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Abstract

In this paper, we study the characterization of multiple motions from the standpoint of
orientation in spatiotemporal volume. Using the fact that multiple motions are equiv-
alent to multiple planes in the derivative space or in the spectral domain, we apply a
new 3D steerable filter for motion estimation. This new method is based on the de-
composition of the sphere with a set of overlapping basis filters in the feature space. It
is superior to principal axis analysis based approaches and current 3D steerability ap-
proaches in achieving higher orientation resolution. Our approach is more efficient and
robust than a similar spatiotemporal Hough transform and outperforms existing EM
algorithms applied in the derivative space.

In occlusion estimation, we use an eigenvalue analysis based multi-window strategy to
detect and to eliminate outliers in the derivative space. This technique purifies input
data and improves therefore the precision of the estimation results. Furthermore, based
on the spatial coherence in image sequences we use the “shift-and-subtract” technique
to localize occlusion boundaries and to track their movement in occlusion sequences.
Our technique can be also used to distinguish occlusion from transparency and to de-
compose transparency scenes into multi-layers.



1 Introduction

The study of optical flow has a long history. With respect to different criteria the related
flow estimation algorithms may be divided into global or local techniques, one frame
or multiple frame methods, spatial or spectral domain based approaches, probabilistic
or non-probabilistic models, and so on. The reader is referred to [4, 21] for a general
survey of flow estimation methods. While the research of single motion estimation is
becoming mature, the estimation and analysis of multiple motions are still challeng-
ing problems. Generally, we use the behavior in the neighborhood of a considered
point due to the aperture problem. Such assumptions are either explicit in area-based
techniques or implicit in filter-based schemes where the addressed neighborhood is the
filter support. Conventional flow estimation methods are based on the single motion as-
sumption (there is only one single motion inside the neighborhood) and the smoothness
assumption (the motion is piecewise-smooth). For example, the well known brightness
change constraint equation (BCCE) [24] is based on these assumptions

Lu+ I+ 1, =0, @)

where I, I, and I; denote the spatio-temporal partial derivatives of the image intensity
and (u, v) is the optical flow vector. These assumptions are violated if the neighborhood
contains motion boundaries or multiple transparent motions.

In this paper, we would like to address the problem of multiple motion analysis from
the point of view of orientation analysis using a new steerable filter. In the following,
we would like to review some related works at first.

1.1 Spatial Approaches

Nagel and Enkelmann [33] first addressed the violation of single motion model at mo-
tion boundaries. They used a regularization term to penalize motion discontinuities
and thus rejected motion boundaries in the computation of optical flow. Weickert and
Schnorr further extended this regularization term into spatio-temporal space [44]. Sim-
ilarly, Black and Anandan [10] treated occlusion regions as outliers of the motion con-
straint and set lower weights to these regions in the estimation. The concept of outlier
represents exactly the relationship between the pixels near occlusion boundaries and
the pixels with a single motion: The spatio-temporal partial derivatives of the pixels
with a single motion form a plane in the derivative space and the derivatives of the
pixels near occlusion boundaries deviate from this plane due to motion discontinuities.



Based on this concept, probabilistic methods were proposed to model occlusion bound-
aries [28] and to estimate motions near occlusion boundaries [13, 7]. The outlier was
also considered as noise in statistic methods (e.g. [38]) as well as in the Hough trans-
form based approaches (e.g. [12]).

A second group of approaches was based on segmenting regions where parametric
models of flow can be fitted [47]. But the segmentation is in turn dependent on the
optical flow. This forms a “chicken-and-egg” dilemma: We need appropriate segmenta-
tion to estimate optical flow accurately; while we need accurate optical flow to segment
images properly. In order to bypass this dilemma, iterative methods were used to re-
fine the region segmentation and motion estimation gradually [24]. Bergen et al. [7]
proposed an iterative method based on the “shift-and-subtract” strategy to estimate
two motions. They subtracted pixels connected to one motion during the refinement
of the parameters of the other motion and vice versa. Irani et al. [26] applied this it-
erative method in the temporal integration to blur out uninterested regions and track
objects even with non-consistent speeds. The iteration principle was used in the statis-
tic approaches as well. Researchers have recently elaborated algorithms based on the
expectation-maximization (EM) principle [14] for motion estimation (e.g. [46]).

In presenting explicit multiple motion models many researchers have made contribu-
tions. Wang and Adelson represented multiple motions with a multi-layer model [43].
This model is consistent with the daily knowledge naturally. But the local motion
estimation technique they used for estimation is still based on the BCCE. Fleet et al.
[15] explicitly modeled the occlusion boundary in the spatial domain as a step edge in
both components of the optical flow field and used the steerability theory to detect the
boundary. Black and Fleet further proposed to use the Bayesian framework to deter-
mine which pixels belong to the motion boundary regions [11].

1.2 Spectral Approaches

Motion estimation was also addressed from the point of view of orientation analysis.
Adelson and Bergen [1] pointed out that motion is equivalent to spatio-temporal orien-
tation and introduced a spatio-temporal energy model for single motion representation.
This was the first optical flow algorithm based on the spectral analysis.

Bigiin et al. connected the orientation analysis with symmetry detection [8, 9]. They
pointed out that a single motion can be described as a linear symmetric image, whose
spectrum is a line passing through the origin in the frequency domain. They fixed the
orientation of the spectral line by minimizing a moment measure in the frequency do-



main. Jdhne also used a 3D structure tensor [29] to detect symmetry and to estimate mo-
tion [27]. He further introduced an eigenvalue based coherence measure to distinguish
different kinds of motions such as single constant motion and motion discontinuities.

Both Bigiin et al. [8, 9] and Jahne [27] used the principal axis analysis method to estimate
motion. The principal axis analysis is also called principal component analysis (PCA),
Karhunen-Loéve transform (KLT), and Hotelling transform in different literature. It
decomposes a signal into an orthogonal basis using eigenvector analysis or singular
value decomposition (SVD). The problem of principal axis analysis is that it is only
suitable to detect one dominant orientation because the rest eigenvectors are orthogonal
to the first eigenvector, no matter what kind of structure the signal has. In other words,
the orientation resolution of the principal axis analysis is not sufficient to solve a non-
orthogonal multiple orientation problem.

1.3 Gabor Based Approaches

In order to determine the orientation of the motion plane in the frequency domain,
Heeger sampled the spectrum of the image sequence with twelve Gabor filters [22].
Heitger et al. proposed a variant of 2D Gabor filter whose odd and even parts have zero
mean values [23]. They called this variation “stretched Gabor” filter. Similarly, Xiong
and Shafer used hypergeometric filters to sample the spectrum for motion estimation
[49]. The hypergeometric filter is based on one kind of special function called confluent
hypergeometric function in the mathematical physics. It is very similar to a Gabor filter
in shape, but its DC component is zero. For details about the confluent hypergeometric
function the reader is referred to [34].

Grzywacz and Yuille [19] further pointed out that the angular support of a filter in the
spectral domain is a measure of angular uncertainty. This uncertainty can be expressed
as the angle between two tangential lines of the support, which pass through the spec-
tral origin. In orientation analysis, the filters at different frequencies are desired to have
the same angular uncertainty. This is exactly the property of Gabor wavelets [30, 48].

One main concern of Gabor/hypergeometric filter based approaches is the enormous
complexity of computation in sampling the spectral domain with fine resolution. An-
other concern is the positive skewness in the filter responses of the Gabor wavelets [19].
If we have only one single motion, the maximum is still well localized in spite of the
skewness. But if we have multiple motions instead, the overlapping of different filter
responses, specially the overlapping of the skewness will disturb the locations of maxi-
mal values [51]. Thus, the estimation results are no more convincible.



1.4 Owur Contribution

In this paper, we address the problem of multiple motion analysis from the point of
view of orientation analysis by pointing out that multiple motions are equivalent to
multiple planes in the derivative space or in the frequency domain. Correspondingly,
the motion parameters are determined by the normal vectors of these planes. This claim
is a generalization of the spatio-temporal energy model of single motion [1].

Since the angle between two motion planes can be arbitrary, we need a filter with fine
orientation resolution to estimate motion parameters exactly. Though the enormous
complexity and the skewness obstruct the application of Gabor based approaches in
multiple motion analysis, the idea of sampling the orientation space locally is still at-
tractive since it can achieve fine orientation resolution. The remaining problem is how
to reduce the computation complexity. To solve this problem, we propose a new 3D
orientation steerable filter.

This paper is constructed as follows: The following section studies occlusion and trans-
parency in detail for a better understanding of multiple motions. Then we introduce the
new 3D steerable filter and compare it with current 3D steerable filters as well as 3D ori-
entation histogram in section 3. In the same section we also display the filter responses
of 3D planes and confirm the comparisons between the spatial- and spectral-motion
models. After that we use our filter for multiple motion estimation in section 4 and
compare it with the 3D Hough transform and the expectation-maximization (EM) algo-
rithm. Section 5 further discusses the multi-window strategy in occlusion estimation
and the precision improvement of estimation results after eliminating outliers. Later on
we use the “shift-and-subtract” technique to localize and to track motion boundaries in
occlusion sequences in section 6. In section 7 we show experiment examples. Finally,
this paper is concluded in section 8.

2 Understanding Multiple Motions

In this section, we explain that occlusion is equivalent to multiple planes both in the
(I, I, I;) space and in the frequency space and transparency is equivalent to multiple
planes only in the frequency space. Correspondingly, multiple motion analysis is equiv-
alent to orientation analysis of planes.



2.1 Spatial Observation of Multiple Motions

Although occlusion and transparency can be decomposed into multiple layers, they are
based on different decomposition principles. We illustrate this difference in figure 1,
where we observe that occlusion is more local than transparency in the spatial domain:
while occlusion involves a step-function at the occlusion boundary, transparency results
from the overlapping of two motions in the entire window. Consequently, it is difficult
to describe both kinds of multiple motions using a unified model in the spatial domain.
Thus, we turn to the frequency domain to look for the solution.

Figure 1: Difference between occlusion and transparency. Here random dot regions
represent motions and dark regions denote static status. The occluding signal is moving
with the speed (1, 1) [pixel/frame] and the occluded signal with (1, —1) [pixel/frame]
and the speeds of transparent motions are (1, 1) [pixel/frame] and (1, —1) [pixel/frame]
as well. Top: One frame of the occlusion sequence is decomposed into two layers by a
Heaviside unit step function (equations (2) and (3)). There is motion discontinuity only
at the boundary. The term 7 denotes the unit vector normal to the occluding boundary.
Bottom: One frame of the transparency sequence is a simple superposition of two layers
(equation (9)). Multiple motions exist in the entire window.

2.2 Spectral Analysis of Occlusion

The spectrum of multiple motions was first analyzed by Fleet and Langley [16]. As-
suming that an occlusion boundary is a characteristic function x(x), they modeled the



occlusion in the spatial domain as follows:
I(x,t) = x(x = vit)[1(x — vit) + [1 = x(x — vit)]Lo(x — vat), )

where I (x) is a 2D occluding signal moving with velocity v; = (v, v1,)" and I»(x) is
a 2D occluded signal moving with velocity vo = (va,, v9,)7.

Beauchemin and Barron [5, 6] were the first who formulated an exact model in the fre-
quency domain. They modeled the occlusion in the spatial domain with a Heaviside
unit step function U(x) for x(x):

(1 x>0
Ulx) = { 0  otherwise ’ 3)

where x denotes 2D spatial Cartesian coordinates and 7 is the unit vector mentioned
above.

We denote the spatial frequency vector as k = (w,,w,)’ and the temporal frequency as
w;. Then, the Fourier transform of the image sequence reads

I(k,w;) = U(m)é(liqu + wy) * fl(li)é(nTyl + wy) + I(k)6(K Vo + wy)
~U(r)§(kTvi + wyp) * I(k)0 (k1 vo + wy), 4)

where * means convolution and ~ denotes the Fourier transform of the corresponding
signal. The spectrum of the Heaviside unit step function is given by

0(k"171)
ikTn

U(x) = 2n[rd(|x]) + ) (5)

where 77, denotes a unit vector perpendicular to 7). Taking the properties of the impulse
function into account, we obtain (see [52] for detail)

I(k,w;) = 20T, () + A(R)]6(KTv1 4+ w) + (1 — 20°) L(k)0 (k" va + wy) + B(k,w,), (6)

with
) X -
Alr) = 57=0(6"i0) 5 (), )
2 -
B(k,w) K:ﬁ(S(HTﬁL)(s(“TV] +wi) * Io(K)0(K Vo + wp). (8)



The first two terms of expression (6) are two oriented planes passing through the origin
of the frequency space. Their normal vectors, namely (u,v1,1) and (uq, v9, 1) contain
the velocities. The second term is the exact spectrum of the occluded signal. The first
term contains an additional distortion term A(x) on the plane of the occluding spec-
trum. However, here we are only interested in the orientation of the plane and the term
A(k) does not disturb the orientation. Actually, A(x) strengthens this spectral plane.
Therefore, we do not consider it as distortion of orientation analysis. The main dis-
criminating term is the third one, B(x,w;), which is a convolution between a line and
a plane in 3D frequency space. Only when I5(x) is discrete we may have some shifted
lines formed by the spectral plane x’7;, = 0 and the spectral plane of the occluding sig-
nal "v, + w;, = 0 [6]. Otherwise, B(k,w;) is a 3D volume filling the entire frequency
space. This volume depends on both speeds of the occluding and the occluded signal as
well as the normal of the occluding boundary.

If the energy of the distortion term B(k, w;) is very high, we will not be able to recognize
these two planes. Fortunately, the critical factor in the amplitude of B(x,w,) is the hy-
perbolic term iz;rﬁ which reduces very quickly with the increase of |x|. In most regions
of the spectral domain, say for || > 1, the amplitude of the distortion is much less than
that of signals. Therefore, we may consider the spectrum only above a lower bound of

the frequency and identify the two dominant planes.

2.3 Spectral Analysis of Transparency

Transparency may be viewed as a special case of occlusion by simply substituting x(x —
v,t) with a real constant a (a € (0, 1)) [5]

I(x,t) = ali(x — vit) + (1 — a)r(x — vat). )

The corresponding spectrum is then characterized by two oriented planes without dis-
tortion

I(k,w;) = ali(K)6(Kvy +w) + (1 — a) L (k)6 (KTva + wy). (10)

2.4 Spectral Model of Multiple Motions

Though in the case of occlusion there exists a distortion term, the main energy propor-
tion is on the two spectral planes due to the hyperbolic nature of the distortion term. In
addition, we may low-stop the energy spectrum to abandon the strong disturbance at



low frequencies. Thus, both occlusion and transparency are characterized as multiple
spectral planes passing through the origin, and the corresponding motion speeds are
described by the normal vectors of these planes.

This model can be viewed as a generalization of the spatio-temporal energy model of
single motion [1, 22]. At first sight it is very similar to the work of Shizawa and Mase
[41], which assumed blindly that multiple motions are additive superposition of two
single motions in the frequency domain or in the derivative space [41]. But there are
two different points in our work:

e Shizawa and Mase proposed that multiple motions are characterized as multiple
planes both in the (/,, I, I;)-space and in the frequency domain. We argue that
even the model is correct in the (I, 1,, I;)-space, it is not feasible since we can
hardly assume that the intensity profile is differentiable in case of transparency.

e Atlow frequencies multiple planes are disturbed by the distortion term of the oc-
clusion according to our analysis. We have to truncate low frequency components
in order to fit multiple planes robustly.

2.5 Comparison between Spatial and Spectral Model

According to the analysis in the above subsection, the spectral model describes both
occlusion and transparency, while the spatial model can describe only occlusion. If we
do not have a priori knowledge about motions, we should use the spectral model.

It should be noticed that though we have a thorough analysis of the spectral motion
model, there exists a severe problem in obtaining the energy spectrum of the image se-
quence due to the block effect of the discrete Fourier transform (DFT). This is actually
one main problem in the frequency-based techniques. In order to avoid the block effect
of DFT, we take a local Fourier transform (LFT), i.e. Gaussian windowed DFT. Accord-
ing to the convolution theorem in the Fourier analysis, Gaussian windowed DFT of the
image sequence is equivalent to the convolution between the spectrum of the image
sequence and the Gaussian function. Consequently, the spectrum is blurred after the
LFT. Thus, the spectral model has worse resolution than the spatial model. For com-
pensation we have to enlarge the window to improve the frequency resolution with
finer interval. But this compensation has also limitations. First, the constant motion
assumption in this enlarged neighborhood is more fragile. Second, using larger win-
dow means including more frames in the estimation, but we can hardly assume that the
motion is constant over very large time interval. Thus, if we have only occlusion, we



prefer to apply the spatial model and use the concept of outliers to treat the derivatives
near occlusion boundaries.

3 3D Gaussian Steerable Filter

In the previous section, we mentioned that the parameters of multiple motions are de-
scribed by the normal vectors of motion planes. In order to extract the parameters of
these planes exactly, we need a filter with fine orientation resolution. But we have to
face an enormous complexity of computation while constructing or rotating such filters.

In order to attenuate this conflict, the concept of steerability was introduced [18] and
many 2D steerable filters have been applied in image processing and low level com-
puter vision ([32, 35, 31, 42, 17]). However, till now there were only a few approaches
dealing with 3D steerability [18, 2] which mainly use the global decomposition method.

Freeman and Adelson [18], being the first who introduced the concept of steerability
into 3D filtering, interpolated derivatives of 3D Gaussian functions with a set of ba-
sis filters which are rotated copies of the original filter. The corresponding interpola-
tion functions are trigonometric functions of the orientation parameters. For example,
they need only three basis filters to synthesize the first derivative of 3D Gaussian filter
G4 (z,y, 2) in an arbitrary direction. The enormous complexity in rotating this filter to
different directions is therefore strongly attenuated.

Andersson designed another 3D steerable filter in the frequency domain [2], whose
basis filters read

Byi(w) = G(p)(iu; - u)', (11)

where @ and 4 are an arbitrary frequency coordinate vector and its corresponding nor-
malized unit vector, respectively. The vector 7;; denotes the orientation of the i-th basis
filter of order [, and G/(p) represents the radial frequency response. In his approach, the
basis filters with the same order have the same shape. Furthermore, the orientation of
basis filters is arranged in such a way that the basis filters with the same order also span
evenly on the sphere surface. Correspondingly, the synthesized filters of order / are ro-
tated copies of one basis filter with the same order. After studying the regular polyhedra
in detail, Andersson held that it is impossible to distribute more than ten basis filters
evenly on the sphere surface [2]. Consequently, basis filters with order [ > 4 cannot

span evenly on the sphere surface, as the number of basis filters is equal to W

10



Here we would like to address the problem of orientation resolution in both approaches.
As a matter of fact, we only need to analyze the performance of one basis filter since the
synthesized filters are rotated copies of one basis filter. In the work of Freeman and
Adelson, the derivatives of Gaussian functions have coarse orientation resolution due
to their large angular supports in the orientation space, as shown in figure 4. In Ander-
sson’s work, the basis filters are centered at the vertices of the corresponding regular
polyhedron. In order to span the whole sphere surface with a set of basis filters, the an-
gular support of each basis filter should not be smaller than a facet of the corresponding
regular polyhedron. It is confirmed that even for an icosahedron, which is a matching
regular polyhedron with the smallest facet, the corresponding support of one facet is
not yet small enough [24]. Thus, the steerable filter proposed by Andersson does not
provide sufficiently fine resolution, either. In order to improve the resolution, we pro-
pose a new kind of 3D steerable filter in the following subsection.

3.1 Definition of Our 3D Steerable Filter

To analyze local 3D orientation naturally, we first compute a local spherical mapping

on the input data: I(»,y,2) — I(r,0,¢), where r = \/2? +y*> + 2%, 0 = arctan(2),¢ =
arctan(—=—) (figure 2). Here, the goal is to build an orientation signature S(f, ¢) from

/.’132 +y2

I(r,0,¢). In order to have fine orientation resolution, we use conic kernels with small
angular supports as basis filters to sample the orientation space locally. A conic kernel
centered at (0;, ¢;) reads

(03,95)
Gy (0. ¢
Buoigi) (1.0, 6) = (067-,,@»( L (12)

Rmin :Rmaz (T)

where N, 1(?1(5:] Lm” () is a weighting function along the radial direction and it is indepen-
dent of the angular part of the filter. We will come back to the design of N (r) later. The
angular part of the kernel is a 2D Gaussian function in the orientation space coordinated
with (6, ¢)

1 (D68 +(—9))°

Gy 0,0) = s—ge T (13)

2mo?

where o denotes the scale of the 2D Gaussian function. Since the angles along the 6 di-
rection are periodic, we define D(-) to represent the minimal circular difference between
6 and 6; (0, 0; € [0, 27])

D(6,6;) := min(|0 — 6;], |0 — 6 — 27|, 10 — 6, + 27]). (14)
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Theoretically, a Gaussian function is not compactly supported. Thus, in implementation

we only consider the part of Gég""“b") (0, ¢) inside the circular mask with a diameter D, as
shown in figure 2.

7 (x,)(,z)

Figure 2: A conic kernel centered at (6;, ¢;) with radial boundaries R,,;,, and R,,,,. Left:
The definition of the spherical coordinate system. Middle: The filter kernel in the 3D
Cartesian coordinate system. The keypoint is at the center of the sphere. Right: The
filter kernel with 6, ¢ and r as coordinates. The conic kernel turns into a cylinder. In the
(6, ¢) plane the circular mask with a diameter D is weighted by a 2D Gaussian function,
as shown above the cylinder.

After applying such a conic kernel on I(r,0, ¢), we get a basis filter response as a local
sample located at (6;, ¢;)

% I(r, 0
A = Y @00 Y N({,(Zf@r} 15)

{0.0)\/(0-0:)2+(6-9,)°< 3} =i N i R

Now let us consider the sampling of (6, ¢) plane using a set of basis filters. It is known
that a sphere surface forms a rectangular region in the (¢, ¢) plane. For this rectangular
region it is impossible to have a tessellation with circular cells. Instead, we may overlap
neighboring basis kernels to cover the whole rectangular region, as shown in figure 3.
In this arrangement we observe that this rectangular region is periodic along the f direc-
tion and is mirror-symmetric about the boundary along the ¢ direction. These periodic
and mirror-symmetric properties help to solve the boundary problem.

In order to construct the orientation signature S(6, ¢) from a set of samples A, 4., we
use 2D Gaussian functions with local support Gég""“b") (0, ¢) again as interpolation func-
tions yielding

S0,0) =3 Aw.opGy (0. 9). (16)
of

0;
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Figure 3: The sampling of (6, ¢) plane using a set of conic kernels. The horizontal or
vertical distance between two neighboring masks is equal to the radius of one mask.

The legality of using 1D Gaussian functions as interpolation functions was already
proved in [36]. Our approach can be viewed as an extension into 2D feature space.
So far, we have defined an analytic model of 3D orientation analysis based on angular
Gaussian functions.

3.2 Comparisons with Current 3D Steerable Filters

Current 3D steerability approaches are based on the global decomposition principle. In
contrast, our 3D filter is based on the local decomposition principle. This difference
leads our approach to have higher orientation resolution. In figure 4 we show the filter
(G; in the work of Freeman and Adelson [18], Andersson’s third order filter [2] (wWhose
ten basis filters span evenly on the sphere surface with the finest angular support),
and our filter, respectively. We also display the angular supports of these filters in the
(6, ¢) space since the orientation resolution of a filter can be measured by the angular
support of this filter. This can be done by integrating the filter kernels over the radial
variable. Note that the angular support of the filter in the spatial domain is the same as
that in the frequency domain since the Fourier transform is an isometric mapping. The
irregularity in the (6, ¢) space with |¢| > 40° is caused by the discrete representation
of filter kernels. We notice that GG; has such a large angular support that only the gap
between its two lobes may be useful. Actually, Huang and Chen used this gap to fix
the orientation of one plane in the single motion estimation [25]. Obviously, G; cannot
detect multiple planes simultaneously. The orientation resolution of Andersson’s filter

13



is only a litte bit better. Compared with these two steerable filters, our filter has a much
higher orientation resolution.

Freeman & Adelson Andersson conic kernel

e

209
0 m
=90 0 1800 ~

-180

202
0
80 0 - 0 180°

Figure 4: Row 1: The rendering image of filter kernels. Left: The filter G, in the work
of Freeman and Adelson (redrawn from [25]). Middle: The third order filter in An-
dersson’s approach (redrawn from [2]). Right: Our filter. Row 2: The corresponding
angular supports for above filters centered at # = 45.00°,¢ = 35.26° are shown with
white regions in the (6, ¢) space. These supports are actually measurements of the ori-
entation resolution of the filters. For clarity we enlarge the angular support of our filter
in an extra image.

The computational burden of applying a steerable filter is determined by the number
of basis filters and the spatial support of each basis filter. Given the fact that current
steerable filters and our filter are based on different decomposition principles, we can
compare their complexity only by considering the computational burden per pixel in
the input data. Concretely,

e The filter G is composed of three basis filters with the global support, i.e. each
basis filter covers the input data completely. Thus, each pixel in the input data
is involved in the scalar product as well as in the interpolation procedure three
times.

14



e The third order filter in Andersson’s approach has ten basis filters. Thus, each
pixel in the input data is involved in the scalar product and the interpolation pro-
cedure ten times.

e Our filter is based on the local decomposition principle. In figure 3 we observe that
the quadratic area bounded by four lines § = 6;, 0 = 0,1, ¢ = ¢;, and ¢ = ¢, is
covered by four quarter circular masks. Without studying the overlapping exactly,
we may roughly say that a pixel in this quadratic area is involved in the scalar
product four times. As the interpolation function has the same support as the basis
tilter we know that a pixel in this quadratic area is involved in the interpolation
four times as well.

From above analysis, our filter needs a little bit more computation than the filter G, but
much less computation than Andersson’s filter.

It should be noticed that a complexity comparison is only fair, when the corresponding
filters provide (about) the same orientation resolution. This is not the case for the three
3D steerable filters mentioned above. Actually, neither the filter G; nor Andersson’s
filter can achieve the same fine orientation resolution that our filter provides. One pos-
sibility to achieve such a fine orientation resolution using global decomposition method
is to generalize the steerable wedge filter [42] from 2D space to 3D space with consider-
ably higher effort [53], which is not yet implemented according to current literature.

3.3 Comparisons with 3D Orientation Histogram

Our filter is related to the extended Gaussian image (EGI). An EGI maps the surface of a
3D object onto the unit sphere surface, in which a small facet of the object is transformed
into a point whose orientation is the same as that of the small facet and whose weight is
the area of the small facet. For convex objects it is proven that their corresponding EGIs
are unique.

In practice, we usually use the discrete approximation of EGI, which is referred to as
3D orientation histogram. In order to construct the 3D orientation histogram, we must
at first tessellate the unit sphere surface. According to the ideal tessellation criteria, the
sphere surface should be divided into cells with the same area and the same rounded
shape. In addition, these cells should be located as a regular pattern and should provide
fine angular resolution [24]. Unfortunately, these criteria cannot be fulfilled at the same
time.

With respect to the orientation resolution and decomposition principle our approach is

15



very similar to the 3D orientation histogram. Both techniques achieve high orientation
resolution and both methods decompose the sphere locally. However, there are still
differences between them.

e The 3D orientation histogram is applied for 3D surface analysis. If the object is
convey, the corresponding 3D orientation histogram is shift- and scale-invariant.
In contrast, our 3D filter is applied not only for surface analysis, but also for vol-
ume data analysis. It treats both convex and concave objects. But we must fix the
keypoint and the radial boundaries at first.

e The 3D orientation histogram works on a unit sphere surface, while our approach
projects the sphere onto the (f, ¢) space and works on this orientation space.
Though after this non-isometric mapping we lose the rotational symmetry, we
gain both easier structure display and post-processing as compensation. For ex-
ample, on the surface of this paper sheet we cannot display all parts of a great
circle of a sphere using the 3D orientation histogram. We have to imagine in our
mind that there are parts hiding behind the paper sheet. In contrast, we can dis-
play the great circle completely on the (6, ¢) space, though with some deformation.

e The basis cells in the 3D orientation histogram cannot fulfill all ideal tessellation
criteria simultaneously. Furthermore, the basis cells are not isotropic, i.e. they
are not rotation invariant for every direction. In contrast, our approach provides
isotropic cells in the (6, ¢) space (not on the sphere!) satisfying these criteria.

e The 3D orientation histogram is based on the tessellation of the unit sphere. Each
pixel on the sphere is involved once and only once. Our approach samples the (6, ¢)
plane with Gaussian kernels. Since these basis kernels overlap, each pixel on the
sphere is therefore involved several times. From the point of view of computa-
tion complexity, our method needs more computation than the 3D orientation his-
togram. Of course we can divide the (6, ¢) plane with a set of small rectangular
cells which do not overlap. But these cells are then non-isotropic. Thus, overlap-
ping is actually the price of having isotropic cells.

3.4 Compensation Issue

Now we come to the design of the weighting function N (r) (see equation (12)). It is
known that the horizontal angle # and the vertical angle ¢ are defined differently in the
spherical coordinates. All points with the same 6 on a sphere surface lie on a great circle
of this sphere, whereas all points with the same ¢ lie on a small circle. If we divide the
whole (6, ¢) space with a homogeneous grid, it turns out that the higher the latitude
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value is, the denser the grid points are on the sphere surface. This kind of non-uniform
distribution was addressed in [24] in detail.

We may average this non-uniform distribution in 3D space by designing the weight-
ing function A (r) as the sum of discrete weights in the basis kernels so that the filter
response is relatively insensitive to the non-uniform distribution. This compensation
“strengthens” the outputs of filter kernels with a few points and “suppresses” those
outputs of filter kernels with many points. As a result, we are no more able to know the
real distribution density of points in the (6, ¢) space. However, the density information
is desirable in many motion estimation approaches. For example, in the EM algorithm
we purely use statistics to extract parameters from a set of sample points with the belief
that there are more normal points with similar statistic properties than noise and “in-
correct” sample points with large deviation from the bulk of all data points [37]. The
distribution density actually works as a weighting factor in the parameter regression
procedure. If we lose the distribution density information, the estimation result will
be much worse. For this reason, we would like to preserve the distribution density
information by setting N (r) as a real positive constant.

3.5 Our Filter Responses of 3D Planes

For the sake of motion estimation, we are interested in our filter responses of 3D planes.
In the 3D Cartesian coordinate system, a plane passing through the origin (0, 0, 0) with
a unit normal vector n = (ny, ny,n3)" reads

xny + yno + zng = 0. (17)

In order to represent this plane with parameters § and ¢, we convert the Cartesian coor-
dinates into spherical coordinates (z,y, z) — (7,0, ¢) and (n1, ng, n3) — (1, 0,, ¢p,). After
wiping out the radial variable » we acquire an equation of the 3D plane with variables
f and ¢

cos(¢) cos(¢y,) cos(d — 6,,) + sin(¢) sin(¢,) = 0. (18)

Different planes have different representations in the (6, ¢) space. For horizontal and
vertical planes whose normal vectors are parallel to the coordinate axes, their corre-
sponding representations in the (6, ¢) space are straight lines, as shown in figure 5. In
contrast, tilted planes turn into periodic curves in the (6, ¢) space, as shown in figure 6.
These curves look like trigonometric functions with different amplitudes and phases.
For each curve, if we know the extreme point with the maximal ¢ coordinate, ¢,,, and
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Figure 5: Left: Three special planes in the Cartesian coordinates with normal vectors
(0,0,1), (1,0,0), and (0, 1, 0), respectively. Right: Special planes in the (6, ¢) space.

~100 0 100 0

Figure 6: Left: A plane with normal vector (—2,1,1) and a plane with normal vec-
tor (1,1,1) in the Cartesian coordinates. Right: The corresponding curves in the (6, ¢)
space. Since the components on the plane with normal vector (1, 1, 1) have only positive
z coordinates, we observe only positive ¢ coordinates on the corresponding curve.

the corresponding ¢ coordinate, §,,, then we can find out the normal vector of the cor-
responding plane (see [51] for derivation)

, = 0,L
{d)n = (19)

Here we use + or — sign to determine 6, in equation (19) in such a way that the third
component n3 of the normal vector is positive. Then we can use §,, and ¢,, for motion
estimation. Besides, the 6, locates in the middle of two zero-crossing points of the
f axis, while these two zero-crossing points have a distance of 7 along the  axis. This
nice property is very useful in determining the number of motions automatically as well
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as in obtaining properly initial values of motion parameters, as we will show in section
4. In practice, we obtain a set of points in the (6, ¢) space. Extracting the parameters
(6, ¢n) from these points is then a standard regression problem. For a single curve the
least square estimation (LSE) algorithm is applicable; for multiple curves we may apply
the EM algorithm. We will give particulars of this point in section 4.

-90 | R -90 ' 0

2180 0 180 2180 0 180
90 g
0

_9—01 : ' oe ~380 0 180°

S5(0, ¢): Spatial Transparency S4(0, ¢): Spectral Transparency

Figure 7: Orientation signatures of occlusion and transparency sequences in figure 1.
Top Left: The orientation signature of the occlusion sequence based on the spatial mo-
tion model. We use a 33 x 33 x 1 window in the derivative space to obtain this signa-
ture. Top Right: The signature of the occlusion sequence based on the spectral motion
model. We use a 32 x 32 x 32 window to obtain this signature. Bottom Left: The signa-
ture of the transparency sequence based on the spatial model. The distribution of points
is nearly random. Bottom Right: The signature of the transparency sequence based on
the spectral model.

After explaining the filter responses of 3D planes, we can confirm the comparisons be-
tween the spatial and the spectral model now. In figure 7 we display the orientation sig-
natures of both occlusion and transparency. These orientation signatures are obtained
by applying our 3D steerable filter on the derivative space or on the energy spectrum
of the image sequences shown in figure 1. Note that multiple planes in both deriva-
tive space and spectral domain pass through the origin. Therefore, it is very easy to set
the origin as the keypoint for the application of our 3D steerable filter. This is a great
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advantage compared with 2D junction characterization, where we have to locate the
keypoints at first [53]. Since both occlusion and transparency sequences have the same
motion parameters, we expect that their orientation signatures have the same curves. A
comparison between two rows shows that the spectral model can treat both occlusion
and transparency, while the spatial model can treat only occlusion. In the spectral signa-
tures, we observe distortions outside two main curves in Sy (6, ¢), while in S;(6, ¢) these
distortions disappear. Besides, a comparison between S, (6, ¢) and 51 (6, ¢) confirms that
the spectral model has coarser resolution than the spatial model since the spectrum is
blurred by LFT.

Taking into account that we have to use a large window (here the window size is 32 x
32 x 32) to obtain the orientation signature in the spectral domain and that the constant
motion assumption is easily violated in such a large window, we prefer to use the spatial
model for occlusion analysis.

4 Multiple Motion Estimation Using 3D Steerable Filter

After applying our 3D filter on the input sequence, we obtain an orientation signature.
For parameter extraction we still need further processing like the EM algorithm. Since
the equation (17) based 3D Hough transform as well as the planar EM algorithm can
extract the orientation parameters of planes directly, we face the following question:
Why do we project the 3D data onto the 2D feature space before extracting parameters?
In order to answer this question, we must analyze the 3D Hough transform and the EM
algorithm in more detail.

The Hough transform is a sampling and searching method for parameter extraction.
Concretely, in equation (17) we would like to extract the normal vector (n;, n, n3) from
a set of points coordinated with (/;;, I, 1;;)(i = 1,---, N). For each point (I;;, Iy, Iit)
we draw the corresponding vectors in the (n;, ny, n3) space satisfying the equation

Lignij + Liyno; + Iiyng; = 0, (j=1,--+) (20)

where (1, nsj, n3;) denotes the j-th vector normal to (I;,, I;,, ;). After going through
all points, we search in the (n;,n9, n3) space the position with the maximal number of
vector intersections. From the corresponding coordinates (71, 72y, n3m) We obtain the
desired motion parameters

{m iz @)

n3m
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In practice, we sample the parameter space with a finite interval and relax the orthogo-
nal criterion with a positive threshold ¢ yielding replace the above equation (20) with

‘ Imn]j + Iiyngj + Iitngj |§ £. (22)

Figure 8: The 3D Hough transform is equivalent to a filter with a concave disk shape.
A: General projection drawing of the filter mask. The vector n is normal to the filter
mask. B: Side view of the filter mask. The angular thickness 7" of the disk is determined
by the clustering threshold ¢ in equation (22). C: Vertical view of the filter mask.

The equation (22) based 3D Hough transform is equivalent to a 3D filter with a con-
cave disk shape centered at the origin of the 3D space (figure 8). This disk is actually a
collection of relaxed normal vectors of all possible planes containing (1;,, I;,, ;;). Com-
paring our filter shape (figure 2) with the shape of this disk filter we conclude that our
filter samples the orientation space more efficiently than the 3D Hough transform. This
conclusion is also confirmed by the comparison between our filter response of a plane
(figure 6) and the Hough image of a point, which is actually the impulse response of
the concave disk filter in 3D space (figure 9). It is interesting that the Hough image of
a 3D point is very similar to our steerable filter response of a 3D plane except that the
Hough image has no negative ¢ value (we only use normal vectors with n3 > 0). Taking
into account that our filter response of a 3D plane consists of filter responses of a lot of
points we may confirm the above conclusion easily. This efficiency enables our filter to
reduce the enormous memory requirement in Hough based approaches [50], especially
the gigantic overlapping of the Hough curves (figure 9). As a result, we can extract the
parameters of motion planes with much less complexity.
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Figure 9: Left: All unit vectors satisfying equation (22) form a curve similar to our filter
response of a 3D plane in the (6, ¢) space. The width of the curve is determined by the

clustering threshold ¢ in equation (22). Right: The Hough image of the random dot
occlusion sequence in figure 1.

Another point is that the intersections of different curves in the Hough image are blurred
due to the introduction of ¢, as shown in figure 9. Consequently, the global maximal po-
sition is no more a peak, but a smooth mono-modal distribution. Though the search of
the global maximal position is still feasible, the search of the second maximal position
is generally problematic because the properties of the mono-modal distribution are un-
known and we do not know how to get rid of the neighbors of the global maximum
automatically in searching the second maximum. We have such an example in figure 9,
where we display the Hough image of the random dot occlusion sequence shown in
figure 1. After finding out the global maximal position (6,1, ¢n1) = (46°,36°) as the first
normal vector and extracting the corresponding speed (u1, v1) = (0.9561,0.9901), we do
not know how to get rid of the neighbors of this global maximal position automatically.
In order to test if the second maximal position is correct, we cut out the neighbors of
the global maximum by setting the region with 6 > 0 in the Hough image to zero and
further search the maximal position. This time we obtain two points with (6,2, ¢n2) =
(—46°,36°) and (O3, ¢n3) = (—45°,36°). Correspondingly, the second motion has two
possible parameters, (ug, v9) = (0.9561, —0.9901) or (u9, v9) = (0.9732, —0.9732), and we
do not know which one is the desired motion parameter. This problem is even worse,
when these two maxima locate near each other.

This problem is easier to solve in our filter responses. According to the description in
section 3.5, we may determine the number of motions by analyzing zero-crossing points
of the f axis and obtain properly initial values by searching along ¢ direction starting
from 6,,, which is the middle point of two zero-crossing points lying on the # axis (these
two zero-crossing points should have a distance of 7).

The EM algorithm consists of subsequent iterations of the expectation and maximiza-
tion step until there is no significant difference in the parameter estimates. Whereas the
maximization step is the usual maximum-likelihood parameter estimation given the as-
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signment of points to groups, the expectation step is regrouping the points by updating
membership weights [28, 46]. Since the EM algorithm is an iterative method, it has no
closed-form solution. Generally, we do not know the number of motions exactly. In or-
der to fix the number of motions, Weiss introduced the smoothness constraint into the
motion model [45] to avoid the “overfitting” problem. Ayer and Sawhney [3] and Gu
et al. [20] applied the minimum description length (MDL) principle of the information
theory to obtain the minimal number of motions. These approaches fix the number of
motions implicitly. Besides, the convergency and the robustness of the EM algorithm
are very much dependent on the initial values. According to the analysis in the last
paragraph, using our filter in the EM algorithm helps to solve these two problems.

In short, though our filter does not extract motion parameters directly, it reduces the
dimension of data and makes the access of parameters easier. Both properties help to
improve the performance of current estimation algorithms.

5 OQutlier Issue in Occlusion Estimation

In this section and in the next section, we further address two other points in occlu-
sion analysis. Currently, the EM algorithm includes the outliers in the estimation. This
makes the estimation fragile, especially if the number of outliers is comparable to the
number of normal pixels since the EM algorithm is purely based on statistics. Our mo-
tivation is to improve the quality of input data before extracting motion parameters.
According to our observation this is possible by combining current techniques.

5.1 Detection of Outliers

We assume that the motions in image sequences are piecewise-smooth with possible
occlusion. In the spatio-temporal derivative space, we observe the following relations
according to [27]:

e For a single constant translational motion we have a plane with a normal vector
parallel to (u,v, 1), where (u,v) denotes the optical flow vector. The eigenvalues
of this plane satisty

01 2 09 > 03 = 0 (23)
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e For a single constant motion having the aperture problem, the plane above degen-
erates into a line whose corresponding eigenvalues satisfy

o1 > 09 =03 = 0. (24:)

e For occlusion we observe multiple planes plus distortions [52] with three positive
eigenvalues

o1 > 09 > 03 > 0. (25)

Thus, we can judge if there are multiple motions from different combinations of eigen-
values even without knowing motion parameters. In practice, the eigenvalues may de-
viate from their standard values due to noise or derivative approximation error. Thus,
instead of checking if 03 = 0, we set a threshold A3 for multiple motion detection.
If 05 > A3101, we conclude that there are multiple motions. We may also check the
aperture problem by defining another threshold \y; between o, and o,. Here we set
Az = Ay = 0.2

In case of occlusion, if we can purify multiple planes from outliers (i.e. distortions),
we may improve the precision of estimation results. The remaining question is how to
detect these outliers. We observe that if we have occlusion in a window, the occlusion
boundaries should locate somewhere inside this window, though we do not know their
exact positions. Based on this observation, we use a multi-window strategy to eliminate
outliers before estimation. We detect outlier regions using small windows and mark
these regions as outliers. In a large window containing these small windows, the pixels
outside outlier regions are then guaranteed to be normal pixels. Using only these normal
pixels for estimation, we avoid the disturbance of outliers and improve therefore the
precision of estimation results in the large window.

It should be noticed that we also abandon some normal pixels by marking outliers with
small windows. Therefore, we prefer to reduce the size of the small window so that
this loss is as small as possible. On the other side, in order to provide robust eigenvalue
analysis we must have an adequate number of pixels in the small window. Taking into
account that the occlusion boundaries are local in every image frame and that the mo-
tions are assumed to be piecewise-smooth, we solve this conflict by limiting the spatial
size of the small window, but extending its temporal size to include pixels from other
frames as well (e.g. from frames (¢;—1) and (¢ +1), where ¢, denotes the current frame).

In order to verify that the normal pixels remaining are still adequate for estimation,
we define a reliability measure which is a ratio between the number of normal pixels
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remaining and the total number of pixels in the large window

N
T 1= Ny (1=1,2) (26)

where N and N, denote the number of remaining pixels of the occluding and occluded
signal. If either of these two ratios is below a threshold, we have to enlarge the window
to include more pixels for estimation.

5.2 Precision Improvement after Eliminating Outliers

In figure 10 we show the result of outlier detection in the random dot occlusion se-
quence (figure 1). We also show the orientation signatures before and after eliminating
outliers. After eliminating outliers the curves in the (6, ) space are more clear. Conse-
quently, we obtain better estimation results (table 1). In order to analyze the effect of
window size in the estimation, we reduce the estimation window from 33 x 33 to 17 x 17.
In the 17 x 17 window, the number of outliers is easier to be comparable to the number
of normal pixels. As a result, the disturbance of outliers increases strongly. In contrast,
if we eliminate outliers before estimation, we still can obtain reasonable results. This
example displays vividly that the EM algorithm is purely based on statistics.

902
|
~9080 0o 180°

Figure 10: Left: Marked outliers in the random dot occlusion sequence in figure 1 after
eigenvalue analysis using a 5 x 5 x 3 window. The white box here shows the estimation
window across the occlusion boundary. Middle: Orientation signature of 3D data in
the (I, I, I;) space before eliminating outliers. Right: Orientation signature after elim-
inating outliers. Two curves are more clearly to see. See tables 1, 2 and 3 for estimation
results.
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The Effect of Eliminating Outliers in Occlusion Estimation

window size | eliminating outliers || occluding speed | occluded speed
before (0.986,0.999) | (0.986, —0.988)

33 x 33
after (0.998,0.999) | (0.990, —0.995)
before (0.880,0.971) | (0.859, —0.869)

17 x 17
after (0.088,1.013) | (0.993, —0.998)

Table 1: Estimation results before and after eliminating outliers with different win-
dow sizes. For comparison we apply the EM algorithm with same parameters and
initial values before and after eliminating outliers: o, = 0,1, (w9, v10) = (0.8,0.3), and
(u99,v99) = (1.2, —0.1).

6 Localization and Tracking of Occlusion Boundaries

After obtaining multiple motion parameters in the boundary regions, we would like to
localize occlusion boundaries in one frame and further track their movement. Fleet et al.
[15] modeled an occlusion boundary explicitly as an edge in a local circular mask with
six parameters, i.e. four motion parameters of both occluding and occluded signals, the
orientation of this boundary, and the distance between the boundary and the center of
the mask. This model is only suitable for a straight-line boundary.

The spectral model of the occlusion boundary [52, 6] also assumes implicitly that the
boundary is an edge (equation (3)). If the boundary has other contours, the term U (x)
in equation (3) has to be changed. Consequently, the spectrum of U(x) changes in equa-
tion (5) as well. Since the distribution of distortions is not yet studied under this cir-
cumstance, we cannot propose an explicit model in the spectral domain to describe all
possible boundaries.

Instead of using an explicit boundary model, we apply the “shift-and-subtract” tech-
nique to localize motion boundaries. The “shift-and-subtract” technique is based on
the spatial coherence of the image sequence [7, 46]. Assume we have three successive
frames I, 1, I;, and I;;;. We first shift the frame /;, ; with two estimated speeds v,
and v, to form the shifted frames I; ;(x + v;) and I; ;(x + v3). Then we calculate two
difference images Al ; and Al

{2t =

Ii(x) = I, 1(x + vy)

L(x) — I, 1 (x +v2) ° (27)

If the multiple motions are occlusion, we will observe one region with zero intensity
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Al

Figure 11: Row 1 Left: One frame from a occlusion sequence. It is composed of one
occluding signal moving right-down and one occluded signal moving right-up. Row
1 Right: Marked occlusion regions after eigenvalue analysis. While the explicit model
[15] can describe the straight-line boundary parts marked with circles, it cannot describe
the boundary corner marked with the square window. Row 2: “Shift-and-Subtract”
with the occluding speed. Row 3: “Shift-and-Subtract” with the occluded speed. Be-
tween Row 2 and 3 Right: The localized occlusion boundaries. Here we do not consider
the border problem.

in each one of Al,; and Al;5. These two regions are complementary in coordinates
(figure. 11). Their intersection indicates the location of boundaries B;. Thus, we extract
the boundary information in a simple way without using an explicit model.

By repeating the same process on frames /; and /;;,, we obtain the shifted bound-
aries B;;; and track therefore the movement of occlusion boundaries. Since the oc-
clusion boundaries move consistently with the occluding signal, we solve the fore-
ground /background ambiguity [11] as well.

The “shift-and-subtract” technique also distinguishes occlusion from transparency, as
there is no zero region in either A/, or Al,, in case of transparency. Furthermore, we
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can use this technique to decompose transparency scenes into their multi-layer repre-
sentations [43] (figure 14).

7 Experiments

7.1 Synthetic Occlusion Analysis

We begin with the occlusion sequence in figure 1, whose orientation signature is shown
in figures 7 and 10. We apply the EM algorithm based on the orientation signature for
estimation. We use the orientation signatures both with and without averaging compen-
sation to confirm the analysis in section 3.5. In the spatial model, we further compare
the estimation results before and after eliminating outliers.

In order to compare the spatial and spectral motion model, we set the same tolerance pa-
rameter o, = 0.1 and the same initial values in both spatial and spectral EM algorithm.
In the first estimation test, we set the initial values of motion parameters arbitrarily as
(w10, v10) = (0.8,0.3) and (usg, v99) = (1.2, —0.1). In the second estimation test, we set ini-
tial values as (u1g,v19) = (0.9,1.1) and (ugg, v90) = (0.9, —1.1) according to the extreme
point analysis introduced in section 3.5. The results in tables 2 and 3 show that if we
have properly initial values, the iteration number of the EM algorithm reduces.

In tables 2 and 3, the spatial EM algorithm provides more accurate results than the
spectral EM algorithm and needs less iterations. We also confirm that the estimation
results without averaging compensation are better than the results with compensation.
Moreover, if we can detect and eliminate outliers before estimation, we can improve the
estimation results.

In order to test the performance of the EM algorithm on determining the number of
models automatically, we propose an example of one moving signal with the velocity
(1,—1). Both spatial and spectral EM algorithms should converge to one speed even
with arbitrarily initial values if they are able to determine the number of motions au-
tomatically. With the initial values (1.2, —0.1) and (0.8, 0.3) the spatial EM algorithm
converges to (0.995, —1.001) after 2 iterations and the spectral EM algorithm converges
to (1.057,—1.045) and (0.951, —1.011) after 2 iterations. Taking into account that the
spectrum of the sequence is blurred, this result is not surprising. This fact indicates
that in the EM algorithm we do not know the number of motions exactly. In order to
confirm if the spectral EM algorithm converges with the properly initial values, we run
the program again by setting both initial values as (0.9, —1.1). This time the spectral
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Occlusion Estimation with Arbitrarily Initial Values

model outlier averaging || iteration | occluding occluded
before yes 3 (0.927,0.998) | (0.949, —0.971)
spatial | olimination no 3 (0.986,0.999) | (0.986, —0.988)
model after yes 3 (0.985,1.002) | (0.977, —0.991)
elimination no 3 (0.098, 0.999) | (0.990, —0.995)
spectral not yes 7 (1.187,1.194) | (1.112, —1.147)
model | available no 4 (0.898,0.948) | (1.106, —1.099)

Table 2: Estimation results of the occlusion sequence shown in figure 1. In both spatial
and spectral EM algorithms we use the same parameters: o, = 0,1, (110, v19) = (0.8,0.3),
and (71,20, 7)20) = (12, *01)

Occlusion Estimation with Properly Initial Values

model outlier averaging || iteration | occluding occluded
before yes 1 (0.938,1.005) | (0.923, -0.960)
spatial | olimination no 1 (0.980,0.997) | (0.963, —0.974)
model after yes 1 (0.987,1.002) | (0.967, —0.986)
elimination no 1 (0.994,0.997) | (0.978, —0.988)
spectral not yes 2 (1.182,1.191) | (1.110, —1.145)
model | available no 2 (0.966,1.002) | (1.007, —1.026)

Table 3: Occlusion estimation with properly initial values (u19,v19) = (0.9,1.1) and

(190, v20) = (0.9, —1.1). The other conditions are the same as those in table 2. The esti-
mation results in both tables are in the same precisions level since the input data does
not change.

EM algorithm converges to (1.004, —1.029) after 2 iterations. From this result we also
confirm that the spatial model provides finer resolution than the spectral model.

7.2 Real Occlusion Analysis

In this subsection we analyze real occlusion sequences. In figure 12 we show the well
known “flower garden” occlusion sequence, in which a left moving trunk covers the
left moving flower bed and houses. We first estimate motions using the single motion
model. At the occlusion boundaries the results are not correct, as shown in row 2 of
figure 12. After the eigenvalue analysis we detect two motion candidate regions and the
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regions with the aperture problem, which are shown in row 2 as well. We observe that
the regions with the aperture problem are very large in the sky and along the trunk. In
the two motion candidate regions we apply the spatial EM algorithm with the properly
initial values to estimate multiple motions and display the results in row 3. In row 4
we apply the “shift-and-subtract” technique. Before and after the shifting, there is no
difference inside the regions with the aperture problem. As a result, we observe only the
boundaries of the trunk in the difference image A/, ;. In fact, the difference images A7, ;
and A, can be viewed as the result of occlusion segmentation. We further localize
occlusion boundaries from Al ; and A/, 5 (row 4). The boundaries are badly connected
since the nonzero regions in A, ; are discrete due to the aperture problem.

In figures 13 we have an occlusion example in which a right moving box covers a left
moving picture. The image is rich in texture so that we need not to face the aperture
problem. We first estimate motions using the single motion model. The incorrect re-
sults at the occlusion boundaries are clear to see. We confirm this observation using
the eigenvalue analysis and mark all possible multiple motion regions in row 2. In this
sequence we would like to test the effect of eliminating outliers. For performance com-
parison we apply the EM algorithm vertically along the occlusion boundary before and
after eliminating outliers. Since we do not know the ground truth exactly, it is a little bit
difficult to compare the precision of estimation results. But we observe that on each side
of the boundary there is almost no speed difference among pixels. Therefore, we may
use the estimation results with a large window as ground truth since there are much
more normal pixels than outliers in such a large window. In the results with a small win-
dow we can observe the improvement after eliminating outliers clearly. In the window
centered at (160, 137) the results are not reasonable because there are only four pixels of
the occluded signal remaining after the outliers are eliminated. This example demon-
strates vividly the necessity of introducing reliability measure (equation (26)). By using
the “shift-and-subtract” technique we further localize the occluding boundary which
is displayed as intersection of zero regions in A/; and Al,. This “shift-and-subtract”
technique works also for boundaries with complex contour like the corner of the box.

7.3 Real Transparency Analysis

In figures 14 we show a real transparency sequence to compare the spatial and spectral
multiple motion models. It contains a right moving portrait and a mirrored left moving
muesli package. For this sequence we apply the BCCE based algorithm to estimate sin-
gle motion and use the eigenvalue analysis to determine the multiple motion candidates
at first. Only in these candidate regions, where the single motion model fails, we apply
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the spatial and the spectral EM algorithm for motion estimation. We see that the spatial
EM algorithm is not able to estimate transparent motions correctly, while the spectral
EM approach works well. The optical flow in the spectral EM approach is sparse. This
is due to the fact that in some regions of the package we do not have adequate texture
information. For a robust performance we ignore these regions in estimation. Similarly,
the multiple motion candidate regions are not in line with the package shape since some
regions of the package have the aperture problem.

After obtaining the motion parameters, we further decompose the transparency scene
into multi-layers with the “shift-and-subtract” technique. The results are shown in dif-
ference images Al and Al .
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Figure 12: Row 1: The 17-th, 32-th and 48-th frames of the “flower garden” sequence.
Each frame has 240 x 352 pixels. Here we consider the 32-th frame as the central frame.
Row 2 Left: Estimation results using the single motion model. At motion boundaries
the results are not correct. Row 2 Middle: Two motion candidate regions according
to the eigenvalue analysis. Row 2 Right: Regions with the aperture problem. Row 3:
Optical flow applying the spatial EM algorithm. Row 4: Detection and localization of
motion boundaries. Row 4 Left: Difference image AI,;. Row 4 Middle: Difference
image Al; 5. Row 4 Right: Detected motion boundaries.
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Figure 13: Top: The first, 16-th, and 32-th frame of an occlusion sequence. Each frame
has 200 x 350 pixels. The white box in the 16-th frame is centered at (122,137). Row
2 Left: The epipolar slice of the sequence along row 122 with the first frame at the
top of the slice. Row 2 Middle: The result of the single motion estimation algorithm.
Since the vertical speed components are almost zero in this sequence, we show only
horizontal speed components and use black color for negative speed (moving to the
left) and white color for positive speed (moving to the right). Row 2 Right: Two motion
candidate regions after the eigenvalue analysis. Row 3: Estimation results along column
137 using a 15 x 15 window. We use the results with a 31 x31 window as the ground truth
and draw them with solid lines. We draw the results before eliminating outliers with
circles and the results after eliminating outliers with crosses. For comparison we draw
different speed components separately. For clarity of drawing we sample the results
with an interval of 5 pixels along column 137. Row 4: The segmentation result after
“shift-and-subtract”. For clarity we enlarge the occlusion boundary region.
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Figure 14: Comparison of spatial- and spectral-EM algorithms on real transparency se-
quence. Row 1: The first, 16-th and 32-th frames of the image sequence. Each frame
has 288 x 384 pixels. Row 2 Left: Estimation results using the single motion model in
the 16-th frame. Row 2 Right: Marked two motion candidate regions according to the
eigenvalue analysis. Row 3: Optical flow of the spatial EM approach. The estimation
results are not correct in the transparent region. Row 4: Optical flow of the spectral EM
approach. Bottom: Decomposition of the transparency scene into two layers using the
spectral EM results and the “shift-and-subtract” technique. Bottom Left: Difference
image Al; ;. Bottom Right: Difference image A7 .
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8 Conclusion and Discussions

In this paper, we studied multiple motion analysis from the standpoint of orientation
analysis. After pointing out that multiple motions are equivalent to multiple planes in
the derivative space or in the frequency domain, we proposed a new kind of 3D ori-
entation steerable filter in motion estimation. This method is superior to principle axis
analysis based approaches and current 3D steerability approaches in achieving high
orientation resolution. Comparisons showed that this new method is similar to the 3D
Hough transform, but more efficient and robust. Besides, it also improves the perfor-
mance of the EM algorithm.

We implemented our method in the feature space directly. Though projecting the sphere
surface onto 2D feature space is not an isometric mapping and the rotation symmetry is
lost after projection, this transform benefits structure display and post-processing.

In occlusion estimation we further proposed to eliminate outliers in the derivative do-
main. Compared with current probabilistic approaches, which include the outliers in
the estimation, our method improves the quality of input data and therefore provides
more exact results.

In order to localize occlusion boundaries and to track their movement, we utilized the
spatial coherence inside the frame and applied the “shift-and-subtract” technique. We
did not use an explicit local model of the boundary region. But we still obtained the de-
sired information about the occlusion boundaries. Furthermore, multiple motions can
be segmented very efficiently by combining estimation techniques and spatial coher-
ence [46]: The region with the same motion parameters can be figured out by calculating
the difference between two frames with estimated speeds.

The spatial coherence information is also a key cue to distinguish occlusion and trans-
parency in the spatial domain. Actually, it is not difficult to distinguish occlusion from
transparency in the frequency domain. For example, we can look at a set of estimation
results by shifting the observing window and observe their variation. Since occlusion
is more local than transparency, the number of motions changes from two to one after
the observing window has crossed occlusion boundaries, while in case of transparency
the number of motions remains the same. We may also observe the relative ratio be-
tween data points outside the motion planes and those on the motion planes [52]. This
ratio is much larger in case of occlusion than in case of transparency since all energy of
the transparency lies on the dominant planes. However, in the frequency domain we
cannot localize motion boundaries due to the well known uncertainty principle: The
spectrum of the observing window provides us no localization information inside the
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window. Therefore, we must go back to the spatial domain to detect and to localize mo-
tion boundaries, where the coherence information plays a very important role in image
segmentation and scene analysis. The “shift-and-subtract” technique and the recently
introduced normalized cut approach [39, 40] remind this point vividly.
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