a single plane [AB85,

HC95] and multiple motions correspond to multiple planes [SM91, YDBS99] in

the derivative space or in the frequency space. In the 3D Cartesian coordinate

system, a plane passing through the origin (0; 0; 0) with a unit normal vector n =(n1; n2; n3)T reads xn1 + yn2 + zn3 = 0: (3.8)

In order to represent this plane with parameters � and �, we convert the Cartesian

coordinates into spherical coordinates8><>: x = r os(�) os(�)y = r os(�) sin(�)z = r sin(�);
and 8><>: n1 = os(�n) os(�n)n2 = os(�n) sin(�n)n3 = sin(�n):
After wiping out the radial variable r, we acquire an equation of the 3D plane

with variables � and �os(�) os(�n) os(� � �n) + sin(�) sin(�n) = 0: (3.9)

Different planes have different representations in the (�; �) space. For horizontal

and vertical planes, whose normal vectors are parallel to the coordinate axes, their

corresponding representations in the (�; �) space are straight lines, as shown in

figure 3.3. In contrast, tilted planes in the Cartesian coordinates turn into periodic

curves in the (�; �) space, as shown in figure 3.4. These curves look like trigono-

metric functions with different amplitudes and phases. If we know the extreme

point of one curve with the maximal � coordinate, �m, and the corresponding �
coordinate, �m, then we can find out the normal vector of the corresponding plane

(see Appendix A for derivation)( �n = �m � ��n = �2 � �m : (3.10)
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Here we use + or � sign to determine �n in equation (3.10) in such a way that the

third component n3 of the normal vector is positive. In practice, we obtain a set

of points in the (�; �) space according to equation (3.9). It is not easy to find out

the extreme point (�m; �m) directly due to noise or inadequate number of points.

Therefore, we have to extract the parameter (�n; �n) from a set of points. This

is a standard regression problem. For a single curve the least square estimation

(LSE) algorithm is applicable; for multiple curves we may apply the expectation-

maximization (EM) algorithm. We will give particulars of this point in chapter 4.
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Figure 3.3: Left: Three special planes in the Cartesian coordinates with normal vectors(0; 0; 1), (1; 0; 0), and (0; 1; 0), respectively. Right: Special planes in the (�; �) space.
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3.3 Comparisons with Current 3D Steerable Filters

Current 3D steerability approaches are based on the global decomposition prin-

ciple. In contrast, our 3D filter is based on the local decomposition principle. This

difference leads our approach to have higher orientation resolution. In figure 3.5

we show the filter G(�;�;)1 in the work of Freeman and Adelson [FA91], Ander-

sson’s third order filter [And92] (whose basis filters span evenly on the sphere

with the finest angular support), and our filter, respectively. Since the orientation

resolution of a filter can be measured with the angular support of this filter, we

display also the angular supports of these filters in the (�; �) space with white

regions. We obtain these regions by integrating the filter kernels over the radial

variable. Note that the angular support of the filter in the spatial domain is the

same as that in the frequency domain since the Fourier transform is an isomet-

ric mapping. The irregularity in the (�; �) space with j�j > 40Æ is caused by the

discrete representation of filter kernels. We notice that G(�;�;)1 has a so large an-

gular support that only the gap between its two lobes may be useful. Actually,

Huang and Chen used this gap to fix the orientation of one plane in the single

motion estimation [HC95]. Obviously, G(�;�;)1 cannot detect multiple planes si-

multaneously. The orientation resolution of Andersson’s filter is only a little bit

better. Compared with these two steerable filters, our filter has a much higher

orientation resolution.

The computational burden of applying a steerable filter is determined by the

number of basis filters and the spatial support of each basis filter. Given the fact

that current steerable filters and our filter are based on different decomposition

principles, we can compare their complexity only by considering the computa-

tional burden per pixel in the input data. Concretely,� The filter G1 is composed of three basis filters with the global support, i.e.

each basis filter covers the input data completely. Thus, each pixel in the

input data is involved in the scalar product as well as in the interpolation

procedure three times.� The third order filter in Andersson’s approach has ten basis filters. Thus,

each pixel in the input data is involved in the scalar product and the inter-

polation procedure ten times.� Our filter is based on the local decomposition principle. In figure 3.2 we ob-
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Figure 3.5: Row 1: The rendering image of filter kernels. Left: The filter G(�;�;)1 in the

work of Freeman and Adelson (redrawn from [HC95]). Middle: The third order filter

(i.e. with ten basis filters) in the frequency domain in Andersson’s approach (redrawn

from [And92]). Note that the angular support of the filter in the spatial domain is the

same as that in the frequency domain since the Fourier transform is an isometric mapping.

Right: Our filter. Row 2: The corresponding angular supports for above filters centered

at � = 45:00Æ; � = 35:26Æ are shown with white regions in the (�; �) space. These

supports are actually measurements of the orientation resolution of the filters. The gap

between two lobes of G(�;�;)1 is clearly represented as a black curve in the angular support

map. For clarity we enlarge the angular support of our filter in an extra image.

serve that the quadratic area bounded by four lines � = �i, � = �i+1, � = �j,
and � = �j+1 is covered by four quarter circular masks. Without studying

the overlapping exactly, we may roughly say that a pixel in this quadratic

area is involved in the scalar product four times. As the interpolation func-

tion has the same support as the basis filter we know that a pixel in this

quadratic area is involved in the interpolation four times as well.

From above analysis, our filter needs a little bit more computation than the filterG1 but much less computation than Andersson’s filter.

It should be noticed that a complexity comparison is only fair, when the corre-
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sponding filters provide (about) the same orientation resolution. This is not the

case for the three 3D steerable filters mentioned above. Actually, neither the filterG1 nor Andersson’s filter can achieve the same fine orientation resolution that our

filter provides. One possibility to achieve such a fine orientation resolution using

global decomposition method is to generalize the steerable wedge filter [SF96]

from 2D space to 3D space with considerably higher effort [YDS01], which is not

yet implemented according to current literature.

3.4 Applications in Volume Image Processing

Compensation Issue

Before presenting examples, let us discuss the design of the weighting functionN (r) (see equation (3.3)). It is known that the horizontal angle � and the vertical

angle � are defined differently in the spherical coordinates. All points with the

same � on a sphere surface lie on a great circle of this sphere, whereas all points

with the same � lie on a small circle. If we divide the whole (�; �) space with a

homogeneous grid, it turns out that the higher the latitude value is, the denser

the grid points are on the sphere surface. This kind of non-uniform distribution

was addressed in [Hor86] in detail.

Actually, this non-uniform distribution exists already in 2D space. When we rep-

resent evenly distributed grid points in 2D Cartesian coordinates with the polar

coordinates, these points are no more evenly distributed. In chapter 2, we nor-

malized the filter outputs with the averaging factor N (Rmin; Rmax; �k) (see equa-

tions (2.6) and (2.12)) to compensate the non-uniform distribution. Similarly, we

may average this non-uniform distribution in 3D space by designing the weight-

ing function N (r) as the sum of discrete weights in the basis kernels so that the

filter response is relatively insensitive to the non-uniform distribution. This com-

pensation “strengthens” the outputs of filter kernels with a few points and “sup-

presses” those outputs of filter kernels with many points. As a result, we are

no more able to know the real distribution density of points in the (�; �) space.

However, the density information is desirable in many motion estimation ap-

proaches. For example, in the EM algorithm we purely use statistics to extract

parameters from a set of sample points with the belief that there are more normal
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points with similar statistic properties than noise and “incorrect” sample points

with large deviation from the bulk of all data points [PTVF92]. The distribution

density actually works as a weighting factor in the parameter regression proce-

dure. If we lose the distribution density information, the estimation result will be

much worse. For this reason, we would like to preserve the distribution density

information by setting N (r) as a real positive constant.

In the next subsection, we show some examples in 3D orientation analysis with

and without compensation and compare the corresponding filter responses. We

will address the applications in multiple motion estimation in chapter 4.

Application Examples

This subsection is mainly about the applications of our method in volume image

processing. Without exception we choose the parameters as follows: D = �90 ,Rmin = 0:2max(R), Rmax = 0:8max(R).
We first apply the filter with averaging by setting N (r) as the sum of discrete

weights inside the sampling kernels and obtain the orientation signature Sa(�; �).
Then we apply the filter without averaging by setting N (r) as a constant and de-

note the corresponding orientation signature with S(�; �).
As an example of 3D junction characterization, we have in figure 3.6 a synthesized

cubic with one of its vertices as keypoint. For comparison we apply the steerable

filter G(�;�;)1 , Andersson’s filter, and our filter (with and without averaging), re-

spectively. In the response of G(�;�;)1 , the location of the maximal value is not

geometrically meaningful since the angular support of G(�;�;)1 is too large to in-

terpret this 3D junction. Andersson’s filter has higher orientation resolution thanG(�;�;)1 . Though the edge information is blurred, the location of maximal value in

the response corresponds to the location of weight center of the cubic. Compared

with these two steerable filters, our filter provides evidently higher orientation

resolution. Clearly, Sa(�; �) is insensitive to the non-uniform distribution of grid

points in the (�; �) space, but S(�; �) is sensitive. It should be noticed that inS(�; �) the edges are still clearly represented. It is possible to further extract edge

information from the binary version of S(�; �) by utilizing morphological oper-

ations. Taking into account that, by applying the filter, we diffuse one point of

the (�; �) space into a circular region with a diameter of D, we perform “erosion”
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Figure 3.6: Top Left: 3D plot of a cubic with its three normal vectors at one vertex.

Top Middle: The response of G(�;�;)1 [FA91]. Top Right: The response of Andersson’s

steerable filter [And92]. Bottom Left: Orientation signature Sa(�; �). It is insensitive

to the non-uniform distribution of grid points in the (�; �) space. Three surfaces turn

out to be three edges in the (�; �) space. Bottom Middle: Orientation signature S(�; �).
Compared with Sa(�; �) it is more sensitive to the non-uniform distribution of grid points

in the (�; �) space. But the edges are still clearly represented. Bottom Right: Extracted

edges after morphological operations “erosion” and “remove”. The junctions of these

curves describe the orientation of ridges of neighboring edge planes. For comparison we

also display those three surfaces connected with the keypoint using dotted curves. It is

clear to see that they are consistent with the extracted edges.

morphological operations to “shrink” edges by D2 . Then we use one “remove”

morphological operation to extract edges. For comparison we display three sur-

faces of the cubic connected with the keypoint as well. They are consistent with

the extracted edges.

In figure 3.7 we have a real range image of a cubic with one of its vertices as

keypoint, as shown in the white window. For clarity we display the 3D plot of

this range image in the window as well. In this plot, we convert the range variable

into z coordinate and normalize the z coordinate with the maximal value of x (ory) coordinate. This facilitates the application of our filter. After applying the

filters on this 3D plot, we compare the signatures Sa(�; �) and S(�; �). We can see

that the amplitude of the regions with large � is “suppressed” in S(�; �), while

the main structure information remains in both signatures.
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Figure 3.7: Top Left: Range image of a real cubic. The white box shows us the window

for 3D orientation analysis. The keypoint for applying 3D filter is at the center of the

window. Top Right: 3D plot of the range image inside the window. We set its center as(0; 0; 0). Bottom Left: Orientation signature Sa(�; �). Bottom Right: Orientation sig-

nature S(�; �). We can see that the amplitude of the regions with large � is “suppressed”

in S(�; �), while the main structure information remains.

Figure 3.8 shows us a range image of a cup. From the 3D plot we observe that the

bottom of the cup, the rim and the upper part of the handle are well represented

in the range image. But there are just bare pixels corresponding to the side of the

cup. We set the center of the cup bottom as keypoint and normalize the z coordi-

nate according to the maximal value of x (or y) coordinate. In Sa(�; �) we observe

that the side of the cup is very much “strengthened”. In contrast, S(�; �) is really

proportional to the distribution density. The filter responses of the bottom and

the rim are much stronger than the filter response of the side of the cup. Partic-

ularly, the filter response of upper part of the handle is more clearly to see near� = �120Æ; � 2 [30Æ; 50Æ℄ in S(�; �) than in Sa(�; �). Notice that the white pixel near(�; �) = (80Æ;�50Æ) in Sa(�; �) is the response of the dark point outside the cup,

while in S(�; �) it is suppressed. The filter without averaging shows its advan-

tage in this situation, as it preserves main structure information and suppresses

small disturbance.
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Figure 3.8: Top Left: Range image of a cup. Top Right: 3D plot of the range image.

We normalize the z coordinate according to the maximal value of x (or y) coordinate. It

shows clearly that there are bare pixels corresponding to the side of the cup and only the

upper part of the handle is visible. Bottom Left: Orientation signature Sa(�; �). We set

the center of cup bottom as keypoint. The side of the cup is very much “strengthened”,

though there are bare pixels corresponding to the side of the cup in the range image. We

can see the filter response of the handle near � = �120Æ, � 2 [30Æ; 50Æ℄. The white point

near (�; �) = (80Æ;�50Æ) is the response of the dark point outside the cup. Bottom

Right: Orientation signature S(�; �). This signature represents the real distribution

density. We can observe the filter response of the upper part of the handle more clearly.

The filter response of the dark point outside the cup is suppressed now.

Our filter is also useful for symmetry analysis. In figure 3.9 we have a range im-

age of a propeller with a very complex surface. Since our filter has high orienta-

tion resolution, we can describe such a complex surface exactly in the (�; �) space

and further detect the symmetry by minimizing the angular correlation [SS97].

From above experiments we come to the following conclusions that� Our filter provides higher orientation resolution than current steerability

approaches with moderate complexity.
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Figure 3.9: Top Left: Range image of a propeller (Image courtesy of C. Sun, CSIRO

Mathematical and Information Sciences, Australia). It has complex surfaces. Top Right:

Orientation signature Sa(�; �). We set the center of the propeller axis as keypoint. Three

complex surfaces turn out to be three regions with similar shapes in the (�; �) space. The

white region near � 2 [�180Æ; 180Æ℄; � = 90Æ in Sa(�; �) is the filter response of the

axis pixels. Though there are only a few pixels on the axis, Sa(�; �) strengthens their

existence. Bottom Left: Orientation signature S(�; �). The amplitude of filter response

in the regions near � 2 [�180Æ; 180Æ℄; � = 90Æ in Sa(�; �) is suppressed. Bottom Right:

Polar plot of
P� S(�; �). Three symmetric axes can be detected at the minimal correlated

positions near � = 90Æ, 215Æ, and 330Æ.� The response of our filter without averaging compensation is more sensi-

tive to the non-uniform distribution than the response with averaging. But

this susceptibility does not obstruct us from obtaining main structure infor-

mation in the orientation signature. Moreover, the filter response without

averaging shows its advantage in some applications.

3.5 Related Issues

The original motivation of our approach is to improve the orientation resolution

of current steerability approaches. It is interesting to observe that our approach is
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related to some other themes in computer vision and signal processing areas. We

believe it will be helpful to analyze our approach against a broader background.

In the following, we first explain some related themes and then compare them

with our approach.

Extended Gaussian Image and 3D Orientation Histogram

The extended Gaussian image (EGI) is used to represent the surface information

of a 3D object. An EGI is a mapping of the object surface onto the unit sphere,

in which a small facet on the object surface is transformed into a point whose

orientation is the same as that of the small facet and whose weight is the area of

the small facet. For convex objects it is proven that their corresponding EGIs are

unique. In figure 3.10 we show a simple example of EGI.

Figure 3.10: An example of extended Gaussian image. Left: A square cubic with six

faces. Right: Extended Gaussian image of the cubic. Each needle on the sphere represents

the weight of one face of the cubic.

In practice, we usually use the discrete approximation of EGI, which is referred to

as 3D orientation histogram. In order to construct the 3D orientation histogram,

we must at first tessellate the unit sphere. According to the ideal tessellation cri-

teria, the sphere should be divided into cells with the same area and the same

rounded shape. In addition, these cells should be located as a regular pattern and

should provide fine angular resolution [Hor86]. Unfortunately, these criteria can-

not be fulfilled at the same time. Among all possible candidates there are only five

regular polyhedra, whose facets are located as a regular pattern with the same

area and the same shape. They are tetrahedron, hexahedron, octahedron, dodec-
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ahedron, and icosahedron. In figure 3.11 we show an icosahedron whose facets

have the finest support among all regular polyhedra mentioned above. However,

it is clear to see that the facet of the icosahedron is still very large. Thus, none of

these five regular polyhedra has an adequately fine orientation resolution.

Figure 3.11: Spherical tessellation using icosahedron and truncated icosahedron. Left:

The icosahedron is composed of 12 vertices and 20 facets. The facet still has very large

support. (redrawn from [And92]). Right: An example of spherical tessellation using

truncated icosahedron composed of 12 pentagons and 20 hexagons. (This image is copied

from http://www.physics.orst.edu/~bulatov/polyhedra/uniform/u30.html).

In order to improve the orientation resolution, we often consider the semi-regular

polyhedra, whose regular facets are not the same. In figure 3.11 we show such an

example using truncated icosahedron. We may start with an icosahedron and

subdivide each triangular facet of the icosahedron equally into four smaller tri-

angles. We further subdivide each smaller triangle in the same way repeatedly

until we obtain a desired resolution [Hor86]. In order to make the cells round,

we then combine six neighboring triangles into one hexagon, yet twelve pen-

tagons composed of five neighboring triangles are always required to tessellate

the sphere, just take a football as a typical example. It is clear that a hexagon

does not have the same shape and area as a pentagon. Furthermore, though the

hexagon has many rotation invariant axes, it is still not isotropic, i.e. it is still not

rotation invariant for every direction.

With respect to the orientation resolution and decomposition principle our ap-

proach is very similar to the 3D orientation histogram. Both techniques achieve

high orientation resolution and both methods decompose the sphere locally. How-

ever, there are still differences between them.� The 3D orientation histogram is applied for 3D object surface analysis. If the
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object is convex, we do not consider its position and size. In other words,

the 3D orientation histogram is shift- and scale-invariant. In contrast, our

3D filter is applied not only for surface analysis, but also for volume data

analysis. It treats both convex and concave objects. But we must fix the

keypoint and the radial boundaries at first.� The 3D orientation histogram works on a unit sphere, while our approach

projects the sphere onto the (�; �) space and works on this orientation space.

Though after this non-isometric mapping we lose the rotational symmetry,

we gain easier structure display and post-processing as compensation. For

example, on the surface of this paper sheet, we cannot display all parts of

a great circle of a sphere using the 3D orientation histogram. We have to

imagine in our mind that there are parts hiding behind the paper sheet.

In contrast, we can display the great circle completely on the (�; �) space,

though with some deformation.� The basis cells in the 3D orientation histogram cannot fulfill all ideal tessel-

lation criteria simultaneously. In contrast, our approach provides isotropic

cells in the (�; �) space (not on the sphere!) which satisfy these criteria.� The 3D orientation histogram is based on the tessellation of the unit sphere.

Each pixel on the sphere is involved once and only once. Our approach sam-

ples the (�; �) plane with Gaussian kernels. Since these basis kernels over-

lap, each pixel on the sphere is therefore involved several times. From the

point of view of computation complexity, our method needs more compu-

tation than the 3D orientation histogram. Of course we can divide the (�; �)
plane with a set of small rectangular cells which do not overlap. But these

cells are then non-isotropic. Thus, overlapping is actually the price of hav-

ing isotropic cells.

Spherical Wavelets

The main issue of this chapter is to find a suitable local basis for feature extrac-

tion. This is reminiscent of signal reconstruction theory and wavelet theory. It is

known that, after applying a filter �(x)(x 2 IRn), the signal structure inside the

filter window is generally blurred [KRV99]. In order to reconstruct the original

signal inside the filter window, we need to find out another filter 	(x)(x 2 IRn)
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such that Z �(x0)	(x+ x0) dx0 � Æ(x); (3.11)

with the variable x0 2 IRn. This equation describes the property of basis in the

wavelet theory. If �(x) = 	(x), they are the same basis of the signal; if �(x) 6=	(x), 	(x) is referred to as the dual basis of �(x).
This property was referred to as invertibility by Kalitzin et al. in their work

[KRV99]. They proposed to use the derivatives of Gaussian functions as the in-

vertible apertured orientation filters. Along the angular direction they use har-

monic functions to serve as basis. Thus, their approach still belongs to the classic

global decomposition approaches.

Recently, Schröder and Sweldens proposed a local decomposition approach to

build bi-orthogonal wavelets based on the dual basis. They introduced a cus-

tom design technique called lifting scheme [SS95]. This lifting scheme combines

two arbitrary wavelet functions on the same scale level to build a new wavelet

so that the new wavelet is bi-orthogonal to the old one. Compared with the

classic wavelet scheme, in which each basis function is a combination of sev-

eral shifted copies of the same wavelet function on the finer scale level, the lifting

scheme does not use scaling and dilation any more. As an example, Schröder and

Sweldens built a spherical wavelet to represent functions defined on the sphere.

This wavelet is based on the geodesic tessellation of the sphere, which tessel-

lates the sphere with semi-regular polyhedra. In their approach, Schröder and

Sweldens focused purely on the decomposition and synthesis properties of the

basis and did not delve into the tessellation. Therefore, the limitation of EGI and

3D orientation histogram is still unsolved.

In this chapter, we presented an alternative to the spherical wavelet. In our ap-

proach, the local basis filters are non-orthogonal and their responses are locally

correlated. Since our goal is not to reconstruct the original signal, but to extract

features, this kind of correlation among neighboring basis filters does not bother

us and we do not have to “decorrelate” the filter results.

It would be interesting to further study if there exists a dual basis of our basis

filter. Though in [KRV99] Kalitzin et al. pointed out that the basis may be non-

orthogonal, they did not provide a design technique. The lifting scheme provides
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a necessary condition which may help us to find out the desired dual basis of our

filter so that our method can be used for signal reconstruction as well.

3.6 Conclusion

Early 3D steerability approaches are based on the global decomposition principle

and thus suffer from the uncertainty principle strongly, as we pointed out in chap-

ter 2. In this chapter, we presented a new 3D approximately steerable filter based

on the local decomposition principle for orientation analysis. Since our filter has

Gaussian shape in the (�; �) space, it achieves the lower bound in the uncertainty

principle. This difference leads our filter to be more efficient in localizing one sig-

nal both in the spatial domain and in the spectral domain. Consequently, our filter

provides higher orientation resolution with moderate complexity. This claim is

confirmed by the filter support analysis as well as experiment results.

We implement our method in the feature space directly. Though projecting the

sphere onto 2D feature space is not an isometric mapping and the rotation sym-

metry is lost after projection, this transform benefits structure display and post-

processing.

The local basis filters in our method are non-orthogonal. Thus, the filter responses

are locally correlated. This correlation does not bother us to extract features. But

if we would like to reconstruct original signals, we need a dual basis of our basis

filter.

Appendix A: Relation Between The Normal Vector and

The Extreme Point

In this appendix, we derive the relationship between the orientation parameters(�n; �n) of the normal vector of a plane and the coordinate (�m; �m) of the extreme

point on this plane. In figure 3.12, we represent all possible unit vectors on the

3D plane with a circle. The normal vector n is perpendicular to all vectors on

this plane, including the unit vector pointing to the extreme coordinates (�m; �m)
and the vector lying on the XY plane (�m � �2 ; 0). As the vector (�m � �2 ; 0) is
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perpendicular to the vector (�m; �m) as well, the vector (�m � �2 ; 0) is then the

normal vector of the plane containing vectors n and (�m; �m). Since the normal

vector (�m� �2 ; 0) also lies on the horizontal XY plane, we prove therefore that the

plane containing vectors n and (�m; �m) is perpendicular to the XY plane. In this

vertical plane we have �n + �2 + �m = �: (3.12)

This vertical plane always divides the circle equally as it passes through the ori-

gin. Taking into account that angles in the � direction are periodic we have�n = �m � �: (3.13)

Then we obtain equation (3.10).
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Figure 3.12: The relation between the orientation parameters (�n; �n) of the normal vec-

tor of a plane and the coordinates (�m; �m) of the extreme point on this plane. The circle

contains all possible unit vectors on the 3D plane. The plane containing the vectors n
and (�m; �m) is a vertical plane perpendicular to the XY plane.



Chapter 4

Multiple Motion Analysis Using 3D

Steerable Filter

Abstract

In this chapter, we review the history of multiple motion analysis and study oc-

clusion and transparency in the spatial domain as well as in the spectral domain.

After comparing spatial and spectral motion model, we apply the 3D steerable

filter to improve the performance of current estimation algorithms such as the

3D Hough transform and the expectation maximization algorithm. We use an

eigenvalue-analysis based multi-window strategy to detect and to eliminate out-

liers in occlusion estimation. This technique purifies input data and improves

therefore the precision of the estimation results. Based on the spatial coherence

in image sequences, we further use the “shift-and-subtract” technique to localize

occlusion boundaries and to track their movement in occlusion sequences. This

technique can be also used to distinguish occlusion from transparency and to de-

compose transparency scenes into multi-layers.

4.1 Introduction

In the computation of optical flow, estimation of multiple motions as well as

tracking of occlusion boundaries are challenging problems. Due to the aperture
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problem we use the behavior in the neighborhood of a considered point. Such

assumptions are either explicit in area-based techniques or implicit in filter-based

schemes where the addressed neighborhood is the filter support. Conventional

flow estimation methods are based on the single motion assumption (there is only

one single motion inside the neighborhood) and the smoothness assumption (the

motions are piecewise-smooth). For example, the well known brightness change

constraint equation (BCCE) [Hor86] is based on these assumptionsIxu+ Iyv + It = 0; (4.1)

where Ix, Iy, and It denote the spatio-temporal partial derivatives of the image

intensity and (u,v) is the optical flow vector. These assumptions are violated if

the neighborhood contains motion boundaries or multiple transparent motions.

If we still apply the BCCE or its equivalent constraints to estimate the optical

flow, we will not be able to obtain correct estimation results.

The study of optical flow has a long history. With respect to different criteria

the related flow estimation algorithms may be divided into global or local tech-

niques, one frame or multiple frame methods, spatial or spectral domain based

approaches, probabilistic or non-probabilistic models, and so on. The reader is

referred to [BB95, HS99] for a general survey of flow estimation methods. Here

we are interested in techniques studying multiple motions including occlusion

and transparency. In the following, we would like to review some related works.

Spatial Approaches

Nagel and Enkelmann [NE86] first addressed the violation of single motion model

at motion boundaries. They used a regularization term to penalize motion dis-

continuities and thus rejected motion boundaries in the computation of optical

flow. Weickert and Schnörr further extended this regularization term into spatio-

temporal space [WS99]. Black and Anandan [BA96] treated occlusion regions

similarly. They referred to the pixels near occlusion boundaries as outliers of the

motion constraint and set lower weights to these pixels in the estimation. The

concept of outlier comes from statistics. It means “a small amount of data points

with large deviation from the bulk of all data points” [PTVF92]. This concept rep-

resents exactly the relationship between the pixels near occlusion boundaries and
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the pixels with a single motion: The spatio-temporal partial derivatives of the pix-

els with a single motion form a plane in the derivative space and the derivatives

of the pixels near occlusion boundaries deviate from this plane due to motion dis-

continuities. Based on the concept of outliers, many probabilistic methods were

proposed to model occlusion boundaries [JB93] and to estimate multiple motions

near occlusion boundaries [Bou89, BBHP92, WA96].

Schunck considered occlusion boundaries as noise in the constraint line cluster-

ing [Sch89]. By noticing that motions have more components than noise, he ap-

plied a statistic method to cluster the dominant intersection of constraint lines for

motion estimation. This statistic method was used in the Hough transform based

approaches as well [BK94, NCN97].

A second group of approaches is based on segmenting regions where parametric

models of flow can be fitted [WK93]. But the segmentation is in turn dependent

on the optical flow. This forms a “chicken-and-egg” dilemma: We need appropri-

ate segmentation to estimate optical flow accurately, while we need accurate op-

tical flow to segment images properly. In order to bypass this dilemma, iterative

methods are proposed to refine the region segmentation and motion estimation

gradually [Hor86]. Bergen et al. [BBHP92] proposed an iterative method based

on the “shift-and-subtract” strategy to estimate two motions. They subtracted

pixels connected to one motion during the refinement of the parameters of the

other motion and vice versa. It is known that iterative methods are sensitive to the

choice of initial parameter values. In order to obtain appropriately initial values,

they applied the pyramid algorithm [BYX83] in the estimation. Since at the coars-

est level of the pyramid all motions are small due to the subsampling, they can

simply set the initial values to zero and still guarantee the convergence of itera-

tion. Irani et al. [IRP94] applied this iterative method to track objects even with

non-consistent speeds. They used temporal integration to blur out uninterested

regions and let the tracked object remain sharp.

The iteration principle was used in the statistic approaches as well. Researchers

have recently elaborated algorithms based on the expectation maximization (EM)

principle [DLR77]. Whereas the maximization step is the usual maximum likeli-

hood estimation given the assignment of points to groups, the expectation step is

regrouping the points by updating membership weights. Several authors [JB96,

WA96] applied the EM algorithm on the BCCE (equation (4.1)) or on already com-
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puted flow vectors. This process is equivalent to fitting planes through the origin

in the (Ix; Iy; It)-space. In fitting models to data points, it is known that the more

number of groups we have, the better the fitting will be. Therefore, an image may

tend to be divided into many small separated regions which actually should be

merged to estimate one common motion. This forms the “overfitting” problem.

In order to avoid the “overfitting”, Weiss [Wei97] introduced smoothness con-

straint into each model group to avoid fitting data with high order polynomials.

For the same reason, Ayer and Sawhney [AS95] applied the minimum description

length (MDL) principle of the information theory [Ris83] to obtain the minimal

number of motions.

In presenting explicit multiple motion models, many researchers have made con-

tributions. Wang and Adelson represented multiple motions with a multi-layer

model based on the local motion estimation [WA93]. This model is consistent

with the daily knowledge naturally. But the local motion estimation technique

they used is still based on the BCCE. Fleet et al. [FBJ98] proposed an explicit

model of occlusion in the spatial domain. Then, they applied the steerability the-

ory to detect occlusion boundaries as step edges in both components of the opti-

cal flow field. Black and Fleet further proposed to use the Bayesian framework to

determine which pixels belong to the motion boundary regions [BF99]. With this

explicit model they wished to predict the location of occlusion boundaries in the

next frame exactly and therefore to exclude the corresponding boundary regions

in the next estimation. Moreover, by tracking the movement of the boundary,

they solved the foreground/background ambiguity [TMB85, GD94, BF99].

Spectral Approaches

Motion estimation is also addressed from the point of view of orientation analy-

sis. Adelson and Bergen [AB85] pointed out that motion is equivalent to spatio-

temporal orientation. They introduced a spatio-temporal energy model for single

motion representation and proposed to use quadrature filters for motion estima-

tion. This was the first optical flow algorithm based on the spectral analysis.

Bigün et al. connected the orientation analysis with symmetry detection [BG87,

BGW91]. They pointed out that a single motion can be described as a linear sym-

metric image, whose spectrum is a line passing through the origin in the fre-
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quency domain. By using the principal axis analysis, they introduced a moment

measure in the frequency domain to fix the orientation of the spectral line. In

order to avoid the cumbersome discrete Fourier transform, they converted this

moment measure from the frequency domain back to the spatial domain using

the Parseval theory.

Jähne et al. used a 3D structure tensor [Knu82] to detect symmetry and to estimate

motion [Jäh93, HJ97, JHS+98]. Besides, they introduced a coherence measure to

distinguish different kinds of motions such as single constant motion and motion

discontinuity. This coherence measure is a function of the largest and the smallest

eigenvalue of the structure tensor. For details about this coherence measure the

reader is referred to [Jäh93].

The principal axis analysis was used for multiple motion estimation as well.

Shizawa and Mase proposed a superposition principle, which assumed blindly

that multiple motions are additive superposition of two single motions in the fre-

quency domain or in the derivative space [SM91]. Then they applied the eigen-

value analysis for multiple motion estimation.

Resolution Issue of Principal Axis Analysis

The principal axis analysis is also called principal component analysis (PCA),

Karhunen-Lo�eve transform (KLT), and Hotelling transform in different literature.

It decomposes a signal into an orthogonal basis using eigenvector analysis or

singular value decomposition (SVD). The problem of principal axis analysis is

that it is only suitable to detect one dominant orientation. For a signal in a 3D

space, after the principal axis analysis, we obtain three eigenvalues satisfying�1 � �2 � �3. Their corresponding eigenvectors u1, u2, and u3 should be or-

thogonal to each other. That is to say, after finding out the dominant orientation

denoted with u1, the other two eigenvectors u2 and u3 should lie in the plane per-

pendicular to u1, no matter what kind of structure the signal has. Though from

different combinations of �1, �2, and �3 we can determine if we have a plane, a

line, or some other spatio-temporal structures in this 3D space, we cannot provide

more information using principal axis analysis. For example, we are interested

in determining the orientation of two intersected planes in the 3D space. Both

planes pass through the origin and the angle between them is arbitrary. If these



64 CHAPTER 4. MULTIPLE MOTION ANALYSIS

two planes are perpendicular to each other, u1 will lie on the intersection of these

two planes and the other two eigenvectors u2 and u3 are parallel to the normal

vectors of these two planes, separately. Thus, we still can determine the orien-

tation of these two planes. But if these two planes are not orthogonal to each

other, though u1 still lies on the intersection of these two planes, u2 and u3 will

be no more parallel to the normal vector of either plane. Thus, the principal axis

analysis is no more reliable to determine orientation of multiple planes. In other

words, the orientation resolution of the principal axis analysis is not sufficient to

solve a non-orthogonal multiple orientation problem.

Gabor Based Approaches

In order to have sufficient orientation resolution, Heeger sampled the spectrum

of the image sequence with twelve Gabor filters to determine the orientation of

the motion plane in the frequency domain [Hee87]. Grzywacz and Yuille [GY90]

further pointed out that the spectral support of a Gabor filter is a measure of un-

certainty and the angle between two tangential lines of the support, which pass

through the spectral origin, represents the uncertainty of orientation estimation.

For simplicity we use 2D Gabor filters for demonstration and represent the spec-

tral support of a filter with a circle. The angle between two tangential lines of the

circle is a measure of angular uncertainty. This angle is desired to be the same for

filters at different frequencies (figure 4.1). If we apply filters with constant scale,

we will have larger angles at low frequencies than at high frequencies. In or-

der to have the same orientation resolution, the spectral support of filters should

be directly proportional to the frequency. This is exactly the property of Gabor

wavelets [Mac91, Lee96, WB97, WFKvdM97, Wür97].

Heitger et al. proposed a variant of 2D Gabor filter, whose odd and even part

have zero mean values [HRdH+92]. They called this variation “stretched Gabor”

filter. Similarly, Xiong and Shafer used hypergeometric filter to sample the spec-

trum for motion estimation [XS97]. The hypergeometric filter is based on one

kind of special function called confluent hypergeometric function in the mathemat-

ical physics. It is very similar to Gabor filter in shape, but its DC component is

zero. For details about the confluent hypergeometric function the reader is referred

to [NU88].
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Figure 4.1: The motivation of applying Gabor wavelets (redrawn from [GY90]). For

simplicity we show a 2D example. In this image, we represent the spectral support of a

Gabor filter with a circle. The angle between two tangential lines of the circle denotes

the orientation resolution. Applying a set of filters with constant scale, we obtain coarser

resolution at lower frequencies (as shown by the dashed circle and its tangential lines). It

is desired that this resolution is the same when we apply a set of filters. Thus, all circles

in one orientation should locate inside the space bounded by two tangential lines passing

through the origin. Correspondingly, the spectral support of filters should be directly

proportional to the frequency. This is exactly the property of Gabor wavelets.

One main concern of using Gabor/hypergeometric filter based approaches is the

enormous complexity of computation in sampling the spectral domain with fine

resolution. Taking this concern into account, we understand clearly why Heeger

used only twelve Gabor filters to sample the whole energy spectrum, though the

corresponding orientation resolution is still very coarse.

In light of steerability approaches, we studied whether we can steer the Gabor

filter to deal with the enormous complexity of computation [OT98]. In short

words, using SVD we can steer a set of Gabor filters having isotropic shapes (i.e.

they are not elongated) with respect to their positions (For details about the SVD

the reader is referred to [PTVF92]). By combining Gabor filters with different

scales we may maintain the same orientation resolution in sampling. However,

Grzywacz and Yuille pointed out that, in the filter responses of Gabor wavelets,

there is a positive skewness [GY90], which obstructs the application of Gabor
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wavelets in multiple orientation analysis. In the following, we explain the root of

the skewness.

Skewness of Gabor Wavelets

For simplicity we use 2D Gabor filters. We define a 2D Gabor filter with variablesx and t as followsga(x; t;!x0; !t0; �x; �t) = 12��x�t expf�( x22�2x + t22�2t ) + i(!x0x+ !t0t)g; (4.2)

where (!x0; !t0) denotes its central frequency components. Its scale parameters

are denoted with �x and �t. The corresponding spectrum is described in the equa-

tion below with !x and !t as variablesGa(!x; !t;!x0; !t0; �x; �t) = expf��2x(!x � !x0)2 + �2t (!t � !t0)22 g: (4.3)

It is worth mentioning that we observe the result of applications not in the fre-

quency domain, but in the parameter space, i.e. in the space coordinated with !x0
and !t0. Therefore, we should observe the spectrum with respect to the parame-

ters !x0 and !t0.
If �x and �t are constant, the spectrum is simply a Gaussian function of !x0 and!t0 and there is no skewness. But we prefer the wavelet property: The scale of a

Gabor filter should be inversely proportional to its central frequency parameter

so that its spectral support is directly proportional to the frequency. Thus, we

have ( �x = C!x0�t = C!t0 ; (4.4)

whereC is a constant. Then the corresponding spectrum of Gabor wavelets yieldsGa(!x; !t;!x0; !t0; C) = expf�C22 [(!x � !x0!x0 )2 + (!t � !t0!t0 )2℄g: (4.5)

When we interpret this expression with respect to parameters !x0 and !t0, this

expression is no more a Gaussian function because there are also !x0 and !t0 in

the denominator of the exponential function. Thus, the skewness appears. This

is shown in figure 4.2 in detail.
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Figure 4.2: The skewness of the Gabor wavelet. The spectrum is no more a Gaussian

function of the filter parameters !x0 and !t0. Left: 1D section of the skewness (redrawn

from [GY90]). Right: 2D version of the skewness. C = 3:5; !x = !t = �2 .

In figure 4.2 we observe that, if there is only one single motion, the maximum

is still well localized at (!x0; !t0) in spite of the skewness since we do not have

overlapping. But if we have multiple planes, the overlapping of different fil-

ter responses, specially the overlapping of skewness will disturb the locations

of maximal values. As a result, the extracted orientation information will be no

more convincible.

Our Contribution

Though the skewness obstructs the application of Gabor wavelets in multiple

motion analysis, we find the idea of sampling the orientation locally is still at-

tractive since it achieves higher orientation resolution than principal axis anal-

ysis and current 3D steerable filters (see chapter 3 for detail). According to our

observation, current Gabor based approaches are still derived from the idea of

complete signal representation and sample the whole spectrum directly instead

of the orientation, while the orientation information is sufficient for multiple mo-

tion analysis. Based on this analysis and the consideration of maintaining the

same orientation resolution, we proposed our 3D orientation steerable filter in

chapter 3. In this chapter, we will apply this filter for multiple motion estimation.

This chapter is constructed as follows: The following section studies multiple

motions in detail for a better understanding. Then, we compare the spatial mo-

tion model and the spectral motion model in section 3. After that, we use our

orientation steerable filter for multiple motion estimation in section 4. Section 5
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further discusses the multi-window strategy in occlusion estimation and the pre-

cision improvement of estimation results after eliminating outliers. Later on we

use the “shift-and-subtract” technique to localize and to track motion boundaries

in occlusion sequences in section 6. In section 7 we show application examples.

Finally, this chapter is concluded in section 8 with some discussions.

4.2 Understanding Multiple Motions

Multiple motions may be divided into occlusion and transparency. In this section,

we explain that occlusion is equivalent to multiple planes both in the (Ix; Iy; It)
space and in the frequency space and transparency is equivalent to multiple

planes only in the frequency space. Correspondingly, multiple motion analysis

is equivalent to orientation analysis of multiple planes.

Spatial Observation of Multiple Motions

We start with an illustration of the difference between occlusion and transparency

in figure 4.3. First, by isolating a spatial window, we observe that occlusion is

more local than transparency. In case of transparency the entire window contains

two motions. Second, the transparency is the addition of two models, whereas

the occlusion involves a step-function [Niy95]. This difference makes it difficult

to describe both kinds of multiple motions with a unified model in the spatial

domain. Thus, we turn to the frequency domain to look for the solution.

Spectral Analysis of Occlusion

One motivation of studying multiple motions in the frequency domain is to pro-

vide an explicit model which describes both occlusion and transparency in a uni-

form manner. The underlying theoretical framework relies on spectral analy-

sis and was first presented in [BB97] based on observations in [FL94]. Another

framework for multiple motions formulated in the frequency domain is the su-

perposition principle of Shizawa and Mase [SM91] which, however, does not sep-

arate occlusion from transparency.
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Figure 4.3: Although occlusion and transparency can be decomposed into multiple layers,

they are based on different decomposition principles. Here random dot regions represent

motion and dark regions denote static status. Top: One frame of the occlusion sequence is

decomposed into two layers by a Heaviside unit step function (equations (4.6) and (4.7)).

There is motion discontinuity only at the boundary. The occluding signal is moving with

the speed (1; 1) [pixel/frame] and the occluded signal with (1;�1) [pixel/frame]. We use�̂ to denote the unit vector normal to the occluding boundary. Bottom: One frame of the

transparency sequence is a simple superposition of two layers (equation (4.13)). Multiple

motions exist in the entire window. The speeds of multiple motions are (1; 1) [pixel/frame]

and (1;�1) [pixel/frame] as well.

The spectrum of multiple motions was first analyzed by Fleet and Langley [FL94].

Assuming that an occlusion boundary is a characteristic function �(x), they model

the occlusion in the spatial domain as follows:I(x; t) = �(x� v1t)I1(x� v1t) + [1� �(x� v1t)℄I2(x� v2t); (4.6)

where I1(x) is a 2D occluding signal moving with velocity v1 = (v1x; v1y)T andI2(x) is a 2D occluded signal moving with velocity v2 = (v2x; v2y)T .

Beauchemin and Barron [BB97, BB00] were the first who formulated an exact

model in the frequency domain. They modeled the occlusion in the spatial do-

main with a Heaviside unit step function U(x) for �(x):U(x) = ( 1 xT �̂ � 00 otherwise
; (4.7)

where x denotes 2D spatial Cartesian coordinates and �̂ is a unit vector normal to

the occluding boundary (figure 4.3).
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We denote the spatial frequency vector as � = (!x; !y)T and the temporal fre-

quency as !t. Then, the Fourier transform of the image sequence reads~I(�; !t) = ~U(�)Æ(�Tv1 + !t) � ~I1(�)Æ(�Tv1 + !t) + ~I2(�)Æ(�Tv2 + !t)� ~U(�)Æ(�Tv1 + !t) � ~I2(�)Æ(�Tv2 + !t); (4.8)

where � means convolution and ~ denotes the Fourier transform of the corre-

sponding signal. The spectrum of the Heaviside unit step function is given by~U(�) = 2�[�Æ(j�j) + Æ(�T �̂?)i�T �̂ ℄; (4.9)

where �̂? denotes a unit vector perpendicular to �̂. Taking the properties of the

impulse function into account, we obtain (see Appendix B for detail)~I(�; !t) = [2�2 ~I1(�) + A(�)℄Æ(�Tv1 + !t)+(1� 2�2)~I2(�)Æ(�Tv2 + !t) +B(�; !t); (4.10)

with A(�) = 2�i�T �̂ Æ(�T �̂?) � ~I1(�); (4.11)B(�; !t) = 2�i�T �̂ Æ(�T �̂?)Æ(�Tv1 + !t) � ~I2(�)Æ(�Tv2 + !t): (4.12)

The first two terms of expression (4.10) are two oriented planes passing through

the origin of the frequency space. Their normal vectors, namely (u1; v1; 1) and(u2; v2; 1), contain the velocities of the two signals. The second term is exactly

the spectrum of the occluded signal, but the first term contains an additional

distortion term A(�) on the plane of the occluding spectrum. However, here we

are interested in the orientation of the plane and the term A(�) does not disturb

the orientation. Actually, A(�) strengthens this spectral plane. Therefore, we

do not consider it as distortion. The main discriminating term is the third one,B(�; !t), which is a 3D volume filling the entire frequency space. We observe that

this distortion term depends on the normal of the occluding boundary as well as

both speeds of the occluding and the occluded signal.

If the energy of the distortion term B(�; !t) is very high, we will not be able

to recognize the two planes. Fortunately, the critical factor in the amplitude of
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of j�j. In most regions of the spectral domain, say for j�j � 1, the amplitude

of the distortion is much less than that of signals. Therefore, we may consider

the spectrum only above a lower bound of the frequency and identify the two

dominant planes.

Spectral Analysis of Transparency

Transparency is a special case of occlusion since we can simply substitute �(x �v1t) with a real constant a(a 2 (0; 1)) yieldingI(x; t) = aI1(x� v1t) + (1� a)I2(x� v2t): (4.13)

The corresponding spectrum is then characterized by two oriented planes with-

out distortion~I(�; !t) = a~I1(�)Æ(�Tv1 + !t) + (1� a)~I2(�)Æ(�Tv2 + !t): (4.14)

Spectral Model of Multiple Motions

Though in the case of occlusion there exists a distortion term, the main energy

proportion is on the two spectral planes due to the hyperbolic nature of the dis-

tortion term. In addition, we may low-stop the energy spectrum to abandon the

strong disturbance at low frequencies. Thus, we propose a unified model for both

occlusion and transparency in the spectral domain: Both occlusion and trans-

parency are characterized as multiple spectral planes passing through the origin.

The corresponding motion speeds are described by the normal vectors of these

planes.

This model can be viewed as a generalization of the spatiotemporal energy model

of single motion [AB85, Hee87]. At first sight it is very similar to the work of

Shizawa and Mase [SM91]. But there are two different points in our work:� Shizawa and Mase proposed that multiple motions are characterized as

multiple planes both in the (Ix; Iy; It)-space and in the frequency domain.

We argue that even the model is correct in the (Ix; Iy; It)-space, it is not fea-

sible since we cannot estimate Ix, Iy, and It properly in case of transparency.
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the occlusion. We have to truncate low frequency components in order to

fit multiple planes robustly.

4.3 Comparison between Spatial and Spectral Model

According to the analysis in the last section, the spectral model can describe both

occlusion and transparency, while the spatial model can describe only occlusion.

This is because the spatial model is very much dependent on the correct estima-

tion of Ix, Iy, and It. In case of occlusion, most pixels in the image may have

the correct Ix, Iy, and It due to the local property of motion boundaries (see fig-

ure 4.3). But in case of transparency, we can hardly assume that the intensity

profile is differentiable. If we do not have a priori knowledge about motions,

we cannot assume that all multiple motions are occlusion. In this situation, we

should use the spectral model.

It should be noticed that, though we have a thorough analysis of the spectral

motion model, there exists a severe problem in obtaining the energy spectrum

of the image sequence due to the block effect of the discrete Fourier transform

(DFT). This is actually one main problem in the frequency-based techniques. In

order to avoid the block effect of DFT, we take a local Fourier transform (LFT), i.e.

Gaussian windowed DFT. According to the convolution theorem in the Fourier

analysis, Gaussian windowed DFT of the image sequence is equivalent to the con-

volution between the spectrum of the image sequence and the Gaussian function.

Consequently, the spectrum is blurred after the LFT. Besides, the high frequency

components leak from one side of the spectrum to the other side due to the peri-

odic property of DFT. As a result, the spectral multiple motion model has worse

resolution than the spatial multiple motion model. For compensation, we have

to enlarge the window size so that we can improve the frequency resolution with

finer interval. But this compensation has also limitations. First, using a larger

window means a pixel has more neighbors in a frame. The constant motion as-

sumption in this enlarged neighborhood is more fragile. Second, using a larger

window means including more frames in the estimation. On one side, using mul-

tiple frames improves the robustness of the optical flow estimation algorithm (e.g.

[Jäh93]). On the other side, if we include a very long sequence into estimation,
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we can hardly assume that the motion is constant over so large time interval.
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Figure 4.4: Orientation signatures of occlusion and transparency sequence in figure 4.3.

Both occlusion and transparency have the same motion parameters. Top Left: The orien-

tation signature S1(�; �) of the occlusion sequence based on the spatial multiple motion

model. We use a 33�33�1 window to obtain this signature. In the signature we observe

outliers outside two main curves. Top Right: The signature S2(�; �) of the occlusion

sequence based on the spectral multiple motion model. The structure is the same as that

in S1(�; �) except that the curves are blurred. We apply band pass filter to reduce the high

frequency aliasing as well as the low frequency disturbance. We use a 32� 32� 32 win-

dow to obtain this signature. Bottom Left: The signature S3(�; �) of the transparency

sequence based on the spatial model. The distribution of points is nearly random. Bot-

tom Right: The signature S4(�; �) of the transparency sequence based on the spectral

model. Comparing S4(�; �) with S2(�; �), we observe that the spectral model describes

both occlusion and transparency in a uniform manner. Besides, the distortions outside

the main curves in S2(�; �) disappear in S4(�; �).
We confirm these claims with an example. In figure 4.4 we compare the orien-

tation signatures of both occlusion and transparency using spatial and spectral

motion model. These orientation signatures are obtained by applying our 3D

steerable filter on the derivative or the energy spectrum of the image sequences

in figure 4.3. Note that multiple planes in both derivative space and energy spec-
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trum pass through the origin. Therefore, it is very easy to set the origin as the

keypoint for the application of our 3D steerable filter. This is a great advan-

tage compared to using steerable filter for 2D junction characterization, where

we have to locate the keypoints at first. Since both occlusion and transparency

sequences have the same motion parameters, it is desired that their orientation

signatures have the same curves. A comparison between row 1 and row 2 shows

that the spectral model can treat both occlusion and transparency, while the spa-

tial model can treat only occlusion. This figure confirms our spectral analysis

of occlusion and transparency as well. In S2(�; �) we observe distortions out-

side two main curves, while in S4(�; �) these distortions disappear. Besides, a

comparison between S3(�; �) and S1(�; �) confirms that the spectral model has

coarser resolution than the spatial model since the spectrum is blurred by LFT.

Though we may avoid the use of LFT, we still need many frames by sampling the

spectrum with Gabor filters and by using phase-based technique (e.g. [FJ90]) for

an exact estimation. For example, here we have to use a 32 � 32 � 32 window to

obtain the orientation signature in the spectral domain, in which the resolution

is still very coarse. Taking into account that the constant motion assumption will

be very often violated in such a large window, we prefer to go back to the spatial

model for occlusion analysis.

4.4 Multiple Motion Estimation Using 3D Steerable

Filter

In this section, we apply our 3D steerable filter in the estimation of multiple mo-

tions and compare our 3D steerable filter with current estimation algorithms. Af-

ter applying our 3D filter, we obtain an orientation signature. For parameter

extraction or signal segmentation, we still need further processing like the EM

algorithm. Since the 3D Hough transform based on equation (3.8) as well as the

planar EM algorithm can extract the orientation parameters of planes directly,

we face the following question in the application of 3D steerable filter: Why do

we project the 3D data onto the 2D feature space before extracting parameters?

In order to answer this question, we must analyze the 3D Hough transform and

the EM algorithm in more detail.
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3D Hough Transform Based Algorithm

The Hough transform is a sampling and searching method for parameter extrac-

tion. Concretely, in equation (3.8) we like to extract the normal vectors (n1; n2; n3)
from a set of points coordinated with (Iix; Iiy; Iit)(i = 1; � � � ; N). For each point(Iix; Iiy; Iit), we draw the corresponding vectors in the (n1; n2; n3) space satisfying

the equation Iixn1j + Iiyn2j + Iitn3j = 0; (j = 1; � � � ) (4.15)

where (n1j; n2j; n3j) denotes the j-th vector normal to (Iix; Iiy; Iit). After going

through all points, we search in the (n1; n2; n3) space the position with the maxi-

mal number of intersections. From the corresponding coordinates (n1m; n2m; n3m)
we obtain then the desired motion parameters( um = n1mn3mvm = n2mn3m : (4.16)

In practice, we sample the parameter space with a finite interval and relax the

orthogonal criterion with a positive threshold " yielding replace the above equa-

tion (4.15) with j Iixn1j + Iiyn2j + Iitn3j j� ": (4.17)

The equation (4.17) based 3D Hough transform is equivalent to a 3D filter with the

concave disk shape centered at the origin of the 3D space (figure 4.5). This disk

is actually a collection of relaxed normal vectors of all possible planes containing

the vector (Iix; Iiy; Iit). Comparing our filter shape (figure 3.1) with the shape of

this disk filter we conclude that our filter samples the orientation space more ef-

ficiently than the 3D Hough transform. This conclusion is also confirmed by the

comparison between our filter response of a plane (figure 3.4) and the Hough im-

age of a point, which is actually the impulse response of the concave disk filter in

3D space (figure 4.6). It is interesting that the Hough image of a 3D point is very

similar to our steerable filter response of a 3D plane except that the Hough image

has no negative � value (we only use normal vectors with n3 > 0). Taking into

account that our filter response of a 3D plane consists of filter responses of a lot

of points we may confirm the above conclusion easily. This efficiency enables our

filter to reduce the enormous memory requirement in Hough based approaches
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Figure 4.5: The 3D Hough transform is equivalent to a filter with a concave disk shape.

A: General projection drawing of the filter mask. The vector n is normal to the filter

mask. B: Side view of the filter mask. The angular thickness T of the disk is determined

by the clustering threshold " in equation (4.17). C: Vertical view of the filter mask.

[XOK90], especially the gigantic overlapping of the Hough curves (figure 4.6). As

a result, we can extract the parameters of motion planes with much less complex-

ity.
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Figure 4.6: Left: All unit vectors satisfying equation (4.17) form a curve similar to our

filter response of a 3D plane in the (�; �) space. The width of the curve is determined by

the clustering threshold " in equation (4.17). Right: The Hough image of the random

dot occlusion sequence in figure 4.3.
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Another point is that the intersections of different curves in the Hough image are

blurred due to the introduction of ", as shown in figure 4.6. Consequently, the

global maximal position is no more a peak, but a smooth mono-modal distribu-

tion. Though the search of the global maximal position is still feasible, the search

of the second maximal position is generally problematic because the properties

of the mono-modal distribution are unknown and we do not know how to get rid

of the neighbors of the global maximum automatically in searching the second

maximum. We have such an example in figure 4.6, where we display the Hough

image of the random dot occlusion sequence shown in figure 4.3. After finding

out the global maximal position (�n1; �n1) = (46Æ; 36Æ) as the first normal vec-

tor and extracting the corresponding speed (u1; v1) = (0:956; 0:990), we do not

know how to get rid of the neighbors of this global maximal position automat-

ically. In order to test if the second maximal position is correct, we cut out the

neighbors of the global maximum by setting the region with � > 0 in the Hough

image to zero and further search the maximal position. This time we obtain two

points with (�n2; �n2) = (�46Æ; 36Æ) and (�n3; �n3) = (�45Æ; 36Æ). Correspond-

ingly, the second motion has two possible parameters, (u2; v2) = (0:956;�0:990)
or (u2; v2) = (0:973;�0:973), and we do not know which one is the desired motion

parameter. This problem is even worse, when these two maxima locate near each

other.

This problem is easier to solve in our filter response. Though it is not easy to find

out the extreme points exactly in the orientation signature due to noise or inade-

quate number of points, as we mentioned in chapter 3, we can get appropriately

initial values using the following facts: First, the orientation signature of a plane

is a periodic function. Second, the extreme point (�m; �m) (see equation (3.10) for

reference) has its �m located in the middle of two zero-crossing points on the �
axis, while these two zero-crossing points should have a distance of �. Thus, we

can simply detect the number of zero-crossing points on the � axis in the orien-

tation signature and analyze their relations to determine the number of motions.

The � value of the middle point between two corresponding zero-crossing points

is the desired �m. Then we can search the �m along the � direction starting from�m. After obtaining appropriately initial values of (�m; �m), we may use the EM

algorithm for further refinement of motion parameters.

According to above descriptions we have the following remarks.



78 CHAPTER 4. MULTIPLE MOTION ANALYSIS� Our 3D steerable filter is similar to the 3D Hough transform in the sense

that both methods sample the parameter space in the implementation.� Our filter samples the parameter space more efficiently than the Hough

transform because the impulse response of our filter has much smaller sup-

port than the Hough image of a point. This advantage is reinforced in ob-

taining the responses of 3D planes, in which our approach works like mo-

saicing different impulse responses with overlapping only among neighbor-

ing responses, while the overlapping effect of the Hough images of points

is much stronger.� In Hough image the search of the second maximal position is in general a

problem. In our approach we find the second maximal position or its ap-

propriate approximation easily. Of course we still need further refinement

of desired parameters.

Spatial and Spectral Expectation Maximization Algorithm

The EM algorithm consists of subsequent iterations of the expectation and maxi-

mization step until there is no significant difference in the parameter estimates. In

the expectation step, the membership weights of points are updated by the new

results of parameter estimation; in the maximization step, we use the usual max-

imum likelihood method to estimate parameters with the updated assignment of

points to groups.

In the spatial EM algorithm based on equation (4.1), we choose arbitrarily initial

values (u10; v10) and (u20; v20). In the expectation step, we assign the weights Wi1
and Wi2 to the i-th point as follows according to the corresponding squares of the

residuals (see [JB93] for details)8><>: Wi1 = 11+e�Ri2�Ri1�2rWi2 = 11+e�Ri1�Ri2�2r ; (4.18)

with ( Ri1 = (Iixu1 + Iiyv1 + Iit)2Ri2 = (Iixu2 + Iiyv2 + Iit)2 ; (4.19)
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where �r is a parameter to adjust the tolerance level of the residual. The weights

are simple applications of the Bayes rule, which give the membership probability

of every point.

In the maximization step, we solve the following two linear systems in order to

update (u1; v1) and (u2; v2), where the indices i1 and i2 run over all points0BB� ...
...

...Wi1Iix Wi1Iiy Wi1Iit
...

...
...

1CCA0B� u1v11 1CA = 0; (4.20)0BB� ...
...

...Wi2Iix Wi2Iiy Wi2Iit
...

...
...

1CCA0B� u2v21 1CA = 0: (4.21)

In this spatial model we convolve the cube with the first spatiotemporal deriva-

tives of a 3D Gaussian function to obtain Iix, Iiy, and Iit.
In using the spectral motion model, we take a LFT to avoid the block effect of

DFT and further band-pass the energy spectrum to truncate the distortion at low

frequencies and the aliasing at high frequencies. Here we simply use an ideal

band-pass filter with stop frequencies j!lowj = �4 and j!highj = 3�4 . Then we obtain

a set of data points in the spectral domain associated with the amplitude of the

Fourier transform. Their amplitudes can be viewed as a mass density in fitting

the plane to these points. We denote with Ai the amplitude of the i-th point in the

data set. The spectral EM algorithm is similar to the spatial EM algorithm. We

only need to build the new residuals( R0i1 = A2i (!ixu1 + !iyv1 + !it)2R0i2 = A2i (!ixu2 + !iyv2 + !it)2 : (4.22)

By replacing Ri2 and Ri2 in equations (4.19) with R0i1 and R0i2, we build the cor-

responding weights W 0i1 and W 0i2 in the spectral domain. Correspondingly, the

linear system turns out to be0BB� ...
...

...W 0i1!ix W 0i1!iy W 0i1!it
...

...
...

1CCA0B� u1v11 1CA = 0; (4.23)
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...

...W 0i2!ix W 0i2!iy W 0i2!it
...

...
...

1CCA0B� u2v21 1CA = 0: (4.24)

Since the EM algorithm is an iterative method, it has no closed-form solution.

Generally, we do not know the number of motions exactly. In order to fix the

number of motions, Weiss introduced the smoothness constraint into the motion

model [Wei97] to avoid the “overfitting” problem. Ayer and Sawhney [AS95]

and Gu et al. [GSA96] applied the minimum description length (MDL) princi-

ple [Ris83] to obtain the minimal number of motions. These approaches fix the

number of motions implicitly. Actually, we may detect the number of motions

directly in our filter responses by analyzing the zero-crossing points on the � axis.

Besides, the convergency and the robustness of the EM algorithm are very much

dependent on the initial values. We also can improve the setting of initial values

by analyzing curves in our filter responses, as we will show in the experiment

section.

In summary, though the 3D steerable filter does not extract parameters or seg-

ment signals directly, it reduces the data dimension. This makes the access of

parameters easier and results in the improvement of the performance of current

algorithms.

4.5 Outlier Issue in Occlusion Estimation

Current probabilistic approaches include the outliers in the estimation. This makes

the estimation fragile, especially if the number of outliers is comparable to the

number of pixels with a single motion since probabilistic methods are purely

based on statistics. Our motivation is to improve the quality of input data be-

fore extracting motion parameters. According to our observation this is possible

by combining current techniques.

Detection of Outliers

We assume that the motions in image sequences are piecewise-smooth with pos-

sible occlusion. In the spatio-temporal derivative space we observe the following
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relations according to [Jäh93]:� For a single constant translational motion we have a plane with a normal

vector parallel to (u; v; 1), where (u; v) denotes the optical flow vector. The

eigenvalues of this plane satisfy�1 � �2 > �3 = 0: (4.25)� For a single constant motion having the aperture problem, the plane above

degenerates into a line whose corresponding eigenvalues satisfy�1 > �2 = �3 = 0: (4.26)� For occlusion we observe multiple planes plus distortions [YDBS99] with

three positive eigenvalues �1 � �2 � �3 > 0: (4.27)

Thus, we can judge if there are multiple motions from different combinations of

eigenvalues even without knowing motion parameters. In practice, the eigenval-

ues may deviate from their standard values due to noise or derivative approxi-

mation error. Thus, instead of checking if �3 = 0 we set a threshold �31 for outlier

detection. If �3 > �31�1, we conclude that there are multiple motions. We may

also check the aperture problem by defining another threshold �21 between �2
and �1. Here we set �31 = �21 = 0:2.

In case of occlusion, if we can purify multiple planes from distortions (i.e. out-

liers), we may improve the precision of estimation results. The remaining ques-

tion is how to detect these outliers. We observe that if we have occlusion in a

window, the occlusion boundaries should locate in this window as well, though

we do not know their exact positions. Based on this observation, we use a multi-

window strategy to eliminate outliers before estimation. We detect occlusion re-

gions using eigenvalue analysis inside small windows and mark these regions as

outliers. In a large window containing these small windows the pixels outside

outlier regions are guaranteed to be normal pixels. Using only these normal pix-

els for estimation, we avoid the disturbance of outliers and improve therefore the

precision of estimation results in the large window.
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It should be noticed that we also abandon some normal pixels by marking out-

liers inside small windows. Therefore, we prefer to reduce the size of the small

window so that this loss is as small as possible. On the other side, in order to

provide robust eigenvalue analysis, we must have an adequate number of pixels

in the small window. To solve this conflict, we limit the spatial size of the small

window but extend its temporal size to include pixels from other frames as well

(e.g. from frames (t0 � 1) and (t0 + 1), where t0 denotes the current frame).

In order to verify that there are still adequate pixels remaining, we define a reli-

ability measure which is a ratio between the number of pixels remaining and the

total number of pixels in the windowrm := NiNall ; (i = 1; 2) (4.28)

where N1 and N2 denote the number of remaining pixels of the occluding and

occluded signal. If either of these two ratios is below a threshold, we have to

enlarge the window to include more pixels for estimation.

Precision Improvement after Eliminating Outliers

In figure 4.7 we show the result of outlier detection in the random dot occlusion

sequence (figure 4.3), where the occluding signal moves with a speed of (1,1)

[pixel/frame] and the occluded signal with a speed of (1,-1) [pixel/frame]. We

show also the orientation signatures before and after eliminating outliers. We can

see that after eliminating outliers the curves in the (�; �) space are more clearly.

Consequently, we obtain better estimation results (see table 4.1). In order to ana-

lyze the effect of window size in the estimation, we reduce the window size from33 � 33 to 17 � 17. In the 17 � 17 window, the number of outliers is liable to be

comparable to the number of normal pixels. As a result, the disturbance of outliers

increases strongly. In contrast, if we eliminate outliers before estimation, we can

still obtain reasonable results.

4.6 Scene Analysis

After obtaining multiple motion parameters in the occlusion boundary regions,

we would like to localize boundaries in one frame and further track their move-



4.6. SCENE ANALYSIS 83

 −180  180 0
 θ

 φ
 90

  0

 −90
 −180  180 0

 θ

 φ
 90

  0

 −90

Figure 4.7: Left: Marked outliers in the random dot occlusion sequence in figure 4.3

after eigenvalue analysis using a 5 � 5 � 3 window. The white box here shows the esti-

mation window across the occlusion boundary. Middle: Spherical representation of 3D

data in the (Ix; Iy; It) space before eliminating outliers. Right: Spherical representation

after eliminating outliers. Two curves are more clearly to see. See tables 4.1, 4.2 and 4.3

for estimation results.

The Effect of Eliminating Outliers in Occlusion Estimation

window size eliminating outliers occluding speed occluded speed33� 33 before (0:986; 0:999) (0:986;�0:988)
after (0:998; 0:999) (0:990;�0:995)17� 17 before (0:880; 0:971) (0:859;�0:869)
after (0:988; 1:013) (0:993;�0:998)

Table 4.1: Estimation results before and after eliminating outliers with different window

sizes. For comparison we apply the EM algorithm on the orientation signature with

the same tolerance parameter and initial values before and after eliminating outliers:�r = 0; 1, (u10; v10) = (0:8; 0:3), (u20; v20) = (1:2;�0:1). The ratio between the number

of outliers and the number of pixels with a single motion is larger in the 17� 17 window

than in the 33 � 33 window. Thus, the error of the results in the smaller window before

eliminating outliers is larger than the error of other results. After eliminating outliers,

we obtain reasonable results again. This example displays vividly that the EM algorithm

is purely a statistic method.

ment in the occlusion sequence. Fleet et al. [FBJ98] modelled an occlusion bound-

ary explicitly in a local circular mask with six parameters, i.e. the orientation of

the boundary, the distance between the boundary and the center of the circular

mask, and four motion parameters of both occluding and occluded signal. But

this model is only suitable for a straight-line boundary.
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The spectral model of the occlusion boundary [YDBS99, BB00] assumes implicitly

that the boundary is an edge (equation (4.7)). If the boundary has other contours,

we have to change the U(x) in equation (4.7). Consequently, the spectrum ofU(x) changes in equation (4.9) as well. Since the distribution of distortions is not

yet studied under this circumstance, we cannot propose an explicit model in the

spectral domain to describe all possible boundaries.= + o

o

�v1 = &It It�1 �It;1�v2 = %N)
It It�1 �It;2

Figure 4.8: Row 1 Left: One frame from a random dot occlusion sequence. It is com-

posed of one occluding signal moving right-down and one occluded signal moving right-

up. Row 1 Right: Marked occlusion regions after eigenvalue analysis. While the local

explicit model [FBJ98] can describe the linear boundary parts marked with circles, it

cannot describe the boundary corner marked with the square window. Row 2: “Shift-

and-Subtract” with the occluding speed. Row 3: “Shift-and-Subtract” with the occluded

speed. Between Row 2 and Row 3 Right: The localized occlusion boundaries. Here

we do not consider the border problem.

Instead of using the explicit boundary model, we apply the “shift-and-subtract”

technique to localize motion boundaries. The “shift-and-subtract” technique is

based on the spatial coherence of the image sequence [BBHP92, Cho95, WA96].

Concretely, we consider three successive frames It�1, It, and It+1 in an image

sequence. We first shift the frame It�1 with two estimated speeds v1 and v2 to
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form the shifted frames It�1(x + v1) and It�1(x + v2). Then we calculate two

difference images �It;1 and �It;2( �It;1(x) = It(x)� It�1(x+ v1)�It;2(x) = It(x)� It�1(x+ v2) : (4.29)

In case of occlusion we will observe one region with zero intensity in each one of�It;1 and �It;2. These two regions are complementary in coordinates (figure. 4.8).

Their intersection localizes the boundary region Bt. Thus, we extract the bound-

ary information in a simple way without using an explicit model.

By repeating the same process on frames It and It+1, we obtain the shifted bound-

ary region Bt+1 and track therefore the movement of occlusion boundaries. Since

the occlusion boundaries move consistently with the occluding signal, we solve

the foreground/background ambiguity [BF99]. This process is displayed in fig-

ure 4.8 as well.

The “shift-and-subtract” technique also distinguishes occlusion from transparency,

as there is no zero region in either �It;1 or �It;2 in case of transparency. Further-

more, we can use this technique to decompose transparency scenes into their

multi-layer representations [WA93] (figure 4.10).

4.7 Experiments

We begin with the occlusion sequence in figure 4.3, whose orientation signature

is shown in figures 4.4 and 4.7. Since the EM algorithm based on the orienta-

tion signature (equation (3.9)) is similar to the planar EM algorithm based on the

equation (3.8) except the advantage of setting initial values appropriately, we ap-

ply the EM algorithm based on the orientation signature in the following. We use

our filter with and without radial averaging compensation to confirm the anal-

ysis in section 3.4. In the spatial model, we also compare the estimation results

before and after eliminating outliers.

In order to compare the spatial and spectral model, we set the same tolerance

parameter �r = 0:1 and the same initial values for both spatial and spectral EM

algorithm. At first, we set the initial values of motion parameters arbitrarily as(u10; v10) = (0:8; 0:3) and (u20; v20) = (1:2;�0:1). Then, we use the extreme points
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tures and calculate the initial values appropriately as (u10; v10) = (0:9; 1:1) and(u20; v20) = (0:9;�1:1). The results in tables 4.2 and 4.3 show that if we have

properly initial values, the iteration number of the EM algorithm reduces.

Occlusion Estimation with Arbitrarily Initial Values

model outlier averaging iteration occluding occluded

before yes 3 (0:927; 0:998) (0:949;�0:971)
spatial elimination no 3 (0:986; 0:999) (0:986;�0:988)
model after yes 3 (0:985; 1:002) (0:977;�0:991)

elimination no 3 (0:998; 0:999) (0:990;�0:995)
spectral not yes 7 (1:187; 1:194) (1:112;�1:147)
model available no 4 (0:898; 0:948) (1:106;�1:099)

Table 4.2: Estimation results of the occlusion sequence shown in figure 4.3, whose

orientation signatures are shown in figures 4.4 and 4.7. In both spatial and spec-

tral EM algorithm we use the same parameters: �r = 0; 1, (u10; v10) = (0:8; 0:3),(u20; v20) = (1:2;�0:1). We use a 33 � 33 window to obtain the orientation signa-

ture and a 5� 5� 3 window to detect outliers in the spatial model. In the spectral model

we use a 32� 32� 32 window to obtain the orientation signature.

Occlusion Estimation with Properly Initial Values

model outlier averaging iteration occluding occluded

before yes 1 (0:938; 1:005) (0:923;�0:960)
spatial elimination no 1 (0:980; 0:997) (0:963;�0:974)
model after yes 1 (0:987; 1:002) (0:967;�0:986)

elimination no 1 (0:994; 0:997) (0:978;�0:988)
spectral not yes 2 (1:182; 1:191) (1:110;�1:145)
model available no 2 (0:966; 1:002) (1:007;�1:026)

Table 4.3: Occlusion estimation with properly initial values (u10; v10) = (0:9; 1:1) and(u20; v20) = (0:9;�1:1). These initial values are calculated using the extreme points

in the orientation signatures in figure 4.4. The other conditions are the same as those

in table 4.2. A comparison with table 4.2 shows that the iteration numbers of the EM

algorithms reduce using these properly initial values. The estimation results in both

tables are in the same precisions level since the input data does not change.

In each table, we further observe that, due to the finer resolution in the spatial
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model, the spatial EM algorithm provides more accurate estimation results than

the spectral EM algorithm and needs less iteration. We also confirm that the esti-

mation results without averaging compensation are more precise than the results

with averaging compensation. Moreover, if we detect and eliminate outliers be-

fore estimating occlusion with the spatial model, we can improve the precision of

the estimation results.

For the transparency sequence in figure 4.3, we have similar comparisons in ta-

ble 4.4. Since the spatial model cannot provide convincible results, we list only

the results using the spectral model.

Spectral Estimation of Transparency

initial values averaging iteration speed 1 speed 2(0:8; 0:3), yes 6 (1:173; 1:190) (1:019;�1:050)(1:2;�0:1) no 5 (0:899; 0:963) (1:026;�1:038)(0:9; 1:1), yes 3 (1:187; 1:193) (1:014;�1:048)(0:9;�1:1) no 1 (0:950; 0:999) (0:956;�0:990)
Table 4.4: Estimation results of the transparency sequence using the spectral EM al-

gorithm. Compared with the arbitrarily initial values, the properly initial values result

in faster convergence. Similar to the occlusion estimation results, the results without

averaging compensation are in general more accurate than the results with averaging

compensation.

In order to test the performance of the EM algorithm on determining the number

of models automatically, we propose an example of one moving signal. We use

a sequence with a single motion with velocity (1;�1) [pixel/frame] for the test.

Both the spatial and the spectral EM algorithm should converge to one speed

even with the arbitrarily initial values, if they are able to determine the number

of motions automatically. With the initial values (1:2;�0:1) and (0:8; 0:3) the spa-

tial EM algorithm converges to (0:995;�1:001) after 2 iterations and the spectral

EM algorithm converges to (1:057;�1:045) and (0:951;�1:011) after 2 iterations.

Taking into account that the spectrum of the image sequence is blurred, this result

is not surprising. This fact indicates that in the EM algorithm we do not know

the number of motions exactly. In order to confirm if the spectral EM algorithm

converges with the properly initial values, we run the program again by setting

both initial values as (0:9;�1:1). This time the spectral EM algorithm converges

to (1:004;�1:029) after 2 iterations. By using properly initial values the iteration
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is guaranteed not to fall into some unexpected local minimum. From this result

we also observe that the spatial model provides finer resolution than the spectral

model.

In figures 4.9 and 4.10 we show a real transparency sequence to compare the

spatial and spectral model. This transparency sequence contains a right moving

portrait and a mirrored left moving muesli package. Note that the sequence has

the aperture problem inside the multiple motion region.

For this sequence we apply the BCCE based algorithm to estimate single motion

and use the eigenvalue analysis to determine the multiple motion candidates at

first. In order to reduce the computational complexity, we apply the spatial and

spectral EM algorithm only in these candidate regions to estimate multiple mo-

tions. From figure 4.10 we see that the spatial EM algorithm is not able to estimate

transparent motions correctly, while the spectral EM algorithm works well. The

optical flow in the spectral EM approach is sparse. This is due to the fact that in

some regions of the package we do not have adequate texture information. For

a robust performance we ignore these regions in estimation. Similarly, the multi-

ple motion candidate regions are not in line with the package shape since some

regions of the package have the aperture problem. This example confirms the

above conclusion of model comparison.

After obtaining the motion parameters, we further decompose the transparency

scene into multi-layers with the “shift-and-subtract” technique. The results are

shown in difference images �It;1 and �It;2.
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Figure 4.9: Real transparency sequence. Row 1: This image displays how we produce

the transparency sequence. We move the camera and the muesli package separately to

produce two independent motions. The left moving muesli package is reflected on the

glass of the portrait so that we obtain a transparency sequence. Row 2: The first, 16-th

and 32-th frames of the image sequence. Each frame has 288 � 384 pixels. We use the16-th frame for motion estimation and scene analysis. Row 3: Epipolar slide of the whole

image sequence volume at the 150-th row. We can see the transparent motions clearly as

the overlapping of two tilted structures.
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Figure 4.10: Comparison of spatial and spectral EM algorithm on a real transparency

sequence. Row 1 Left: Estimation results using a single motion model. Single motion

model fails in case of transparent motions. Row 1 Right: Marked two motion candidate

regions according to the eigenvalue analysis. This region is not in line with the package

shape since on the package there are regions with the aperture problem. Row 2: Optical

flow of the spatial EM approach. The results are not correct in the transparent regions.

Row 3: Optical flow of the spectral EM approach. They are more accurate. The optical

flow of the spectral EM approach is sparse since in some regions we do not have adequate

texture information. For a robust performance we ignore the results in these regions.

Row 4: Decomposition of the transparency scene into two layers using the spectral EM

results and the “shift-and-subtract” technique.
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Real Occlusion Analysis

In this subsection we analyze real occlusion sequences. In figure 4.11 we show the

well known “flower garden” occlusion sequence, in which a left moving trunk is

covering left moving flower bed and houses. The speed of the trunk is about dou-

ble so fast as the speed of the flower bed and the houses. We can see this clearly

in the epipolar slide. We first estimate motions using the single motion model.

At the occlusion boundaries the results are not correct, as shown in row 3 of fig-

ure 4.11. After the eigenvalue analysis we detect two motion candidate regions

and the regions with the aperture problem, which are shown in row 3 as well. We

observe that the regions with the aperture problem are very large in the sky and

along the trunk. In the two motion candidate regions, we apply the spatial EM

algorithm to estimate multiple motions. The results are displayed in row 4. In

row 5 we apply the “shift-and-subtract” technique to localize occlusion bound-

aries. In fact, the difference images �It;1 and �It;2 can be viewed as the result of

occlusion segmentation. Since there is no difference inside the regions with the

aperture problem before and after the shifting, we observe only the boundaries of

the trunk in �It;1. We further localize occlusion boundaries from �It;1 and �It;2.
The result is shown in row 5 as well. The boundaries are badly connected since

the nonzero regions in �It;1 are discrete due to the aperture problem. This in-

dicates that the aperture problem obstructs not only motion estimation, but also

scene analysis.

Figures 4.12 and 4.13 display an occlusion example, in which a right moving box

is covering a left moving picture. The image is rich in texture so that we do not

face the aperture problem. We first estimate motions using the single motion

model. Since the box as well as the picture have purely translational motions and

since there is no depth difference in the box region or in the picture region, there is

no speed difference in either region. The incorrect results at the occlusion bound-

aries are clear to see. We confirm this observation using the eigenvalue analysis

and mark all possible multiple motion regions in row 2. In this sequence we

would like to test the effect of eliminating outliers. For performance comparison

we apply the EM algorithm vertically along the occlusion boundary before and

after eliminating outliers. It is a little bit difficult to compare the precision of esti-

mation results since the ground truth is unknown. But we observe that on each

side of the boundary there is almost no speed difference among pixels. There-
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Figure 4.11: Row 1: The 17-th, 32-th and 48-th frames of the image sequence. Each

frame has 240 � 352 pixels. Here we use the 32-th frame for motion analysis. Row

2: Epipolar slide of the whole image sequence volume at the 200-th row. Row 3 Left:

Estimation results using the single motion model. At motion boundaries the results are

not correct. Row 3 Middle: Marked two motion candidate regions according to the

eigenvalue analysis. Row 3 Right: Regions with the aperture problem. Row 4: Optical

flow applying the spatial EM algorithm. Row 5 Left: Difference image �It;1. The

difference values are zero for any shifting inside the regions with the aperture problem.

Thus, we observe only the boundaries of the trunk. Row 5 Middle: Difference image�I2. Row 5 Right: Detected motion boundaries.



4.7. EXPERIMENTS 93

fore, we may use the estimation results with a large window as ground truth

since there are much more normal pixels than outliers in such a large window. In

the results with a small window we observe the improvement after eliminating

outliers clearly. In the window centered at (160; 137) the results are not reasonable

because there are only four pixels of the occluded signal remaining after elimi-

nating outliers. This example demonstrates vividly the necessity of introducing

reliability measure (equation (4.28)). By using the “shift-and-subtract” technique,

we further localize the occluding boundary, which is displayed as intersection

of zero regions in �It;1 and �It;2, as shown in row 4 of figure 4.13. This “shift-

and-subtract” technique works also for boundaries with complex contours like

the corners of the right moving box.

Figure 4.12: Top: The first, 16-th, and 32-th frame of the occlusion sequence. Each frame

has 200 � 350 pixels. The white window in the 16-th frame is centered at (122; 137).
Bottom Left: The epipolar slice of the sequence along row 122. The first frame is at the

top of the slice. The occlusion is characterized as two overlapping structures. Bottom

Middle: The result of the single motion estimation algorithm. Since the vertical speed

components are almost zero in this sequence, we show only horizontal speed components,

using black color for negative speed (moving to the left) and white color for positive speed

(moving to the right). Bottom Right: Marked two motion candidate regions after the

eigenvalue analysis. Notice the results in the still background are not correct.
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Figure 4.13: Row 1: Motion estimation results in the 16-th frame. Row 2 and Row

3: Estimation results along column 137 using a 15 � 15 window. We use the results

with a 31 � 31 window as the ground truth and draw them with solid lines. We draw

the results before eliminating outliers with circles and the results after eliminating out-

liers with crosses. For comparison we draw different speed components separately. For

clarity of drawing we sample the results with an interval of 5 pixels along column 137.

In the window centered at (160; 137) the results are not reasonable since there are only

four pixels of the occluded signal remaining after eliminating outliers. This example

demonstrates the necessity of introducing reliability measure clearly. Row 4: The result

after “shift-and-subtract”. For clarity we enlarge the occlusion boundary region. The

“shift-and-subtract” technique works also for boundaries with complex contours like the

corners of the right moving box.
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Figures 4.14 and 4.15 show us another real sequence with the ground truth. This

“block world” sequence is very difficult for the constant motion model used here.

But using the ground truth, we still can compare the performances of the EM al-

gorithm before and after eliminating outliers. The results show that the error after

elimination are less. We further test if the “shift-and-subtract” technique works

for complex motions. The result is positive if we have correct motion parameters.

Figure 4.14: Row 1: The first, the 15-th, and the 31-th frame of the block world sequence.

Each frame has 512 � 512 pixels. The white window in the 15-th frame shows us the

window across the boundary and the white line shows the column along which we apply

the EM algorithm for comparison. Row 2: Epipolar slide along row 353. The first frame

is at the top of the slice. This scene is very complicated due to depth difference, the aperture

problem, and affine property of motions. Row 3 Left: Marked outliers. Row 3 Right:

Regions with the aperture problem.
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Figure 4.15: Row 1 and Row 2: Estimation results before and after eliminating outliers

vs. row index (from row 300 to row 400). We draw the ground truth with solid lines, the

results before eliminating outliers with circles, and the results after eliminating outliers

with crosses. In fact, the constant motion model cannot treat such a difficult sequence due

to complicated motions and the aperture problem. But we still can see that the errors are

less after eliminating outliers. Row 3: The “shift-and-subtract” technique works using

the ground truth. For clarity we enlarge the boundary region.
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4.8 Discussions

In this chapter, we studied multiple motion analysis from the standpoint of ori-

entation analysis. Thorough observation and theoretical analysis show that cur-

rent spatial models cannot handle both occlusion and transparency in a unified

manner, while the spectral model provides a unified framework. Based on this

analysis, we used a new kind of 3D approximately steerable filter in motion es-

timation. This method is superior to principle axis analysis based approaches

and current 3D steerability approaches in achieving high orientation resolution.

Comparisons showed that our approach is more efficient and robust than the sim-

ilar spatiotemporal Hough transform and outperforms the existing EM algorithm

applied in the derivative space.

The good performance of a motion estimation algorithm relies on the correct

model of motions. However, an ideal model does not guarantee that this model

is feasible. In practice, the spatial models work in the derivative space. But the

derivative of a discrete image sequence does not exist and we have to approx-

imate the derivative with differentiation, while this approximation is still prob-

lematic [Sim94, FS97, SKJ97]. Similarly, in the frequency domain the ideal spec-

trum of the image sequence does not exist. We obtain only a blurred spectrum

after applying the LFT. As a result, current motion estimation algorithms suffer

more or less from the discrete property of input image sequences. According to

the comparison, the problem in the spectral domain is severer than in the spatial

domain. Therefore, the spectral model is less feasible.

Another related point is the choice of window size. Generally, we must have a

small observing window around the considered pixel so that the simple motion

model can approximate the actual motion in the neighborhood robustly. But in

the spectral model we must extend the window to have a reasonable resolution of

the spectrum. In this enlarged window a simple motion model will not approx-

imate the actual motion convincingly. In fact, we provide only averaged veloci-

ties inside the neighborhood. In order to improve the approximation of motions,

we must use motion models with higher order. In the spatial domain the affine

model has been introduced. But in the spectral domain a multiple motion model

of higher order still remains open [CGN96].

In occlusion estimation, we proposed to eliminate outliers in the derivative do-
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main. Compared with current probabilistic approaches, which include the outliers

in the estimation, our method improves the quality of input data and therefore

provides more exact results.

In order to localize occlusion boundaries and track their movement, we utilized

the spatial coherence inside the frame and applied the “shift-and-subtract” tech-

nique. We did not use an explicit local model of the boundary region. But we

still obtained the desired information about the occlusion boundaries. Further-

more, multiple motions can be segmented very efficiently by combining estima-

tion techniques and spatial coherence [WA96]: The region with the same motion

parameters can be figured out by calculating the difference between two frames

with estimated speeds.

The spatial coherence information is also a key cue to distinguish occlusion and

transparency in the spatial domain. Actually, it is not difficult to distinguish oc-

clusion from transparency in the frequency domain. For example, we can look

at a set of estimation results by shifting the observing window and observe their

variation. Since occlusion is more local than transparency, the number of mo-

tions changes from two to one after the observing window has crossed occlu-

sion boundaries, while in case of transparency the number of motions remains

the same. We may also observe the relative ratio between data points outside

the motion planes and those on the motion planes [YDBS99]. This ratio is much

larger in case of occlusion than in case of transparency since all energy of the

transparency lies on the dominant planes. However, in the frequency domain we

cannot localize motion boundaries due to the well known uncertainty principle:

The spectrum of the observing window provides us no localization information

inside the window. Therefore, we must go back to the spatial domain to detect

and to localize motion boundaries. This advantage of the spatial motion model

benefits from the fact that the spatial model maintains the spatial coherence in-

formation, while the spectral model does not. This fact indicates that the spatial

coherence information plays a very important role in image segmentation and

scene analysis. The “shift-and-subtract” technique and the recently introduced

normalized cut approach [SM97, SM98] remind this point vividly.
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Appendix B: The Spectrum of Occlusion

In this appendix, we derive the spectrum of occlusion and study if the occlusion

may attenuate the aperture problem. Substituting equation (4.9) into (4.8) and

utilizing the product property of the impulse function, we have~I(�; !t) = 2�2 ~I1(�)Æ(�Tv1 + !t) + (1� 2�2)~I2(�)Æ(�Tv2 + !t)+ 2�i�T �̂ Æ(�T �̂?)Æ(�Tv1 + !t) � ~I1(�)Æ(�Tv1 + !t)� 2�i�T �̂Æ(�T �̂?)Æ(�Tv1 + !t) � ~I2(�)Æ(�Tv2 + !t): (4.30)

For simplification, we define the third part as A(�; !t) and the fourth one asB(�; !t). Denoting with F and F�1 the forward and inverse Fourier transform,

we haveA(�; !t) = 2�i�T �̂ Æ(�T �̂?)Æ(�Tv1 + !t) � ~I1(�)Æ(�Tv1 + !t)= Ff[F�1( 2�i�T �̂ Æ(�T �̂?)Æ(�Tv1 + !t))℄ � [F�1(~I1(�)Æ(�Tv1 + !t))℄g:
The first part of the convolution is a line in 3D frequency space and the second

part is a plane containing the line in the first part. According to the relative sym-

metry of F and F�1 [GK95], the first part turns out to be an impulse plane in

the spatial domain after inverse Fourier transform and the second part is then

an impulse line on this plane. Their multiplication results in an impulse line in

3D spatial domain. We take the forward Fourier transform again and obtain an

impulse plane with the orientation of �Tv1 + !t = 0A(�; !t) = [ 2�i�T �̂ Æ(�T �̂?) � ~I1(�)℄Æ(�Tv1 + !t) = A(�)Æ(�Tv1 + !t): (4.31)

Taking into account that A(�; !t) has the same orientation as the occluding signal,

we draw a conclusion that this part just does nothing else as strengthening the

spectrum of the occluding signal.

The term B(�; !t) can be computed similarlyB(�; !t) = 2�i�T �̂ Æ(�T �̂?)Æ(�Tv1 + !t) � ~I2(�)Æ(�Tv2 + !t)= Ff[F�1( 2�i�T �̂ Æ(�T �̂?)Æ(�Tv1 + !t))℄ � [F�1(~I2(�)Æ(�Tv2 + !t))℄g:
(4.32)

From equation (4.32) we see that B(�; !t) is a convolution between a line and a

plane in 3D frequency space. Only when ~I2(�) is discrete, we may have some
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shifted lines formed by the spectral planes �T �̂? = 0 and �Tv1 + !t = 0. Oth-

erwise, B(�; !t) occupies a volume in the frequency space. Thus, we obtain the

equation (4.10).

Now let us see if the occlusion may attenuate the aperture problem. The aperture

problem is in fact a correspondence problem. In the spatial domain, if we do not

have adequate information, we cannot find the corresponding points correctly

(figure 4.16). Equivalently, in the frequency domain, if we do not have adequate

components to form a spectral plane, we have too many possible normal vectors

of the spectral plane to determine which vector is the desired one (figure 4.16).
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Figure 4.16: Left: Aperture problem represented in the spatial domain: We cannot find

the corresponding point correctly due to the lack of information in the neighborhood of

the considered point (redrawn from [Jäh93]). Right: Aperture problem represented in the

frequency domain: The energy spectrum degenerates into a line in the spectral domain.

We cannot determine which normal vector of the line is normal to the motion plane. The

spectral origin lies in the middle of the 3d-drawing.

We assume that both the occluding and the occluded signal have an aperture

problem. Correspondingly, in the (!x, !y, !t) space their spectra are characterized

as vertical planes with constant components along the !t direction( ~I1(�) = a1(�)Æ(�T �1)~I2(�) = a2(�)Æ(�T �2) ; (4.33)

where �i (i = 1; 2) denotes the normal vector of the 2D spectral line in the (!x, !y)
space and is orthogonal to the gradient of the signal. Thus, we may rewrite the
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spectrum of occlusion as~I(�; !t) = 2�2a1(�)Æ(�T �1)Æ(�Tv1 + !t) + (1� 2�2)a2(�)Æ(�T �2)Æ(�Tv2 + !t)+ 2�i�T �̂ Æ(�T �̂?)Æ(�Tv1 + !t) � a1(�)Æ(�T �1)Æ(�Tv1 + !t)� 2�i�T �̂ Æ(�T �̂?)Æ(�Tv1 + !t) � a2(�)Æ(�T �2)Æ(�Tv2 + !t):
(4.34)

In the above expression, the spectrum of the occluding signal as well as that of

the occluded signal are a 3D line in the frequency space and we cannot estimate

their full velocities. The third term may help in the estimation of occluding ve-

locity. If the gradient of the occluding signal is not parallel to the gradient of the

motion boundary (�1 6k �̂?), we still can obtain the spectral plane from A(�; !t)
and estimate the full velocity of the occluding signalA(�; !t) = [ 2�i�T �̂ Æ(�T �̂?) � a1(�)Æ(�T �1)℄Æ(�Tv1 + !t): (4.35)

If the gradients above are parallel (�1 k �̂?), then it is hopeless to determine the

full velocity of the occluding signal because A(�; !t) degenerates into a lineA(�; !t) = [ 2�i�T �̂ � a1(�)℄Æ(�T �̂?)Æ(�Tv1 + !t): (4.36)

The fourth term B(�; !t) remains as distortion. If the gradient of the occluded

signal is not parallel to the gradient of the motion boundary (�2 6k �̂?), B(�; !t) is

a convolution of two 3D lines. This results in a plane whose normal vector n is

dependent on �̂?, �2, and both speedsn = ((�̂?; 0)� (v1; 1))� ((�2; 0)� (v2; 1)): (4.37)

We cannot use it to estimate the full velocity of the occluded signal. If �2 k �̂?, we

obtain then a vertical plane which cannot be used, eitherB(�; !t) = [� 2�i�T �̂ Æ(�Tv1 + !t) � a2(�)Æ(�Tv2 + !t)℄Æ(�T �̂?): (4.38)

In short, we may attenuate the aperture problem by utilizing the occlusion. If the

gradient of the occluding signal is not parallel to the gradient of the occlusion

boundary, we can estimate the full velocity of the occluding signal [BB00]. The

full velocity of the occluded signal remains unsolvable.

In case of transparency the aperture problem remains unsolvable since both spec-

tral planes degenerate into lines and we do not have the distortion term (see equa-

tion (4.14) for detail).
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Chapter 5

Summary

In this thesis, we addressed the problem of local orientation analysis with steer-

able filters. From the standpoint of the sampling theory, as current 2D steerable

filters sample the orientation space with Dirac functions in the frequency do-

main, they suffer from the consequences of the uncertainty principle: In order

to achieve high resolution in orientation, they need a large number of basis fil-

ters. Furthermore, these basis filters unfortunately have a wide support which

accentuates the computational burden. In order to achieve the lower bound in

the uncertainty principle, we proposed a novel alternative to current steerability

approaches by utilizing a set of polar separable filters with small angular support

to sample orientation space locally. Then, the orientation signature is obtained

by interpolating orientation samples using Gaussian functions. Compared with

current steerability techniques, our approach achieves a higher orientation reso-

lution with a lower complexity. In addition, we built a polar pyramid to charac-

terize junctions of arbitrary inherent orientation scales.

Further, we extended the new steerable filter from 2D space to 3D space for vol-

ume image processing and multiple orientation analysis. The comparisons with

current 3D steerable filters confirm once more the advantage of our filter with

respect to the uncertainty principle. An analysis of our new filter in a broader

background indicates the following points� The tensor approach and the principal axis analysis detect only one domi-

nant orientation. Consequently, they are not suitable for multiple orienta-

tion analysis.
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using filters with Gaussian shape in the frequency domain and which have

the same orientation resolution along the radial direction. The difference is

that we use Gaussian functions only in the angular space and treat the radial

direction differently since we are only interested in orientation analysis.� Our 3D steerable filter is similar to the 3D Hough transform in the sense

that both methods sample the parameter space in the implementation. But

our filter is more efficient since it has much smaller support than the filter

equivalent to the 3D Hough transform. Besides, in the Hough transform

based methods the search of the second maximum is generally problematic,

while in our approach this problem is solved.� In multiple motion analysis, the expectation maximization (EM) algorithm

does not detect the number of motions exactly. We may use our filter to

determine the number of motions and then use the EM algorithm for es-

timation refinement. Moreover, as the EM algorithm is greatly dependent

on the initial values, our filter helps to improve the performance of the EM

algorithm by setting properly initial values of motion parameters.� Compared with spherical surface tessellation based algorithms such as the

3D orientation histogram and the spherical wavelets, our filter decomposes

the sphere alternatively in the feature space with a set of overlapped basis

filters. Though projecting the spherical surface onto 2D feature space is not

an isometric-mapping and the rotation symmetry is lost after projection,

this transform benefits structure display and post-processing.

In motion analysis, we provided a detailed description of occlusion and trans-

parency both in the spatial domain and in the spectral domain to comprehend

multiple motions clearly. The comparison between the spatial motion model and

the spectral motion model showed that the spatial model can treat only occlu-

sion, while the spectral model treats both occlusion and transparency in a uni-

form manner. The comparison further indicates that the spatial model is more

suitable for occlusion analysis: The spatial model provides finer resolution and

needs much less frames. Besides, in the frequency domain we fail to localize

motion boundaries due to the well known uncertainty principle: The spectrum

of the observing window can provide us no localization information inside the

window. The only cue to localize occlusion boundaries is the spatial coherence
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information.

In the occlusion estimation, we also dealt with the outlier problem and intro-

duced a multi-window strategy to purify input data and to improve the precision

of the estimation results. Having obtained the motion parameters, we further lo-

calized occlusion boundaries and tracked their movement in occlusion sequences

with the “shift-and-subtract” technique. This technique, applying the spatial co-

herence in image sequences, can also be used to distinguish occlusion from trans-

parency as well as to decompose transparency scenes into multi-layers. This fact

reminds us again that the spatial coherence information is very useful for image

segmentation and scene analysis.

In our approach, the local basis filters are non-orthogonal and their responses

are locally correlated. Since our goal is not to reconstruct the original signal, but

to extract features, this kind of correlation among neighboring basis filters does

not bother us and we do not have to “decorrelate” the filter results. Surely, if

we would like to represent the original signal with our steerable filter, we need

to find out if there exists a dual basis which is bi-orthogonal to our basis. The

lifting scheme may be useful to solve this open question [SS95]. We will be able

to build a new kind of bi-orthogonal Gaussian wavelets after solving this problem

successfully.

The preliminary results of this work are presented in [YDS98c, YDS98a, YDS98b,

YDS01, YDBS99, YDS00b, YDS00a, YSD00]. The 2D orientation steerable filter has

been used in the diagnosis support system of patients with facial paresis which

is now installed at the Department of Otorhino-Laryngology of the University

Erlangen-Nuremburg (HNO Klinik der Unversität Erlangen).
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